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“Concern for man and his fate must always form the chief interest of all technical endeavors

... Never forget this in the midst of your diagrams and equations.”

Albert Einstein



Abstract

Computed tomography perfusion (CTP) imaging is crucial for diagnosing and determining
the extent of damage in cerebral stroke patients [1]. Automatic segmentation of ischemic
core and penumbra regions in CTP images is desired, given the limitations of manual
examination. Self-supervised segmentation has gained attention [2], but it requires a
large training set that can be obtained by synthesizing CTP images. Deep convolutional
generative adversarial networks (DCGANs) have been used for this purpose [3], but
high-resolution image synthesis remains a challenge. To address this, we propose to
tailor the high-resolution transformer-based generative adversarial network (HiT-GAN)
model, proposed by Zhao et al. [4], which utilizes vision transformers and self-attention

mechanisms for the purposes of generating high-quality CTP data.

Our proposed model was trained using CTP images from 157 patients, categorized
based on vessel occlusion. The dataset consisted of 70,050 raw data images, which
were normalized and downsampled. Comparative evaluation with DCGAN showed that
HiT-GAN achieved a significantly lower fréchet inception distance (FID) score of 77.4,
compared to 143.0 for the DCGAN, indicating superior image generation performance.
The generated images were visually compared with real samples, demonstrating promising
results. While the current focus is on generating 2D images, future work aims to extend

the model to generate 3D CTP data conditioned on labeled brain slices.

Overall, our study highlights the potential of HiT-GAN for synthesizing high-resolution
CTP images, although its significance in advancing automatic segmentation techniques

for ischemic stroke analysis is yet to be examined.
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Chapter 1

Introduction

This chapter will provide an exposition of the background and motivation that underlie
the work conducted in this project. It will be followed by a comprehensive explanation
of the research challenges. Subsequently, the thesis objectives, designed to address the
problem definition, will be presented. Finally, the primary contributions of the research
conducted in this project will be introduced, accompanied by a comprehensive overview

of the thesis’s structure and contents.

1.1 Background and motivation

A stroke, medically known as a cerebrovascular accident, occurs when there is a blockage
or rupture of a cerebral artery, leading to a disruption in the brain’s supply of oxygen-rich
blood [5]. This critical event promptly induces cerebral ischemia, resulting in the rapid
demise of brain tissue. The consequences of a stroke can be profound and varied, ranging
from long-lasting disability and significant cognitive impairments to fatality. The severity
and timeliness of treatment play a crucial role in determining the ultimate outcome for
the affected individual, as prompt medical intervention can mitigate the extent of brain

damage and enhance the chances of recovery.

In 2019, the global burden of stroke was substantial, with an estimated 113.2 million
global cases reported [6]. Among these cases, 12.2 million were incident cases, indicating
newly occurring instances, while the remaining 101 million cases were prevalent, repre-
senting ongoing cases. Notably, stroke accounted for 6.55 million deaths, highlighting its
significant impact on mortality rates. Stroke continues to be a prominent global health

concern, ranking second among the causes of death worldwide [7].
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Over the past few decades, there has been a prominent increase in the prevalence of
strokes. According to Feigin et al. [6], from 1990 to 2019, the number of incident cases
rose by 70%, while prevalent cases witnessed an 85% increase. Additionally, stroke-related
deaths experienced a 43% rise during the same period. These alarming trends underscore
the growing burden of stroke, particularly in low-income countries. Addressing this public
health challenge is crucial to mitigate the adverse effects of stroke and improve global

health outcomes [7, 8].

Upon admission to the hospital, patients suspected of this medical condition typically
undergo a standardized protocol that includes a head scan utilizing Computed Tomog-
raphy Perfusion (CTP). This procedure generates comprehensive CTP data, providing
a three-dimensional depiction of the cranial region. Furthermore, specialized software
applications enable the conversion of this data into parametric maps, which effectively
illustrate the perfusion dynamics, which is the temporal flow of blood throughout the
brain [9]. Subsequently, medical professionals are tasked with carefully analyzing these
maps to identify the location and extent of the infarcted region, as well as to assess its
severity. This diagnostic endeavor can be intricate and time-sensitive, given that the
surrounding tissue, known as the penumbra, may still contain viable and salvageable

cells.

Ambitious endeavors, exemplified by the work of Tomasetti et al. (2023) [2], are pushing
the boundaries of neural network applications by implementing self-supervised segmen-
tation of the infarcted core, comprising dead tissue, from the surrounding penumbra.
While these advancements hold tremendous promise for the future of diagnostic practices,
it is essential to acknowledge the limitations inherent in the labeled medical datasets
utilized for such complex tasks. Algorithms such as the aforementioned self-supervised
segmentation demand copious amounts of annotated data to attain a level of proficiency
that yields accurate outcomes. However, the availability of such data within the medical
domain remains notoriously scarce and compounded by the sensitivity of the information

it encompasses. These limitations will be expounded upon in the subsequent section.

Recent efforts have diligently addressed these limitations, including the notable master
thesis conducted by Korkmaz et al. (2021) [3], which made significant advances in
synthesizing CTP data using various techniques, notably leveraging a Deep Convolutional
Generative Adversarial Network (DCGAN) model [10]. Building upon the foundation
established by Korkmaz’s thesis, this project aims to further advance the field by adopting
the cutting-edge architecture of the vision transformer (Sec. 3.6) as a replacement for
the conventional Convolutional Neural Network (CNN) [11] employed in the previous
work [3]. This strategic approach is driven by the ambition to generate superior CTP

data, which can be utilized for training advanced self-supervised segmentation algorithms,
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among other significant applications. By embracing the vision transformer architecture,
the project aspires to unlock new potentials in the realm of medical image synthesis and

analysis.

1.2 Problem definition

At Stavanger University Hospital (SUH), patients suspected of ischemic stroke are
routinely investigated using CTP, and parametric color-coded maps describing the blood
perfusion are calculated. These maps aid in the decision on who needs immediate
thrombolytic treatment and/or interventional thrombectomy and are important in saving
lives and reducing the possibility of severe disability. Nevertheless, these parametric maps
are far from perfect in diagnostic accuracy, and further improvement of the methods in
use is needed [12-14].

It is possible to utilize deep neural networks (NN) to provide models for identifying
the regions of an image that are important in terms of discriminating between patient
classes, or tissue classes. However, obtaining enough training medical data for a successful
neural network is usually a difficult and time-demanding task. Thus, we propose to use
generative adversarial networks (GAN) with vision transformers to synthesize new CTP
data to be used for training the classification networks. Given the significance of detailed
information in such data, a carefully selected model that prioritizes high-resolution
images has been adopted: this will be denoted as the High-resolution Transformer-based
GAN (HiT-GAN) [4]. This choice ensures the capacity to capture intricate nuances and
enhance the quality of the synthesized CTP data.

1.3 Objectives

The primary objective of this study is to synthesize artificial CTP data by implementing
different GAN models. This endeavor aims to artificially augment datasets comprising
medical data, enabling their utilization for automated tasks, as highlighted in the
preceding section. A notable emphasis will be placed on the integration of vision
transformers, as they are a pivotal focal point in this research. The thesis objectives are

succinctly summarized in the following paragraphs.

The first approach extends the method proposed in [3], which should serve as a good
baseline. It involves employing the DCGAN model to generate CTP images. This is to

establish a foundation for comparison with the novel approach.
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The second approach introduces a newly adopted model called HiT-GAN into the
generative process. HiT-GAN incorporates vision transformers, which have shown
promising results in various image-related tasks. By utilizing HiT-GAN, the goal is to

enhance the quality and diversity of synthetic CTP images.

To evaluate and compare the performance of the two models, DCGAN and HiT-GAN, a
comprehensive comparative analysis of the generated CTP data should be conducted.
This analysis focuses on examining the characteristics, strengths, and weaknesses of each
model. By thoroughly assessing the outputs from both approaches, valuable insights can

be gained into their respective capabilities and areas for improvement.

1.4 Main contributions

This thesis presents several significant contributions in the field of synthesizing CTP

data.

The primary contribution is the implementation of a GAN model that utilizes

vision transformers for the purpose of generating CTP images.

o In contrast to previous approaches that utilized preprocessed data [3], our approach

focuses on the generation of synthetic data starting directly from raw CTP scans.

o The thesis introduces the use of the Fréchet Inception Distance (FID) metric as an
evaluation tool for assessing the quality and similarity between the generated CTP

data and the original training data.

e This thesis includes a comprehensive comparison between the vision transformer-
based GAN model and the DCGAN model. Through various metrics and qualitative

assessments, the strengths and limitations of each model are identified and discussed.

1.5 Thesis outline

The subsequent chapters of this thesis are organized to provide a comprehensive ex-
ploration of the topic. Chapter 2 delves into the relevant medical background theory,
offering a thorough understanding of the underlying concepts essential for subsequent
discussions. Similarly, Chapter 3 focuses on the technical background theory, equipping
the reader with the necessary knowledge to delve into the technical aspects covered in

the following chapters.
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Chapter 4 offers a detailed analysis of previous works closely related to this thesis,
providing a foundation and contextual background for the concepts and approaches
discussed in this study. This chapter serves to highlight the existing research efforts that
contribute to the development and understanding of the subject matter. In Chapter 5,
the dataset employed for training the models in this thesis is extensively explained, along
with the preprocessing steps undertaken to prepare the data for the training process.
This chapter elucidates the composition and characteristics of the dataset, laying the

groundwork for the subsequent experimental analyses.

Chapters 6 and 7 form the core of this thesis, presenting the experiments conducted
using the DCGAN model and the HiT-GAN model, respectively. These chapters delve
into the details of the experimental setup, methodology, and results obtained from each
model. The outcomes and findings of these experiments are meticulously analyzed and
discussed. Chapter 8 offers a comprehensive analysis of the results obtained from the
experiments, providing a detailed discussion of the advantages and limitations of the two

models.

Chapter 9 serves as the conclusion of this thesis, summarizing the key findings, reiterating
the main contributions, and offering final insights on the research conducted. This section
serves to tie together the various aspects explored throughout the thesis, culminating in
a coherent and comprehensive conclusion. The chapter also outlines the direction that

this project could take in future research and development.






Chapter 2

Medical background

As this project is based upon concepts and practices rooted in the field of medicine, a
brief summary will be made of those that are directly associated with what this project is
attempting to accomplish. This chapter will elucidate the basics of the two classifications
of cerebral stroke in Section 2.1. Once these are clarified, the main diagnostic tool will
be explained to give an idea of how this project is connected to the very real-world

applications, described in Section 2.2.

2.1 Cerebral stroke

When diagnosing a cerebral stroke, it is crucial to discern between two primary categories:
ischemic stroke and hemorrhagic stroke [5]. In essence, ischemic stroke occurs due to the
obstruction or blockage of a blood vessel within the brain, resulting in restricted blood
flow and subsequent tissue damage. On the other hand, hemorrhagic stroke occurs when
a blood vessel in the brain ruptures, leading to bleeding and the accumulation of blood

in the surrounding tissue.

Distinguishing between these two types of strokes is of paramount importance as it
informs the subsequent treatment approach and management strategies. Ischemic strokes,
accounting for the majority of stroke cases, necessitate interventions aimed at restoring
blood flow to the affected area, such as thrombolysis or mechanical thrombectomy [15].
Conversely, hemorrhagic strokes require a distinct treatment approach, focusing on
controlling bleeding, reducing intracranial pressure, and addressing the underlying cause,

such as an aneurysm or arteriovenous malformation [16].
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2.1.1 Hemorrhagic stroke

Hemorrhagic strokes are caused by the rupture of a blood vessel in the brain. As a
consequence, the escaped blood puts pressure on the surrounding tissue causing damage.
Typically, hemorrhagic strokes are subdivided into intracerebral hemorrhage, which is
bleeding in the brain tissue, or the parenchyma itself, and subarachnoid hemorrhage,

which is bleeding outside of the tissue, into the subarachnoid space [17].

2.1.2 Ischemic stroke

The thesis will specifically focus on ischemic stroke, which represents the predominant
form of cerebral strokes, accounting for approximately 80% of the cases [18-20]. In
ischemic stroke, a critical disruption of blood flow occurs, depriving a specific region of
the brain of oxygen-rich blood supply. This can result from the narrowing of an artery or
the formation of a blood clot that obstructs the passage of blood as depicted in Figure

2.1. Notably, ischemic stroke can be further categorized into two subgroups:

e Thrombotic stroke: This type occurs when a blood clot develops inside the cerebral

arteries, leading to the blockage and subsequent reduction of blood flow.

e Embolic stroke: This is triggered by foreign particles or debris that migrates
through the bloodstream, causing a blockage in the brain [21].

As a consequence, the affected brain tissue is deprived of vital nutrients and oxygen sup-
plied by the bloodstream, leading to a rapid onset of cellular death. Timely intervention
is critical to minimize permanent brain damage. Moreover, the severity of ischemic stroke
is also influenced by the degree of vascular occlusion. Specifically, the lack of blood flow,
known as ischemia, can occur in either large vessels (known as large vessel occlusion
or LVO) or smaller vessels (non-LVO). LVO cases are often associated with increased
severity and higher mortality rates [22], but they only contribute to approximately 30%
of the totality of ischemic strokes [23].
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Blood clot lodges
in cerebral artery,
causing a stroke

Blood clot breaks
off and travels

Diseased
carotid
artery

O MAYD FOUNDATION FOR MEDICAL EDUCATION AMD RESEARCH. ALL RIGHTS RESERVED.

Figure 2.1: Figure illustrating what happens inside the body surrounding the events of
an embolic stroke. The figure is reprinted in unaltered form from the MayoClinic.com
article "What is a stroke? A Mayo Clinic expert explains" https://www.mayoclinic.org/.

The affected region of the brain in ischemic stroke can be divided into two distinct
sections: the ischemic core and the penumbra. The ischemic core represents the initial
area of brain tissue that is compromised and consists of irreversibly damaged cells [1, 9].
Conversely, the penumbra refers to the surrounding region that harbors potentially

salvageable tissue [1].

