U

University of
Stavanger

Faculty of Science and Technology

BACHELOR'S THESIS

Study program/ Specialization:

Spring semester, 20......

Open / Restricted access

Writer:

(Writer’s signature)

Faculty supervisor:

External supervisor(s):

Thesis title:
Credits (ECTS):
Key words:
Pages: .....ooviiiiiinnn.
+enclosure: ............
Stavanger, ..........c.oeeennn.
Date/year

Front page for master thesis
Faculty of Science and Technology
Decision made by the Dean October 30" 2009







University
of Stavanger

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Wireless Error Control

Bachelor’s Thesis in Computer Science
by

Ahmad Saleh Kazzaz

Internal Supervisors

Gianfranco Nencioni

May 15, 2023






“A model is a lie that helps you get at the truth.”

Howard Skipper



Abstract

Wireless communication has become an integral part of our daily lives. This thesis
explores various wireless error control techniques that can detect and correct errors
during wireless communication. The thesis provides background knowledge on wireless
error control techniques. The thesis presents different studies about which tools to use to
simulate wireless error control techniques. I have presented several tools that can be used
to simulate some of these techniques and compared these tools with each other. I found
that Matlab is a suitable tool for the simulation of wireless error control techniques. The
thesis includes a simulation of three techniques hamming code, convolutional codes, and
Go-Back-N ARQ. The impact of noise and SNR on these three techniques are evaluated in
the thesis. The main contribution of the thesis is the evaluation of different error control
techniques under varying conditions and provides a comprehensive overview of different
wireless error control techniques and their effectiveness under different conditions. The
main finding is that the hamming code and Go-Back-N AR(Q are more stable than the
convolutional codes. Also, a higher SNR leads to a better performance of the techniques

and the lower SNR leads to a poorer performance of the techniques.



Acknowledgements

I would like to thank my supervisors for their fantastic enthusiasm and help with writing

this thesis.






Contents

Abstract iv
Acknowledgements v
1 Introduction 1
2 Background 3
2.1 Forward error correction . . . . . .. .. Lo Lo 3
2.1.1 Block Codes. . . . . . . . . . e 3

2.1.2 Hammingcode . . . ... . .. . ... . ... ... 4

2.1.3 Convolutional codes . . . . . . ... .. ... ... .. ..., 5

2.1.4 Turbocodes . . . . . . . . . e 6

2.2 Backward error correction . . . . .. .. ..o oo 7
2.2.1 Automatic repeat request . . . . .. ..o 7

2.3 Parity check . . . . ..o 9
2.4 Cyclic redundancy check (CRC) . . . . . .. ... ... ... ... 9

3 State of the Art 11
3.1 Related works . . . . . . . ... 12
3.2 Tools . . . . o e 13
3.2.1 Matlab . . . ... 13

3.22 NS-3 . . e 13

323 OPNET modeler . . . .. ... ... ... .. ... .. ... 14

3.24 OMNETH4 . . . . . e 14

3.2.5 Comparison of tools . . . . . . ... 15

4 Design and solution 17
4.1 Simulating hamming code . . . . . . .. ... o oo 18
4.1.1 Evaluating with SNR, . . . .. .. ... ... oL 21

4.2 Simulating Convolutional codes . . . . . . . .. .. ... .. 23
4.2.1 Evaluating with SNR . . . . . . ... ... oo 26

4.3 Simulating ARQ Go-Back-N . . . . . ... ... ... 28
4.3.1 Evaluating with SNR . . . . ... .. ... ... ... ....... 32

5 Conclusions 35

vii



A Instructions to Compile and Run System

Bibliography

37

39



Chapter 1

Introduction

In recent years, wireless communication has become an essential part of our daily lives.
Wireless technology has revolutionized the way we communicate and connect together.
One of the major challenges in wireless communications is the presence of errors in the
transmission of data. Errors can occur due to various reasons such as noise. These
reasons can lead to different errors like information loss, data corruption, or reduced
network performance. Wireless error control is a process that helps to detect and correct
errors that occur during data transmission in wireless communication. The goal of error
control is to ensure that the received data is free from errors, even in the presence of
noise and other disturbances. Several techniques are available for wireless error control,
such as convolutional codes, hamming code, and Go-Back-N ARQ.

This thesis will explore the various techniques used for wireless error control. We will
learn the different types of wireless error control that can detect and correct errors in wire-

less communication. We will also see how these techniques work under different conditions.

The thesis will be organized as follows. Chapter 2 presents background knowledge
on wireless error control techniques, allowing us to understand the various techniques
theoretically.

Chapter 3 is named "State of Art". This chapter is presenting the tools we can use to
simulate the wireless error control techniques. In this chapter, we will also provide a
comparison of the tools. The chapter also presents various studies about the simulator
tools we can use to simulate wireless error control techniques.

Chapter 4 will provide the simulations of some of the wireless error control techniques.
We will see simulations of how they work practically. Finally, we will evaluate the results

of the simulations and conclude with the key findings.






Chapter 2

Background

Wireless error control refers to the techniques used to detect and correct errors in blocks
of data during transmission. Communication channels can often be unreliable, causing
data to be corrupted during transmission. To detect errors, two methods can be used:
CRC (Cyclic Redundancy Check) and parity check. There are two types of errors that
can occur in wireless communications: single-bit errors and burst errors.

For error correction, two methods can be used: Forward Error Correction (FEC) and
Backward Error Correction (BEC).

2.1 Forward error correction

Forward error correction(FEC) is a type of error correction method. The technique is
used to control errors in data transmission over noisy channels. The central idea for the
FEC is that the sender redundantly encodes the message which allows the receiver to
detect and correct errors. There are several techniques that use forward error correction

like block codes and convolutional codes.

2.1.1 Block Codes

Block Codes are a large and important family of error correction codes that encode data
in blocks. They are used to minimize errors that may occur during the transmission or
storage of data. The idea behind block codes is to provide the sender or receiver with a
set of tools that they can use to detect and correct errors in the code without needing to
contact the source of the code. There are many types of block codes, including Hamming

code, Reed-Solomon codes, and Hadamard codes.

3



4 Chapter 2 Background

2.1.2 Hamming code

Hamming code is a type of forward error correction (FEC) technique used to detect and
correct errors that may occur during data transmission or storage. It is particularly
effective in correcting single-bit errors. The hamming code can detect one-bit and two-bit
errors. The technique has been invented by Richard W. Hamming in 1950. In Richard’s
original paper, he focused specifically on the hamming(7,4) code which adds three parity
bits to four bits of data. The hamming code includes two methods: Hamming check
bits: Hamming check bits are additional bits. These check bits are inserted at positions
that are powers of two, starting from the right side at the data block. The Hamming
check bits are calculated using the XOR (exclusive OR) operation on the position of the
data block bits that are equal to 1.

