U

University of
Stavanger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialisation:
Spring , 2023
Computer Science:

Reliable And Secure Systems
Open

Author:
Adnan Ahmed

Programme coordinator: Leader Jehl

Supervisor(s): Leander Jehl, Arian Baloochestani Asl

Title of master’s thesis:
Simulating and comparing Tangle 2.0 and PoW

Credits: 30

Keywords:
Number of pages: 54

Blockchain, Tangle 2.0, Proof-of-
work(POW), Bitcoin, DAG + supplemental material/other:

Stavanger, 14.06.2023
date/year

Title page for master’s thesis
Faculty of Science and Technology

Simulating and comparing Tangle 2.0 and PoW

Adnan Ahmed

June 2023

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Leander Jehl and
Arian Baloochestani Asl, for their guidance, support, and invaluable contribu-
tions throughout the course of this research project. Their expertise, insightful
feedback, and continuous encouragement have been instrumental in shaping the
direction and quality of this work. I am truly grateful for their dedication and
commitment to my academic and personal development.

Abstract

Tangle 2.0[0] is a leaderless probabilistic consensus protocol that is based on a
DAG called Tangle. The way consensus is found is in the heaviest DAG and
not in the longest chain which is popular in Blockchain. POW is a consensus
protocol most known for being used in Bitcoin. The nodes in a POW system
have to solve a complex mathematical puzzle that satisfies a difficulty threshold
before a new block can be published to the network. Because Tangle 2.0 is
such a complex protocol we wish to find out if it has an edge over a traditional
consensus protocol such as PoW. We modify the Tangle 2.0 simulating tool[6]
by adding POW as the consensus protocol. We compare the original Tangle
2.0 with POW by metrics such as the confirmation time of network messages.
Adding POW as the consensus protocol in Tangle 2.0 creates a greedy-heaviest
sub-tree structure which has led to forks. We have found that because of forks in
the POW network, slowing down the network throughput will eventually rid the
network of forks. But leads to a higher confirmation time. So the comparison
shows a significant benefit for Tangle 2.0.

Contents

3

1.1 Motivation and Problem Description| 4

|12 Background| 6
2.1 Blockchainl. o oo o 6
2.2 Proof-of-work (POW)| 7
2.3 GHOSTI o 8

2.4 angle|o Lo 8
2.5 Tangle 2.00. 10
BT _DAG. . . 11

[2.5.2 Approval Weight and Confirmation|. 11

[2:5.3 Synchronised Random Reality Selection & Asynchronous |

[On Tangle Voting | v v v v i i i it 12
2.6 Tangle 2.0 simulation tool| 0oL 13
2.6.1 UTXO and Sybil Protection|. 13

262 Colors and Conflictd 14

2.6.3 Network Layer and Weight distribution| 15
B__Related Works| 16
BI_Chain STml. . . o . v v oo e e e e 16
B2 DAGSI. - -« o v oo e 17
B3 BIockSIME - -« o o oot e e 18
[4__Methodology| 20
.......................... 20
1.1 versary Module]o 20

