
Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Interface Development for
Digitization of Documents Using

OCR
Bachelor’s Thesis in Computer Science

by

Christoffer Lindland and
Fadul Elwalid Fadul

Under the supervision of

Prof. Karl Skretting
University of Stavanger

Kristian Str̊abø
Aker Solutions



Abstract

The purpose of this thesis is to develop a semi-automated interface that uses Optical
Character Recognition (OCR) routines to identify text-based information from a large
volume of digitized drawings associated with the oil and gas industry. The identified
information is presented in an appropriate interface for any necessary manual modifica-
tion, with the target of improving the efficiency of maintaining large amounts of older
documents. The thesis outlines the design of the interface and the implementation of
Tesseract OCR engine, in combination with tailor-made functions and classes that lever-
age OpenCV to enhance the recognition process.

i



Acknowledgements

We would like to express our deepest gratitude to our supervisor, Professor Karl Skretting,
for his invaluable guidance and unwavering support throughout the course of our thesis.
His expertise and insightful feedback have been instrumental in shaping the the direction
of our research and have contributed significantly to our growth as developers.

We would also like to extend our sincere appreciation to our external supervisor,
Kristian Str̊abø, for his invaluable knowledge and expertise in the oil and gas industry.
His insightful feedback and contribution to the design of the interface have been critical
to the success of our project.

In addition, we are grateful to the staff at Aker Solutions, specifically the department
at J̊att̊av̊agen, for prividing us with office space and academic feedback during the writing
of our thesis. We would also like to express our gratitude to the faculty and staff of
the Department of Electrical Engineering and Computer Science for providing us with
necessary knowledge and expertise.

Finally, we would like to thank our families and friends for their unwavering support
and encouragement throughout our academic journey. Without their love and support,
this achievement would not have been possible.

ii



Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Background and Preliminary Concepts . . . . . . . . . . . . . . . . . . . 2

1.5 Confidentiality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Foundational Concepts and Techniques 3

2.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Open Source Computer Vision Library . . . . . . . . . . . . . . . 7

2.2.2 Morphological Operations . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Optical Character Recognition . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Image Pre-processing Pipline . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Text Recognition Pipeline . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Types of Optical Character Recognition Systems . . . . . . . . . 19

2.3.5 OCR Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.6 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iii



CONTENTS iv

3 Suggested Approach 21

3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Import PDFs and Begin Processing . . . . . . . . . . . . . . . . . 23

3.2.2 Converting PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Image Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Hardware Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.5 Saving to Excel and Cleanup . . . . . . . . . . . . . . . . . . . . . 35

3.3 Performance Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Discussion and Conclusion 39

4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Chapter 1

Introduction

1.1 Background

Many older platforms in the oil and gas industry are still in operation, some of which
date back to the 1970s [1], which means that there is a large amount of documentation
that needs to be renewed. Aker Solutions has a project where there is a need to extract
information from a considerable amount of old drawings, approximately 10.000 drawings
in PDF format, with varying degrees of quality. Their goal is to simplify maintenance
of these drawings and the important text-based information. This bachelor’s thesis is
therefore a collaboration effort between the University of Stavanger and the external
company Aker Solutions, intended to tackle the challenges of extracting information from
a vast amount of drawings. The collaboration is primarily with the department located
at J̊att̊av̊agen, where the external supervisor works closely with the developer team.
The external supervisor provides constant feedback regarding the desired information
that needs to be extracted from the drawings, as well as suggestions regarding the user
interface. Given that the external supervisor will be the end-user of the final product,
their input on the user interface is invaluable to the team in developing an effective
solution to the problem at hand, as well as a product designed with the user’s perspecive
in mind.

1.2 Objective

The objective is to develop a semi-automated interface in Python that uses Optical Char-
acter Recognition (OCR) routines to recognize text in the digitized drawings, and present
the outcome in an appropriate interface, making it easily understandable to determine
the recognized and unrecognized text. The interface will also enable the user with the
functionality to manually modify and adjust the OCR outcome. Additionally, the ex-

1



CHAPTER 1. INTRODUCTION 2

ternal company requested the ability to save the extracted information as, i.e., an Excel
spreadsheet. The additional request was therefore taken into consideration during the
development process.

1.3 Significance

The significant importance of this collaboration project originates from the digitization
transition within the oil and gas industry, including Aker Solutions, as it seeks to improve
the efficiency of maintaining a large volum of older drawings or documents. Such an ini-
tiative is especially important for the oil and gas industry, where accurate and up-to-date
information is critical for ensuring safety and compliance [2]. By enhancing the accessi-
bility and accuracy of information through modernized technology, the project has the
potential to reduce workload and high maintenance costs. In sum, this project presents
significant potential for generating substantial benefits not only for Aker Solutions but
also for the industry and the wider communities as they embrace the ongoing digital
transformation.

1.4 Background and Preliminary Concepts

Given the project’s objectives and goals, it is crucial to have a comprehensive under-
standing of Optical Character Recognition (OCR) techniques and their effective utiliza-
tion. Equally important is the ability to create a user-friendly interface, which is essential
for a successful product. Chapter 2 provides necessary background information covering
the fundamental concepts related to OCR and user interface. Chapter 3 presents the
approach taken to develop the final product, which include a detailed description of al-
gorithms, and tools utilized to implement OCR techniques and the design and creation
of the user-friendly interface.

1.5 Confidentiality Measures

Furthermore, it is crucial to highlight that throught this thesis, all images and drawings in
Chapter 3 have been anonymized to safeguard the privacy and confidentiality of external
company involved in this project.



Chapter 2

Foundational Concepts and
Techniques

2.1 User Interface

The User Interface (UI) is a critical component of software systems [3]-[4], as it serves
as a point of human-computer interaction as well as user interaction with a software
application or a website. This interface is constructed in a series of layers that are designed
to appeal to human senses, acting as a bridge that facilitates communication between the
user and software. Typically, UI incorporates both input and output devices, including
keyboards, mouse trackpads, microphones, touch screens, monitors, and speakers. For
instance, everyday UI uses utilizes a combination of tactile input (keyboard and mouse)
and visual auditory output (monitor and speakers). The design of a UI is critical for
software usability and can have significant impact on the overall experience [5]. Therefore,
it is essential to take into account the needs and preferences of the target audience when
designing or developing a UI.

2.1.1 Graphical User Interface

The graphical user interface (GUI) is a type of UI that primarly employs visual elements
and graphical representations to present information and facilitate interaction between
the user and software applications [6]. GUIs commonly use windows, icons, and menus to
execute various commands, including file manipulation tasks. In contrast to text-based
command-line interfaces (CLIs) such as MS-DOS or Unix-like shells, GUIs are typically
considered more user-friendly, as they do not require the user to memorize commands
or programming language. Figures 2.1 and 2.2 present visual examples of both CLI and
GUI, respectively.

3



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 4

Figure 2.1: Screenshot of Command Line Interface (CLI) running on Windows 10. Source: [7]

Examples of GUIs include popular operating systems such as Windows, MacOs, and
Android, which enable users to execute commands via gestures or mouse movements
without the need to enter any code [8]. Consequently, GUIs have become an ubiquitous
feature of modern software applications, revolutionizing the way people interact with and
utilize digital tools [9].

Figure 2.2: Example of a Graphical User Interface (GUI) from a Windows 10 desktop environ-
ment. Source: [6]



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 5

Elements of a GUI

To enhance user interaction with software and optimize the user-friendliness of a GUI,
various elements and objects are utilized. GUI elements can generally be classified into
two categories: text and non-text (refer to Figure 2.3). Presented below is a few examples
of GUI elements commonly used.

• Buttons: graphical objects that the user can click on to trigger an action.

• Icons: small graphical representation of files folders, or other objects.

• Text fields: areas where the user can input text or data.

• Checkboxes: small boxes that the user can select or deselect to indicate a choice.

• Radio button: small circles that the user can select to indicate a choice.

• Sliders: graphical objects that the use can slide back and forth to adjust a value or
setting.

• Menu: list of options that the user can select from.

• Toolbars: graphical areas that contain buttons or icons representing frequently used
commands or functions.

• Progress bars: graphical indicators that show the progress of a task or operation.

Figure 2.3: Examples of Andorid GUI elements. Source: [10]



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 6

2.2 Image Processing

Figure 2.4: An image of a water drop captured by a camera and processed through a digital
system. The system removes all extraneous details, focusing solely on the water drop while
preserving the image quality.

Image processing is a set of computational techniques to enhance raw images captured
through the use of various vision sensors [11], or extract useful information from the
captured images. Essentially, it is a type of singal processing where the input is an
image, and the output may be either an altered image or characteristics associated with
the input image. The process consists of three essential steps, starting with importing
the image using image acquistion tools [12]. Thereafter, analyzing and manipulating the
image, and finally obtaining an output that may be an altered image or report based on
image analysis [13].

There are two main types of methods used in image processing: analogue and digital
image processing. This project focuses on digital image processing (DIP) techniques,
which involve manipulating digital images through three general phases: pre-processing,
enhancement, and display, which culminate in information extraction.

Digital Image

A digital image is a two-dimensional representation of visual information in a digital
format, composed of pixels arranged in columns and rows [14]. Each pixel represent a
small portion of the image, and its intensity (or color) is stored as a binary code. Digital
images can be manipulated using DIP techniques to manipulate these groups of bits or
pixels to enhance image quality, create different perspectives, or extract information with
the aid of computer algorithms.

Figure 2.5 demonstrates the impact of different color bit depths (or bits per pixel)
on the visual quality of the image. The 1-bit image is known as a binary image which
consists of only two colors, where each pixel is either black or white. The black pixels
represent the foreground, and the white pixels represent the background [15].