Syndrome word: This is calculated by performing the XOR operation on the position
numbers of the received data-block bits that are equal to 1 and the hamming check bits.
The syndrome word has several characteristics: if it has one of the 1s, it means that the
error is in the check bits. If it has more than 1, then it indicates the position of the error.
Here’s an example to help you understand how to calculate the hamming check bits and

syndrome word.

Bit

poston | 12 [ 1|10 9[8[ 7 |6 |5 [4f3]| 2]
Position | 1106 | 1011 | 1010 | 1001 | 1000 | 0111 | 0110 | 0101 | 0100 | 0011 | 0010 | 0001
number

Databit | o 0 1 1 1 0 0 1

Check

bt 0 1 1 1
Trans.

What if we receive 101101001111 ?

Calculating the check bits: Calculating the syndrome word:
D3 0011 D3 0011
b7 0111 D7 0111
D9 1001 D9 1001 Position
D10 1010 D10 1010
D12 1100 of the error
XOR (D3, D7, D8, D10) 0111 Check bits 0111
XOR 1100

Figure 2.1: Calculation example



Chapter 2 Background 5

2.1.3 Convolutional codes

Convolutional codes are a type of forward error correction code that generates redundant
bits. The parameters of the Convolutional codes are (n,k, K). Where k is a data bit
processed at a time, K is a constraint factor and n is the output of bits from each k bit
and n output bits depending on K x k input bits.

A trellis diagram is a tool used in Convolutional Codes, which is a type of error-correcting
code used in communication systems. The diagram consists of nodes arranged in vertical
slices of time, with each node connected to at least one node at an earlier and later time.
The earliest and latest times in the diagram have only one node. Trellis diagrams are
used in encoders and decoders processes for communication theory encryption and in the

Viterbi algorithm.

Encoder
State

I ! I, 3
o0 Y oo 0 om0

I
* 0000

Iy T 1
0/00 0/00 0/00
-0 — @

b=10 @
c=0l @
=1 @

Figure 2.2: Trellis diagram

In this example above, we follow the path a-b-c-b-d-c-a-a in the Trellis diagram, which
gives us the output 11 10 00 01 01 11 00. The input for this example is 1011000, and the
invalid path is a-c. The Viterbi algorithm is a recursive algorithm used to find the most
likely input that produced the invalid output. We use hamming distance metrics in this

algorithm.



6 Chapter 2 Background

2.1.4 Turbo codes

Turbo codes are a type of forward error correction(FEC) that offers high performance.
The technique has been used in 3G and 4G wireless communication systems. Turbo
codes have been created based on principles of convolutional codes, which is also a form

of forward error correction.

IC,C41C Cye e e
IC,IC, s e s

Encoder |

gl Code rate  Code rate
=1/3 =1/2

Interleaver

Encoder 2

Figure 2.3: Turbo codes - encoding

The figure above shows an example of the encoding process for turbo codes. Turbo
codes are considered recursive systematic convolutional codes that reduce the number of
transmitted bits while maintaining a high level of error correction. Puncturing is used to
further reduce the number of the transmitted bits by selecting only one check bit from

the encoding output.

Decoder 2

5
H
i
5
g

Decoder |

Figure 2.4: Turbo codes - decoding

The figure above shows an example of the decoding process of turbo codes. The decoders
perform the process of de-puncturing, which involves estimating the missing check bits
through soft decision decoding. The Decoding process is iterative, meaning that it
is repeated multiple times to improve the level of confidence in the decoded output.

However, this iterative process also introduces a high level of confidence and delay.



Chapter 2 Background 7

2.2 Backward error correction

Backward error correction is a type of error control correction used in communication
systems where the receiver detects errors in the data block and requests the source device
to resend the data block. This technique is particularly useful when data is lost or
corrupted during transmission.

Following to the backward error correction the return channel of the communication is
used to indicate errors in the transmission. If there are no errors, the acknowledgment
will be positive. However, if an error is detected, the acknowledgment will be negative,

and the receiver will request the sender to resend the data block.

2.2.1 Automatic repeat request

Automatic Repeat Request (ARQ) is a process used for data transmission where a
Protocol Data Unit (PDU) is either lost or damaged during transmission. In such cases,
the sender is requested to resend the PDU. ARQ is used in both the data link and
transport layer of a communication protocol. In the ARQ process, the data block is sent
as a PDU.

The latest version of the ARQ process is the Go-Back-N ARQ. The properties of Go-
Back-N ARQ include the use of positive acknowledgment if there are no errors detected
and negative acknowledgment if there are errors detected. Additionally, the transmitter
timer may expire. The priority of ARQ is to ensure flow control and error control in the
transmission of data blocks. Error control involves detecting and correcting any errors
that occurred during transmission. Flow control, on the other hand, ensures that the

receiver entity is not overwhelmed with too much data.

Source Destination Source Destination

PDU 1 PDU 1

PDU 1 PDU |

D

PDU 3

GaMNgled
fran

PDU 5

-

[ [

PDU 2 DU 2

PDU 2
PDU 3

PDU 3
DU 4

PDU 4

PDU 5

PDU 3

Time

[ [9l]]

PDU 4

o~

PDU

PDU 5

Error-Free Transmission Transmission with Errors

Figure 2.5: ARQ



8 Chapter 2 Background

In the figure above we can see how the Automatic Repeat Request (ARQ) process
works to detect errors during data transmission. The figure shows both an error-free
transmission and a transmission with errors that were detected and corrected through
the ARQ process. By using ARQ, the sender can automatically resend any data packets
that are lost or corrupted during transmission, improving the reliability of the overall
data transfer process.

There are limitations to using ARQ in wireless applications. For instance, in wireless
links, the bit error rate (BER) can be high, leading to a large number of re-transmissions.
Additionally, in some cases such as with satellites, the propagation delay can be very
long due to the transmission time of the frame. These factors can negatively impact the

efficiency and effectiveness of the ARQ process.



Chapter 2 Background 9

2.3 Parity check

A parity check is a technique of error detection used in wireless communication systems.
There are two types of parity check: Even parity where the parity bit is set to 1 or 0
to make the total number of 1’s or 0’s in the transmitted data even. The other type is
Odd parity where the parity bit is set to make the total number of 1’s or 0’s odd. The
technique works by adding a single extra bit to the data that is being transmitted. The
extra bit is called the parity bit, and it is set to either 1 or 0 to make the total number
of 1’s in the transmitted data even or odd depending on the parity scheme used. When
the data is received, the receiver checks the parity bit to ensure that the total number of
1s in the received data is still even or odd, as expected. If the total number of 1s in the
parity bit is not even or odd as expected, then the receiver can request the sender to

re-transmit data.