4.1.2 Multiverse Modulelo 22

M.1.3 Network Modulel 26

[4.1.4 Scripts Module| 0000000 31

ET5 Simulation Moduld 35

4.1.6 Configuration Module| 36

[5 Research Design| 41

p.0.1 models.go| 41

5.0.2 messagetactory.gol. 41

p.0.5 tipmanager.go| 42

[5.0.4 approvalweight_manager.go| 44

F05 configgo. 44
............................ 45

6 Results and Discussionl 46
B Resultsl. oo 46
6.1.1 Tangle 2.0 with POW results] 46

6.1.2 TangleSim results|.o 48

6.2 Discussionl 49
[6.2.1 Comparison of results| 49

[6-2.2 Comparison between Tangle 2.0 and Tangle 2.0 with POW] 50

[6.3 Limitations and Future Improvements| 51

7 _Conclusion 52

Chapter 1

Introduction

Blockchain technology has become a topic of significant interest in recent years
due to its potential to disrupt various industries by enabling decentralized and
trustless systems. The original Tangle protocol[l] is a directed acyclic graph
(DAG) structure that served as the underlying technology for IOTA cryptocur-
rency. It was designed to overcome the limitations and scalability issues present
in traditional blockchain systems. In the Tangle transactions are not organized
into blocks, but rather a network of interconnected vertices where each transac-
tion references two previous transactions. Tangle 2.0[5] is an enhanced version
of the original Tangle that also uses a Directed Acyclic Graph (DAG) instead
of a linear chain to store transactions. Tangle 2.0 addresses some of the limi-
tations of the original version. Some of the key differences between the Tangle
and Tangle 2.0 are scalability, Tangle 2.0 introduces sharding which allows for
parallel processing of transactions. A new consensus mechanism is also imple-
mented, the original Tangle relied on the cumulative weight of transactions to
determine consensus while Tangle 2.0 called the Tip Selection Algorithm. Proof-
of-work(POW) is a consensus protocol widely used in traditional blockchain sys-
tems to achieve consensus in blockchain networks. In a blockchain system using
the POW protocol participants are called miners. The miners compete to solve
a complex mathematical puzzle, the goal of the puzzle is to find a solution that
satisfies a certain criteria. This criterion is usually a specific target or difficulty
value. POW is widely used and is most known as being used in the Bitcoin
cryptocurrency system.

TangleSim[6] is a new simulation tool for the Tangle, which allows researchers
to study the behavior of the Tangle under different conditions. There is a ne-
cessity for simulation tools for blockchain systems to understand the behavior
of the blockchain systems, evaluate the performance of the system and other
important reasons such as optimizing the protocol and finding faults and secu-
rity flaws in the system. With a simulation tool, one can also gain information
about the cost and resource usage of the system instead of finding this type
of information while the system is live and online. Some of the good features

of the TangleSim are the strong and well-implemented network structure and
the node-to-node interconnectivity. Building a consensus layer on top of this
solid foundation and maybe making it generalized so to work with any kind of
blockchain would be interesting.

In this thesis, we propose remodeling TangleSim to accommodate Proof-of-Work
(POW) consensus protocol and its existing consensus algorithm. The addition of
POW consensus will provide researchers with the ability to compare and analyze
the performance of the Tangle under different consensus algorithms. Currently,
there are several simulation tools[9][10][I1] available for studying blockchain
technology. However, most of these tools focus on the traditional blockchain
and lack support for DAG-based blockchains like the Tangle. Therefore, the
proposed remodeling of TangleSim will contribute to the existing literature by
providing a powerful tool for researchers to study the behavior of Tangle 2.0
implemented with POW. Our research is published to a GitHub repository and
will be available there[3].

1.1 Motivation and Problem Description

The expected contribution of this thesis is to provide a detailed analysis of the
performance of the Tangle under POW consensus in addition to its existing con-
sensus algorithm. The findings of this research will have important implications
for the development and deployment of blockchain systems. The scope of this
research will be limited to the remodeling of TangleSim to accommodate POW
consensus. We remodel this simulation tool because we wish to find out if there
is a possibility of running other consensus protocols in a Tangle 2.0 setting, in
our case, POW is the chosen consensus protocol because of its wide use. The
limitations of this research include the fact that it is based on simulation results,
which may not accurately reflect the behavior of a real-world blockchain system.

The comparison of Tangle 2.0 with POW against the original Tangle proto-
col will provide valuable insights into the trade-offs, advantages, and limitations
of incorporating POW in the Tangle. By analyzing performance metrics such
as transaction confirmation times, throughput, security against various attacks,
and network stability, we can better understand the impact of POW on the
Tangle’s overall performance and its suitability for real-world applications. In
summary, the motivation behind this study is to explore and evaluate the Tan-
gle 2.0 simulation tool and layering POW on top as a consensus mechanism. By
extending the TangleSim simulation tool to support POW-based simulations,
we aim to compare the performance and behavior of Tangle 2.0 with POW as
the consensus protocol against the original Tangle 2.0 protocol simulation. This
analysis will provide valuable insights into the potential benefits and challenges
associated with the integration of POW in the Tangle, ultimately contributing

to the advancement of decentralized ledger technologies.

Chapter 2

Background

2.1 Blockchain

The technology known as Blockchain was first introduced in Bitcoin[I3]. It
was proposed as a peer-to-peer (P2P) payment system that goes from a send-
ing party, directly to the recipient without needing to go through a financial
institution. This paper laid out the mathematical groundwork for the Bitcoin
cryptocurrency. Blockchain technology is the foundation of cryptocurrency but
it also opens a new door for the financial industry. Trust in distributed systems
has always been a major issue and in blockchain systems. Because for there to
be a secure transaction or distribution of any kind of information trust is the
first component. This problem was solved in Sompolinsky et al[14] was the
problem of establishing trust in a distributed system. In the paper, there is
highlighted the inherited limitations of centralized systems, limitations such as
the need for trust in intermediaries and the potential for censorship and con-
trol. The solution proposed by the authors was to implement Greedy-Heaviest
Observed Sub-tree(GHOST). The GHOST protocol addresses this problem by
introducing a novel way to select which blocks should be considered as part of
the blockchain. We explain the GHOST protocol in more detail in the GHOST
section later in this chapter.

