
Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:
Master in Robot Technology and Signal
Processing

Spring semester, 2023

Open / Restricted access

…………………………………………
(Writer’s signature)

Faculty supervisor: Damiano Rotondo

External supervisor(s):

Thesis title: Moving Horizon Estimation for the Two-tank System

Credits (ECTS): 30

Moving Horizon Estimation, LMHE,
NMHE, KF, EKF, state estimator,
optimization, two-tank system,
nonlinear system

Pages: …………………

+ enclosure: …………

Stavanger, ………………..
Date/year

Front page for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Moving Horizon Estimation for the
Two-tank System

Master’s Thesis in Robot Technology and Signal Processing
by

Greta Bekerytė

Internal Supervisors

Damiano Rotondo

June 14, 2023

Declaration of Authorship

I, Greta Bekerytė, declare that this thesis titled, ‘Moving Horizon Estimation for the
Two-tank System’ and the work presented in it are my own. I confirm that:

■ This work was done wholly while in candidature for a master’s degree at this
University.

■ Where I have consulted the published work of others, this is always clearly at-
tributed.

■ Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

Signed: Greta Bekeryte

Date: 15.06.2023

iii

“Not everything that can be counted counts, and not everything that counts can be counted.”

Albert Einstein

Abstract

This thesis presents the application and evaluation of Moving Horizon Estimation (MHE)
for the nonlinear two-tank system. MHE is an iterative optimization-based approach that
continuously updates the estimates of the states by solving an optimization problem over
a fixed-size, receding horizon. Linear and nonlinear MHE-based estimators are designed
and implemented in Matlab for evaluation in simulation environment and Simulink
for on-line realization and validation. The linear and nonlinear MHE are evaluated in
comparison with the Kalman and Extended Kalman filter through extensive simulations
and experimental validation, assessing their accuracy, efficiency, and overall performance.
The results of the two-tank state and unmeasured disturbance estimation shows the
benefit of the MHE.

Acknowledgements

I would like to express my deepest appreciation to my supervisor Damiano Rotondo
providing with guidance, insightful comments, suggestions and patience throughout the
duration of this project.

I would also like to thank my family for their support. A particular thanks goes to
Bernardas, without your tremendous understanding, patience and encouragement in the
past few years, it would be impossible for me to complete my study.

Finally, I wish to express gratitude to my colleagues and supervisors at Zaptec, for
encouragement and giving me the flexibility to take classes while working.

vi

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vi

List of Figures xi
List of Figures . xv

List of Tables xv
List of Tables . xvii

Abbreviations xvii

Symbols xix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objectives . 2
1.3 Approach and Contributions . 3
1.4 Outline . 3

2 State Estimation 5
2.1 Dynamical System Representation and Notation 6
2.2 Observability and Detectability . 7
2.3 Luenberger Observer . 10
2.4 Kalman Filter . 11
2.5 Extended Kalman Filter . 14
2.6 Full Information Estimation . 15
2.7 Moving Horizon Estimation . 17

2.7.1 Arrival Cost Update . 18
2.7.2 MHE Constraints . 20
2.7.3 Estimation of System Parameters and Distrubances 20
2.7.4 Tuning Parameters . 21

vii

3 Optimization 23
3.1 Optimization Problem . 23
3.2 Optimization Classes and Methods . 25

3.2.1 Least-Squares Optimization . 26
3.2.2 Linear Programming . 27
3.2.3 Convex Programming . 28
3.2.4 Nonlinear Programming . 32

3.3 Matlab In-built Functions . 35

4 Implementation 37
4.1 Linear Moving Horizon Estimation . 37

4.1.1 Linearization of Two-tank System 40
4.1.2 Implementation . 44
4.1.3 In-built fmincon for Constrained Optimization 49
4.1.4 Verification of LMHE . 51

4.2 Nonlinear Moving Horizon Estimation . 58
4.2.1 Implementation . 58
4.2.2 Verification of NMHE . 58

4.3 Simulink Implementation . 63

5 Results 67
5.1 Simulation Environment . 67

5.1.1 LMHE . 67
5.1.2 NMHE . 72
5.1.3 MHE Efficiency . 77

5.2 Real Data Estimation . 82
5.3 Experimental MPC and MHE Results . 92

6 Conclusions 97

A The Two-tank System 99
A.1 Process Description . 99
A.2 Valves and Pump Characteristics . 101
A.3 Dynamic Model of Tank 1 . 104
A.4 Dynamic Model of Tank 2 . 104

B Additional Results 107
B.1 NMHE Verification . 108
B.2 Simulation Environment Results . 110

B.2.1 LMHE . 110
B.2.2 NMHE . 115
B.2.3 LMHE and NMHE (increased measurement noise) 121

B.3 Real Data Estimation Results . 128
B.3.1 LMHE . 128
B.3.2 NMHE . 129
B.3.3 On-line Results . 131

C Matlab Code 135
C.1 LMHE.m . 135
C.2 NMHE.m . 154
C.3 LMHE_Simulink_init.m . 168
C.4 NMHE_Simulink_init.m . 170
C.5 Functions . 173

C.5.1 Amatrix.m . 173
C.5.2 ExtendedKalmanFilter.m . 174
C.5.3 KalmanFilter.m . 176
C.5.4 linearization.m . 177
C.5.5 ObjectiveFunction.m . 179
C.5.6 LMHE_simulink.m . 182
C.5.7 NMHE_simulink.m . 186
C.5.8 parameters.m . 191

D Project Poster and Project Plan 193

Bibliography 197

List of Figures

2.1 State observer structure. 10
2.2 Kalman filter loop. 13
2.3 Extended Kalman filter loop. 15
2.4 Moving Horizon Estimation. 17

3.1 Optimization problem. 24
3.2 Example of convex and non-convex functions. 25
3.3 Example of a linear programming polytope together with a possible path

(red) taken by the simplex method to solve the corresponding LP [1]. . . . 28

4.1 Eigenvalues of the observability Grammian plotted over the feasible region
of the two-tank system. The subplot A represents the eigenvalues of
uP A001 and h1 when one measurement is available. Subplot B compares
the eigenvalues of uP A001 when one measurement is available versus when
two measurements are available. 44

4.2 An overview of Moving Horizon Estimation iteration. 46
4.3 Typical fmincon optimization process. 50
4.4 LMHE Case 1: Estimation of h1 and h2 given the measurements of h1

and h2. No process or measurement noise. 52
4.5 LMHE Case 2: Estimation of h1 and h2 given the measurement h2. No

process or measurement noise. 53
4.6 LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements

h1 and h2. No process or measurement noise. 54
4.7 LMHE Case 3 estimation using different weights in the model covariance

matrix. The second element (representing h2) is kept constant, Q2 = 1. . 56
4.8 LMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement

h2. No process or measurement noise. 57
4.9 NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements

h1 and h2. No process or measurement noise. 61
4.10 NMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement

h2. No process or measurement noise. 62
4.11 Simulink model for the two-tank system with LMHE and NMHE. 63
4.12 Simulink implementation of LMHE and NMHE. 64

5.1 LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−9. 68

5.2 LMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement
h2. Simulated measurement noise, σ2 = 10−9. 70

xi

5.3 LMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement
h2. Simulated measurement noise, σ2 = 10−9. Sample time increased to
0.5s. 72

5.4 NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Simulated measurement noise, σ2 = 10−9. 73

5.5 EKF Case 3: Estimation of h1, h2 and uP A001 given the measurement h1
and h2. Simulated measurement noise, σ2 = 10−9. 74

5.6 NMHE Case 3: uP A001 estimation using global optimization methods.
Simulated measurement noise, σ2 = 10−9. 75

5.7 NMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement
h2. Simulated measurement noise, σ2 = 10−9. Sample time increased to
0.5s. 76

5.8 Absolute values of the estimation error variations using sqp, sqp with
reduced tolerances, active-set and interior-point algorithms. The active-
set performace is equal to interior-point, therefore invisible. 79

5.9 Absolute values of the estimation error variations for the horizon length
N = 5, N = 10, N = 15 and N = 20. 80

5.10 Training dataset used to determine measurement noise covariance matrix.
Dataset data3.mat. 82

5.11 LMHE Case 2: Estimation of h1 and h2 given the measurement h2. Dataset
data1.mat. 83

5.12 LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Dataset data1.mat. 84

5.13 LMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement
h2. Dataset data1.mat. 86

5.14 NMHE Case 2: Estimation of h1 and h2 given the measurement h2.
Dataset data1.mat. 87

5.15 https://youtu.be/AeMlxtVhUqw . 88
5.16 NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements

h1 and h2. Dataset data1.mat. 89
5.17 Case 2: Estimation of h1 and h2 given the measurement h2. Dataset

data2.mat. 90
5.18 Case 3: Estimation of h1, h2 and uP A001 given the measurements h1 and

h2. Dataset data2.mat. 91
5.19 Simulink model for the two-tank system with MHE and MPC. 93
5.20 Control of the two-tank system with LMPC using LMHE. Case 1: estima-

tion of h1 and h2 given the measurements h1 and h2. 94
5.21 Control of the two-tank system with LMPC using LMHE. Case 2: estima-

tion of h1, h2 given the measurement h2. 95
5.22 Control of the two-tank system with LMPC using LMHE. Case 3: estima-

tion of h1, h2 and uP A001 given the measurements h1 and h2. 96

A.1 A schematic sketch and picture of the two-tank system located at the
University of Stavanger, KE E-459. 100

A.2 A simplified version of the two-tank system schematic sketch. 101
A.3 Valve characteristic for LV001 and LV002[2]. 103
A.4 Pump PA001 characteristic [2]. 103
A.5 Simplified sketch of tank 2. 105

https://youtu.be/AeMlxtVhUqw

B.1 NMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. No process or measurement noise. 108

B.2 NMHE Case 2: Estimation of h1 and h2 given the measurement h2. No
process or measurement noise. 109

B.3 LMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Simulated measurement noise, σ2 = 10−9. Sqp algorithm with the
horizon length N = 10. 110

B.4 LMHE Case 2: Estimation of h1 and h2 given the measurement h2.
Simulated measurement noise, σ2 = 10−9. Sqp algorithm with the horizon
length N = 10. 111

B.5 LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements h1
and h2. Simulated measurement noise, σ2 = 10−9.Sqp algorithm with the
horizon length N = 10. OptimalityTolerance = StepTolerance = 10−10. . 112

B.6 LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−9.Sqp algorithm with
the horizon length N = 5. 113

B.7 LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−9.Interior − point
algorithm with the horizon length N = 10. 114

B.8 NMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Simulated measurement noise, σ2 = 10−9. Sqp algorithm with the
horizon length N = 10. 115

B.9 NMHE Case 2: Estimation of h1 and h2 given the measurement h2.
Simulated measurement noise, σ2 = 10−9. Sqp algorithm with the horizon
length N = 10. 116

B.10 NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Simulated measurement noise, σ2 = 10−9. Active-set algorithm
with the horizon length N = 10. 117

B.11 NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Simulated measurement noise, σ2 = 10−9. MultiStart method
with 5 start points using sqp algorithm with the horizon length N = 10. . 118

B.12 NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement h1
and h2. Simulated measurement noise, σ2 = 10−9. GlobalSearch method
using sqp algorithm with the horizon length N = 10. 119

B.13 NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Simulated measurement noise, σ2 = 10−9. PatternSearch
method using sqp algorithm with the horizon length N = 10. 120

B.14 LMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Simulated measurement noise, σ2 = 10−6. Sample time 1s. 121

B.15 LMHE Case 2: Estimation of h1 and h2 given the measurement h2.
Simulated measurement noise, σ2 = 10−6. Sample time 1s. 122

B.16 LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−6. Sample time 1s. . . 123

B.17 LMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement
h2. Simulated measurement noise, σ2 = 10−6. Sample time 1s. 124

B.18 NMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Simulated measurement noise, σ2 = 10−6. Sample time 1s. 125

B.19 NMHE Case 2: Estimation of h1 and h2 given the measurement h2.
Simulated measurement noise, σ2 = 10−6. Sample time 1s. 126

B.20 NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−6. Sample time 1s. . . 127

B.21 LMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Sqp algorithm with the horizon length N = 10. Dataset data1.mat. . 128

B.22 NMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Sqp algorithm with the horizon length N = 10. Dataset data1.mat. . 129

B.23 Case 1: Estimation of h1 and h2 given the measurements h1 and h2.
Dataset data2.mat. 130

B.24 LMHE Case 2: Estimation of h1 and h2 given the measurement h2. Sqp
algorithm with the horizon length N = 10. 131

B.25 NMHE Case 2: Estimation of h1 and h2 given the measurement h2. Sqp
algorithm with the horizon length N = 10. 132

B.26 LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Sqp algorithm with the horizon length N = 10. 133

B.27 NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Sqp algorithm with the horizon length N = 10. 134

List of Tables

5.1 Time usage of the LMHE using different algorithms, parameters and
horizon lengths. 78

5.2 PC-1 time usage of the NMHE using different methods. 78
5.3 Estimation error means for the NMHE, EKF, LMHE and KF in Case 1, 2

and 3. Dataset data2.mat . 91

A.1 Tank 2 dimensions [2]. 105
A.2 Two-tank system variables [2]. 106

xv

Abbreviations

BFGS Broyden-Fletcher-Goldfarb-Shanno

EKF Extended Kalman Filter

KF Kalman Filter

KKT Karush-Kuhn-Tucker

LMHE Linear Moving Horizon Estimation

LP Linear Programming

LTI Linear Time Invariant

MHE Moving Horizon Estimation

MPC Model Predictive Control

NMHE Nonlinear Moving Horizon Estimation

PHB Popov-Belevitch-Hautus

ODE Ordinary Differential Eequations

SQP Successive Quadratic Programming

xvii

Symbols

The list of the symbols is not exhaustive.

R Set of real numbers.

Rn Euclidean space of dimension n.

Rn×n Matrix dimension n× n.

X Set of constraints on the states.

W Set of constraints on the process noise.

V Set of constraints on the measurement error.

e Estimation error.

u Vector of control inputs.

v Vector of measurement error.

w Vector of non-modelled process disturbances.

x Vector of system states.

x0 Vector of initial system states.

x̄ A priori state estimate.

x̂ A posteriori state estimate.

y Vector of outputs.

A State transition matrix.

B Input matrix.

C Output matrix.

D Feed-through matrix.

H Hessian matrix.

J Objective function.

xix

K Kalman gain matrix.

L Luenberger observer gain matrix.

N Horizon Length.

O Observability matrix/Operating point.

P, P −1 Prior weighting and confidence matrices.

R, R−1 Measurement covariance and confidence matrices.

Q, Q−1 Process covariance and confidence matrices.

W Observability Grammian matrix.

(̂·) Optimization variable.

(̃·) Trajectory.
˙(·) Derivative.

(·)∗ Optimal solution.

(·)T Matrix/vector transposition.

(·)k Discrete-time variable at time k.

(·)i|k Discrete-time variable at time i calculated at time k.

∥x∥22 Euclidean norm xT x.

∥x∥2W Weighted Euclidean norm xT Wx.

Γ(·) Arrival cost function.

∇(·) Gradient.

L(·) Langrangian function.

∆ Change in variable.

λ Langrange multiplier/eigenvalue.

ϵ Tolerance.

Chapter 1

Introduction

1.1 Background and Motivation

In many physical systems it is often impossible to directly measure all the necessary

states. This may be attributed to the inaccessibility of certain states, unobservability of

specific variables due to limitations in the available sensors or measurement techniques,

complexity of the system, or high cost associated with deploying multiple sensors. These

systems therefore often require inferring unobservable variables or augmenting limited

data to obtain a comprehensive understanding of the systems state using state estimators.

Additionally, in environments characterized by high levels of noise, employing a state

estimator can be advantageous for improving the accuracy and reliability of measurements

used in decision-making processes, control strategies, or system monitoring.

The Kalman filter is widely used to estimate the state of linear unconstrained systems

in the presence of noisy measurements and unmeasured process disturbances. For the

systems corrupted with white Gaussian noise, the Kalman filter operates as an optimal

estimator. However, in the majority of real-world applications, the systems under

consideration are nonlinear and can not directly utilize the Kalman filter. The Extended

Kalman filter is a natural extension of the Kalman filter which iteratively linearize the

nonlinear system around the current state estimate. Nevertheless, the extended Kalman

filter is not an optimal estimator and its stability is not guarantied. In some cases,

additional information about the process is available in the form of equality or inequality

1

Introduction Chapter 1 Introduction

constraints. However, when incorporating these constraints, general recursive solutions

like Kalman filtering are not applicable [3].

Moving Horizon Estimation is an optimization-based approach that considers the con-

straints as part of the optimization problem over a fixed-size estimation window of

most recent measurements and control inputs. An increasing success and adoption of

model predictive control (MPC), which shares a conceptual similarity with the MHE, has

sparked a growing interest in MHE as well. The MHE can improve the state estimation

performance, however, at the cost of increased computational load and is thus, more

suitable for processes where there are sufficient computational resources available, e.g., in

the case of systems with slow dynamics. This project aims at designing and implementing

an MHE-based state estimator to observe the state of the two-tank system available at

the University of Stavanger in the laboratory KE E-458 and compare its performance

against more conventional state estimation techniques.

1.2 Objectives

The main objectives in this thesis can be segmented into the following:

• Literature study and analysis of the state of the art of Moving Horizon Estimation.

• Study and analysis of more conventional state estimation strategies such as the

Luenberger observer, the Kalman Filter and the Extended Kalman filter.

• Study and analysis of the fundamental principles behind optimization techniques.

• Implementation and evaluation of linear and nonlinear MHE for the two-tank

system in simulation environment.

• Implementation and evaluation of Kalman and Extended Kalman filter for the

two-tank system in simulation environment.

• Implementation and experimental validation of the designed MHE-based estimator

on the two-tank system located at the University of Stavanger in the laboratory

KE E-458.

• Comparison of MHE against Kalman and Extended Kalman filter.

Introduction 3

1.3 Approach and Contributions

In this work linear and nonlinear MHE is considered for the two-tank state and disturbance

estimation. Implementation is done in Matlab for evaluation in simulation environment

and Simulink for real-time estimation. The MHE-based state estimator performance is

compared against more conventional state estimation strategies, namely the Kalman and

Extended Kalman filter.

Prior to the project start, the project plan was developed to outline the key milestones,

activities and timelines. Throughout the duration of the project, the execution adhered

closely to the initial plan, with some minor deviations that were efficiently managed.

The project plan is available in Appendix D.

1.4 Outline

This thesis is organized as follows:

• Chapter 2 begins by establishing the theoretical background on observability

and detectability notions. Subsequently, the chapter delves into the discussion of

the most commonly used estimation techniques, namely the Luenberger observer,

Kalman Filter, and Extended Kalman Filter. Each technique is presented with its

underlying principles, mathematical formulation. The chapter then progresses to

introduce the Full Information Estimation framework followed by a more detailed

theoretical presentation on Moving Horizon Estimation, providing an in-depth

understanding of this estimation approach.

• Chapter 3 starts by providing theoretical background on optimization problem

formulation. Next, it offers an overview of commonly used optimization classes,

including least-squares optimization, linear programming, convex programming, and

nonlinear programming. Each class is discussed in terms of its characteristics, and

specific problem formulations. Furthermore, the chapter delves into the fundamental

theoretical principles behind the most widely used optimization algorithms employed

to solve these optimization problems. It covers algorithms such as gradient descent,

Newton’s method, Interior-point and SQP.

Introduction Chapter 1 Introduction

• Chapter 4 begins with a more detailed theoretical overview of linear Moving

Horizon Estimation (LMHE), providing a deeper understanding of the underlying

principles, followed by an implementation overview, outlining the steps and con-

siderations for implementing the LMHE. Then the implementation verification is

provided. Next, the chapter transitions to nonlinear Moving Horizon Estimation

(NMHE). The implementation overview section follows, offering insights into the

practical implementation aspects. Then the implementation verification of NMHE

is provided. Lastly, the chapter concludes with a brief overview of the Simulink

implementation.

• Chapter 5 presents the evaluation of MHE performance in various scenarios. The

chapter begins with an analysis of the results obtained from the simulation environ-

ment, showcasing the estimation accuracy and robustness of linear and nonlinear

MHE techniques compared with the performance of Kalman filter and Extended

Kalman filter. Furthermore, the MHE efficiency is examined, considering compu-

tational time and overall performance. Further, the chapter proceeds to evaluate

the estimation results using real two-tank data. These results are again compared

with the performance of the Kalman filter and Extended Kalman filter. Lastly, the

chapter concludes with experimental the MPC and MHE results.

• Appendix A provides detailed description of the two-tank system and derive the

mathematical expressions of the dynamical process model.

• Appendix B contains additional results.

• Appendix C provides the Matlab code.

• Appendix D contains the project poster and project plan.

Chapter 2

State Estimation

Information on the variables that uniquely defines the state of the system at any

given time is the essential condition for effective monitoring and control of a process.

In most practical applications, due to the lack of sensors, all physical states of the

system are seldom accessible. If observed states of a system are sufficient to determine

the dynamic of the system, unmeasurable states can be reconstructed using a state

estimator. The use of state estimator is also beneficial if measurements are corrupted by

excessive levels of noise. State estimation objective is to accommodate a model prediction

with available measurement information, considering model error, noisy or incomplete

measurements and disturbances. The primary aim is to obtain a state estimate such

that the difference between the actual and estimated value decays to zero asymptotically.

However, depending on the application, the requirement for the state estimate may vary.

Instead, the desired behavior could be that the error decays to zero within a finite time or

that the error remains bounded within certain limits by taking into account the modeling

uncertainties and the properties of noise and disturbances. In control theory, a dynamic

system that provides a state trajectory estimate for a given real system is called a state

observer (or state estimator)[4][5].

This chapter provides some relevant background on observability and detectability notions,

Section 2.2, most commonly used state estimation techniques developed throughout the

years, namely the Luenberger Observer, Section 2.3, the Kalman filter, Section 2.4, the

Extended Kalman filter, Section 2.5, and the Full Information Estimation, Section 2.6.

5

State Estimation Chapter 2 State Estimation

Section 2.7 delves into more detailed theoretical presentation on the Moving Horizon

Estimation.

2.1 Dynamical System Representation and Notation

A general dynamical system model consists of two equations. The first equation is a

state transition equation that describes the dynamics of the system states and consists

of a set of ordinary differential equations (ODE). The second is an output equation, that

describes measurement mapping of the system.

The following dynamical system representation and notation will be used throughout the

report:

• Nonlinear continuous-time invariant system:

{
ẋ(t) = f(x, u, t) + w(t)

y(t) = h(x, u, t) + v(t)
, (2.1)

where x ∈ Rn is the vector of the states, u ∈ Rp is the vector of the control inputs,

y ∈ Rm is the vector of the outputs, w ∈ Rn is the vector of non-modelled or

unknown process disturbance (model error), v ∈ Rm is the vector of measurement

error, f(·) and h(·) denotes nonlinear functions and t ∈ R is the time. In this paper,

the probabilistic distribution of the process disturbance w and measurement noise

v are considered to be zero-mean Gaussian white-noise. Furthermore, the dynamic

model equations are assumed to be disturbed by additive process and measurement

noise.

• Linear continuous-time invariant system:

{
ẋ(t) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + Du(t) + v(t)
, (2.2)

where A ∈ Rn×n is the state transition matrix, B ∈ Rn×p is the input matrix,

C ∈ Rm×n is the output matrix and D ∈ Rn×p is the feed-through matrix. In this

paper the feed-through matrix is considered to be zero, such that (2.2) is reduced

State Estimation 7

to: {
ẋ(t) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + v(t)
. (2.3)

• In practise, the majority of the applications uses a discrete-time system represen-

tation. This is due to the fact that state measurements are often sampled and

processed digitally. Discrete-time invariant system representations used in this

report are {
xk+1 = Axk + Buk + wk

yk = Cxk + vk

(2.4)

for the linear case, and

{
xk+1 = f(x, u, k) + wk

yk = h(x, u, k) + vk

(2.5)

for nonlinear case. k is the discrete time index, such that tk = kTs, where Ts is the

sampling time.

2.2 Observability and Detectability

Observability and detectability are important notions to be considered when designing a

state estimator. The concept of observability for linear dynamic systems was introduced

by Rudolf E. Kalman in 1960 [6]. Observability concept considers the ability to estimate

the state of a system from its measured outputs. Detectability, on the other hand,

considers the ability to estimate the state of a system with a bounded error. Detectability

concept was introduced by Rudolf E. Kalman, Peter L. Falb and Michael A. Arbib in

1969 [7].

Definition 2.1 (Detectability). A system is said to be detectable if all unobservable

states are asymptotically stable.

Definition 2.2 (Observability for linear systems). A linear continuous1-time invariant

system {
ẋ(t) = Ax(t) + Bu(t), x(t0) = x0

y(t) = Cx(t)
(2.6)

1Equivalent definition and theorems for linear discrete-time invariant systems can be found in [8]
p.171.

State Estimation Chapter 2 State Estimation

is said to be observable if, for a given time interval [t0, tf], it is possible to uniquely

determine any initial state x0 by using the input u(t) and the output y(t) for t ∈ [t0, tf].

Otherwise, the system is said to be unobservable.

Observability is given by the following theorem [8]:

Theorem 2.3. The state equation (2.6) is observable if and only if the n×n observability

Grammian matrix

W0(t) =
∫ t

0
eAT τ CT CeAτ dτ (2.7)

is non singular for any t > 0.

If the matrix A is stable, the observability Grammian can be found as the solution to

Lyapunov equation given by

AT W0 + W0A = −CT C. (2.8)

Theorem 2.4. The system is observable if matrix A is stable, and the unique solution

of (2.8) is positive definite, i.e., all eigenvalues of W0 are strictly positive.

The observability Grammian provides information on observability "degree" in different

state space directions. E.g., eigenvalues to the observability Grammian that are close

to zero corresponds to low observability. In practise, instead of calculating the observ-

ability Grammian, observability of a system can be determined using simpler equivalent

statements than Theorems 2.3 and 2.4 [8]:

Theorem 2.5.

1. The n-dimentional pair (A, C) is observable.

2. The LTI system (2.6) is observable if and only if nm× n observability matrix

O =



C

CA
...

CAn−1


(2.9)

has rank n (full column rank).

State Estimation 9

3. The LTI system (2.6) is observable if and only if (n + m)× n matrix

A− λI

C

 (2.10)

has full column rank for every eigenvalue of A.

The item 3. in Theorem 2.5 is also called a Popov-Belevitch-Hautus (PHB) test.

The PHB test for detectability states that [9]:

Lemma 2.6.

1. The n-dimentional pair (A, C) is detectable.

2. The LTI system (2.6) is asymptotically observable, i.e., detectable if and only if

(n + m)× n matrix A− λI

C

 (2.11)

has full column rank for every eigenvalue of A for which ℜ(λ) ≥ 0.

Observability of the system is a sufficient condition for state variables estimation, while

detectability is a necessary and sufficient condition. However, observability is a necessary

and sufficient condition for an estimator with fully adjustable convergence rate to exist,

meaning that, if such an estimator exists, measurable state variables contain useful

indirect information on all state variables of the system.

For linear systems both observability and detectability are global properties that do

not depend on the operating region. The evaluation of observability and detectability

for nonlinear systems is more challenging than for linear systems. In this case, ob-

servability/detectability are local properties that do depend on the operating region

[4].

State Estimation Chapter 2 State Estimation

2.3 Luenberger Observer

The Luenberger observer is a deterministic state estimation technique introduced by

David G. Luenberger in 1964 [10]. For linear discrete-time dynamic system

{
xk+1 = Axk + Buk

yk = Cxk

(2.12)

a linear system observer is given by

{
x̂k+1 = Ax̂k + Buk + L(yk − ŷk)

ŷk = Cx̂k

, (2.13)

where x̂ is the state estimate, L ∈ Rn×m is the observer gain, ŷ is the observer output

and (yk − ŷk) is a correction of the estimation equation with a feedback from estimation

error. The state observer structure is shown in Fig. 2.1. The state estimation error at

Figure 2.1: State observer structure.

time k + 1 is given by

ek+1 = xk+1 − x̂k+1. (2.14)

Substituting (2.12) and (2.13), the observer error in (2.14) becomes

ek+1 = (A− LC)ek. (2.15)

The observer is called asymptotically stable if the estimation error converges to zero

when k →∞, i.e., the state estimate x̂ converges to the true state of x. For discrete-time

system, the Luenberger observer is asymptotically stable if the eigenvalues of the matrix

State Estimation 11

A − LC are placed inside the unit circle. The eigenvalues of A − LC can be placed

arbitrary by appropriate choice of the observer gain L, if the pair (A, C) is observable.

The Luenberger estimator is a straightforward method for state estimation, however,

it relies on an accurate mathematical system model and is not designed to account for

process noise.

2.4 Kalman Filter

The Kalman filter is an optimization based estimation approach introduced by Rudolf E.

Kalman in 1960 [11]. It is one of the most important and unique accomplishments in

estimation theory, and is widely used in numerous applications of science and engineering.

The objective of the Kalman filter, also called the linear quadratic estimator or the linear

least squares estimator, is to minimize the mean-squared estimation error for a linear

dynamic system with white Gaussian disturbance and measurement noise. The filter

contains a set of recursive equations that provides statistically optimal estimates [12].

Considering a linear unconstrained discrete-time dynamic system:

xk+1 = Axk + Buk + wk, (2.16a)

yk = Cxk + vk, (2.16b)

where wk ∈ Rn×n and vk ∈ Rm×m are the process and measurement noise respectively.

wk and vk are assumed to be uncorrelated, zero mean, E{wk} = E{vk} = 0, Gaussian

variables with covariance matrices Q and R, respectively.

The Kalman filter consists of two phases, namely prediction and correction. It considers

the following state observer equations:

x̄k|k−1 = Ax̂k−1|k−1 + Buk, (2.17a)

x̂k|k = x̄k|k−1 + Kk(yk − x̄k|k−1), (2.17b)

where x̄k|k−1 is the a priori state estimate at sample k given knowledge of the system

prior to sample k, i.e., measurement at sample k is not taken into account. x̂k|k is the a

posteriori state estimate at sample k given measurement yk, i.e., a linear combination of

prediction and a weighted difference between a prediction and an actual measurement.

State Estimation Chapter 2 State Estimation

The term (yk − Cx̄k|k−1) i also called measurement innovation, or residual. Kk is the

time-varying gain. The a priori and a posteriori estimation errors can then be defined as

ek|k−1 ≡ xk − x̄k|k−1, (2.18a)

ek|k ≡ xk − x̂k|k. (2.18b)

The a priori and a posteriori estimate error covariance matrices are given by

Pk|k−1 = E{ek|k−1eT
k|k−1}, (2.19a)

Pk|k = E{ek|keT
k|k}. (2.19b)

The goal is to find the gain factor Kk such that it minimizes the a posteriori error

covariance in (2.19b). Minimization can be achieved by combining equations (2.16b),

(2.17b), (2.18b) and (2.19b), performing the indicated expectations and optimizing with

respect to Kk, the details can be found in [12]. Hence, the optimal Kalman gain Kk that

minimizes the mean square estimation error is given by

Kk = Pk|k−1CT (CPk|k−1CT + R)−1 (2.20)

and the covariance matrix associated with the optimal estimate is

Pk|k = Pk|k−1 − Pk|k−1CT (CPk|k−1CT + R)−1CPk|k−1. (2.21)

Assuming that wk in (2.16a) is uncorrelated and it has zero mean, the next prediction is

given by

x̄k+1|k = Ax̂k+1|k + Buk. (2.22)

The a priori covariance matrix associated with the next prediction x̄k+1|k can be expressed

substituting ek+1|k = xk+1 − x̂k+1|k:

Pk+1|k = E{ek+1|keT
k+1|k} = APkAT + Q. (2.23)

Thus, (2.17b), (2.20), (2.21), (2.22) and (2.23) are the Kalman filter recursive equations

[12]. A transition from a posteriori to a priori is called time update, whereas transition

from a priori to a posteriori is called measurement update. The Fig. 2.2 illustrates

high-level Kalman filter loop. The initial a priori estimate x̄0 and the error covariance

State Estimation 13

Figure 2.2: Kalman filter loop.

matrix P0 is assumed to be known or can be calculated using model equations.

The measurement noise covariance matrix Rk and the process noise covariance matrix Qk

are filter tuning parameters. Rk is, usually, estimated using off-line sample measurements

or according to the sensor accuracy. The estimation of Qk, on the other hand, is more

challenging [13]. It can, for example, be estimated using system identification techniques

or determined during off-line testing.

If Rk and Qk are treated as constants, the estimation covariance matrix Pk and the

Kalman gain Kk will, eventually, reach a steady state. In this case, the steady state value

of Pk = P∞ can be pre-computed off-line. By multiplying the steady state solution of

(2.21) and (2.23) with matrix A and AT , P∞ can be obtained as a solution of discrete-time

algebraic Riccati equation given by

P∞ = AP∞AT −AP∞CT (CP∞CT + R)−1CP∞AT + Q. (2.24)

State Estimation Chapter 2 State Estimation

2.5 Extended Kalman Filter

The Kalman filter, presented in the section above, is a conventional approach to solve

the state estimation problem for linear unconstrained systems. However, most of the

real world applications are nonlinear processes. The Extended Kalman filter (EKF) is

a nonlinear version and a straightforward extension of the linear Kalman filter. The

fundamental notion behind the EKF is to linearize the nonlinear system around the

current state estimate using the partial derivatives of the system. The nonlinear discrete-

time unconstrained system under consideration is

xk+1 = f(xk, uk) + wk,

yk = h(xk) + vk.
(2.25)

As for linear Kalman filter, process and measurement noise, wk and vk, respectively, are

considered stationary, zero mean, Gaussian white noise and mutually uncorrelated with

x0. The recursive Kalman filter equations (2.17b) and(2.22) can be rearranged as follows

[13]:

x̂k|k = x̄k|k−1 + Kk(yk − h(x̄k|k−1)) (2.26)

and

x̄k+1|k = f(x̂k+1|k, uk). (2.27)

The linearized system of (2.25) is given by

xk+1 = f(x̂k, uk) + Ak(xk − x̂k) + wk,

yk = h(xk|k−1) + Ck(xk − xk|k−1) + vk,
(2.28)

where Ak is the Jacobian matrix of partial derivatives of f with respect to x̂k−1|k and

Ck is the Jacobian matrix of partial derivatives of h with respect to x̂k|k−1. The Fig. 2.3

illustrates high-level Extended Kalman filter loop.

It is important to note that the EKF is not an optimal estimator. In addition, for highly

nonlinear processes the Extended Kalman filter can be insufficient because the filter

design is based on a linear approximation of the nonlinear process model. This may cause

poor estimation performance due to the non globally asymptotically stable estimation

error dynamics [4].

State Estimation 15

Figure 2.3: Extended Kalman filter loop.

2.6 Full Information Estimation

One of the substantial disadvantages of the Kalman filter and Extended Kalman filter is

the inability to directly address or incorporate constraints in the optimization process.

Full information estimation, on the other hand, is an optimization based approach that

considers the constraints as part of the optimization problem.

The full information estimation objective function is formulated as a least-squares

estimation problem and is given by [14]

min
x0,{wk}T −1

k=0

∥x0 − x̄0∥2P −1
0

+
T −1∑
k=0
∥wk∥2Q−1

k

+
T∑

k=0
∥vk∥2R−1

k

Subject to:

x0 − x̄0 ∈ X, wk ∈W, vk ∈ V.

(2.29)

where x̄0 is the a priori estimate of the initial values of the state variables, wk and vk

is the sequences of process and measurement noise in time interval k = [0, ...T − 1] and

k = [0, ...T] respectively. P −1
0 , Q−1

k and R−1
k are the confidence matrices, where P0, Qk

State Estimation Chapter 2 State Estimation

and Rk are the covariance matrices of x0, wk and vk respectively. All these matrices

are assumed to be symmetric positive definite, and thus invertible. X, W and V are the

subsets of real numbers, i.e., the constraints of the system.

Given a discrete-time dynamic system

xk+1 = f(xk, uk) + wk,

yk = h(xk) + vk,
(2.30)

where f(·) and h(·) denote linear or nonlinear functions, the optimization problem

formulation, (2.29), can be rewritten as follows:

min
x

∥x0 − x̄0∥2P −1
0

+
T −1∑
k=0
∥xk+1 − f(xk, uk)∥2

Q−1
k

+
T∑

k=0
∥yk − h(xk)∥2

R−1
k

Subject to:

x0 − x̄0 ∈ X,

xk+1 − f(xk, uk) ∈W,

yk − h(xk) ∈ V.

(2.31)

The equation (2.31) is solved by minimizing a weighted sum of squared errors of initial

condition, system model dynamics and measurements in the time interval [0, T]. The

solution of the objective function (2.31) yields the sequence of the optimal state estimates

x̂ = [x̂T
0 , ..., x̂T

T]T . In [14] and [15], it is proven that the full information estimation has

the best theoretical properties with regard to stability and optimality.