2.4 Cyclic redundancy check (CRC)

A cyclic Redundancy check is a technique to detect errors in transmission data. The
technique is working by adding a small amount of redundant data (usually extra bits)
to the end of the transmitted message. Redundant data is a value check and when the
data is transmitted the receiver will take a new check and see if the new check of data is
matching the redundant data. If they matched then the message is correctly transmitted.
If checks are not matched, the receiver assumed that the transmitted data is corrupted
and will request a re-transmission. CRC is widely used in network protocols, such as

Ethernet, to ensure the accuracy of transmitted data.






Chapter 3

State of the Art

The Internet is very important in our daily life to have the Internet we can use wireless
which can share the Internet to our devices like Mobil, TV, or laptop. Sometimes errors
can occur in wireless communications. To study these errors in practice we can use
simulator tools to simulate the communication and the techniques we can use to ensure
error-free communication. For my thesis, I have searched for tools that can be used to
simulate wireless error control techniques. I will provide tools that I think are useful
for my thesis. I will provide these tools in the "tools" section along with a comparison
of tools. In the next section, I will review several studies that have used these tools to

simulate, evaluate and analyze wireless error control techniques.

11



12 Chapter 3 State of the Art

3.1 Related works

In this section, we will present a review of studies that evaluate the effectiveness of tools
used to simulate and evaluate wireless error control techniques in wireless communication
systems.

The study "A Case Study of Various Wireless NetworkSimulation Tools". The study has
compared the tools we can use to simulate wireless error control techniques. Authors have
compared tools like Matlab, NS-2, and NS-3. The study showed that OMNET++4 and
NS-3 are more flexible and accurate tools to simulate wireless error control techniques.
The study also found that Matlab is one of the most used tools for wireless communication
because that Matlab is an easy tool to use, and the tool flexibility. Another reason that
Matlab is one of the most used tools for wireless communication is that Matlab is able
to handle large amounts of data. The study found also that Matlab is a suitable tool to

analyze wireless error control techniques.

Another study is named "A review of simulation techniques for some wireless com-
munication system”. This study has compared simulation tools like Matlab, and Opnet.
The study showed that Matlab is a popular simulation tool in wireless communication
because of its flexibility and ability to handle large amounts of data. The tool can be used
to simulate and analyze different wireless communication systems such as wireless error
control. The study showed that OPNET is commonly used in wireless communication.
OPNET is known for its ability to simulate large-scale wireless networks and is also known
for the tool’s flexibility in modeling various wireless communication system components.
One another study “A comparative study of different network simulation tools and exper-
imentation platforms for underwater communication”. The underwater communication
includes also wireless error control techniques such as convolutional codes, hamming
codes, and Go-Back-N ARQ. The study has compared the simulation tools such as Matlab,
Opnet, OMNET++, NS-2, and NS-3. The study showed the weaknesses and strengths of
each of the simulation tools. The study showed that Matlab is a popular tool because of
its built-in features and the study mentioned also that Matlab is a good tool to analyze
the performance of wireless error control techniques. The study found that NS-3 is a good

tool to evaluate different protocols and NS-3 provides a simulation with different scenarios.



Chapter 3 State of the Art 13

3.2 Tools

3.2.1 Matlab

Matlab is a powerful tool that we can use to study wireless error control. Matlab provides
a range of functions and tools for simulating and analyzing wireless communication
systems, including error control techniques. One of the main advantages of using Matlab
for studying wireless error control is for flexibility the tool provides. Matlab allows users
to model wireless channels, and implement various error control schemes such as error
correction codes. Matlab also gives users a range of toolboxes for wireless communications
like the Communication toolbox, Signal Processing Toolbox, and RF toolbox. Matlab
has its coding language which is named MATLAB.

Matlab is a popular tool there are, millions of engineers and scientists worldwide using
Matlab in range in academia and industry. Many students around the world use Matlab
as part of their studies.

There is a help center for Matlab. Students of Stavanger University can download Matlab

for free.

3.2.2 NS-3

NS-3 is a tool to simulate networks. The tool support wireless network simulations,
including technologies such as 5G, Wifi, and Ethernet. NS-3 allows the users to simulate
wireless error control techniques. NS-3 is considered one of the most powerful tools
available.

NS-3 is open-source and free to download and use. NS-3 is widely used for simulating
and analyzing various network protocols and applications.

NS-3 uses C++ programming language which provides a high-performance and low-
overhead programming language that is well-suited for developing complex simulation
models.

NS-3 includes a variety of simulations and several tools for analyzing the simulation
results. The program is widely used in academia and industry for education and research

of network technologies and applications.



14 Chapter 3 State of the Art

3.2.3 OPNET modeler

OPNET Modeler is a widely-used simulation tool for creating network models including
wireless error control techniques in both academic and industry settings. The program
offers its own Modeler Internal programming language, which is a high-level language
similar to C++ and C that enables users to create and define the behavior of network
components. Additionally, OPNET Modeler allows the use of C++ or C for programming.
However, it is important to note that OPNET Modeler is not a free tool and may require

a higher budget compared to other simulation tools.

3.2.4 OMNET++

OMNET++ is a simulator tool used to simulate wireless communication including
wireless error control techniques. The tool can simulate networks without models for
network protocols for example HT'TP. The tool uses C++ as a programming language.
OMNET++ can be used for free for non-commercial simulations like at academic, and
institutions and for teaching. OMNET++ is widely used in the academic and research
communities for simulating and evaluating different aspects of wireless communication

networks such as wireless error control techniques.



Chapter 3 State of the Art 15

3.2.5 Comparison of tools

When we select a simulation tool for studying wireless error control techniques it’s
important to compare their strengths and weaknesses based on their specific research needs.
Matlab offers a powerful and versatile platform for simulating wireless communication and
implementing wireless error control techniques. Its built-in functions and syntax for signal
processing and modulation make it a convenient choice for researchers who are familiar
with Matlab programming. OMNET++ is another powerful tool used for simulating
wireless communication including wireless error control techniques. Unlike Matlab, it
uses C++ as a programming language, which can be a disadvantage for researchers
who are not familiar with C++4. However, OMNET++ provides more flexibility and
control over the simulation compared to Matlab, allowing researchers to customize the
simulation at a low level. OMNET++ is also free for non-commercial simulations like at
academic and research institutions. NS-3 is more suitable for researchers who require
a high level of detail in network simulation. OPNET may be more appropriate for
researchers who have a higher budget and require a commercial-grade simulation tool.
OPNET and NS-3 provide C and C++ programming languages. While Matlab tool uses
Matlab programming language which I as a student of Stavanger University have a good
knowledge of Matlab programming language from my course work. Therefore Matlab
is a very good simulation tool for my case to study wireless error control and do some

exercises which can help to understand error control techniques better.