To address the other issues, the authors propose a decentralized solution based
on blockchain, which is a public ledger that records transactions in a transparent
and immutable manner. A transaction is defined as a transfer of bitcoins from
one Bitcoin address to another. Each transaction contains input and output.
Input in a transaction refers to the Bitcoins being spent which are sourced from
previous transactions or mined, while the outputs represent the recipient ad-
dress and the amount being transferred. What we explained was a fundamental
form of the transactions. In the real implementation, the sender has to digitally
sign the transaction with their private key to prove ownership. This signature
ensures the authenticity and integrity of the transaction.

The transactions are published in blocks, the block structure proposed by Nakamoto
et alt[13] in this paper refers to a data structure that is containers for the trans-
actions. It is a vital component of the Blockchain hence the name. Bitcoin
defines a block as being a collection of transactions, timestamps along with im-
portant metadata. Each block has a header and a list of transactions, the header
contains the hash of the block which is unique, the hash of the previous block,
the timestamp, and the nonce value used for the proof-of-work process. We
explain POW in more detail in section 2.2. Once a block has been mined by a
miner, it broadcasts it to the network and other mines will validate the content
of the block and the proof-of-work. Once validated, the block is added to the
Blockchain. The block and the transactions become a permanent part of history.
The purpose of the Blockchain is to provide a means of ordering and organizing
transactions in a way that makes them verifiable and tamper-resistant.

2.2 Proof-of-work (POW)

Proof-of-work is a consensus algorithm used in blockchain systems to decide
which that should be included in the ledger and attain network consensus. It’s
one of the most used consensus algorithms in blockchain systems, it’s commonly
associated with Bitcoin and other cryptocurrencies. POW was originally intro-
duced to the blockchain world as a solution to the double-spending problem
that has been a common problem in blockchain systems. The Double-spending
problem is a problem that refers to a unit of currency spent twice, hence the
name double-spending. The POW algorithm is designed to require enormous
computational prowess to add new blocks to the chain and also validate transac-
tions. This is intended to discourage malicious actors to carry out double-spend.
@

The way POW works in blockchain-based systems is that the miners compete
with each other to solve a complex mathematical test, this is where the compu-
tation power comes in as the miner with greater computational power is faster
than the others. The first miner to solve the puzzle is rewarded with an amount
of cryptocurrency unit which is also an incentive for the mining to continue.
The difficulty of the mathematical puzzle is continuously adjusted to keep the
block time consistent. Despite its good qualities, POW has received criticism
concerning its high energy consumption[I5] and the issue with mining power
centralization. Mining power centralization is the issue of a few miners having a
disproportionate amount of the total amount of computational power, and the
high energy consumption is also a huge problem because the hardware used to
run the mining operation for solving the puzzle is expensive.

2.3 GHOST

Greedy-Heaviest-Observed Sub-tree (GHOST) is a blockchain consensus pro-
tocol first introduced in [I4]. This protocol was introduced as a modification
to the original Bitcoin protocol with the aim of enhancing the scalability and
transaction processing capabilities of the network.

In the original Bitcoin Blockchain, the new blocks are added to the main chain
based on the longest chain rule. The main chain is the chain with the most
accumulated proof-of-work and is considered the valid chain. This approach
can lead to the reduction of transaction throughput and gives rise to longer
confirmation time as the network grows.

The GHOST protocol addresses these limitations by introducing a different way
of selecting the main chain and determining valid blocks. GHOST takes into
consideration the branches and sub-trees that contain a significant amount of
computational effort instead of only the longest chain. In GHOST when a new
block is received, the selection of the main chain is based on the heaviest —other
rule. The protocol includes the blocks from other sub-trees that have accumu-
lated a substantial amount of computational work in addition to the longest
chain. This allows for more utilization of the network’s computational power,
increasing the transaction processing capabilities. The GHOST protocol also
makes a modification to how the block reward is distributed. In Bitcoin, the
block reward is given to the miner that mines the block, but in GHOST the
reward is distributed among the miner of the block, but also the miners of the
blocks that were included from other branches. This distribution tactic incen-
tivizes other miners to include blocks from other branches, this also promotes
more efficient use of computational power.

The key benefit of GHOST is its ability to handle higher transaction rates
compared to the original Bitcoin, also by including blocks from other branches
GHOST reduces the creation of orphaned blocks and increases overall transac-
tion confirmation speed.

2.4 Tangle

The Tangle is a concept introduced first in TheTangle[l]. The author presents
the concept and principles, which serve as the underlying technology for IOT A
cryptocurrency.