It is imperative to restore blood flow to the penumbra in a timely manner to prevent its
irreversible transition into the infarcted core [1]. Prompt identification and differentiation
of these regions hold significant clinical relevance as they allow for early determination of
the extent and severity of brain damage caused by the stroke. Such timely assessments are
essential for informing effective treatment strategies for individuals affected by ischemic

stroke.

2.2 Computed tomography

Computed Tomography (CT) serves as a vital diagnostic modality in medical imaging,

commonly employed for evaluating patients presented with injuries or symptoms indicative


https://www.mayoclinic.org/diseases-conditions/stroke/symptoms-causes/syc-20350113
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of disease. By employing a series of X-ray images, CT scans generate detailed tomographic
cross-sectional images, offering valuable insights into the internal structures of the body.
Moreover, these images can be further processed to generate color-code parametric maps,
which play a crucial role in facilitating the diagnostic process. CT scans can be divided
into two categories: non-contrast CT (NCCT) and contrast CT, with the latter being
the focus of the thesis.

2.2.1 Computed tomography perfusion

A contrast CT procedure commences with the administration of a radiodense contrast
agent to the patient. This contrast agent enhances the visibility of certain structures,
particularly hollow ones like blood vessels, during the CT scan. A common and widely
used contrast technique, known as CT perfusion (CTP), involves augmenting the CT
study with the use of the contrast agent [24]. Subsequently, the patient is positioned
within a CT scanner, which consists of a rotating X-ray mechanism and a detector array

that revolves around the patient, continuously capturing tomographic images.

Through computational analysis of the acquired images, physicians gain valuable insights
into the underlying tissues, organs, and blood flow within the body, with the contrast
agent aiding in the visualization of blood vessels. Specifically, this data allows for the
generation of parametric maps, as depicted in Figure 2.2, enabling the assessment of
essential parameters such as cerebral blood flow (CBF), cerebral blood volume (CBV),
and mean transit time (MTT) [9, 24]. This comprehensive evaluation proves to be
particularly valuable in diagnosing patients presenting with symptoms indicative of a

stroke.
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7]

10,00

Figure 2.2: Figure displaying (a) a CTP image and its corresponding parametric maps.
Brain perfusion is demonstrated by (b) CBF, (c) CBV, and (d) MTT images. The color
maps indicate red for higher values and blue for lower values.






Chapter 3

Technical background

In this chapter, a general overview of the theory behind this thesis is presented. This is
to better provide a basis for understanding the technical concepts discussed further in

the project.

A short introduction to machine learning will be provided in Section 3.1. In Section
3.2, GANs will be described, followed by Section 3.3 where the challenges of GAN
evaluation are discussed, and Section 3.4 where some evaluation methods are described.

Subsequently, Section 3.5 will introduce the transformer framework.

Within Section 3.6, the application of transformers in the domain of image processing,
specifically referred to as Vision Transformers (ViT), will be introduced. Additionally,
the incorporation of ViTs into a GAN model will be explored in Section 3.7. Lastly, the
HiT-GAN model will be presented in Section 3.8.

3.1 Machine learning

The main focus of this project is to generate synthetic data using GANSs, a concept that
will be introduced in Section 3.2. To understand GANSs, it is important to know the

basic principle of machine learning, namely neural networks.

Neural networks, drawing inspiration from the intricate architecture of the human
brain, serve as the foundational underpinning for all machine learning algorithms. They
are composed of interconnected neurons, visually depicted in Figure 3.1. Notably,
these neurons incorporate activation functions that may vary across different network
configurations. Section 3.1.2 within this thesis will provide a comprehensive description

of the specific activation functions employed.

13
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w1

w2 A

Input Output

w3
Node/Neuron

Figure 3.1: A single neuron, equipped with input weights wl, w2, and w3, undergoes
an activation function to yield an output.

The inter-neuronal connections within neural networks are established through weighted
connections, as exemplified in Figure 3.2. Input data, often in the form of vectorized
representations, are passed through a series of hidden layers within the neural network.
During the training process, the network’s weights are iteratively updated through a
backpropagation phase, described in Section 3.1.1. Prominent applications of neural
networks encompass natural language processing [25], as well as image [26] and speech

recognition [27] domains.
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Hidden layer 1 Hidden layer 2 Hidden layer 3

utput layer

Figure 3.2: A Neural network architecture example. The network comprises an input
layer (on the left), an output layer (on the right), and multiple hidden layers, the number
of which depends on the depth of the network.
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3.1.1 Backpropagation

Backpropagation, an essential technique in machine learning, is employed for training
neural networks by computing the gradient of a specified loss function with respect to the
network’s weights. This gradient information enables weight updates that minimize the
loss function [28]. During prediction, the neural network calculates the error between the
predicted output and the actual output. Backpropagation operates by propagating this
error in a backward manner, from the output layer to the input layer, and subsequently
adjusting the network’s weights. This iterative process is repeated multiple times until

the network achieves accurate predictions.

3.1.2 Activation functions

Sigmoid

One widely used activation function in neural networks is the sigmoid function. The
sigmoid function is a nonlinear bounded function that maps an input value to an output
within the range of 0 and 1 [29], as shown in Figure 3.3. This characteristic renders it an
ideal choice for addressing binary classification problems. The sigmoid function is shown
in Equation (3.1).

1
S(z) = —— 3.1
@)= (31)
Sigmoid Activation Function
10 A1
0.8 1
= 06
=
[=]
)
=NTE
02 1
0.0 1
-4 -2 0 2 4
x
Figure 3.3: Sigmoid activation function plotted for £ = —5 to x = 5 with a resolution

of 100 using Equation (3.1).
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Softmax

The softmax activation function, represented by Equation (3.2), is a nonlinear unbounded
function utilized for transforming a vector of values into a vector of probabilities [30].
It ensures that the resulting probabilities lie within the range of 0 to 1, with their sum
equaling 1 for each input vector. Figure 3.4 depicts the graphical representation of the

softmax function.

evi
softmax(x); = ——— 3.2
= (3.2)
The softmax activation function is frequently employed in classification problems, par-
ticularly in the context of multi-class classification tasks. This is primarily due to its

ability to calculate the "confidence score" associated with each individual class.

Softmax Activation Function

010 o

008 1

006 1

softmax(x)

004 +

002 1

000

[

Figure 3.4: Softmax activation function plotted for x = —5 to x = 5 with a resolution
of 100, using Equation (3.2).

Rectified linear activation function

The rectified linear unit (ReLU) activation function in Equation (3.3), can be regarded
as an almost linear function, with the exception of a non-linearity occurring only at the

point where the input value equals zero. This nonlinearity is visually demonstrated in
Figure 3.5.

y = max(0.0, x) (3.3)
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Due to its simplicity, the rectified linear unit (ReLU) has emerged as one of the most
widely adopted activation functions in neural networks [31]. Its straightforward nature
facilitates ease of model training, and it frequently outperforms alternative activation
functions in terms of performance. In addition, it is less sensitive to the vanishing
gradients problem (described in Section 3.3.3) in comparison to alternative activation
functions. However, the utilization of ReLU introduces challenges, such as the occurrence
of saturated neurons. Saturated neurons occur when the weights have an extremely high

value, forcing the ReLU activation function to output a gradient of zero [32].

Rectified Linear Unit (RelU) Activation Function

Rellix)

Figure 3.5: ReLU activation function plotted for = —5 to z = 5 with a resolution of
100, using Equation (3.3).

Leaky RelLU

In order to minimize the issue of saturated neurons arising from the ReLLU activation
function, an alternative approach known as Leaky ReLU, as shown in Equation (3.4)
can be employed. Leaky ReLLU addresses this concern by introducing a small slope for
negative inputs within the function, as visualized in Figure 3.6. This small slope ensures

that the gradient is non-zero, thereby alleviating the saturation problem [33].

0.1z, ifx<l
f(z) = (3.4)

x, otherwise
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Leaky Rectified Linear Unit (Leaky RelU)} Activation Function
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Figure 3.6: Leaky ReLU activation function plotted for x = —5 to =z = 5 with a

resolution of 100, using Equation (3.4).

Gaussian Error Linear Units

Gaussian Error Linear Units (GELU) was introduced in [34], where the author describes
its features as: "The GELU nonlinearity weights inputs by their value, rather than gates

inputs by their sign as in ReLUs" [34].
The GELU activation function is defined in Equation (3.5) but can be approximated as

(3.6). The approximated GELU Equation is plotted in Figure 3.7.

GELU(z) =2P(X < z) = a2®(z) =z - %[1 + erf(z/v/2)). (3.5)

0.5z (1 + tanh {\/2/7 (x+ 0.044715933)]) (3.6)
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Gaussian Error Linear Unit (GELU) Activation Function

Figure 3.7: The GELU activation function plotted for x = —5 to « = 5 with a resolution
of 100, using the approximated Equation (3.6).

3.2 Generative adversarial networks

Generative adversarial networks (GANs) were first introduced in the research paper
"Generative adversarial networks" by Goodfellow et al. in 2014 [35]. The study aimed
at generating synthetic data and reviewing the result. Although the results attained in
the study were constrained, subsequent advancements in research involving GANs have
yielded remarkable progress. Newer GAN architectures have demonstrated their efficacy

in generating high-quality images.

GANs have many applications including image translation [36], anomaly detection [37],
and image synthesis [10]. This study will focus on generating images given a set of

training data with an unconditional GAN model.

The GAN model consists of two neural networks; a generator and a discriminator, as
shown in Figure 3.8. The generator is as its name suggests responsible for generating
images. While the discriminator grades the images on their quality and classifies them

as being real or fake, based on this grade.



20 Chapter 3 Technical background

White noise =~ ——— > Generator

Discriminato Real/Fake

Real images

Figure 3.8: Architecture of a Generative Adversarial Network. The generator synthesizes

an image, using a vector of white noise as input, which is then presented to the

discriminator. The discriminator’s task is to differentiate between fake generated images
produced by the generator and real images from the dataset.

Both of these neural networks are working against each other, trying to fool the other,
hence the "adversarial" attribution. Although none of the networks are especially good
at the beginning of the training phase, the idea is that they will learn from each other
until the generator is good enough to fool the discriminator a considerable amount of
times. When that happens, the generator is able to generate images that are remarkably
similar to the images from the training set, which is the goal of training GANs. The
discriminator can then be removed and the generator can be used to produce images
that are similar to the dataset samples. Because the generated images are made from

white noise, the images will differ a bit, ensuring diversity in the synthetic images.

Two main categories of GANs exist, namely conditional and unconditional GANs. Condi-
tional GANs offer the means to exert control over the generation process. This control is
achieved by incorporating a label corresponding to different classes into both the latent
"z" vector before the generator and the real images in the discriminator. By doing so,
the model becomes capable of recognizing and generating specific classes as instructed.

Unconditional on the other hand offers no control over the generated output.

3.2.1 Generator

The generator is a neural network, often a convolutional neural network regarding image
synthesis, used to learn the data distribution such that it can generate data that is
close to the real data, trying to maximize the probability of the discriminator making a
mistake. It takes in a vector of white noise (visualized in Figure 3.9), often called latent

z, and uses the discriminator’s feedback to improve its generated images. As training
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continues, the generator will get better at reproducing the images from the dataset it

has trained on.

White noise image Fake Generated image

|::> Generator I:>

Figure 3.9: The Generator takes a white noise image or vector (white noise image is
used in the figure for better visualization) and generates an image based on what it has
learned from the discriminator’s feedback.

3.2.2 Discriminator

Similar to the generator, the discriminator also constitutes a neural network, but different
from the generator the discriminator inputs both fake images from the generator and
real images from a dataset, as displayed in Figure 3.10. The discriminator’s task is to

distinguish between real images and images generated by the generator.

While the generator learns how to generate better fake images, the discriminator learns

how to distinguish between real and fake images.

Real CTP images from dataset

7T <N
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Figure 3.10: Real images and fake images from the generator get classified as fake or
real by the discriminator, often as a binary classification.
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3.2.3 Training GANs

The training of GANs can pose greater challenges compared to conventional neural
network training. This is primarily attributed to the inherently adversarial nature of
GANSs, where two models engage in a min-max game, constantly competing against each
other. Maintaining a good balance between the generator and discriminator models
throughout the training process can be difficult, much due to the output of one model
impacting the other through the backpropagation phase, as shown in Figure 3.11. During

the training process, only one model is activated at a given time, forcing the other model

i

White noise =~ ——>» Generator

to remain constant.

Backpropagation

Discriminato Real/Fake
—
A
Real images
Backpropagation

Figure 3.11: A visualization on how a GAN model is trained using backpropagation.

3.2.4 Deep convolutional generative adversarial network

Different types of GANs exist in the literature, but in this thesis, Deep Convolutional
Generative Adversarial Networks (DCGANs) will be covered.

The DCGAN was proposed in 2015 by Radford et al. [10]. It was developed as a
methodology to enhance the stability of GAN training, as GAN models were known for
their inherent training instability, or as stated by the authors themselves: "We propose
and evaluate a set of constraints on the architectural topology of Convolutional GANs

that make them stable to train in most settings. We name this class of architectures Deep

Convolutional GANs (DCGAN)" [10].

The way the authors accomplished it can be summarised in 4 steps:
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All spatial pooling functions were replaced with strided convolutions for the dis-

criminator and fractional-strided convolutions for the generator, like in [38]. This
can be seen in Figure 3.12, which makes the model able to learn its own spatial

downsampling.
e The fully connected layers on top of convolutional features were removed.

+ Batch normalization [39] was applied for both the generator and the discriminator.
This method helps the gradient flow in deeper models and involves normalizing the

input to each unit within a batch to have a zero mean and unit variance.

o The ReLU activation function (discussed in Section 3.1.2) was applied for the
generator, except for the output layer, and the Leaky ReLU (Section 3.1.2) activation

function was applied for the discriminator.