However, the full information estimation is not suited for online implementation due

to increasing computational load with each time step. As the size of the optimization

problem increases, it will eventually reach a point where it becomes infeasible to solve.

Moreover, the measurements far in the past may no longer be relevant or representative

of the current state of the system [5]. The practical estimator design technique that

preserves the properties of the full information estimation while maintaining a feasible

computational burden is called Moving Horizon Estimation.

State Estimation 17

2.7 Moving Horizon Estimation

In comparison to the full information estimation, MHE considers only a finite sequence

of most recent measurements and control inputs. The principle is to continuously update

the estimates of the states by solving an optimization problem over a fixed-size moving

window. This is illustrated in Fig. 2.4. Considering a finite horizon of the length N , the

Figure 2.4: Moving Horizon Estimation.

full information estimation objective function, (2.29), can be reformulated as follows:

min
x0,{wi}k−1

i=0

k−1∑
i=k−N

∥wi∥2Q−1 +
k∑

i=k−N

∥vi∥2R−1+

+
k−N−1∑

i=0
∥wi∥2Q−1 +

k−N∑
i=0
∥vi∥2R−1 + ∥x0 − x̄0∥2P −1

0
,

(2.32)

where (2.29) is divided into two intervals [k −N, k − 1] and [0, k −N − 1]. The first two

sums in (2.32) are only dependent on the information within the estimation window,

therefore, it can be rewritten as [16]

min
xk−N ,{wi}k−1

i=k−N

k−1∑
i=k−N

∥wi∥2Q−1 +
k∑

i=k−N

∥vi∥2R−1 + Γk−N (xk−N), (2.33)

where

Γk−N (xk−N) = min
x0,{wi}k−N−1

i=0

k−N−1∑
i=0
∥wi∥2Q−1 +

k−N∑
i=0
∥vi∥2R−1 + ∥x0 − x̄0∥2P −1

0
. (2.34)

State Estimation Chapter 2 State Estimation

The minimization of the objective function (2.33) yields the sequence of the optimal

state estimates x̂ = [x̂T
k−N , ..., x̂T

k]T . The term Γk−N (xk−N) in (2.33), is referred to as

the arrival cost which summarizes past information outside the estimation window. To

bound the MHE optimization problem as k grows, the arrival cost function in (2.34) has

to be rewritten as an algebraic expression. For unconstrained linear systems with the

horizon length N = 1, MHE optimization problem simplifies to the standard Kalman

filter, thus the arrival cost can be expressed explicitly. For nonlinear or constrained

systems, the arrival cost has to be approximated [16].

2.7.1 Arrival Cost Update

Moving horizon estimation reduces the computational burden of solving the full informa-

tion estimation problem by considering a finite horizon of the measurements, however, to

determine the arrival cost is a challenging task. The choice of the arrival cost influences

the performance and stability of the MHE, thus it is an important design aspect when

constructing the estimator.

One of the simplest choices is zero prior weighting, i.e., setting Γi(xi) = 0. This means

that the states are estimated using information within the estimation window and all

prior data is completely discarded. The drawbacks of the zero prior weighting is that the

system has to be observable rather than detectable, for solution to the MHE problem to

exist and it may require a large horizon to achieve an acceptable performance [14].

For constrained linear systems, a common approach is to use an approximate arrival cost

based on the arrival cost for the unconstrained problem [3]. The arrival cost in (2.34) for

time k > N is approximated by the following quadratic approximation:

Γ̃k−N (xk−N) = ∥xk−N − x̄k−N∥2P −1
k−N

, (2.35)

where x̄k−N is the state prediction at time k−N and P −1
k−N is the prior confidence matrix

at time k−N . It is also assumed that Pk−N and x̄k−N precisely describe the approximate

arrival cost, meaning that for time k ⩽ N , Pk and x̄k are updated recursively subject

to initial condition P0 and x̄0, where x̄k is the estimate of the states at time k given

measurements up until k = N − 1. (2.35) can be solved using Kalman filter and its

State Estimation 19

covariance update equation given by (2.21) and (2.23):

Pk = APk−1AT −APk−1CT (CPk−1CT + R)−1CPk−1AT + Q (2.36)

For constrained nonlinear systems, [16] estimates the arrival cost by approximating a

constrained nonlinear system as an unconstrained linear time-variant system. Assuming

that the model functions f(·) and h(·) are sufficiently smooth, the nonlinear system can

be approximated using a first-order Taylor series approximation around the estimated

trajectory, thus (2.35) can be solved using Extended Kalman filter covariance update.

Complex constrained nonlinear systems, may require more advanced techniques to

approximate the arrival cost, e.g., unscented Kalman filter or particle filter. A list of

different types of approximations is presented in [17].

Combining (2.30) and (2.35), (2.33) can be rewritten as [18] [14]:

min
xk−N ,...,xk

1
2

k−1∑
i=k−N

∥xi+1 − f(xi, ui)∥2Q−1︸ ︷︷ ︸
Dynamical system model error

+ 1
2

k∑
i=k−N

∥yi − h(xi)∥2R−1︸ ︷︷ ︸
Measurement error

+

+ 1
2∥xk−N − x̄k−N∥2P −1

k−N︸ ︷︷ ︸
Arrival cost

.

(2.37)

The MHE objective function is solved by minimizing the influence of the measurement

error, the non-measured process disturbance and the arrival cost over the estimation

horizon.

When sliding from one estimation window to the next, the state prediction x̄k−N in the

arrival cost has to be updated. This can be done by a filtering update or a smoothing

update. The filtering update uses the state prediction of x̄k−N |k−N , that is the solution

of x̄k−N obtained at time k −N . This method requires storage of the last k −N MHE

estimates. The smoothing update, on the other hand, is more convenient and uses the

state prediction of x̄k−N |k. In practice, it means that the state prediction to the sample

xk−N |k is the optimal estimate to the sample k −N obtained at time k − 1 [14].

State Estimation Chapter 2 State Estimation

2.7.2 MHE Constraints

Since MHE is derived from the full information estimation presented in Section 2.6, MHE

has the ability to directly address or incorporate constraints in the optimization process.

Constraints can be modeled as:

• Inequality constraints:

h(x) ⩽ 0 (2.38)

where h(·) is a linear or nonlinear function.

• Equality constraints:

g(x) = 0 (2.39)

where g(·) is a linear or nonlinear function.

• Box constraints, i.e., lower and upper bounds:

xlb ⩽ x ⩽ xub (2.40)

Equality and inequality constraints define the relation between the optimization variables,

while box constraints define the range of optimization variables, i.e., the region of search

for the optimization problem.

2.7.3 Estimation of System Parameters and Distrubances

In state estimation, it is often desirable to estimate unknown system parameters or

external disturbances. The additional information on the system can be used to improve

estimation accuracy, enhance robustness by accounting for uncertainties, enable adapt-

ability to changing system dynamics, and provide valuable insights into the underlying

system behavior. This can be achieved by modeling the parameters or disturbances

as state variables, thus by augmenting the original system model. The system distur-

bances/parameters are estimated from measured process variables and are assumed

to remain constant if no explicit model for the variations is available. Therefore, the

State Estimation 21

parameter/disturbance p can be represented as a random walk process2:

ṗ(t) = 0 + wp(t) (2.41)

for continuous-time, and

pk+1 = pk + wpk
(2.42)

for discrete-time, where wp(t) and wpk
are additional process noise. Considering a

nonlinear discrete-time state transition equation (2.5) and the augmented state vector

defined as x̃k = [xT
k , pT

k]T , x̃k ∈ Rnx+np , the augmented state transition equation has the

following form:  xk+1

pk+1


︸ ︷︷ ︸

x̃k+1

=

 fx(xk, pk, uk)

pk


︸ ︷︷ ︸

f̃(xk,uk)

+

 wxk

wpk


︸ ︷︷ ︸

w̃k

.
(2.43)

The only restriction for the augmented system is detectablity [14]. Detectability of the

augmented system model can be checked using PHB test presented in Section 2.2

2.7.4 Tuning Parameters

The performance of the MHE can be fine-tuned by adjusting the following parameters:

• The estimation horizon length N .

In general, the larger N , the more accurate estimation can be expected, however,

this will increase the computational burden.

• The covariance matrix Q.

The covariance matrix Q is often a diagonal matrix where each diagonal element

represents the variance of the corresponding dynamic model error. If correlations

among the variables are known, they can be included as nondiagonal elements.

• The covariance matrix R.

The covariance matrix R is a diagonal matrix where each diagonal element represents

the variance of the corresponding measurement error. R can be considered as

a tuning factor, but the best practice is to set it to the actual variance of a
2A random walk is a mathematical model used to describe a process where a variable takes a series of

steps that are determined by sequence of random values, i.e., future behaviour is independent of past
history.

State Estimation Chapter 2 State Estimation

measurement series of the real plant. If correlations among the measurement errors

are known, they can be included as nondiagonal elements.

• Initial arrival cost covariance matrix P0.

The Initial arrival cost covariance matrix, P0, has to be chosen as close to the

covariance of the state distribution as possible.

The covariance matrices, Q, R and P , can also be interpreted as prior knowledge of

the system and adjusted accordingly, or they can be used to account for errors due to

approximations.

Chapter 3

Optimization

The concept of optimization is an important tool in the fields of science, engineering,

finance and economics. Optimization plays a crucial role in finding optimal solutions to

complex problems such as minimize costs, optimize system performance or maximize

profits. MHE, presented in Section 2.7, is an iterative approach that relies on solving an

optimization problem to determine the optimal state estimates.

In this chapter, Section 3.1 provides theoretical background on optimization problem

formulation, Section 3.2 gives a fundamental insight to the principles behind the op-

timization techniques and an overview of most widely used optimization algorithms.

Section 3.3 summarizes in-built optimization functions available in Matlab.

3.1 Optimization Problem

A typical engineering problem is often described with some mathematical equations

subject to a single or multiple performance criterion, e.g., a cost function. The goal of

optimization process is to find the best solution, among a range of possible alternatives

that satisfy certain constraints and yields the best (maximum or minimum) value of

performance criterion. Optimization is, simply, a collection of mathematical principles

and methods utilized to solve quantitative problems. There are different ways to formulate

an optimization problem, but most of them share similar structures. Every optimization

problem contains three fundamental elements [19]:

23

Optimization Chapter 3 Optimization

• An objective function to be optimized (necessary).

• Equality constraints (optional).

• Inequality constraints (optional).

The set of variables that satisfies the constraints is called feasible solutions, whereas

the set of feasible solutions that provides an optimal value to the objective function is

called an optimal solution to the optimization problem. Fig 3.1 illustrates a minimization

problem1, where x = [x1, x2] are the optimization variables, orange lines indicates the

constraints, f is the objective function and [x1,optimal, x2,optimal] is the set of optimal

solutions that minimizes the function f . A typical mathematical formulation of the

Figure 3.1: Optimization problem.

optimization problem is the following: For a given mathematical model of the process,

find the values of the vector x that minimizes the objective function f(x):

min
x

f(x)

Subject to:

g(x) = 0, Equality constraints.

h(x) ⩽ 0, Inequality constraints.

(3.1)

1For the rest of this paper, optimization problem will be considered as minimization problem.

Optimization 25

Optimization problems are categorized into convex and non-convex problems. Convex

problems are those where both objective and constraints functions are convex, i.e., they

satisfy the inequality

fi(αx + βy) ⩽ αfi(x) + βfi(y) (3.2)

for all x, y ∈ R and α, β ∈ R, where α + β = 1. Convex problems have unique feasible

region with a unique set of globally optimal solutions. Non-convex optimization problems,

on the other hand, are those where the objective or constraint functions are non-convex.

Non-convex problems may have multiple feasible regions and locally optimal solutions

within each region. In general, non-convex optimization is a hard task to solve, since

there may be potentially many local minima, saddle points and very flat regions [20].

Examples of convex and non-convex function are shown in Fig. 3.2.

Figure 3.2: Example of convex and non-convex functions.

3.2 Optimization Classes and Methods

Due to the fact that optimization is a fundamental tool used in many fields, where each

field has its own unique set of optimization problems, optimization problems are divided

into different classes. Each class reflects the diversity of applications and mathematical

properties of optimization problems, and requires different techniques or analytical tools

to solve the problems effectively. Examples of widely used optimization problem classes in

various fields include linear programming, convex programming, nonlinear programming,

quadratic optimization, stochastic programming, network optimization, combinatorial

optimization, geometric programming and many others. This section covers a short

Optimization Chapter 3 Optimization

introduction to the most popular optimization classes and corresponding methods used

to solve the optimization problem.

3.2.1 Least-Squares Optimization

A basic least-squares optimization problem is an unconstrained problem with an objective

function which is a sum of squares of terms aT
j x− bj :

min
x

∥Ax− b∥22 =
k∑

j=1
(aT

j x− bj)2, (3.3)

where x ∈ Rn is the vector of optimization variables and A ∈ Rk×n, where k is the

number of rows in A. The solution to least-squares problem can be obtained by solving

a set of linear equations

(AT A)x = AT b. (3.4)

Thus, least-squares problem has an analytical solution x = (AT A)−1AT b. There are many

reliable and efficient methods that can solve large least-squares problems with hundreds

of optimization variables in a few seconds. The computation time is approximately

proportional to n2 · k [20].

Regression analysis, data fitting, optimal control, and numerous parameter estimation

techniques are built upon the foundation of the least-squares problem. Weighted least-

squares is a frequently used variation of basic least-squares problem:

min
x

∥Ax− b∥2W =
k∑

j=1
wj(aT

j x− bj)2, (3.5)

where w1, ..., wk are positive weights. The weighted least-squares formulation provides

more flexibility to express different levels of importance for the magnitudes of the terms

aT
j x− bj . In state estimation, the weights are often used to express influence of unequal

variances that corrupts the error terms.

Furthermore, (3.5) can be improved by introducing a regularization term that adds the

ability to penalize the original cost term:

min
x

k∑
j=1

wj(aT
j x− bj)2 +

k∑
j=1

vj(cT
j x− dj)2. (3.6)

Optimization 27

The choice of weights wj and vj permits a trade-off between reducing the magnitude of

the first term while ensuring that the second term does not become too large, or vice

versa [20].

3.2.2 Linear Programming

Linear programming problems involve optimizing a linear objective function whose vari-

ables are subject to linear equality and inequality constraints. The standard formulation

is given by
min

x
cT x

Subject to:

aT
i x ⩽ bi, i = 1, .., l

x ⩾ 0,

(3.7)

where c, a1, ..., al ∈ Rn are the vectors, b1, ..., bl ∈ R are the scalars and l is the number

of constraint equations. The feasible region, defined by (3.7), in geometric terms is a

convex polytope. There is no simple analytical expression to solve a linear programming

problem, but there are some effective and reliable algorithms such as Dantzig’s Simplex

or Interior-point algorithms [20]. For linear objective functions with linear constraints

an optimal solution occurs at extreme point of the feasible region. However, an optimal

solution may not be unique (if there is more than one extreme point). Hence, linear

programming problem reduces to evaluating which extreme point corresponds to the

lowest value of the objective function. The Simplex algorithm is an iterative algorithm

that starts with an initial extreme point and evaluates if the solution is optimal. This is

done using an algebraic specification of the problem. If a current extreme point is not an

optimal solution, the algorithm moves to an adjacent extreme point along an edge in the

direction for which the objective function is minimized at fastest rate. The search and

evaluation of extreme points is repeated until optimal solution is found [21]. Fig. 3.3

illustrates an example of a linear programming problem and optimal solution search by

Simplex algorithm.

Optimization Chapter 3 Optimization

Figure 3.3: Example of a linear programming polytope together with a possible path
(red) taken by the simplex method to solve the corresponding LP [1].

3.2.3 Convex Programming

A convex optimization problem has the following form:

min
x

f0(x)

Subject to:

fi(x) ⩽ bi, i = 1, .., l,

(3.8)

where functions f0, ..., fl are convex, i.e., they satisfy the equation (3.2). The least-squares

and linear programming problems, presented above, are special cases of the general convex

optimization problem. There are a variety of effective approaches for solving convex

optimization problems. Some of them are: gradient methods, Quasi-Newton method and

Interior-point. If the optimization problem is convex and unconstrained, the solution

may be found using Gradient descent, Steepest descent or Newton methods.

Descent Methods

Descent methods generate a minimizing sequence xk, k = 1, ...:

xk+1 = xk + tk∆x(k), (3.9)

where k denotes iteration, ∆x ∈ Rn is a vector called the step or search direction and

tk > 0 (except when xk is optimal, tk = 0) is referred to as the step size or step length

at iteration k. A search direction must minimize the objective function such that the

Optimization 29

following holds:

f(xk+1) < f(xk), unless xk is an optimal solution. (3.10)

A search direction ∆x is called a descent direction if it satisfies

∇f(x)T ∆x < 0. (3.11)

In geometry setting, (3.11) means that the search directions points towards the direction

where the objective function gradient is negative. Hence, given a starting point a general

descent algorithm alternates between two steps: determining a descent direction ∆x,

and then choosing a step size tk. Internal iteration continues until a stopping criterion is

satisfied, e.g., |f(xk+1)− f(xk)| < ϵ.

The gradient descent method determines the step using

∆xk = −∇f(xk), (3.12)

such that (3.9) has the following form [19]

xk+1 = xk − tk∇f(xk). (3.13)

The step size tk is determined using line search methods: exact line search or inexact

line search. In exact line search tk is chosen to minimize f along {xk + tk∆xk|t ⩾ 0}:

tk = argmins⩽0f(xk + s∆xk). (3.14)

An example of inexact line search method that is commonly used in practise is back-

tracking line search. The method depends on two constants, namely, α and β, where

0 < α < 0.5 and 0 < β < 1. The algorithm starts with a unit step and reduces it by the

factor β until the stopping criterion

f(xk + tk∆xk) < f(xk) + αtk∇f(xk)T ∆xk (3.15)

is satisfied [20]. The parameter α is used to account for prediction error or uncertainty

while the parameter β corresponds to the level of approximation used.

Optimization Chapter 3 Optimization

Newton Method

Similarly to descent methods, Newton method is also an iterative gradient based algorithm.

Assuming that the objective function is twice differentiable, Newton method approximates

an objective function using second order Taylor expansion, i.e., a quadratic approximation

of f(x) at xk:

f(x) ≈ f(xk) +∇f(xk)T ∆xk + 1
2(∆xk)T H(xk)∆xk, (3.16)

where H(xk) is the Hessian matrix2 of f(x). By employing the information obtained from

the second partial derivatives of f(x), it is possible to take into account the curvature of

f(x) at xk when searching for directions. The search direction, also called Newton step,

can be obtained by differentiating (3.16) with respect to ∆x, and setting the expression

to zero [19]:
∇f(x) = ∇f(xk) + H(xk)∆xk = 0

⇒ ∆xk = −[H(xk)]−1∇f(xk).
(3.17)

Thus, substituting (3.17) into (3.9) results in

xk+1 = xk − tk[H(xk)]−1∇f(xk). (3.18)

To avoid calculating the inverse of a matrix in (3.18), it is common to solve the following

set of linear equations to determine the Newton step:

H(xk)∆xk = −∇f(xk). (3.19)

Newton method iterates in the same manner as descent methods described above.

Commonly used stopping criterion for Newton method is λ2/2 ⩾ ϵ, where λ is a quantity

called the Newton decrement at xk and is given by [20]

λ(x) = (∇f(xk)T [H(xk)]−1∇f(xk))
1
2 . (3.20)

Newton method can also be extended to include linear equality constraints. The extended

version of Newton method is almost the same, except for two differences: the initial

guess must be feasible, i.e., satisfy the constraints, and the Newton step definition is
2The matrix of second partial derivatives with respect to x.

Optimization 31

slightly modified to account for equality constraints. By approximating linear constraints

of the form Ax = b using second-order Taylor expansion, the objective function in (3.16)

is minimized subject to A∆x = 0. The optimality of a quadratic objective function is

determined using Karush-Kuhn-Tucher (KKT) optimality condition. An optimization

problem can be approximated using the Langrangian function

L(x, λ) = f(x) + λT (Ax− b), (3.21)

where λ is the vector of Langrange multipliers. The KKT optimality condition states,

that Langrangian function, L((x, λ)), is minimized at optimal solutions (x∗, λ∗), thus its

gradient must be zero at (x∗, λ∗):

Ax∗ = b, primal feasibility condition.

∇f(x∗) + AT λ∗ = 0, dual feasibility condition.
(3.22)

Hence, the KKT condition for (3.16) with constraints A∆x = 0 are

H(xk)∆xk +∇f(xk) + AT w = 0,

A∆xk = 0,
(3.23)

where w is the optimal dual variable for the quadratic problem. The Newton step can

be found by solving the linear equations in (3.23). These can also be rewritten in matrix

form H(xk) AT

A 0


∆xk

w

 =

−∇f(xk)

0

 . (3.24)

The matrix: H(xk) AT

A 0

 (3.25)

is also called KKT matrix. The Newton step is uniquely determined only at points where

the KKT matrix is nonsigular [20].

Quasi-Newton Method

Quasi-Newton method is an alternative to Newton method that replaces H(xk) in

equation (3.18) with a positive-definite approximation of H̃k to reduce computational

Optimization Chapter 3 Optimization

time. H̃k is initialized as a positive-definite symmetric matrix, and continuously updated

after each line search using the changes in xk and ∇f(x):

dk = xk+1 − xk (3.26)

and

yk = ∇f(xk+1)−∇f(xk+1). (3.27)

Among the most efficient and frequently employed techniques to update the Hessian is

Broyden–Fletcher–Goldfarb–Shanno (BFGS) update that is given by [19]

H̃k+1 = H̃k + ykyT
k

dT
k yk

− H̃kdk(H̃kdk)T

dT
k H̃kdk

. (3.28)

3.2.4 Nonlinear Programming

Nonlinear programming refers to an optimization problem, where the objective or

constraint functions are nonlinear, and they are assumed not to be necessarily convex.

Therefore, even a "simple" nonlinear problem may be extremely challenging to solve.

Methods for the general nonlinear problems, are often, based on different approaches

compromising between finding the true optimal solution and optimization efficiency.

Using local optimization approach the solution is, possibly, only locally optimal, meaning

that the objective function is minimized among feasible points that are near the minima,

but not necessarily near the global minima. The advantages of local optimization methods

are efficient computational time and ability to handle large-scale problems. The only

requirement is that both objective and constraints functions are smooth, i.e., differentiable

at every point in its domain. However, there are several disadvantages. Other than

possibly not globally optimal solutions, local optimization methods require initial guess

for the optimization variables. Thus, the choice of initial guess may considerably affect

the value of the objective function as well as local optimal solution. In addition, these

type of methods may be sensitive to algorithm parameters. Local optimization methods

that can handle constrained nonlinear problems are Successive Quadratic Programming

(SQP) and Interior-point. The other approach in solving nonlinear optimization problems

is global optimization. These type of methods focus on finding a global optimal solution

but at the cost of efficiency. Global optimization methods are, usually, used for problems

with few optimization variables and where computational time is not an issue [20].

Optimization 33

SQP Method

SQP is gradient based method that approximates a nonlinear programming problem to

a sequence of quadratic programming sub-problems. In addition, nonlinear constraints

are linearized around selected point and inequality constraints transformed to equality

constraints using slack3 variables. Thus, the quadratic problems have a quadratic objective

function with linear constraints. The quadratic objective functions are approximated using

the Langrangian function. Given a general, simplified version of nonlinear optimization

problem with equality constraints

min
x

f(x)

Subject to:

gi(x) = bi, i = 1, .., l,

(3.29)

the Langrangian function is given by

L(x, λ) = f(x) +
l∑

i=1
λi(gi(x)− bi). (3.30)

SQP method uses the KKT optimality conditions, presented in previous section, thus

the KKT conditions for the optimization problem in (3.29) is

∇xL = ∇f(x) +
l∑

i=1
λi∇gi(x) = 0 (3.31)

and

gi(x) = bi. (3.32)

Given some initial guess the equations (3.31) and (3.32) can be solved using Newton

method, where both equations are replaced by first-order Taylor approximations around

initial guess. That is

∇xL +∇2
xL∆x +∇gT ∆λ = 0 (3.33)

and

g +∇g∆x = 0, (3.34)
3Slack variable is non-negative variable that represents the amount by which a constraint can be

violated. E.g., Introducing slack variable s ⩾ 0 for inequality constraint Ax ⩽ b results in equality
constraint Ax + s = b.

Optimization Chapter 3 Optimization

where ∇2
xL is the Hessian of the Langrangian and ∇g is the Jacobian matrix of g, both

evaluated at initial guess. Considering quadratic optimization problem in (3.29) instead

of general nonlinear problem, Taylor approximation in (3.33) becomes [19]

∇xLT ∆x + 1
2∆x∇2

xL∆x +∇gT ∆λ = 0. (3.35)

Hence, the Newton step (∆x, ∆λ) can be found by solving equations (3.35) and (3.34).

The algorithm terminates when the KKT optimality conditions are satisfied.

Interior-Point Method

Considering a nonlinear optimization problem with linear equality and nonlinear inequality

constraints
min

x
f(x)

Subject to:

gi(x) ⩾ 0, i = 1, .., l,

A(x) = b,

(3.36)

where f and g1, ..., gl are convex and twice differentiable functions. The Interior-point

methods solve an optimization problem in (3.36) by applying Newton method to a

sequence of linear equality constrained problems. Meaning that after the optimization

problem is reformulated with a sequence of linear equality constraints, Interior-point

methods employs Newton method to reduce the equality constrained problem to a

sequence of quadratic constrained problems as presented in previous section.

One type of the methods used to transform inequality constraints into equality constraints

is called barrier methods. The main idea is to modify an objective function with an

additional term such that the value of objective function increases if constraints are

violated. An optimization problem with logarithmic barrier function is formulated as

min
x

f(x)− r
l∑

i=1
ln(gi(x)). (3.37)

Barrier methods convert a constrained optimization problem into a series of unconstrained

problems. The optimal solutions to these unconstrained problems converge to the

constrained solution as barrier parameter r is approaching zero. If parameter r is positive,

Optimization 35

the function, (3.37), is defined only inside the feasible region, where g(x) is positive.

As x approaches the boundary of the constraints, g(x) approaches zero, and the term

ln(g(x)) approaches infinity. Barrier parameter is increased iteratively such that the

optimal solution moves closer to the feasible region, until the solution converges to the

optimal solution of the original constrained optimization problem [19].

3.3 Matlab In-built Functions

Matlab has a variety of in-built functions that are capable to solve different optimization

problems, such as linear programming, mixed-integer linear programming, quadratic

programming, second-order cone programming, nonlinear programming, constrained least

squares, nonlinear least squares and nonlinear equations [22]. Some of these are4:

• linprog. Solves linear constrained programming problems of the form (3.7). Avail-

able algorithms are Dual-Simplex, Interior-point-legacy(a variant of Mehrotra’s

predictor-corrector algorithm) and Interior-point.

• quadprog. Solves quadratic linear constrained and unconstrained programming

problems. Available algorithms are Interior-point-convex, Trust-region-reflective

(based on interior-reflective Newton method) and Active-set.

• lsqlin. Solves standard linear least-squares constrained programming problems of

the form (3.3). Available algorithms are Interior-point (based on Interior-point-

convex), Trust-region-reflective (based on interior-reflective Newton method) and

Active-set.

• lsqnonlin. Solves standard nonlinear least-squares constrained programming

problems. Available algorithms are Interior-point, Trust-region-reflective (based on

interior-reflective Newton method) and Levenberg-marquardt.

• fminunc. Solves nonlinear unconstrained programming problems. Available

algorithms are Quasi-Newton and Trust-region.

• fmincon. Solves nonlinear constrained multivariable programming problems.

Available algorithms are Interior-point, SQP, Active-Set and Trust-Region-Reflective.
4Information presented in this section is compiled from MathWorks documentation [23].

Optimization Chapter 3 Optimization

Trust-Region-Reflective algorithm requires a pre-defined for the objective and

constraints functions.

• patternsearch. Solves nonlinear constrained programming problems. Available

algorithms are Pattern Search (based on an adaptive mesh that is aligned with the

coordinate directions) and Nonuniform Pattern Search.

• ga. Solves nonlinear constrained programming problems. Genetic algorithm.

In general, the choice of optimization method or algorithm depends on the type of the

problem, i.e., the type of the objective function, the nature of the constraints and the

number of variables [19]. Thus, the effectiveness of different methods varies and may

differ in accuracy, computational efficiency and the ability to solve the optimization

problem.

Chapter 4

Implementation

Chapter 2 discussed the most commonly used estimation techniques and provided detailed

theoretical presentation on MHE. Chapter 3 presented the fundamental background on

optimization problem formulation and theoretical principles behind the most widely used

optimization algorithms. In this chapter, Section 4.1 and 4.2 discloses implementation and

verification of the LMHE and NMHE for the two-tank system in simulation environment,

and Section 4.3 gives a brief overview of the Simulink implementation.

4.1 Linear Moving Horizon Estimation

In a LMHE estimation an objective function formulation involves describing the system

dynamics using linear equations. Consequently, it allows for a linear state-space model

representation. Considering a linear discrete-time dynamic system of the form

xk+1 = Axk + Buk + wk,

yk = Cxk + vk,
(4.1)

the general constrained MHE formulation (2.37), can be rewritten as follows:

37

Implementation Chapter 4 Implementation

min
xk−N ,...,xk

1
2

k−1∑
i=k−N

∥xi+1 −Axi −Bui∥2Q−1︸ ︷︷ ︸
Dynamical system model error

+ 1
2

k∑
i=k−N

∥yi − Cxi∥2R−1︸ ︷︷ ︸
Measurement error

+

+ 1
2∥xk−N − x̄k−N∥2P −1

k−N︸ ︷︷ ︸
Arrival cost

Subject to:

xi, x̄k−N ∈ X, xi+1 −Axi −Bui ∈W, yi − Cxi ∈ V,

(4.2)

where x̄k−N is the state prediction at time k −N and generic f(·) and h(·) functions are

replaced with the corresponding linear functions.

The state variables for the two-tank system, presented in Appendix A, namely, the water

level in tank 1, the water level in tank 2 and, potentially, the water flow from the pump

are physically constrained. The water level is bounded by the tank size while the water

flow rate is limited by the pump capacity. Thus, the two-tank MHE problem is subject

to the box constraints, i.e., the lower and upper bounds of the state variables. The

constraints in (4.2) can, therefore, be reformulated as

X =
n∏

i=1

N∏
j=1

[xi,lb(j), xi,ub(j)], (4.3)

where N is the horizon length and n is the number of state variables. The products

should be interpreted in the Cartesian sense.

In the literature it is quite common to formulate the LMHE problem in (4.2) as a quadratic

programming problem, i.e., a second order Taylor approximation of the following form

min
z

1
2zT Hz + zT∇f, (4.4)

where z ∈ RNn is the vector of the state variables, H is the Hessian and ∇f is the gradient

of the objective function. After some algebra, the equation (4.2) can be transformed

into (4.4). The Hessian and the gradient of the objective function can be obtained by,

firstly, considering the horizon length, N = 1 and expanding the squares. This gives the

Implementation 39

following expression:

The first term:

xT
2 Q−1x2 − xT

2 Q−1Ax1 − xT
2 Q−1Bu1 − xT

1 AT Q−1x2 − uT
1 BT Q−1x2 + xT

1 AT Q−1Ax1

+xT
1 AT Q−1Bu1 + uT

1 BT Q−1Ax1 + uT
1 BT Q−1Bu1+

The second term:

+yT
1 R−1y1 − yT

1 R−1Cx1 − xT
1 CT R−1y1 + xT

1 CT R−1x1+

The third term:

+x̄T
1 P −1

1 x̄1 − x̄T
1 P −1

1 x1 − xT
1 P −1

1 x̄1 + xT
1 P −1

1 x1
(4.5)

Simplifying the expression further and collecting all quadratic parts of xi in a matrix

results in

H(N=1) =

AT Q−1A + CT RC + P −1
1 −AT Q−1

−Q−1A Q−1

 . (4.6)

Considering the horizon length, N = 2 and repeating the same steps, the Hessian becomes

H(N=2) =


AT Q−1A + CT RC + P −1

1 −AT Q−1 0

−Q−1A Q−1 + AT Q−1A + CT RC −AT Q−1

0 −Q−1A Q−1

 . (4.7)

In (4.7) the additional step have only influenced the element (2, 2). Thus the Hessian

with the horizon N is given by

H(N) =


AT Q−1A + CT RC + P −1

k−N
−AT Q−1 0 · · · 0

−Q−1A Q−1 + AT Q−1A + CT RC −AT Q−1 . . . 0

0 −Q−1A Q−1 + AT Q−1A + CT RC . . . 0
...

...
. . .

. . . −AT Q−1

0 0 0 −Q−1A −Q−1


(4.8)

The gradient can be obtained in the same manner, but collecting all linear terms of xi in

(4.5)

∇f (i) =



AT Q−1Bu1 0 · · · 0

−Q−1Bu1 AT Q−1Bu2
. . . 0

0 −Q−1Bu2
. . . 0

...
... . . . AT Q−1Bui

0 0 0 −Q−1Bui


+



−CT R−1y1 − P −1
k−N x̄k−N

−CT R−1y2
...

−CT R−1yi

0


.

(4.9)

Implementation Chapter 4 Implementation

The constant term f(u, y, x̃k−N) is neglected due to the fact that it does not influence

the optimal solution.

4.1.1 Linearization of Two-tank System

The two-tank plant is second-order nonlinear system, detailed description of the system

is provided in Appendix A. LMHE implementation requires a linear dynamical model,

thus the nonlinear equations of the two-tank system has to be linearized. A linear

approximation of the two-tank system is obtained by using first-order Taylor series

expansion around a state trajectory associated to the control inputs of the system and

the specific initial states. The two-tank system is described by the following state

equations {
ḣ1(t) = g1(h1(t), uP A001(t), uLV 001(t))

ḣ2(t) = g2(h1(t), h2(t), uLV 001(t), uLV 002(t))
, (4.10)

where g1 and g2 denotes the nonlinear functions of tank 1 and tank 2, respectively.

Assuming that the the following holds



˜̇h1(t) = g1(h̃1(t), ũP A001(t), ũLV 001(t))

˜̇h2(t) = g2(h̃1(t), h̃2(t), ũLV 001(t), ũLV 002(t))

h̃1(t0) = h1,0 , h̃2(t0) = h2,0 , ũP A001(t0) = uP A001,0 , t ≥ t0

, (4.11)

the Taylor series approximation is

∆ḣ1(t) = ∂g1
∂h1

∣∣∣∣∣
O

∆h1(t) + ∂g1
∂uP A001

∣∣∣∣∣
O

∆uP A001(t) + ∂g1
∂uLV 001

∣∣∣∣∣
O

∆uLV 001(t) (4.12)

for tank 1 and

∆ḣ2(t) = ∂g2
∂h1

∣∣∣∣∣
O

∆h1(t) + ∂g2
∂h2

∣∣∣∣∣
O

∆h2(t) + ∂g2
∂uLV 001

∣∣∣∣∣
O

∆uLV 001(t)

+ ∂g2
∂uLV 002

∣∣∣∣∣
O

∆uLV 002(t)
(4.13)

for tank 2, where O denotes the operating point for the partial derivatives, namely,

h̃1, h̃2, ũLV 001, ũLV 002 and ũP A001. ∆ denotes the deviation variable around the operating

point.

Implementation 41

uLV 001, uLV 002 and uP A001 are independent variables of the functions f1, f2 and f3.

Therefore, the partial derivatives ∂g1
∂uLV 001

, ∂g1
∂uP A001

, ∂g2
∂uLV 001

and ∂g2
∂uLV 002

can be found

using supply chain rule

∂g1
∂uLV 001

= ∂g1
∂f1
· ∂f1

∂uLV 001
,

∂g1
∂uP A001

= ∂g1
∂f3
· ∂f3

∂uP A001
, (4.14)

∂g2
∂uLV 001

= ∂g2
∂f1
· ∂f1

∂uLV 001
,

∂g2
∂uLV 002

= ∂g2
∂f2
· ∂f2

∂uLV 002
, (4.15)

where the partial derivative ∂gi
∂uxx00i

, can be found by considering a small deviation ∆

around the operating point

∂gi

∂uxx00i

∣∣∣∣∣
O

= fi(uxx00i,0 + ∆)− fi(uxx00i,0)
(uxx00i,0 + ∆)− uxx00i,0

. (4.16)

In practice, ∆ is set to 0.01.

The corresponding operating points for ũLV 001 and ũLV 002, such that (4.11) holds, can

be determined by setting the differential equations (A.11) and (A.16) to zero:

ḣ1(t) = 0 ⇒ qLV 001,0 = f1(uLV 001,0) = 3600 f3(uP A001,0)

Kv,LV 001

√
ρ g (h1(t) + hLV 001)

100000
⇒ uLV 001,0 = f−1

1 (qLV 001,0),

(4.17)

ḣ2(t) = 0 ⇒ qLV 002,0 = f2(uLV 002,0) = 3600

Kv,LV 002

√
ρ g (h2(t) + hLV 002)

100000

·

·Kv,LV 001 f1(uLV 001,0)
3600

√
ρ g (h1(t) + hLV 001)

100000
⇒ uLV 002,0 = f−1

2 (qLV 002,0).