Chapter 4

Design and solution

This section will show the design of wireless error control types and will show also the
solutions to the problem. In the previous sections, we have explained how Wireless
control error techniques work theoretically, in this section, we will simulate some of
the wireless error control techniques. The simulations will include both forward error
correction and backward error correction. We will evaluate the performance of these
techniques under different conditions like noise and also under different SNR levels. We
will evaluate the techniques based on parameters such as packet error rate(PER), and
bit error rate(BER). The packet error rate presents the number of packets that have an
error at percent and BER presents the number of errors per unit of time. The goal of
simulation of error control techniques is to help us to understand how these techniques
work in reality after we understood them theoretically. Also, it will help us to evaluate

and analyze these techniques.

17



18 Chapter 4 Design and solution

4.1 Simulating hamming code

During wireless communications, many transmissions will happen through those trans-
missions an error or several errors can occur. Those errors will disrupt communication in
the network. For solving those errors we can use wireless error control techniques. I have
chosen to simulate hamming code which is using forward error correction. Hamming
code technique helps us to detect errors and correct these errors. I will use Matlab to
simulate how the technique works in reality. The simulation will allow us to evaluate the
performance of hamming code under noise.
In the coming example, I will create a code for a simulation of hamming code(4,7). This
simulation will not include the syndrome word or hamming bits check because it may be
more complex if we will use them in our simulation example. In this simulation example,
I will create a message and then encode it by adding parity bits to the message. The
message in this simulation example consists of 4 bits. To encode it we add 3 parity bits
to the message to form a code word of 7 parity bits. Then we include the code words
which is mean the set of valid code words defined. These code words are used to check for
errors in the received data(decoded message) by comparing the received bits with each of
the valid code words. If the received bits are closer to one of the valid code words than
any other, the received bits are decoded to that code word. This simulation example
will include noise. This will help us to evaluate the hamming code performance under
noise. After that, we can move to the decoding part where we decode the transmitted
message by using either hard decision decoding or soft decision decoding. I have decided
to provide both hard decision decoding and soft decision decoding which can help us to
understand how they both work.
Now let us see the code of the simulation. The figure below will show how I have created
a message and encoded the message.
% Initialize the error counter
Nerrs =0; Nblocks=1000;
for i=1 : Nblocks
msg = randi([0 1],1,k);
%encoding
codeword = [msg mod(msg(1)+msg(2)+msg(3),2). ..
mod (msg(2)+msg(3)+msg(4),2) . ..
mod (msg(1)+msg(2)+msg(4),2)1;

s=1-2*codeword; %symbol converstion
r=s+sigma *randn(1,n); %add noisd

Figure 4.1: Create a message and encode it



Chapter 4 Design and solution 19

First, I created a message by using the Matlab function "randn()". The message is a
binary value consisting of Os and 1s. Parameter "k" represents the length of the message
which is 4 in our example. Then I created the noise and added it to the message by using
also the "randn()" function. The S variable will give us a symbol vector for the code and
r will give us the received vector for the code. We now move on to the decoding part.

The decoding part includes both hard decision decoding and soft decision decoding.

%hard decision decoding

b=(r<@);

distance = mod(repmat(b,16,1)+codewords,2)*ones(7,1);
[mind1,pos]=min{distance);

msg_capl = codewords(pos,1:4);

%soft decision decoding

corr = (1-2*codewords)*r';
[mind2,pos]= max(corr);
msg_cap2 = codewords(pos,1:4);

Figure 4.2: Decoding part

The code in the figure above shows the parts of hard decision decoding and soft decision
decoding. In hard decision decoding, the first step involves creating a binary vector "b".
The second step computes the hamming distance between the received code word and
each of the 16 possible code words by creating a matrix of size 16 x 7. The third step is
to find the minimum value in the distance vector. Which corresponds to the code word
that is closest to the received code word. The code then stores the minimum value in
"pos" and the minimum distance in "mind1". In the final step, the code extracts the first
four bits of the closest code word which represents the original message.

In soft decision decoding. the first step involves calculating the correlation between the
received signal "r" and each of the 16 possible code words. The second step is to find the
maximum correlation value of the "corr" vector. This maximum value is the most likely
to be the transmitted code word, and it is assigned to the variable "pos". The third step
extracts a 4-bit message corresponding to the most likely code word from the code words
matrix. in the last step, the code updates the total number of decoding errors by adding

the number of errors found for the current message.



20 Chapter 4 Design and solution

>> Hammingcode
Bit Error Rate: 0
>> msg

msg =

>>» msg_capl
msg_capl =

0 1 0 1
>> msg_cap2
msg_capl =

0 1 0 1

Jx >> |
Figure 4.3: Results

The figure above displays the results of the simulation example, which indicates that the
decoding process was successful in recovering the original message without any errors.
We can see also the bit error rate(BER) is 0. Therefore, the code has effectively corrected

any errors that occurred during the transmission of the message.



Chapter 4 Design and solution 21

4.1.1 Evaluating with SNR

Noise-to-signal parameters help us to evaluate the performance of the hamming codes

and also it allow us to determine the ability of the hamming codes to correct errors in

the transmitted data. In our example, the SNR results are shown in the following figure.
>> Hammingcode

Bit Error Rate: 0
Bit Error Rate: 4.5696

Figure 4.4: SNR

The figure above shows the SNR value of the hamming codes, which is 4,5696 and the
number of errors is equal to 0. This means that the received signal is 4.5696 times
stronger than the noise in the communication channel. We see also that the number of

errors is 0 and the BER is 0.0 percent.

To evaluate the performance of the hamming codes, we can change the SNR by adjusting
the power of the noise. In this example, we can change the power of the noise by changing
the value of the EbNodB parameter in the simulation.

First, we set the EbNodB parameter to equal 10 and simulate with the new EbNodeB.

The figure below shows the results.