64 3 9 _

1 2_8 256

Figure 3.12: Visualization of the fractionally-strided convolution layers of the DCGAN

generator. Starting with a 100x1 vector input, the data undergoes processing through

four fractionally-strided convolution layers and gets converted to a 64x64 pixel image,
with no use of fully connected or pooling layers.

3.2.5 Progressive growing of GANs

Progressive growing of GANs is when the discriminator and generator models employ a
training technique known as progressive training, as described in [40]. The progressive
training approach begins with low-resolution images and iteratively refines the model
until it reaches a stable state. Subsequently, the image area is quadrupled. This process
is called one block and is repeated multiple times until the desired image size is achieved,

as shown in Figure 3.13. This method speeds up and stabilizes the training process [40].
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Figure 3.13: The training process begins with a low 4x4 pixel resolution for both the
generator (G) and the discriminator (D). Through the training process layers get added
to both (D) and (G) with an increased resolution. The figure is adapted from [10].

3.3 Challenges of GANs

Training GANs are widely acknowledged as a challenging task. The inherent nature of
GANSs, where two neural networks engage in a competitive process, renders them vulner-
able to imbalanced training. For instance, the discriminator network may significantly
outperform the generator network, impeding the progress of the generator’s training and
rendering it ineffective or useless. Multiple issues need to be addressed when training

GANSs to ensure their optimal performance and stability.

A commonly employed approach to identify problems during GAN training involves
monitoring the discriminator loss for real and fake images, as well as the generator losses.
The "discriminator real loss" represents the discrepancy between the discriminator’s
predictions for real images and the corresponding ground truth. Conversely, the "dis-
criminator fake loss" quantifies the disparity between the discriminator’s predictions for
generated fake images and the ground truth. On the other hand, the "generator loss"

pertains to the dissimilarity between the generated output and the real images.

To be able to identify problems in the GAN training, it is important to know how a stable
GAN model behaves. An example of such a GAN is displayed in Figure 3.14. As can be

extracted from the figure, which illustrates the losses that are calculated during training,
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there is a long period of instability where both networks are quite poor, before they
slowly converge to optimal values, where the discriminator losses should be at around
0,5 and the generator loss should be between 0,5 and 2,0 according to [41]. The variance
may be quite high, but the convergence indicates that the output images should be very

satisfactory.
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Figure 3.14: Discriminator real loss (blue-line), discriminator fake loss (orange-line),

and generator loss (green-line) for a stable GAN plotted with respect to epochs. The

following experimental figures are reprinted in unaltered form by permission from Jason
Brownlee, [41].

From Jason Brownlee’s experiment on stable GANs in [41], the values obtained in epoch

180 in Figure 3.14, resulted in the generated outputs in Figure 3.15.
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Figure 3.15: Generated images from epoch 180 by a stable GAN model, resulting in the
output images having high diversity. The experiment was conducted by Jason Brownlee
in [41] using the MNIST dataset.

3.3.1 Mode-collapse

According to Tan Goodfellow, the author that introduced the GANSs in [35], "mode collapse
is a problem that occurs when the generator learns to map several different input z values
to the same output point.” Put in different terms, the mode collapse problem occurs
when a GAN generates images in only a few groups or modes, resulting in low diversity

between the images.

Two types of mode collapse exist: complete and partial mode collapse. In a "complete
mode collapse", a number of different values of the latent z input are mapped to the
same output, making the model only generate images in a few modes, as illustrated in
Figure 3.17. A much more common mode collapse is "partial mode collapse". Partial
mode collapse refers to a model that generates images with the same color pattern, and

the same motive just from a different angle.

A mode collapse can be identified visually by looking at a big set of generated images.
There will be low diversity between the images and the images will repeat themselves, as

presented in Figure 3.17. It is also possible to identify a mode collapse from the model’s
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loss of data. The loss of data, especially the generator loss, will oscillate over time due

to different losses in the different modes [41]. This is shown in Figure 3.16.
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Figure 3.16: Discriminator real loss (blue-line), discriminator fake loss (orange-line)
and generator loss (green-line) for a mode collapse, plotted in respect to epochs in an
experiment done by Jason Brownlee in [41].

The values for epoch 315 in Jason Brownlee’s experiment on mode collapse in Figure

3.16, resulted in the output images in Figure 3.17.
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Figure 3.17: Generated images from epoch 350 by a GAN model suffering from mode
collapse, resulting in lower diversity. The experiment was conducted by Jason Brownlee
in [41].
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3.3.2 Convergence failure

Convergence failure is a common problem when training GANs, and refers to when the
model does not find an equilibrium between the discriminator and the generator. The
way to identify a convergence failure is to monitor the discriminator’s loss. If the loss
converges to zero or close to zero it is most likely a convergence failure, this specific
case is shown in Figure 3.18. It is also common that the generator loss increases during
convergence failure as in Figure 3.19. Visually the output images can look something
like in Figure 3.20.
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Figure 3.18: Discriminator loss (blue-line), and generator loss (orange-line) for a
convergence failure, plotted in respect to epochs in an experiment done by Jason
Brownlee in [41].
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Figure 3.19: Discriminator real loss (blue-line), discriminator fake loss (orange-line)
and generator loss (green-line) for a convergence failure, plotted in respect to epochs in
an experiment done by Jason Brownlee in [41].

The reason for convergence failure is that the discriminator becomes superior to the
generator, making the feedback given to the generator useless. This is because the
discriminator is nearly 100% sure the image created by the generator is fake, denying the

nuances in the feedback that the generator needs in order to get better. A convergence
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failure can appear at the beginning of the training, but also after a few epochs. Usually,

GANSs do not recover from this failure, although some unstable GANs are able to [41].

From the experiment in Figure 3.18 the resulting output images are shown in Figure
3.20.

Figure 3.20: Generated images from epoch 450 by a GAN model suffering from
convergence failure, resulting in noisy images. The experiment was conducted by Jason
Brownlee in [41].

3.3.3 Vanishing gradients

The utilization of sigmoid-like activation functions (described in Section 3.1.2) in neural
networks introduces a potential issue wherein the linear portion of a neuron produces
excessively large output values after a certain number of epochs. Consequently, this
situation leads to a gradient near zero within the sigmoid functions, resulting in very

small weight adjustments.

3.4 Evaluation of GANs

In contrast to conventional deep learning models that undergo training with a loss

function until convergence, the generator within a GAN relies on the feedback provided
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by the discriminator for learning. Consequently, GANs lack an explicit objective function
for evaluation [42]. Therefore, the quality of the synthetic images has to be evaluated in

another way.

The simplest way to evaluate GANs is through manual evaluation, where you use your own
eyes to visually compare the synthetic data created by the generator to the images in the
training dataset. This method can be very time-consuming because of big datasets and
a big amount of synthetic images and is not especially accurate compared to calculating
and comparing the image data itself. Therefore a vast number of techniques are available

to evaluate GANs [43].

Apart from manual evaluation, there are two additional principal categories: qualitative
GAN generator evaluation, and quantitative GAN generator evaluation. Qualitative GAN
generator evaluation typically involves subjective human assessment or comparison-based
evaluation, which does not rely on numerical measurements. Various qualitative metrics,
such as "Nearest Neighbors", "Rapid Scene Categorization", and the "evaluation of Mode
Drop and Mode Collapse", are employed in this context. On the other hand, quantitative
GAN generator evaluation involves the computation of numerical values or scores to
quantify the quality of generated images. Examples of quantitative metrics include
"Average Log-likelihood", "Inception Score (IS)", and "Fréchet Inception Distance (FID)".
The latter two methods will be described in Section 3.4.1 and 3.4.2 respectively.

3.4.1 Inception score

The IS is a quantitative evaluation metric and is used to capture image quality and image
diversity in images generated by GANs. The inception score was first proposed in 2016
by Tim Salimans, in the paper "Improved Techniques for Training GANs", and is widely
used in the evaluation of GANs [44].

The worst possible IS score is 1, while the best possible score is the number of classes
supported by the classification model. The classification model used is the pre-trained
model inception-v3 [45]. In this case, the best score is 1000, as Imagenet, consisting of
1000 classes, is used to pre-train the inception-v3 model. The IS predicts the possibilities
for a generated image to belong to each of these classes and these are then summarized,

giving the inception score.

3.4.2 Fréchet inception distance

The FID is a quantitative evaluation metric and was first introduced in 2017 by Martin

Heusel et al. in the paper "GANs Trained by a Two Time-Scale Update Rule Converge
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Figure 3.21: A visualization on how the FID score evaluates images. As shown the FID

metric can detect white noise (upper left plot), salt and pepper noise (lower right plot),

low-resolution images (upper right plot), and disturbed images (lower left plot). The
figure is reprinted in unaltered form from [47].

to a Local Nash Equilibrium" [46]. It calculates the distance between feature vectors (or
the distribution) for the generated images and the real images from the dataset. The
score indicates how similar the feature vectors of a group of generated images are to a
group of real images. Low values of the FID score indicate more similarity than a high

FID score. Figure 3.21 provides examples of different FID values.

The FID uses the pre-trained Inception-v3 [45] image classifier to capture computer-
vision-specific features of an input image [47]. The advantage of the FID score compared
to the IS is that the FID takes into consideration the statistics of the real images. Because
this thesis is dealing with medical images and it is important to create images that are
similar to the original images, the FID score is chosen as the main evaluation method in

this thesis.

3.5 Transformers

A transformer is a form of neural network architecture that is able to map one sequence
to another by learning complex relationships within the data. Transformers were first
introduced in the paper "Attention Is All You Need" in 2017 by Vaswani et al. [48] and

have since become an increasingly prevalent architecture. Initially, transformers were
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used in natural language processing (NLP) for tasks such as translation, outperforming
older architectures such as recurrent neural networks (RNNs) [49] and long short-term
memory (LSTM) [50]. This is due to their speed and efficiency, attributed to their
parallelizability and their ability to process entire sequences at once, which additionally
introduces less inductive bias. Recently, however, they have been applied to more complex
tasks such as vision tasks [51] and speech recognition [52]. This section will provide first
a high-level overview of the transformer’s architecture and core concepts, followed by a

more extensive review.

Transformers are entirely based on a self-attention mechanism. The transformer model
excels at modeling dependencies between long sequences, as the attention mechanism
allows for contextual information to be captured at any point within the sequence.
Attention, of which self-attention is a sub-type, is a mechanism that allows the model to
emphasize the information that is most relevant, by assigning weights to different parts

of the sequential input. It is a way for machines to imitate cognitive attention in humans.

The transformer model, like other competitive neural sequence transduction models, is
based on an encoder-decoder architecture [48]. The architecture is composed of multiple
layers of identical encoders and decoders, represented in Figure 3.22 by the parameter
N. The encoder and decoder can intrinsically be divided into two sub-layers, which
are an attention layer and a feed-forward layer. These are made up of a multi-head
self-attention mechanism followed by a position-wise feed-forward network. Both of
these blocks are accompanied by a residual connection and a layer normalization. In the
decoder, the attention layer includes an encoder-decoder attention block, which attends
to the output of the encoder stack directly. Prior to input into the transformer, the
sequence is reformatted using an embedding layer and positional encoding. The encoder
processes the input sequence to create a set of feature maps, which are then passed to the
decoder. The decoder attends to these feature maps and generates an output sequence

element by element.
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Figure 3.22: Transformer architecture. The figure is reprinted in unaltered form from
the paper "Attention is all you need" [48].

3.5.1 Attention

In NLP, the concept of attention can be described as a way of finding the relevance
between different words in a sentence. Every word of the input sentence is evaluated with
regard to every other word in that same sentence. This is implemented as a weighted
sum of all the input elements, where the weights are learned as specified by the similarity
between each element pair seen in Equation (3.7). The @, K, and V' parameters will be
further discussed in Section 3.5.2. If two words are highly related, i.e. the self-attention
has indicated to the model that the input word is associated with another word, then the

calculated attention score between these two words will be high. Conversely, two words
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that hold no significance to each other, will return a negligible attention score. This
score is then used to predict a target word, e.g. a translated word, or the subsequent
word of a sentence in a text completion application, although the same principle works

in different applications.

QKT

Attention(Q, K, V) = Softmax( A
k

W (3.7)

When making predictions, the attention mechanism allows the transformer model to
attend to different parts of another sequence whereas, in self-attention, the transformer
model attends to different parts of the input sequence [53]. What this means essentially,
is that the window of information is "infinitely" big, or at least restricted by hardware as
opposed to the architecture, contrary to architectures such as RNNs, where if the input

sequence is too long, the model can "forget" pieces of information.

3.5.2 Transformer architecture

Now that a high-level overview of the transformer has been provided, its structure
will be reviewed in greater detail to grant a better understanding of how it functions.
The majority of the information presented below is based on the research presented by

Vaswani et al. [48] in their introduction of the transformer.

Input embedding

For the transformer to be able to read and understand the data, whether it is a sentence
or an image, the input sequence has to in some way be embedded with its information in
a readable form. The input embedding block maps discrete symbols, called input tokens,
using learned embeddings, into continuous vectors in a high-dimensional space. In this
way, the transformer is able to read the text as a sequence of vectors. The input can
be a sentence to be used for translation tasks, or a patch of an image used for image

classification to give some examples.

Positional encoding

Models like RNNs [49] and CNNs inherently store the position of each input token,
however on account of the transformer architecture, it does not retain this innately. The
order of the input sequence is consequential for each function the transformer is used for.

Therefore, the input is passed through a positional encoding block where information
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about the relative position is introduced through sine and cosine functions (3.8) and
(3.9). The encoding of the input sequence involves assigning each token a unique position
and applying the sine function to tokens with even positions and cosine to those with odd
positions. The dimension of the positional encoding vector is defined as d,,o4e1, Which is

equal in size to the embedding vector.