(4.18)

Similarly, as in (4.11), the output trajectories, ỹi(t), i.e., the trajectories of the measure-

ments, are given by {
ỹ1(t) = h̃1(t)

ỹ2(t) = h̃2(t)
. (4.19)

The dynamics of the sensors are considered fast, compared with the two-tank process and,

therefore, neglected. Thus, the output trajectory is determined by the state trajectory.

Implementation Chapter 4 Implementation

This results in the output equation approximation

{
y1(t) = ∆h1(t)

y2(t) = ∆h2(t)
. (4.20)

The linearized two-tank model, equations (4.12) and (4.13), can be rewritten in compact

matrix form {
∆ẋ(t) = A ∆x(t) + B ∆u(t)

y(t) = C ∆x(t)
, (4.21)

where x denotes the vector of the states, u denotes the vector of the control inputs, y

denotes the vector of outputs and matrices A and B are the Jacobian matrices Dgi
Dx (·)

and Dgi
Du (·).

In this work, to evaluate MHE possibilities, the following discrete-time two-tank dynamical

model representations will be considered:

• Case 1. Original two-tank system with two state variables, h1 and h2, and two

available measurements. In this case uP A001 is considered a known, controllable

process disturbance. Thus, the linearized two-tank dynamical model is given by

∆h1,k+1

∆h2,k+1


︸ ︷︷ ︸

∆xk+1

=

 ∂g1
∂h1

∣∣∣
O

0
∂g2
∂h1

∣∣∣
O

∂g2
∂h2

∣∣∣
O


︸ ︷︷ ︸

A

·

∆h1,k

∆h2,k


︸ ︷︷ ︸

∆xk

+

 ∂g1
∂uLV 001

∣∣∣
O

0 ∂g1
∂uP A001

∣∣∣
O

∂g2
∂uLV 001

∣∣∣
O

∂g2
∂uLV 002

∣∣∣
O

1


︸ ︷︷ ︸

B

·


∆uLV 001,k

∆uLV 002,k

∆uP A001,k


︸ ︷︷ ︸

∆uk

, (4.22)

y1,k

y2,k


︸ ︷︷ ︸

yk

=

1 0

0 1


︸ ︷︷ ︸

C

·

∆h1,k

∆h2,k


︸ ︷︷ ︸

∆xk

. (4.23)

• Case 2. Original two-tank system with two state variables, h1 and h2, and one

available measurement. In this case the state transition equation is the same

as for Case 1, (4.22). Assuming that one of the measurements is not available,

observability is maintained only if it is the measurement of water level in tank

1. Meaning that the measurement of water level in tank 2, h2(t), is necessary

Implementation 43

condition for the system to be observable. Thus, the output equation for the Case

2 is

y2,k︸︷︷︸
yk

=
[
0 1

]
︸ ︷︷ ︸

C

·

∆h1,k

∆h2,k


︸ ︷︷ ︸

∆xk

. (4.24)

• Case 3. Augmented two-tank system with three state variables, h1, h2 and uP A001,

and two available measurements. The system model is augmented as presented

in Section 2.7.3. In this case the linearized two-tank dynamical model has the

following form


∆h1,k+1

∆h2,k+1

∆uP A001,k+1


︸ ︷︷ ︸

∆xk+1

=


∂g1
∂h1

∣∣∣
O

0 ∂g1
∂uP A001

∣∣∣
O

∂g2
∂h1

∣∣∣
O

∂g2
∂h2

∣∣∣
O

0

0 0 1


︸ ︷︷ ︸

A

·


∆h1,k

∆h2,k

∆uP A001,k


︸ ︷︷ ︸

∆xk

+


∂g1

∂uLV 001

∣∣∣
O

0
∂g2

∂uLV 001

∣∣∣
O

∂g2
∂uLV 002

∣∣∣
O

0 0


︸ ︷︷ ︸

B

·

∆uLV 001,k

∆uLV 002,k


︸ ︷︷ ︸

∆uk

,

(4.25)

y1,k

y2,k


︸ ︷︷ ︸

y(t)

=

1 0 0

0 1 0


︸ ︷︷ ︸

C

·


∆h1,k

∆h2,k

∆uP A001,k


︸ ︷︷ ︸

∆xk

. (4.26)

• Case 4. Augmented two-tank system with three state variables, h1, h2 and uP A001,

and one available measurement. In this case the state trajectory remains as for

Case 3, (4.25), the output equation is adjusted as in Case 2

y2,k︸︷︷︸
yk

=
[
0 1 0

]
︸ ︷︷ ︸

C

·


∆h1,k

∆h2,k

∆uP A001,k


︸ ︷︷ ︸

∆xk

. (4.27)

All four cases presented above maintain observability of the two-tank system, however,

the observability of the disturbance uP A001 is highly reduced if only one measurement is

present, i.e., Case 4. As mentioned in Section 2.2, the observability Grammian provides

Implementation Chapter 4 Implementation

information on observability "degree" in different state space directions. The system

is said to be observable if all eigenvalues to the observability Grammian are strictly

positive, thus the eigenvalues close to zero indicate low observability. Figure 4.1 gives an

overview of 1000 operating points inside the feasible region of the two-tank system and

corresponding observability Grammian eigenvalues. The subplot A, show the relation

between the eigenvalues of uP A001 and h1 at different operating points when only one

measurement is present. The subplot B, compares the eigenvalues of uP A001 given one

measurement versus two measurements. It is evident that despite the variations from

one operating point to another, the eigenvalue of uP A001 given one measurement is in

range of 10−5, i.e., are close to zero. The eigenvalues of uP A001 given two measurements,

on the other hand, lies in range of 10−2.

Figure 4.1: Eigenvalues of the observability Grammian plotted over the feasible region
of the two-tank system. The subplot A represents the eigenvalues of uP A001 and h1
when one measurement is available. Subplot B compares the eigenvalues of uP A001 when

one measurement is available versus when two measurements are available.

4.1.2 Implementation

Simulation and implementation of the dynamical two-tank system models and LMHE is

done in Matlab.

Implementation 45

The Two-tank Sstem Simulation

The two-tank dynamical models both nonlinear and linearized are implemented as

continuous-time systems and discretized using forward Euler method. Discretization is

necessary due to the fact that MHE works in discrete time using measurements available

at discrete time samples. Code 4.1 shows the snippet from LMHE.m. In addition,

Euler integration is bounded by the systems physical constraints. The control inputs

for the valves and the pump, uLV 001, uLV 002, uP A001 are defined by the user, as well as

initial states, sample time and simulation length. Both state and output equations can

be simulated with or without process or measurement noise. The noise is generated as

normally distributed random numbers based on user defined variances.

% Linear Process model

if n == 3

dx_dt_k = A*(x_k - [h1_0; h2_0; u_PA001_0]) +

B*(u_k -[u_LV001_0 ; u_LV002_0]) + w_k;

elseif n == 2

dx_dt_k = A*(x_k - [h1_0; h2_0]) +

B*(u_k -[u_LV001_0 ; u_LV002_0 ; u_PA001_0]) + w_k;

end

x_k_ny = Ts* dx_dt_k + x_k + v_k; % Euler integration

% Measurements

h_meas_k = C*x_k + D*0 + v_k;

...

...

% Nonlinear Process model

f3_k = interp1 (u_PA001 ,q_PA001 , u_PA001_k);

f1_k = interp1 (u_LV001 ,f_LV001 , u_LV001_k);

f2_k = interp1 (u_LV002 ,f_LV002 , u_LV002_k);

dh1_dt_k = (1/ A1)*(f3_k -((Kv_LV001 *f1_k)/3600)

*sqrt ((rho*g*(h1_k+ h_LV001))/100000));

dh2_dt_k = (1/(0.07* h2_k +0.004))*(((Kv_LV001 *f1_k)/3600)

*sqrt ((rho*g*(h1_k+ h_LV001))/100000) - (Kv_LV002 *f2_k)/3600

*sqrt ((rho*g*(h2_k+ h_LV002))/100000));

h1_k_ny = Ts* dh1_dt_k + h1_k + w1_k; % Euler integration

h2_k_ny = Ts* dh2_dt_k + h2_k + w2_k;

h1_meas_k = h1_k + v1_k;

h2_meas_k = h2_k + v2_k;

Code 4.1: Linear and nonlinear prosess models.

Implementation Chapter 4 Implementation

LMHE

Figure 4.2 illustrates the concept behind one time instance of MHE. The main idea is to

provide MHE with the horizons of the control inputs, measurements and initial guesses

of the state variables, where uhorizon ∈ Rp×N , yhorizon ∈ Rm×N and xhorizon ∈ Rn×N .

There are two main tasks to be performed at each time instance: update the arrival cost

covariance matrix that is used to approximate the arrival cost in the objective function,

and solve the optimization problem that returns the estimates of the state variables.

Figure 4.2: An overview of Moving Horizon Estimation iteration.

As described in the previous sections, LMHE is based on linear dynamical model, thus the

linear two-tank system representation is used in both the objective function formulation

and the next sample prediction. More detailed description of LMHE algorithm is given

in Algorithm 4.1. The algorithm starts with the initialization of the main parameters

such as the number of states, n, the number of available measurements, m, the horizon

length, N , the sample time, Ts, covariance matrices of the MHE, the operating point of

the state variables, x0, and control input/state variable uP A001,0. The two-tank system

parameters are stored in separate file called parameters.m. The first step is linearization

of the two-tank system around provided state trajectory.

[A,B,C,D,u_LV001_0 , u_LV002_0] = linearization (h1_0 ,h2_0 ,u_PA001_0 ,n,m)

The function linearization(·) calculates and returns the Jacobians of linearized con-

tinuous -time two-tank system, and associated control inputs uLV 001,0 and uLV 002,0. The

arrangement of system matrices are defined by the inputs n and m. The box constraints

Implementation 47

xlb and xub are defined based on the systems state variable upper and lower bounds. The

box constraints are n×N matrices. The horizons of the state estimates, x̂horizon, control

inputs, uhorizon, and the measurements yhorizon are initialized as zero vectors of length

N . The MHE optimization problem is solved repeatedly at each time instance. At each

iteration, a new initial state is the second element from the previous estimation horizon.

Thus, the horizons of control inputs and measurements are updated at the beginning of

each time instance. The horizons are shifted to the right, i.e., taking into consideration

the newest measurement and control inputs while dropping the oldest.

Algorithm 4.1 LMHE
Initialization: n, m, N, Ts, Q, R, P0, x0, u0
x← x0
Run parameters.m ▷ Parameters of the two-tank system
Perform linearization(·)
Determine the constraints: xlb, xub

Pre-allocation of horizons: x̂horizon, uhorizon, yhorizon

Pre-allocation of array for storage: Pk−N,arr

for k = 1 : t_length do
uhorizon ← [uhorizon(:, 2 : N), uk] ▷ Update horizons
yhorizon ← [uhorizon(:, 2 : N), yk]

if k ≤ N then ▷ MHE Initialization
[x̂k, P]← KalmanFilter(·)
x̂horizon(k, :)← x̂k ▷ Update horizons
x← x̂k

Pk−N,arr(k)← P
end if
if k > N then

xpred,k ← LinearModel(·) ▷ Predict the state and update horizons
x̂horizon ← [x̂horizon(2 : N), xpred,k]
P ← RiccatiUpdate(·)
Pk−N,arr(k)← P
x̄k−N ← x̂horizon(:, 1)
Pk−N ← Pk−N,arr(k)
x̂∗

k,horizon ←minimize ObjectiveFunction(·) ▷ Linear objective function
x̂horizon ← x̂∗

k,horizon

end if
end for

As mentioned in Section 2.7.1, to ensure MHE stability, the arrival cost approximation

requires that the arrival cost covariance matrix Pk−N , and the state prediction x̄k−N ,

are updated recursively subject to the initial condition P0 and x̄0, and the measurements

up until time k = N − 1. Therefore, while k ≤ N , the state variables and covariance

matrix, P , are estimated using a Kalman filter.

Implementation Chapter 4 Implementation

[x_hat , P_hat] = KalmanFilter (x_hat ,P_hat ,y_meas_k ,u_k , parameter_struct ,Q,R)

where parameter_struct is the structure utilized to store a variety of parameters and

facilitate their transfer between functions. The function KalmanFilter(·) is implemented

as described in Section 2.4. At each iteration, while k ≤ N , the initial x̂horizon is updated

with the Kalman estimates. The covariance matrix, P , is also stored for the future use.

At the time instance k > N , the horizons of all variables are full. The optimization

algorithms requires a good initial guess of the optimization variables. The best initial

guess of the state variables at time k is the optimal solution found at time k − 1. The

only issue is that the optimal solutions from the previous horizon, x̂∗
k−1,horizon, are the

solutions from time sample k−N −1 up until k−1. Thus, the sample k−N −1 needs to

be left out and the prediction for time index k needs to be added. The state prediction at

time k is calculated using the system model, i.e., linearized two-tank dynamical model:

[x_next , y] = LinearModel (x,u, parameter_struct)

The updated x̂horizon is supplied to the optimizer as the initial guess, and the sample

k −N is the state prediction, x̄k−N , used in arrival cost. At this point, the arrival cost

covariance matrix P is updated using the RiccatiUpdate(·) function, that is the Eq.

(2.36).

P = RiccatiUpdate (P, parameter_struct)

The objective function to be minimized is implemented as (4.2) and has the following

required inputs:

J = ObjectiveFunction (x, x_pred_k_N ,u,y_meas , parameter_struct ,P,type)

% Returns : objective function value

% Inputs :

% x -- The horizon vector of optimal state estimates

% x_pred_k_N -- The prediction vector of the states at time k-N

% u -- The horizon vector of control inputs

% y_meas -- The horizon vector of measured outputs

% parameter_struct -- The struct with parameters . For Linear MHE required

% parameters are the sytem matrices A, B, C, D and covariance

% matrices Q, R. For nonlinear MHE required parameters are

% all system parameters and covariance matrices Q and R.

% Other required parameters are: the sampling

% time ,Ts ,the horizon length , N, the number of states ,

% n, and the number of measurements , m.

Implementation 49

% P -- Estimate error covariance matrix

% type -- The string of type of the MHE , where ’L’ stands for

% linear and ’N’ stands for nonlinear MHE

Most of the in-built solvers in Matlab require that the objective function is passed

to the solver via a function handler. Hence, the solver iterates from an initial guess

towards the local minimum by repeatedly evaluating the objective function with new

sets of potentially optimal values to the optimization variables. The solution provided by

optimizer yields the sequence of the optimal state estimates x̂ = [x̂T
k−N , ..., x̂T

k]T , where

x̂T
k is the optimal state estimates for the time sample k.

4.1.3 In-built fmincon for Constrained Optimization

Based on the optimization problem at hand the optimizer that can handle multivariable

constrained programming problems is the fmincon function. fmincon is a nonlinear

programming solver that minimizes a problem of the following form [24]

min
x

f(x), subject to



c(x) ≤ 0,

ceq(x) = 0,

Ax ≤ b,

Aeqx = beq,

lb ≤ x ≤ ub,

(4.28)

where b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions

that return vectors, and f(x) is a function that returns a scalar. f(x), c(x), and ceq(x)

can be nonlinear functions. lb and ub can be passed as vectors or matrices. fmincon

has five algorithm options: interior-point, trust-region-reflective, sqp, sqp-legacy and

active-set. Matlab recommends to use the interior−point algorithm first. This is because

it handles large, sparse problems, as well as small dense problems. It is a large-scale1

algorithm. The next recommendation is to use sqp algorithm in order to obtain more

speed on small- or medium-size problems. Lastly, active-set should be tried if even

more speed is required. sqp-legacy is similar to sqp, but usually much slower and uses
1Large-scale algorithms use sparse linear algebra, which means that the algorithms do not need to

store or operate on full matrices. Instead, they use sparse matrices, which take up less memory and can
be computed more efficiently.

Implementation Chapter 4 Implementation

more memory, thus sqp-legacy will not be considered. Trust-region-reflective require a

pre-defined gradient of the objective function, therefore the algorithm will not be included

in this paper. Both sqp and active-set are very similar algorithms and are the variants of

SQP method presented in 3.2. Both algorithms uses a quasi-Newton method to iterate

toward a solution such that KKT condition holds. The Hessian is approximated using

BFGS update. The main differences between sqp and active-set algorithms are that sqp

only takes steps in the feasible region while active-set can take some steps outside the

feasible region. In addition, sqp uses some techniques to adjust the step length in case

an objective function return Nan, Inf or a complex value [25]. Fig. 4.3 shows a typical

fmincon optimization process.

Figure 4.3: Typical fmincon optimization process.

The Current Point subplot displays all optimization variables and their current values,

i.e., the optimal solution. The subplot Function Evaluation shows an overview of number

Implementation 51

of function evaluations at each iteration. The subplot Function value plots the objective

function value at each iteration. The decrease in the function value indicates a progress,

fmincon moves towards the local minimum. The subplot First-Order Optimality plots

first-order optimality value versus iteration. First-order optimality is a measure of how

close a point x is to optimal. This is a necessary but not a sufficient condition. This

means that the first-order optimality measure must be zero at a minimum, but a point

with first-optimality equal to zero is not necessarily a minimum [24]. The last subplot

plots the Newton step size at various iterations.

The fmincon function provides a set of global and algorithm-dependent options that

can be adjusted using optimoptions function. The user can adjust the maximum number

of function evaluations, maximum number of iterations, optimality tolerance, constraint

tolerance etc. Matlab also provides an option to compute the gradients of the objective

function and the constraints in parallel using Parallel Computing Toolbox for more

efficient processing.

4.1.4 Verification of LMHE

The implementation of the LMHE algorithm is verified by simulating the linearized

two-tank system without process or measurement noise. The sample time is set to 0.2s.

The test is conducted for all four cases described in 4.1.1. For comparison, the estimation

is performed both by LMHE and Kalman filter. Fig 4.4 illustrates the Case 1, i.e.,

estimation of h1 and h2, given the measurements of h1 and h2. The optimization for the

LMHE is solved using default sqp algorithm and the horizon length N = 10. Since the

two-tank process is simulated without noise, the covariance matrices for both the LMHE

and KF are set with small values:

Q = R =

10−12 0

0 10−12

 . (4.29)

The system is noise free, thus both the model and the measurement errors are weighted

equally. Both estimators gives good results2:

LMHE:

Estimation error mean h1: 4.45e -07

Estimation error mean h2: 3.43e -07

2The estimation error mean is calculated using the absolute value of the estimation error.

Implementation Chapter 4 Implementation

KF:

Estimation error mean h1: 9.14e -06

Estimation error mean h2: 1.09e -08

The mismatch between the estimators is small and varies in time, an example of estimation

error is illustrated in the enhanced sections of the plot.

Figure 4.4: LMHE Case 1: Estimation of h1 and h2 given the measurements of h1 and
h2. No process or measurement noise.

The same simulation is done for the Case 2, i.e., estimation of h1 and h2, given the

measurement h2. The results are shown in Fig. 4.5. In this case the model error

covariance matrices, Q, are adjusted to weigh the model error term in the objective

function more than the measurement error term. The first element in QMHE is decreased

more compared to the second element. This means that there is more confidence in the

model describing h1. The same approach is applied to the Kalman filter, but since MHE

uses the inverse of the Q and R in the objective function, the result is opposite, i.e., the

Implementation 53

first element in QKF is increased:

QMHE =

10−16 0

0 10−14

 , QKF =

10−10 0

0 10−12

 ,

RMHE = RKF = 10−12.

(4.30)

Figure 4.5: LMHE Case 2: Estimation of h1 and h2 given the measurement h2. No
process or measurement noise.

The estimation error mean has increased compared with Case 1, but it is still very low:

LMHE:

Estimation error mean h1: 4.46e -04

Estimation error mean h2: 6.80e -06

KF:

Estimation error mean h1: 4.02e -04

Estimation error mean h2: 5.46e -07

Implementation Chapter 4 Implementation

The performance of both estimators can be further improved by adjusting covariance

matrices to find the best match. The MHE have even more tuning parameters, such as

horizon length, the type of algorithm used and various algorithm related parameters.

The results for the Case 3, the estimation of h1, h2 and uP A001 given the measurements

h1 and h2, is shown in Fig. 4.6. In this case the covariance matrices to MHE are changed

to:

QMHE =


1 0 0

0 1 0

0 0 8 · 103

 , QKF =


10−12 0 0

0 10−12 0

0 0 10−8

 ,

RMHE =

1 0

0 1

 , RKF =

10−12 0

0 10−12

 .

(4.31)

Figure 4.6: LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. No process or measurement noise.

Implementation 55

During the testing of different combinations of weighting matrices it has been observed

that very small values results in oscillations. The estimator becomes very sensitive to the

choice of the weights. This can be due to extremely high values of the objective function.

The same proportion between QMHE and RMHE but multiplied with 1012 gives more

stable estimation. As for the Kalman filter, the response is similar in both cases, if the

proportion of the QKF and RKF is kept the same.

The model and the measurement errors, h1 and h2, are weighted equally, whereas the

element representing uP A001 in the model error covariance matrix is weighted less, i.e.,

the confidence that the disturbance uP A001 is constant is reduced.

The estimation error means for the LMHE and KF are the following

LMHE:

Estimation error mean h1: 1.55e -05

Estimation error mean h2: 1.46e -07

Estimation error mean u_PA001 : 3.05e -03

KF:

Estimation error mean h1: 4.44e -06

Estimation error mean h2: 4.53e -09

Estimation error mean u_PA001 : 1.96e -03

The search process of the model error covariance matrix is based on the trial-and-error

procedure. The stopping criterion is based on the desirable estimator performance. Fig.

4.7 illustrates the LMHE Case 3 estimation performance using different weights, the first

or third element in matrix QMHE is increased or decreased by factor 10.

By increasing Q1 (light blue curve), the confidence in the model describing h1 is reduced,

thus the measurement of h1 is trusted more. This results in more accurate estimate of

h2 but less accurate estimate of h1 and uP A001. Decreasing Q1 (green curve) results

in opposite performance, the accuracy of h1 and uP A001 estimates is improved and the

accuracy of h2 estimate is degraded. By decreasing Q3 (yellow curve) instead of increasing

Q1, the confidence that the disturbance uP A001 is constant is increased, thus compared

with the light blue curve the estimate of h1 is less accurate while the estimate of uP A001 is

improved. By decreasing the confidence that the disturbance uP A001 is constant (purple

curve) results in faster response and more accurate estimates. It is evident that the

choice of model error covariance matrix weights permits a trade-off between the accuracy

of estimating different states, allowing for prioritization based on their importance.

Implementation Chapter 4 Implementation

Figure 4.7: LMHE Case 3 estimation using different weights in the model covariance
matrix. The second element (representing h2) is kept constant, Q2 = 1.

The results for the Case 4, estimation of h1, h2 and uP A001 given the measurement h2,

are shown in Fig. 4.8. The covariance matrices are adjusted as fallows:

QMHE =


10−7 0 0

0 10−10 0

0 0 5 · 10−1

 , QKF =


10−6 0 0

0 10−12 0

0 0 10−2

 ,

RMHE = 10−10, RKF = 10−12.

(4.32)

The weights in Q are distributed such that the trust in h2 is highest while the trust in

uP A001 is lowest, i.e., the model describing h1 and h2 is trusted more than the assumption

that the disturbance uP A001 is a constant.

Implementation 57

Figure 4.8: LMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement h2.
No process or measurement noise.

The results are very good considering that only one measurement is used. The response

of MHE uP A001 is delayed by one sample and has a small overshoot, however, the error

mean for both the MHE and the KF is similar:

LMHE:

Estimation error mean h1: 6.45e -05

Estimation error mean h2: 5.04e -08

Estimation error mean u_PA001 : 4.53e -03

KF:

Estimation error mean h1: 2.68e -05

Estimation error mean h2: 2.02 -09

Estimation error mean u_PA001 : 2.97e -03

In general, the MHE and the KF estimator performances are good in all four cases. The

Kalman filter is more stable and less sensitive to the small changes in covariance matrices.

Implementation Chapter 4 Implementation

This is not the case for the MHE. In addition, there are many other parameters that

may improve or deteriorate the performance of the estimator. Thus, the tuning of MHE

can become quite a challenging and time consuming task.

4.2 Nonlinear Moving Horizon Estimation

4.2.1 Implementation

The NMHE algorithm implementation uses the same approach as LMHE presented in the

previous section. High-level NMHE algorithm is illustrated in Algorithm 4.2. The main

difference between linear and nonlinear moving horizon estimation is that for NMHE

the optimization problem is formulated using nonlinear differential equations. For the

nonlinear case, the arrival cost approximation and the first horizon estimation is done

using Extended Kalman filter. The implementation of EKF is according to equations

derived in Section 2.5.

The function Amatrix(·) in Algorithm 4.2 calculates the Jacobians to the state transition

matrix around the current state trajectory.

A = Amatrix (h1_0 , h2_0 , u_PA001_0 , u_LV001_0 , u_LV002_0 , parameter_struct)

The function returns discretized state transition matrix used to update the arrival cost

covariance matrix P .

4.2.2 Verification of NMHE

The implementation of the NMHE algorithm is verified the same way as the LMHE.

However, the two-tank system is simulated using nonlinear model and the estimator

performance is compared to the Extended Kalman filter rather than Kalman filter. In

addition, to be able to compare linear and nonlinear MHE results, the two tank system

is simulated around the same state trajectory, the optimization problem is solved by

default sqp algorithm and the horizon length N = 10.

Implementation 59

Algorithm 4.2 NMHE
Initialization: n, m, N, Ts, Q, R, P0, x0, u0
x← x0
Run parameters.m ▷ Parameters of the two-tank system
Determine the constraints: xlb, xub

Pre-allocation of horizons: x̂horizon, uhorizon, yhorizon

Pre-allocation of array for storage: Pk−N,arr

for k = 1 : t_length do
uhorizon ← [uhorizon(:, 2 : N), uk] ▷ Update horizons
yhorizon ← [uhorizon(:, 2 : N), yk]

if k ≤ N then ▷ MHE Initialization
[x̂k, P]← ExtendedKalmanFilter(·)
x̂horizon(k, :)← x̂k ▷ Update horizons
x← x̂k

Pk−N,arr(k)← P
end if
if k < N then

xpred,k ← NonlinearModel(·) ▷ Predict the state and update horizons
x̂horizon ← xpred,k

A← Amatrix(·) ▷ Linearization around current state trajectory
P ← RiccatiUpdate(·)
Pk−N,arr(k)← P
x̄k−N ← x̂horizon(:, 1)
Pk−N ← Pk−N,arr(k)
x̂∗

k ←minimize ObjectiveFunction(·) ▷ Nonlinear objective function
x̂horizon ← x̂∗

k
end if

end for

The covariance matrices for the NMHE and EKF for the Case 1 is set to:

Q = R =

10−12 0

0 10−12

 . (4.33)

Since the system is simulated without noise, the model and measurement error covariance

matrices are weighted equally. The results are very similar to the LMHE and KF:

NMHE:

Estimation error mean h1: 8.13e -07

Estimation error mean h2: 7.05e -07

EKF:

Estimation error mean h1: 8.24e -06

Estimation error mean h2: 9.02e -09

The figure illustrating the Case 1 simulation is available in Appendix B, Fig. B.1.

Implementation Chapter 4 Implementation

In the Case 2, to achieve at least the same accuracy as for the LMHE, the covariance

matrices for the NMHE and EKF are modified as follows:

QMHE =

10−1 0

0 105

 , QEKF =

10−9 0

0 10−12

 ,

RMHE = 1, REKF = 10−12.

(4.34)

The search process of the model error covariance matrix is based on the trial-and-error

approach. The NMHE has a slightly lower h2 estimation error mean compared with the

LMHE:

NMHE:

Estimation error mean h1: 2.67e -04

Estimation error mean h2: 1.05e -08

EKF:

Estimation error mean h1: 2.06e -04

Estimation error mean h2: 2.13e -07

The EKF performance in the Case 2 is identical to the KF. The results are available in

Appendix B, Fig. B.2.

During the testing it has been observed that too small values of the elements in the

covariance matrices or highly unbalanced covariance matrices3 results in a singular arrival

cost covariance matrix, P , i.e., P is not invertible. This yields the EKF and the NMHE

since both estimators are using the same covariance matrix update technique. The cause

of the matrix P becoming singular can be attributed to the limitations of the linearization

approximation used in the EKF. The Kalman filter, on the other hand, assumes linearity

and can analytically propagate uncertainty through the linear system equations, thus

always produce a non-singular matrix P . The results for the Case 3 are shown in Fig.

4.9. In this case to find a good match of covariance matrices is a more challenging task

due to the matrix P issue. The best results are achieved using the following:

QMHE =


102 0 0

0 1 0

0 0 5 · 10−2

 , QEKF =


102 0 0

0 1 0

0 0 1

 ,

RMHE =

1 0

0 1

 , REKF =

1 0

0 1

 .

(4.35)

3One of the elements in the matrix is very high/low compared to the other elements.

Implementation 61

As seen in the Fig. 4.9, the EKF has a slower response to estimate the first change in

the uP A001 than the NMHE. However, the response of the second and third change is

almost as fast as the NMHE. This can occur due to the covariance matrix P requiring

more iterations to converge. The estimation error means in the Case 3 are:

NMHE:

Estimation error mean h1: 3.95e -07

Estimation error mean h2: 4.29e -08

Estimation error mean u_PA001 : 2.74e -03

EKF:

Estimation error mean h1: 8.50e -07

Estimation error mean h2: 1.69e -09

Estimation error mean u_PA001 : 7.70e -03

Figure 4.9: NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. No process or measurement noise.

Implementation Chapter 4 Implementation

After trying many different combinations of the covariance matrices for the Case 4, the

estimation of uP A001 by the EKF could not be improved. The results are shown in Fig.

4.10. Many experiments resulted in singular covariance matrix, P , or estimates were

unstable (oscillating).

Figure 4.10: NMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement
h2. No process or measurement noise.

The NMHE and EKF requires 2 samples to detect the change in uP A001 and h1, but in

general, the overall response is good. The covariance matrices used for the Case 4 are:

QMHE =


10−5 0 0

0 10−10 0

0 0 10−8

 , QEKF =


103 0 0

0 10−12 0

0 0 4


RMHE = 10−10, REKF = 10−12,

(4.36)

Implementation 63

and the resulting estimation error means are:

NMHE:

Estimation error mean h1: 7.33e -05

Estimation error mean h2: 4.67e -08

Estimation error mean u_PA001 : 4.97e -03

EKF:

Estimation error mean h1: 4.54e -04

Estimation error mean h2: 4.876e -17

Estimation error mean u_PA001 : 1.68e -02

4.3 Simulink Implementation

The real two-tank plant is operated based on a Simulink interface. Thus, in order to

test the moving horizon estimation in real time requires a Simulink model. The MHE

implementation is built on the Simulink model, totank1_motivasjon.slx, provided in

the course ELE320 Reguleringsteknikk [2]. The model includes the required interface

building blocks to interact with the plant. The control inputs to the valves and the pump

can be controlled manually by the user. The upgraded Simulink model is illustrated in

Fig. 4.11 and Fig. 4.12. The implementation of MHE is done using the Interpreted

Figure 4.11: Simulink model for the two-tank system with LMHE and NMHE.

Implementation Chapter 4 Implementation

Figure 4.12: Simulink implementation of LMHE and NMHE.

Matlab Function building block. This building block applies a user-defined Matlab

function to the input for evaluation. One limitation of the Interpreted Matlab Function

block is its incompatibility with multivariable signals. As a result, it can only process

1D vectors as inputs and return 1D vectors as outputs. Therefore, LMHE and NMHE

algorithms, presented in the previous sections, are slightly modified and converted to the

Matlab functions, LMHE_simulink.m and NMHE_simulink.m. The input signals,

such as the measurements, and the control inputs are stacked to 1D vector using a Mux

block, analogously, the signal unpacking is done by Demux block. The MHE functions

requires a time index as one of the inputs. The time index is used to initialize MHE,

i.e., to estimate the first horizon, and to store/retrieve the arrival cost covariance matrix.

The time is counted using the Free-Running Counter block.

Prior to the simulation, the simulink model has to be initialized with the respective

init file, namely, LMHE_Simulink_init.m or NMHE_Simulink_init.m. Initialized

horizons and other parameters are, therefore, stored in the base workspace. However,

the simulink variables, the measurements, control inputs and the MHE function outputs,

are stored in the model workspace. In addition to the input variables from Simulink

model the LMHE/NMHE function requires the horizons of the previous measurement

and control input samples to calculate the current state estimates. The Matlab functions

are using local/temporary workspace to perform calculations, thus, the variables in the

base workspace are not directly accessible by the function. This is solved with evalin()

and assignin() functions.

Implementation 65

function [output] = LMHE_simulink (input)

...

parameter_struct = evalin (’base ’,’ parameter_struct ’);

h1_meas_horizon = evalin (’base ’,’ h1_meas_horizon ’);

h2_meas_horizon = evalin (’base ’,’ h2_meas_horizon ’);

h1_hat_horizon = evalin (’base ’,’ h1_hat_horizon ’);

h2_hat_horizon = evalin (’base ’,’ h2_hat_horizon ’);

u_PA001_hat_horizon = evalin (’base ’,’ u_PA001_hat_horizon ’);

x_hat_horizon = evalin (’base ’,’ x_hat_horizon ’);

P_k_N_arr = evalin (’base ’,’P_k_N_arr ’);

P_previous = evalin (’base ’,’ P_previous ’);

x_pred_k_N = evalin (’base ’,’ x_pred_k_N ’);

u_horizon = evalin (’base ’,’u_horizon ’);

...

assignin (’base ’,’ h1_hat_horizon ’, h1_hat_horizon);

assignin (’base ’,’ h2_hat_horizon ’, h2_hat_horizon);

assignin (’base ’,’ u_PA001_hat_horizon ’, u_PA001_hat_horizon);

assignin (’base ’,’ h1_meas_horizon ’, h1_meas_horizon);

assignin (’base ’,’ h2_meas_horizon ’, h2_meas_horizon);

assignin (’base ’,’ x_hat_horizon ’, x_hat_horizon);

assignin (’base ’,’u_horizon ’, u_horizon);

assignin (’base ’,’ P_previous ’, P_previous);

assignin (’base ’,’P_k_N_arr ’, P_k_N_arr);

assignin (’base ’,’ x_pred_k_N ’, x_pred_k_N);

The evalin() is used to retrieve the parameters and current horizons from the base

workspace, while assignin() is used to update the horizons for the next time step.

Complete overview of Matlab code is available in Appendix C.

Chapter 5

Results

Chapter 4 presented the practical implementation and verification of the LMHE and

NMHE estimators. In this chapter, Section 5.1 analyze and discuss the LMHE and

NMHE results in different scenarios obtained in the simulation environment whereas

Section 5.2 provides evaluation of the estimation results using real two-tank data. Section

5.3 presents experimental results of combining the Model Predictive Control and Moving

Horizon Estimation.

5.1 Simulation Environment

To explore the performance of the estimators, the two-tank system is simulated with

measurement noise. The noise is generated as normally distributed random numbers with

variance σ2 = 10−9 and σ2 = 10−6. The same test is carried out for all four different cases.

The search process of the model error covariance matrices in different scenarios is based

on the trial-and-error procedure presented in the previous section. The performances of

the LMHE and NMHE are compared with the KF and EKF respectively.

5.1.1 LMHE

Fig. 5.1 illustrates the Case 3, the estimation of h1, h2 and uP A001, given noisy mea-

surements of h1 and h2. The optimization for the LMHE is solved using default sqp

algorithm and the horizon length N = 10. The covariance matrices for the LMHE and

67

Results Chapter 5 Results

KF are set to:

QMHE =


10−9 0 0

0 1 0

0 0 10−5

 , QKF =


1 0 0

0 1 0

0 0 104

 ,

RMHE = RKF =

10−9 0

0 10−9

 .

(5.1)

Figure 5.1: LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−9.

The results are quite good, however, the performance of the KF is better. The estimates

are more smooth and accurate. The resulted estimation error means are:

Results 69

LMHE:

Estimation error mean h1: 2.96e -06

Estimation error mean h2: 6.01e -07

Estimation error mean u_PA001 : 3.94e -03

KF:

Estimation error mean h1: 2.19e -14

Estimation error mean h2: 3.49e -14

Estimation error mean u_PA001 : 3.30e -03

By adjusting1 the fmincon parameters, OptimalityTolerance and StepTolerence, the

spikes seen in uP A001 estimate, Fig. 5.1, can be reduced but not eliminated, thus there is

no significant improvement when it comes to reducing the estimation errors. In general,

setting small tolerances does not always result in more accurate results. Instead, the

fmincon can fail to recognize when it has converged [25].

Nevertheless, the LMHE performance is improved by solving the optimization problem

with interior-point algorithm instead of sqp. The estimate of uP A001 is more smooth and

estimation errors are reduced:

LMHE:

Estimation error mean h1: 2.20e -06

Estimation error mean h2: 1.06e -08

Estimation error mean u_PA001 : 3.38e -03

The same improvement is also achieved by reducing the horizon length to N = 5.