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 7

Figure 2.5: Original image is split into 1-bit, 4-bit, and 8-bit (grayscale) colors, representing 2,
16, and 256 colors, respectively. Source: [16]

2.2.1 Open Source Computer Vision Library

OpenCV, short for Open Source Computer Vision Library, is an open-source library
of programming functions that provides a vast array of tools and algorithms for image
processing [17]. Its functions include image filtering, feature detection, object detection,
and more [18]. It supports multiple programming languages, such as C++, Python, and
Java, which makes it a versatile and accessible tool for image processing tasks [18]. The
wide range of algorithms and functions that OpenCV offers, coupled with its user-friendly
interface, makes it the preffered choice for the present project as well as various image
processing applications [17].

Overall, OpenCV is a powerful tool for image processing that offers a broad range of
functions and algorithms to solve a diverse set of problems. Its open-source nature and
versatility make it an excellent choice for researchers and developers alike.

2.2.2 Morphological Operations

Morphology encompass an extensive variety of image processing operations that process
images based on shape [19], [20]. Morphological operations involves applying a struc-
turing element to an input image, resulting in an output image of the same size. In
essence, morphological operations determine the output pixel value based on a compari-
son between the corresponding input pixel and its neighboring pixels. Although the term
”morphology” is typically used in biology to refer to the form and structure of animals
and plants, in mathematical morphology, the same term is used to describe the process of
extracting image components that are useful for representing region shape, boundaries,
and more [21]. Erosion and dilation are fundamental morphological operations in image
processing that are widely implemented in various applications [22], and are illustrated
in Figures 2.7 and 2.8.



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 8

Figure 2.6: Erosion operation on an imput image using a structuring element. Source: [21]

Morphology and Image Segmentation share a common ground in terms of image pro-
cessing techniques. Morphology encompasses a range of techniques that can be applied as
either pre-processing or post-processing steps. Implementing morphological operations as
a pre-processing step refines the input data for Image Segmentation, while implementing
it as a post-processing step can effectively eliminate any inaccuracies present in the seg-
mented image. Moreover, morphological operations can provide valuable insights about
the structural and shape features of the image, which are essential for subsequent image
analysis tasks. Therefore, the integration of both Morphology and Image Segmentation
can lead to more robust and accurate image processing algorithms [23]. For more com-
prehensive understanding of the process of Image Segmentation, readers should refer to
Section 2.3.1 later in this thesis.

Figure 2.7: (a) Original image, (b) and (c) shows processed images after erosion using 3x3 and
5x5 structuring elements respectively. Source: [21]



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 9

Figure 2.8: Image before dilation (left) with gaps in image text. Image after dilation with gaps
within the text filled. Source: [22]

2.3 Optical Character Recognition

Optical Character Recognition (OCR) is a process that involves converting printed, type-
written or handwritten text images into digital machine-encoded text [24, p. 19-20], [25].
OCR is used to recognize characters that are optically drawn or printed, making it pos-
sible to convert scanned documents or images into searchable and editable digital text
[26]. The OCR algorithm consists of several major steps, beginning with the initial stage
called image acquisition where data is fed into the system. The next step is preprocessing,
where the image quality is improved using various techniques. The third step is charac-
ter segmentation, which involves separating the characters that make up the image, and
forms the initial stage of the OCR algorithm. Figure 2.10 shows the steps for OCR, and
Figure 2.9 illustrates the workflow.

Figure 2.9: General model of a OCR process flow.



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 10

Figure 2.10: Steps for OCR. (a) Image acquisition. (b) Preprocessing. (c) Character segmen-
tation. (d) Feature extraction. (e) Classification and post-processing. Source: [26]

Moreover, the second stage of the ocr pipeline/algorithm consists of three main com-
ponents: feature extraction, classification, and post-processing. In the feature extraction
step, unique features are extracted from each character segment to aid in later classifi-
cation. The classification step maps the segmented images to their respective character
classes. Finally, post-processing is performed to refine the output and ensure the accuracy
of the recognized characters.

2.3.1 Image Pre-processing Pipline

Image Acquisition

Image acquisition (IA) is the process of retrieving an image from an external source for
further processing, and marks the initial stage of the OCR workflow [27]. Additionally,
the process is an integral part of the digitization process that involves converting an
analog image into a digital format. This retrieval process can be done via hardware such
as a scanner, camera or other devices [28]. A scanner captures the content of documents
and translates it into digital information represented in binary format. This stage of the
OCR workflow is essential as it ensures that the captured image is of high quality, and
recognizes all relevant information. Any errors or missing information in the image can
negativly affect accuracy and reliablity, thereby impeding the OCR softwares ability to
accurately recognize the text and other important information.



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 11

In conclusion, the significance of image acquisition and ensuring it is correctly executed
is fundamental in regards of achieving accurate and reliable OCR results, which are
critical for applications such as digitizing older documents or automating data entry.

Preprocessing

OCR software typically perform some basic preprocessing, as part of the OCR process.
The degree of preprocessing done can vary depending on the specific engine and the
complexity of the image being scanned. Imperfections are inherent to any scanner for
capturing image, and noise can be present in the scanned image due to extraneous details.
This noise can negativly impact the accuracy of OCR [29]. Built-in techniques used in
OCR systems can improve the accuracy of the recognition process, and thus tackle the
mentioned issue. Among the most basic yet crucial techniques are binarization, skew
correction, noise reduction, and contrast enhancement [30]. Each technique serves a
specific purpose in the preprocessing phase, and a combination can greatly improve the
overall accuracy.

Similar to the aforementioned information on image acquisition, the preprocessing
stage plays a critical role in enchancing the accuracy of the character recognition pro-
cess. The fundamental objective of this stage is achieved by manipulating image data by
eliminating noise and artifacts and rectifying any distoritions or other image deformities.
The captured image, from the IA phase, is typically first converted to a grayscale im-
age, and then binarized achieving a clear demarcation between the foreground (text) and
background. This process, known as binarization, is part of the digitization process and
involves setting a threshold value to differentiate between foreground and background,
as it is imperative for optimal character recognition by OCR systems. Thresholding is
a commonly used technique, in context of image processing, to select or isolate regions
of interest in an image while disregarding irrelevant parts, such as the background and
image deformities [31].

In Figure 2.11, the original image appears distorted with clearly visible square boxes,
reffered to as pixels. Pixels are represented by numerical values, known as pixel values,
that denote their intensity. For grayscale images, pixel values range from 0 to 255,
where the lower values represent darker shades, and higher values represent lighter or
white shades. By fixing a threshold, normally at half of the pixel range, all pixel values
exceeding the threshold are considered white pixels (background), while those below are
classified as black pixels.



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 12

Figure 2.11: Grayscale image showcasing pixel intesity and their respective values. Source: [32]

In Figure 2.12, the conversion process during binarizatin is depicted, illustrating a
binary image matrix. This type of matrix comprises of pixels represented by a single
bit of information, i.e., either 0 or 1, making it a 1-bit image. These pixels are arranged
creating a grid pattern to form the binary image marix. The conversion process simplifies
the image data, and can be achieved by either applying binarization or utilizing other
suitable techniques to produce a denoised image [29]. This enables the OCR software to
differentiate chracters from the background with ease [33], [34].

Figure 2.12: Illustration of binarization process. Original image (left), binary image (middle),
and binary matrix (right). Source: Reference [35]

As previously noted, binarization is a fundamental technique that is typically inte-
grated within OCR engines, and is performed during the initial image acquisition stage
of the OCR workflow. Similarly, the same applies to other fundamental techniques men-
tioned earlier, and as shown in Figure 2.14 and 2.13 the techniques clearly improve image
quality.



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 13

Figure 2.13: Image before and after implementation of skew correction.

Figure 2.14: Image before and after noise reduction.

Selection of optimal processing techniques or algorithms depends on specific situations,
project requirements, and the complexity of the captured image from the IA stage [36].
Moreover, the objective of this phase is to preprocess the input image or document so that
it can be effectively and accuratly processed by the OCR algorithm. This is accomplished
by eliminating any noise and artifacts present through the use of either default techniques



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 14

provided by OCR engines or by implementing techniques that can further enhance the
quality of the preprocessed image [37].

Segmentation

Segmentation is one of the most important stages in OCR, which refers to the process
of partitioning a digital image into multiple segments or subregions [38]. This allows for
the extraction of individual components to be recognized and converted into machine-
enocoded text. The segmentation process is typically perfomed in a sequence of three
steps, also referred to as tri-level segmentation: line level segmentation, word level seg-
mentation, and character level segmentation. The histogram projection method is used
to explain the mentioned tri-level segmentation. This method involves projecting the
pixel values onto a one-dimensional axis, commonly along the horizontal or vertical axis,
to generate a histogram that represents the distribution of pixels along that axis [39],
[40]. The resulting histogram is also as a projection profile.

Line level segmentation is the first stage of the tri-level segmentation process, which
involves detection and extraction of individual text lines from a skew corrected binary
image provided from the earlier preprocessing phase. Depending on the type of OCR sys-
tem (detailed explanation in Section 2.3.4 and 2.3.5), horizontal projection profile analysis
is typically utilized during this level of segmentation. An example of this technique is
presented in Figure 2.15. A projection profil is created by summing up the foreground
pixels along each row of the image, and the resulting curve shows the distribution of black
pixels along each row and is analyzed to identify the regions with high concentration of
black pixels, which correspond to lines of text. The image is then segmented into smaller
regions and passed through to the next level of the tri-level segmentation.