The Tangle is presented as an alternative to the traditional Blockchain archi-
tecture. It aims to address some of the limitations and scalability issues found
in traditional Blockchain systems. It is introduced as a decentralized, scalable,

and feeless distributed ledger. The Tangle makes use of a directed acyclic graph
(DAQG), where each transaction is a node and they are connected through a
”web” of references.

The Tangle consensus protocol is at its core a directed acyclic graph (DAG),
where every transaction is represented as a node. It is different from traditional
Blockchain systems where blocks are ordered in a sequential manner, the Tangle
allows for multiple transactions to be referenced by a single transaction, creating
a web-like structure. The main innovation introduced in the Tangle is the new
approach to consensus and validation. In contrast to the traditional Blockchain
systems that rely on miners and validators, the Tangle makes use of a consensus
mechanism called Markos Chain Monte Carlo (MCMC') to determine trans-
action validity and ordering. This mechanism is based on a cumulative weight,
attributed to each transaction, this attribute reflects the level of trustworthiness
in the network.

Participants in the Tangle are called nodes, these nodes validate transactions by
approving two previous transactions referenced by the transaction. This action
allows nodes to indirectly contribute to the confirmation of earlier transactions,
this creates a network of inter-dependencies (See Figure 2.1). This consensus
structure makes transactions become more secure as they gain more approvals
from subsequent transactions.

genesis

Figure 2.1: DAG with weights assigned to each site, and scores calculated for
A and C. [1]

In the paper, the author discusses various properties and features of the Tan-
gle. A notable property is the Tangles’ potential for being highly scalable be-
cause the structure allows for parallelization and efficient transaction processing.

The Tangle at its core is fee-less, this is a notable feature that makes micro-
transactions and other types of payments more feasible and cost-effective.

2.5 Tangle 2.0

Tangle 2.0 is a concept proposed in [5] and is a new approach to attaining con-
sensus in a distributed ledger technology (DLT). It’s based on the concept of
directed acyclic graphs (DAG), this concept uses DAG to represent transac-
tions in a ledger. In contrast with traditional blockchain-based DLTs, Tangle
2.0 does not have the standard miner/validator or stakers system to validate or
create blocks. Tangle 2.0 uses instead a new and original consensus mechanism
called the Leaderless Nakamoto Consensus on the Heaviest DAG, this consensus
mechanism allows for a completely decentralized and permissionless system. A
new concept in Tangle 2.0 introduced in[5] is something called approval weight,
which is a measurement assigned to each transaction in the DAG, and what this
metric measures is the number of transactions approving a given transaction,
(in)directly. The approval weight is used for validating transactions, basically,
the transactions with a higher approval weight have a higher chance of being
included in the heaviest DAG, This approach makes the system more efficient
and secure.

A different but important aspect of Tangle 2.0 is the aspect of confirmation.
The process of a transaction being confirmed ends in a given transaction be-
ing added to the DAG. So confirmation refers to the process of checking the
validity of a transaction and adding it to the DAG. The confirmation process
itself is carried out by the nodes in the network, the nodes themselves have to
approve a transaction before it can be considered confirmed. To further secure
the network and make it resilient to double-spending Tangle 2.0 introduces and
incorporates a concept called Synchronized Random Reality Selection (SRRS).
SRRS ensures that the nodes in the network can’t manipulate the transactions
to be confirmed, because the selection is done randomly, and is agreed upon by
all the nodes it prevents actions like double-spending.

In addition to SRRS Tangle 2.0 also introduces a concept called On Tangle
Voting(OTV). This mechanism allows the nodes in the network to vote for a
specific transaction by attaching their vote directly to a given transaction. The
votes are then propagated throughout the network and the nodes have the reach
a consensus regarding the validity of the transaction. This mechanism provides
an additional layer of security to the network.

In summary, Tangle 2.0 is a significant upgrade to the previous Tangle tech-
nology. It offers solutions to some of the challenges that were faced by its
predecessor. The protocol uses a weight system to select tips for approving new
transactions, we will explain this in depth later. The design of the protocol
work in a way such that nodes that have contributed more to the security of

10

the network are given more access to the network’s resources, in more voting
power. The changes stated above allow Tangle 2.0 to handle higher transaction
throughput while also maintaining the security of the network.