>> Hammingcode
Bit Error Rate: 0
Bit Error Rate: 7.5696

Figure 4.5: Higher SNR

We can see, The SNR value has been increased to 7.5696 and BER is 0.0 percent. The
BER value means that the number of errors is 0. The SNR number means that the
received signal now is 7.5696 times bigger than the noise in the communication channel.
That increase in SNR has led to a better performance of the hamming codes in correcting
errors in the transmitted data. The next step is to set the EbNodB to 5 and run the

code one more time with the new EbNodB. The result is shown in the figure below.



22 Chapter 4 Design and solution

>> Hammingcode

Bit Error Rate: 0.0065

Bit Error Rate: 2.569%6
Jx >>

Figure 4.6: Lower SNR

The figure shows that the SNR value has decreased to 2.5696 and the BER value is
0.0065. The result means that the received signal is now only 2.5696 times stronger
than the noise in the communication channel. The SNR decrease will lead to poorer

performance of the hamming codes in correcting errors in the transmitted data.

These three results which are displayed above show that when the SNR value decreases
the number of errors increases. That means the hamming codes work poorer in low SNR

values and the hamming codes perform better in high SNR, values.



Chapter 4 Design and solution 23

4.2 Simulating Convolutional codes

Convolutional codes are a type of forward error correction code that uses a trellis diagram
to encode and decode messages. I will use Matlab to simulate how the technique works
in reality and the simulation allow us to evaluate the performance of convolutional codes
under noise.
In the coming example, I will create a code for convolutional codes. First, we need to
define the generator polynomial and the constraint length.
The generator polynomial is a polynomial with a binary coefficient that is used to
determine the output bits of the encoder for each input bit. It defines the encoding
process of the code.
The constraint length of the code is the number of previous input bits that are used to
determine the current output bit. The constraint length is considered in the encoding
process.
The trellis structure is a graph that shows all the possible paths that the encoder can
take for a given input sequence. It’s determined by the generator polynomial and the
constraint length of the code.
Once the generator polynomial and the trellis structure are defined, the message can be
encoded by passing it through the trellis diagram. The corresponding output sequence is
generated by the encoder.
In the decoding process, the trellis diagram is used to find the most likely transmitted
message. The received message is passed through the trellis diagram and the most likely
path is determined by comparing the received sequence to all possible sequences in the
trellis diagram. The Viterbi algorithm is often used to perform the decoding process.
The figure below displays how I have created the generator polynomial, constraint length,
and trellis diagram for the message and how I have created the message. The figure
displays also the encoding process.

|

% Define the generator polynomial in octal notation
genPoly = [7 5];

% Define the trellis structure
trellis = poly2trellis(3, genPoly);

% Generate a random message sequence
msg = randi([@ 1], 1, 1@);

% Encode the message sequence using the convolutional code
encoded = convenc(msg, trellis);

Figure 4.7: Encoding process



24 Chapter 4 Design and solution

To create convolutional codes, you first need to choose a generator polynomial and
determine the constraint length of the code.
After we have chosen the generator polynomial and the constraint length, we can use
the "poly2trellis" function in Matlab to define the trellis structure for the convolutional
codes.
Next, we create a message by using the "Randi" function in Matlab, which generates a
vector of random values of either 0 or 1.
Then the message has been encoded by using the "convenc" function in Matlab. The
function takes two arguments, the message and the trellis structure of the convolutional
codes, and outputs the encoded sequence generated by the convolutional encoder.

% Add noise to the encoded message sequence

EbNo = 4;

SNR = 10*1ogl@(Ebho) + 10*logl@(2/3);

noisy = awgn(encoded, SHNR, 'measured');

% Quantize the noisy sequence to a binary sequence

thershold = @;
quantized (noisy > thershold);

% Decode the guantized message sequence using the
% Viterbi algorithm with hard decision
decoded = vitdec{quantized, trellis, 5, 'trunc’, 'hard');

Figure 4.8: Decoding part

The figure above shows how we have added the noise in the communication and it’s
shows also the decoded part. We add the noise by using the "awgn" function in Matlab.
We calculate the SNR which we will use to evaluate the performance of the technique.
After adding noise, we quantize the noisy signal to a binary sequence by setting a
threshold value and comparing each sample of the noisy sequence to the threshold. If the
sample is greater than the threshold, it is assigned a value of 1, otherwise, it is assigned
a value of 0. The resulting binary sequence is stored in the "quantized" sequence.

To decode the message, we use the "videc" function which provides a Viterbi decoding
algorithm. We use "trellis", "trunk", and the "hard" as parameters for the function. The
trellis presents the trellis diagram we have created before. We use a trellis to find the
most likely message to be the original message. The hard parameter means that we want
to decode the message using a hard decision decoding process.

Before running the simulation code, we need to find the number of bit errors that occurred
during the transmission. We can do this by comparing the original message "msg" to the
decoded message "decoded" using the "sum" and " = " functions in Matlab, and storing
the number of bit errors in the "err" variable. Then we compute also the bit error rate

(BER) which can help us to evaluate the performance of the technique.



Chapter 4 Design and solution

25

% Compute the
err = sum(msg
disp([ "Number
% Compute the

number of bit errors

~= decoded);

of bit errors: ' num2str(err)]);
Bit Error Rate

[~, ber] = biterr(msg, decoded);
disp(['Bit Error Rate: ' num2str(ber)]);

Figure 4.9: Compute the Bit error rate and number of errors

After running the simulation code multiple times, we will check the number of bit errors

that occurred and compare the decoded message to the original message. This will help

us determine the effectiveness of the convolutional codes in correcting errors, and its help

us to evaluate the convolutional codes performance.

>> Convolutionalcode

Number of bit errors: 0

Bit Error Rate: 0
>> msg

msg =

>> decoded

decoded =
1x10 legical array
1 0 1 1 0

fx >> |

Figure 4.10: Result of first attempt

The figure above displays the result of the first try of running the code, we did not

encounter any errors in the message after adding noise and decoding it. This means

that the code worked correctly and managed to encode the message and then decode it

accurately. We also confirmed that the original message and the decoded message were

equal.

To ensure the code’s reliability, we will run it again and check if we get the same result

in terms of the number of bit errors as the first run.



26 Chapter 4 Design and solution

>> Convolutionalcode
Number of bit errors: 1
Bit Error Rate: 0.1

>> msg

msg =

>> decoded
decoded =
1x10 legical array
0 0 1 1 1 1 0 0 0 1
Jx >>

Figure 4.11: Result of the second tray

In the second attempt of running the code, we got a different result from the first attempt.
The number of bit errors in the decoded message was equal to 1 and BER is 0.1, which
means that one bit was transmitted incorrectly due to the noise added to the encoded
message. This caused the decoded message to be different from the original message.