Figure 2.15: Horizontal projection profile for image segmentation. Higher peaks represent the
text in a line, having a high number of foreground pixels. Rows that represent the gaps in-
between the lines is represented with lower peaks. Source: [41]



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 15

The second stage of the tri-level segmentation is word level segmentation (Figure
2.17), which involves individual identification of words within a line. It is the process of
determining the word boundaries in a sentence or line by computer algorithms [42]. At
this level, images from the previous segmentation stage, consisting of a single line of a
sequence of words, are provided. The method utilized is analogous to the previous, with
the only difference being that the OCR performs vertical projections on the image rather
than horisontal projections [43]. By vertically projecting the binary subregions provided,
a projection profile is generated, which is illustrate in Figure 2.16.

Figure 2.16: Vertical histogram projection of a line of text. Higher peaks indicate high number
of foreground pixels. Gaps in-between words is represented by lower peaks indicating high
number of background pixels. Source: [44]

Figure 2.17: (a) Image provided from the line segmentaion stage. (b) Vertical projection profile
for the provided image. (c) Detected word boundaries after analyzing the projection profile.
(d) Final segmented words. Source: [43]

After partitioning the images provided from the previous segmentation level, the seg-
mented words are passed through to the final level of the tri-level segmentation process



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 16

known as character level segmentation. Similarly to the previous level, the OCR performs
vertical projections on the images containing a single word consisting of a sequence of
characters [45]. Additionally, OCR systems use several techniques to accurately extract
and recognize each character, such as thresholding [46].

Depending upon the context where the OCR is being used, this level of segmentation
can be more or less complicated. If the OCR system is being applied to text, where the
characters within a word are separate, maintaining a relatively uniform gap in-between,
character level segmentation may be less complicated and the OCR can segment the
characters by leveraging the small gaps between characters. On the other hand, if the
characters within a word are joined, over-segmentation may occur resulting in a frag-
mented representation that may not be recognizable as text.

Figure 2.18: Example of ligature in cursive handwriting. (a) An extra stroke. (b) A smooth
connection. Source: [47]

The concept of ligatures in cursive handwriting can lead to over-segmenation prob-
lem, which is when the OCR system failes to distinguish the ligature with the curve
from open characters [48], and rather considers both as valid candidates for segmenting.
Hence, splitting the image into more segments than necessary, which can lead to errors
in recognition. Various techniques exist to address this issue, inclduing clsutering and
skeletonization.

Figure 2.19: Word images showing all types of segmentation errors. Source: [49]

Segmentation plays a pivot role in OCR, as it encompasses the partitioning of the input
image into smaller subregions such as lines, words, and characters, which can then be
recognized and translated into machine-encoded text. Line level segmentation identifies



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 17

individual lines of text, word level segmentation detects individual words, and character
level segmentation extracts individual characters. The sequential tri-level segmentation
process enables the OCR system to accuractely recognize and translate the input image
into digital text.

2.3.2 Text Recognition Pipeline

OCR systems play an important role in regards of automated recognition and interpre-
tation of printed or handwritten text from images. The text recognition pipeline is an
essential component of these systems, consisting of three main steps: feature extraction,
classification, and post-processing.

Figure 2.20: Simple example of text output (right) after text recognition. Source: [50]

Feature extraction

Feature extraction involves extracting relevant information from the input image to iden-
tify individual characters or text. Its main objective is to obtain the most relevant
information contained from the original data, reducing the complexity of the input data
while retaining relevant information [51]. Features such as lines, curves, or texture pat-
terns, can be extracted through application of techniques such as edge detection, blob
detection, or template matching. Furthermore, these features are transformed into a
numerical representation that can be used as input to machine learning algorithms for
classification. Overall, feature extraction aims to transform the input data into a format
that can be processed and analyzed by machine learning algorithms, allowing for accurate
and efficient recognition of text.



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 18

Classification

Classification is the process of using machine learning algorithms to classify the extracted
features, from the earlier step, as specific characters or words. It is the procedure of
distributing inputs, with respect to detected information, to their comparing class in
order to create groups with homogeneous qualities, while segregating different inputs
into different classes [52]. Typically, this involves training a classifier using a labeled
dataset to learn to recognize different letters, digits, and symbols.

Post-processing

Post-processing involves refining the results from the classification step to improve the
overall accuracy of the OCR system. This may be achieved through the application of
various methods, and the least complex for consolidating the context data is the usage
of a dictionary for amending minor errors of the OCR. The underlying thought of the
post-processing step is to perform spell-checking on the OCR output and provide various
options for the recognized text using a dictionary [52].

The text recognition pipeline is a critical component in OCR systems, enabling the
automated and accurate recognition of text from images. Understanding the underlying
mechanisms and optimizing the pipeline for specific applications can highly improve the
OCR performance, and benefiting a wide range of industries.

2.3.3 Long Short-Term Memory

Long short-term memory (LSTM) is a subtype of recurrent neural network (RNN) that
is commonly utilized for sequence modeling and processing [53]. Recurrent neural net-
works are designed to leverage artificial memory processes that can aid these artificial
intelligence programs to more effectively emulate human thought [54].

LSTMs are a key component in OCR systems and is usually used in combination
with other techniques such as Convolutional Neural Networks (CNNs) and Attention
Mechanisms, to perform tasks such as character recognition, word segmentation, and
text recognition [55], [56]. Typically, OCR systems are encountered by variable-length
input sequences, and LSTMs can learn to model the temporal dependencies in sequential
data, making them suitable for handling such inputs.



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 19

2.3.4 Types of Optical Character Recognition Systems

Based on the type of input, OCR systems are divided into two main categories [57]:
handwriting recognition and machine printed character recognition. Machine printed
character recognition is a simpler problem because characters are usually of uniform
dimensions, and the positions of characters on the page can be predicted. In contrast,
handwritten recogntion is a much tougher job due to different writing styles of uses as well
as different pen movements by the user for the same character. OCR systems can also
be categorized based on image acquisition mode, character connectivity, font-restrictions,
and other criteria.

2.3.5 OCR Engine

OCR systems consist of various components such as image pre-processing, OCR engine,
post-processing, and UI. The OCR engine is the core component of an OCR system,
responsible for converting image data into text. It is a software library or module that
provides character recognition functionality to the OCR system.

Tesseract OCR

Tesseract OCR is an open-source OCR engine [58], that is primarily designed to recognize
machine-printed characters in various documents like books and newspapers. Depending
on the application’s requirements, this OCR engine can be integrated as both an offline
and online OCR system. As an offline system, the engine processes static data, i.e., images
that have already been captured, whereas the online mode requires additional software
and hardware components to capture and process input in real-time. However, Tesseract
OCR is better suited for offline applications, where the input data can be preprocessed
and optimized for recognition before being fed into the engine.

2.3.6 Configurations

OCR configuration refers to the various customizable settings and options within an OCR
system, which can be fine-tuned to optimize the recognition process for specific use cases
or applications. Provided below are general configuration settings that can be utilized.

• Character recognition settings: These can include options for adjusting the level
of detail used to recognize individual characters, such as adjusting the font size or
font type recognition thresholds.



CHAPTER 2. FOUNDATIONAL CONCEPTS AND TECHNIQUES 20

• Character set and dictionary: Can be configured to recognize or exclude specific
characters or symbols.

• Output format: Can be configured to output text in various formats, such as plain
text or PDF, depending on the desired application and use cases.

• Language support: OCR engines can be configured to recognize specific languages
or character sets.

• Page segmentation mode: Determines how the OCR engine identifies and separates
text and other elements on a page, such as tables or images.

• OCR engine mode: The setting determines the overall approach used by the OCR
engine to recognize characters, such as using a neural network-based approach.

Customization of OCR systems is an important aspect in achieving optimal results. The
available configurations in an OCR system are significantly influenced by the specific
algorithms and approaches employed by the OCR engines. As discussed in Section 2.3.5,
the engine is the central component of an OCR system, and the degree of customization
can therefore vary depending on the particular engine used.



Chapter 3

Suggested Approach

3.1 Design

The graphical user interface (GUI) is a critical component of the hardware documentation
process. It comprises various widgets or elements that serve a specific purpose in this
application. Most of the GUI is covered by the scene widget, which displays the current
image the user is working on. Below the scene widget, there are three widgets, two
containing a list each, and the last widget containing all the buttons for the workflow.
The widget containing the buttons, also contains information presented to the user during
certain stages of the workflow.

Figure 3.1: Screenshot of the interface’s main window layout.

21



CHAPTER 3. SUGGESTED APPROACH 22

The button widgets are conveniently arranged to follow a natural flow that guides the
user through the workflow of the GUI. The buttons take you through the workflow of the
GUI, where you start with the uppermost left button, followed by the uppermost right
button. By slowly working your way down the buttons, you reach the final button which
is color-coded green indicating the completion of the workflow. Each ”line of buttons”
corresponds to its ”line of work”, with the top layer of buttons handling importing and
processing a PDF, the second layer handling information extraction and display, and the
last layer exporting the corrected information. The ”line of work” provides an indication
of what belongs together by matching the buttons’ colors, each ”line of work” then repre-
sented by the same color. Functionally, the buttons are rendered unusable until specific
criteria in the workflow have been achieved, which is explained in Section 3.2. This helps
in preventing the user from accidentally performing an action prematurely.

Figure 3.2: Screenshot of the button widget’s layout.