PE o 2i) = sin(pos/10000%/ modet (3.8)

PE(pos i 1) = cos(pos/10000%/ dmodet) (3.9)

Multi-head attention

Before getting processed in the attention block within the transformer, the embedded
and position-encoded input is separated into three equal matrices; Query (Q), Key (K),
and Value (V). These matrices are then linearly projected into N heads. The multi-head
attention which is then implemented merely consists of multiple attention mechanisms in

parallel (Section 3.5.1). The procedure is illustrated in Figure 3.23.
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Figure 3.23: The multi-head attention module from Figure 3.22 in more detail. The
MatMult (Dot product) block represents Equation (3.7).
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Representing the currently processed input token is the query matrix. The key matrix
is represented by the entire input sequence and is what the query token is referenced
against. The value matrix represents the information that the model should attend
to for each input token [54]. The dot product between the query and key matrices is
calculated, producing a score for each position of the input token, which is run through a
normalization and SoftMax (described in Section 3.1.2) layer to produce proper attention
weights. These weights are then added to the values producing the context vector. The
context vector produced from each attention head is then concatenated together into a

combined matrix.

After the attention layer, there is a residual connection where the resulting matrix is
concatenated, or joined together, with the previous input sequence followed by a layer
normalization [55], forming the input to the next layer. Another notable part of the
architecture is the feed-forward block [56]. It consists of two linear layers separated
by a ReLU activation function (described in Section 3.1.2) and applies a point-wise
transformation to each position of the input separately. The purpose is to introduce
non-linearity and learn complex relationships within the transformer model. To preserve
the information from preceding layers, the output is combined with a residual connection,

similar to the attention layer.

Within the transformer architecture, there is a significant distinction to make between the
multi-head attention blocks. In the encoding stage, the self-attention block enables the
input sequence to attend to itself, capturing important relationships and dependencies
within the sequence. On the other hand, within the decoder, there exist two instances
of the multi-head attention blocks. In the first instance, the target sequence attends to
itself, allowing it to understand its own context and refine its representations. In the
second instance, referred to as the encoder-decoder attention block, the target sequence
directs its attention towards the input sequence, integrating the information from the

input during the decoding process [57].

3.5.3 Contrasting running and training phases

The transformer model operates in two distinct modes that reflect its state: training and
running (inference). Before being employed for its intended purpose, the transformer
must undergo a training phase where it learns to generate target sequences based on a
given input sequence and the target sequence. In the encoder part of the architecture,
the input is processed and encoded into a latent representation without any alterations
between the training and running phases [58]. However, the flow of data in the decoder

section differs.
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During training, the decoder receives the target sequence prepended with a "start token'.
This augmented sequence, along with the encoder output, is processed to produce a
probability distribution over possible output tokens [58]. The loss function is then applied
to compare the generated output with the target sequence (training data), enabling the

calculation of gradients for model training through back-propagation.

The training process utilizes a technique known as teacher forcing, wherein the decoder
is provided with explicit guidance [58]. Instead of iteratively predicting the next token
based on calculated probabilities using the previous token, which may introduce errors
due to the accumulation of incorrect predictions, the decoder is given access to the target
sequence. This approach mitigates potential errors and facilitates training. Within this
context, the masked multi-head attention mechanism plays a crucial role, illustrated in
Figure 3.24. While operating on the same principles as described earlier, it incorporates
a triangular mask. This mask ensures that the decoder only has access to previous
information during the prediction process. Even if an erroneous prediction occurs, the

correct token is still available when predicting the subsequent token.
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Figure 3.24: The masked multi-head attention module from Figure 3.22 in more detail.

In the inference phase, the decoder receives only the start token as input. Leveraging the
learned weights, it encodes this input into a latent representation and derives probabilities

for generating the output. The generated output is then appended to the start token and
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fed back into the decoder for further processing. This iterative process continues until
the model predicts an end-of-sentence token, indicating the completion of the output

generation process [58].

3.6 Vision transformers

Vision tasks such as image classification [59, 60] and segmentation [61, 62], object
detection [63, 64], and also GANs [3, 10] have historically used convolutional neural
networks. Following the significant advancement brought about by transformers in various
domains, researchers initiated investigations into the application of transformers in visual
tasks, driven by their parallelizability and reduced inductive bias. In the paper titled
"An image is worth 16x16 words" [51], the authors presented a classifier termed the vision
transformer, specifically designed for image classification utilizing a transformer-based

architecture.

The ViT model follows the same encoder architecture as the transformer in Section 3.5,
as depicted to the right in Figure 3.25. In contrast to the processing mechanism of
transformers in natural language processing, as expounded upon in Section 3.5, the ViT
model adopts a similar strategy by representing non-overlapping patches of the image
as vectors, akin to how transformers treat words as vectors. This approach is shown
to the left in Figure 3.25. Furthermore, an additional learnable "classification token" is

incorporated, which signifies the output of the transformer encoder.
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Figure 3.25: The architecture of the Vision transformer model from "An image is worth

16x16 words [51]". The overall architecture is shown on the left-hand side, and the

transformer encoder architecture is shown on the right-hand side. The figure is adapted
in altered form under the consensus of Dosovitskiy et al. [51].

3.7 ViTGAN

With the growing prevalence of vision transformers in various vision tasks, Lee et al. [65]
embarked on the task of extending the ViT model to encompass image generation in
addition to its existing capabilities. This endeavor aimed to investigate whether vision
transformers could rival the performance of conventional CNN-based GAN architectures
in the domain of image generation. The outcome of this exploration was the development

of the first GAN model incorporating transformers.

However, the integration of ViT into the GAN framework posed several challenges.
Training the GAN with ViT proved to be considerably more unstable compared to
conventional approaches. Traditional regularization methods, which have proven effective
in mitigating instability in CNN-based GANSs, offered little improvement in this novel

context. To address these unique challenges, two key concepts were devised:

e Enhanced regularization methods in the discriminator: This involved enforcing
Lipschitz continuity, a measure of function stability and control, through the
introduction of L2 attention, as presented in [66]. Additionally, an improved version

of spectral normalization, a conventional regularization technique, was employed.
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To tackle overfitting caused by the ViT discriminators exceeding their learning

capacity, the discriminator incorporated overlapping image patches [65].

e Redesigned generator architecture: In the generator, the ViT model was inverted,
and the roles of inputs and outputs were swapped. This allows the generator
to generate image patches from latent embeddings. The generator comprised a
mapping network for the latent z, a transformer encoder, and an output mapping

layer.

By addressing these challenges and introducing novel modifications to the discriminator
and generator, the VIiTGAN model, illustrated in Figure 3.26, aimed to harness the
potential of vision transformers for image generation tasks. The obtained results were
satisfactory, although the performance of the VITGAN model did not surpass that of the
leading CNN-based GANs available during the study period. Additionally, the VITGAN

model exhibited constraints in terms of its limited resolution, confined to 64 x 64 pixels.
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Figure 3.26: VITGAN architecture. The figure is adapted from [65].

S
N [

3.8 HiT-GAN

The utilization of vision transformers in GANs to generate high-resolution images poses
several challenges, such as the scaling problem of more attention calculations as the
resolution increase and the stability during the training phase. To address these issues, a
model called HiT-GAN was proposed in the research paper titled "Improved Transformer
for High-Resolution GANSs" by Zhao et al. [4].

The HiT-GAN model incorporates a discriminator based on the StyleGAN architecture

[67] "Progressive growing of GANs" from Section 3.2.5, and a generator that leverages
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the ViT, as depicted in Figure 3.28. Given the quadratic scaling challenge posed by the
Transformer’s self-attention operation, as well as the greater need for spatial coherence in
structure, color, and texture during image generation compared to discriminative tasks,
the generator is partitioned into low-resolution stages and high-resolution stages. The
low-resolution stage adopts the Nested Hierarchical Transformers design, introduced in
[68]. The authors further enhance this design by introducing a method called "multi-
axis blocked self-attention" that is more adept at capturing global information. This
method will be expounded upon in Section 3.8.2 however, prior to its detailed exposition,
fundamental techniques employed by the authors in the HiT-GAN approach will be

elucidated.

3.8.1 HiT-GAN components

During the generation process, the input gets upsampled for each resolution stage, as
depicted in Figure 3.30. The upsampling is done by a method called PixelShuffle. The
PixelShuffle technique was first introduced in [69], serving as a convolutional neural
network (CNN) operation applied in super-resolution models to achieve image upsampling.
It employs sub-pixel convolutions, which possess a stride of 1/t, demonstrating efficiency.
The procedure involves extracting feature maps within the low-resolution domain, sub-
sequently utilizing an array of learned upscaling filters to upscale the feature maps to
generate high-resolution output. According to the authors, this approach effectively
reduces the computational complexity of the overall Super Resolution operation. This
results in a rearrangement of the tensor shapes, transforming them from (B, C xt2, H, W)
to (B,C,H xt,W xt), as depicted in Figure 3.27. Where t represents the upscale factor,
C is the number of channels, H is the height, and W is the width.
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Figure 3.27: PixelShuffle upsampling illustrated using different colors for the channels.
The figure is adapted from [70].

As outlined in Section 3.2.3, the training process of GAN models can exhibit instability.
To deal with the problems of unstable training several different methods were utilized.
First, the gradient penalty method used in the model is the R1 regularizer [71], shown in
Equation (3.10). This approach ensures that the discriminator suffers a loss if it outputs
a non-zero gradient orthogonal to the data manifold, when the generator generates images

that the discriminator takes as a real image, giving 0 to the data manifold.

Ry(v) = 2By (VD) (3.10)

With the utilization of the R1 regularizer, the overall loss for the discriminator and
generator is shown in Equation (3.11) and (3.12) respectively, where v is the weight of
the R1 gradient penalty.

Lp = ~Epp,log(D(x)] ~ Esvp. log(1 ~ DG +7 - Eoer, [[V.D@)Z] (311)

Lo = —E.p.[log(D(G(2)))] (3.12)

Secondly, the HiT-GAN model integrates consistency regularization, as proposed in [72].
Consistency regulation uses the mean squared error in Equation (3.13) as a loss function.
To enhance the effectiveness of this regularization technique, various augmentations such

as color adjustments (random brightness, random saturation, and random contrast),
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translation, and cutout are employed. The augmentation strategies, as described in
[73], encompasses the application of specific transformations to the data, including color
adjustments, translation, and cutout operations, thereby promoting robustness and

generalization in the model training process.

MSE = ié(Y—Y)Q (3.13)

Thirdly, the utilization of non-saturating loss is employed to mitigate the adverse effects
of the vanishing gradient problem, as expounded upon in Section 3.3.3. Instead of
minimizing the log of the inverted discriminator probabilities for generated images,
the non-saturating GAN loss maximizes the log of the discriminator probabilities for
generated images, as shown in Equation (3.14). This results in the gradient information

being better when the weights are updated, and leads to a more stable training [74].

generator : mazximize(log(D(G(2)))) (3.14)

Finally, an alternative to architectural components such as max pooling and strided-
convolutions, which are used in DCGAN 3.2.4, the HIT-GAN model uses an approach
called "blurpool" proposed in [75], for the downsampling in the discriminator. The

"blurpool" introduces antialiasing by lowpass filtering, thus further increasing stability.
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Figure 3.28: The HiT-GAN architecture showing the difference in the high-resolution
and low-resolution stages [4]. The figure is adapted from [4].

3.8.2 Multi-axis blocked self-attention

The HiT-GAN model draws inspiration from the nested transformers framework [68],
albeit with certain modifications. Notably, it introduces a novel approach that extends

the concept of attention to multiple axes.

The multi-axis attention mechanism comprises two distinct forms of sparse self-attention:
regional attention and dilated attention. Regional attention, inspired by previous works
[76, 77], involves tokens attending to their non-overlapping neighboring blocks. On the
other hand, dilated attention is employed to capture long-range dependencies across

blocks, compensating for the absence of global attention.

Figure 3.29 illustrates the two types of attention, namely regional and dilated attention.
These attention mechanisms are computed in parallel within a single layer, with each

type being assigned half of the attention heads.

According to the authors, the adoption of a blocked structure exhibits a favorable
inductive bias specifically suited for image-related tasks. To ensure balanced processing,

each multi-axis blocked self-attention block operates on input sequences of similar lengths.
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This balancing approach prevents a disproportionately sparse region by avoiding excessive

attention focus from half of the attention heads.

Overall, the incorporation of regional and dilated attention in a parallel and blocked
structure enhances the model’s ability to capture local and long-range dependencies,

resulting in improved performance for image generation tasks.
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Figure 3.29: Multi-axis self-attention architecture from "Improved Trans-
former for High-Resolution GANs" [4]. [4,4,C] input with block size b=2. First, the
input is blocked into 2x2 non-overlapping patches. Regional and dilated self-attention
operations are computed for the patches along two axes. Each axis uses half of the
attention heads. For each token, the attention operations are calculated in parallel, and
their corresponding attention regions are illustrated with different colors. Then the
tokens are turned into an output with the exact spatial dimensions as the input image.
The figure is adapted with permission from Zhao et al. [4].

3.8.3 Cross-Attention for SelfModulation

The HiT-GAN model incorporates a mechanism called cross attention where the inter-
mediate features directly attend to a small tensor derived from the input latent code.
This process can be seen as a form of self-modulation [78], which plays a crucial role
in stabilizing the generator and enhancing mode coverage. Moreover, in the absence
of self-attention modules within high-resolution stages, directing attention towards the
input latent code presents an alternative mechanism to capture global information during

the generation of pixel-level details.

In contrast to VITGAN [65], which relies on AdaIN and modulated layers and is limited
to generating images up to a resolution of 64x64, the cross-attention operation employed
in HiT-GAN demonstrates a linear computational complexity [4]. The inclusion of
cross-attention facilitates effective information exchange between different stages and
contributes to the generation of higher-resolution images beyond the limitations of
ViTGAN.
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Figure 3.30: HiT-GAN generator architecture as a flow-chart.

The HiT-GAN model functions as an unconditional image generator (Section 3.2),
indicating that it lacks control mechanisms over the generated output. It relies solely
on a random latent variable z, with a dimension of 512, and learned weights to produce
a random image of the target resolution 256 x 256 through a hierarchical structure, as

shown in Figure 3.28.