The noise in the transmission introduced errors and affected the decoding process.

4.2.1 Evaluating with SNR

The noise-to-signal parameter is very important to evaluate the performance of convolu-

tional codes. First, we run the code to see the result of SNR in our example.

>> Convolutionalcode

Number of bit errors: 2

Bit Error Rate: 0.2

S5ignal to HNOISE Ratio: 4.2597

Figure 4.12: SNR



Chapter 4 Design and solution 27

The figure above shows that SNR for our example of convolutional codes is 4.2597 and
we see also the number of errors is 1 and the Bit error rate is 0.1 in this example.

To evaluate the performance of convolutional codes in different conditions we can change
the SNR by adjusting the power of the noise. In our example, we can change SNR by
changing the value of the EbNo parameter. First, we set the EbNo parameter to 9 and

run our simulation example. The figure below displays the results.

>> Convolutionalcode

Number of bit errors: 0

Bit Error Rate: 0

Signal to NOISE Ratio: 7.7815

Figure 4.13: Higher SNR

As we can see in the figure, the SNR value has increased to 7.7815 and we can see also
that the number of errors is 0. The increase in SNR has led to a better performance of
the convolutional codes related to correcting errors in the transmitted data.
Next step we set the EbNo 3 and run the code again. The results are shown in the figure
below.

>> Convolutionalcode

Number of bit errors: 5

Bit Error Rate: 0.5
Signal to NOISE Ratio: 3.0103

Figure 4.14: Lowe SNR

We can see in the figure that the SNR value has decreased to 3.0103 and the number
of bit error rate (SER) is 0.5 which has increased. This means that the received signal
is now 3.0103 times stronger than the noise in the communication channel. The SNR
decrease has led to poorer performance of the convolutional codes in correcting errors in
transmitted data.

Following to results we have got in changing the SNR values we can say that the decrease
in SNR value will increase the number of errors and the number of bit error rate (BER).
That means the convolutional codes perform poorer in low SNR values and it performs
better in high SNR values.



28 Chapter 4 Design and solution

4.3 Simulating ARQ Go-Back-N

ARQ is a type of backward error correction. The N in ARQ Go-Back-N presents the
sender’s window size. In ARQ Go-Back-N the sender can send multiple frames at the
same time before receiving the acknowledgment for the first frame from the receiver. The
following example is a simulation of ARQ Go-Back-N.

The frames in Go-Back-n ARQ are numbered sequentially. ARQ sends frames multiple
times at a time slice. The technique uses the number of frames for distinguishing the
frame. These numbers are named sequential numbers. The number of frames for every
send of frames is depending on the sender’s window size.

To simulate Go-Back-N ARQ), I will use Matlab. This will help me to archive my goal
so that the readers of this thesis can understand how the technique works practically
after we have explained how it works theoretically. We will add random noise to the
simulation of the technique. Adding the noise will help us to evaluate the performance
of the technique under noise.

First of all, we will set the simulation parameters, and then we can initialize the counters
which we need in our simulation. The figure below shows the code for parameters and

the initialization of parameters.

1 % Set up simulation parameters

2 window_size = 4; % window size

3 pkt_error_prob = @.3; % probability of packet error

4 ack_error_prob = 8.6; % probability of ACK error

5 pkt_noise_power = ©0.2; % power of additive noise on packets
6 ack_noise_power = 0.3; % power of additive noise on ACKs
7 timeout = 2; % timeout in seconds

8

9 % Initialize counters
10 sent_packets = @;
11 recv_packets = @;
12 next_pkt_to_send = 1;
13 expected_pkt_to_receive = 1;
14

Figure 4.15: ARQ-Go-Back-N settings parameter

As the figure shows, we set the window size equal to 4 and the timeout to 2 seconds.
The window size parameter determines the number of packets that can be sent before
waiting for the acknowledgment before re-sending the packets. The "timeout" parameter
determines the time limit for waiting for an acknowledgment. The "pkt error prob"
and "acknowledgment error prob" parameters specify the probabilities of a packet or an
acknowledgment being corrupted due to noise in the channel. The "pkt noise power" and
"acknowledgment noise power" parameters represent the power of the additive noise on

packets and acknowledgments.



Chapter 4 Design and solution 29

% Generate packets
packets = randi([@ 1], 1@, 18); % generate 1@ packets, each with 1@ bits of data

% Loop through packets
while recv_packets < size(packets, 1)
E % Send packets in window
- for i = next_pkt_to_send:min(size(packets, 1), next_pkt_to_send+window size-1)
packet = packets(i,:);
if rand < pkt_error_prob % simulate packet error
packet = ~packet;
end|
packet with noise(i,:) = packet + pkt_noise power*randn(size(packet)); % add noise to packet
sent_packets = sent_packets + 1;
fprintf('Sending packet %d\n', i);
= end

Figure 4.16: Create a packet and add noise

As we see in the figure above, first we generate packets with 10 bits of data and store
them in packets. It uses the MATLAB function "randi()" to generate random integers of
either 0 or 1 and create 10 packets with 10 bits of data each. We create a while loop that
loops through the packets we have created. Thereafter we create a loop that sends the
packets in the window where in our example the window size is 4. The loop continues to
send packets until all packets have been received, which is determined by the variable
recv-packets' being less than the total number of packets in the "packets" matrix. Within
the loop, it selects a subset of packets to send in the current window. It selects the
packets starting from "next pkt to send" up to the minimum of either the total number
of packets or the next packet to send plus the window size minus one. It then simulates
packet errors by flipping the bits of the packet with a probability of "pkt error prob",
and adds noise. It updates the "sent packets" counter and prints a message indicating
that the packet has been sent.
% Wait for ACKs
t_start = tic; % start timer
while true
if rand < ack error_prob % simulate ACK error
continue; % ignore ACK
end
% Check for ACK
ack = packet with noise(expected pkt to receive:next pkt to send+window size-1,:);
ack_with_noise = ack + ack_noise_power*randn{size(ack)); % add noise to ACK
if isequal(round(ack_with_noise), round(ack)) % check if ACK matches packets
fprintf('Received ACK for packets %d-%d\n', expected pkt to receive, next pkt to send+window size-1);
recv_packets = recv_packets + (next_pkt_to_send+window_size-1-expected_pkt_to_receive+l};
expected_pkt_to_receive = next_pkt_to_send;

break; % exit ACK wait loop
end

Figure 4.17: Acknowledgment check



30 Chapter 4 Design and solution

As we see in the figure above we start a timer for acknowledgment. Thereafter we simulate
an error in the acknowledgment number. Then We add the noise to the acknowledgment
and then we check if the acknowledgment which been sent is equal to the acknowledgment
which been received. If they are equal so we know they have been transmitted successfully.