The Result Viewer Window displays the extracted information to the user, and is
provided in Figure 3.3. There are two buttons at the top of the Result Viewer Window
for adding or removing a loop at the bottom. Each loop spans most of the window and is
presented as an element in a big list. Each loop has 13 sections corresponding to the 13
words to be extracted. Each section displays the element to be found at the top, followed
by the corresponding word the software has recognized from the displayed image. A list
of all other potential matches appears under the recognized word. Each element in the
list is clickable, leading to the recognized word being updated. If the element is not in
the list, the user can manually type the correct word in the input field, which overwrites
the value in the found word. The input field has a placeholder text ”Enter Word” if the
user has added a loop manually using the ”Add Loop” button.

The GUI is designed to be used with two screens, with the Result Viewer Window
appearing in a separate window, allowing the user to review the words on one screen while
simultaneously matching the result from the image of the loops in the main window GUI.
To accomodate for the loop’s width in an image, the image viewer in the GUI layout



CHAPTER 3. SUGGESTED APPROACH 23

takes up the majority of the main window. The user can zoom in and out of the picture
and drag the image around the viewer, giving a seamless user experience.

Figure 3.3: Screenshot of the Result Viewer Window

Once the user completes the validation and correction of what the software has ex-
tracted, the next image can be opened using the ”Checked Result, Open Next Page”
button. A green-colored icon marks the selected image from the list of images to indicate
that the user has validated the current image. A label above the image list widget is
updated to provide this information. The next image is selected from the list of images
and displayed in the image viewer, and the Result Viewer Window is updated with infor-
mation from the OCR file for the new image. If necessary, the user can redo the previous
image by selecting the image from the image list and clicking the ”Open Result Viewer
Window” button.

Overall, the GUI design provides a seamless and intuitive experience for the user,
facilitating efficient and accurate hardware documentation process.

3.2 Implementation

3.2.1 Import PDFs and Begin Processing

The GUI features two buttons for PDF processing. The first button, labeled ”Import
PDFs”, is located at the top-left corner of the button widget. When clicked, this button



CHAPTER 3. SUGGESTED APPROACH 24

invokes the importPdfDlg method of the parent class, which displays a popup dialog
prompting the user to import one or several PDFs for further processing. As shown in
Figure 3.4, the user can select a single PDF or multiple PDFs. The importPdfDlg method
retrieves a list of file paths from the dialog box and copies them from the source to an
internal ”input” folder, which the GUI uses to access the PDF files. This functionality
simplifies the user experience by eliminating the need for the user to locate the program’s
file directories manually.

1 def importPdfDlg (self):
2 """ Use the Qt file open dialog to select one or several PDFs to

import ."""
3 options = QFileDialog . Options ()
4 options |= QFileDialog . DontUseNativeDialog # make dialog

appear the same on all systems
5 flt = "All files (*)"
6 (fName_list , used_filter ) = QFileDialog . getOpenFileNames ( parent

=self , caption =" Import PDFs",
7 filter =flt , options = options )
8

9 for i in fName_list :
10 shutil .copy(i, os.path.join(BASEDIR , INPUT , os.path.split(i

)[1]))
11

12 self. buttonWindow . info_label . setText (f" Imported selected PDFs
to unprocessed folder ")

13 return

Listing 3.1: Code snippet of the importPdfDlg method.

The ”Import PDFs” button does not constrain the workflow of the program. Addi-
tional PDF files can be imported for processing at any time by the user.



CHAPTER 3. SUGGESTED APPROACH 25

Figure 3.4: Import PDF dialog box

The second button, labeled ”Process Next PDF,” is located at the top-right corner
of the button widget. When clicked, this button invokes a function in another thread,
explained in Section 3.2.2, that starts the primary processing steps of the PDFs. This
includes converting them to images, which the GUI processes using OpenCV and enabling
OCR.

The ”Process Next PDF” button remains inactive until certain criteria are satisfied.
Two conditions must be met. The first criterion requires the input processing folder to
contain at least one PDF file, to ensure the function’s execution. The second criterion is
more lenient; if an error is detected, the function automatically corrects the error, thereby
allowing it to resume processing. For an error to occur, an internal folder structure with
the PDF’s name must be absent. The code snippet in 3.2 details these checks below.

1 def processNextPDF (self , consecutive =False):
2 """ Get the next PDF in the directory """
3 try:
4 root , pdf_name_end = next(self. PDF_generator )
5 pdf_name = pdf_name_end .split (".") [0]
6 except StopIteration :
7 pdf_name = ""
8

9 if pdf_name == "":



CHAPTER 3. SUGGESTED APPROACH 26

10 self. buttonWindow . info_label . setText (f"No more PDFs in
unprocessed folder , please import first ")

11 return
12 if not os.path. exists (os.path.join(BASEDIR , OUTPUT , pdf_name ,

PDF_PAGES )):
13 os. makedirs (os.path.join(BASEDIR , OUTPUT , pdf_name ,

PDF_PAGES ))

Listing 3.2: Code snippet of the processNextPDF method.

If the ’self.PDF generator’ variable, does not return a PDF path, the function termi-
nates prematurely, and the user is notified of the error. It is worth mentioning that this
variable executes the code from Listing 3.1 and 3.2.

3.2.2 Converting PDF

This section addresses the computational requirements for the conversion of PDFs to
images and the extraction of OCR data. To achieve this, a worker class, known as the
’Converter Worker’, was created to handle the conversion process. This worker is moved
to another thread, creating ideal conditions for running a heavy computational task in
the background while not interfering with the GUI in the main thread. Additionally, the
use of threads enabled the worker to emit status updates that the main thread could
listen for, thereby keeping the user informed of the background task’s progress. A code
snippet of the ’Converter Worker’ class is presented in Listing 3.3.

1 class ConverterWorker ( QObject ):
2 finished = Signal ()
3 pdf_finished = Signal ()
4 pdf_label_worker = Signal (str)
5

6 def __init__ (self , parent =None):
7 super( ConverterWorker , self). __init__ ()
8 self. pdf_path = None
9 self. output_folder = None

10 self. pdf_name = None
11

12 def start(self):
13 self.pdf = pdfium . PdfDocument (self. pdf_path )
14 n_pages = len(self.pdf)
15 for page_number in range( n_pages ):
16 QApplication . processEvents ()
17 self. pdf_label_worker .emit(f" Currently converting PDF to

images ...{ page_number }")
18 self. process_pdf ( page_number )
19 os. remove (self. pdf_path )



CHAPTER 3. SUGGESTED APPROACH 27

20 self. finished .emit ()
21 self. pdf_finished .emit ()
22

23 def process_pdf (self , page_number ):
24 page = self.pdf. get_page ( page_number )
25 pil_image = page. render_topil (
26 scale =5,
27 rotation =0,
28 crop =(0, 0, 0, 0),
29 greyscale =False ,
30 optimise_mode = pdfium . OptimiseMode .NONE ,
31 )
32 pil_image .save(os.path.join(self. output_folder , f"page_{

page_number +1}. png "))

Listing 3.3: Code snippet of the ConverterWorker class.

Before the ’Converter Worker’ begins its task, the worker’s attributes are initialized
in the init method. Once called by the calling worker, the start method of the ’Converter
Worker’ is invoked, which loads the PDF into a variable and iterates over its pages. For
each page, the ’process pdf’ method is executed, and a signal is emitted to the upper
worker to provide the user with status information regarding the current page being
processed.

The signal must be outside the scope of the function performing the heavy lifting.
Otherwise, the event loop end up being blocked by the long-running operation, rendering
the program unresponsive. The label in the GUI gets bombared as soon as all pages have
been converted.

By employing the use of threads, the program remains interactive while performing
heavy computation in the background. The ’Converter Worker’ class plays a crucial role
in the PDF to image conversion process. Its ’process pdf’ method renders the given PDF
page, scales it, and converts it to an image, using a scaling factor of 5, which provides
the highest number of pixels per inch without exceeding the function’s threshold. Upon
conversion, the newly converted image is stored locally on disk for the subsequent worker
to access. The worker emits a finished signal once the last page has been converted to an
image, prompting the image processing worker to start its task.

3.2.3 Image Processor

1 class ImageProcessorWorker ( QObject ):
2 finished = Signal ()
3 ocr_dict_worker = Signal (tuple)
4 page_label_worker = Signal (str)



CHAPTER 3. SUGGESTED APPROACH 28

5

6 def __init__ (self , parent =None):
7 super( ImageProcessorWorker , self). __init__ ()
8 self. directoryPath = None
9 self. image_names = None

10 self. curWorkingFileNamePage = None
11

12 def start(self):
13 for i, picture in enumerate (self. image_names ):
14 self. page_label_worker .emit(f" Currently performing OCR on {

i+1}/{ len(self. image_names )}: { picture }")
15 self. process_image ( picture )
16 self. page_label_worker .emit(f" Finished OCR on all pages ")
17 self. finished .emit ()
18

19 def process_image (self , picture ):
20 image = cv2. imread (os.path.join(self. directoryPath , self.

curWorkingFileNamePage , PDF_PAGES , picture ))
21 image = self. addFilterImage (image)
22 self.ocr(image , picture .split (".") [0])
23

24 def addFilterImage (self , image):
25 image = removeLinesAndBorders (image)
26 image = removeNoise (image)
27 return image
28

29 def ocr(self , ocr_compatible_image , picture_name ):
30 custom_config = r’--oem 3 --psm 11’ # OCR engine configuration
31 ocrDict = pytesseract . image_to_data ( ocr_compatible_image ,

config = custom_config , output_type = Output .DICT)
32 self. ocr_dict_worker .emit (( picture_name , self.

curWorkingFileNamePage , ocrDict ))

Listing 3.4: Code snippet of the ImageProcessorWorker class.