The authors of the HiT-GAN model have employed TensorFlow’s Keras Sequential to
implement the model, incorporating GELU activation functions for the generator, leaky
ReLU for the discriminator, and ReLU (all described in Section 3.1.2) for the MLP in
the ViT.

During the image generation process, the model gradually increases the spatial dimensions

of the future map while reducing the channel dimensions across multiple stages. To
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Table 3.1: Resolution stages in the HiT-GAN model.

Stage nr. | Resolution | Resolution category
01 8x8 Low
02 16x16 Low
03 32x32 Low
04 64x64 Low
05 128x128 High
06 256x256 High

strike a balance between computational efficiency and feature dependence range during
decoding, the image generation is divided into two stages: high-resolution (Section 3.8.6)
and low-resolution (Section 3.8.5). Where the low-resolution stages include stages 1 to 4
and the high-resolution stages include stages 6 and 7 according to Table 3.1. This division
allows for efficient processing while maintaining the ability to capture essential features.
Both stages first undergo positional encoding and cross-attention and are upsampled
using Pixelshuffle (3.27) for the next stage in the end. The generation process ends when

the target resolution is reached, namely 256 x 256.

3.8.5 Low resolution stages

Within the low-resolution stages of the HiIT-GAN model, an efficient attention mechanism
enables the spatial mixing of information. The model’s architectural design follows the

decoder framework presented in the nested transformer approach [68].

Initially, the input feature is divided into non-overlapping patches, represented in the
"block" block in Figure 3.30, with each patch representing a localized region within the
input feature. This patch-based representation allows the model to capture local context
and information. To incorporate positional information, the authors introduce a learnable
position encoding mechanism. This encoding scheme enhances the model’s understanding
of spatial relationships and contextual dependencies among the patches, aiding in the

effective representation of features.

Each patch subsequently undergoes independent processing through a shared attention
module as shown in the "multi Axis self-attention" block in 3.30. This attention module,
known as the multi-axis blocked self-attention, excels in capturing both local and global

relations, thereby facilitating the creation of rich feature representations.

The final step in the low-resolution stage is shown in the "unblock" block in Figure 3.30,

and refers to unblocking the image to the feature map.
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3.8.6 High resolution stages

While the low-resolution stages of the HiT-GAN model primarily emphasize spatial
dependency, the high-resolution stages prioritize the synthesis of pixel-level image details
based on local features. In order to reduce computational complexity, all self-attention
modules are eliminated within the high-resolution stages, and instead, MLPs with ReLU

(described in Section 3.1.2) activation functions are employed.

In the absence of self-attention, only the cross-attention module is active in the high-
resolution stage. This cross-attention mechanism facilitates direct conditioning of the
network on the intermediate features and the initial input latent code. By doing so, it
enhances the generative process, facilitates information flow between different stages,

and contributes to the overall effectiveness of the model.
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Related work

In this chapter, we delve into the seminal research that serves as the foundation and
inspiration for this thesis. Notable studies that have leveraged GANs and transformers
in the context of medical image analysis are presented. Additionally, the integration of

transformers in GANs for the synthesis of medical images is explored.

4.1 Introduction

Applying medical images to synthesis poses a few problems. First due to the detailed and
complex nature of medical images, precision has to be in focus, more so than for regular
images. Second, medical images are time-consuming to capture, and the process can be
harmful to the patient, which is just some of the reasons why the datasets available are

typically much smaller than the ones used in other vision tasks.

This research should give a perspective on what researchers have done in the field of
medical images and the performance of existing models, and therefore give a good baseline

for comparative analysis.

It should also be mentioned that the transformer-based models ViT, ViTGAN, and
HiT-GAN from Sections 3.6, 3.7, and 3.8 are related works that built a foundation for
this thesis, however, because of their technical relevance to this thesis’s approach, were

included in the technical background.
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4.2 GANs for medical images

GANSs have been employed for various purposes in medical applications: generating
synthetic data, reconstruction, de-noising, detection, image translation, segmentation,
and classification, are all examples of GANs usage on medical images [79]. GANs have
demonstrated their utility in certain tasks, however, their effectiveness has been limited,
as highlighted by the authors in the publication "GANs for Medical Image Analysis."
"While GANs show superior performance in many applications, they suffer from the
same un-interpretability as other deep models. This is the main obstacle to their practical

application in medical environments" [79].

To gain a comprehensive understanding of the efficacy of GANs in the context of medical
image applications, an examination of the research conducted in [80] is done. In this study,
the authors evaluated synthesized images derived from three distinct datasets comprising
medical images, using four distinct GAN models. The evaluation was performed based
on the FID score (described in Section 3.4.2). The authors calculated the FID score for
each GAN model individually, across all three datasets, using different hyperparameters

in the evaluation.

The FID values calculated in [80] ranged from well above 150 to a bit under 100, as
depicted in Table 4.1. The authors concluded with "As a result, GANs effectiveness as a
source of medical imaging data was found to be not always reliable, even if the produced
images are nearly indistinguishable from real data." Based on this result, this thesis will
expand on the research by using vision transformers, known for having less inductive
bias than the convolution-based models used in [80].

Table 4.1: Mean FID values obtained for different models on different datasets. The
FID values acquired in the experiment, are approximated from Figure 3 in [80].

Dataset | DCGAN | LSGAN | WGAN | HingeGAN
ACDC 130 100 125 75

IDRID 175 185 100 100
SLiver07 | 80 75 145 80

4.2.1 DCGAN for generating synthetic CTP images

In Murat Korkmaz’s master thesis from 2021, [3], DCGAN and MoCoGAN models
were proposed and trained on the same preprocessed dataset, as described in 5.2. The
goal of Korkmaz’s work was to generate synthetic preprocessed CTP images in a 3D

representation where the third dimension is images taken for one slice during one injection,
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representing time. The way Korkmaz solved this was to include a separate discriminator
to handle the slices in parallel to the discriminator that handles only one random image
for each slice, thus capturing both the characteristics of the current slice and how the

slice change during the injection.

In this thesis, the DCGAN model proposed by Korkmaz was adopted as a foundational
framework due to its similarities with regard to dataset characteristics and the shared
objective of generating CTP images. The DCGAN model was utilized in the approach in
Chapter 6, to generate raw CTP images as described in Chapter 5.

4.3 Transformers on medical images

Due to the notable achievements of transformers in the domain of natural language
processing, followed by their application in vision tasks, exemplified by the vision
transformer model discussed in Section 3.6, researchers have recently displayed a growing

interest in exploring the integration of transformers for medical image-related tasks [81].

Transformers have recently been used on segmentation [82-84] and classification [85-87]
for medical images: The study conducted by Valanarasu et al. [84] employed transformer
models to perform the segmentation of medical images across three distinct datasets,
aiming to investigate the feasibility and efficacy of transformer-based approaches in the
domain of medical image segmentation. The authors show that the transformer models
achieve better performance than convolutional models. On the other hand, transformers
were applied to the classification of stroke on CT scans in the model called StrokeViT

[86] in combination with CNNs.

The benefits of including a transformer in these kinds of problems are to get rid of the
locality of the convolution operation and exploit the long-range relationship in the data
[87]. The downside is that to perform well, transformers require large-scale datasets,

making the often small datasets in medical imaging not suitable for the task.

4.4 Combining transformers and GANs for synthetic medical

images

Building upon the findings presented in the preceding sections, researchers have made
attempts to combine Transformers and GANs to address the challenge of limited datasets

in the field of medical imaging.
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In the article "MedViTGAN: End-to-End Conditional GAN for Histopathology Image
Augmentation with Vision Transformers", Li et al. [88] proposed the MedViTGAN model.
This model combines GANs and transformers in an architecture based on TransGAN from
[89], with the same transformer encoder architecture as in the Vision Transformer model
from Section 3.6. The MedViTGAN model gave some promising results on histopathology
images for data augmentation in an end-to-end manner. The FID scores achieved here
were 57.8, 58.6, 118.4, and 126.2.

These results further motivate the primary objective of this thesis, which is to synthesize

high-resolution CTP images using Vision Transformers.
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Dataset and preprosessing

This chapter provides a comprehensive description of the two datasets employed in this
thesis: the raw dataset (see Section 5.1) and the preprocessed dataset (see Section 5.2).
The preprocessing steps necessary to adapt the datasets for compatibility with the models
are outlined in Section 5.3. Furthermore, various representations of the datasets are

detailed in Sections 5.4, 5.5, and 5.6.

5.1 Raw CTP dataset

The dataset utilized in this thesis comprises a substantial collection of 70,050 CTP images,
generously provided by the Stavanger University Hospital (SUH). These images have
been obtained from a cohort of 157 individual patients between January 2014 and August
2020. Notably, the dataset encompasses a variable number of slices, ranging from 13 to 23,
for each patient, accompanied by 30 distinct time points of image acquisition. How this
is captured is illustrated in Figure 5.1. This extensive dataset facilitates comprehensive

analysis and exploration of CTP data in the context of this research endeavor.

Within the dataset, the patients have been categorized into distinct groups according
to the extent of the vessel occlusion. Specifically, there are 79 patients identified with
large vessel occlusion (LVO), denoting a more severe condition, while 63 patients fall
under the category of non-large vessel occlusion (non-LVO). Additionally, there are 15
patients who presented with stroke symptoms but were subsequently found to have no
evidence of vessel occlusion following the diagnostic examination. This classification is

demonstrated in Table 5.1 below.
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Figure 5.1: A representation of how each slice is captured in a 3D format, also denoting
the fourth dimension on the right-hand side. Images are sourced from [90].

Table 5.1: Overview of patient groupings

Group code | Type Num of patients
CTP_o01 Patient with large vessel occlusion (LVO) 79
CTP_02 Patients with non-large vessel occlusion (non-LVO) | 63
CTP_ 03 Patient with no vessel occlusion 15

All patients in this dataset went through an injection of 40 ml iodine-containing contrast
agent (Omnipaque 350 mg/ml) and 40 ml isotonic saline in a cubital vein with a flow
rate of 6 ml/s. This is to visualize the flow of blood in the brain. The delay for starting
the scan acquisition was four seconds. Images were captured every 1s for the first 20s,
and every 2s for the remaining 20s. The width and height of each image are 512 x 512
pixels with a resolution of 0.4258 mm /pixel, additionally, the slice thickness is 5mm. The

same dataset was used in [2, 3, 61, 62, 91, 92].

5.2 Preprocessed CTP dataset

In addition to the collection of raw CTP data, a preprocessed CTP dataset was incor-
porated into the study. This dataset comprised 152 patients, encompassing a total of
67,530 CTP images. These images are structured identically to that of the raw dataset,
however, prior to their inclusion, these images underwent a series of preprocessing steps,

as outlined below:

1. Co-registration: The first time point in the 4D CTP dataset served as a reference

for the co-registration process.

2. Encoding into Hounsfield Unit (HU) values: The CTP images were transformed

into HU values, which are widely used in medical imaging for denoting radiodensity.
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3. Brain extraction: An automated brain extraction method Najm et al. [93] was

employed to isolate the brain region within the images.

4. Histogram equalization and gamma correction: Techniques such as histogram
equalization and gamma correction were applied to enhance the image quality and

improve visual contrast.

5. Standardization of the enhanced 4D tensor: The 4D tensor representing the
enhanced CTP data was standardized to ensure consistent scaling and facilitate

comparative analysis.

These preprocessing steps, originally introduced by Tomasetti et al., are discussed in
greater detail in [91]. By implementing this preprocessed CTP dataset, the study aims to

investigate the impact of these techniques on the subsequent analysis of data synthesis.

5.3 Preparation of data

In addition to the aforementioned preprocessing steps, a series of subsequent steps were
performed on the raw CTP dataset to ensure its compatibility with the GAN models.
Initially, the images were resized from their original resolution of 512 x 512 to a reduced
size of 256 x 256. While it would be beneficial to explore the utilization of full-size images
in future experiments to capture finer details in the data, this resizing step was necessary

to ensure consistency and enable a fair comparative analysis between the models.

Additionally, the images in the dataset were initially in the TIFF file format. To align
with the functionality of the implemented HiT-GAN model, which utilized a dataset
function necessitating JPG format, the images were converted as such. It is important to
note that the JPG format employs lossy compression methods, resulting in a loss of data
during image compression, unlike the lossless methods used in the original TIFF format.
This conversion may have introduced slight alterations to the base datasets, potentially
impacting the generated images as well. Nevertheless, this conversion was necessary to

incorporate the dataset into the architecture for further analysis and experimentation.

5.4 2D data

In this thesis, the CTP data is generated in the form of two-dimensional data referring
to the x and y-axis of the image (Figure 5.2). This is referred to as a slice, and is the
most conventional definition for images, however, when mentioning CTP data, there are

several other dimensions to address as the 2D data does not capture the entire picture.
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Figure 5.2: How the 2D data is represented in this thesis, using raw CTP image as an
example.

5.5 3D data

When performing a CT scan, the idea is to capture a full 3D view of the patient. The
way this is done is by capturing images as cross-sections or slices of the brain for different
altitudes of the head, along the z-dimension. In this way, the brain can be illustrated as

several slices ranging from the bottom of the head to the top (Figure 5.3).

__—

Slice

Figure 5.3: How the 3D data is represented in this thesis, using the raw CTP images as
an example.

5.6 4D data

As explained in the medical background 2.2, CTP refers to the evaluation of a contrast
agent’s propagation through the bloodstream. It is therefore interesting to capture the
time aspect of the perfusion, from the moment of injection until the wash-out of the
contrast agent. This should be for each slice in the z-dimension. Combined, there now
is a full 3D representation of the patient’s brain for 30 time steps, completing the 4D

representation (Figure 5.4).
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Figure 5.4: How the 4D data is represented in this thesis, using raw CTP images as an
example.






Chapter 6

DCGAN approach

The following chapter details the experiments conducted in the context of this project,
focusing on the DCGAN model [10]. Before specifying what the experiments themselves
entail, the DCGAN model will be introduced shortly followed by what preparatory steps
were taken prior to conducting the model training. Subsequently, the results obtained
from each DCGAN experiment are presented and discussed, with a comprehensive
analysis of the image quality, limitations, and potential areas for improvement. Finally,
this chapter is concluded by summarizing the key findings and insights derived from the
DCGAN experiments, setting the stage for the subsequent Chapter 7 which introduces
the HiT-GAN model [4].