Thereafter we update the received packet and which packets we expect to receive.

% Check for timeout
if toc{t_start) > timeout
fprintf('Timeout: resending packets %d-%d\n', next_pkt_to_send, next_pkt_to_send+window_size-1);
break; % exit ACK wait loop
end
end
% Resend packets if necessary
if expected_pkt_to_receive > next_pkt_to_send
next_pkt_to_send = expected_pkt_to_receive;
end
end
% Display results
SNR_ack = 10*logle(1l/ack noise power®2);
fprintf( 'Sent: %d\n', sent_packets);
fprintf('Received: %d\n', recv_packets);
fprintf( 'Packet loss rate: %.2F8%\n", 188 * (1 - recv_packets / sent packets));
disp(SNR ack)

Figure 4.18: Check for timeout and resend if necessary

After the sender has sent a set of packets we now wait for the acknowledgment for
the oldest packet in the window which hasn’t yet received its own acknowledgment.
The receiver starts a timer and enters into an infinite loop until the acknowledgment
is received or a timeout occurs. Within the loop, The receiver checks if the received
acknowledgment matches the sequence number of the oldest packet in the window which
hasn’t yet received its own acknowledgment. If the received acknowledgment matches, it
means that packets have been successfully received. Then sender sends new packets in
the window. We have done this check in our simulation example by using the "isequal()"
function in Matlab. If they are equal, then the "recv-packets" updates with the number
of packets received with the correct acknowledgment. If the timer exceeds the timeout
value, the sender re-sends all the packets in the current window starting with the oldest
packet which hasn’t received its own acknowledgment yet. Thereafter we can check if
there is a need to resend any of the packets. We check if there is a need to resend the
packet by checking if the "expected pkt to receive" variable is greater than the "next pkt

to send" variable.



Chapter 4 Design and solution 31

We run the simulation code now and see the result. The result is shown in the figure

below.

>> BRQ GO BACK N

Sending packet 1

Sending packet 2

Sending packet 3

Sending packet 4

Received ACK for packets 1-4

Sending packet 1

Sending packet 2

Sending packet 3

Sending packet 4

Received ACK for packets 1-4

Sending packet 1

Sending packet 2

Sending packet 3

Sending packet 4

Received ACK for packets 1-4

Sent: 12

Received: 12

Packet loss rate: 0.00%
10.457¢

Figure 4.19: ARQ results

The results show that the technique has successfully corrected the errors that occurred
in both the packets and acknowledgment during wireless communication. Although the
pressure from the noise the technique ensured error-free communication with a packet
loss rate of 0, deteriorating that the Go-Back-N ARQ technique performs well in noisy

channels.



32 Chapter 4 Design and solution

4.3.1 Evaluating with SNR

The noise-to-signal (SNR) parameter is important to evaluate the performance of the
Go-Back-N ARQ. We will run the simulation code with different SNR values and see the
results of changing the SNR values. In the Go-Back-N ARQ simulation, there are two
different SNR ratios. The first ratio is the SNR packet ratio and the second is the ratio
for acknowledgment. The packet ratio will affect the packet loss rate and also the time
of running the code. The acknowledgment ratio will affect the time of running the code.
First, we run the code with acknowledgment of 0.3 for both the "pkt-noise-power" and

"ack-noise-power" parameters. Also, the same powers are in our example.

>> BRQ GO BACK N
Sending packet 1
Sending packet 2
Sending packet 3
Sending packet 4
Received ACK for packets 1-4
Sending packet 1
Sending packet 2
Sending packet 3
Sending packet 4
Received ACK for packets 1-4
Sending packet 1
Sending packet 2
Sending packet 3
Sending packet 4
Received ACK for packets 1-4
Sent: 12
Received: 12
Packet loss rate: 0.00%
Signal to noise for ack: 10.4576
Run time in secounds: 0.37321
Signal to noise for packets: 10.4576
Jx >>

Figure 4.20: Acknowledgment SNR and packet SNR

The figure shows the result for Acknowledgment SNR and SNR packet in our example
is 10.4576 for both. We see that the time of running is not high which is 0.37921. The
packet loss rate is also 0 which means there were no packets lost in transmission. We
change now the value of the "ack-noise-power" parameter to 0.5 which leads to the SNR
ratio for acknowledgment will lesser. When we run the code the code continues to run and
it doesn’t end. This means the sender waits for the receiver to send the acknowledgment
before continuing the transmission for the rest of the packets. I waited for ca. 10 min and
the code doesn’t stop running which means that the code may be run to an infinite time.
I have noticed that the packets have been sent many times due to the timer expiration.
We run now the code with a change of the "pkt-noise-power" parameter to 0.5 which will

lead to a lesser SNR packet ratio.



Chapter 4 Design and solution 33

>> BRQ GO BACK N

sending packet 1

sending packet 2

sending packet 3

sending packet 4

Timeout: resending packets 1-4
sending packet 1

sending packet 2

sending packet 3

sending packet 4

Received ACK for packets 1-4
sending packet 1

sending packet 2

sending packet 3

sending packet 4

Received ACK for packets 1-4
sending packet 1

sending packet 2

sending packet 3

sending packet 4

Received ACK for packets 1-4
Sent: 16

Received: 12

Packet loss rate: 25.00%
Signal to noise for ack: 10.4576
Run time in secounds: 2.9423
Signal to noise for packets: 6.0206

Figure 4.21: Lower SNR packet

The figure above shows the results of packets SNR equal to 6.0206 which gave us a packet
loss rate of 25 percent and a higher running time which is equal to 20.9423 seconds. We
can see also that the sender had to send 4 packets again.

We change the value of both "pkt-noise-power" and "ack-noise-power" to 0.2 which will

lead to a higher value of both SNR ratios.

>> BRQ GO BACK N

Sending packet 1

Sending packet 2

Sending packet 3

Sending packet 4

Received ACK for packets 1-4
Sending packet 1

Sending packet 2

Sending packet 3

Sending packet 4

Received ACK for packets 1-4
Sending packet 1

Sending packet 2

Sending packet 3

Sending packet 4

Received ACK for packets 1-4
Sent: 12

Received: 12

Packet loss rate: 0.00%

Signal to noise for ack: 13.579%4
Run time in secounds: 0.026572
Signal to noise for packets: 13.875%4

Figure 4.22: Hiegher acknowledgment SNR and packet SNR



34 Chapter 4 Design and solution

The figure above shows the results of packets SNR and acknowledgment ratios equal to
13.9794. Higher SNR ratios have affected both the packet loss rate and run time of the
code. We see that the run time is lesser than the previous change examples. The run
time is low which is equal to 0.026573, and the packet loss rate is equal to 0.0 percent

and all the sent packets have been successfully transmitted.