2.5.1 DAG

The Tangle is the DAG that stores transactions of the distributed ledger. In
current systems running the traditional blockchain system, there is an estab-
lished total ordering of transactions along with a lack of parallel confirmation.
In the Tangle there is no total ordering but rather partial ordering in the sets
of vertices in the DAG. Partial ordering in the context of Tangle means that
the transactions in the DAG are not strictly ordered in a linear sequence but
instead can have different ordering within a subset or branches of the graph. In
partial ordering, some of the transactions might have a direct relationship like
parent and child while others might have an indirect relationship making their
order ambiguous. Sybil protection plays an important role in a permissionless
system where there is no need for permission and everyone can participate. Bit-
coin’s POW consensus protocol where an enormous amount of energy is wasted
along with other negative properties leads to the development of more sustain-
able avenues. Proof of stake (POS) was one of the more sustainable consensus
protocols but it also like POW has issues like giving proportional control over
the blockchain network to stakeholders making it impartial. Some of the advan-
tages DAG has over traditional blockchain systems that make it more ideal are,
lower fees or even fee-less, much more scalable because of concurrent processing
of transactions, and fast confirmation because of said scalability.

The Tangle 2.0 protocol includes a novel transaction model known as the ”trans-
action model with colored coins,” in contrast to conventional blockchain systems
that make use of the Unspent Transaction Output (UTXO) model. The Tan-
gle network can now track ownership and financial transactions thanks to this
creative technique. Transactions can carry additional information, such as as-
set types or particular features related to the transferred value, by using col-
ored coins. The inclusion of this sophisticated transaction model in Tangle 2.0
improves the distributed ledger’s flexibility and functionality in terms of how
transactions are represented and managed. A more detailed representation of
digital assets is possible because of it, and a variety of use cases beyond straight-
forward money transfers are made possible.

2.5.2 Approval Weight and Confirmation

The core element of the consensus protocol is Approval Weight (AW). It allows
for the measuring of endorsement of a given block and its corresponding trans-

11

action. By summing up the cumulative weight of all issuers of blocks in the
future cone of the given block that contains the transaction one can find the
confirmation of a transaction.

2.5.3 Synchronised Random Reality Selection & Asynchronous
On Tangle Voting

Tangle 2.0 consensus protocol consists of two components: the Synchronised
Random Reality Selection (SRRS), and the asynchronous On Tangle Voting.
Because of the OTV asynchronous nature, there is a lack of synchronization
process between nodes. To overcome the FLP (Fischer, Lynch, and Paterson)
Impossibility result. The reason the F'LP result needs to be overcome is be-
cause of the impossibility of creating a consensus algorithm that guarantees both
safety and liveness. This result is significant because it shows the fundamental
limitations of achieving consensus in an asynchronous system. So synchroniza-
tion of the nodes is done in SSRS using a shared random number generated
periodically. A period D (epoch) time and of each period D every node in the
system receives the newly generated number, this common number (coin) is
used to synchronize the opinions of the nodes. Tangle is both a record of the
communication between the nodes and also facilitates the data structure for the
voting scheme. The structure of the Tangle is split into the referenced blocks’
parents and the approving blocks’ children. All blocks referenced directly or
indirectly the past cone of a given block, and the blocks that refer to the block
directly or indirectly are called the block’s future cone. Only the first block on
the Tangle is called the Genesis block and has no parents.

Past Future
Cone Cone
Time

B
>

Figure 2.2: Past and future cone of a block, they are highlighted in the green
and yellow triangles respectively.[0]

The On Tangle Voting (OTV) is the component of Tangle that allows voting on
double spends or transactions that are conflicting, A and B. A node can have
an opinion on a promising block ” A” by issuing a block in the future cone of the

12

block and later if a conflicting block ”B” that is better with regards to Approval
weight(AW) later revokes its weight from block ”A”. In any pair of conflicting
transactions, the weight of a node is counted only once. A transaction is finally
confirmed when its AW reaches 6, even if later the AW of the transaction falls
below this threshold it will stay confirmed.

2.6 Tangle 2.0 simulation tool

The Robustness of the Tangle 2.0 Consensus paper [6] provides a comprehensive
analysis of the Tangle 2.0 consensus algorithm’s robustness against several at-
tack scenarios, including the double-spend and eclipse attacks. The paper’s find-
ings suggest that the Tangle 2.0 consensus algorithm is highly resilient to these
attacks, making it a robust and secure alternative to traditional blockchain-
based DLTs. The paper itself is a study and implementation of the original
Tangle 2.0 Leaderless Nakamoto Consensus on the Heaviest DAG [5]. That pa-
per outlines the Tangle 2.0, the DAG structure, and the theory and definitions
behind the voting, and voting sets. In the paper node participation and block
structure along with estimated confirmation time and confirmation is detailed
and explained.

Tips

We will first define what a strong(weak) tip is. In the TangleSim simulation
tool, a tip refers to a message that has yet to be directly or indirectly approved
by any other messages. A Strong tip is a tip that has a high number of indi-
rect approvals, this means it has been approved indirectly through a chain of
messages. To give an example, suppose a message A approves message B,
and message B approves message C this we can say that message A indirectly
approved message C'.