6.1 Introduction

As this thesis builds upon a previous master thesis by Murat Korkmaz in 2021 [3], it is
only fitting that the first experiment utilizes the 3D DCGAN model presented in the said
thesis. The motivation for why this model was implemented is threefold: i) to establish a
knowledge basis, ii) to evaluate the baseline performance, and iii) to make a comparative
analysis. This entails; firstly, the initial implementation of the DCGAN serves as a
foundational step in understanding and gaining practical experience with the concept
of GANs, their structures, limitations, and possibilities. Secondly, by implementing the
DCGAN, a baseline performance can be established for generating CTP images and its
limitations and potential can be assessed. Lastly, the results obtained from the DCGAN
model will serve as a reference point for evaluating the advancements achieved by the

HiT-GAN in terms of image quality and realism.
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6.2 Experimental setup

While Korkmaz’s thesis [3] primarily centered around preprocessed data, this thesis
takes a different approach by primarily focusing on the utilization of raw data CTP
images provided by SUS. The decision to prioritize raw data stems from its inclusion
of supplementary information that adds valuable insights. Nonetheless, experiments
involving preprocessed data have also been incorporated to widen the scope of comparison

and analysis.

Since the architectural details of the DCGAN have been explained in Section 3.2.4, they
will not be mentioned here, however, what is worth highlighting is the modifications
made to the model to suit the specified research objectives. Upon reviewing the code
comprising the model, certain improvements were deemed beneficial to be made. The
original model would fetch an incomplete set of images from as many randomly chosen
patients as the batch size specified, for each epoch. Another downside that followed
from this logic, was that the model would likely not review all images for every epoch,
only a fraction of them. In the modified version, the entire set of images the patient
is composed of is fetched instead. Additionally, a list of patients was created, where
every chosen patient was removed from said list, to emulate a random selection without
replacement. This was to ensure every patient was visited for each epoch. The list would

then be remade for every epoch.

By establishing this foundation, the experiments conducted can now be discussed,

shedding light on the insights gained through this investigation.

6.3 Experiments

The model underwent over 20,000 training steps; however, for the purpose of these
experiments, only the checkpoint at 20,000 steps will be referenced, as it represents the
final saved weights. To remain consistent with the original code, the latent dimension
was set at 180, and the discriminator and generator’s learning rate at 0.0001. The model
employs binary cross-entropy (BCE) loss, which was logged every 100 steps. The plotted

losses illustrate the progression as a function of these 100-step intervals.

It is important to note that each step corresponds to the images from a single patient.
Therefore, the number of steps required to complete one epoch is equivalent to the
number of patients in the dataset. Consequently, the last checkpoint corresponds to a
total of 127 completed epochs, indicating 127 complete iterations through the entire

dataset.
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6.3.1 Results on raw data

Figure 6.1 and 6.2 depicted below showcase the concurrent calculation of losses for the
generator and discriminator during the training process, using the raw dataset. These
losses and their optimal values are discussed in detail in Section 3.3. The plots reveal
an initially erratic training phase, gradually converging towards a stable value with
intermittent fluctuations leading to occasional spikes, which is as expected. Notably,
the generator consistently maintains a higher value than what is ideal, while the dis-
criminator exhibits overperformance. This discrepancy may stem from the discriminator
becoming overtrained, disrupting the balance between the two convolutional networks
and potentially contributing to suboptimal results. Of utmost significance, however, is

the convergence of both networks, constituting a crucial aspect of the training process.

Discriminator losses and Generator losses
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Figure 6.1: Generator and discriminator loss for the modified DCGAN.
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Figure 6.2: Magnified view of the discriminator loss for the modified DCGAN.

In order to establish a comparative framework for both HiT-GAN and DCGAN models,
the FID was calculated for the DCGAN model as well. For this analysis, 5000 generated
images from the DCGAN model were compared against 5000 randomly selected real
images. It is important to note that the dataset was not partitioned into separate training
and evaluation sets, thereby the model should yield images that more closely resemble

those used for evaluating the model, this is discussed further in Section 6.3.3.

To ensure a more comprehensive and unbiased FID score, as the metric takes into account
the arrangement of the images, a permutation-based evaluation approach was adopted.
Specifically, the FID and IS metrics were computed 100 times, each time with a different
ordering of the images. The resulting FID scores from these 100 calculations were then
averaged to derive the final FID score. This evaluation methodology allows for a robust
assessment of the model’s performance, taking into account the potential influence of

image ordering on the FID metric.

The mean scores of the FID and IS metrics were calculated to be 168.157, and 1.146,
respectively. The best-recorded values from among the 100 were calculated to be 143.039
for the FID score, and 1.146 for the Inception score.

Figure 6.3 showcases the raw CTP data generated by the DCGAN model. A random
selection of these images reveals visually appealing results in terms of gray-scale values,
shape, and overall content. However, a noticeable limitation is the absence of discernible
brain structures within the skull, indicating a failure to extract meaningful information
from within the skull. Moreover, the lack of diversity among the generated images is
evident, suggesting the presence of mode collapse. This could stem from the imbalance

seen during the training phase, as highlighted by the aforementioned loss functions.
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Despite these shortcomings, from a visual point of view, the generated data exhibits a

reasonable resemblance to the training data.
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Figure 6.3: Generated raw CTP data from the DCGAN.

6.3.2 Result on preprocessed data

The second experiment conducted using the preprocessed dataset followed an identical
parameter configuration and setup as the previous experiment. The average values of

the FID and IS metrics were computed as 222.837 and 1.501, respectively. Among the
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100 generated samples, the lowest recorded FID score was 200.239, indicating a slight
improvement regarding the similarity between the generated and real data distributions,
while the Inception score remained consistent at 1.501. These results provide insights

into the quality of the generated samples, demonstrating the performance of the model.

Figure 6.4: Generated preprocessed CTP data from the DCGAN.

Figure 6.4 showcases the generated preprocessed CTP data, which shares similarities
with the observations made for the generated raw data. The increased contrast in these
images reveals greater diversity in the brain patterns, yet there remains a noticeable lack
of variability. This persistence of limited diversity echoes the discernible indications of

mode collapse observed in the previous experiment. Additionally, as the model attempts
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to capture the internal structures in the images, some information seems to be lost, as

some images illustrate that parts of the brain are missing.

6.3.3 Discussion

For these experiments, the datasets were employed in their entirety to train the model
with the anticipation that a sufficient amount of data would be available to facilitate the
learning of a robust mapping from inputs to outputs. The decision to primarily focus on
the training aspect of the experiment, rather than splitting the dataset for training and
evaluation, was made strategically in order to allocate resources efficiently and optimize
the research process. By directing attention toward training, the aim was to thoroughly
analyze the performance and capabilities of the model under controlled conditions. This
approach allowed for a deeper understanding of the training dynamics, fine-tuning of
the model’s parameters, and assessment of its potential for generating desired outputs.
Although dataset splitting for evaluation purposes could provide additional insights,
prioritizing the training phase enabled a more comprehensive and in-depth examination

of the model’s learning process.

Because of this decision, the FID measure is then expected to exhibit a bias toward the
data generated by the DCGAN. Although this unconventional decision would not be
replicated in future experiments, it is worth noting that, as the results will demonstrate,
it did not significantly affect the comparison between the two models. It is also worth
noting that the Inception-v3 model, which is employed for calculating the FID score, is
pre-trained on the ImageNet dataset, which differs significantly from the dataset used in

this thesis. Given this disparity, the achieved results can be considered noteworthy.

Despite its notable strengths, it is imperative to acknowledge the inherent limitations
of the DCGAN model utilized in this study. One significant limitation pertains to its
inability to generate meaningful 3D data, despite being specifically designed for this
purpose. This limitation stems from the model’s inherent definition of 3D data, where
the third dimension represents time. Consequently, the generated data corresponds to a
single random slice from a patient at different time steps, rather than comprehensive 3D
representations. However, as the main focus of this thesis is to generate 2D data, this

model serves as fine groundwork for these purposes.

Another noteworthy deficiency is the lack of diversity observed in the generated data, even
when different latent vectors are provided as input. The generated data fails to capture
the same diversity as the real-world data distribution, indicating a persistent mode
collapse (Sec. 3.3.1). This phenomenon suggests that the generator consistently produces

only from a small set of realistic samples that effectively deceive the discriminator.
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In light of its limitations, the data generated by the DCGAN model serves as a valuable
baseline for comparing the performance of subsequent models. As the model is already
configured to fit the same task that the HiT-GAN is implemented for, it seamlessly
handles the dataset employed in the subsequent experiments, thereby facilitating the
experimental workflow. It enables comparisons not only in terms of image quality and
evaluation metric values but also in terms of the proposed model’s ability to generate

more diverse data, addressing the shortcomings observed in the DCGAN outputs.



Chapter 7

Proposed approach

The forthcoming chapter aims to expound our approach, specifically centered on the
utilization of vision transformers in GANs. The preparatory steps of the two experiments
will be clarified before they are conducted in order to evaluate the efficacy and robustness
of the HIT-GAN model. Furthermore, we will showcase generated images at various
checkpoints including evaluation metrics for the images, and provide results that illustrate
the overall progress of the training process, subsequently engaging in a comprehensive

discussion of the obtained results.

7.1 Introduction

The primary aim of this study is to employ vision transformers in the generative process
of GANs, with the objective of synthesizing artificial CTP images in 2D (5.4). The
utilization of vision transformers is expected to minimize inductive bias, resulting in
the generation of more realistic images [51, 65]. Furthermore, the synthetic images are
intended to exhibit a level of detail comparable to that of the original CTP images.
Consequently, an endeavor to preprocess the images will be undertaken to enhance their
fidelity.

In order to accomplish this, a suitable model was required. Various models, including
ViTGAN!, TransGAN?, and MedViTGAN, were evaluated. However, due to its remark-
able ability to generate high-resolution images, the HiIT-GAN model [4] described in
Section 3.8 was ultimately chosen as the most appropriate candidate. It is worth noting
that the HiT-GAN model, as described in the original paper, was trained on the CIFAR,

ImageNet, and CelebH(Q datasets, none of which specifically pertain to medical images.

"https://github.com/mlpc-ucsd/VIiTGAN
*https://github.com/VITA-Group/TransGAN
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The approach is divided into two separate experiments: The first experiment involves
utilizing the raw CTP dataset, as detailed in Section 5.1, to train the HIT-GAN model.
The second experiment involves employing the preprocessed dataset, as detailed in Section
5.2, for training the HiT-GAN model. However, prior to delving into the specifics of
the experiment, a comprehensive description of the HiT-GAN model employed in the

experiments will be provided.

7.2 Preparing the model

In order to align our dataset (described in Chapter 5) with the HiT-GAN model, several
modifications were made to the original code®. The existing dataset builders were
substituted with a function that facilitates the categorization of files within a specified
directory into respective classes based on their sub-directories. Notably, the assignment
of class values follows a sequential pattern, whereby the first sub-directory is assigned a
class value of 0, the second sub-directory a class value of 1, and so forth. Additionally,
image normalization procedures were applied. The training loop underwent a redesign to
ensure that the dataset was iterated through a predetermined number of epochs, loading
the dataset into memory before the training process starts. An additional operational
mode, referred to as the "generate images" mode, was introduced alongside the existing
train and evaluation modes. This newly incorporated mode facilitates the generation of a

specified number of images using the saved generator model at a designated checkpoint.

The hyperparameters employed in this approach were those suggested by the creators of
the HiT-GAN model [94], for execution on GPUs, despite the fact that the original code
was executed on multiple TPUs. Wasserstein loss [95] and hinge gradient penalty [96]
were options that could be employed in the HiT-GAN model. However, experimental
results demonstrated that these methods exhibited inferior performance compared to
the R1 and non-saturating loss functions (as detailed in Section 3.8.1) for this thesis’s

objectives.

On account of the low diversity between the images in our datasets, as well as the fact
that it is pre-trained on Imagenet, it can be argued that the inception score metric is
unsuitable for evaluating the images generated in this thesis. Despite this, the inception
score is included in the experiments. The code used to calculate the IS in this thesis is

taken from [97].

As a result of this, the FID score was chosen as the main evaluation metric in this thesis.

That being said, also the FID score suffers from the disadvantage of utilizing Inception-v3

3https://github.com/google-research /hit-gan
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which is pre-trained on Imagenet [98], making the FID score in this thesis less than ideal.
Additionally, a noteworthy aspect affecting the evaluation of FID is the nature of the raw
CTP images, which are gray-scale and exhibit substantial contrasts. For instance, the
pixel values in the black background register as zero, while the tissue surrounding the
head exhibits pixel values around 75, and certain regions of the skull can reach values of
225. Consequently, these significant gradients exert a discernible influence on the FID

score.

7.3 Experiment 1

In the initial experiment, the raw CTP images were utilized as the data source. The
dataset was partitioned into two distinct subsets: a training split encompassing 64,200
CTP images derived from 143 patients, and an independent evaluation split comprising
5,850 CTP images originating from 14 distinct patients. This partitioning strategy was
employed to ensure that the evaluation process does not rely on the same data that was
used for training our model. By segregating the dataset in this manner, the evaluation
phase can be conducted using previously unseen data, thus providing a more robust

assessment of the model’s performance.

7.3.1 Results and discussion

The model underwent a total of 60 epochs of training on a single "Tesla v100-PCle"
GPU, with a batch size of 2, owing to the limitations imposed by the available 32510MiB
of the GPUs. The latent dimension was set to 512, while both the discriminator and
generator employed a learning rate of 0.00005. To enforce consistency and enhance
training stability, consistency regularization techniques, and the R1 gradient penalty

(detailed in Section 3.8.1) were incorporated into the training process.