The Image Processor Worker plays a crucial role in the PDF to text conversion process
by processing the images extracted from the PDFs and extracting text using OCR. The
worker is initiated by the PDF worker and emits signals to update the status label in the
GUI, send the extracted text to the main thread, and indicate when it has completed
processing all the images.

The start method of the Image Processor Worker operates on a folder containing
images corresponding to the PDF being processed. For each image, the worker loads
the image into memory and applies filters to remove noise and contour, thus performing
image preprocessing.

After the image has been loaded into memory, the addFilterImage method is used.



CHAPTER 3. SUGGESTED APPROACH 29

This method calls further functions for processing the in-memory image. The image is
cautiously converted to a grayscale image before line and border detection begins. All
the contours of the image are obtained. New contour lines in the color white are drawn
on top of the contour lines in black, essentially removing the original contour lines. After
this step, simple background noise in the image is removed.

The preprocessed image is now ready for OCR. The ocr method employs a Python
wrapper called pytesseract to interact with the Tesseract interface. The Tesseract re-
sponse contains all the raw data found, which is stored in a dictionary. The dictionary
contains keys for the word hierarchy, coordinates, and confidence levels.The Tesseract
configuration was set to –oem 3 –psm 11, with OEM (OCR Engine Mode) in ”Legacy
+ LSTM engines” mode and PSM (page segmentation mode) in ”Sparse text. Find as
much text as possible in no particular order” mode, which produced the most reliable
output. After analyzing the OCR output’s confidence level and the completeness of the
extracted information, we found that this particular set of configuration parameters pro-
duced the most accurate output. Other page segmentation modes were unsuitable for
the sparse text in this specific use case. Figure 3.5 shows the difference by implementing
the specified configuration parameters.

Figure 3.5: The text on the right of the semicolon is the recognized text, and its respective
confidence level (as a percentage) at the left side of the semicolon.

The Tesseract output is then sent to a function in the main thread as a tuple, and the
heavy processing is done. The dictionary keys output by Tesseract are level, ’page num’,
’block num’, ’par num’, ’line num’, ’word num’, left, top, width, height, conf, and text.
Level indicates the current found object’s sorting into ’page num’, ’block num’, ’par num’,
’line num’, or ’word num’. The left, top, width, height keys give the coordinates of the
found word. The conf key indicates the Tesseract engine’s confidence in its accuracy and
the word found. The text key gives the word found. This hierarchy has minimal use for
the tool, with the exception of word num, which can be used to find the word following
the word being searched for.

Each key in the Tesseract dictionary has a list where the index corresponds to match-
ing information. For instance, the value in index 39 of key level corresponds to the value
in index 39 of key ’page num’. The function in the main thread stores all the related
data, one of each key in the given index, as a single line. The information is then checked
against a replacement dictionary and stored to disk. The replacement dictionary replaces



CHAPTER 3. SUGGESTED APPROACH 30

inaccurate Tesseract readings with predefined dictionary words, improving the accuracy
of extracted words.

The function handling the Tesseract output can operate in the main thread without
risking rendering the GUI unusable. Each key in the Tesseract dictionary has a corre-
sponding list, with the index in that list indicating matching information. The function
in the main thread consolidates all the related data - one of each key in the given index -
into a single line. Each line is checked against a replacement dictionary and then stored
on disk.

Once all the images have undergone OCR extraction, a signal is emitted indicating
that the worker has finished processing. The status field is also updated to reflect this.
By the time the PDF is entirely processed, an item reflecting the imported PDF’s name
appears in the list of processed PDFs in the main GUI. Upon clicking the item, the second
list in the GUI populates with items corresponding to all the processed pages from the
clicked PDF.

The use of the Image Processor Worker enables efficient extraction of text from images,
with the worker being initiated by the PDF worker and emitting signals to update the
status label in the GUI, send the extracted text to the main thread, and indicate when it
has finished processing all the images. The ocr method utilizes the pytesseract wrapper to
interact with the Tesseract OCR engine, and the function handling the Tesseract output
can operate in the main thread without risking rendering the GUI unusable.

Figure 3.6: Main Window after processing one PDF, and file ”page 1.png” being open.



CHAPTER 3. SUGGESTED APPROACH 31

3.2.4 Hardware Extraction

This section presents a comprehensive program analysis of the OCR output, a critical
element of the hardware information extraction process. Prior to presenting results to
the user, an instance of the ”searcher” class is created, which takes the OCR output file
as a parameter. This class has an attribute for every word it is tasked with finding, and
each attribute is responsible for finding its specified word using either regex or a search
criteria.

The searching of words is mostly based on a baseline, which is created by finding every
occurrence of the word associated with an instrument tag. The instrument tag is found
using regex. The baseline is then given as the coordinates of the different instrument tags
found. Every loop is based on the instrument tag, and the other words are to be filled in.
For each word following the instrument tag, a search is conducted based on the baseline.
This way, we can differentiate between the same words that belong to different loops.

1 class hardware_information ():
2 def __init__ (self , ocr , master =True):
3 self. _filepath = ocr
4

5 self. initiate_read ()
6

7 if master :
8 self. instrumentTag = instrumentTag (self. _file_word_list , "

Instrument Tag ")
9 self. get_baseline ()

10 self. generate_hardware_information ( master )
11

12 def generate_hardware_information (self , master =False):
13 words_exclude = ["i/o", "card", "type", "vo", " system ", "

termination ", "unit", " hardware ", "typ", "typ .", "h/w", "i/o"]
14 if not master :
15 self. instrumentTag = instrumentTag (self. _file_word_list , "

Instrument Tag", self. _baseline )
16 self. ftcTag = ftcTag (self. _file_word_list , "FTC tag", self.

_baseline )
17 self. multiCoreTag = multiCoreTag (self. ftcTag .section , "

Multicore Tag ")
18 self. multiCorePair = multiCorePair (self. ftcTag .section , "

Multicore Pair", self. ftcTag . int_list )
19 self. fieldTerminalRail = fieldTerminalRail (self. ftcTag .section ,

"Field Terminal Rail ")
20 self. termination1 = termination (self. ftcTag .section , "

Termination 1", self. ftcTag . int_list )
21 self. termination2 = termination (self. ftcTag .section , "

Termination 2", self. ftcTag .int_list , self. termination1 . height )



CHAPTER 3. SUGGESTED APPROACH 32

22 self. termination3 = termination (self. ftcTag .section , "
Termination 3", self. ftcTag .int_list , self. termination2 . height )

23 self. termination4 = termination (self. ftcTag .section , "
Termination 4", self. ftcTag .int_list , self. termination3 . height )

24 self. systemCableTag = systemCableTag (self. _file_word_list , "
Systemcable Tag", self._baseline , words_exclude = words_exclude )

25 self. terminationUnit = terminationUnit (self. _file_word_list , "
Termination Unit", self._baseline , words_exclude = words_exclude )

26 self. hardwareType = hardwareType (self. _file_word_list , "
Hardware Type", self._baseline , words_exclude = words_exclude )

27 self. IOcardType = IOcardType (self. _file_word_list , " IOcard Type
", self. _baseline )

28

29

30

31 def initiate_read (self):
32 self. _file_word_list = []
33 with open(self. _filepath ) as f:
34 for index , line in enumerate (f):
35 elements = line.split ("; ")
36 if elements [0] != "5":
37 continue
38 else:
39 self. _file_word_list . append ( OCRWORD ( elements [11] ,

elements , index))
40 return

Listing 3.5: Code snippet of the ’hardware information’ class.

The ftc tag, which is also found using regex, is another critical word to locate. Over
half of the words to be found are derived from this tag. By using coordinates, we can
derive most of the other words since they are typically grouped together and situated
around the ftc tag in most of the documents. The OCR output file is processed for each
word, and only the words in the given area by the ftc tag are considered potential correct
words.

The SystemNode class is responsible for filtering the word list based on the baseline.
This class takes in a word list, a word, a regex string, a baseline, a baseline length, a
within-same flag, and a list of excluded words. The class filters the word list by the
baseline and excludes any words in the excluded words list. If only one word is found, it
is approved as the correct word.

1 class SystemNode ():
2 def __init__ (self , word_list , word , regexString ="", baseline =0,

baseline_length =300 , within_same =True , exclude_words =[]):
3 self. systemWord = word
4 self. approved_word = None



CHAPTER 3. SUGGESTED APPROACH 33

5 self. baseline = baseline
6 self. baseline_length = baseline_length
7 self.word = None # Is always appended to
8 self. word_list = word_list
9 self. regexMatches = []

10 self.word , self. possible_match , self. search_word = try_get_word
(self.word_list , self. list_of_search , within_same )

11 if regexString != "":
12 self. regexMatches , self.word = self.regex( regexString )
13 self.word = merge_words (self.word)
14 if exclude_words != []:
15 self.word = [x for x in self.word if not any(word.lower ()

in x.word.lower () for word in exclude_words )]
16 self. filter_word_list_by_baseline ()
17 if len(self.word) == 1:
18 self. approved_word = self.word [0]
19 return

Listing 3.6: Code snippet of SystemNode class.

Validation of Hardware Extraction

Hardware information extraction is a crucial component of the hardware documentation
process. The extraction of relevant hardware information is accomplished by analyzing
the OCR output file through instances of different classes that are responsible for finding
specific words.

Figure 3.7: Example of typical layout of words relative to the ftc tag

The ftcTag class is responsible for finding the ftc tag using regex. A smaller search list
is generated, holding all the words in proximity of the found ftc tag. The rail is found by
searching for the topmost word (by coordinates) in the search list that is also right under
the ftc tag. Terminations and pairs are solely numbers, and the search list is filtered by



CHAPTER 3. SUGGESTED APPROACH 34

words that can also be integers. Multicore tag is found by applying a regex on the search
list while choosing the leftmost appropriate word based on coordinates.