Theoretically, the larger N , the more accurate estimation can be expected. However, the

larger number of variables, can lead to a point where the optimization problem becomes

infeasible or hard to solve. In this case, for the horizon length N = 10 and three state

variables, the optimization problem is minimized subject to 30 variables. The additional

Case 3 results can be found in Appendix B, Section B.2.1.

The Case 4 results are suboptimal compared to the Case 3, these are presented in Fig.

5.2. The optimization problem of LMHE is solved using sqp algorithm, the horizon

length N = 10, and tolerance parameters set to 10−10. The best possible outcome is

given by the following covariance matrices:

1For both parameters the default value 10−6 is set to 10−10.

Results Chapter 5 Results

QMHE =


10−2 0 0

0 10−8 0

0 0 10−2

 , QKF =


10−7 0 0

0 10−9 0

0 0 10−9

 ,

RMHE = RKF =

10−9 0

0 10−9

 .

(5.2)

Figure 5.2: LMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement h2.
Simulated measurement noise, σ2 = 10−9.

LMHE:

Estimation error mean h1: 1.26e -02

Estimation error mean h2: 7.18e -07

Estimation error mean u_PA001 : 2.75e -02

KF:

Estimation error mean h1: 7.78e -03

Estimation error mean h2: 1.45e -05

Estimation error mean u_PA001 : 4.20e -02

Results 71

As seen in the figure, the LMHE estimate of uP A001 is noisy. The response times for

both estimators are slow, yet the LMHE is faster than the KF. The estimation of h1 is

better but not as good as in the Case 3. The KF has a bias and slow response, this can

be observed in the time interval [30s, 35s].

As presented in Section 4.1.4, the performance of both estimators is great when the

system is noise free. However, relative small amount of measurement noise has a big

impact to the estimates. The fact that both the LMHE and KF performs poorly, indicates

that the problem may lie in the two-tank system rather than the estimator. As discussed

in Section 4.1.1, the observability of uP A001 in the Case 4 is low. In this particular

operating point, the eigenvectors and eigenvalues of the observability Grammian are

λ1 = 0.13 · 10−3, λ2 = 1, λ3 = 0.5 · 10−6,

e1 =


−0.99

−0.1 · 10−3

0.19 · 10−2

 , e2 =


0.10 · 10−3

−0.99 · 10−3

−0.61 · 10−7

 , e3 =


0.19 · 10−2

0.13 · 10−6

0.99

 ,
(5.3)

where λ3 corresponds to uP A001. Low observability means that information or character-

istics of the state is not fully captured or reflected in the measurements. Hence, increased

uncertainty due to the measurement noise in addition to low observability of the state

may result in a poor estimate.

However, it has been observed that lower sampling rate results in less noisy estimates.

This can be due to the fact that the change in the state when sampled less frequently is

bigger. The change in the state variable compared to the measurement noise is more

"obvious" for the optimizer resulting in more accurate estimates. The example of the

same simulation presented in the Fig. 5.2 where the sampling time is increased from

0.2s to 0.5s is shown in Fig. 5.3. The response time have not changed, but the LMHE

estimates are less noisy.

The results for the LMHE Case 1 and Case 2 simulations are available in Appendix B,

Section B.2.1.

Results Chapter 5 Results

Figure 5.3: LMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement h2.
Simulated measurement noise, σ2 = 10−9. Sample time increased to 0.5s.

5.1.2 NMHE

The NMHE and EKF results for the Case 3 are presented in Fig. 5.4. The optimization

problem of NMHE is solved with sqp algorithm and the horizon length N = 10. The

covariance matrices used are the following:

QMHE =


10−2 0 0

0 10−2 0

0 0 10−4

 , QEKF =


6 · 101 0 0

0 1 0

0 0 1

 ,

RMHE = REKF =

10−9 0

0 10−9

 .

(5.4)

NMHE:

Estimation error mean h1: 4.80e -07

Estimation error mean h2: 5.64e -07

Estimation error mean u_PA001 : 1.08e -02

EKF:

Estimation error mean h1: 1.55e -15

Estimation error mean h2: 3.48e -14

Estimation error mean u_PA001 : 5.68e -03

The results of the NMHE estimates, h1 and h2, are good but the estimate of uP A001 is

noisy. The EKF estimate, on the other hand, is more accurate but has a slower response

time. Therefore, additional experiments were conducted to investigate if the NMHE

performance can be improved. Instead of the sqp algorithm the optimization problem

is tried to be solved using interior-point algorithm. However, the interior-point fails in

Results 73

Figure 5.4: NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement h1
and h2. Simulated measurement noise, σ2 = 10−9.

estimating uP A001, which is estimated as being constant during the whole simulation time.

The active-set algorithm, on the other hand, behaves better than sqp. The resulting

estimation error mean is reduced and uP A001 estimate has smaller peaks. These results

can be found in Appendix B, Fig. B.10. In addition, as for the LMHE, the estimator

performance is improved by reducing the horizon length N . Despite the fact that the

above mentioned approaches gives better results than presented in the Fig. 5.4, the

estimation of uP A001 is noisy.

The NMHE is a nonlinear estimator, unlike the LMHE or EKF. Thus, the objective

function that is to be minimized is nonlinear. The oscillation seen in uP A001 estimate can

be due to the fact that the optimization problem when introducing measurement noise is

nonconvex. The fmincon function is a local minimizer, therefore, for the optimization

problems with possibly multiple minima, fmincon may fail to find global minima.

Results Chapter 5 Results

During the testing it has also been observed that, even though, estimation performance

of the EKF is good, i.e., the weighting matrices are correctly chosen, suddenly the EKF

can fail. This happens when the system reach some specific operating point where the

error of linear approximation is big enough to result in sudden estimation performance

change and the covariance matrix, P , becoming singular. Fig. 5.5 shows an example

where the EKF suddenly fails. This is the same simulation as in Figure 5.4, but the first

element in QEKF is 10 instead of 60. The response time of the uP A001 estimate is much

faster than presented in the Fig. 5.4 but the estimator becomes unstable and fails at

time 25s.

Figure 5.5: EKF Case 3: Estimation of h1, h2 and uP A001 given the measurement h1
and h2. Simulated measurement noise, σ2 = 10−9.

Global Optimization

Matlab provides several global optimization based solvers such as MultiStart, GlobalSearch,

PatternSearch, ga and simulannealbnd.

The MultiStart and GlobalSearch are gradient-based global optimization solvers. Both

methods employ a local solver, such as fmincon, to find a local minimum for given

starting points. The MultiStart, in addition to user-supplied starting point, generates

a set of uniformly distributed starting points within the bounds. These are evaluated

by a local solver. The algorithm returns the best value as a global minimum. The

GlobalSearch method is more complicated. The starting points are generated using a

scatter-search mechanism. The algorithm tries to determine in advance if the trial points

will result in improvement. These are evaluated using score functions, thus only the

starting points with highest score are passed to a local solver [26].

simulannealbnd performs a random search. Simulated annealing is a stochastic opti-

mization method inspired by annealing process, i.e., a heat treatment process used to

Results 75

alter the properties of a material by heating it to a specific temperature and then slowly

cooling it [26].

Ga, genetic algorithms, are inspired by the process of natural selection. The objective

function is interpreted as a measure of fitness and each point as the genes of an individual.

At each iteration, randomly selected individuals, called parents, are used to create a

new generation of individuals, called children. Thus, the method generates better points

iteratively.

PatternSearch method, also called direct search algorithm, polls a number of neighboring

points by computing their objective function values and evaluating them to determine

which direction to search for even lower objective fnction values. PatternSearch algorithm

is not using derivatives, thus it is very useful if the objective function is not differentiable.

Fig. 5.6 illustrates the Case 3 uP A001 estimation results obtained by fmincon using sqp

algorithm (as in 5.4) and global optimization methods: Multistart, GlobalSearch and

PatternSearch. Multistart and GlobalSearch uses fmincon (sqp algorithm) as a local

solver. The number of starting points to MultiStart is set to 5.

Figure 5.6: NMHE Case 3: uP A001 estimation using global optimization methods.
Simulated measurement noise, σ2 = 10−9.

Results Chapter 5 Results

The improvement by using global optimization solvers is obvious. All three global

optimization methods have very similar results, indicating that resulting estimates are

globally optimal solutions. Small deviations may be caused by different tolerances within

the algorithms. As discussed in Section 3.2, the accuracy of the global optimization

techniques comes with a cost, i.e., computational efficiency. The time consumption for

different methods is discussed in more detail in Section 5.1.3.

The Case 4 for the NMHE is simulated with increased sampling time, i.e., 0.5s instead of

0.2s. The results are presented in Fig. 5.7. As mentioned in Section 5.1.1, the estimation

improves with higher sampling time. Due to the measurement noise, low observability of

uP A001 and nonconvex objective function the NMHE fails when sampling time is 0.2s.

Figure 5.7: NMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement
h2. Simulated measurement noise, σ2 = 10−9. Sample time increased to 0.5s.

Results 77

The covariance matrices for the NMHE and EKF are set to:

QMHE =


10−6 0 0

0 2 · 10−7 0

0 0 10−10

 , QEKF =


104 0 0

0 1 0

0 0 101

 ,

RMHE = RKF = 10−9.

(5.5)

The estimation error means are very similar to the LMHE and KF:

NMHE:

Estimation error mean h1: 4.27e -03

Estimation error mean h2: 3.24e -07

Estimation error mean u_PA001 : 3.07e -02

EKF:

Estimation error mean h1: 4.37e -03

Estimation error mean h2: 1.25e -14

Estimation error mean u_PA001 : 4.50e -02

The results for the NMHE Case 1 and Case 2 simulations are available in Appendix B,

Section B.2.2.

5.1.3 MHE Efficiency

In general, the MHE is a computationally expensive and time-consuming estimation

technique, especially for large-scale systems. This is due to the computational complexity

of solving the optimization problem. The time required to perform the estimation

can be critical in many applications, particularly in real-time systems. The MHE is

often considered in systems where the computational time is negligible compared to the

sample time. However, all systems are limited to critical minimum sampling time that is

determined by the system dynamics and desirable closed-loop stability. Too low sampling

frequency may result in poor system performance and even instability. Therefore, some

testing is done to investigate the efficiency of the estimators. The results of time usage

are reported in Tables 5.1 and 5.2. Figures 5.8 and 5.9 illustrate how different algorithms

and different choices of horizon lengths impact the LMHE accuracy.

The process time may vary enormously depending on what hardware is used. Since

fmincon provides parallel pooling for faster and more efficient processing, the tests have

been conducted on two different PC’s for comparison:

Results Chapter 5 Results

• PC-1: HP Pavilion Notebook, Intel(R) Core(TM) i5-6200U, 2.4GHz, 8GB RAM,

2 cores.

• PC-2: Dell XPS 15 9500, Intel(R) Core(TM) i7-10750H, 2.6GHz, 16GB RAM, 6

cores.

The PC-1 is used in most of the simulation because it has similar hardware to the PC

utilized in the two-tank system.

LMHE Case 3 with
measurement noise,

N = 10

Average
internal

alg. iterations

Average time
usage per
sample, [s]

Max. time
usage per
sample, [s]

interior-point algorithm, PC-1 83.0 1.18 3.39
active-set algorithm, PC-1 60.0 1.79 3.49
sqp algorithm, PC-1 65.5 0.74 2.46
sqp algorithm, PC-2 65.5 0.34 2.06
sqp algorithm,
reduced tolerances, PC-1 65.7 0.87 2.25

sqp algorithm,
parallel pooling, PC-1 65.5 3.77 8.86

sqp algorithm,
parallel pooling, PC-2 65.5 2.46 3.45

KF, PC-1 1 9.8 · 10−5 3.9 · 10−3

sqp algorithm, N = 5, PC-1 45.8 0.20 1.74
sqp algorithm, N = 10, PC-1 65.5 0.74 2.46
sqp algorithm, N = 15, PC-1 72.6 1.44 3.06
sqp algorithm, N = 20, PC-1 74.9 2.64 7.31

Table 5.1: Time usage of the LMHE using different algorithms, parameters and horizon
lengths.

NMHE Case 3 with
measurement noise,

N = 10

Average time
usage

per sample, [s]

Max. time
usage

per sample, [s]
sqp algorithm 1.65 3.54
MultiStart method
using sqp algorithm 10.8 28.2

MultiStart method
using sqp algorithm,
parallel pooling

9.69 63.2

GlobalSearch method
using sqp algorithm 6.0 9.6

PatternSearch method 3.30 8.61
EKF 6.9 · 10−4 1.9 · 10−2

Table 5.2: PC-1 time usage of the NMHE using different methods.

Results 79

Based on the results presented in the Table 5.1 and Figures 5.8 and 5.9, the Active-set

algorithm provides the highest accuracy but is the most time-consuming, whereas the

sqp algorithm is the most efficient. When it comes to horizon length, considering the

process time versus the accuracy it seems that the horizon length between N = 5 and

N = 10 is the best choice. It is also worth noting that the process time of NMHE using

sqp algorithm is two times higher than LMHE.

The global optimization methods introduced in the previous section are more accurate

than fmincon, as seen in Fig. 5.6, yet at the cost of processing time. Compared with

fmincon the global optimization methods are approximately 6− 10 times slower. The

exception is the PatternSearch method that is approximately three times slower.

Figure 5.8: Absolute values of the estimation error variations using sqp, sqp with
reduced tolerances, active-set and interior-point algorithms. The active-set performace

is equal to interior-point, therefore invisible.

Results Chapter 5 Results

The results of parallel pooling are unexpected. The processing time using parallel pooling

is extremely higher than serial processing. Doing some research on the topic it turns out,

that this is often the case, mainly for two reasons [27]:

• Communications overhead - the data transfer to the separate processes for each

worker and back to the client. Hence, if the amount of work performed during

each iteration of the parallel loop is insufficient, the overhead of communication

outweighs any benefits gained from parallel processing.

• When dealing with sufficiently large matrices Matlab utilizes high-performance

multi-threaded libraries that utilize all available cores. However, when running

parallel pooling, each worker is allocated only one core. As a result, although

the same multi-threaded libraries are called, all the computations are performed

sequentially, and thus, incurring the overhead of setting up the library calls.

Figure 5.9: Absolute values of the estimation error variations for the horizon length
N = 5, N = 10, N = 15 and N = 20.

Results 81

Sampling Time for the Two-tank System

A general rule of thumb when choosing the sampling time for a system, is to set the

sampling time to be at least 10 times faster than the fastest dynamics of the system.

This ensures that the sampling rate is sufficiently fast to capture the dynamics of the

system. The easiest way to determine the time constants to the two-tank system is by

determining the eigenvalues of the linearized state-space model. The corresponding time

constants can be approximated using

τi = − 1
λi

. (5.6)

The other way to determine the time constants is by finding the transfer functions to

each tank:

Hp(s) = y(s)
u(s) ⇒ Hp,1(s) = ∆h1(s)

∆uLV 001(s) , Hp,2(s) = ∆h2(s)
∆uLV 002(s) ,

Hv(s) = y(s)
v(s) ⇒ Hv,1(s) = ∆h1(s)

∆uP A001(s) , Hp,2(s) = ∆h2(s)
∆uLV 001(s) .

(5.7)

where Hp,i is the process transfer function and Hv,i is the disturbance transfer function

to the tank number i. The approximated Laplace transfer functions can be obtained

by bringing the system to the desired operating point and simulating a step at the

input. The time constant can be determined by measuring the point in the resulting

step response where the output reaches 63% of the total change. The operating point

uP A001 = 0.8, h1 = 0.5, h2 = 0.2 ⇒ uLV 001 = 0.531, uLV 002 = 0.568 gives the following

time constants [s]:
τp,1 = 43.4, τv,1 = 43.4,

τp,2 = 65, τv,2 = 52.3.
(5.8)

Thus the tank 1 represents the fastest dynamics within the system. According to the

rule of thumb the sampling time has to be at most ≈ 4s. However, the time constants

will vary depending on the operating point, hence the sampling time should be chosen

accordingly. Based on the MHE time consumption in Case 3, i.e., 3 state variables, the

sqp algorithm with the horizon length up to N = 15 for the LMHE, and N = 10 for the

NMHE is the best fit.

The simulation results with more realistic measurement noise, σ2 = 10−6, are available

in Appendix B, Section B.2.3. The measurement noise in the real two-tank system lies

Results Chapter 5 Results

in range of σ2 = 10−6, thus the simulation results are very similar to the real data

estimation. Therefore, the discussion is covered in Section, 5.2.

5.2 Real Data Estimation

Since the two-tank system is a slow process most of the testing is performed offline.

Evaluation of different estimators in different cases is done using two datasets, namely,

data1.mat and data2.mat. In both datasets the two-tank process is running at the same

operating point. Dataset 1 has a 0.1 step in uP A001, the valve openings remain constant

at all times. Dataset 2, on the other hand, has a 0.15 step in uP A001 and multiple steps

in the valve openings. Data is sampled every 1.05s. Dataset 1 is used to evaluate the

LMHE and KF, and the NMHE and EKF individually while dataset 2 is used to compare

linear and nonlinear model based estimators.

The measurement noise covariance matrix R is determined using training data, data3.mat.

The dataset has 2838 samples and is illustrated in Fig. 5.10.

Figure 5.10: Training dataset used to determine measurement noise covariance matrix.
Dataset data3.mat.

Results 83

Resulting variances for h1 and h2 measurements are:

σ2
h1 = 2.8 · 10−6, σ2

h2 = 1.6 · 10−6. (5.9)

To determine the model error to the actual two-tank system is quite a challenging task.

Hence, real data estimation is done using the covariance matrices, obtained via the

trial-and-error procedure in simulation environment.

LMHE

Fig. 5.11 illustrates the Case 2. The water levels, h1 and h2, are estimated using the

measurement of h2. The optimization problem for LMHE is solved with sqp algorithm

and the horizon length N = 10.

Figure 5.11: LMHE Case 2: Estimation of h1 and h2 given the measurement h2. Dataset
data1.mat.

Results Chapter 5 Results

The covariance matrices are set to:

QMHE =

9 · 10−1 0

0 1

 , QKF =

101 0

0 1

 ,

RMHE = RKF = 1.6 · 10−6.

(5.10)

The LMHE and KF give good results. The LMHE estimate of h1 is slightly better than

the KF, yet the estimate of h2 is less accurate than the KF:

LMHE:

Estimation error mean h1: 2.27e -03

Estimation error mean h2: 2.49e -06

KF:

Estimation error mean h1: 4.27e -03

Estimation error mean h2: 2.32e -09

The Case 3 results for the LMHE and KF are presented in Fig. 5.12.

Figure 5.12: LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Dataset data1.mat.

Results 85

The covariance matrices used, are the following:

QMHE =


10−6 0 0

0 10−1 0

0 0 10−4

 , QKF =


1 0 0

0 1 0

0 0 107

 ,

RMHE = RKF =

2.8 · 10−6 0

0 1.6 · 10−6

 .

(5.11)

The choice of covariance matrix Q in the LMHE depends on desired response. Reduced

diagonal elements, e.g., [10−7, 10−1, 10−5] results in slower but more accurate uP A001

estimate but at the cost of h1 accuracy. However, increased values give faster response

time and more noisy estimate of uP A001 where h1 accuracy is improved. The KF, on the

other hand, is less responsive to the tuning. The overall performance is good for both

estimators. However, the LMHE is better in estimating uP A001, the accuracy of h1 and

h2 is a bit lower than the KF, but still very high:

LMHE:

Estimation error mean h1: 5.95e -04

Estimation error mean h2: 4.61e -08

Estimation error mean u_PA001 : 9.01e -03

KF:

Estimation error mean h1: 5.86e -13

Estimation error mean h2: 2.34e -09

Estimation error mean u_PA001 : 2.06e -02

Since the measurement noise in the real-two tank system is much higher than presented

in the previous section, the Case 4 estimation, Fig. 5.13, is worse compared with the

results in the Fig. 5.1. The covariance matrices

QMHE =


10−5 0 0

0 10−7 0

0 0 10−4

 , QKF =


10−4 0 0

0 10−6 0

0 0 10−3

 ,

RMHE = RKF = 1.6 · 10−6

(5.12)

gave the following estimation error means:

LMHE:

Estimation error mean h1: 1.43e -02

Estimation error mean h2: 8.37e -04

Estimation error mean u_PA001 : 2.69e -02

KF:

Results Chapter 5 Results

Estimation error mean h1: 1.56e -02

Estimation error mean h2: 5.09e -04

Estimation error mean u_PA001 : 2.90e -02

Figure 5.13: LMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement
h2. Dataset data1.mat.

The resulting estimation of both the LMHE and KF is rough. The LMHE estimates are

smoother version of the KF estimates. Both estimators manage to detect the change in

uP A001, but the response is slow and noisy.

The results for the Case 1 are available in Appendix B, Section B.3.1. The performance

of both estimators is good. The estimation error means for the LMHE and KF are very

similar.

Results 87

NMHE

The results of the NMHE and EKF in the Case 2 are presented in Fig. 5.14. The

optimization problem of NMHE is solved with sqp algorithm and the horizon length

N = 10.

Figure 5.14: NMHE Case 2: Estimation of h1 and h2 given the measurement h2.
Dataset data1.mat.

The covariance matrices used are:

QMHE =

9 · 102 0

0 106

 , QEKF =

10−1 0

0 102

 ,

RMHE = REKF = 1.6−6.

(5.13)

The NMHE and EKF results are very similar to the LMHE and KF:

Results Chapter 5 Results

NMHE:

Estimation error mean h1: 3.49e -03

Estimation error mean h2: 6.95e -09

EKF:

Estimation error mean h1: 3.37e -03

Estimation error mean h2: 2.34e -11

The estimation error seen in time interval [90s− 120s] can be caused by slightly different

process noise in this particular operating point. This can be an indicator that the process

noise to the two-tank system vary and is operating point dependent.

The results for the Case 3 are shown in Fig. 5.16. The covariance matrices are adjusted

as follows:

QMHE =


101 0 0

0 101 0

0 0 10−5

 , QEKF =


102 0 0

0 1 0

0 0 10−1

 ,

RMHE = REKF =

2.8−6 0

0 1.6−6


(5.14)

The performance of both estimators are similar, yet the NMHE estimate of uP A001 is

less noisy:

NMHE:

Estimation error mean h1: 7.05e -09

Estimation error mean h2: 6.715e -09

Estimation error mean u_PA001 : 1.15e -02

EKF:

Estimation error mean h1: 5.295e -11

Estimation error mean h2: 2.345e -09

Estimation error mean u_PA001 : 1.53e -02

The video of the NMHE Case 3 estimation showcasing internal optimization process is

available here:

Figure 5.15: https://youtu.be/AeMlxtVhUqw

https://youtu.be/AeMlxtVhUqw

Results 89

Figure 5.16: NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Dataset data1.mat.

As for the Case 4, the performance of the NMHE is worse than the LMHE. The estimates

are very noisy. In contrast to LMHE, NMHE introduces additional complexity associated

with nonconvexity, along with the uncertainties arising from measurement noise and low

observability. This may be the cause of poor performance. The EKF is also unstable.

The Case 1 results are available in Appendix B, Section B.3.2.

The performance comparison of all four estimators using data2.mat is presented in Fig.

5.17 the Case 2, and Fig. 5.18 the Case 3. In addition, estimation error means are

reported in Table 5.3. Both the LMHE and NMHE are using the default sqp algorithm

and the horizon length N = 10. The covariance matrices are the same ones used while

testing data1.mat.

Results Chapter 5 Results

It is evident from the Fig. 5.17 that the NMHE and EKF is more accurate in estimating

h1. Higher estimation error for the LMHE and KF is due to linearization errors. The

total change in control input signals results in deviation from the original operating

point. The deviation from the original operating point is the biggest at time interval

[95s − 120s] as the LMHE and KF estimation error. The LMHE is slightly better in

compensating for the linearization error than the KF.

Figure 5.17: Case 2: Estimation of h1 and h2 given the measurement h2. Dataset
data2.mat.

In the Case 3, the Fig. 5.18, the NMHE has the most accurate estimate of uP A001 but

also the slowest response time. In addition, the NMHE is the best in estimating the new

position of uP A001. The LMHE has a small deviation. This indicates the tendency of

increased linearization error. In case of higher step than 0.15 would result in even bigger

error. The estimate of EKF and KF, as seen in previous experiments, is more noisy than

Results 91

moving horizon estimators. However, both keeps low estimation error means on h1 and

h2 estimates.

Figure 5.18: Case 3: Estimation of h1, h2 and uP A001 given the measurements h1 and
h2. Dataset data2.mat.

Case Estimator/
State NMHE EKF LMHE KF

Case 1 h1 2.08 · 10−8 4.55 · 10−9 8.87 · 10−9 4.86 · 10−9

h2 1.58 · 10−8 3.31 · 10−9 6.88 · 10−9 3.58 · 10−9

Case 2 h1 6.19 · 10−3 6.70 · 10−3 2.74 · 10−2 3.24 · 10−2

h2 4.78 · 10−6 3.28 · 10−11 6.94 · 10−9 3.33 · 10−9

Case 3
h1 1.19 · 10−8 6.41 · 10−11 6.66 · 10−4 3.23 · 10−12

h2 1.81 · 10−8 3.31 · 10−9 6.34 · 10−8 3.58 · 10−9

uP A001 1.50 · 10−2 1.87 · 10−2 1.38 · 10−2 2.54 · 10−2

Table 5.3: Estimation error means for the NMHE, EKF, LMHE and KF in Case 1, 2
and 3. Dataset data2.mat

Results Chapter 5 Results

The estimation of Case 1 using data2.mat is equally good for both the LMHE and

KF, and the NMHE and EKF. Since both measurements are present, the confidence in

measurements are high, resulting in low process noise related errors. The estimation

errors lies in the range of 10−9, see Table 5.3. The Case 1 results can be found in

Appendix B, Fig. B.23.

As mentioned earlier, the real data estimation is performed using the model error

covariance matrices obtained in simulation environment. Comparing the real data

estimation results presented in this section with the simulation results in Appendix B,

Section B.2.3, it is evident that the resulting performance of the estimators are very

similar. Although the simulation is performed with measurement noise σ2 = 10−6 and

without process noise, the simulation model is a good representation of the real two-tank

system and can be used to find tuning parameters.

On-line Estimation Results

The on-line verification of both LMHE and NMHE is performed on the two-tank plant

located at the University of Stavanger in the laboratory KE E-458. Moving horizon

estimation is accomplished using the Simulink model presented in Section 4.3. Based

on the required processing time results, presented in Tables 5.1 and 5.2, the sampling

time is adjusted to Ts = 1.5s, except NMHE Case 3, where the sampling time is set to

Ts = 2.5s. Estimation by the LMHE and NMHE is performed using sqp algorithm and

the horizon length N = 10. The results of both LMHE and NMHE Case 2 and Case 3

are available in Appendix B, Section B.3.3.

5.3 Experimental MPC and MHE Results

In this section, the experimental results are obtained in collaboration with Gent Luta2.

The aim of this experiment is to evaluate the MHE performance when combined with a

controller. The MHE and MPC are somehow dual as both rely on solving an optimization

problem that incorporate a dynamical system model with constraints over a fixed-size

horizon. More information on the duality between MHE and MPC can be found in [28].
2Master’s Thesis "Design and Implementation of Model Predictive Control for a Coupled Tank System".

Results 93

In order to test the MHE and MPC in real time the Simulink model in 4.3 is modified

as shown in Fig. 5.19. The experiments are conducted using linear version of MHE

and MPC. The predictive controller generates a control action by solving an open-loop

optimal control problem to predict systems behavior over a finite, receding horizon in

which the current state of the system is used as the initial state3. The current state of

the system is estimated by the MHE and supplied to the MPC, thus the control of the

system is based on the sate estimates rather than the real measurements.

Figure 5.19: Simulink model for the two-tank system with MHE and MPC.

The control of the two-tank system is tested in three different scenarios: Case 1, 2 and 3.

The sampling time of the two-tank system is set to Ts = 1.5s. The horizon lengths are set

to NLMHE = 10, NLMP C = 13, NLMP C,C = 1, where NLMP C is the prediction horizon

and NLMP C,C is the control horizon. The results for the Case 1 are shown in Fig. 5.20.

The MPC is supplied with h1 and h2 estimates. Since in this case the estimation error

is very small, the resulting MPC performance is as good as using actual measurements.

The error means are:
3Detailed description of MPC implementation can be found in Master’s Thesis "Design and Imple-

mentation of Model Predictive Control for a Coupled Tank System" by Gent Luta.

Results Chapter 5 Results

Estimation error mean h1: 2.32e -08

Estimation error mean h2: 1.55e -08

Reference tracking error mean h1: 6.32e -03

Reference tracking error mean h2: 4.85e -03

The response time to bring the states to the desired operating point or reference tracking

errors are subject to the MPC design parameters, hence it is not discussed in this paper.

Figure 5.20: Control of the two-tank system with LMPC using LMHE. Case 1: estima-
tion of h1 and h2 given the measurements h1 and h2.

The Case 2 results are presented in Fig. 5.21. The states h1 and h2 are estimated using

only h2 measurement. As seen in the figure, the estimate of h1 is less accurate, along

with the control action. h1 estimation error is highest when the system deviates from

the initial operating point, indicating that the discrepancy is due to linearization errors.

The error means are:

Results 95

Estimation error mean h1: 1.55e -02

Estimation error mean h2: 7.98e -09

Reference tracking error mean h1: 1.70e -02

Reference tracking error mean h2: 4.67e -03

The decision whether the resulting performance is good enough depends on desired

outcome or the specific application requirements and tolerances.

Figure 5.21: Control of the two-tank system with LMPC using LMHE. Case 2: estima-
tion of h1, h2 given the measurement h2.

The results for the Case 3 are shown in Fig. 5.22. The MPC is supplied with h1, h2 and

uP A001 estimates. The estimate of uP A001 is noisy due to linearization errors, however,

the resulting reference tracking is good. The error means are:

Estimation error mean h1: 7.61e -04

Estimation error mean h2: 6.72e -08

Results Chapter 5 Results

Estimation error mean u_PA001 : 1.52e -02

Reference tracking error mean h1: 7.57e -03

Reference tracking error mean h2: 4.70e -03

Compared with the Case 1, where uP A001 is a measured disturbance, the reference

tracking error mean for h1 has increased from 6.32 · 10−3 to 7.57 · 10−3, while for h2 it

has decreased from 4.85 · 10−3 to 4.70 · 10−3, i.e., the MPC performance is almost as good

as in the Case 1. Hence, it can be concluded that the uP A001 estimate is accurate enough

and could replace the measurement. However, in the scenarios where the operating range

to the system is wide, utilization of the NMHE should be considered.

Figure 5.22: Control of the two-tank system with LMPC using LMHE. Case 3: estima-
tion of h1, h2 and uP A001 given the measurements h1 and h2.

Chapter 6

Conclusions

The main goal of this thesis was to design and implement an MHE-based state estimator

to observe the state of the two-tank system. A linear and nonlinear MHE were successfully

implemented in Matlab for evaluation in simulation environment and Simulink for real-

time estimation on the two-tank process plant. In addition, the LMHE was implemented

and validated with the LMPC controller.

The performance of the LMHE and NMHE was compared against the Kalman and

Extended Kalman filter. Moreover, the estimators were evaluated in different two-tank

system configurations: estimation of two states, namely the water level in tank 1 and

tank 2, and estimation of three states, which includes the water level in tank 1 and

tank 2, as well as the unmeasured disturbance from the pump. An effort was made

to investigate whether the states of the system could still be accurately estimated by

removing one of the available measurements.

Based on simulations and experimental results of the two state estimation, the overall

performance of all four estimators is good. However, as expected, due to linearization

errors the estimation error for the LMHE and Kalman filter increases when the system

deviates from the initial operating point, especially if only one measurement is present.

Considering the three state estimation, the LMHE and NMHE estimate of the disturbance

is more accurate than the KF and EKF estimate. The three state estimation using one

measurement was achieved by the LMHE and KF, however the resulting estimates were

delayed and inaccurate. The NMHE and EKF, on the other hand, were unsuccessful. It

97

Conclusions Chapter 6 Conclusions

has been concluded that this is due to low observability of the system and the uncertainties

arising from relative high measurement noise.

In brief, MHE is powerful, and yet, complex and computationally inefficient estimation

technique. In addition, the MHE performance relies on good optimization performance,

adequate parameters and right choice of weighting matrices. Therefore, the tuning can

become quite a challenging and time consuming task. The two-tank system is constrained

solely by upper and lower bounds of the state variables, thereby the full utilization of

the main MHE advantage to incorporate multiple equality and inequality constraints is

limited. Hence, the two state estimation using the KF or EKF seems less complex and

more computationally efficient choice. However, considering the three state estimation,

the MHE outperforms the Kalman filters.

The LMHE is simpler and more computationally efficient than the NMHE. Furthermore,

in contrast to the LMHE, the NMHE introduces additional complexity associated with

nonconvexity, thus a local optimizer may provide a locally optimal solution instead of

globally optimal. This may result in suboptimal and inaccurate estimates. Therefore, if

the operating range of the two-tank system is narrow, the LMHE is a favored option.

Future Directions

Even though, the implementation of the LMHE and NMHE was successful, there are

further improvements and interesting aspects that could be considered. Some of these

are:

• Implementation and evaluation of more advanced arrival cost function approxima-

tion techniques.

• The computational efficiency was not a key goal in the MHE implementation, thus

an effort could be made to improve the MHE application efficiency.

• Designing and implementing an MHE-based state estimator to the system with

multiple equality and inequality constraints.

Appendix A

The Two-tank System

The theoretical and practical implementation results presented in this project are applied

to the two-tank system located at the University of Stavanger in the laboratory KE E-459.

In this chapter, Section A.1 provides detailed description of the two-tank processing

plant, Section A.2 presents valves and pump characteristics, Section A.3 and A.4 derive

the dynamical process model for the two-tank system. The appendix A is based on the

first assignment on the two-tank system in course ELE320 Reguleringsteknikk [2].

A.1 Process Description

The process plant, shown in Fig. A.1, consists of two water containers, tank 1 and tank

2. Tank 1 has a rectangular shape while tank 2 has a conical shape. Tank 1 has two

inlets, from the pump PA001 and the mixer tap LV003, and two outlets, to the valve

FV001 via hose coil and to the tank 2 via the valve LV001. Tank 1 is also equipped with

a 2kW heating flask HE001.

Tank 2 has one inlet, which is from tank 1 via valve LV001, and two outlets, via the

valve FV002 and via the valve LV002, whereas both outlets lead to the same collection

container. The water in collection container is pumped back into tank 1 by the pump

PA001.

Both tank 1 and tank 2 are open containers, thus the water surface pressure is the

atmospheric pressure. The plant is outfitted with diverse types of instruments:

99

The Two-tank System Appendix A The Two-tank System

Figure A.1: A schematic sketch and picture of the two-tank system located at the
University of Stavanger, KE E-459.

• Pressure gauge, PT001, measures the pressure in the tap water.

• Temperature meter, TT003, measures the temperature of the tap water.

• Temperature meter, TT001, measures the temperature of water in tank 1.

• Level meter, LT001, measures the level of the water in tank 1.

• Temperature meter, TT002, measures the temperature of the water from tank 1,

which is delayed through the hose coil.

• Level meter, LT002, measures the water level in tank 2.

• Flow meter, FT001, measures the water flow from the pump PA001.

The two-tank system is designed to simulate a variety of different industrial processes.

In this project, the two-tank system is limited to the valves LV001, LV002, the pump

PA001 and the instruments FT001, LT001 and LV002. The Fig. A.2 shows a simplified

version of the two-tank system schematic sketch, whereas Table A.2 gives an overview of

the two-tank system variables.

The Two-tank System 101

Figure A.2: A simplified version of the two-tank system schematic sketch.

A.2 Valves and Pump Characteristics

The mathematical model of the valves describes the volume flow q[m3/h] through the

valve as a function of the valve size Kv[m3/h√
bar

], valve opening z, and pressure drop across

the valve ∆p[bar], thus the valve equation is given by

q(t) = Kvf(z(t))
√

∆p(t), (A.1)

where f(z(t)) is the valve characteristic. The pressure upstream the valve consist of the

atmospheric pressure p0 and water pressure p while the pressure downstream is only the

The Two-tank System Appendix A The Two-tank System

atmospheric pressure. Therefore, the differential pressure ∆p[Pa] is given by

∆p(t) = p(t) = ρ g h(t), (A.2)

where ρ is the density of the liquid, g is the gravitational constant and h(t) is the height

of the liquid above the valve.

The valve characteristic describes the relation between the valve opening z(t) and the flow

f(·) through the valve. The relation for both the valve LV001 and LV002 is approximated

by

f(z(t)) = ez(t)1.2 − 1
e1 − 1 . (A.3)

The valves LV001 and LV002 are fail open valves and are controlled using compressed air.