On the other hand, a weak tip is a tip that has fewer indirect approvals or
none at all. A message such as that has a low probability of being confirmed
in the system in the future.

2.6.1 UTXO and Sybil Protection

Tracking of funds and how they change ownership in nodes is done through
Unspent Transaction Output (UTXO) model. In this model, a transaction is
specified as the output of the previous transaction as input, and the expenditure
as output. This allows for the verification of a transaction without knowing the
global state, in contrast to account-based models. Because consistency is the
main requirement for the ledger, the nodes have to eventually resolve any con-
flicts and double-spends. The Tangle 2.0 consensus protocol relies on identity-
based Sybil protection to decide between conflicting expenditures.

13

Every node in the system has a weight, which serves as a Sybil protection mech-
anism. The weight is employed voting power and corresponds to the amount of
access to the network’s resources. In this implementation of Tangle, we assume
that the node weights stay constant and that all the nods use their total share
of the network throughput, also the total weight of the network is the sum of
all the node weights.

2.6.2 Colors and Conflicts

As we described earlier in section 2.5.3 nodes can reference transactions that are
conflicting and this is shown through the use of colors in the implementation.
In the original paper [5] there were two types of references, block reference, and
transaction reference. In this simulation tool, only the basic block reference is
considered and referencing blocks not on the same branch is not allowed. Look-
ing at Figure 2.3 if one considers the state of the Tangle until time ¢1 (dashed
line), we can count the support for the branches by summing up the block issuers
weights.

B D
issuer ... - A

t1

Figure 2.3: Calculation of AW done by tracking supports.[0]

14

2.6.3 Network Layer and Weight distribution

The environment that is simulated is a reflection of a peer-peer network topology
where each node has k numbers of neighbors. In this environment, the nodes
can receive blocks, request missing blocks, and state opinions in case of conflict.
This network is set up using a Watts-Strogatz network [7], this network mimics
reality and allows for the specification of network delays and loss of packets.
The weight of all the nodes in the network is distributed with the use of Zipf
empirical law. This law is proven to govern an asymptotic distribution of weight
close to its upper tail [§]. The advantage of Zipf law is that by changing the
parameter s, one can model the behavior of a network for different degrees of
(de)centralization. Its to be noted that in the simulation there is no change in
the node weights due to transactions and other events.

In the simulation, nodes act as different and independent asynchronous agents.
This means that the nodes have different perceptions of the Tangle, thus the
nodes have their own local Tangle that they use to calculate weights and run
the protocol.

15

Chapter 3

Related Works

3.1 Chain Sim

ChainSim:[9] is a paper that discusses the motivation for the research and the
limitations of the current set of existing simulation tools. A problem with a
majority of the existing tools is that they are designed with P2P networks, but
this creates not-so-accurate reflection when used on hybrid blockchain networks.
So with this motivation, the researchers argue that a simulation tool for hybrid
blockchain networks is needed to further the knowledge of their performance
and behavior.

To address this need, the authors have proposed a simulation framework that
models the behavior of hybrid blockchain networks. The design for this frame-
work is modular and extensible, this allows for the customization of the tool to
fit the researcher’s needs. The framework is implemented in Python and uses Py-
charm.

The architecture of the ChainSim tool consists of four main modules: the
blockchain module, the client-server module, the P2P network module, and
the simulation module. The blockchain module models the creation of a block,
the behavior of a block, block confirmation, and block propagation. The client-
server module models how the client-server behaves, client requests, server re-
sponses, and data storage. The P2P network module models the P2P network
while also modeling message propagation, peer discovery, and peer participa-
tion. The last module of the main modules is the simulation module and in this
module, the coordination and interaction between the other three modules is
done along with generating simulation results.

In ChainSim, the authors describe some of the experiments they conducted using
the simulation tool and evaluated the performance of several blockchain proto-
cols in a hybrid architecture. By conducting these experiments they demonstrate
the flexibility of the framework and its ability to be customized according to

16

different needs.

In conclusion, ChainSim: A P2P Blockchain Simulation Framework is a valuable
addition to the blockchain research field. The simulation framework proposed
in the paper which is designed specifically for hybrid blockchain networks, ad-
dresses a missing gap in the current field of simulation tools.

3.2 DAGSim

DAGsim[I0] is a framework for directed acyclic graph (DAG) based distributed
ledger protocols and was published in the proceedings of the IEEE International
Conference.