1 class ftcTag ( SystemNode ):
2 def __init__ (self , word_list , word , baseline ):
3 self. list_of_search = [" ftc", "tag "]
4 regexString = re. compile (r"(ˆ[a-zA -Z]{1}) -13 -((?! JSE|CP|ER)[a-

zA -Z]{2 ,5}) -([0 -9]{4 ,5}([a-zA -z]{0 ,1}))")
5 super (). __init__ (word_list , word , regexString , baseline =

baseline )
6 self. section = try_get_all_words_under (self. approved_word , self

. word_list )
7 self. get_int_from_section ()

Listing 3.7: Code snippet of SystemNode class.

The saveResultOpenNext function saves the processed loops and opens the next page.
The function first verifies the existence of an active Result Window and an active Result
File Name. If both conditions are met, the finished processed loops are fetched and
stored in a text file associated with the current working image. The directory list is then
updated to indicate that the current page has been verified. If the current page is the last
page, the function returns. Otherwise, the function opens the next page and the Result
Viewer Window.

1 def saveResultOpenNext (self):
2 if self. curResultWindow is None:
3 self. buttonWindow . info_label . setText (" Please have an active

Result Window ")
4 return
5 if self. curWorkingResultFileName is None:
6 self. buttonWindow . info_label . setText (" Please have an active

Result Window ")
7 return
8

9 with open(os.path.join(self. directoryPath , self.
curWorkingFileNamePage , self. curWorkingFileName + ". txt "), "w") as f
:

10 loop_list = self. curResultWindow . get_words_loops ()
11 for loop in loop_list :
12 f.write(f"{ loop }\n")
13 curr = self. directoryWindow . directoryList . currentRow ()
14 self. directoryWindow . directoryList .item(curr). setData (1, QColor

(0, 255, 0))
15 self. directoryWindow . directoryList . setCurrentRow (curr + 1)
16 files_processed = [i.split (".") [0] for i in os. listdir (os.path.

join(self. directoryPath , self. curWorkingFileNamePage )) if i. endswith
(". txt ")]



CHAPTER 3. SUGGESTED APPROACH 35

17 self. directoryWindow . pages_label . setText (f"Pages verified : {len
( files_processed )} / {len(self. directoryWindow . directory )}")

18 if curr == self. directoryWindow . directoryList .count () - 1:
19 return
20 self. openFile (self. directoryWindow . directoryList .item(curr + 1)

.data (3))
21 self. openResultWindow ()

Listing 3.8: Code snippet of saveResultOpenNext method.

Overall, the hardware information extraction process and the saveResultOpenNext
function are crucial components of the hardware documentation process.

3.2.5 Saving to Excel and Cleanup

The PDF to Excel conversion process is a crucial component of the hardware documen-
tation process. Once each image has been reviewed successfully, the label above the page
list discloses this, and the ”Export PDF to Excel” button can be pushed successfully.
However, there are certain criteria set in place to prevent a premature handling of incom-
plete data from the called function. These criteria must fulfill the conditions, including
but not limited to having an active Result Window and not having any missing loop file.

1 def convertLoopExcel (self):
2 if self. curWorkingResultFileName is None:
3 self. buttonWindow . info_label . setText (" Please have an active

Result Window ")
4 return
5 if self. curResultWindow . mainWindow .count () == 0:
6 self. buttonWindow . info_label . setText (" Please have an active

Result Window ")
7 return
8 if not os.path. exists (os.path.join(BASEDIR , FINISHED )):
9 os. makedirs (os.path.join(BASEDIR , FINISHED ))

10 try:
11 files_processed = [i for i in os. listdir (os.path.join(self.

directoryPath , self. curWorkingFileNamePage )) if i. endswith (". txt ")]
12 except FileNotFoundError :
13 self. buttonWindow . info_label . setText ("No page have been

processed ")
14

15 return
16 pages_names = [i.split (".") [0] for i in os. listdir (os.path.join

(self. directoryPath , self. curWorkingFileNamePage , PDF_PAGES )) if i.
endswith (". png ")]

17 if len( files_processed ) != len( pages_names ):



CHAPTER 3. SUGGESTED APPROACH 36

18 self. buttonWindow . info_label . setText (" Not all pages have
been processed ")

19 return
20 wb = Workbook ()
21 ws = wb. active
22 ws. append (self. curResultWindow . get_header_loops ())
23 for i in files_processed :
24 with open(os.path.join(self. directoryPath , self.

curWorkingFileNamePage , i), "r") as f:
25 reader = csv. reader (f, delimiter =";")
26 for row in reader :
27 ws. append (row)
28 wb.save(os.path.join(BASEDIR , FINISHED , f"{ self.

curWorkingFileNamePage }. xlsx "))
29 self. buttonWindow . info_label . setText (" Exported loops to Excel ")
30 self. directoryWindow . pages_label . setText (" Pages ")
31 self. directoryWindow . directoryList .clear ()
32 pdf_to_delete = self. directoryWindow . pdfList .item(self.

directoryWindow . pdfList . currentRow ())
33 shutil . rmtree (os.path.join( pdf_to_delete .data (3) ,pdf_to_delete .

data (4)))
34 _ = self. directoryWindow . pdfList . takeItem (self. directoryWindow .

pdfList . currentRow ())

Listing 3.9: Code snippet of the convertLoopExcel method.

The convertLoopExcel function is responsible for converting the loops to an Excel file.
The function verifies an active Result Window and no missing loop file. It loops through
the folder structure, finding all text files containing the loops for all the pages. Then an
Excel file is created, and all the loops are appended. Each loop takes one row in Excel.
The Excel file is named by the PDF’s original name.

After the whole process of importing the PDF, converting them to images, extracting
text using OCR, searching for the correct word, having the user review the images, and
exporting to Excel, the cleanup can begin. The user gets a job well done from the status
label while the PDF from the list, along with all the images in the images list, disappear,
and the whole underlying folder structure for that PDF is deleted. The process starts
anew with the next PDF.

Overall, the PDF to Excel conversion process is a crucial component of the hardware
documentation process.



CHAPTER 3. SUGGESTED APPROACH 37

3.3 Performance Experiment

Portion of 50 Portion of 25 Portion of 10
Converter Worker 2.8 2.78 2.92
Image Processor Worker 31.82 32.33 34.42
Both Workers 34.62 34.12 37.33

Table 3.1: Processing times in minutes for the Converter Worker, Image Processor Worker, and
both workers combined for portions of 50, 25, and 10 drawings.

An experiment was conducted to determine the processing time of the Conversion Worker
and Image Processor Worker while handling a PDF document comprising of 50 drawings.
In view of the time-intensive nature of this task, the experiment aimed to examine the
impact of splitting a PDF file into smaller portions on the processing time. The perfor-
mance experiment involved three different portions, including 50 pages at once, 25 pages
at a time, and 10 pages at a time. The runtime was measured using the Python function
time.time, and the results are presented in Table 3.1 and graphically illustrated in Figures
3.8, 3.9, and 3.10.

Figure 3.8: Runtime during execution of Conversion Worker.



CHAPTER 3. SUGGESTED APPROACH 38

Figure 3.9: Runtime during execution of Image Processor Worker

Figure 3.10: Runtime during execution of both Conversion Worker and Image Processor Worker



Chapter 4

Discussion and Conclusion

4.1 Discussion

Significant strides have been made in improving the user experience by simplifying the
workflow through the implementation of various interface changes. The decision to reduce
the number of buttons and consolidate their functions’ reduntant working habits, enables
the user to achieve more with fewer clicks. These implementations have resulted in a
user-friendly and streamlined application, which enhances productivity and promotes
efficiency.

In the developed GUI, the different functionalities are divided into ”lines of buttons”,
each corresponding to a common ”line of work”. To ensure ease and intuitiveness, each
”line of buttons” is color-coded to represent its respective ”line of work”. Furthermore,
to accomodate for the display of large images, the image viewer takes up the majority of
the main window. This ensures that the user has a greater overview of the loops. Both
successfully and unsuccessfully recognized text is displayed in a seperate second window.
Additionally, each loop of identified text traverses the width of the second window. This
design choice was made to make it easier for the user to compare the indentified text
across different loops and to ensure that the results are easily interpretable.

The final product consists of several functions, each with a specific task. The ”Import
PDF” button calls the importPdfDlg function, allowing the user to import one or more
PDF files. While the next in line, ”Process Next PDF” button calls the getNextPDF
function, providing the user with status updates while processing the PDF. The ”Open
Result Viewer Window” button calls the openResultWindow function, which extracts and
presents the result in a second window. Additionally, the ”Checked Result, Open Next
Page” button calls the saveResultOpenNext function, which saves the result and opens
a new result in the result window. Two functions are being used in the result window,
textchanged and ’listelement update word’, that can be called on by writing in the input

39



CHAPTER 4. DISCUSSION AND CONCLUSION 40

field or clicking on an element in the list, updating the correct word with the user’s input
value. Adding a loop, should the amount be insufficient, the placeholder text will be
displayed in red highlighting it is a manually-filled added loop. The convertLoopExcel
function is called by the ”Export PDF to Excel” button, saving all loops to an Excel file
and displaying that the file saved successfully.