The dynamics of the actuator is fast compared with the two-tank process and, therefore,

neglected. Hence the valve opening z(t) is determined by the control input u(t) and

(A.3) can be rewritten as

fi(uLV 00i(t)) = euLV 00i(t)1.2 − 1
e1 − 1 , (A.4)

where i = 1, 2 represents the valve LV001 and LV002, respectively. The relation between

fi(t) and uLV 00i(t) is shown in Fig. A.3.

Combining equations (A.1) and (A.2), and converting them into SI units, the volume

flow of the valves LV001 and LV002 is represented by equation

qLV 00i(t) = Kv,LV 00i fi(uLV 00i(t))
3600

√
ρ g hi(t)
100000 . (A.5)

Pump characteristic is given by the relation

qP A001(t) = f3(uP A001(t)), (A.6)

where qP A001(t) is the flow through the pump, and uP A001(t) is the control signal. Fig.

A.4 presents the relation between the flow through the pump and control signal provided

in [2].

The Two-tank System 103

Figure A.3: Valve characteristic for LV001 and LV002[2].

Figure A.4: Pump PA001 characteristic [2].

The Two-tank System Appendix A The Two-tank System

A.3 Dynamic Model of Tank 1

Considering the system boundaries and the dynamics of the valves and the pump presented

in the Section A.1, the dynamical model for the two-tank system can be obtained using

the mass conservation law

dm(t)
dt

=
∑

win(t)−
∑

wout(t), (A.7)

where dm(t)
dt is the rate of mass accumulation, win(t) is the rate of mass in and wout(t) is

the rate of mass out.

The mass flows in tank 1 can be expressed as

win(t) = ρ qP A001(t) = ρ f3(uP A001(t)) (A.8)

and

wout(t) = ρ qLV 001(t) = ρ f3(uP A001(t)). (A.9)

Substituting (A.5) into (A.9) and considering that if hi(t) > hi,min, ∆pi(t) = ρ g (hi(t) +

hi,min), the equation (A.9) can be rewritten as

wout(t) = ρ
Kv,LV 001 f1(uLV 001(t))

3600

√
ρ g (h1(t) + h1,min)

100000 . (A.10)

Substituting (A.8) and (A.9) into (A.7), where m1(t) = ρ V (t) = ρ A1h1(t), the differ-

ential equation, describing the dynamics of the water level in tank 1, has the following

form

dh1(t)
dt

= 1
A1

(
f3(uP A001(t))− Kv,LV 001 f1(uLV 001(t))

3600

√
ρ g (h1(t) + h1,min)

100000

)
. (A.11)

A.4 Dynamic Model of Tank 2

The dynamical model for tank 2 can be derived applying the same procedure as for tank

1. The mass flows in tank 2 is given by

win(t) = ρ qLV 001(t) = ρ
Kv,LV 001 f1(uLV 001(t))

3600

√
ρ g (h1(t) + h1,min)

100000 (A.12)

The Two-tank System 105

and

wout(t) = ρ qLV 002(t) = ρ
Kv,LV 002 f2(uLV 002(t))

3600

√
ρ g (h2(t) + h2,min)

100000 . (A.13)

Due to the canonical shape, the volume, as well as the surface area, of the liquid in tank

2 is a function of the height h2(t). The rate of height can be derived as follows

dm2(t)
dt

= ρ
dV2(h2(t))

dt
= ρ

dV2(h2(t))
dh2

· dh2(t)
dt

= ρ A2(h2(t))dh2(t)
dt

, (A.14)

where m2(t) = ρ V2(h2(t)). It can be shown that using geometry and dimensions,

provided in Table A.1 and Fig. A.5, the surface area of the liquid in is given by

A2(h2(t)) = A2,0 + h2(t) · b2,max − b2,min

h2,max
· d2 = 0.004 + 0.07 h2(t). (A.15)

Figure A.5: Simplified sketch of tank 2.

Name Description Value
A2,0 Area of tank 2 bottom 0.004 m

d2 Depth of tank 2 0.08 m

b2,max Upper width of tank 2 0.4 m

b2,min Lower width of tank 2 0.05 m

h2,max Height of tank 2 0.4 m

Table A.1: Tank 2 dimensions [2].

The Two-tank System Appendix A The Two-tank System

Hence, combining (A.12), (A.13), (A.14) and (A.15), and substituting into (A.7), the

differential equation for tank 2 has the following form:

dh2(t)
dt

= 1
0.004 + 0.07 h2(t)

(
Kv,LV 001 f1(uLV 001(t))

3600

√
ρ g (h1(t) + h1,min)

100000

− Kv,LV 002 f2(uLV 002(t))
3600

√
ρ g (h2(t) + h2,min)

100000

)
.

(A.16)

The dynamical model of the two-tank system consists of two nonlinear ODE differential

equations, where (A.11) describes the dynamics of the water level in tank 1 and (A.16)

describes the dynamics of the water level in tank 2, thus the system is second-order

nonlinear system.

Name Description Unit Value
h1(t) Water level in tank 1 measured with LT001 m 0-1
h2(t) Water level in tank 2 measured with LT002 m 0-0.4
A1 Area for tank 1 m2 0.0096
A2(h2(t)) Area for tank 2 m2 0.025-0.07
ρ Water density kg/m3 1000
g Gravity acceleration m/s2 9.81
qP A001 Volume flow from pump PA001 m3/s 0-12
uP A001 Control signal to pump PA001 - 0-1
qLV 001 Volume flow from valve LV001 m3/s 0-17
uLV 001 Control signal to valve LV001 - 0-1
qLV 002 Volume flow from valve LV002 m3/s 0-17
uLV 002 Control signal to valve LV002 - 0-1
Kv,LV 001 Valve constant for valve LV001 m3

time
√

bar
11.25

Kv,LV 002 Valve constant for valve LV002 m3

time
√

bar
11.25

h1,min Height between tank 1 bottom and tank 1 outlet m 0.14
h2,min Height between tank 2 bottom and tank 2 outlet m 0.03
hLV 001 Height between tank 1 bottom and valve LV001 m 0.05
hLV 002 Height between tank 2 bottom and valve LV002 m 0.25

Table A.2: Two-tank system variables [2].

107

Additional Results Appendix B Additional Results

Appendix B

Additional Results

B.1 NMHE Verification

Figure B.1: NMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. No process or measurement noise.

Additional Results 109

Figure B.2: NMHE Case 2: Estimation of h1 and h2 given the measurement h2. No
process or measurement noise.

Additional Results Appendix B Additional Results

B.2 Simulation Environment Results

B.2.1 LMHE

Figure B.3: LMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Simulated measurement noise, σ2 = 10−9. Sqp algorithm with the horizon length

N = 10.

QMHE =

101 0

0 101

 , QKF =

1 0

0 1

 ,

RMHE = RKF =

10−9 0

0 10−9


(B.1)

LMHE:

Estimation error mean h1: 6.87e -07

Estimation error mean h2: 9.23e -07

KF:

Estimation error mean h1: 5.24e -14

Estimation error mean h2: 3.48e -14

Additional Results 111

Figure B.4: LMHE Case 2: Estimation of h1 and h2 given the measurement h2.
Simulated measurement noise, σ2 = 10−9. Sqp algorithm with the horizon length

N = 10.

QMHE =

10−3 0

0 10−2

 , QKF =

10−2 0

0 1

 ,

RMHE = RKF = 10−9

(B.2)

LMHE:

Estimation error mean h1: 3.13e -04

Estimation error mean h2: 3.44e -06

KF:

Estimation error mean h1: 7.42e -04

Estimation error mean h2: 3.48e -14

Additional Results Appendix B Additional Results

Figure B.5: LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−9.Sqp algorithm with the horizon

length N = 10. OptimalityTolerance = StepTolerance = 10−10.

QMHE =


10−9 0 0

0 1 0

0 0 10−5

 , QKF =


1 0 0

0 1 0

0 0 104

 ,

RMHE = RKF =

10−9 0

0 10−9


(B.3)

LMHE:

Estimation error mean h1: 3.72e -06

Estimation error mean h2: 1.17e -06

Estimation error mean u_PA001 : 3.94e -03

KF:

Estimation error mean h1: 2.19e -14

Estimation error mean h2: 3.48e -14

Estimation error mean u_PA001 : 3.30e -03

Additional Results 113

Figure B.6: LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−9.Sqp algorithm with the horizon

length N = 5.

QMHE =


10−9 0 0

0 1 0

0 0 10−5

 , QKF =


1 0 0

0 1 0

0 0 104

 ,

RMHE = RKF =

10−9 0

0 10−9


(B.4)

LMHE:

Estimation error mean h1: 2.18e -06

Estimation error mean h2: 7.01e -09

Estimation error mean u_PA001 : 3.39e -03

KF:

Estimation error mean h1: 2.19e -14

Estimation error mean h2: 3.48e -14

Estimation error mean u_PA001 : 3.30e -03

Additional Results Appendix B Additional Results

Figure B.7: LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−9.Interior − point algorithm with

the horizon length N = 10.

QMHE =


10−9 0 0

0 1 0

0 0 10−5

 , QKF =


1 0 0

0 1 0

0 0 104

 ,

RMHE = RKF =

10−9 0

0 10−9


(B.5)

LMHE:

Estimation error mean h1: 2.20e -06

Estimation error mean h2: 1.06e -08

Estimation error mean u_PA001 : 3.38e -03

KF:

Estimation error mean h1: 2.19e -14

Estimation error mean h2: 3.48e -14

Estimation error mean u_PA001 : 3.30e -03

Additional Results 115

B.2.2 NMHE

Figure B.8: NMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Simulated measurement noise, σ2 = 10−9. Sqp algorithm with the horizon length

N = 10.

QMHE =

101 0

0 101

 , QEKF =

1 0

0 1

 ,

RMHE = REKF =

10−9 0

0 10−9


(B.6)

NMHE:

Estimation error mean h1: 6.74e -07

Estimation error mean h2: 7.20e -07

EKF:

Estimation error mean h1: 5.09e -14

Estimation error mean h2: 3.48e -14

Additional Results Appendix B Additional Results

Figure B.9: NMHE Case 2: Estimation of h1 and h2 given the measurement h2.
Simulated measurement noise, σ2 = 10−9. Sqp algorithm with the horizon length

N = 10.

QMHE =

6 · 101 0

0 103

 , QEKF =

10−4 0

0 10−1

 ,

RMHE = REKF = 10−9

(B.7)

NMHE:

Estimation error mean h1: 6.75e -04

Estimation error mean h2: 1.75e -06

EKF:

Estimation error mean h1: 6.75e -04

Estimation error mean h2: 3.48e -13

Additional Results 117

Figure B.10: NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Simulated measurement noise, σ2 = 10−9. Active-set algorithm with the

horizon length N = 10.

QMHE =


10−2 0 0

0 10−2 0

0 0 10−4

 , RMHE =

10−9 0

0 10−9

 (B.8)

NMHE:

Estimation error mean h1: 7.21e -09

Estimation error mean h2: 7.68e -09

Estimation error mean u_PA001 : 7.53e -03

Additional Results Appendix B Additional Results

Figure B.11: NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Simulated measurement noise, σ2 = 10−9. MultiStart method with 5 start

points using sqp algorithm with the horizon length N = 10.

QMHE =


10−2 0 0

0 10−2 0

0 0 10−4

 , RMHE =

10−9 0

0 10−9

 (B.9)

NMHE:

Estimation error mean h1: 6.93e -09

Estimation error mean h2: 6.95e -09

Estimation error mean u_PA001 : 4.14e -03

Additional Results 119

Figure B.12: NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Simulated measurement noise, σ2 = 10−9. GlobalSearch method using sqp

algorithm with the horizon length N = 10.

QMHE =


10−2 0 0

0 10−2 0

0 0 10−4

 , RMHE =

10−9 0

0 10−9

 (B.10)

NMHE:

Estimation error mean h1: 4.76e -07

Estimation error mean h2: 5.60e -07

Estimation error mean u_PA001 : 3.92e -03

Additional Results Appendix B Additional Results

Figure B.13: NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Simulated measurement noise, σ2 = 10−9. PatternSearch method using

sqp algorithm with the horizon length N = 10.

QMHE =


10−2 0 0

0 10−2 0

0 0 10−4

 , RMHE =

10−9 0

0 10−9

 (B.11)

NMHE:

Estimation error mean h1: 4.69e -07

Estimation error mean h2: 4.66e -07

Estimation error mean u_PA001 : 4.22e -03

Additional Results 121

B.2.3 LMHE and NMHE (increased measurement noise)

Figure B.14: LMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Simulated measurement noise, σ2 = 10−6. Sample time 1s.

QMHE =

1 0

0 1

 , QKF =

1 0

0 1

 ,

RMHE = REKF =

10−6 0

0 10−6


(B.12)

LMHE:

Estimation error mean h1: 6.96e -09

Estimation error mean h2: 7.07e -09

KF:

Estimation error mean h1: 1.23e -09

Estimation error mean h2: 1.09e -09

Additional Results Appendix B Additional Results

Figure B.15: LMHE Case 2: Estimation of h1 and h2 given the measurement h2.
Simulated measurement noise, σ2 = 10−6. Sample time 1s.

QMHE =

9 · 10−1 0

0 1

 , QKF =

101 0

0 1

 ,

RMHE = RKF = 10−6

(B.13)

LMHE:

Estimation error mean h1: 5.08e -04

Estimation error mean h2: 7.92e -09

KF:

Estimation error mean h1: 2.38e -03

Estimation error mean h2: 1.09e -09

Additional Results 123

Figure B.16: LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−6. Sample time 1s.

QMHE =


10−6 0 0

0 10−1 0

0 0 10−4

 , QKF =


1 0 0

0 1 0

0 0 107

 ,

RMHE = RKF =

10−6 0

0 10−6


(B.14)

LMHE:

Estimation error mean h1: 3.59e -04

Estimation error mean h2: 2.18e -08

Estimation error mean u_PA001 : 7.05e -03

KF:

Estimation error mean h1: 6.35e -12

Estimation error mean h2: 1.09e -09

Estimation error mean u_PA001 : 1.88e -02

Additional Results Appendix B Additional Results

Figure B.17: LMHE Case 4: Estimation of h1, h2 and uP A001 given the measurement
h2. Simulated measurement noise, σ2 = 10−6. Sample time 1s.

QMHE =


10−5 0 0

0 10−7 0

0 0 10−4

 , QKF =


10−4 0 0

0 10−6 0

0 0 10−3

 ,

RMHE = RKF = 10−6

(B.15)

LMHE:

Estimation error mean h1: 1.27e -02

Estimation error mean h2: 6.36e -04

Estimation error mean u_PA001 : 1.88e -02

KF:

Estimation error mean h1: 1.29e -02

Estimation error mean h2: 3.23e -04

Estimation error mean u_PA001 : 2.61e -02

Additional Results 125

Figure B.18: NMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Simulated measurement noise, σ2 = 10−6. Sample time 1s.

QMHE =

1 0

0 1

 , QEKF =

1 0

0 1

 ,

RMHE = REKF =

10−6 0

0 10−6


(B.16)

NMHE:

Estimation error mean h1: 6.49e -07

Estimation error mean h2: 5.63e -07

EKF:

Estimation error mean h1: 1.22e -09

Estimation error mean h2: 1.09e -09

Additional Results Appendix B Additional Results

Figure B.19: NMHE Case 2: Estimation of h1 and h2 given the measurement h2.
Simulated measurement noise, σ2 = 10−6. Sample time 1s.

QMHE =

9 · 102 0

0 106

 , QEKF =

10−1 0

0 102

 ,

RMHE = REKF = 10−6

(B.17)

NMHE:

Estimation error mean h1: 2.23e -03

Estimation error mean h2: 1.24e -05

EKF:

Estimation error mean h1: 2.37e -03

Estimation error mean h2: 1.09e -11

Additional Results 127

Figure B.20: NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurements
h1 and h2. Simulated measurement noise, σ2 = 10−6. Sample time 1s.

QMHE =


101 0 0

0 101 0

0 0 10−5

 , QEKF =


102 0 0

0 1 0

0 0 10−1

 ,

RMHE = REKF =

10−6 0

0 10−6


(B.18)

NMHE:

Estimation error mean h1: 1.32e -06

Estimation error mean h2: 1.58e -06

Estimation error mean u_PA001 : 1.05e -02

EKF:

Estimation error mean h1: 1.68e -11

Estimation error mean h2: 1.09e -09

Estimation error mean u_PA001 : 1.18e -02

Additional Results Appendix B Additional Results

B.3 Real Data Estimation Results

B.3.1 LMHE

Figure B.21: LMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Sqp algorithm with the horizon length N = 10. Dataset data1.mat.

QMHE =

1 0

0 1

 , QKF =

1 0

0 1

 ,

RMHE = RKF =

2.8 · 10−6 0

0 1.6 · 10−6


(B.19)

LMHE:

Estimation error mean h1: 1.78e -08

Estimation error mean h2: 1.11e -08

KF:

Estimation error mean h1: 3.94e -09

Estimation error mean h2: 2.34e -09

Additional Results 129

B.3.2 NMHE

Figure B.22: NMHE Case 1: Estimation of h1 and h2 given the measurements h1 and
h2. Sqp algorithm with the horizon length N = 10. Dataset data1.mat.

QMHE =

1 0

0 1

 , QEKF =

1 0

0 1

 ,

RMHE = REKF =

2.8 · 10−6 0

0 1.6 · 10−6


(B.20)

LMHE:

Estimation error mean h1: 8.78e -09

Estimation error mean h2: 7.75e -09

EKF:

Estimation error mean h1: 3.95e -09

Estimation error mean h2: 2.34e -09

Additional Results Appendix B Additional Results

Figure B.23: Case 1: Estimation of h1 and h2 given the measurements h1 and h2.
Dataset data2.mat.

Additional Results 131

B.3.3 On-line Results

Figure B.24: LMHE Case 2: Estimation of h1 and h2 given the measurement h2. Sqp
algorithm with the horizon length N = 10.

Additional Results Appendix B Additional Results

Figure B.25: NMHE Case 2: Estimation of h1 and h2 given the measurement h2. Sqp
algorithm with the horizon length N = 10.

Additional Results 133

Figure B.26: LMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Sqp algorithm with the horizon length N = 10.

Additional Results Appendix B Additional Results

Figure B.27: NMHE Case 3: Estimation of h1, h2 and uP A001 given the measurement
h1 and h2. Sqp algorithm with the horizon length N = 10.

Appendix C

Matlab Code

C.1 LMHE.m

clear all; close all;

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte .

% May , 2023

%%

run parameters

%%

% Operating point for linearization

h1_0 = 0.3;

h2_0 = 0.2;

u_PA001_0 = 0.6;

n = 3; % number of states [3/2]

m = 2; % number of measurements available [2/1]

%MHE parameters

N = 10; % Horizon length

% Simulation parameters

sim_model = ’L ’; % Linear or nonlinear simulation model ? [’L’/’N’/’data ’]

sys_noise = ’Y ’; % Simulate system with noise ? [’Y’/’N ’]

Kalman_filter = ’Y ’; % Estimation useing Kalman filter for comparison [’Y’/’N ’]

Ts = 1; % Samplings time. For dataset1 and dataset2 : 1.05

if strcmp (’data ’, sim_model)

load(’ data1 .mat ’)

h1_s = ScopeData . signals (2). values (: ,1);

h2_s = ScopeData . signals (4). values (: ,1);

u_LV001_s = ScopeData . signals (3). values ;

u_LV002_s = ScopeData . signals (5). values ;

135

Matlab Code Appendix C Matlab Code

u_PA001_s = ScopeData . signals (1). values ;

t_time = ScopeData .time;

t_length = length (t_time);

t_storage = zeros (1, t_length);

t_start = 0;

t_end = t_length ;

u_PA001_0 = u_PA001_s (1);

% initial water levels in tank 1 and tank 2

h1_0 = h1_s (1); % h1_min ;

h2_0 = h2_s (1); % h2_min ;

% Init

h1_init = h1_0; % operating point

h2_init = h2_0;

if n == 3

u_PA001_init = u_PA001_0 ;

u_PA001_k = u_PA001_init ;

end

end

if strcmp (’L’, sim_model) || strcmp (’N’, sim_model)

t_start = 0;

t_end = 35*5;

step_up = 7*5;

step_down = 30*4;

step_size = 0.1;

step_in = ’u_PA001 ’; % [’u_LV001 ’/’ u_LV002 ’/’ u_PA001 ’]

% Simulation time parameters

t_length = t_end /Ts + 1;

t_storage = zeros (1, t_length);

% Init

h1_init = h1_0; % operating point

h2_init = h2_0;

if n == 3

u_PA001_init = u_PA001_0 ;

u_PA001_k = u_PA001_init ;

end

end

%%

% linearization

[A, B, C, D, u_LV001_0 , u_LV002_0] = linearization (h1_0 ,h2_0 ,u_PA001_0 ,n,m);

% Parameter structure

parameter_struct .N = N;

parameter_struct .n = n;

parameter_struct .m = m;

parameter_struct .Ts = Ts;

parameter_struct .A = A;

parameter_struct .B = B;

parameter_struct .C = C;

Matlab Code 137

parameter_struct .D = D;

%Set points

parameter_struct .h1_0 = h1_0;

parameter_struct .h2_0 = h2_0;

parameter_struct . u_LV001_0 = u_LV001_0 ;

parameter_struct . u_LV002_0 = u_LV002_0 ;

parameter_struct . u_PA001_0 = u_PA001_0 ;

% Process disturbance MHE

Q_w1 = 1e -6;

Q_w2 = 1e -1;

Q_w3 = 1e -4;

% Measurement noise MHE

R_v1 = 1e -6;%2.8e -6;

R_v2 = 1e -6;%1.6e -6;

if n == 2

Q = diag ([Q_w1 , Q_w2]);

elseif n == 3

Q = diag ([Q_w1 , Q_w2 , Q_w3]);

end

if m == 2

R = diag ([R_v1 , R_v2]);

elseif m == 1

R = R_v2;

end

parameter_struct .Q = Q;

parameter_struct .R = R;

rng (1)

noise = randn (5, t_length);

if sys_noise == ’Y’

% Process disturbance used in simulation

cov_w1 = 0;

cov_w2 = 0;

cov_w3 = 0;

% Measurement noise used in simulation

cov_v1 = 1e -6;

cov_v2 = 1e -6;

elseif sys_noise == ’N’

% Process disturbance used in simulation

cov_w1 = 0;

cov_w2 = 0;

cov_w3 = 0;

% Measurement noise used in simulation

cov_v1 = 0;

cov_v2 = 0;

end

Matlab Code Appendix C Matlab Code

if n == 2

cov_w = diag ([cov_w1 , cov_w2]);

elseif n == 3

cov_w = diag ([cov_w1 , cov_w2 , cov_w3]);

end

if m == 2

cov_v = diag ([cov_v1 , cov_v2]);

elseif m == 1

cov_v = cov_v2 ;

end

% Simulation variable storage arrays

% Control inputs

u_LV001_arr = zeros (1, t_length);

u_LV002_arr = zeros (1, t_length);

% Disturbance or state parameter

u_PA001_arr = zeros (1, t_length);

% State variables

h1_arr = zeros (1, t_length);

h2_arr = zeros (1, t_length);

% Otputs

if m == 2

h1_meas_arr = zeros (1, t_length);

end

h2_meas_arr = zeros (1, t_length);

% MHE estimates

h1_hat_arr = zeros (1, t_length);

h2_hat_arr = zeros (1, t_length);

if n == 3

u_PA001_hat_arr = zeros (1, t_length);

end

h1_k = h1_init ;

h2_k = h2_init ;

% Init MHE

horizon = zeros (1,N);

h1_hat_horizon = horizon ;

h2_hat_horizon = horizon ;

if n == 3

u_PA001_hat_init = u_PA001_0 ;

u_PA001_hat_horizon = horizon ;

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon ; u_PA001_hat_horizon];

u_horizon = [horizon ; horizon];

elseif n == 2

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon];

u_horizon = [horizon ; horizon ; horizon];

end

Matlab Code 139

if m == 2

h1_meas_horizon = horizon ;

end

h2_meas_horizon = horizon ;

% Lower and upper bound constraints for whole horizon

h1_max_arr = zeros (1,N) + h1_max ;

h1_min_arr = zeros (1,N) + h1_min ;

h2_max_arr = zeros (1,N) + h2_max ;

h2_min_arr = zeros (1,N) + h2_min ;

if n == 3

u_PA001_max_arr = zeros (1,N) + 1; % From pump characteristic

u_PA001_min_arr = zeros (1,N) + 0.45; % From pump characteristic

x_ub = [h1_max_arr ; h2_max_arr ; u_PA001_max_arr];

x_lb = [h1_min_arr ; h2_min_arr ; u_PA001_min_arr];

elseif n == 2

x_ub = [h1_max_arr ; h2_max_arr];

x_lb = [h1_min_arr ; h2_min_arr];

end

% Estimate error covariance matrix matrix used in arrival cost storage

P_k_N_arr = cell (1, t_length);

P_k_N_arr {1, t_length } = [];

if n == 3

P_init = diag ([0.00001 , 0.00001 , 0.00001]); % initial P covariance matrix

x_pred_k_N = [h1_init ; h2_init ; u_PA001_init];

elseif n == 2

P_init = diag ([0.001 , 0.001]); % initial P covariance matrix

x_pred_k_N = [h1_init ; h2_init];

end

P_previous = P_init ;

%%%%%%%%%%%% Kalman filter init

A_disc = eye(size(A)) + Ts*A; % Discrete -time matrice A (Forward Euler)

parameter_struct . A_disc = A_disc ;

if Kalman_filter == ’Y’

if n == 2

K_x_hat = [h1_init ; h2_init];

elseif n == 3

K_x_hat = [h1_init ; h2_init ; u_PA001_init];

end

% storage of Kalman estimates

K_h1_hat_arr = zeros (1, t_length);

K_h2_hat_arr = zeros (1, t_length);

if n == 3

K_u_PA001_hat_arr = zeros (1, t_length);

end

K_P_hat = P_init ;

Matlab Code Appendix C Matlab Code

if n == 2

K_Q = diag ([1 , 1]);

elseif n == 3

K_Q = diag ([1 , 1, 1e7]);

end

if m == 2

K_R = diag ([1e-6, 1e -6]);

elseif m == 1

K_R = 1e -6;

end

end

for k = 1: t_length

t_k = k*Ts;

if strcmp (’L’, sim_model)

% Simulation of control inputs

if t_k < step_up

u_LV001_k = u_LV001_0 ;

u_LV002_k = u_LV002_0 ;

u_PA001_k = u_PA001_0 ;

end

if t_k >= step_up

if strcmp (’u_LV001 ’, step_in)

u_LV001_k = u_LV001_0 + step_size ;

elseif strcmp (’u_LV002 ’, step_in)

u_LV002_k = u_LV002_0 + step_size ;

elseif strcmp (’u_PA001 ’, step_in)

u_PA001_k = u_PA001_0 + step_size ;

end

end

if t_k >= step_down

if strcmp (’u_LV001 ’, step_in)

u_LV001_k = u_LV001_0 ;

elseif strcmp (’u_LV002 ’, step_in)

u_LV002_k = u_LV002_0 ;

elseif strcmp (’u_PA001 ’, step_in)

u_PA001_k = u_PA001_0 ;

end

end

% Disturbances and noise

if n == 3

w_k = [sqrt(cov_w1)* noise (1,k); sqrt(cov_w2)* noise (2,k);...

sqrt(cov_w3)* noise (3,k)];

elseif n == 2

w_k = [sqrt(cov_w1)* noise (1,k); sqrt(cov_w2)* noise (2,k)];

end

Matlab Code 141

if m == 2

v_k = [sqrt(cov_v1)* noise (4,k); sqrt(cov_v2)* noise (5,k)];

elseif m == 1

v_k = sqrt(cov_v2)* noise (5,k);

end

if n == 3

u_k = [u_LV001_k ; u_LV002_k];

x_k = [h1_k; h2_k; u_PA001_k];

elseif n == 2

% when u_PA001_k is known disturbance

u_k = [u_LV001_k ; u_LV002_k ; u_PA001_k];

x_k = [h1_k; h2_k];

end

%%%%%%%%%%%%%%%%% Linear Process model : derivatives and integration

if sys_noise == ’Y’

if n == 3

dh_dt_k = A*(x_k - [h1_0; h2_0; u_PA001_0]) + B*(u_k -...

[u_LV001_0 ; u_LV002_0]); %+ w_k;

elseif n == 2

dh_dt_k = A*(x_k - [h1_0; h2_0]) + B*(u_k -...

[u_LV001_0 ; u_LV002_0 ; u_PA001_0]); % + w_k;

end

elseif sys_noise == ’N’

if n == 3

dh_dt_k = A*(x_k - [h1_0; h2_0; u_PA001_0]) + B*(u_k ...

-[u_LV001_0 ; u_LV002_0]);

elseif n == 2

dh_dt_k = A*(x_k - [h1_0; h2_0]) + B*(u_k -...

[u_LV001_0 ; u_LV002_0 ; u_PA001_0]);

end

end

x_k_ny = Ts* dh_dt_k + x_k; % Euler integration

% Physical constraints

if x_k_ny (1) < h1_min

x_k_ny (1) = h1_min ;

end

if x_k_ny (2) < h2_min

x_k_ny (2) = h2_min ;

end

if x_k_ny (1) > h1_max

x_k_ny (1) = h1_max ;

end

if x_k_ny (2) > h2_max

x_k_ny (2) = h2_max ;

end

if n == 3

if x_k_ny (3) < 0.45

Matlab Code Appendix C Matlab Code

x_k_ny (3) = 0.45;

end

if x_k_ny (3) > 1

x_k_ny (3) = 1;

end

end

if sys_noise == ’Y’

h_meas_k = C*x_k + D*0 + v_k;

elseif sys_noise == ’N’

h_meas_k = C*x_k + D*0;

end

% Storing simulation data

t_storage (k) = t_k;

u_LV001_arr (k) = u_LV001_k ;

u_LV002_arr (k) = u_LV002_k ;

u_PA001_arr (k) = u_PA001_k ;

h1_arr (k) = h1_k;

h2_arr (k) = h2_k;

if m == 2

h1_meas_arr (k) = h_meas_k (1);

end

h2_meas_arr (k) = h_meas_k (2);

% Update for k+1

h1_k = x_k_ny (1);

h2_k = x_k_ny (2);

if n == 3

u_PA001_k = x_k_ny (3);

end

% Update horizons

u_horizon = [u_horizon (:, 2:N), u_k]; % sliding horizon to the right

if m == 2

h1_meas_horizon = [h1_meas_horizon (2:N), h_meas_k (1)];

end

h2_meas_horizon = [h2_meas_horizon (2:N), h_meas_k (2)];

if m == 2

h_meas_horizon = [h1_meas_horizon ; h2_meas_horizon];

elseif m == 1

h_meas_horizon = h2_meas_horizon ;

end

elseif strcmp (’N’, sim_model)

% Simulation of control inputs

if t_k < step_up

u_LV001_k = u_LV001_0 ;

u_LV002_k = u_LV002_0 ;

u_PA001_k = u_PA001_0 ;

end

Matlab Code 143

if t_k >= step_up

if strcmp (’u_LV001 ’, step_in)

u_LV001_k = u_LV001_0 + step_size ;

elseif strcmp (’u_LV002 ’, step_in)

u_LV002_k = u_LV002_0 + step_size ;

elseif strcmp (’u_PA001 ’, step_in)

u_PA001_k = u_PA001_0 + step_size ;

end

end

if t_k >= step_down

if strcmp (’u_LV001 ’, step_in)

u_LV001_k = u_LV001_0 ;

elseif strcmp (’u_LV002 ’, step_in)

u_LV002_k = u_LV002_0 ;

elseif strcmp (’u_PA001 ’, step_in)

u_PA001_k = u_PA001_0 ;

end

end

% Disturbances and noise

if n == 3

w_k = [sqrt(cov_w1)* noise (1,k); sqrt(cov_w2)* noise (2,k);...

sqrt(cov_w3)* noise (3,k)];

elseif n == 2

w_k = [sqrt(cov_w1)* noise (1,k); sqrt(cov_w2)* noise (2,k)];

end

if m == 2

v_k = [sqrt(cov_v1)* noise (4,k); sqrt(cov_v2)* noise (5,k)];

elseif m == 1

v_k = sqrt(cov_v2)* noise (5,k);

end

if n == 3

u_k = [u_LV001_k ; u_LV002_k];

x_k = [h1_k; h2_k; u_PA001_k];

elseif n == 2

% when u_PA001_k is known disturbancenn

u_k = [u_LV001_k ; u_LV002_k ; u_PA001_k];

x_k = [h1_k; h2_k];

end

%%%%%%%%%%%%%% Nonlinear Process model : derivatives and integration

f3_k = interp1 (u_PA001 ,q_PA001 , u_PA001_k);

f1_k = interp1 (u_LV001 ,f_LV001 , u_LV001_k);

f2_k = interp1 (u_LV002 ,f_LV002 , u_LV002_k);

dh1_dt_k = (1/ A1)*(f3_k -((Kv_LV001 *f1_k)/3600)* sqrt ((rho*g*(h1_k +...

h_LV001))/100000));

dh2_dt_k = (1/(0.07* h2_k +0.004))*(((Kv_LV001 *f1_k)/3600)*...

sqrt ((rho*g*(h1_k+ h_LV001))/100000)...

Matlab Code Appendix C Matlab Code

-(Kv_LV002 *f2_k)/3600* sqrt ((rho*g*(h2_k+ h_LV002))/100000));

if sys_noise == ’Y’

h1_k_ny = Ts* dh1_dt_k + h1_k ;% + w1_k; % Euler integration

h2_k_ny = Ts* dh2_dt_k + h2_k ;% + w2_k;

elseif sys_noise == ’N’

h1_k_ny = Ts* dh1_dt_k + h1_k; % Euler integration

h2_k_ny = Ts* dh2_dt_k + h2_k;

end

% Physical constraints

if h1_k_ny < h1_min

h1_k_ny = h1_min ;

end

if h2_k_ny < h2_min

h2_k_ny = h2_min ;

end

if h1_k_ny > h1_max

h1_k_ny = h1_max ;

end

if h2_k_ny > h2_max

h2_k_ny = h2_max ;

end

if sys_noise == ’Y’

if m == 2

h1_meas_k = h1_k + v_k (1);

h2_meas_k = h2_k + v_k (2);

elseif m == 1

h2_meas_k = h2_k + v_k;

end

elseif sys_noise == ’N’

if m == 2

h1_meas_k = h1_k;

end

h2_meas_k = h2_k;

end

% Physical constraints

if h2_meas_k < h2_min

h2_meas_k = h2_min ;

end

if h2_meas_k > h2_max

h2_meas_k = h2_max ;

end

if m == 2

if h1_meas_k < h1_min

h1_meas_k = h1_min ;

end

if h1_meas_k > h1_max

Matlab Code 145

h1_meas_k = h1_max ;

end

end

% Storing simulation data

t_storage (k) = t_k;

u_LV001_arr (k) = u_LV001_k ;

u_LV002_arr (k) = u_LV002_k ;

u_PA001_arr (k) = u_PA001_k ;

h1_arr (k) = h1_k;

h2_arr (k) = h2_k;

if m == 2

h1_meas_arr (k) = h1_meas_k ;

h2_meas_arr (k) = h2_meas_k ;

h_meas_k = [h1_meas_k ; h2_meas_k];

elseif m ==1

h2_meas_arr (k) = h2_meas_k ;

h_meas_k = h2_meas_k ;

end

% Update for k+1

h1_k = h1_k_ny ;

h2_k = h2_k_ny ;

% Update horizons

u_horizon = [u_horizon (: ,2:N), u_k]; % sliding horizon to the right

h2_meas_horizon = [h2_meas_horizon (2:N), h2_meas_k];

if m == 2

h1_meas_horizon = [h1_meas_horizon (2:N), h1_meas_k];

h_meas_horizon = [h1_meas_horizon ; h2_meas_horizon];

elseif m == 1

h_meas_horizon = h2_meas_horizon ;

end

%%%%%%%%%%%%%%%%%%%%%

elseif strcmp (’data ’, sim_model)

% Storing simulation data

t_storage (k) = t_k;

u_LV001_k = u_LV001_s (k);

u_LV002_k = u_LV002_s (k);

u_PA001_k = u_PA001_s (k);

if n == 3

u_k = [u_LV001_k ; u_LV002_k];

elseif n == 2

u_k = [u_LV001_k ; u_LV002_k ; u_PA001_k];

end

% Process derivatives and integration

Matlab Code Appendix C Matlab Code

f3_k = interp1 (u_PA001 ,q_PA001 , u_PA001_k);

f1_k = interp1 (u_LV001 ,f_LV001 , u_LV001_k);

f2_k = interp1 (u_LV002 ,f_LV002 , u_LV002_k);

h1_meas_k = h1_s(k);

h2_meas_k = h2_s(k);

u_LV001_arr (k) = u_LV001_k ;

u_LV002_arr (k) = u_LV002_k ;

u_PA001_arr (k) = u_PA001_k ;

h1_arr (k) = h1_meas_k ;

h2_arr (k) = h2_meas_k ;

if m == 2

h1_meas_arr (k) = h1_meas_k ;

h2_meas_arr (k) = h2_meas_k ;

h_meas_k = [h1_meas_k ; h2_meas_k];

elseif m ==1

h2_meas_arr (k) = h2_meas_k ;

h_meas_k = h2_meas_k ;

end

% Update horizons

u_horizon = [u_horizon (: ,2:N), u_k]; % sliding horizon to the right

h2_meas_horizon = [h2_meas_horizon (2:N), h2_meas_k];

if m == 2

h1_meas_horizon = [h1_meas_horizon (2:N), h1_meas_k];

h_meas_horizon = [h1_meas_horizon ; h2_meas_horizon];

elseif m == 1

h_meas_horizon = h2_meas_horizon ;

end

end

%%%%%%%%%%%%% Kalman filter

if Kalman_filter == ’Y’

tic;

[K_x_hat , K_P_hat] = KalmanFilter (K_x_hat ,K_P_hat ,h_meas_k ,u_k ,...

parameter_struct ,K_Q ,K_R);

% Storing

K_h1_hat_arr (k) = K_x_hat (1);

K_h2_hat_arr (k) = K_x_hat (2);

if n == 3

K_u_PA001_hat_arr (k) = K_x_hat (3);

end

end

%%%%%%%%%%%%%%%%%%%%%

if k <=N

[x_hat , P_previous] = KalmanFilter (x_pred_k_N , P_previous ,h_meas_k ,u_k ,...