During the training process, the loss and FID values are plotted based on the number of
steps taken. Considering the batch size of 2 as utilized in our approach, each step involves
the presentation of two real images to the model. Consequently, the total number of
steps required to complete a single epoch can be calculated as the dataset size divided

by the batch size, resulting in 32100 steps.
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Figure 7.1: The "discriminator fake loss", as expounded upon in Section 3.3, was
evaluated over a span of 60 epochs during the training of the HiT-GAN model.

The graphical representation of the discriminator’s fake loss, as depicted in Figure 7.1,
demonstrates initial instability during the early stages of training. However, notable
stabilization occurs approximately after step le+6 or around epoch 31, with the fake loss
converging consistently between the range of 0.5 and 0.6. These values align favorably
with the optimal performance benchmarks established for the discriminator, as discussed
in Section 3.4. This stabilization in the discriminator’s fake loss serves as evidence of the
model’s enhanced capacity to discriminate between real and generated samples, affirming

the robustness of the discriminator’s discriminatory ability as the training progresses.
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Discriminator Real Loss
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Figure 7.2: The "discriminator real loss", as expounded upon in Section 3.3, was
evaluated over a span of 60 epochs during the training of the HiT-GAN model.
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Figure 7.3: The "generator loss", as expounded upon in Section 3.3, was evaluated over
a span of 60 epochs during the training of the HiT-GAN model.
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The generator loss, depicted in Figure 7.3, demonstrates a stabilization trend around the
value of one after 1e+6 steps. As elaborated in Section 3.3, this particular value signifies
a desirable stabilization point, taking into account the corresponding discriminator loss
values illustrated in Figure 7.1 and 7.2. This convergence point establishes a satisfactory
equilibrium between the generator and discriminator components, ensuring a balanced
training process. Studying the loss data, there is nothing to suggest any complications
have arisen during the training, however, consulting the resulting image data will give a

more conclusive verification.
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Figure 7.4: The FID score as expounded upon on in Section 3.4.2 calculated for every
checkpoint during the training of the HiT-GAN training.

Concurrently with the training process, an evaluation model is employed to compute the
FID score for each saved checkpoint. To accommodate GPU limitations, this evaluation
model is executed on a separate GPU. The FID scores are visualized in the plot presented
in Figure 7.4, where it can be observed that the FID score stabilizes around 100 after
step le+6. It is noteworthy that the Inception-v3 model, employed for calculating the
FID score, is pre-trained on the ImageNet dataset, which is distinctly different from the
dataset utilized in this thesis. Considering this dissimilarity, the achieved results can be

considered commendable.

In conjunction with the calculation of the FID for each checkpoint, as illustrated in the plot

presented in Figure 7.4, a distinct FID and IS evaluation was conducted for every saved
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checkpoint. This additional evaluation was necessary due to the inherent dependency
of the FID score on the ordering of the images. To obtain a more representative and
generalized FID score, the FID and IS metrics were computed 100 times for 5000 generated
images and 5000 images from the evaluation split, each with a different ordering of the
images. The resulting FID scores from these 100 calculations were then averaged to
obtain the final FID and IS scores. This evaluation approach enables a more robust
assessment of the model’s performance, accounting for the potential influence of image
ordering on the FID metric. The checkpoints presented in this section are the checkpoints

with the best FID score, according to Figure 7.4, in different parts of the training process.

First checkpoint

The first checkpoint in this experiment was captured from step 1455628 corresponding to
epoch 45. Notably, this checkpoint yielded a commendable FID score of 80.121, accom-
panied by an inception score of 1.578, with a standard deviation of 0.025. Additionally,
the mean FID score amounted to 93.790, while the mean inception score reached 1.577,

with a standard deviation of 0.032.

Upon examination of the generated images presented in Figure 7.5, it becomes evident
that the diversity between the images has improved greatly compared to the DCGAN
data presented in Chapter 6. Upon closer examination, images (c) and (d) exhibit
significant similarities. While some differences, particularly in the skull’s shape, can be
discerned, this may still suggest the occurrence of a mode collapse. That being said,
on account of the dataset containing groups of nearly identical images (that being the
time steps of the perfusion), it might not be surprising seeing some similarities in the
produced data. Further examining the images, intricate details within the skull can be

observed, which could potentially be better elucidated through preprocessing techniques.
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Figure 7.5: First set of images generated at step 1455628, given a latent z input.
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Second checkpoint

At step 1604572, or epoch 50, the second checkpoint was obtained. This checkpoint
demonstrated an FID score of 126.303 and an inception score value of 1.330 with a
standard deviation of 0.010. The mean FID score was calculated to be 153.825, while
the inception score maintained an average value of 1.330 with a standard deviation of
0.012. These results indicate a moderate decrease in performance during the training,

but as the training fluctuates, this is to be expected.
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(2) (h) (@)

Figure 7.6: First set of images generated at step 1604572, given a latent z input.

Figure 7.6 presents a selection of images generated at the checkpoint corresponding to
step 1604572. It is evident that these generated images exhibit limited diversity, more so
favoring a particular mode than the previous iteration. This observation is consistent
with the evaluation metrics discussed earlier and raises the issue of whether this might
be a mode collapse, as discussed in Section 3.3.1, or potential overfitting. The evaluation
of the generator and discriminator losses, as depicted in the plots in Figure 7.1 and
7.2, does not provide substantial evidence indicative of any complications. However,
from reviewing the generated data, we can infer that the observed limitations in image

diversity are likely attributed to either mode collapse or overfitting.
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Last checkpoint

The final checkpoint of the model demonstrated impressive performance, with a mean
FID score of 91.887 and a corresponding mean inception score of 1.334, with a standard
deviation of 0.017. Notably, the best recorded FID score was 77.406, while the best
inception score remained consistent at 1.334. These results indicate that the model
has reached a highly satisfactory state, suggesting convergence to desirable values.
Further evaluation of the generated images will provide valuable insights into the overall

performance of the model at this stage.

(2) (h) (i)

Figure 7.7: Images generated at the last checkpoint corresponding to 60 epochs.
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The analysis of the images depicted in Figure 7.7 reveals several noteworthy observations
similar to those discussed regarding the images generated in the first checkpoint, as
shown in Figure 7.5. While certain pairs of images exhibit distinct similarities, the
model consistently demonstrates its capacity to generate diverse data encompassing the
entire brain. To ascertain whether the generated CTP images capture sufficient details
from within the brain structure comparable to real CTP data, the images from the last
checkpoint underwent the same preprocessing steps as the original dataset (described in
Section 5.2). Initially, the brain extraction step of the preprocessing process was applied

to the images in Figure 7.7. The resulting evaluation is visually presented in Figure 7.8.

. .
(a) (b) (c)
(e) ®)
(h) (@)

Figure 7.8: The same images as in Figure 7.7, preprocessed using step 3 in 5.2.

(8)
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As seen in Figure 7.7, the majority of images exhibit a clear gradient between the white
part of the skull and the gray matter of the brain, which can be easily detected by the
preprocessing algorithm, making the skull removable. However, for image (a) in Figure
7.8, the algorithm might have been unable to detect the skull, possibly due to slightly
higher pixel values in the corresponding image (a) in Figure 7.7, explaining why the brain
is missing entirely in this image. This is merely conjecture, however, as the preprocessing

algorithm is something briefly adopted in this thesis.
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Figure 7.9: The same images as in Figure 7.8, but proprocessed with step 4 in 5.2.

After completing step 3 of the preprocessing process as outlined in Section 5.2, the

brain-extracted images from Figure 7.8 were further processed to enhance the visibility
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of the brain’s internal structure, corresponding to step 4 in the preprocessing process.
Although some structure is visible, much of it appears to be uniform, resulting in poor
image quality. However, a few images in Figure 7.9 exhibit an enhanced vein structure (as
in image (e)), which holds the potential for improving the model in the future. While the
images generated are currently unsuitable for medical purposes, with further refinement,

the model may be able to produce valuable data.

7.4 Experiment 2

Due to the intricate nature of the raw dataset, the model encounters challenges in
generating medically applicable images. Consequently, the objective of this experiment
is to assess the model’s performance on a preprocessed dataset, characterized by reduced

complexity and increased image diversity.

The preprocessed dataset employed in this experiment comprises a cohort of 152 patients,
yielding a total of 67,530 preprocessed images. The dataset is divided into two distinct
subsets for training and evaluation purposes. The training split encompasses 138 patients,
contributing a total of 61,680 images. Conversely, the evaluation split encompasses 14
patients, with a total of 5,850 images reserved for evaluation and validation. As the
dataset has already undergone the preprocessing process outlined in Section 5.2, no

further preprocessing is required for this experiment.

7.4.1 Results and discussion

This experiment underwent a total of 93 epochs with the same hyperparameters and
setup as experiment 1. The decision to train the model for a greater number of epochs,
in comparison to the previous experiment, was motivated by the lack of convergence
during training. The extended duration aimed to investigate the possibility of achieving
convergence over time. Regrettably, as illustrated in Figure 7.11, 7.12, and 7.13, the

model did not converge despite the prolonged training duration.
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Figure 7.10: The FID score as expounded upon on in Section 3.4.2 calculated for every
checkpoint during the training of the HiT-GAN training.

During the initial stages of training, the FID exhibited a range of values between 100
and 300, as observed in Figure 7.10, which is not that far from the patterns observed in
the previous section’s raw data experiment, as shown in Figure 7.4. This range persisted
until approximately step le+6 or epoch 32, at which point the FID score became notably
more volatile and deteriorated significantly, fluctuating between 200 and 600. For this
reason, the presented results are segregated into two subsets: the first set represents the
training progress prior to reaching the le+6 checkpoint, while the last set signifies the
training progress beyond this threshold. Also for this experiment, the same FID and IS
calculations as described in the previous section were employed in addition to the FID

scores attained in Figure 7.10.

The losses in Figure 7.11, 7.12 and 7.13 also show a sudden change in stability in the

training at around the same time as stated for the FID.
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Figure 7.11: The "discriminator fake loss", as expounded upon in Section 3.3, was
evaluated over a span of 93 epochs during the training of the HiT-GAN model.
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Figure 7.12: The "discriminator real loss", as expounded upon in Section 3.3, was
evaluated over a span of 93 epochs during the training of the HiT-GAN model.
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Figure 7.13: The "generator loss", as expounded upon in Section 3.3, was evaluated
over a span of 93 epochs during the training of the HiT-GAN model.

To get a better understanding of what happened in the training process in this experiment,
the losses in Figure 7.11, 7.12 and 7.13 have been smoothed using moving averages [99]
with a window size of 100 in Figure 7.15, 7.14 and 7.16. Smoothing the data grants a
better opportunity to see what directions the losses are headed in, or rather where they

are converging to.
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Figure 7.14: The "discriminator fake loss", as expounded upon in Section 3.3, was
evaluated over a span of 93 epochs during the training of the HIT-GAN model. The
plot is smoothed using the moving average method with a window size of 100.
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Figure 7.15: The "discriminator real loss", as expounded upon in Section 3.3, was
evaluated over a span of 93 epochs during the training of the HiT-GAN model. The
plot is smoothed using the moving average method with a window size of 100.
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Figure 7.16: The "generator loss", as expounded upon in Section 3.3, was evaluated over
a span of 93 epochs during the training of the HiT-GAN model. The plot is smoothed
using the moving average method with a window size of 100.

Studying the plots in Figure 7.15, 7.14, and 7.16 the discriminator losses are decreasing
over time and the generator loss is increasing over time, similar to the plots in Figure
3.19. Given this trend, it is safe to say the losses will not converge toward their ideal
values. To the best of our knowledge, this could be the indication of a convergence failure

as described in 3.3.2.

First checkpoint

This particular checkpoint corresponds to step 965280 or epoch 31 and is included because
it is the only checkpoint that was saved before step 6e4+10. The average FID and IS
values recorded were 269,902 and 1,207 respectively, however, the best scores achieved
were 246,030 and 1,207. These values are quite bad compared to the values attained by
using the raw dataset, which was suspected as this is quite early in the training process
and by the unstable training shown in the loss plots. Figure 7.17 displays the images
generated at this checkpoint.
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(2) (h) (@)

Figure 7.17: Generated images from checkpoint 965280 corresponding to epoch 31.

The analysis of the FID score at this checkpoint indicates that the generated images
exhibit subpar quality. However, upon closer examination, it is evident that the model is
capable of capturing certain aspects of the brain and vessel structures, with a relatively
higher resolution compared to previous checkpoints. Nevertheless, the generated data
appears to be affected by some artifacts. In terms of diversity, the images demonstrate
similar characteristics as observed in earlier checkpoints, wherein only a limited number

of distinct images are generated with some minor variations.
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Last checkpoint

This checkpoint is the last conducted step in the training process, corresponding to
step 3e+6 or epoch 97. The average FID and IS values achieved by this checkpoint
are 482.964 and 1.003, respectively, with the best values obtained at 445.504 and 1.003.
Unfortunately, this checkpoint is the worst-performing one in this study, indicating that

our experiment might have encountered a convergence failure, as discussed earlier in this

experiment.

(d) (e) ()

(2) (h) (i)

Figure 7.18: Generated images from the last checkpoint in this experiment, correspond-
ing to epoch 97.
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According to the high FID score, it is evident that the images produced for this particular
checkpoint (as depicted in Figure 7.18) exhibit substandard quality and significant levels
of noise, resembling the instance of convergence failure exemplified in Figure 3.20. This
further supports our assertion that the observed outcome is indeed a manifestation
of convergence failure. Moreover, the images also demonstrate the HiT-GAN model’s
capability of generating images with three color channels (RGB). This reveals that the
model has previously learned the correct combination of color values needed to produce

gray-scale images.






Chapter 8

Comparative analysis

The following chapter will give an overview of this thesis. The objectives of the thesis
that were introduced in Chapter 1 will be discussed based on what was presented in
Chapters 2-7. Additionally, the results that were obtained in this study will be presented,
giving a comprehensive comparison. Furthermore, a variety of the findings and challenges
in this study will be discussed, including a comparative analysis of the results acquired
from the DCGAN and HiT-GAN models as well as some proposed improvements to some

of the methods conducted.