The paper discusses the need for simulation tools for the simulation of DAG-
based distributed protocols. The scalability and throughput advantages over
traditional blockchain systems have gained DAG-based protocols popularity in
newer times. The evaluation of the performance of DAG-based protocols using
analytical models and(or) empirical measurements can be challenging due to the
complex structure of such protocols. Therefore simulation tools provide better
accurate and efficient means of evaluating DAG-based protocols. These points
make up the motivation behind this research paper.

To address these issues and needs, the authors of this paper propose DAGsim.
DAGsim is a simulation framework for DAG-based distributed ledger protocols,
the framework is designed to be both modular and extensible in its uses. This
allows the users to customize according to their specific needs.

The modular-based framework is described by the authors as a design that
allows for easy integration of new components. The DAGsim framework con-
sists of 4 main modules, modules are the DAG module, the node module, the
transaction module, and the simulation module. The DAG module models the
behavior of the DAG structure, and the node module models how the nodes
behave in the system along with the propagation of transactions and verifica-
tion of transactions. The transaction module models the transaction’s behavior
along with the creation and validation of transactions. The four modules model
a different part of the system and it’s the simulation module that coordinates
the interactions between the modules, this module is also responsible for

The authors have conducted several experiments using the framework to find
how well it performs under different DAG-based protocols and to find out how
flexible and extensible it is. They also discussed the insights they had gained
through the experiments they conducted, they discussed the impact of transac-
tion arrivals on the throughput, the impact network size had on the validation
of transactions, and the impact of different consensus mechanisms on network

17

security.

They examine the impact the network size had on validation, they discussed
in the paper that as the network grew in size, the chance of a consensus being
reached decreased due to the increased amount of conflicting transactions in
the network. The reason for this is that the validation system of a DAG-based
ledger relies on a concept called approval weight (AW), which is a measure of
how many earlier transactions have been approved for a given transaction. The
paper attributes this to the fact that DAG-based ledgers don’t have a global
ordering of transactions like traditional blockchain systems have. In the case
of the impact on the transaction validation had on the throughput of the net-
work, the paper shows that as the rate of transaction increases the throughput
of the network decreases. This is due to the fact that each new transaction
needs validation by a number of previous transactions before it’s confirmed. As
the number of unconfirmed transactions increases, the time required to validate
them increases, leading to a decrease in network throughput.

The simulation results show that the high rate of transaction arrivals leads
to a lower throughput due to the increased number of transactions waiting to
be validated. To summarize, the DAGsim paper highlights the importance of
evaluating the security and performance of DAG-based distributed ledger proto-
cols using simulation tools. It also provides insights into the impact of network
size and transaction arrivals on the validation of transactions and throughput,
which can be useful in the development and optimization of DAG-based dis-
tributed ledger protocols.

In conclusion, the DAGsim paper presents a simulation tool that can be used
to evaluate the performance of DAG-based distributed ledger protocols. The
paper highlights the importance of network security and presents a simulation
approach that allows for the evaluation of network security in various network
conditions. The paper also investigates the impact of network size on the vali-
dation of transactions. The results show that larger networks require more time
to validate transactions and, therefore, lower transaction throughput. This sug-
gests that scalability is a critical challenge that must be addressed in DAG-based
distributed ledger protocols. Finally, the paper examines the impact of trans-
action arrivals on the throughput of DAG-based distributed ledger protocols.

3.3 BlockSims

BlockSim is a comprehensive simulation framework developed for blockchain
systems, proposed in [ITI]. The paper presents an overview of the BlockSim
framework, architecture, design, and key features.

The paper discusses the limitations of the existing simulation tools for blockchain
systems. The authors argue that most existing simulation tools are specifically

18

designed for specific blockchain protocols or can’t accurately reflect other pro-
tocols’ behavior. They argue that a simulation tool that has the capability to
model different blockchain systems is needed to better understand the behav-
ior and performance of different types of blockchain systems. The motive the
authors had in mind when developing BlockSim was to create a reliable and ef-
ficient platform for evaluating performance and security in a blockchain system.

BlockSim is proposed by the authors to address this need and this framework
is designed as a modular framework. The BlockSim framework is modular and
flexible, this allows the researcher to use the framework to customize it accord-
ing to their specifications.

BlockSim’s architecture is based on a modular design that allows for easy inte-
gration of new components. The framework includes several modules: blockchain,
network, user, transaction, and simulation. The blockchain module models
block creation, validation, and propagation. The network module models mes-
sage propagation, peer discovery, and peer churn. The user module models
transaction creation and validation. The transaction module models transac-
tion creation, validation, and propagation. The simulation module coordinates
interactions between modules and generates simulation results. The framework
supports various types of blockchain systems both public and private networks.
Some of the systems BlockSim can simulate are, proof-of-work (POW), proof-
of-stake (POS), and also hybrid consensus algorithms.