Matlab Code 147

parameter_struct ,Q,R);

% Storing

h1_hat_horizon (1,k) = x_hat (1);

h2_hat_horizon (1,k) = x_hat (2);

if n==3

u_PA001_hat_horizon (1,k) = x_hat (3);

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon ;...

u_PA001_hat_horizon];

else

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon];

end

% estimates for plot

h1_hat_arr (k) = x_hat (1);

h2_hat_arr (k) = x_hat (2);

if n == 3

u_PA001_hat_arr (k) = x_hat (3);

end

P_k_N_arr {k} = P_previous ;

x_pred_k_N (1) = x_hat (1);

x_pred_k_N (2) = x_hat (2);

if n == 3

x_pred_k_N (3) = x_hat (3);

end

end

if k > N % enough samples for the first horizon

% Using model to predict h_k based on estimated state x_k -1

if n == 3

M_dx_dt_k = A*(x_hat_horizon (:,N) - [h1_0; h2_0; u_PA001_0]) +...

B*(u_k -[u_LV001_0 ; u_LV002_0]);

elseif n == 2

M_dx_dt_k = A*(x_hat_horizon (:,N) - [h1_0; h2_0]) +...

B*(u_k -[u_LV001_0 ; u_LV002_0 ; u_PA001_0]);

end

x_pred_k = Ts* M_dx_dt_k + x_hat_horizon (:,N);

% Updating estimate matrix , sliding horizon to the right and

% adding predicted x_k

if n == 3

x_hat_horizon = [[h1_hat_horizon (2:N), x_pred_k (1)];...

[h2_hat_horizon (2:N), x_pred_k (2)];...

[u_PA001_hat_horizon (2:N), x_pred_k (3)]];

elseif n == 2

x_hat_horizon = [[h1_hat_horizon (2:N), x_pred_k (1)];...

[h2_hat_horizon (2:N), x_pred_k (2)]];

end

Matlab Code Appendix C Matlab Code

P = A_disc * P_previous *A_disc ’ - (A_disc * P_previous *C ’*(C* P_previous *C ’...

+ R)^(-1)*C* P_previous *A_disc ’) + Q;

P_k_N_arr {k} = P;

P_previous = P;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x_pred_k_N = x_hat_horizon (: ,1); %used in arrival cost function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

P_k_N = P_k_N_arr {k-N}; % used at time k, but calculated at time k-N

%%%% Objective function handle %%%%

objective_function_handle = @(x_hat_horizon) ...

ObjectiveFunction (x_hat_horizon , x_pred_k_N ,..

u_horizon , h_meas_horizon , parameter_struct ,...

P_k_N ,’L ’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

options = optimoptions (@fmincon , ’Display ’, ’none ’, ’Algorithm ’,’sqp ’ ,...

’OptimalityTolerance ’,1e-10,’ StepTolerance ’,1e -10);

% Plott

% options = optimoptions (’fmincon ’,’Display ’,’iter ’,’PlotFcn ’ ,...

% {’ optimplotx ’,’ optimplotfunccount ’ ,...

% ’optimplotfvalconstr ’,’ optimplotfval ’ ,...

% ’optimplotconstrviolation ’,’ optimplotstepsize ’ ,...

% ’optimplotfirstorderopt ’});

x_hat_optimal = fmincon (objective_function_handle , x_hat_horizon ,...

[] ,[] ,[] ,[] , x_lb ,x_ub ,[] , options);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Updating with optimal solution , adding setting point

h1_hat_horizon = x_hat_optimal (1 ,:);

h2_hat_horizon = x_hat_optimal (2 ,:);

if n == 3

u_PA001_hat_horizon = x_hat_optimal (3 ,:);

end

% Updating storage variables

h1_hat_arr (k) = h1_hat_horizon (end);

h2_hat_arr (k) = h2_hat_horizon (end);

if n == 3

u_PA001_hat_arr (k) = u_PA001_hat_horizon (end);

end

end

% Plott

if n == 2 && Kalman_filter == ’Y’

Matlab Code 149

figure (3)

if (k >1 && k< t_length)

subplot (3 ,1 ,1)

plot ([t_storage (k -1) , t_storage (k)] ,[u_PA001_arr (k -1) , u_PA001_arr (k)],

... ’ Color ’,’# D95319 ’,’LineWidth ’ ,2)

title (’u ’)

xlim ([t_start , t_end])

hold on

plot ([t_storage (k -1) , t_storage (k)] ,[u_LV001_arr (k -1) , u_LV001_arr (k)],

... ’ Color ’,’#EDB120 ’,’LineWidth ’ ,2)

hold on

plot ([t_storage (k -1) , t_storage (k)] ,[u_LV002_arr (k -1) , u_LV002_arr (k)],

... ’ Color ’,’#7 E2F8E ’,’LineWidth ’ ,2)

legend (’u_PA001 ’,’u_LV001 ’,’u_LV002 ’)

set(legend ,’Location ’,’west ’);

ylabel (’ Control signal [-]’)

hold on

subplot (3 ,1 ,2)

if m == 2

plot ([t_storage (k -1) , t_storage (k)] ,[h1_meas_arr (k -1) ,...

h1_meas_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[h1_hat_arr (k -1) , h1_hat_arr (k)],’--r’,[t_storage (k -1) ,...

t_storage (k)] ,[K_h1_hat_arr (k -1) , K_h1_hat_arr (k)] ,...

’--k’,’LineWidth ’ ,2)

elseif m == 1

plot ([t_storage (k -1) , t_storage (k)] ,[h1_arr (k -1) , h1_arr (k)] ,...

’b’,[t_storage (k -1) , t_storage (k)] ,[h1_hat_arr (k -1) ,...

h1_hat_arr (k)],’--r’,[t_storage (k -1) , t_storage (k)] ,...

[K_h1_hat_arr (k -1) , K_h1_hat_arr (k)],’--k’,’LineWidth ’ ,2)

end

title (’h_1 ’)

xlim ([t_start , t_end])

legend (’Process ’,’MHE ’,’KF ’)

set(legend ,’Location ’,’west ’);

ylabel (’ Water level [m]’)

hold on

subplot (3 ,1 ,3)

plot ([t_storage (k -1) , t_storage (k)] ,[h2_meas_arr (k -1) ,...

h2_meas_arr (k)]’b’,[t_storage (k -1) , t_storage (k)] ,[h2_hat_arr (k -1) ,...

h2_hat_arr (k)],’--r’,[t_storage (k -1) , t_storage (k)],

...[K_h2_hat_arr (k -1) , K_h2_hat_arr (k)],’--k’,’LineWidth ’ ,2)

title (’h_2 ’)

xlim ([t_start , t_end])

legend (’Process ’,’MHE ’,’KF ’)

set(legend ,’Location ’,’west ’);

xlabel (’Time [s]’)

ylabel (’ Water level [m]’)

hold on

Matlab Code Appendix C Matlab Code

end

elseif n == 2 && Kalman_filter == ’N’

figure (3)

if (k >1 && k< t_length)

subplot (3 ,1 ,1)

plot ([t_storage (k -1) , t_storage (k)] ,[u_PA001_arr (k -1) ,...

u_PA001_arr (k)],’Color ’,’# D95319 ’,’LineWidth ’ ,2)

title (’u ’)

xlim ([t_start , t_end])

hold on

plot ([t_storage (k -1) , t_storage (k)] ,[u_LV001_arr (k -1) ,...

u_LV001_arr (k)],’Color ’,’# EDB120 ’,’LineWidth ’ ,2)

hold on

plot ([t_storage (k -1) , t_storage (k)] ,[u_LV002_arr (k -1) ,...

u_LV002_arr (k)],’Color ’,’#7 E2F8E ’,’LineWidth ’ ,2)

legend (’u_PA001 ’,’u_LV001 ’,’u_LV002 ’)

set(legend ,’Location ’,’west ’);

ylabel (’ Control signal [-]’)

hold on

subplot (3 ,1 ,2)

if m == 2

plot ([t_storage (k -1) , t_storage (k)] ,[h1_meas_arr (k -1) ,...

h1_meas_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[h1_hat_arr (k -1) , h1_hat_arr (k)],’--r’,’LineWidth ’ ,2)

elseif m == 1

plot ([t_storage (k -1) , t_storage (k)] ,[h1_arr (k -1) ,...

h1_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[h1_hat_arr (k -1) , h1_hat_arr (k)],’--r’,’LineWidth ’ ,2)

end

title (’h_1 ’)

xlim ([t_start , t_end])

ylabel (’ Water level [m]’)

legend (’Process ’,’MHE ’)

set(legend ,’Location ’,’west ’);

hold on

subplot (3 ,1 ,3)

plot ([t_storage (k -1) , t_storage (k)] ,[h2_meas_arr (k -1) ,...

h2_meas_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[h2_hat_arr (k -1) , h2_hat_arr (k)],’--r’,’LineWidth ’ ,2)

title (’h_2 ’)

xlim ([t_start , t_end])

legend (’Process ’,’MHE ’)

set(legend ,’Location ’,’west ’);

xlabel (’Time [s]’)

ylabel (’ Water level [m]’)

hold on

end

elseif n == 3 && Kalman_filter == ’Y’

Matlab Code 151

figure (3)

if (k >1 && k< t_length)

subplot (4 ,1 ,1)

plot ([t_storage (k -1) , t_storage (k)] ,[u_LV001_arr (k -1) ,...

u_LV001_arr (k)],’Color ’,’# EDB120 ’,’LineWidth ’ ,2)

xlim ([t_start , t_end])

hold on

plot ([t_storage (k -1) , t_storage (k)] ,[u_LV002_arr (k -1) ,...

u_LV002_arr (k)],’Color ’,’#7 E2F8E ’,’LineWidth ’ ,2)

title (’u ’)

legend (’u_LV001 ’,’u_LV002 ’)

set(legend ,’Location ’,’west ’);

ylabel (’ Control signal [-]’)

hold on

subplot (4 ,1 ,2)

plot ([t_storage (k -1) , t_storage (k)] ,[u_PA001_arr (k -1) ,...

u_PA001_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[u_PA001_hat_arr (k -1) , u_PA001_hat_arr (k)] ,...

’--r’,[t_storage (k -1) , t_storage (k)] ,...

[K_u_PA001_hat_arr (k -1) , K_u_PA001_hat_arr (k)] ,...

’--k’,’LineWidth ’ ,2)

title (’u_{ PA001 }’)

xlim ([t_start , t_end])

hold on

legend (’Process ’,’MHE ’,’KF ’)

set(legend ,’Location ’,’west ’);

ylabel (’ Control signal to pump u_{ PA001 } [-]’)

subplot (4 ,1 ,3)

if m == 2

plot ([t_storage (k -1) , t_storage (k)] ,[h1_meas_arr (k -1) ,...

h1_meas_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[h1_hat_arr (k -1) , h1_hat_arr (k)],’--r ’ ,...

[t_storage (k -1) , t_storage (k)] ,[K_h1_hat_arr (k -1) ,...

K_h1_hat_arr (k)],’--k’,’LineWidth ’ ,2)

elseif m == 1

plot ([t_storage (k -1) , t_storage (k)] ,[h1_arr (k -1) ,...

h1_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[h1_hat_arr (k -1) , h1_hat_arr (k)],’--r ’ ,...

[t_storage (k -1) , t_storage (k)] ,...

[K_h1_hat_arr (k -1) , K_h1_hat_arr (k)] ,...

’--k’,’LineWidth ’ ,2)

end

title (’h_1 ’)

xlim ([t_start , t_end])

legend (’Process ’,’MHE ’,’KF ’)

set(legend ,’Location ’,’west ’);

ylabel (’ Water level [m]’)

hold on

Matlab Code Appendix C Matlab Code

subplot (4 ,1 ,4)

plot ([t_storage (k -1) , t_storage (k)] ,[h2_meas_arr (k -1) ,...

h2_meas_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[h2_hat_arr (k -1) , h2_hat_arr (k)],’--r ’ ,...

[t_storage (k -1) , t_storage (k)] ,[K_h2_hat_arr (k -1) ,...

K_h2_hat_arr (k)],’--k’,’LineWidth ’ ,2)

title (’h_2 ’)

xlim ([t_start , t_end])

legend (’Process ’,’MHE ’,’KF ’)

set(legend ,’Location ’,’west ’);

xlabel (’Time [s]’)

ylabel (’ Water level [m]’)

hold on

end

elseif n == 3 && Kalman_filter == ’N’

figure (3)

if (k >1 && k< t_length)

subplot (4 ,1 ,1)

plot ([t_storage (k -1) , t_storage (k)] ,[u_LV001_arr (k -1) ,...

u_LV001_arr (k)],’Color ’,’# EDB120 ’,’LineWidth ’ ,2)

xlim ([t_start , t_end])

hold on

plot ([t_storage (k -1) , t_storage (k)] ,[u_LV002_arr (k -1) ,...

u_LV002_arr (k)],’Color ’,’#7 E2F8E ’,’LineWidth ’ ,2)

title (’u ’)

legend (’u_LV001 ’,’u_LV002 ’)

set(legend ,’Location ’,’west ’);

ylabel (’ Control signal [-]’)

hold on

subplot (4 ,1 ,2)

plot ([t_storage (k -1) , t_storage (k)] ,[u_PA001_arr (k -1) ,...

u_PA001_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[u_PA001_hat_arr (k -1) , u_PA001_hat_arr (k)] ,...

’--r’,’LineWidth ’ ,2)

title (’u_{ PA001 }’)

xlim ([t_start , t_end])

hold on

legend (’Process ’,’MHE ’)

set(legend ,’Location ’,’west ’);

ylabel (’ Control signal to pump u_{ PA001 } [-]’)

subplot (4 ,1 ,3)

if m == 2

plot ([t_storage (k -1) , t_storage (k)] ,[h1_meas_arr (k -1) ,...

h1_meas_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[h1_hat_arr (k -1) , h1_hat_arr (k)],’--r’,’LineWidth ’ ,2)

elseif m == 1

plot ([t_storage (k -1) , t_storage (k)] ,[h1_arr (k -1) ,...

h1_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

Matlab Code 153

[h1_hat_arr (k -1) , h1_hat_arr (k)],’--r’,’LineWidth ’ ,2)

end

title (’h_1 ’)

xlim ([t_start , t_end])

legend (’Process ’,’MHE ’)

set(legend ,’Location ’,’west ’);

ylabel (’ Water level [m]’)

hold on

subplot (4 ,1 ,4)

plot ([t_storage (k -1) , t_storage (k)] ,[h2_meas_arr (k -1) ,...

h2_meas_arr (k)],’b’,[t_storage (k -1) , t_storage (k)] ,...

[h2_hat_arr (k -1) , h2_hat_arr (k)],’--r’,’LineWidth ’ ,2)

title (’h_2 ’)

xlim ([t_start , t_end])

legend (’Process ’,’MHE ’)

set(legend ,’Location ’,’west ’);

xlabel (’Time [s]’)

ylabel (’ Water level [m]’)

hold on

end

end

end

hold off

if m == 2

error_h1 = mean(abs(h1_hat_arr - h1_meas_arr));

fprintf (’ Estimation error mean h1: %d\n’, error_h1);

elseif m == 1

error_h1 = mean(abs(h1_hat_arr - h1_arr));

fprintf (’ Estimation error mean h1: %d\n’, error_h1);

end

error_h2 = mean(abs(h2_hat_arr - h2_meas_arr));

fprintf (’ Estimation error mean h2: %d\n’, error_h2);

if n == 3

error_u_PA = mean(abs(u_PA001_hat_arr - u_PA001_arr));

fprintf (’ Estimation error mean u_PA001 : %d\n’, error_u_PA);

end

if Kalman_filter == ’Y’

fprintf (’KF: \n ’);

if m == 2

error_h1 = mean(abs(K_h1_hat_arr - h1_meas_arr));

fprintf (’ Estimation error mean h1: %d\n’, error_h1);

elseif m == 1

error_h1 = mean(abs(K_h1_hat_arr - h1_arr));

fprintf (’ Estimation error mean h1: %d\n’, error_h1);

end

error_h2 = mean(abs(K_h2_hat_arr - h2_meas_arr));

fprintf (’ Estimation error mean h2: %d\n’, error_h2);

Matlab Code Appendix C Matlab Code

if n == 3

error_u_PA = mean(abs(K_u_PA001_hat_arr - u_PA001_arr));

fprintf (’ Estimation error mean u_PA001 : %d\n’, error_u_PA);

end

end

C.2 NMHE.m

close all; clear all;

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte .

% May , 2023

%%

run parameters

%%

n = 3; % number of states ? [3/2]

m = 2; % number of measurements available [2/1]

%MHE parameters

N = 10; % Horizon length

% Simulation parameters

sys_noise = ’Y ’; % Simulate system with noise ? [Y/N]

sim_model = ’N ’; % Linear or nonlinear simulation model ? [’N ’/ data]

Kalman_filter = ’Y ’; % Estimation useing Kalman filter for comparison [’Y’/’N ’]

Ts = 1; % Samplings time. For dataset1 and dataset2 : 1.05

if strcmp (’data ’, sim_model)

load(’ data1 .mat ’)

h1_s = ScopeData . signals (2). values (: ,1);

h2_s = ScopeData . signals (4). values (: ,1);

u_LV001_s = ScopeData . signals (3). values ;

u_LV002_s = ScopeData . signals (5). values ;

u_PA001_s = ScopeData . signals (1). values ;

t_time = ScopeData .time;

t_length = length (t_time);

t_storage = zeros (1, t_length);

t_start = 0;

t_end = t_length ;

u_LV001_0 = u_LV001_s (1);

u_LV002_0 = u_LV002_s (1);

u_PA001_0 = u_PA001_s (1);

% initial water levels in tank 1 and tank 2

h1_init = h1_s (1); % h1_min ;

h2_init = h2_s (1); % h2_min ;

end

Matlab Code 155

if strcmp (’L’, sim_model) || strcmp (’N’, sim_model)

t_start = 0;

t_end = 35*5;

% initial control inputs for simulation

u_LV001_0 = 0.4263;

u_LV002_0 = 0.3902;

u_PA001_0 = 0.6;

step_up = 7*5;

step_down = 30*4;

step_size = 0.1;

step_in = ’u_PA001 ’; % [’u_LV001 ’/’ u_LV002 ’/’ u_PA001 ’]

% initial water levels in tank 1 and tank 2

h1_init = 0.3; % h1_min ;

h2_init = 0.2; % h2_min ;

% Simulation time parameters

t_length = t_end /Ts + 1;

t_storage = zeros (1, t_length);

end

%%

% Parameter structure

parameter_struct .Ts = Ts;

parameter_struct .n = n;

parameter_struct .m = m;

parameter_struct .N = N;

parameter_struct .A1 = A1;

parameter_struct . Kv_LV001 = Kv_LV001 ;

parameter_struct . Kv_LV002 = Kv_LV002 ;

parameter_struct .rho = rho;

parameter_struct .g = g;

parameter_struct . h_LV001 = h_LV001 ;

parameter_struct . h_LV002 = h_LV002 ;

parameter_struct . u_LV001 = u_LV001 ;

parameter_struct . u_LV002 = u_LV002 ;

parameter_struct . f_LV001 = f_LV001 ;

parameter_struct . f_LV002 = f_LV002 ;

parameter_struct . u_PA001 = u_PA001 ;

parameter_struct . q_PA001 = q_PA001 ;

% Process disturbance MHE

Q_w1 = 1e1;

Q_w2 = 1e1;

Q_w3 = 1e -5;

% Measurement noise MHE

R_v1 = 1e -6; %2.8e -6;

R_v2 = 1e -6; %1.6e -6;

Matlab Code Appendix C Matlab Code

if n == 2

Q = diag ([Q_w1 , Q_w2]);

elseif n == 3

Q = diag ([Q_w1 , Q_w2 , Q_w3]);

end

if m == 2

R = diag ([R_v1 , R_v2]);

elseif m == 1

R = R_v2;

end

parameter_struct .Q = Q;

parameter_struct .R = R;

rng (1)

noise = randn (5, t_length);

if sys_noise == ’Y’

% Process disturbance used in simulation

cov_w1 = 0;

cov_w2 = 0;

cov_w3 = 0;

% Measurement noise used in simulation

cov_v1 = 1e -6;

cov_v2 = 1e -6;

elseif sys_noise == ’N’

% Process disturbance used in simulation

cov_w1 = 0;

cov_w2 = 0;

cov_w3 = 0;

% Measurement noise used in simulation

cov_v1 = 0;

cov_v2 = 0;

end

if n == 2

cov_w = diag ([cov_w1 , cov_w2]);

elseif n == 3

cov_w = diag ([cov_w1 , cov_w2 , cov_w3]);

end

if m == 2

cov_v = diag ([cov_v1 , cov_v2]);

elseif m == 1

cov_v = cov_v2 ;

end

% Simulation variable storage arrays for plot

% Control inputs

u_LV001_arr = zeros (1, t_length);

u_LV002_arr = zeros (1, t_length);

Matlab Code 157

% Disturbance or state parameter

u_PA001_arr = zeros (1, t_length);

% State variables

h1_arr = zeros (1, t_length);

h2_arr = zeros (1, t_length);

% Otputs

if m == 2

h1_meas_arr = zeros (1, t_length);

end

h2_meas_arr = zeros (1, t_length);

% MHE estimate variable storage arrays for plot

h1_hat_arr = zeros (1, t_length);

h2_hat_arr = zeros (1, t_length);

if n == 3

u_PA001_hat_arr = zeros (1, t_length);

end

% Simulation Init

h1_k = h1_init ;

h2_k = h2_init ;

if n == 3

u_PA001_init = u_PA001_0 ;

u_PA001_k = u_PA001_init ;

end

% Init MHE

horizon = zeros (1,N);

h1_hat_horizon = horizon ;

h2_hat_horizon = horizon ;

if n == 3

u_PA001_hat_init = u_PA001_0 ;

f3_hat_init = interp1 (u_PA001 ,q_PA001 , u_PA001_hat_init);

f3_hat_horizon = horizon ;

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon ; f3_hat_horizon]; % matrix

u_horizon = [horizon ; horizon];

elseif n == 2

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon]; % f3_hat_horizon]; % matrix

u_horizon = [horizon ; horizon ; horizon];

end

if m == 2

h1_meas_horizon = horizon ;

end

h2_meas_horizon = horizon ;

% Lower and upper bound constraints for whole horizon

h1_max_arr = zeros (1,N) + h1_max ;

h1_min_arr = zeros (1,N) + h1_min ;

h2_max_arr = zeros (1,N) + h2_max ;

Matlab Code Appendix C Matlab Code

h2_min_arr = zeros (1,N) + h2_min ;

if n == 3

f3_max_arr = zeros (1,N) + 0.000333; % From pump characteristic

f3_min_arr = zeros (1,N) + 0; % From pump characteristic

x_ub = [h1_max_arr ; h2_max_arr ; f3_max_arr];

x_lb = [h1_min_arr ; h2_min_arr ; f3_min_arr];

elseif n == 2

x_ub = [h1_max_arr ; h2_max_arr];

x_lb = [h1_min_arr ; h2_min_arr];

end

% Estimate error covariance matrix used in arrival cost storage

P_k_N_arr = cell (1, t_length -N);

P_k_N_arr {1, t_length -N} = [];

if n == 3

% initial P covariance matrix

P_init = diag ([0.0000001 , 0.0000001 , 0.0000001]);

% state prediction prior first horizon

x_pred_k_N = [h1_init ; h2_init ; u_PA001_init];

if m == 2

C = [1 0 0; 0 1 0];

elseif m == 1

C = [0 1 0];

end

elseif n == 2

P_init = diag ([0.00001 , 0.00001]); % initial P covariance matrix

x_pred_k_N = [h1_init ; h2_init]; % state prediction prior first horizon

if m == 2

C = [1 0 ; 0 1];

elseif m == 1

C = [0 1];

end

end

P_previous = P_init ;

parameter_struct .C = C;

%%%%%%%%%%%% Extended Kalman filter init

if Kalman_filter == ’Y’

if n == 2

K_x_hat = [h1_init ; h2_init];

elseif n == 3

f3_init = interp1 (u_PA001 ,q_PA001 , u_PA001_init);

K_x_hat = [h1_init ; h2_init ; f3_init];

end

% storage of Kalman estimates for plot

K_h1_hat_arr = zeros (1, t_length);

K_h2_hat_arr = zeros (1, t_length);

if n == 3

Matlab Code 159

K_u_PA001_hat_arr = zeros (1, t_length);

end

end

K_P_hat = P_init ;

if n == 2

K_Q = diag ([1e-1, 1e2]);

elseif n == 3

K_Q = diag ([1e2 , 1, 1e -1]);

end

if m == 2

K_R = diag ([1e-6, 1e -6]);

elseif m == 1

K_R = 1e -6;

end

for k = 1: t_length

t_k = k*Ts;

if strcmp (’N’, sim_model)

% Simulation of control inputs

if t_k < step_up

u_LV001_k = u_LV001_0 ;

u_LV002_k = u_LV002_0 ;

u_PA001_k = u_PA001_0 ;

end

if t_k >= step_up

if strcmp (’u_LV001 ’, step_in)

u_LV001_k = u_LV001_0 + step_size ;

elseif strcmp (’u_LV002 ’, step_in)

u_LV002_k = u_LV002_0 + step_size ;

elseif strcmp (’u_PA001 ’, step_in)

u_PA001_k = u_PA001_0 + step_size ;

end

end

if t_k >= step_down

if strcmp (’u_LV001 ’, step_in)

u_LV001_k = u_LV001_0 ;

elseif strcmp (’u_LV002 ’, step_in)

u_LV002_k = u_LV002_0 ;

elseif strcmp (’u_PA001 ’, step_in)

u_PA001_k = u_PA001_0 ;

end

end

% if t_k >= 35

% if strcmp (’u_LV001 ’, step_in)

% u_LV001_k = u_LV001_0 + step_size ;

% elseif strcmp (’u_LV002 ’, step_in)

% u_LV002_k = u_LV002_0 + step_size ;

Matlab Code Appendix C Matlab Code

% elseif strcmp (’u_PA001 ’, step_in)

% u_PA001_k = u_PA001_0 + step_size ;

% end

% end

%

% Disturbances and noise

w1_k = sqrt(cov_w1)* noise (1,k);

w2_k = sqrt(cov_w2)* noise (2,k);

w3_k = sqrt(cov_w3)* noise (3,k);

v1_k = sqrt(cov_v1)* noise (4,k);

v2_k = sqrt(cov_v2)* noise (5,k);

if n == 3

u_k = [u_LV001_k ; u_LV002_k];

elseif n == 2

u_k = [u_LV001_k ; u_LV002_k ; u_PA001_k];

end

% Process derivatives and integration

f3_k = interp1 (u_PA001 ,q_PA001 , u_PA001_k);

f1_k = interp1 (u_LV001 ,f_LV001 , u_LV001_k);

f2_k = interp1 (u_LV002 ,f_LV002 , u_LV002_k);

dh1_dt_k = (1/ A1)*(f3_k -((Kv_LV001 *f1_k)/3600)*...

sqrt ((rho*g*(h1_k+ h_LV001))/100000));

dh2_dt_k = (1/(0.07* h2_k +0.004))*(((Kv_LV001 *f1_k)/3600)*...

sqrt ((rho*g*(h1_k+ h_LV001))/100000)...

-(Kv_LV002 *f2_k)/3600* sqrt ((rho*g*(h2_k+ h_LV002))/100000));

if sys_noise == ’Y’

h1_k_ny = Ts* dh1_dt_k + h1_k + w1_k; % Euler integration

h2_k_ny = Ts* dh2_dt_k + h2_k + w2_k;

elseif sys_noise == ’N’

h1_k_ny = Ts* dh1_dt_k + h1_k; % Euler integration

h2_k_ny = Ts* dh2_dt_k + h2_k;

end

% Physical constraints

if h1_k_ny < h1_min

h1_k_ny = h1_min ;

end

if h2_k_ny < h2_min

h2_k_ny = h2_min ;

end

if h1_k_ny > h1_max

h1_k_ny = h1_max ;

end

if h2_k_ny > h2_max

Matlab Code 161

h2_k_ny = h2_max ;

end

if sys_noise == ’Y’

if m == 2

h1_meas_k = h1_k + v1_k;

end

h2_meas_k = h2_k + v2_k;

elseif sys_noise == ’N’

if m == 2

h1_meas_k = h1_k;

end

h2_meas_k = h2_k;

end

% Physical constraints

if h2_meas_k < h2_min

h2_meas_k = h2_min ;

end

if h2_meas_k > h2_max

h2_meas_k = h2_max ;

end

if m == 2

if h1_meas_k < h1_min

h1_meas_k = h1_min ;

end

if h1_meas_k > h1_max

h1_meas_k = h1_max ;

end

end

% Storing simulation data

t_storage (k) = t_k;

u_LV001_arr (k) = u_LV001_k ;

u_LV002_arr (k) = u_LV002_k ;

u_PA001_arr (k) = u_PA001_k ;

h1_arr (k) = h1_k;

h2_arr (k) = h2_k;

if m == 2

h1_meas_arr (k) = h1_meas_k ;

h2_meas_arr (k) = h2_meas_k ;

h_meas_k = [h1_meas_k ; h2_meas_k];

elseif m ==1

h2_meas_arr (k) = h2_meas_k ;

h_meas_k = h2_meas_k ;

end

% Update for k+1

h1_k = h1_k_ny ;

h2_k = h2_k_ny ;

Matlab Code Appendix C Matlab Code

elseif strcmp (’data ’, sim_model)

% Storing simulation data

t_storage (k) = t_k;

u_LV001_k = u_LV001_s (k);

u_LV002_k = u_LV002_s (k);

u_PA001_k = u_PA001_s (k);

if n == 3

u_k = [u_LV001_k ; u_LV002_k];

elseif n == 2

u_k = [u_LV001_k ; u_LV002_k ; u_PA001_k];

end

% Process derivatives and integration

f3_k = interp1 (u_PA001 ,q_PA001 , u_PA001_k);

f1_k = interp1 (u_LV001 ,f_LV001 , u_LV001_k);

f2_k = interp1 (u_LV002 ,f_LV002 , u_LV002_k);

h1_meas_k = h1_s(k);

h2_meas_k = h2_s(k);

u_LV001_arr (k) = u_LV001_k ;

u_LV002_arr (k) = u_LV002_k ;

u_PA001_arr (k) = u_PA001_k ;

h1_arr (k) = h1_meas_k ;

h2_arr (k) = h2_meas_k ;

if m == 2

h1_meas_arr (k) = h1_meas_k ;

h2_meas_arr (k) = h2_meas_k ;

h_meas_k = [h1_meas_k ; h2_meas_k];

elseif m ==1

h2_meas_arr (k) = h2_meas_k ;

h_meas_k = h2_meas_k ;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Update horizons

u_horizon = [u_horizon (: ,2:N), u_k]; % sliding horizon to the right

h2_meas_horizon = [h2_meas_horizon (2:N), h2_meas_k];

if m == 2

h1_meas_horizon = [h1_meas_horizon (2:N), h1_meas_k];

h_meas_horizon = [h1_meas_horizon ; h2_meas_horizon];

elseif m == 1

h_meas_horizon = h2_meas_horizon ;

end

%%%%%%%%%%%%% Extended Kalman filter

Matlab Code 163

if Kalman_filter == ’Y’

tic;

[K_x_hat , K_P_hat] = ExtendedKalmanFilter (K_x_hat ,K_P_hat ,...

h_meas_k ,u_k ,...

parameter_struct ,K_Q ,K_R);

% Storing

K_h1_hat_arr (k) = K_x_hat (1);

K_h2_hat_arr (k) = K_x_hat (2);

if n == 3

K_u_PA001_hat = interp1 (q_PA001 ,u_PA001 , K_x_hat (3));

K_u_PA001_hat_arr (k) = K_u_PA001_hat ;

end

end

%%%%%%%%%%%%%%%%%%%%

% initial Arrival cost update given measurements up to time k <=N

if k <=N

if n == 3

f3_pred_k_N = interp1 (u_PA001 ,q_PA001 , x_pred_k_N (3));

x_pred_k_N = [x_pred_k_N (1:2); f3_pred_k_N];

end

[x_hat , P_previous] = ExtendedKalmanFilter (x_pred_k_N , P_previous ,...

h_meas_k ,u_k , parameter_struct ,Q,R);

% Storing

h1_hat_horizon (1,k) = x_hat (1);

h2_hat_horizon (1,k) = x_hat (2);

if n == 3

f3_hat_horizon (1,k) = x_hat (3);

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon ; f3_hat_horizon];

else

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon];

end

% estimates for plotet

h1_hat_arr (k) = h1_hat_horizon (k);

h2_hat_arr (k) = h2_hat_horizon (k);

if n == 3

% Estimating f3 , plotting u_PA001

u_PA001_hat_arr (k) = interp1 (q_PA001 ,u_PA001 , f3_hat_horizon (k));

end

P_k_N_arr {k} = P_previous ;

x_pred_k_N (1) = x_hat (1);

x_pred_k_N (2) = x_hat (2);

if n == 3

x_pred_k_N (3) = interp1 (q_PA001 ,u_PA001 , x_hat (3));

end

end

if k > N % enough samples for the first horizon

Matlab Code Appendix C Matlab Code

% Using model to predict x_k based on estimated state x_k -1

if n == 3

M_dh1_dt_k = (1/ A1)*(x_hat_horizon (3,N) -((Kv_LV001 *f1_k)/3600)*...

sqrt ((rho*g*(x_hat_horizon (1,N)+ h_LV001))/100000));

elseif n == 2

M_dh1_dt_k = (1/ A1)*(f3_k -((Kv_LV001 *f1_k)/3600)*...

sqrt ((rho*g*(x_hat_horizon (1,N)+ h_LV001))/100000));

end

M_dh2_dt_k = (1/(0.07* x_hat_horizon (2,N)+0.004))*...

(((Kv_LV001 *f1_k)/3600)* sqrt ((rho*g*...

(x_hat_horizon (1,N)+ h_LV001))/100000) -...

(Kv_LV002 *f2_k)/3600* sqrt ((rho*g*...

(x_hat_horizon (2,N)+ h_LV002))/100000));

M_df3_dt_k = 0;

h1_pred_k = Ts* M_dh1_dt_k + x_hat_horizon (1,N);

h2_pred_k = Ts* M_dh2_dt_k + x_hat_horizon (2,N);

if n == 3

f3_pred_k = Ts* M_df3_dt_k + x_hat_horizon (3,N);

end

% Physical constraints

if h1_pred_k < h1_min

h1_pred_k = h1_min ;

end

if h2_pred_k < h2_min

h2_pred_k = h2_min ;

end

if h1_pred_k > h1_max

h1_pred_k = h1_max ;

end

if h2_pred_k > h2_max

h2_pred_k = h2_max ;

end

if n == 3

if f3_pred_k < 0

f3_pred_k = 0;

end

if f3_pred_k > 0.000333

f3_pred_k = 0.000333;

end

end

% Updating estimate matrix , sliding horizon to the right and adding

% predicted x_k

if n == 3

x_hat_horizon = [[h1_hat_horizon (2:N), h1_pred_k];...

[h2_hat_horizon (2:N), h2_pred_k];...

Matlab Code 165

[f3_hat_horizon (2:N), f3_pred_k]];

elseif n == 2

x_hat_horizon = [[h1_hat_horizon (2:N), h1_pred_k];...

[h2_hat_horizon (2:N), h2_pred_k]];

end

% updating error covariance matrix used in Arrival cost

if n == 3

u_PA001_tr = interp1 (q_PA001 ,u_PA001 , x_hat_horizon (3, end));

A = Amatrix (x_hat_horizon (1, end), x_hat_horizon (2, end) ,...

u_PA001_tr ,u_LV001_k ,u_LV002_k , parameter_struct);

elseif n == 2

A = Amatrix (x_hat_horizon (1, end), x_hat_horizon (2, end) ,...

u_PA001_k ,u_LV001_k ,u_LV002_k , parameter_struct);

end

P = A* P_previous *A’ - (A* P_previous *C ’*(C* P_previous *C’ +...