We can evaluate that the higher SNR of the acknowledgment will lead to a lesser
time of run time and the higher SNR of the packets will lead to a better packet loss
ratio and a lesser time for the running code. When the SNR for the acknowledgment
was low. The run time was higher and in some situations, the code didn’t stop running
for over than ca. 10 min. The receiver just kept resending the packet after the timer
limit expired. In these situations, I have assumed that the Go-Back-N ARQ simulation
code may run to infinity. The low value of the SNR packet ratio leads to a higher run
time because of the packets which have been lost under transmission and have been sent
again to the receiver. That has also led to a higher loss packet ratio. We can also assume
that the lower SNR leads to worse performance of the technique. That means the ARQ
Go-Back-N has better performance in a higher SNR value.



Chapter 5

Conclusions

In this thesis, I have presented the problem that can happen in wireless communication.
To correct and detect the errors that occur in the data that have been transmitted we
need to use wireless error control techniques. In the chapter background, I have presented
several techniques of wireless error control which have helped us to understand how these
techniques work theoretically.

I have also presented several studies about which tool can we use to simulate those
techniques. We have also presented the different tools we can use to create a simulation
of some wireless error control techniques. The tools we have presented are Matlab, NS-3,
OPNET modeler, and OMNET ++. In the comparison of tools part, we have gone
through which tool is better for us to use to simulate some of these techniques. I have
chosen Matlab because it’s a suitable tool to simulate wireless error control techniques.
Also, Matlab is an open-source and free program. I also have mentioned that one of
the reasons I have to choose MATLAB over the other tools is because of the Matlab
programming language I have been familiar with before.

In the Design and solution part, I simulated three different techniques. Two techniques
of these three use the forward error correction and one of these techniques uses the
backward error correction. The two forward error correction was the hamming code
and convolutional codes. The technique we simulated also which is a type of backward
error correction was Go-Back-N ARQ. I have used Matlab to simulate all of these three
techniques. We have first gone through how we gonna simulate each of these three
techniques and the goals of creating the simulation. Then we presented the code we used
to simulate each of these three techniques. We have also added noise to the techniques
of simulated communication which has helped us to study these technique’s performance
under a noisy channel. We have also changed the SNR to see how the changing of the
SNR wanna affect the performance of the techniques. We have found that the hamming

code and ARQ Go-Back-N were more stable than the convolutional codes technique.

35



36 Chapter 5 Conclusions

We have also found out that a higher SNR will lead to better performance for these
techniques for correcting errors. Also, we found when the SNR is low the performance
gets worse in all of the three techniques we have simulated.

This study has some limitations, in this study, we have simulated only three techniques.
There are maybe other techniques that are worth exploring. Also, the real word wireless
channels may have more complex and dynamic characteristics which could affect the
performance of the wireless error control techniques and wireless communication. There-
fore, further research could focus on exploring the scope of the wireless error control
techniques and also studying the techniques in more realistic conditions. The work we
have presented in this thesis contributes to advancing our understanding of wireless
error control techniques and provides a base for further research on wireless error control

techniques.



Appendix A

Instructions to Compile and Run

System

In this thesis, we have used Matlab as the simulation tool. We will provide in this
appendix installation instructions of Matlab.

1. Get the license file and installation key.

If you are a student you may get a license through your university contact the IT
department in your university to get the license information.

2. Start the installer.

Start the installation by running the "setup" file.

3. Accept the license agreement.

Read the license agreement which is presented by the installer and accept it.

4. Enter the file installation key.

Enter the installation key when it is prompted by the installer.

5. Select the license file.

Select the license you have chosen in step one.

6. Select the destination folder.

Select the folder you want to install Matlab in.

7. Select products.

Choose the products you need to install. In our simulations example we needed only
Matlab.

8. Select options.

Select additional options such as the toolboxes.

9. Confirm selections and install. Check your selections and confirm to start installing.

37



38 Appendix A Instructions to Compile and Run System

When the Matlab is installed you can open the program. You have to log in with your
Mathworks email and password if you don’t have you can create a new Mathworks user
and you have to create a password. If you are a student you can log in with your student

number as a user email.



Bibliography

e A Case Study of Various Wireless NetworkSimulation Tools By V. Venkataramananl,
S. Lakshmi. 2018.

e A Review of Simulation Techniques for Some Wireless Communication System BY

Bodunrin Isa Bakare, Joseph Diema Enoch, 2019.

e A comparative study of different network simulation tools and experimentation plat-
forms for underwater communication By Tejaswini R. Murgod, S. Meenakshi Sundaram,

2021.

o https://en.wikipedia.org/wiki/Error.orrection.ode

o https://en.wikipedia.org/wiki/Hamming.ode

o https://www.javatpoint.com/go-back-n-arq

o https://www.javatpoint.com/computer-network-error-correction
o DAT610-Wireless Communication lecuture4

o https://se.mathworks.com/products/matlab.html

o https://en.wikipedia.org/wiki/MATLAB

o https://www.nsnam.org/about/what-is-ns-3/

o https://opnetprojects.com/opnet-network-simulator/
o https://en.wikipedia.org/wiki/OMNeT

o https://en.wikipedia.org/wiki/Hamming.ode.

o https://se.mathworks.com/products/new,roducts/latest reatures.html

39



	Abstract
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Forward error correction
	2.1.1 Block Codes
	2.1.2 Hamming code
	2.1.3 Convolutional codes
	2.1.4 Turbo codes

	2.2 Backward error correction
	2.2.1 Automatic repeat request

	2.3 Parity check
	2.4 Cyclic redundancy check (CRC)

	3 State of the Art
	3.1 Related works
	3.2 Tools
	3.2.1 Matlab
	3.2.2 NS-3
	3.2.3 OPNET modeler
	3.2.4 OMNET++
	3.2.5 Comparison of tools


	4 Design and solution
	4.1 Simulating hamming code
	4.1.1 Evaluating with SNR

	4.2 Simulating Convolutional codes
	4.2.1 Evaluating with SNR

	4.3 Simulating ARQ Go-Back-N
	4.3.1 Evaluating with SNR


	5 Conclusions
	A Instructions to Compile and Run System
	Bibliography