In this thesis, the DCGAN model proposed by Korkmaz [3] has been employed to
synthesize both raw and preprocessed CTP data. The generated images from both
experiments were deemed acceptable representations of their respective datasets, despite
having higher FID values than expected. These images served as a reasonable baseline for
comparison with the HiT-GAN model, particularly in terms of visual quality. Regarding
the HIT-GAN results, initially, the generated images exhibited high quality, capturing the
necessary details to undergo preprocessing using the same method as the preprocessed
dataset. However, these results fell short when compared to the real samples from the
preprocessed dataset. Unfortunately, the second experiment encountered convergence
failure, rendering the obtained results mostly unusable. Nonetheless, considering the
promising outcomes from other HiT-GAN runs, with additional efforts, this experiment
could potentially yield commendable results. Overall, the HiT-GAN model outperformed
expectations, displaying FID values comparable to the best results achieved by models
working on similar datasets. Moreover, the model generated high-quality CTP images
and produced slices from different elevations of the head, showcasing its superiority over

the alternative model, despite its own limitations.

The evaluation metrics and the obtained results are further discussed in Section 8.1,

providing a comprehensive analysis of the outcomes from both models.
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8.1 DCGAN versus HiT-GAN

The FID results presented in Table 8.1, along with the visual analysis of the generated
data shown in Figure 6.3 and 7.7, demonstrate that the HiT-GAN model outperforms the
DCGAN model proposed by Korkmaz et al. [3] in terms of performance, especially for the
raw dataset. A careful examination of the outputs from the last checkpoint, as depicted
in Figure 7.7, reveals that the HiIT-GAN model generates data with enhanced diversity
and finer details compared to the DCGAN outputs shown in Figure 6.3. These findings
highlight the potential benefits of incorporating transformers within GAN models, even

in the domain of medical image data.

Table 8.1: All FID and IS results obtained in this study. The best-registered performance
is denoted in bold text.

Model Dataset Epoch | Best FID | Best IS | Mean FID | Mean IS
DCGAN Raw 127 143,039 1,146 168,157 1,146
DCGAN Preprocessed | 127 200,239 1,501 222,837 1,501
HiT-GAN | Raw 45 80,121 1,578 93,790 1,577
HiT-GAN | Raw 50 126,303 1,330 153,825 1,330
HiT-GAN | Raw 60 77,406 1,334 | 91,887 1,334
HiT-GAN | Preprocessed | 31 246,030 1,207 269,902 1,207
HiT-GAN Preprocessed | 97 445,504 1,003 482,964 1,003

The results obtained from the second experiment, which involved the use of the pre-
processed dataset, reveal that the DCGAN model outperforms the HiT-GAN model.
This performance difference can be attributed to the failure of the HiIT-GAN model to
converge. By examining the HiT-GAN model’s outcomes of the initial checkpoint for
the generated preprocessed data in Figure 7.17, along with the clear results observed
for the raw dataset in Figure 7.7, one can infer that the HIT-GAN model would have
outperformed the DCGAN model had it successfully converged. Analyzing the generated
data from both models in Figures 6.4 and 7.17, it is evident that the DCGAN model
captures a greater variety of brain shapes for the preprocessed dataset; however, some
data loss is observed in the process. Conversely, the output of the HiT-GAN model, as
depicted in Figure 7.17, exhibits more intricate details and structures within the brain

images, albeit with a limited diversity among the generated samples.

The obtained IS values in this thesis are suboptimal and do not align with the evaluation
criteria established for this study, as elaborated in Section 7.2. However, it is worth
noting that a lower IS value can indicate a lower level of diversity among the generated
images [44]. Although the medical datasets, in general, are less diverse than Imagenet
or similar datasets, the declining IS values for the HiT-GAN model on the raw dataset,
presented in Table 8.1 could indicate a decreasing trend in diversity throughout the

training process for the output generated by the HiT-GAN model.
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For the raw dataset, the DCGAN model underwent a total training time of 195 hours,
approximately spanning 8 days. Conversely, the HiT-GAN model was trained for 186
hours, also equating to nearly 8 days. Despite the comparable training durations, the
DCGAN completed more than double the number of epochs compared to the HiIT-GAN
model. It is worth noting that the HiIT-GAN model requires fewer epochs to achieve
satisfactory results, as evidenced by the poor output quality of the DCGAN model,
particularly up until epoch 127.

Furthermore, the HiIT-GAN model exhibits high parallelizability, enabling training across
multiple GPUs concurrently. This aspect raises the question of available computing

power as a determining factor in utilizing the model effectively.

8.2 Comparison with related work

As outlined in Chapter 7, it should be noted that the FID metric utilized for evaluating
the models in this study is pre-trained on the ImageNet dataset. Consequently, the FID
scores obtained for the generated images in this thesis may appear comparatively higher.
Therefore, it is imperative to compare the FID scores with those of GAN models trained

on similar datasets.

Table 4.1 presents the FID values for various GAN models trained on comparable medical
datasets. Considering the values provided in that table, the FID scores achieved by the
HiT-GAN model on the raw dataset are deemed satisfactory.

8.3 Improvements

First, it is noteworthy that the original images in the dataset were converted from the
lossless TIFF format to the lossy JPG format to accommodate the model’s requirements.
While there is no explicit evidence suggesting that this conversion adversely affects image
quality, it may be prudent to consider utilizing a lossless format such as PNG to mitigate

any potential loss of information.

Additionally, it is important to note that the original design of the HiT-GAN model by the
authors was intended for execution on multiple TPUs. However, due to the constraints
of this study, which involved the utilization of only two GPUs, one for training and one
for evaluation during training, the batch size employed in this thesis was limited to two.

This is in contrast to the authors’ recommendation of a batch size of 256 [94].
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Also, the computation of the FID and IS metrics for the two models examined in this
thesis could incorporate the standard deviation for the 100 iterations (as described in

Section 7.3.1), thereby yielding more precise representations.

The original images, as detailed in Section 5.3, possess a resolution of 512 x 512 pixels.
However, in this study, a resolution of 256 x 256 pixels was adopted due to limitations
inherent in the HiT-GAN model, which supports only resolutions of 128 x 128, 256 x
256, or 1024 x 1024 pixels. Extending the model to incorporate a resolution of 512 x 512
pixels would mitigate the loss of information incurred by downsampling the images to a

lower resolution.

The findings presented in this thesis highlight the challenges associated with synthesizing
CTP data, considering the limited availability of diverse datasets in the medical domain.
Despite these challenges, it is demonstrated that it is possible to generate images that
possess certain properties resembling the original CTP images. The dataset utilized in
this study consists of data obtained from a 4D study, where the temporal changes in the
images are minute. As a result, it is reasonable to assume that the 30 images in time
for each slice are nearly identical. This inherent lack of diversity in the dataset poses a
hindrance, particularly in the context of GAN training, which is known for its instability
[10]. One could surmise that given the groups of nearly identical images which make up
the dataset, the supposed mode collapse which is experienced in the results is simply the
model trying to capture different time instances of the perfusion. Meaning that given a
dataset of purely dissimilar images, the model would output exclusively unique images,
with no major resemblances between them. To enhance the training process this way, it
could be beneficial to employ a dataset characterized by greater diversity, as it would

contribute to a more robust and effective training of the GAN model.

8.4 VIiTGAN approach

ViTGAN was also selected as a model to be utilized for CTP image synthesis. This
was because the model is essentially the most rudimentary, baseline combination of
vision transformers and GANs, and would serve as an interesting model for comparison.
Unfortunately, after spending time implementing it and making it fit the designated
dataset, the model would not produce any valuable output. After running for a period
of 10-30 minutes, the losses would lock onto a value of 0.693, in a way resembling
convergence failure. This value, however, relates to the loss function’s (BCE) input value
of 0.5, which might suggest that for whatever reason, the discriminator outputted a
static 0.5 probability of the input image being real, which did not give the generator any

input to improve itself from. As a result, the generator would output pure noise. Given
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this undiagnosed issue and the lack of meaningful output data in addition to the time
pressure related to the project itself, it was decided that the main focus would lie on the
HiT-GAN model which did work, and there would be no reason to include the ViTGAN

with its own chapter.






Chapter 9

Conclusions

9.1 Conclusion

This thesis delved into the potential applications of vision transformers as alternatives
to the conventional employment of CNNs in GANSs, within the domain of synthesizing
CTP images. The primary objective was to augment the limited scale of typical medical
datasets, thus providing a sufficient quantity of training data for medical machine-learning

tasks.

Initially, the DCGAN model, as proposed by Korkmaz, served as the foundation and
starting point for this thesis. Subsequent to its adoption, certain modifications were
introduced, and image generation and evaluation were conducted on both the raw dataset

and the preprocessed dataset.

Subsequently, vision transformers were integrated into the GAN generation process
through the introduction of the HiT-GAN model. This model underwent training on
both datasets, and the generated images underwent evaluation through the FID metric.
The findings demonstrated that although the generated images captured specific aspects
of the brain structure, they exhibited limited diversity within their visual characteristics.
This observation led to the conclusion that this outcome could be attributed to either
a mode collapse phenomenon or the inherent limitations of the low-diversity dataset

employed in this study.

This work might serve as a part of the baseline for a data synthesis model that will be
able to generate artificial CTP data that captures every minute detail present in the
real-world data. A breakthrough in this sector would provide applied algorithms with all
the training data they would need, possibly leading to a revolution within the medical

sector with regard to diagnostics, not to mention the response time for treatments. The
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different methods explored in this project may aid other researchers considering similar

approaches.

9.2 Future directions

Adapting the HiT-GAN model to incorporate conditional capabilities (as described in
Section 3.2) would allow for the utilization of 3D data (5.5). By treating slices as classes,
it becomes possible to represent an entire patient using 14 slices. This approach provides
a more comprehensive representation compared to generating a single random 2D (5.4)
slice for each patient. To achieve this, the dataset needs to be restructured into folders
of slices instead of patients. Each folder would be assigned the same label, with Slice 01

assigned label 0, Slice 02 assigned label 1, and so forth.

In order to accommodate multiple inputs and outputs for the additional label channel,
the HiT-GAN model would need to be rewritten using the functional API (as documented
in [100]) instead of the Sequential API. Both the generator and discriminator components
would need to incorporate label embedding into the image, resulting in an extra channel
of the same size as the image. These label embeddings would then be concatenated to
the image. This can also extend to 4D data (5.6) resulting in the ultimate CTP data

representation.

The HiT-GAN model only includes ViT in the generative process. In future works the
implementation of a ViT-based discriminator, as in [65], could be studied. This might
reduce inductive bias from the discriminating process and improve the quality of the
generated images by allowing the discriminator to better understand the content of the

images.



Appendix A

Appendix contents

The code used in this thesis, as well as the accompanying README.md, can be found
on https://github.com/orjanvier/master_hitgan

The following pdfs are included in this chapter:

o Master thesis poster
e« NOBIM conference abstract

o NOBIM presentation
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Computed tomography perfusion (CTP) imaging is rou-
tinely used for diagnosing cerebral stroke and determining
the extent of damage to the brain [1]. It guides treatment
decisions, which is why timely identification of the affected
area is crucial in ischemic stroke patients [2]. Therefore, au-
tomatic segmentation of the dead tissue (ischemic core) and
salvageable tissue (penumbra) is needed. This is as opposed
to the time-consuming and imperfect process of manually
examining parametric maps derived from the CTP images.
Automatic techniques based on neural networks require im-
mense amounts of labeled data to return promising results,
however, and obtaining ground truth in medical images is
notoriously cumbersome. Regardless, self-supervised seg-
mentation to separate the ischemic core from the penumbra
has been the center of attention currently [3].

Self-supervised segmentation requires a large training set
we propose to obtain by synthesizing CTP images. Previous
projects [4] employed deep convolutional generative adver-
sarial networks (DCGANSs) consisting of a generator net-
work and a discriminator network. The generator network
usually comprises transposed convolutional layers, while
the discriminator network uses standard convolutional lay-
ers. Although DCGANS can generate visually appealing and
realistic images, synthesizing CTP images needs a network
that can produce high-resolution images with fine details.

We propose to tailor a High-resolution Transformer-based
Generative Adversarial Network (HiT-GAN) [5] that em-
ploys a hierarchical structure with multiple generative stages
in combination with a discriminator to generate CTP data.
HiT-GAN is based on vision transformers [6] and uses self-
attention mechanisms to capture long-range dependencies
in the image at different scales. Through an attention-based
learning approach, vision transformers have been shown to
outperform convolutional neural networks (CNN5s) regard-
ing both computational efficiency and accuracy [6]. HiT-
GAN uses multi-axis blocked self-attention that captures lo-
cal and global dependencies within non-overlapping image
blocks in parallel. It allows the model to capture both global
and local image features to improve the quality of the gen-
erated images.

To train our model we used CTP images from 156 pa-
tients acquired by the Stavanger university hospital. These
patients are separated into three groups based on vessel oc-
clusion: 1) patients with large vessel occlusion (LVO) n =
78, 2) patients with non-large vessel occlusion (non-LVO)
n = 63, and 3) patients with no vessel occlusion n = 15. In

total 68 130 raw-data images of size 512 x 512 were in-
cluded in this study. These images have been normalized
to include grayscale values between 0-255 and downsam-
pled to size 256 x 256. The results of our experiments pre-
sented Fréchet Inception Distance (FID) scores of 77.406
for the HiT-GAN, compared to 143.039 for the DCGAN,
evaluated on a set of 5 000 images each. The resulting gen-
erated images are compared to a real sample in Figure 1.
The HiT-GAN model showed promising results in generat-
ing two-dimensional images. Generating 3D CTP data by
conditioning the model with labeled brain slices is our fu-
ture focus.

(a) Real image (b) HIT-GAN

(c) DCGAN

Figure 1: Comparison of generated images to an original.
The first two images, 1a and 1b, capture eye sockets and the
nasal region, while the last image 1c is purely of the skull.
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