In regards to the performance experiment, dividing the PDF file into smaller portions
did not necessarily result in improved processing time, which is beneficial as it saves
users from having to perform extra preparations while using the developed product.
However, when both workers were employed, the processing time was slightly reduced
when the PDF was divided into two portions, compared to not dividing it at all. This
could be due to the fact that there are more pages per PDF that need to be converted
into images, as indicated in the performance difference by running only the Conversion
Worker. Nevertheless, the overall performance difference by dividing the PDF into smaller
portions is not significant enough to warrant it as a necessary preparation.

To summarize, the overall design features and underlying functions present a reliable
and well designed interface for the project’s objective.

4.2 Conclusion

In conclusion, this thesis has provided a thorough and effective solution for managing
PDF files and delivering the identified information to the user through a well-designed
interface. The final product consists of a sequence of steps that include converting the
uploaded PDF pages to images, followed by morphological operations for preprocessing.
Subsequently, OCR is utilized to extract text-based information from each image in a
sequential manner, accompanied by a validation and correction process to enhance the
accuracy of the extracted information. Overall, this thesis contributes to the development
of more efficient and reliable methods for handling PDF documents.



Bibliography

[1] FactPages: Field Information - Oseberg Sør, Accessed: 23-March-2023. [Online].
Available: https://factpages.npd.no/nb-no/field/pageview/all/43506.

[2] T. Hansmann, “Harness volatility: Technology transformation in oil and gas,” 2022,
Accessed: 23-March-2023. [Online]. Available: https : / / www . mckinsey . com /
capabilities/operations/our-insights/harnessing-volatility-technology-
transformation-in-oil-and-gas.

[3] User interface, Accessed 05-May-2023. [Online]. Available: Merriam-Webster.com%
20Dictionary.

[4] F. Churchville, User interface (ui), Accessed 11-January-2023. [Online]. Available:
https://www.techtarget.com/searchapparchitecture/definition/user-
interface-UI.

[5] S. Branson, UX / UI Design: Introduction Guide To Intuitive Design And User-
Friendly Experience. Independently published, 2020, isbn: 979-8653877315.

[6] Computer Hope, Gui, Accessed 11-January-2023. [Online]. Available: https://
www.computerhope.com/jargon/g/gui.htm.

[7] Z. KL, The command line for first-timers, Accessed 02-May-2023, 2020. [Online].
Available: https://dev.to/zoe_kl/the-command-line-for-first-timers-
2n4d.

[8] Graphical User Interface (GUI), Accessed 11-January-2023. [Online]. Available:
https : / / www . arimetrics . com / en / digital - glossary / graphical - user -
interface-gui.

[9] S. B. T. Shu, GUI Design. SendPoints, 2015.

[10] J. Chen, Z. Xing, C. Chen, and X. Xu, “Object Detection for Graphical User In-
terface: Old Fashioned or Deep Learning or a Combination?,” 2020. doi: 10.1145/
3368089.3409691.

[11] Digital image processing, Accessed 30-March-2023. [Online]. Available: https://
www.educba.com/digital-image-processing/.

41

https://factpages.npd.no/nb-no/field/pageview/all/43506
https://www.mckinsey.com/capabilities/operations/our-insights/harnessing-volatility-technology-transformation-in-oil-and-gas
https://www.mckinsey.com/capabilities/operations/our-insights/harnessing-volatility-technology-transformation-in-oil-and-gas
https://www.mckinsey.com/capabilities/operations/our-insights/harnessing-volatility-technology-transformation-in-oil-and-gas
Merriam-Webster.com%20Dictionary
Merriam-Webster.com%20Dictionary
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.computerhope.com/jargon/g/gui.htm
https://www.computerhope.com/jargon/g/gui.htm
https://dev.to/zoe_kl/the-command-line-for-first-timers-2n4d
https://dev.to/zoe_kl/the-command-line-for-first-timers-2n4d
https://www.arimetrics.com/en/digital-glossary/graphical-user-interface-gui
https://www.arimetrics.com/en/digital-glossary/graphical-user-interface-gui
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691
https://www.educba.com/digital-image-processing/
https://www.educba.com/digital-image-processing/


BIBLIOGRAPHY 42

[12] University of Tartu. “Digital image processing.” Accessed 30-March-2023. (2004),
[Online]. Available: https://sisu.ut.ee/imageprocessing/book/1.

[13] N. Kumar. “Digital image processing basics.” Accessed 30-March-2023. (2023), [On-
line]. Available: https://www.geeksforgeeks.org/digital-image-processing-
basics/.

[14] National University of Singapore. “Image processing tutorial.” Accessed 30-March-
2023, Department of Electrical and Computer Engineering. (2003), [Online]. Avail-
able: https://crisp.nus.edu.sg/˜research/tutorial/tmp/image.htm.

[15] Digital images — Encyclopedia.com, Accessed 02-April-2023. [Online]. Available:
https://www.encyclopedia.com/computing/news-wires-white-papers-and-
books/digital-images.

[16] Digamation, Understanding bit depth, Accessed 30-March-2023, 2008. [Online]. Avail-
able: https://digamation.wordpress.com/2008/07/18/understanding-bit-
depth/.

[17] OpenCV, About opencv, Accessed 02-May-2023. [Online]. Available: https : / /
opencv.org/about/.

[18] Python Geeks, What is OpenCV? Accessed 02-May-2023. [Online]. Available: https:
//pythongeeks.org/what-is-opencv/.

[19] P. Soille, Morphological Image Analysis, Principles and Applications. Springer, 1999.
doi: http://dx.doi.org/10.1007/978-3-662-03939-7.

[20] MathWorks. “Types of morphological operations.” Accessed 10-May-2023, Math-
Works. (2023), [Online]. Available: https://www.mathworks.com/help/images/
morphological-dilation-and-erosion.html.

[21] P. Chhikara. “Understanding Morphological Image Processing and Its Operations.”
Accessed 09-May-2023. (2022), [Online]. Available: https://towardsdatascience.
com/understanding-morphological-image-processing-and-its-operations-
7bcf1ed11756.

[22] A. Munshi. “Morphological image processing operations: Dilation, erosion, open-
ing, and closing with and without inbuilt cv2 functions.” Accessed 09-May-2023,
Medium. (2020), [Online]. Available: https://medium.com/@ami25480/morphological-
image-processing-operations-dilation-erosion-opening-and-closing-
with-and-without-c95475468fca.

[23] V. L. Fox and M. Milanova, “Natural image segmentation using morphological
matematics and fuzz logic,” 2013. doi: 10.1109/IRI.2013.6642542.

[24] S. Kulkarni, Yoda – your only design assistant, 2019.

https://sisu.ut.ee/imageprocessing/book/1
https://www.geeksforgeeks.org/digital-image-processing-basics/
https://www.geeksforgeeks.org/digital-image-processing-basics/
https://crisp.nus.edu.sg/~research/tutorial/tmp/image.htm
https://www.encyclopedia.com/computing/news-wires-white-papers-and-books/digital-images
https://www.encyclopedia.com/computing/news-wires-white-papers-and-books/digital-images
https://digamation.wordpress.com/2008/07/18/understanding-bit-depth/
https://digamation.wordpress.com/2008/07/18/understanding-bit-depth/
https://opencv.org/about/
https://opencv.org/about/
https://pythongeeks.org/what-is-opencv/
https://pythongeeks.org/what-is-opencv/
https://doi.org/http://dx.doi.org/10.1007/978-3-662-03939-7
https://www.mathworks.com/help/images/morphological-dilation-and-erosion.html
https://www.mathworks.com/help/images/morphological-dilation-and-erosion.html
https://towardsdatascience.com/understanding-morphological-image-processing-and-its-operations-7bcf1ed11756
https://towardsdatascience.com/understanding-morphological-image-processing-and-its-operations-7bcf1ed11756
https://towardsdatascience.com/understanding-morphological-image-processing-and-its-operations-7bcf1ed11756
https://medium.com/@ami25480/morphological-image-processing-operations-dilation-erosion-opening-and-closing-with-and-without-c95475468fca
https://medium.com/@ami25480/morphological-image-processing-operations-dilation-erosion-opening-and-closing-with-and-without-c95475468fca
https://medium.com/@ami25480/morphological-image-processing-operations-dilation-erosion-opening-and-closing-with-and-without-c95475468fca
https://doi.org/10.1109/IRI.2013.6642542


BIBLIOGRAPHY 43

[25] NECC Assistive Technology Center. “What is ocr?” Northern Essex Community
College. (Jan. 2018).

[26] L. Pinto and P. Brito, “A ssd - ocr aproach for real-time active car tracking on
quadrotors,” 2019. doi: 10.1007/978-3-030-14070-0_65.

[27] IGI Global. “Image acquisition.” Accessed: 22-March-2023. (n.d.), [Online]. Avail-
able: https://www.igi-global.com/dictionary/image-acquisition/79991.

[28] Q. Technologies, What is image acquisition in machine vision? - trigger mecha-
nism, 2021. doi: https : / / qualitastech . com / image - acquisition / image -
acquisition-in-machine-vision-trigger-mechanism/.

[29] S. Chopra, “Optical character recognition,” International Journal of Advanced Re-
search in Computer and Communication Engineering, 2012. doi: https://ijarcce.
com/wp-content/uploads/2012/03/IJARCCE2G_a_shalin_chopra_Optical.
pdf.

[30] S. Reddy. “Pre-processing in ocr!!!” (2019).

[31] Data Carpentry, Thresholding, Accessed: 25-March-2023, n.d. [Online]. Available:
https://datacarpentry.org/image-processing/07-thresholding/.

[32] H. Singh, How images are stored in the computer? 2021. doi: \url{https : / /
www.analyticsvidhya.com/blog/2021/03/grayscale-and-rgb-format-for-
storing-images/}.