R)^(-1)*C* P_previous *A ’) + Q;

P_k_N_arr {k} = P;

P_previous = P;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% new

x_pred_k_N = x_hat_horizon (: ,1); %used in arrival cost function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

P_k_N = P_k_N_arr {k-N}; % used at time k, but calculated at time k-N

%%%% Objective function handle %%%%

objective_function_handle = @(x_hat_horizon) ...

ObjectiveFunction (x_hat_horizon ,...

x_pred_k_N ,u_horizon ,...

h_meas_horizon , parameter_struct ,...

P_k_N ,’N ’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rng default %for reproducibility globaloptimization

options = optimoptions (@fmincon ,’Display ’, ’none ’,’Algorithm ’,’sqp ’);

%,’ OptimalityTolerance ’,1e-10,’ StepTolerance ’ ,...

1e-10,’ MaxIterations ’, 1000 , ’MaxFunctionEvaluations ’ ,10000);

% Plott

% options8 = optimoptions (’fmincon ’,’Display ’,’iter ’ ,...

% ’PlotFcn ’,{’ optimplotx ’ ,...

% ’optimplotfunccount ’ ,...

% ’optimplotfvalconstr ’ ,...

% ’optimplotfval ’ ,...

% ’optimplotconstrviolation ’ ,...

% ’optimplotstepsize ’ ,...

% ’optimplotfirstorderopt ’} ,...

Matlab Code Appendix C Matlab Code

% ’Algorithm ’,’sqp ’ ,...

% ’OptimalityTolerance ’,1e10 ,...

% ’StepTolerance ’,1e -10 ,...

% ’MaxIterations ’, 1000 ,...

% ’MaxFunctionEvaluations ’ ,10000);

x_hat_optimal = fmincon (objective_function_handle ,...

x_hat_horizon ,[] ,[] ,[] ,[] , x_lb ,x_ub ,[] , options);

%%%%%%% Global Search %%%%%%%

% problem = createOptimProblem (’fmincon ’,’x0 ’, x_hat_horizon ,...

% ’objective ’, objective_function_handle ,’lb ’,x_lb ,...

% ’ub ’,x_ub ,’options ’, options);

%gs = GlobalSearch ;%(’ FunctionTolerance ’,2e4 ,’ NumTrialPoints ’ ,2000);

% x_hat_optimal = run(gs , problem);

%%%%%%%% MultiStart %%%%%%%

% problem = createOptimProblem (’fmincon ’,’x0 ’, x_hat_horizon ,...

% ’objective ’, objective_function_handle ,’lb ’,x_lb ,’ub ’...

% ,x_ub ,’options ’, options);

%ms = MultiStart (gs);

%ms = MultiStart (’ StartPointsToRun ’,’bounds ’);

%,’ XTolerance ’,1e-8,’ FunctionTolerance ’,1e-,’ UseParallel ’,true ,);

% x_hat_optimal = run(ms ,problem ,5);

%%%%%%% Annealing %%%%%%%

% options2 = optimoptions (@simulannealbnd ,’ MaxIterations ’, 1000 ,...

% ’MaxFunctionEvaluations ’ ,10000);

% x_hat_optimal = simulannealbnd (objective_function_handle ,...

% x_hat_horizon ,x_lb ,x_ub , options2);

%%%%%%% GA %%%%%%%

% GA !to use GA , the first line in objective_funtion .m has to be

% uncommented

% options3 = optimoptions (’ga ’,’Display ’,’iter ’);

% x_hat_optimal = ga(objective_function_handle ,n*N ,[] ,[] ,[] ,[] ,...

% [x_lb (1 ,:) x_lb (2 ,:) x_lb (3 ,:)] ,[x_ub (1 ,:) x_ub (2 ,:)...

% x_ub (3 ,:)] ,[] , options3)

% x_hat_optimal = reshape (x_hat_optimal ,[n,N]);

%%%%%%% PatternSearch %%%%%%%

% options4 = optimoptions (’ patternsearch ’,’Display ’,’none ’);

% x_hat_optimal = patternsearch (objective_function_handle ,...

% x_hat_horizon [] ,[] ,[] ,[] , x_lb ,x_ub ,[] , options4);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Updating with optimal solution , adding setting point

h1_hat_horizon = x_hat_optimal (1 ,:);

h2_hat_horizon = x_hat_optimal (2 ,:);

Matlab Code 167

if n == 3

f3_hat_horizon = x_hat_optimal (3 ,:);

end

% Updating storage variables

h1_hat_arr (k) = h1_hat_horizon (end);

h2_hat_arr (k) = h2_hat_horizon (end);

if n == 3

% Estimating f3 , plotting u_PA001

u_PA001_hat_arr (k) = interp1 (q_PA001 ,u_PA001 , f3_hat_horizon (end));

end

end

end

% Plott

... Same as in LMHE.m

if m == 2

error_h1 = mean(abs(h1_hat_arr - h1_meas_arr));

fprintf (’ Estimation error mean h1: %d\n’, error_h1);

elseif m == 1

error_h1 = mean(abs(h1_hat_arr - h1_arr));

fprintf (’ Estimation error mean h1: %d\n’, error_h1);

end

error_h2 = mean(abs(h2_hat_arr - h2_meas_arr));

fprintf (’ Estimation error mean h2: %d\n’, error_h2);

if n == 3

error_u_PA = mean(abs(u_PA001_hat_arr - u_PA001_arr));

fprintf (’ Estimation error mean u_PA001 : %d\n’, error_u_PA);

end

if Kalman_filter == ’Y’

fprintf (’EKF: \n ’);

if m == 2

error_h1 = mean(abs(K_h1_hat_arr - h1_meas_arr));

fprintf (’ Estimation error mean h1: %d\n’, error_h1);

elseif m == 1

error_h1 = mean(abs(K_h1_hat_arr - h1_arr));

fprintf (’ Estimation error mean h1: %d\n’, error_h1);

end

error_h2 = mean(abs(K_h2_hat_arr - h2_meas_arr));

fprintf (’ Estimation error mean h2: %d\n’, error_h2);

if n == 3

error_u_PA = mean(abs(K_u_PA001_hat_arr - u_PA001_arr));

fprintf (’ Estimation error mean u_PA001 : %d\n’, error_u_PA);

end

end

Matlab Code Appendix C Matlab Code

C.3 LMHE_Simulink_init.m

close all; clear all;

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte

% May , 2023

%%

run parameters

port_attribute = 2;

n = 3; % number of states ? [3/2]

m = 2; % number of measurements available [2/1]

Ts = 0.5;

% Operating point for linearization

h1_0 = 0.3;

h2_0 = 0.2;

u_PA001_0 = 0.6;

%2 x2: 1 ,1; 2x1: 9e-1, 1; 3x2 :1e-6, 1e-1, 1e -4

%MHE parameters

N_horizon = 10; % Horizon length

% Process disturbance used in MHE

cov_w1 = 1;

cov_w2 = 1;

cov_w3 = 1e3;

% Measurement noise used in MHE

cov_v1 = 1; %2.8e -6;

cov_v2 = 1; %1.6e -6;

if n == 2

cov_w = diag ([cov_w1 , cov_w2]);

elseif n == 3

cov_w = diag ([cov_w1 , cov_w2 , cov_w3]);

end

if m == 2

cov_v = diag ([cov_v1 , cov_v2]);

elseif m == 1

cov_v = cov_v2 ;

end

% linearization

[A, B, C, D, u_LV001_0 , u_LV002_0] = linearization (h1_0 ,h2_0 ,u_PA001_0 ,n,m);

%Discrete -time matrice A (Forward Euler)

A_disc = eye(size(A)) + Ts*A;

% Parameter structure

parameter_struct .n = n;

parameter_struct .m = m;

parameter_struct .N = N_horizon ;

Matlab Code 169

parameter_struct .Ts = Ts;

parameter_struct .A = A;

parameter_struct .B = B;

parameter_struct .C = C;

parameter_struct .D = D;

parameter_struct .h1_0 = h1_0;

parameter_struct .h2_0 = h2_0;

parameter_struct . u_LV001_0 = u_LV001_0 ;

parameter_struct . u_LV002_0 = u_LV002_0 ;

parameter_struct . u_PA001_0 = u_PA001_0 ;

parameter_struct .Q = cov_w ;

parameter_struct .R = cov_v ;

parameter_struct . A_disc = A_disc ;

% Init MHE

horizon = zeros (1, N_horizon);

h1_hat_horizon = horizon ;

h2_hat_horizon = horizon ;

if n == 3

u_PA001_hat_init = u_PA001_0 ;

u_PA001_hat_horizon = horizon ;

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon ; u_PA001_hat_horizon];

u_horizon = [horizon ; horizon];

elseif n == 2

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon];

u_horizon = [horizon ; horizon ; horizon];

end

if m == 2

h1_meas_horizon = horizon ;

end

h2_meas_horizon = horizon ;

% Lower and upper bound constraints for whole horizon

h1_max_arr = zeros (1, N_horizon) + h1_max ;

h1_min_arr = zeros (1, N_horizon) + h1_min ;

h2_max_arr = zeros (1, N_horizon) + h2_max ;

h2_min_arr = zeros (1, N_horizon) + h2_min ;

if n == 3

u_PA001_max_arr = zeros (1, N_horizon) + 1; % From pump characteristic

u_PA001_min_arr = zeros (1, N_horizon) + 0.45; % From pump characteristic

x_ub = [h1_max_arr ; h2_max_arr ; u_PA001_max_arr];

x_lb = [h1_min_arr ; h2_min_arr ; u_PA001_min_arr];

elseif n == 2

x_ub = [h1_max_arr ; h2_max_arr];

x_lb = [h1_min_arr ; h2_min_arr];

end

parameter_struct .x_ub = x_ub;

parameter_struct .x_lb = x_lb;

Matlab Code Appendix C Matlab Code

% Estimate error covariance matrix matrix used in arrival cost storage

P_k_N_arr = [];

if n == 3

P_init = diag ([0.001 , 0.001 , 0.001]); % initial P covariance matrix

x_pred_k_N = [h1_0; h2_0; u_PA001_0];

elseif n == 2

P_init = diag ([0.001 , 0.001]); % initial P covariance matrix

x_pred_k_N = [h1_0; h2_0];

end

P_previous = P_init ;

C.4 NMHE_Simulink_init.m

close all; clear all;

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte

% May , 2023

%%

run parameters

port_attribute = 1;

n = 3; % number of states ? [3/2]

m = 2; % number of measurements available [2/1]

Ts = 0.5;

% initial water levels in tank 1 and tank 2

h1_init = h1_min ; % h1_min ;

h2_init = h2_min ; % h2_min ;

%For model integration

h1_0 = h1_min ;

h2_0 = h2_min ;

u_PA001_hat_init = 0.6;

%MHE parameters

N_horizon = 10; % Horizon length

% Process disturbance used in simulation and MHE

cov_w1 = 1e2;

cov_w2 = 1;

cov_w3 = 0.05;

% Measurement noise used in MHE

cov_v1 = 1; %2.8e -6

cov_v2 = 1; %1.6e -6

if n == 2

Matlab Code 171

cov_w = diag ([cov_w1 , cov_w2]);

elseif n == 3

cov_w = diag ([cov_w1 , cov_w2 , cov_w3]);

end

if m == 2

cov_v = diag ([cov_v1 , cov_v2]);

elseif m == 1

cov_v = cov_v2 ;

end

parameter_struct .n = n;

parameter_struct .m = m;

parameter_struct .N = N_horizon ;

parameter_struct .Ts = Ts;

parameter_struct .A1 = A1;

parameter_struct . Kv_LV001 = Kv_LV001 ;

parameter_struct . Kv_LV002 = Kv_LV002 ;

parameter_struct .rho = rho;

parameter_struct .g = g;

parameter_struct . h1_min = h1_min ;

parameter_struct . h1_max = h1_max ;

parameter_struct . h1_min = h2_min ;

parameter_struct . h1_max = h2_max ;

parameter_struct . h_LV001 = h_LV001 ;

parameter_struct . h_LV002 = h_LV002 ;

parameter_struct . u_LV001 = u_LV001 ;

parameter_struct . u_LV002 = u_LV002 ;

parameter_struct . f_LV001 = f_LV001 ;

parameter_struct . f_LV002 = f_LV002 ;

parameter_struct . u_PA001 = u_PA001 ;

parameter_struct . q_PA001 = q_PA001 ;

parameter_struct .Q = cov_w ;

parameter_struct .R = cov_v ;

% Init MHE

horizon = zeros (1, N_horizon);

h1_hat_horizon = horizon ;

h2_hat_horizon = horizon ;

f3_hat_horizon = horizon ;

if n == 3

f3_hat_init = interp1 (u_PA001 ,q_PA001 , u_PA001_hat_init);

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon ; f3_hat_horizon]; % matrix

x_hat_optimal = [h1_hat_horizon ; h2_hat_horizon ; f3_hat_horizon];

u_horizon = [horizon ; horizon];

elseif n == 2

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon]; % f3_hat_horizon]; % matrix

x_hat_optimal = [h1_hat_horizon ; h2_hat_horizon];

u_horizon = [horizon ; horizon ; horizon];

Matlab Code Appendix C Matlab Code

end

h1_meas_horizon = horizon ;

h2_meas_horizon = horizon ;

% Lower and upper bound constraints for whole horizon

h1_max_arr = zeros (1, N_horizon) + h1_max ;

h1_min_arr = zeros (1, N_horizon) + h1_min ;

h2_max_arr = zeros (1, N_horizon) + h2_max ;

h2_min_arr = zeros (1, N_horizon) + h2_min ;

if n == 3

f3_max_arr = zeros (1, N_horizon) + 0.000333; % From pump characteristic

f3_min_arr = zeros (1, N_horizon) + 0; % From pump characteristic

x_ub = [h1_max_arr ; h2_max_arr ; f3_max_arr];

x_lb = [h1_min_arr ; h2_min_arr ; f3_min_arr];

elseif n == 2

x_ub = [h1_max_arr ; h2_max_arr];

x_lb = [h1_min_arr ; h2_min_arr];

end

parameter_struct .x_ub = x_ub;

parameter_struct .x_lb = x_lb;

% Estimate error covariance matrix used in arrival cost storage

P_k_N_arr = [];

if n == 3

P_init = diag ([0.00001 , 0.00001 , 0.00001]); % initial P covariance matrix

% state prediction prior first horizon

x_pred_k_N = [h1_init ; h2_init ; u_PA001_hat_init];

if m == 2

C = [1 0 0; 0 1 0];

elseif m == 1

C = [0 1 0];

end

elseif n == 2

P_init = diag ([1e-6, 1e -6]); % initial P covariance matrix

x_pred_k_N = [h1_init ; h2_init]; % state prediction prior first horizon

if m == 2

C = [1 0 ; 0 1];

elseif m == 1

C = [0 1];

end

end

parameter_struct .C = C;

P_previous = P_init ;

Matlab Code 173

C.5 Functions

C.5.1 Amatrix.m

function A = Amatrix (h1_0 , h2_0 , u_PA001_0 , u_LV001_0 , u_LV002_0 ,...

parameter_struct)

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte .

% May , 2023

%%

% Returns linearized state matrix around given operating point .

% Used to calculate estimation error covariance matrix from Nonlinear system .

% Parameters required in parameter_struct :

% A1 f3 Kv_LV001 Kv_LV002 f1 f2 rho g h1 h2 h_LV001 h_LV002 u_LV001 u_LV002 ...

% f_LV001 f_LV002 u_PA001 q_PA001 Ts n

% Tank 1 dynamic model used:

% tank1_model = (1/ A1)*(f3 -((Kv_LV001 *f1)/3600)*...

% sqrt ((rho*g*(h1+ h_LV001))/100000));

% Tank 2 dynamic model used:

% tank2_model = (1/(0.07* h2 +0.004))*(((Kv_LV001 *f1)/3600)*...

% sqrt ((rho*g*(h1+ h_LV001))/100000)...

% -(Kv_LV002 *f2)/3600* sqrt ((rho*g*(h2+ h_LV002))/100000));

Ts = parameter_struct .Ts;

n = parameter_struct .n;

A1 = parameter_struct .A1;

Kv_LV001 = parameter_struct . Kv_LV001 ;

Kv_LV002 = parameter_struct . Kv_LV002 ;

rho = parameter_struct .rho;

g = parameter_struct .g;

h_LV001 = parameter_struct . h_LV001 ;

h_LV002 = parameter_struct . h_LV002 ;

u_LV001 = parameter_struct . u_LV001 ;

u_LV002 = parameter_struct . u_LV002 ;

f_LV001 = parameter_struct . f_LV001 ;

f_LV002 = parameter_struct . f_LV002 ;

u_PA001 = parameter_struct . u_PA001 ;

q_PA001 = parameter_struct . q_PA001 ;

f1_0 = interp1 (f_LV001 ,u_LV001 , u_LV001_0);

f2_0 = interp1 (f_LV002 ,u_LV002 , u_LV002_0);

f3_0 = interp1 (u_PA001 ,q_PA001 , u_PA001_0);

par_der_h1 = -(Kv_LV001 *f1_0*g*rho)/(720000000* A1 *((g*rho *(h1_0 + ...

h_LV001))/100000)^(1/2)); %dg1/dh1

Matlab Code Appendix C Matlab Code

if n == 3

par_der_f3 = 1/ A1; % dg1/df3

f3_delta = interp1 (u_PA001 ,q_PA001 ,(u_PA001_0 +0.01));

par_der_u_PA001 = (f3_delta - f3_0)/((u_PA001_0 + 0.01) - u_PA001_0);

bv1 = par_der_f3 * par_der_u_PA001 ;

bv2 = 0;

end

par_der_h1_2 =(Kv_LV001 *f1_0*g*rho)/(720000000*((7* h2_0)/100 + 1/250)*...

((g*rho *(h1_0 + h_LV001))/100000)^(1/2)); % dg2/dh1

par_der_h2 = -(7*((Kv_LV001 *f1_0 *((g*rho *(h1_0 +...

h_LV001))/100000)^(1/2))/3600 - (Kv_LV002 *f2_0 *...

((g*rho *(h2_0 + h_LV002))/100000)^(1/2))/3600))/...

(100*((7* h2_0)/100 + 1/250)^2) - (Kv_LV002 *f2_0*g*rho)/...

(720000000*((7* h2_0)/100 + 1/250)*((g*rho *(h2_0 +...

h_LV002))/100000)^(1/2)); % dg2/dh2

a11 = par_der_h1 ;

a12 = 0;

a21 = par_der_h1_2 ;

a22 = par_der_h2 ;

if n == 2

A = [a11 a12; a21 a22]; % state transition matrix n = 2

% Forward Euler discretization

A = eye(size(A)) + Ts*A;

elseif n ==3

A = [a11 a12 bv1; a21 a22 bv2; 0 0 0]; % state transition matrix n = 3

% Forward Euler discretization

A = eye(size(A)) + Ts*A;

else

disp(’ Number of states is out of bound .’)

end

end

C.5.2 ExtendedKalmanFilter.m

function [x_hat , P_hat] = ExtendedKalmanFilter (x_hat ,P_hat ,y_meas_k ,u_k ,...

parameter_struct ,Q,R)

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte .

% May , 2023

%%

Ts = parameter_struct .Ts;

n = parameter_struct .n;

A1 = parameter_struct .A1;

Matlab Code 175

Kv_LV001 = parameter_struct . Kv_LV001 ;

Kv_LV002 = parameter_struct . Kv_LV002 ;

rho = parameter_struct .rho;

g = parameter_struct .g;

h_LV001 = parameter_struct . h_LV001 ;

h_LV002 = parameter_struct . h_LV002 ;

u_LV001 = parameter_struct . u_LV001 ;

u_LV002 = parameter_struct . u_LV002 ;

f_LV001 = parameter_struct . f_LV001 ;

f_LV002 = parameter_struct . f_LV002 ;

u_PA001 = parameter_struct . u_PA001 ;

q_PA001 = parameter_struct . q_PA001 ;

f1_k = interp1 (u_LV001 ,f_LV001 ,u_k (1));

f2_k = interp1 (u_LV002 , f_LV002 ,u_k (2));

C = parameter_struct .C;

% Time update

if n == 3

dh1_dt_pred = (1/ A1)*(x_hat (3) -((Kv_LV001 *f1_k)/3600)* sqrt ((rho*g*...

(x_hat (1)+ h_LV001))/100000));

elseif n == 2

f3_k = interp1 (u_PA001 ,q_PA001 ,u_k (3));

dh1_dt_pred = (1/ A1)*(f3_k -((Kv_LV001 *f1_k)/3600)* sqrt ((rho*g*...

(x_hat (1)+ h_LV001))/100000));

end

dh2_dt_pred = (1/(0.07* x_hat (2)+0.004))*(((Kv_LV001 *f1_k)/3600)*...

sqrt ((rho*g*(x_hat (1)+ h_LV001))/100000) -...

(Kv_LV002 *f2_k)/3600* sqrt ((rho*g*(x_hat (2)+...

h_LV002))/100000));

df3_dt_pred = 0;

h1_pred = Ts* dh1_dt_pred + x_hat (1);

h2_pred = Ts* dh2_dt_pred + x_hat (2);

if n == 3

f3_pred = Ts* df3_dt_pred + x_hat (3);

x_pred = [h1_pred ; h2_pred ; f3_pred];

elseif n == 2

x_pred = [h1_pred ; h2_pred];

end

if n == 3

u_PA001_pred = interp1 (q_PA001 ,u_PA001 , f3_pred);

A_pred = Amatrix (h1_pred ,h2_pred , u_PA001_pred ,u_k (1) , u_k (2) ,...

parameter_struct);

elseif n == 2

A_pred = Amatrix (h1_pred ,h2_pred ,u_k (3) , u_k (1) , u_k (2) ,...

parameter_struct);

end

Matlab Code Appendix C Matlab Code

P_pred = A_pred * P_hat *A_pred ’ + Q;

% Measurement update

K = P_pred *C ’* inv(C* P_pred *C’ + R);

x_hat = x_pred + (K*(y_meas_k - C* x_pred));

P_hat = (eye(size(P_pred ,1)) - K*C)* P_pred ;

end

C.5.3 KalmanFilter.m

function [x_hat , P_hat] = KalmanFilter (x_hat ,P_hat ,y_meas_k ,u_k ,...

parameter_struct ,Q,R)

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte .

% May , 2023

%%

Ts = parameter_struct .Ts;

n = parameter_struct .n;

h1_0 = parameter_struct .h1_0;

h2_0 = parameter_struct .h2_0;

u_LV001_0 = parameter_struct . u_LV001_0 ;

u_LV002_0 = parameter_struct . u_LV002_0 ;

u_PA001_0 = parameter_struct . u_PA001_0 ;

A = parameter_struct .A;

B = parameter_struct .B;

C = parameter_struct .C;

A_disc = parameter_struct . A_disc ;

% Time update

if n == 3

dx_dt_pred = A*(x_hat - [h1_0; h2_0; u_PA001_0]) + B*(u_k -...

[u_LV001_0 ; u_LV002_0]);

elseif n == 2

dx_dt_pred = A*(x_hat - [h1_0; h2_0]) + B*(u_k -...

[u_LV001_0 ; u_LV002_0 ; u_PA001_0]);

end

x_pred = Ts* dx_dt_pred + x_hat ;

P_pred = A_disc * P_hat *A_disc ’ + Q;

% Measurement update

K = P_pred *C ’* inv(C* P_pred *C’ + R);

x_hat = x_pred + (K*(y_meas_k - C* x_pred));

P_hat = (eye(size(P_pred ,1)) - K*C)* P_pred ;

end

Matlab Code 177

C.5.4 linearization.m

function [A,B,C,D,u_LV001_0 , u_LV002_0] = linearization (h1_0 ,h2_0 ,...

u_PA001_0 ,n,m)

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte .

% May , 2023

%%

% Dynamic system equations and partial derivatives for linearization

% Tank 1 dynamic model

% tank1_model = (1/ A1)*(f3 -((Kv_LV001 *f1)/3600)* sqrt ((rho*g*...

% (h1+ h_LV001))/100000));

% Tank 2 dynamic model

% tank2_model = (1/(0.07* h2 +0.004))*(((Kv_LV001 *f1)/3600)*...

% sqrt ((rho*g*(h1+ h_LV001))/100000) -(Kv_LV002 *f2)/3600*...

% sqrt ((rho*g*(h2+ h_LV002))/100000));

run parameters .m

% Operating points Tank 1

f3_0 = interp1 (u_PA001 ,q_PA001 , u_PA001_0);

f3_delta = interp1 (u_PA001 ,q_PA001 ,(u_PA001_0 +0.01));

f1_0 = (3600* f3_0)/(Kv_LV001 *((g*rho *(h1_0 + h_LV001))/100000)^(1/2));

u_LV001_0 = interp1 (f_LV001 ,u_LV001 ,f1_0);

f1_delta = interp1 (u_LV001 ,f_LV001 ,(u_LV001_0 +0.01));

% Partial derivatives Tank 1

par_der_u_PA001 = (f3_delta - f3_0)/((u_PA001_0 + 0.01) - u_PA001_0);

par_der_u_LV001 = (f1_delta - f1_0)/((u_LV001_0 + 0.01) - u_LV001_0);

par_der_h1 = -(Kv_LV001 *f1_0*g*rho)/(720000000* A1 *((g*rho *(h1_0 +...

h_LV001))/100000)^(1/2)); % dg1/dh1

par_der_f1 = -(Kv_LV001 *((g*rho *(h1_0 + h_LV001))/100000)^...

(1/2))/(3600* A1); % dg1/df1

par_der_f3 = 1/ A1; % dg1/df3

% Operating points Tank 2

f2_0 = (Kv_LV001 *f1_0 *((g*rho *(h1_0 + h_LV001))/100000)^(1/2))/...

(Kv_LV002 *((g*rho *(h2_0 + h_LV002))/100000)^(1/2));

u_LV002_0 = interp1 (f_LV002 ,u_LV002 ,f2_0);

f2_delta = interp1 (u_LV002 ,f_LV002 ,(u_LV002_0 +0.01));

% Partial derivatives Tank 2

par_der_u_LV002 = (f2_delta - f2_0)/((u_LV002_0 + 0.01) - u_LV002_0);

par_der_h1_2 =(Kv_LV001 *f1_0*g*rho)/(720000000*((7* h2_0)/100 +...

1/250)*((g*rho *(h1_0 + h_LV001))/100000)^(1/2)); % dg2/dh1

par_der_h2 = -(7*((Kv_LV001 *f1_0 *((g*rho *(h1_0 + h_LV001))/100000)^(1/2))/...

Matlab Code Appendix C Matlab Code

3600 - (Kv_LV002 *f2_0 *((g*rho *(h2_0 + ...

h_LV002))/100000)^(1/2))/3600))/(100*((7* h2_0)/100 + ...

1/250)^2) - (Kv_LV002 *f2_0*g*rho)/(720000000*...

((7* h2_0)/100 + 1/250)*((g*rho *(h2_0 +...

h_LV002))/100000)^(1/2));% dg2/dh2

par_der_f1_2 = (Kv_LV001 *((g*rho *(h1_0 + h_LV001))/100000)^(1/2))/...

(3600*((7* h2_0)/100 + 1/250));% dg2/df1

par_der_f2 = -(Kv_LV002 *((g*rho *(h2_0 + h_LV002))/100000)^(1/2))/(3600*...

((7* h2_0)/100 + 1/250));% dg2/df2

% State space matrices

a11 = par_der_h1 ;

a12 = 0;

a21 = par_der_h1_2 ;

a22 = par_der_h2 ;

b11 = par_der_f1 * par_der_u_LV001 ;

b12 = 0;

b21 = par_der_f1_2 * par_der_u_LV001 ;

b22 = par_der_f2 * par_der_u_LV002 ;

bv1 = par_der_f3 * par_der_u_PA001 ;

bv2 = 0;

% System with 2 states

A = [a11 a12; a21 a22]; % state transition matrix

B = [b11 b12 bv1; b21 b22 bv2]; % input matrix when disturbance is known

C = [1 0; 0 1]; % output matrix both h1 and h2 available

D = [0 0 0; 0 0 0]; % feed - through matrix 2 measurements available

C1 = [0 1]; % output matrix only h2 measurement

D1 = [0 0 0]; % feed - through matrix 1 measurement available

% System with 3 states

A3 = [a11 a12 bv1; a21 a22 bv2; 0 0 0]; % state transition matrix

B3 = [b11 b12; b21 b22; 0 0]; % input matrix when disturbance is known

C3 = [1 0 0; 0 1 0]; % output matrix both h1 and h2 available

D3 = [0 0; 0 0]; % feed - through matrix with 2

% measurements available

C312 = [0 1 0]; % output matrix h2 available

D31 = [0 0]; % feed - through matrix 1 measurement

% available

C311 = [1 0 0]; % output matrix h1 available

% Rearranging system matrices according to number of states and measurements

if m == 1

C = C1;

D = D1;

end

Matlab Code 179

if n == 3

A = A3;

B = B3;

if m == 2

C = C3;

D = D3;

elseif m == 1

C = C312;

D = D31;

else

disp(’ Number of measurements is out of bound .’)

end

end

end

C.5.5 ObjectiveFunction.m

function J = ObjectiveFunction (x, x_pred_k_N ,u,y_meas , parameter_struct ,P,type)

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte .

% May , 2023

%%

%x = reshape (x ,[n,N]); %used only when Ga algorithm is applied

% Returns : scalar value of the objective function

% Inputs :

% x -- The horizon vector of optimal state estimates

% x_pred_k_N -- The prediction vector of the states at time k - N

% u -- The horizon vector of control inputs

% y_meas -- The horizon vector of measured outputs

% parameter_struct -- The struct with parameters . For Linear MHE required

% parameters are the sytem matrices A, B, C, D and

% covariance matrices Q, R. For nonlinear MHE required

% parameters are all system parameters and covariance

% matrices Q and R. Other required parameters are: the

% sampling time , Ts , the horizon length , N, the

% number of states , n, and the number of measurements , m.

% P -- Estimate error covariance matrix

% type -- The string of type of the MHE , where L stands for

% linear and N stands for nonlinear MHE

N = parameter_struct .N;

Ts = parameter_struct .Ts;

n = parameter_struct .n;

m = parameter_struct .m;

Matlab Code Appendix C Matlab Code

if type == ’L’ % the linear case

A = parameter_struct .A; % state transition matrix

B = parameter_struct .B; % input matrix

C = parameter_struct .C; % output matrix

D = parameter_struct .D; % feed - through matrix

Q = parameter_struct .Q; % Covariance matrix of the estimated state noise

R = parameter_struct .R; % Covariance matrix of output measuremen noise

%Set points

x1_0 = parameter_struct .h1_0;

x2_0 = parameter_struct .h2_0;

u1_0 = parameter_struct . u_LV001_0 ;

u2_0 = parameter_struct . u_LV002_0 ;

if n == 2

u3_0 = parameter_struct . u_PA001_0 ;

elseif n == 3

x3_0 = parameter_struct . u_PA001_0 ; % n=3

else

disp(’ Number of states is out of bound .’)

end

J_arrival = (1/2)*((x(: ,1) - x_pred_k_N)’* inv(P)*(x(: ,1) - x_pred_k_N));

for i = 1:N

x_i = x(:,i); % Both states , at time i

u_i = u(:,i);

y_meas_i = y_meas (:,i); % all measurements , at time i

if i <= N -1

x_i_next = x(:,i+1);

if n == 2

dx_dt_i = A*(x_i - [x1_0; x2_0]) + B*(u_i -[u1_0; u2_0; u3_0]);

elseif n == 3

dx_dt_i = A*(x_i - [x1_0; x2_0; x3_0]) + B*(u_i -[u1_0; u2_0]);

else

disp(’ Number of states is out of bound .’)

end

w_i = x_i_next - (Ts* dx_dt_i + x_i);

end

J_cost_i = (1/2)*(w_i ’* inv(Q)* w_i) + (1/2)*((y_meas_i - ...

C*x_i)’* inv(R)*(y_meas_i - C*x_i));

J_i = J_cost_i + J_arrival ;

% Update for i+1

J_arrival = J_i;

end

Matlab Code 181

J = J_i;

elseif type == ’N’ % The nonlinear case

A1 = parameter_struct .A1;

Kv_LV001 = parameter_struct . Kv_LV001 ;

Kv_LV002 = parameter_struct . Kv_LV002 ;

rho = parameter_struct .rho;

g = parameter_struct .g;

h_LV001 = parameter_struct . h_LV001 ;

h_LV002 = parameter_struct . h_LV002 ;

u_LV001 = parameter_struct . u_LV001 ;

u_LV002 = parameter_struct . u_LV002 ;

f_LV001 = parameter_struct . f_LV001 ;

f_LV002 = parameter_struct . f_LV002 ;

Q = parameter_struct .Q;

R = parameter_struct .R;

if n == 2

u_PA001 = parameter_struct . u_PA001 ;

q_PA001 = parameter_struct . q_PA001 ;

end

J_arrival = (1/2)*((x(: ,1) - x_pred_k_N)’* inv(P)*(x(: ,1) - x_pred_k_N));

for i = 1:N

x_i = x(:,i); % All states , at time i

u_i = u(:,i);

f1_i = interp1 (u_LV001 ,f_LV001 ,u_i (1));

f2_i = interp1 (u_LV002 ,f_LV002 ,u_i (2));

y_meas_i = y_meas (:,i); % all measurements , at time i

if m == 1

v2_i = y_meas_i - x_i (2);

v_i = v2_i;

elseif m == 2

v1_i = y_meas_i (1) - x_i (1);

v2_i = y_meas_i (2) - x_i (2);

v_i = [v1_i; v2_i];

end

if i <= N -1

x_i_next = x(:,i+1);

if n == 2

f3_i = interp1 (u_PA001 ,q_PA001 ,u_i (3));

dx1_dt_i = (1/ A1)*(f3_i -((Kv_LV001 *f1_i)/3600)*...

sqrt ((rho*g*(x_i (1)+ h_LV001))/100000));

dx2_dt_i = (1/(0.07* x_i (2)+0.004))*(((Kv_LV001 *f1_i)/3600)*...

Matlab Code Appendix C Matlab Code

sqrt ((rho*g*(x_i (1)+ h_LV001))/100000) -...

(Kv_LV002 *f2_i)/3600* sqrt ((rho*g*...

(x_i (2)+ h_LV002))/100000));

w1_i = x_i_next (1) - (Ts* dx1_dt_i + x_i (1));

w2_i = x_i_next (2) - (Ts* dx2_dt_i + x_i (2));

w_i = [w1_i; w2_i];

elseif n == 3

dx1_dt_i = (1/ A1)*(x_i (3) -((Kv_LV001 *f1_i)/3600)*...

sqrt ((rho*g*(x_i (1)+ h_LV001))/100000));

dx2_dt_i = (1/(0.07* x_i (2)+0.004))*(((Kv_LV001 *f1_i)/3600)*...

sqrt ((rho*g*(x_i (1)+ h_LV001))/100000) -...

(Kv_LV002 *f2_i)/3600* sqrt ((rho*g*...

(x_i (2)+ h_LV002))/100000));

dx3_dt_i = 0;

w1_i = x_i_next (1) - (Ts* dx1_dt_i + x_i (1));

w2_i = x_i_next (2) - (Ts* dx2_dt_i + x_i (2));

w3_i = x_i_next (3) - (Ts* dx3_dt_i + x_i (3));

w_i = [w1_i; w2_i; w3_i];

else

disp(’ Number of states is out of bound .’)

end

end

J_cost_i = (1/2)*(w_i ’* inv(Q)* w_i) + (1/2)*(v_i ’* inv(R)* v_i);

J_i = J_cost_i + J_arrival ;

% Update for i+1

J_arrival = J_i;

end

J = J_i;

else

disp(’The type of the MHE chosen do not exist . ’);

end

end

C.5.6 LMHE_simulink.m

function [output] = LMHE_simulink (input)

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte .

% May , 2023

%%

port_attribute = evalin (’base ’,’ port_attribute ’);

Matlab Code 183

if port_attribute == 2

parameter_struct = evalin (’base ’,’ parameter_struct ’);

h1_meas_horizon = evalin (’base ’,’ h1_meas_horizon ’);

h2_meas_horizon = evalin (’base ’,’ h2_meas_horizon ’);

h1_hat_horizon = evalin (’base ’,’ h1_hat_horizon ’);

h2_hat_horizon = evalin (’base ’,’ h2_hat_horizon ’);

u_PA001_hat_horizon = evalin (’base ’,’ u_PA001_hat_horizon ’);

x_hat_horizon = evalin (’base ’,’ x_hat_horizon ’);

P_k_N_arr = evalin (’base ’,’P_k_N_arr ’);

P_previous = evalin (’base ’,’ P_previous ’);

x_pred_k_N = evalin (’base ’,’ x_pred_k_N ’);

u_horizon = evalin (’base ’,’u_horizon ’);

u_PA001_k = input (1);

u_LV001_k = input (2);

u_LV002_k = input (3);

h1_meas_k = input (4);

h2_meas_k = input (5);

k = input (6);

A = parameter_struct .A; % state transition matrix

B = parameter_struct .B; % input matrix

C = parameter_struct .C; % output matrix

D = parameter_struct .D; % feed - through matrix

A_disc = parameter_struct . A_disc ;

Q = parameter_struct .Q;

R = parameter_struct .R;

n = parameter_struct .n;

m = parameter_struct .m;

N = parameter_struct .N;

Ts = parameter_struct .Ts;

x_lb = parameter_struct .x_lb;

x_ub = parameter_struct .x_ub;

%Set points

h1_0 = parameter_struct .h1_0;

h2_0 = parameter_struct .h2_0;

u_PA001_0 = parameter_struct . u_PA001_0 ;

u_LV001_0 = parameter_struct . u_LV001_0 ;

u_LV002_0 = parameter_struct . u_LV002_0 ;

if n == 3

u_k = [u_LV001_k ; u_LV002_k];

elseif n == 2

% when u_PA001_k is known disturbance

u_k = [u_LV001_k ; u_LV002_k ; u_PA001_k];

end

Matlab Code Appendix C Matlab Code

if m == 2

h_meas_k = [h1_meas_k ; h2_meas_k];

elseif m ==1

h_meas_k = h2_meas_k ;

end

% Update horizons

u_horizon = [u_horizon (: ,2:N), u_k]; % sliding horizon to the right

h2_meas_horizon = [h2_meas_horizon (2:N), h2_meas_k];

if m == 2

h1_meas_horizon = [h1_meas_horizon (2:N), h1_meas_k];

h_meas_horizon = [h1_meas_horizon ; h2_meas_horizon];

elseif m == 1

h_meas_horizon = h2_meas_horizon ;

end

if k <=N

[x_hat , P_previous] = KalmanFilter (x_pred_k_N , P_previous ,h_meas_k ,u_k ,...

parameter_struct ,Q,R);

% Storing

h1_hat_horizon (1,k) = x_hat (1);

h2_hat_horizon (1,k) = x_hat (2);

if n==3

u_PA001_hat_horizon (1,k) = x_hat (3);

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon ; ...

u_PA001_hat_horizon];

else

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon];

end

P_k_N_arr = cat (2, P_k_N_arr , P_previous);

x_pred_k_N = [x_hat (1); x_hat (2)];

if n == 3

x_pred_k_N = [x_hat (1); x_hat (2); x_hat (3)];

end

%Plot

output (1) = h1_hat_horizon (k); % h1_hat_k

output (2) = h2_hat_horizon (k); % h2_hat_k

output (3) = u_PA001_k ;

if n == 3

% Estimating f3 , plotting u_PA001

output (3) = u_PA001_hat_horizon (k); % u_PA001_hat_k

end

end

if k > N % enough samples for the first horizon

% Using model to predict h_k based on estimated state x_k -1

if n == 3

Matlab Code 185

M_dx_dt_k = A*(x_hat_horizon (:,N) - [h1_0; h2_0; u_PA001_0]) +...

B*(u_k -[u_LV001_0 ; u_LV002_0]);

elseif n == 2

M_dx_dt_k = A*(x_hat_horizon (:,N) - [h1_0; h2_0]) +...

B*(u_k -[u_LV001_0 ; u_LV002_0 ; u_PA001_0]);

end

x_pred_k = Ts* M_dx_dt_k + x_hat_horizon (:,N);

% Updating estimate matrix , sliding horizon to the right and

% adding predicted x_k

if n == 3

x_hat_horizon = [[h1_hat_horizon (2:N), x_pred_k (1)];...

[h2_hat_horizon (2:N), x_pred_k (2)];...

[u_PA001_hat_horizon (2:N), x_pred_k (3)]];

elseif n == 2

x_hat_horizon = [[h1_hat_horizon (2:N), x_pred_k (1)];...

[h2_hat_horizon (2:N), x_pred_k (2)]];

end

P = A_disc * P_previous *A_disc ’ - (A_disc * P_previous *C ’*...

(C* P_previous *C’ + R)^(-1)*C* P_previous *A_disc ’) + Q;

P_k_N_arr = cat (2, P_k_N_arr ,P);

P_previous = P;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% new

x_pred_k_N = x_hat_horizon (: ,1); %used in arrival cost function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

idx = size(P_k_N_arr , 2) - (N -1)*n + 1;

% used at time k, but calculated at time k-N

P_k_N = P_k_N_arr (:, idx:idx+n -1);

%%%% Objective function handle %%%%

objective_function_handle = @(x_hat_horizon) ...

ObjectiveFunction (x_hat_horizon ,...

x_pred_k_N ,...

u_horizon ,...

h_meas_horizon ,...

parameter_struct ,...

P_k_N ,’L ’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

options = optimoptions (@fmincon , ’Display ’, ’none ’, ’Algorithm ’,’sqp ’);

x_hat_optimal = fmincon (objective_function_handle , x_hat_horizon ,...

[] ,[] ,[] ,[] , x_lb ,x_ub ,[] , options);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Matlab Code Appendix C Matlab Code

% Updating with optimal solution , adding setting point

h1_hat_horizon = x_hat_optimal (1 ,:);

h2_hat_horizon = x_hat_optimal (2 ,:);

if n == 3

u_PA001_hat_horizon = x_hat_optimal (3 ,:);

end

%Plot

output (1) = h1_hat_horizon (end); % h1_hat_k

output (2) = h2_hat_horizon (end); % h2_hat_k

output (3) = u_PA001_k ;

if n == 3

% Estimating f3 , plotting u_PA001

output (3) = u_PA001_hat_horizon (end); % u_PA001_hat_k

end

end

assignin (’base ’,’ h1_hat_horizon ’, h1_hat_horizon);

assignin (’base ’,’ h2_hat_horizon ’, h2_hat_horizon);

assignin (’base ’,’ u_PA001_hat_horizon ’, u_PA001_hat_horizon);

assignin (’base ’,’ h1_meas_horizon ’, h1_meas_horizon);

assignin (’base ’,’ h2_meas_horizon ’, h2_meas_horizon);

assignin (’base ’,’ x_hat_horizon ’, x_hat_horizon);

assignin (’base ’,’u_horizon ’, u_horizon);

assignin (’base ’,’ P_previous ’, P_previous);

assignin (’base ’,’P_k_N_arr ’, P_k_N_arr);

assignin (’base ’,’ x_pred_k_N ’, x_pred_k_N);

end

end

C.5.7 NMHE_simulink.m

function [output] = NMHE_simulink (input)

%%

% Master Thesis :

% Moving Horizon Estimation for the Two -tank System by Greta Bekeryte .

% May , 2023

%%

port_attribute = evalin (’base ’,’ port_attribute ’);

if port_attribute == 1

parameter_struct = evalin (’base ’,’ parameter_struct ’);

h1_meas_horizon = evalin (’base ’,’ h1_meas_horizon ’);

h2_meas_horizon = evalin (’base ’,’ h2_meas_horizon ’);

h1_hat_horizon = evalin (’base ’,’ h1_hat_horizon ’);

h2_hat_horizon = evalin (’base ’,’ h2_hat_horizon ’);

f3_hat_horizon = evalin (’base ’,’ f3_hat_horizon ’);

x_hat_horizon = evalin (’base ’,’ x_hat_horizon ’);

P_k_N_arr = evalin (’base ’,’P_k_N_arr ’);

Matlab Code 187

P_previous = evalin (’base ’,’ P_previous ’);

x_pred_k_N = evalin (’base ’,’ x_pred_k_N ’);

u_horizon = evalin (’base ’,’u_horizon ’);

u_PA001_k = input (1);

u_LV001_k = input (2);

u_LV002_k = input (3);

h1_meas_k = input (4);

h2_meas_k = input (5);

k = input (6);

A1 = parameter_struct .A1;

Kv_LV001 = parameter_struct . Kv_LV001 ;

Kv_LV002 = parameter_struct . Kv_LV002 ;

rho = parameter_struct .rho;

g = parameter_struct .g;

h1_min = parameter_struct . h1_min ;

h1_max = parameter_struct . h1_max ;

h2_min = parameter_struct . h1_min ;

h2_max = parameter_struct . h1_max ;

h_LV001 = parameter_struct . h_LV001 ;

h_LV002 = parameter_struct . h_LV002 ;

u_LV001 = parameter_struct . u_LV001 ;

u_LV002 = parameter_struct . u_LV002 ;

f_LV001 = parameter_struct . f_LV001 ;

f_LV002 = parameter_struct . f_LV002 ;

u_PA001 = parameter_struct . u_PA001 ;

q_PA001 = parameter_struct . q_PA001 ;

Q = parameter_struct .Q;

R = parameter_struct .R;

n = parameter_struct .n;

m = parameter_struct .m;

N = parameter_struct .N;

Ts = parameter_struct .Ts;

C = parameter_struct .C;

x_lb = parameter_struct .x_lb;

x_ub = parameter_struct .x_ub;

if n == 3

u_k = [u_LV001_k ; u_LV002_k];

elseif n == 2

u_k = [u_LV001_k ; u_LV002_k ; u_PA001_k];

end

% Process derivatives and integration

f3_k = interp1 (u_PA001 ,q_PA001 , u_PA001_k);

f1_k = interp1 (u_LV001 ,f_LV001 , u_LV001_k);

f2_k = interp1 (u_LV002 ,f_LV002 , u_LV002_k);

Matlab Code Appendix C Matlab Code

if m == 2

h_meas_k = [h1_meas_k ; h2_meas_k];

elseif m ==1

h_meas_k = h2_meas_k ;

end

% Update horizons

u_horizon = [u_horizon (: ,2:N), u_k]; % sliding horizon to the right

h2_meas_horizon = [h2_meas_horizon (2:N), h2_meas_k];

if m == 2

h1_meas_horizon = [h1_meas_horizon (2:N), h1_meas_k];

h_meas_horizon = [h1_meas_horizon ; h2_meas_horizon];

elseif m == 1

h_meas_horizon = h2_meas_horizon ;

end

% initial Arrival cost update given measurements up to time k <=N

if k <=N

if n == 3

f3_pred_k_N = interp1 (u_PA001 ,q_PA001 , x_pred_k_N (3));

x_pred_k_N = [x_pred_k_N (1:2); f3_pred_k_N];

end

[x_hat , P_previous] = ExtendedKalmanFilter (x_pred_k_N , P_previous ,...

h_meas_k ,u_k ,...

parameter_struct ,Q,R);

% Storing

h1_hat_horizon (1,k) = x_hat (1);

h2_hat_horizon (1,k) = x_hat (2);

if n == 3

f3_hat_horizon (1,k) = x_hat (3);

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon ; f3_hat_horizon];

else

x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon];

end

P_k_N_arr = cat (2, P_k_N_arr , P_previous);

x_pred_k_N = [x_hat (1); x_hat (2)];

if n == 3

x_pred_k_N = [x_hat (1); x_hat (2); interp1 (q_PA001 ,u_PA001 , x_hat (3))];

end

%Plot

output (1) = h1_hat_horizon (k); % h1_hat_k

output (2) = h2_hat_horizon (k); % h2_hat_k

output (3) = u_PA001_k ;

if n == 3

% Estimating f3 , plotting u_PA001

Matlab Code 189

output (3) = interp1 (q_PA001 ,u_PA001 , f3_hat_horizon (k));

% u_PA001_hat_k

end

end

if k > N % enough samples for the first horizon

% Using model to predict x_k based on estimated state x_k -1

if n == 3

M_dh1_dt_k = (1/ A1)*(x_hat_horizon (3,N) -((Kv_LV001 *f1_k)/3600)*...

sqrt ((rho*g*(x_hat_horizon (1,N)+ h_LV001))/100000));

elseif n == 2

M_dh1_dt_k = (1/ A1)*(f3_k -((Kv_LV001 *f1_k)/3600)*...

sqrt ((rho*g*(x_hat_horizon (1,N)+...

h_LV001))/100000));

end

M_dh2_dt_k = (1/(0.07* x_hat_horizon (2,N)+0.004))*(((Kv_LV001 *f1_k)/...

3600)* sqrt ((rho*g*(x_hat_horizon (1,N)+...

h_LV001))/100000) -(Kv_LV002 *f2_k)/3600* sqrt ((rho*g*...

(x_hat_horizon (2,N)+ h_LV002))/100000));

M_df3_dt_k = 0;

h1_pred_k = Ts* M_dh1_dt_k + x_hat_horizon (1,N);

h2_pred_k = Ts* M_dh2_dt_k + x_hat_horizon (2,N);

if n == 3

f3_pred_k = Ts* M_df3_dt_k + x_hat_horizon (3,N);

end

% Physical constraints

if h1_pred_k < h1_min

h1_pred_k = h1_min ;

end

if h2_pred_k < h2_min

h2_pred_k = h2_min ;

end

if h1_pred_k > h1_max

h1_pred_k = h1_max ;

end

if h2_pred_k > h2_max

h2_pred_k = h2_max ;

end

if n == 3

if f3_pred_k < 0

f3_pred_k = 0;

end

if f3_pred_k > 0.000333

f3_pred_k = 0.000333;

end

Matlab Code Appendix C Matlab Code

end

% Updating estimate matrix , sliding horizon to the right and adding

% predicted x_k

if n == 3

x_hat_horizon = [[h1_hat_horizon (2:N), h1_pred_k];...

[h2_hat_horizon (2:N), h2_pred_k];...

[f3_hat_horizon (2:N), f3_pred_k]];

elseif n == 2

x_hat_horizon = [[h1_hat_horizon (2:N), h1_pred_k];...

[h2_hat_horizon (2:N), h2_pred_k]];

end

% updating error covariance matrix used in Arrival cost

if n == 3

u_PA001_tr = interp1 (q_PA001 ,u_PA001 , x_hat_horizon (3, end));

A = Amatrix (x_hat_horizon (1, end), x_hat_horizon (2, end) ,...

u_PA001_tr ,u_LV001_k ,u_LV002_k , parameter_struct);

elseif n == 2

A = Amatrix (x_hat_horizon (1, end), x_hat_horizon (2, end) ,...

u_PA001_k ,u_LV001_k ,u_LV002_k , parameter_struct);

end

P = A* P_previous *A’ - (A* P_previous *C ’*(C* P_previous *C’ + ...

R)^(-1)*C* P_previous *A ’) + Q;

P_k_N_arr = cat (2, P_k_N_arr ,P);

P_previous = P;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x_pred_k_N = x_hat_horizon (: ,1); %used in arrival cost function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

idx = size(P_k_N_arr , 2) - N*n + 1;

% used at time k, but calculated at time k-N

P_k_N = P_k_N_arr (:, idx:idx+n -1);

%%%% Objective function handle %%%%

objective_function_handle = @(x_hat_horizon) ...

ObjectiveFunction (x_hat_horizon ,...

x_pred_k_N ,...

u_horizon ,...

h_meas_horizon ,...

parameter_struct ,...

P_k_N ,’N ’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

options = optimoptions (@fmincon ,’Display ’, ’none ’,’Algorithm ’ ,...

’active -set ’);

%,’ OptimalityTolerance ’,1e-10,’ StepTolerance ’,1e -10);

x_hat_optimal = fmincon (objective_function_handle , x_hat_horizon ,...

Matlab Code 191

[] ,[] ,[] ,[] , x_lb ,x_ub ,[] , options);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Updating with optimal solution , adding setting point

h1_hat_horizon = x_hat_optimal (1 ,:);

h2_hat_horizon = x_hat_optimal (2 ,:);

if n == 3

f3_hat_horizon = x_hat_optimal (3 ,:);

end

%Plot

output (1) = h1_hat_horizon (end); % h1_hat_k

output (2) = h2_hat_horizon (end); % h2_hat_k

output (3) = u_PA001_k ;

if n == 3

% Estimating f3 , plotting u_PA001

output (3) = interp1 (q_PA001 ,u_PA001 , f3_hat_horizon (end));

% u_PA001_hat_k

end

end

assignin (’base ’,’ h1_hat_horizon ’, h1_hat_horizon);

assignin (’base ’,’ h2_hat_horizon ’, h2_hat_horizon);

assignin (’base ’,’ f3_hat_horizon ’, f3_hat_horizon);

assignin (’base ’,’ h1_meas_horizon ’, h1_meas_horizon);

assignin (’base ’,’ h2_meas_horizon ’, h2_meas_horizon);

assignin (’base ’,’ x_hat_horizon ’, x_hat_horizon);

assignin (’base ’,’u_horizon ’, u_horizon);

assignin (’base ’,’ P_previous ’, P_previous);

assignin (’base ’,’P_k_N_arr ’, P_k_N_arr);

assignin (’base ’,’ x_pred_k_N ’, x_pred_k_N);

end

end

C.5.8 parameters.m

%% Parameters of two -tank system

% clear all; close all

% The following code is from ELE320 Refuleringteknikk that describes

% Pump and valve characteristics and system parameters .

rho = 1000; % water density [kg/m^3]

g = 9.81; % gravitational acceleration [m/s ^2]

c_p = 4200; % water heat capacity [j/kg*K]

Kv_LV001 = 11.25; % valve constant LV001 [m^3/h] @1bar pressure drop

h_LV001 = 0.05; % height LV001 [m]

h1_max = 1; % max height tank 1 [m]

h1_min = 0.13; % min height tank 1 [m]

Matlab Code Appendix C Matlab Code

A1 = 0.01; % area tank 1 [m ^2]

Kv_LV002 = 11.25; % ventilkonstant LV002 [m3/h]

h_LV002 = 0.25; % height between the bottom of the tank 2 and LV002

h2_max = 0.4; % max height tank 2 [m]

h2_min = 0.02; % min height tank 2 [m]

% Pump characteristic

u_PA001 = [0.45 0.46 0.47 0.48 0.49 0.50 0.55...

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

q_PA001 = [0.00 1.25 2.25 3.15 3.75 4.40 6.75...

8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

q_PA001 = q_PA001 /60000; % liters / time -> m3/s q_PA001 =f3(u_PA001)

% figure (1)

%plot(u_PA001 ,q_PA001 ,’*-’)

% title (’Pump characteristic ’)

% xlabel (’ Control signal u_{ PA001 }(t) to pump PA001 ’)

% ylabel (’ Volume flow q_{ PA001 }(t) through PA001 [m ^3/ s]’)

% Ventilkarakteristikk

u_LV001 = 0:0.03:1;

f_LV001 = (exp(u_LV001 .^1.2) -1)/(exp (1) -1);

u_LV002 = u_LV001 ;

f_LV002 = f_LV001 ;

% figure (2)

%plot (u_LV00i ,f_LV001 ,’*-’)

% title (’ Valve characteristic for LV001 og LV002 ’)

% xlabel (’ Control signal u_{ LV00i }(t)’)

% ylabel (’f(u_{ LV00i }(t)) ’)

% End of the code from ELE320 Reguleringsteknikk

Appendix D

Project Poster and Project Plan

193

Project Poster and Project Plan Appendix D Project Poster and Project Plan

M
o

vi
n

g
 H

o
ri

zo
n

 E
st

im
a

ti
o

n
 f

o
r

th
e

 t
w

o
-t

a
n

k
 s

y
st

e
m

G
re

ta
 B

ek
er

yt
e,

 2
3

49
29

 P
e

ri
o

d
 H

ig
h

lig
h

t:
5 W
EE

K

5
6

7
8

9
10

1
1

1
2

13
14

1
5

1
6

17
1

8
1

9
2

0
21

22
2

3
2

4
25

26

P
ro

je
ct

 s
ta

rt
 a

n
d

 p
la

n
n

in
g

5
1

5
1

10
0

%

Li
te

ra
tu

re
 s

tu
d

y
an

d
 a

n
al

ys
is

 o
f

th
e

st
at

e
 o

f
ar

t
o

f
M

H
E

5
3

5
3

10
0

%

P
la

n
n

in
g

th
e

w
o

rk
 a

n
d

 r
ep

o
rt

 s
tr

u
ct

u
re

7
2

7
1

10
0

%

Si
m

u
la

ti
o

n
 e

n
vi

ro
m

en
t

se
tu

p

9
1

8
1

10
0

%

Im
p

le
m

e
n

ta
ti

o
n

 a
n

d
 e

va
lu

at
io

n
 o

f
Li

n
ea

r
M

H
E

9
3

9
3

10
0

%

Im
p

le
m

e
n

ta
ti

o
n

 a
n

d
 e

va
lu

at
io

n
 o

f
N

o
n

lin
ea

r
M

H
E

1
2

4
1

2
3

10
0

%

Ev
al

u
at

io
n

 a
n

d
 A

n
al

ys
is

 o
f

d
if

fe
re

n
t

N
M

H
E

o
p

ti
m

iz
at

io
n

 a
lg

o
ri

th
m

s
1

5
1

1
4

1
10

0
%

C
o

m
p

ar
is

o
n

 o
f

M
H

E
ag

ai
n

st
 K

al
m

an
 f

ilt
e

r
an

d

Ex
te

n
d

ed
 K

al
m

an
 f

ilt
er

1
6

1
1

4
4

10
0

%

Ex
p

e
ri

m
en

ta
l v

al
id

at
io

n
 o

f
th

e
 d

es
ig

n
 M

H
E

1
7

3
1

6
6

10
0

%

Ev
al

u
at

io
n

 o
f

p
o

ss
ib

lit
y

to
 im

p
le

m
en

t
M

H
E

to
ge

th
er

w
it

h
 M

P
C

 (
G

en
t

Lu
ta

)
fo

r
ex

p
er

im
en

ta
l v

al
id

at
io

n
1

9
2

2
3

1
10

0
%

R
ep

o
rt

8

1
7

8
1

7
10

0
%

M
ile

st
o

n
e:

 F
ir

st
 D

ra
ft

 R
e

p
o

rt
24

.F
eb

ru
ar

y
8

1
8

1
10

0
%

M
ile

st
o

n
e:

 S
e

co
n

d
 D

ra
ft

 R
e

p
o

rt
31

.M
ar

ch
1

3
1

1
3

1
10

0
%

M
ile

st
o

n
e:

 T
h

ir
d

 D
ra

ft
 R

ep
o

rt
28

.A
p

ri
l

1
7

1
1

7
1

10
0

%

M
ile

st
o

n
e:

 F
o

u
rt

h
 D

ra
ft

 R
e

p
o

rt
02

.J
u

n
2

2
1

2
2

1
10

0
%

M
ile

st
o

n
e:

 R
ep

o
rt

 S
u

b
m

is
si

o
n

15
.J

u
n

2
4

1
2

4
1

10
0

%

Ju
n

e

%
 C

o
m

p
le

te
 (

b
ey

o
n

d
 p

la
n

)

A
C

TI
V

IT
Y

P
LA

N
 S

TA
R

T
P

LA
N

D
U

R
A

TI
O

N

A
C

TU
A

L

ST
A

R
T

A
C

TU
A

L

D
U

R
A

TI
O

N

P
ER

C
EN

T

C
O

M
P

LE
TE

P
la

n
 D

u
ra

ti
o

n
A

ct
u

al
 S

ta
rt

%
 C

o
m

p
le

te
A

ct
u

al
 (

b
ey

o
n

d
 p

la
n

)

F
eb

ru
ar

M
ar

ch
A

p
ri

l
M

ay

Project Poster and Project Plan 195

Moving Horizon Estimation for the Two-tank System
Greta Bekerytė, Master Thesis

Universitet I Stavanger

Greta Bekerytė,
Email: g.bekeryte@uis.stud.no, Phone: 95280905

Information on the variables that uniquely defines the
state of the system at any given time is the essential
condition for effective monitoring and control of a process.
One of the substantial disadvantages of commonly used
estimation techniques such as Kalman filter or Luenberger
observer is the inability to directly address or incorporate
constraints in the optimization process. Moving Horizon
Estimation (MHE) is an optimization-based approach that
considers the constraints as part of the optimization
problem.

MHE can improve the
state estimation
performance, however, at
the cost of increased
computational load and is
thus, more suitable to be
applied to processes
where there is availability
for enough computational
resources, e.g., in the case
of systems with slow
dynamics. This project
aims at designing and
implementing an MHE-
based state estimator to
observe the state of the

two-tank system (shown in Fig. 1) available in the
laboratory at KE E-458 and compare its performance
against more conventional state estimation techniques.

Abstract

The performance of LMHE is compared with widely used
Kalman filter, while NMHE is compared with Extended
Kalman filter. In addition, different estimators are evaluated
at four different two-tank dynamical model scenarios:
• Estimation of two states (h1 and h2) given two

measurements (h1 and h2), and one measurement (h2).
• Estimation of three states (h1 , h2 and uPA001) given two

measurements (h1 and h2). and one measurement (h2).
Some of the results are presented in figures 4, 5 and 6. The
estimation by MHE is done with horizon length 𝑁𝑁 = 10.

Moving Horizon Estimation

Figure 3, illustrates the concept behind one time instance of
MHE.

At each iteration, a new initial state is the second element
from the previous estimation horizon, thus, the horizons are
shifted continuously to the right, taking into consideration
the newest measurements and control inputs while
dropping the oldest as shown in the Fig. 2. The MHE
optimization problem is solved repeatedly at each time
instance using nonlinear programming solver. The arrival
cost covariance matrix, 𝑃𝑃𝑘𝑘−𝑁𝑁, is updated recursively subject
to initial condition, 𝑃𝑃0, using Kalman filter covariance
update equation.

In this project two variants of MHE are considered, linear
moving horizon estimation (LMHE) and nonlinear moving
horizon estimation (NMHE). In a LMHE an objective function
formulation involves describing the system dynamics using
linear equations. Since the two-tank system is nonlinear, the
LMHE uses linearized two-tank dynamical model, whereas
the NMHE incorporates nonlinear differential equations.
The state variables for the two-tank system, the water level
in tank 1, the water level in tank 2 and the water flow from
the pump are physically constrained. The water level is
bounded by the tank size while the water flow rate is limited
by the pump capacity. Hence, the two-tank MHE problem is
subject to the box constraints, i.e., the lower and upper
bounds of the state variables.

The LMHE and NMHE are implemented in Matlab. The
optimization problem is solved using in-built Matlab
function fmincon.

Implementation

The overall performance of all four estimators is
good. However, as expected, due to linearization
errors the estimation error for LMHE and Kalman
filter increases when the system deviates from the
original operating point. As in the Fig.4. estimation
error becomes even bigger if only one measurement
is available. The confidence in the model is high
resulting in high process noise related errors.

In general, the MHE performance is better than
Kalman filters (KF and EKF) in estimating three
states. The resulting estimate of the disturbance,
uPA001, is less noisy. However, at the cost of water
level estimates accuracy.

The LMHE and KF estimation of the three states
given one measurement, presented in Fig. 6, is noisy,
delayed and inaccurate. This is due to low
observability and relative high measurement noise.
But it is evident that the LMHE performs better than
KF. The performance of the NMHE and EKF is worse.
In contrast to LMHE, NMHE introduces additional
complexity associated with nonconvexity, along with
the uncertainties arising from measurement noise
and low observability.

In brief, MHE is powerful, and yet, complex and
computationally inefficient estimation technique. In
addition, the MHE performance relies on good
optimization performance, adequate parameters
and right choice of weighting matrices. The LMHE is
simpler and more efficient than NMHE. If the
operating range of the two-tank system is narrow,
the LMHE is the preferred choice.

Conclusions
Results

Figure 4. Estimation of h1 and h2 given the measurement h2.

The principle of Moving Horizon Estimation is to
continuously update the estimates of the states by solving
an optimization problem using a finite sequence of most
recent measurements and control inputs. Hence, the
optimization problem is solved over a fixed-size moving
window. This is illustrated in Fig. 2.

The MHE objective function is formulated as a least-
sqaures estimation problem and is given by:

The objective is to minimize the influence of the
measurement error, the non-measured process
disturbance and the arrival cost (summarizes past
information outside the estimation window) over the
estimation horizon subject to the constraints of the system.
The constraints can be modelled as equality, inequality or
box constraints. Thus, the optimization problem is solved
by minimizing a weighted sum of squared errors of initial
condition, system model dynamics and measurements in
the time interval [𝑘𝑘 − 𝑁𝑁, 𝑘𝑘]. The solution of the objective
function yields the sequence of the optimal state
estimates, �𝑥𝑥 = �𝑥𝑥𝑘𝑘−𝑁𝑁𝑇𝑇 , … , �𝑥𝑥𝑘𝑘𝑇𝑇

𝑇𝑇
.

Figure 5. Estimation of h1 , h2 and uPA001 given the measurements h1
and h2.

Figure 6. Estimation of h1 , h2 and uPA001 given the measurement h2 .

Figure 2. Moving Horizon Estimation.

Figure 3. An overview of one Moving Horizon Estimation iteration.

Figure 1. A simplified version of the
two-tank system schematic sketch.

Bibliography

[1] User Sdo. File:simplex-method-3-dimensions.png, 2006. URL https://en.

wikipedia.org/wiki/File:Simplex-method-3-dimensions.png#filelinks.

Accessed: 2023-04-20.

[2] Tormod Drengstig. Totankøving 1. motivasjon og modellering, 2018. ELE320

Reguleringsteknikk.

[3] C.V. Rao, J.B. Rawlings, and Jay H. Lee. Constrained linear state estimation - a

moving horizon approach. Automatica, 37:1619–1628, 2001.

[4] Masoud Soroush. State and parameter estimations and their applications in process

control. Computers & Chemical Engineering, 23(Issue 2):229–245, 1998.

[5] Max Boegli. Real-Time Moving Horizon Estimation for Advanced Motion Control.

Application to Friction State and Parameter Estimation. PhD thesis, KU Leuven –

Faculty of Engineering Science, 2014.

[6] Rudolf E. Kalman. On the general theory of control systems. IFAC Proceedings

Volumes, 1(Issue 1):491–502, 1960.

[7] Rudolf E. Kalman, Peter L. Falb, and Michael A. Arbib. Topics in Mathematical

System Theory. International series in pure and applied mathematics. McGraw-Hill,

1969.

[8] Chi-Tsong Chen. Linear System Theory and Design. The Oxford Series in Electrical

and Computer Engineering. Oxford University Press, Inc., third edition, 1999.

[9] Eduardo D. Sontag. Mathematical Control Theory. Texts in Applied Mathematics.

Springer New York, NY, second edition edition, 2013.

197

https://en.wikipedia.org/wiki/File:Simplex-method-3-dimensions.png#filelinks
https://en.wikipedia.org/wiki/File:Simplex-method-3-dimensions.png#filelinks

Bibliography BIBLIOGRAPHY

[10] David G. Luenberger. Observing the state of a linear system. IEEE Transactions

on Military Electronics, 8(Issue 2:74–80, 1964.

[11] Rudolf E. Kalman. A new approach to linear filtering and prediction problems.

Transactions of the ASME–Journal of Basic Engineering, 82(Series D:35–45, 1960.

[12] Robert G. Brown. Introduction to random signal analysis and Kalman filtering.

John Wiley Sons, Inc., 1983.

[13] Greg Welch and Gary Bishop. An introduction to the kalman filter. Department of

Computer Science University of North Carolina, page 16, 1999.

[14] James B. Rawlings, David Q. Mayne, and Moritz M. Diehl. Model Predictive Control:

Theory, Computation, and Design. Nob-Hill, 2017.

[15] James B. Rawlings and Luo Ji. Optimization-based state estimation: current status

and some new results. Journal of Process Control, 22:1439–1444, 2012.

[16] C.V. Rao, J.B. Rawlings, and D.Q. Mayne. Constrained state estimation for

nonlinear discrete-time systems: Stability and moving horizon approximations.

IEEE transactions on automatic control, 48(2):246–258, 2003.

[17] S Ungarala. Computing arrival cost parameters in moving horizon estimation using

sampling based filters. Journal of Process Control, 19(9):1576–1588, 2009.

[18] Douglas G. Robertson, Jay H. Lee, and James B. Rawlings. A moving horizon-based

approach for least-squares estimation. AIChE Journal, 42(Issue 8):2209–2224, 1996.

[19] Thomas F. Edgar, David M. Himmelblau, and Leon Lasdon. Optimization of

Chemical Processes. McGraw-Hill Chemical Engineering Series. McGraw-Hill, second

edition edition, 2001.

[20] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-

sity Press, seventh edition edition, 2009.

[21] Hédi Nabli. An overview on the simplex algorithm. Applied Mathematics and

Computation, 210(2):479–489, 2009.

[22] MathWorks. Optimization toolbox, 2023. URL https://se.mathworks.com/help/

optim/index.html?s_tid=CRUX_lftnav. Accessed: 2023-04-20.

https://se.mathworks.com/help/optim/index.html?s_tid=CRUX_lftnav
https://se.mathworks.com/help/optim/index.html?s_tid=CRUX_lftnav

Bibliography 199

[23] MathWorks. Documentation, 2023. URL https://se.mathworks.com/help/index.

html?s_tid=CRUX_lftnav. Accessed: 2023-04-10.

[24] MathWorks. Documentation, 2023. URL https://se.mathworks.com/help/

optim/ug/fmincon.html#responsive_offcanvas. Accessed: 2023-04-15.

[25] Thomas Coleman, Mary Ann Branch, and Andrew Grace. Optimization Toolbox For

Use with Matlab. User’s Guide. The MathWorks Inc., second version edition, 1999.

[26] MathWorks. Global Optimization Toolbox R2011b Matlab. User’s Guide. The

MathWorks Inc., 2011.

[27] MathWorks. Improving performance with parallel comput-

ing, 2023. URL https://se.mathworks.com/help/optim/ug/

improving-performance-with-parallel-computing.html. Accessed: 2023-

05-15.

[28] Graham Clifford Goodwin, Jose A. De Dona, Maria M. Seron, and Xiang W. Zhuo.

Lagrangian duality between constrained estimation and control. Automatica, 41(6):

935–944, 2005.

https://se.mathworks.com/help/index.html?s_tid=CRUX_lftnav
https://se.mathworks.com/help/index.html?s_tid=CRUX_lftnav
https://se.mathworks.com/help/optim/ug/fmincon.html#responsive_offcanvas
https://se.mathworks.com/help/optim/ug/fmincon.html#responsive_offcanvas
https://se.mathworks.com/help/optim/ug/improving-performance-with-parallel-computing.html
https://se.mathworks.com/help/optim/ug/improving-performance-with-parallel-computing.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	Abbreviations
	Symbols
	1 Introduction
	1.1 Background and Motivation
	1.2 Objectives
	1.3 Approach and Contributions
	1.4 Outline

	2 State Estimation
	2.1 Dynamical System Representation and Notation
	2.2 Observability and Detectability
	2.3 Luenberger Observer
	2.4 Kalman Filter
	2.5 Extended Kalman Filter
	2.6 Full Information Estimation
	2.7 Moving Horizon Estimation
	2.7.1 Arrival Cost Update
	2.7.2 MHE Constraints
	2.7.3 Estimation of System Parameters and Distrubances
	2.7.4 Tuning Parameters

	3 Optimization
	3.1 Optimization Problem
	3.2 Optimization Classes and Methods
	3.2.1 Least-Squares Optimization
	3.2.2 Linear Programming
	3.2.3 Convex Programming
	3.2.4 Nonlinear Programming

	3.3 Matlab In-built Functions

	4 Implementation
	4.1 Linear Moving Horizon Estimation
	4.1.1 Linearization of Two-tank System
	4.1.2 Implementation
	4.1.3 In-built fmincon for Constrained Optimization
	4.1.4 Verification of LMHE

	4.2 Nonlinear Moving Horizon Estimation
	4.2.1 Implementation
	4.2.2 Verification of NMHE

	4.3 Simulink Implementation

	5 Results
	5.1 Simulation Environment
	5.1.1 LMHE
	5.1.2 NMHE
	5.1.3 MHE Efficiency

	5.2 Real Data Estimation
	5.3 Experimental MPC and MHE Results

	6 Conclusions
	A The Two-tank System
	A.1 Process Description
	A.2 Valves and Pump Characteristics
	A.3 Dynamic Model of Tank 1
	A.4 Dynamic Model of Tank 2

	B Additional Results
	B.1 NMHE Verification
	B.2 Simulation Environment Results
	B.2.1 LMHE
	B.2.2 NMHE
	B.2.3 LMHE and NMHE (increased measurement noise)

	B.3 Real Data Estimation Results
	B.3.1 LMHE
	B.3.2 NMHE
	B.3.3 On-line Results

	C Matlab Code
	C.1 LMHE.m
	C.2 NMHE.m
	C.3 LMHE_Simulink_init.m
	C.4 NMHE_Simulink_init.m
	C.5 Functions
	C.5.1 Amatrix.m
	C.5.2 ExtendedKalmanFilter.m
	C.5.3 KalmanFilter.m
	C.5.4 linearization.m
	C.5.5 ObjectiveFunction.m
	C.5.6 LMHE_simulink.m
	C.5.7 NMHE_simulink.m
	C.5.8 parameters.m

	D Project Poster and Project Plan
	Bibliography