[33] R. B. Digvijay Singh and K. Bahuguna, “Matrix data optimization technique ap-
plied to bi-faceted binary images for the purpose of modernization,” Mathematical
Statistician and Engineering Applications, vol. 71, no. 4, p. 15, 2022. doi: https:
//www.philstat.org/index.php/MSEA/article/view/948.

[34] O. Onal, G. Ozden, and B. Felekoğlu, “A methodology for spatial distribution of
grain and voids in self compacting concrete using digital image processing methods,”
Computers and Concrete, vol. 5, Feb. 2008. doi: 10.12989/cac.2008.5.1.061.

[35] P. K. Charles, “A review on the various techniques used for optical character recog-
nition,” International Journal of Engineering Research and Applications, 2012. doi:
https://www.ijera.com/papers/Vol2_issue1/DB21659662.pdf.

[36] A. Rosebrock. “Improving ocr results with basic image processing.” (2021).

[37] N. Alkhaldi. “How optical character recognition algorithms redefine business pro-
cesses?” Itrex Group. (2022).

[38] I. Global. “Segementation.” Accessed: 30-March-2023, IGI Global. (n.d.), [Online].
Available: https://www.igi-global.com/dictionary/segmentation/26141.

[39] A. Alaei, U. Pal, and P. Nagabhushan, “A New Scheme for Unconstrained Hand-
written Text-line Segmentation,” 2011. doi: 10.1016/j.patcog.2010.10.014.

https://doi.org/10.1007/978-3-030-14070-0_65
https://www.igi-global.com/dictionary/image-acquisition/79991
https://doi.org/https://qualitastech.com/image-acquisition/image-acquisition-in-machine-vision-trigger-mechanism/
https://doi.org/https://qualitastech.com/image-acquisition/image-acquisition-in-machine-vision-trigger-mechanism/
https://doi.org/https://ijarcce.com/wp-content/uploads/2012/03/IJARCCE2G_a_shalin_chopra_Optical.pdf
https://doi.org/https://ijarcce.com/wp-content/uploads/2012/03/IJARCCE2G_a_shalin_chopra_Optical.pdf
https://doi.org/https://ijarcce.com/wp-content/uploads/2012/03/IJARCCE2G_a_shalin_chopra_Optical.pdf
https://datacarpentry.org/image-processing/07-thresholding/
https://doi.org/\url{https://www.analyticsvidhya.com/blog/2021/03/grayscale-and-rgb-format-for-storing-images/}
https://doi.org/\url{https://www.analyticsvidhya.com/blog/2021/03/grayscale-and-rgb-format-for-storing-images/}
https://doi.org/\url{https://www.analyticsvidhya.com/blog/2021/03/grayscale-and-rgb-format-for-storing-images/}
https://doi.org/https://www.philstat.org/index.php/MSEA/article/view/948
https://doi.org/https://www.philstat.org/index.php/MSEA/article/view/948
https://doi.org/10.12989/cac.2008.5.1.061
https://doi.org/https://www.ijera.com/papers/Vol2_issue1/DB21659662.pdf
https://www.igi-global.com/dictionary/segmentation/26141
https://doi.org/10.1016/j.patcog.2010.10.014


BIBLIOGRAPHY 44

[40] M. Javed, P. Nagabhushan, and B. Chaudhuri, “Extraction of Projection Profile,
Run-Histogram and Entropy Features Straight from Run-Length Compressed Text-
Documents,” 2014. doi: 10.1109/acpr.2013.147.

[41] S. Reddy. “Segmentation in ocr!!!” (2019), [Online]. Available: https://towardsdatascience.
com/segmentation-in-ocr-10de176cf373.

[42] I. Global. “What is word segmentation.” Accessed: 30-March-2023. (), [Online].
Available: https://www.igi- global.com/dictionary/word- segmentation-
indo-china-languages/32717.

[43] V. Dongre and V. Mankar, “Devnagari document segmentation using histogram
approach,” 2011. doi: 10.5121/ijcseit.2011.1305.

[44] R. S. Kunte, “A simple and efficient optical character recognition system for basic
symbols in printed kannada text,” 2008. doi: 10.1007/s12046-007-0039-1.

[45] A. K. Kushwaha, “Analysis of segmentation methods for brahmi scripts,” 2019.
doi: 10.14429/djlit.39.2.13615.

[46] J. M. White and G. D. Rohrer, “Image thresholding for optical character recogni-
tion and other applications requiring character image extraction,” IBM Journal of
Research and Development, 1983. doi: 10.1147/rd.274.0400.

[47] C. D. Stefano, A. Marcelli, and A. Iuliano, “A shape-based algorithm for detecting
ligatures in on-line handwriting,” 2001. doi: 10.1080/10798587.2000.10642816.

[48] PrintWiki, Open/closed, Accessed: 11,-April-2023. [Online]. Available: http : / /
printwiki.org/Closed/Open.

[49] A. Choudhary, R. Rishi, and S. Ashlawat, “A new character segmentation approach
for off-line cursive handwritten words,” 2013. doi: 10.1016/j.procs.2013.05.013.

[50] The AI Learner, Optical character recognition pipeline – text recognition, Accessed
on: 02-April-2023, 2019. [Online]. Available: https://theailearner.com/2019/
05/29/optical-character-recognition-pipeline-text-recognition/.

[51] S. Suganya, “Analysis of feature extraction of optical character detection in image
processing systems,” International journal of engineering research and technology,
vol. 3, 2018.

[52] K. A. Hamad and M. Kaya, “A detailed analysis of optical character recognition
technology,” International Journal of Applied Mathematics Electronics and Com-
puters, 2016. doi: 10.18100/ijamec.270374.

[53] S. Liao, An introduction to long short-term memory networks (lstm), Accessed on:
02-April-2023, 2022. [Online]. Available: https://towardsdatascience.com/an-
introduction-to-long-short-term-memory-networks-lstm-27af36dde85d.

https://doi.org/10.1109/acpr.2013.147
https://towardsdatascience.com/segmentation-in-ocr-10de176cf373
https://towardsdatascience.com/segmentation-in-ocr-10de176cf373
https://www.igi-global.com/dictionary/word-segmentation-indo-china-languages/32717
https://www.igi-global.com/dictionary/word-segmentation-indo-china-languages/32717
https://doi.org/10.5121/ijcseit.2011.1305
https://doi.org/10.1007/s12046-007-0039-1
https://doi.org/10.14429/djlit.39.2.13615
https://doi.org/10.1147/rd.274.0400
https://doi.org/10.1080/10798587.2000.10642816
http://printwiki.org/Closed/Open
http://printwiki.org/Closed/Open
https://doi.org/10.1016/j.procs.2013.05.013
https://theailearner.com/2019/05/29/optical-character-recognition-pipeline-text-recognition/
https://theailearner.com/2019/05/29/optical-character-recognition-pipeline-text-recognition/
https://doi.org/10.18100/ijamec.270374
https://towardsdatascience.com/an-introduction-to-long-short-term-memory-networks-lstm-27af36dde85d
https://towardsdatascience.com/an-introduction-to-long-short-term-memory-networks-lstm-27af36dde85d


BIBLIOGRAPHY 45

[54] Techopedia, Long short-term memory (lstm), Accessed 02-April-2023, n.d. [Online].
Available: https://www.techopedia.com/definition/33215/long- short-
term-memory-lstm.

[55] Klippa. “What is ocr? the ultimate guide to ocr 2023.” Accessed 02-April-2023.
(2022), [Online]. Available: https://www.klippa.com/en/blog/information/
what-is-ocr/.

[56] B. Jang, “Bi-lstm model to increase accuracy in text classification: Combining
word2vec cnn and attention mechanism,” 2022. doi: https://doi.org/10.3390/
app10175841.

[57] N. Islam, Z. Islam, and N. Noor, “A Survey on Optical Character Recognition Sys-
tem,” TB Journal of Information and Communication Technology, 2 2016. [Online].
Available: http://jms.ilmauniversity.edu.pk/index.php/JICT/article/
download/641/362.

[58] R. Smith, “An Overview of the Tesseract OCR Engine,” 2007. doi: 10 .1109 /
icdar.2007.4376991.

https://www.techopedia.com/definition/33215/long-short-term-memory-lstm
https://www.techopedia.com/definition/33215/long-short-term-memory-lstm
https://www.klippa.com/en/blog/information/what-is-ocr/
https://www.klippa.com/en/blog/information/what-is-ocr/
https://doi.org/https://doi.org/10.3390/app10175841
https://doi.org/https://doi.org/10.3390/app10175841
http://jms.ilmauniversity.edu.pk/index.php/JICT/article/download/641/362
http://jms.ilmauniversity.edu.pk/index.php/JICT/article/download/641/362
https://doi.org/10.1109/icdar.2007.4376991
https://doi.org/10.1109/icdar.2007.4376991

	Abstract
	Acknowledgements
	Introduction
	Background
	Objective
	Significance
	Background and Preliminary Concepts
	Confidentiality Measures

	Foundational Concepts and Techniques
	User Interface
	Graphical User Interface

	Image Processing
	Open Source Computer Vision Library
	Morphological Operations

	Optical Character Recognition
	Image Pre-processing Pipline
	Text Recognition Pipeline
	Long Short-Term Memory
	Types of Optical Character Recognition Systems
	OCR Engine
	Configurations


	Suggested Approach
	Design
	Implementation
	Import PDFs and Begin Processing
	Converting PDF
	Image Processor
	Hardware Extraction
	Saving to Excel and Cleanup

	Performance Experiment

	Discussion and Conclusion
	Discussion
	Conclusion