The authors conducted experiments using BlockSim to evaluate different blockchain
systems. The paper details several experiments conducted using the BlockSim
framework, the experiments are done with the purpose of evaluating the per-
formance and security of the system under various conditions. One such exper-
iment evaluates the blockchain system performance by varying the number of
nodes in the system. Another experiment evaluates the effect of block time (the
time it takes for a block to be added to the chain) and block size on network
throughput. In the paper security-related metrics are presented, i.e. Fork rate,
51% attack resistance, and byzantine fault tolerance. These metrics are used in
concert with experiments in order to test the resilience of the system, use these
metrics to find out how blockchain systems like POW and POS perform and
how they achieve consensus and ensure security.

BlockSim is a valuable contribution to blockchain research, addressing a gap
in existing simulation tools. The framework is flexible, scalable, and easy to
use, making it useful for researchers. The experiments demonstrate the poten-
tial of BlockSim to generate insights and inform new protocols.

19

Chapter 4

Methodology

4.1 Design Background

This research is done using the simulation tool proposed in[6]. The simula-
tion tool TangleSim is designed to model the Tangle protocol that underlies the
IOTA cryptocurrency. The tool is designed to allow researchers and develop-
ers to test different scenarios and evaluate the performance and security of the
Tangle protocol. This simulation tool consists of several different components
that work together to provide a comprehensive simulation tool. In this sec-
tion, we introduce and explain the different components of the tool and discuss
how they work together and how to alter or modify them according to different
needs. Our own modification to the tool for our research will be discussed in
detail later in the Methodology section.

There are five main modules and a configuration module for the simulation
settings. The three main modules are the Adversary module, the multiverse
module, the network, the scripts module, and the simulation module.

4.1.1 Adversary Module

The adversary module is the module where the malicious nodes are defined. In
the simulation tool, the authors have created 3 different adversary types, namely
the no_gossip node, the same_opinion node, and the shifting_opinion node.
These nodes are meant to simulate different aspects of the real-life scenario,
where a node may be inactive and not answer any request or gossip, a node
may also be the type of node that just follows the wave and always aligns its
opinion with the masses, and lastly the normal occurrence of a node that is
always shifting opinion and is chaotic in nature. Each adversary type is defined
in its own file and each adversary type has its own unique functions defined to
regulate behavior consistent with the node type. To give a few examples, the

20

no_gossip node has no outside communication with other nodes or the system, it
does not answer any request from other nodes for missing messages and does not
issue any message. The shifting_opinion node has functions like formOpinion
and get M axOpinion, the first function is used for updating the opinion of the
node when a new there is a better opinion available. The second function is
responsible for finding the opinion in the network(the nodes view of the network)
and selecting the opinion with the highest weight, then the node forms a new
opinion and updates the weights. As for the same_opinion node it has functions
for forming an opinion and updating the weight but in the function for updating
the weight, it’s blank.

func CastAdversary(node network.Node) NodeInterface {
s := reflect.ValueOf (node)
switch s.Interface(). (type) {
case *ShiftingOpinionNode:
return node. (*ShiftingOpinionNode)
case *SameOpinionNode:
return node. (*SameOpinionNode)
case *NoGossipNode:
return node. (*NoGossipNode)
¥

return nil

}

Caption : A node from the network is cast to either of 3 types of Adversary
nodes, adversary.go

In the adversary module, there is a file for casting nodes to either of the three
adversary types (see Figure 4.2). This function is used when simulating the
double-spend attack in the network. The number of adversary nodes is specified
in the configuration, but the default value is 1.

func SimulateDoubleSpent (testNetwork *network.Network) {
time.Sleep(time.Duration(config.DoubleSpendDelay*config.SlowdownFactor) * time.Second)
// Here we simulate the double spending

dsIssuanceTime = time.Now()

switch config.SimulationMode {

case "Accidental":

for i, node := range network.GetAccidentalIssuers(testNetwork) {
color := multiverse.ColorFromInt(i + 1)

go sendMessage(node, color)

log.Infof ("Peer %d sent double spend msg: %v", node.ID, color)

X

case "Adversary":

for _, group := range testNetwork.AdversaryGroups {
color := multiverse.ColorFromStr(group.InitColor)

21

for _, nodeID := range group.NodeIDs {

peer := testNetwork.Peer(nodeID)

// honest node does not implement adversary behavior interface
if group.AdversaryType !'= network.HonestNode {

node := adversary.CastAdversary(peer.Node)
node.AssignColor(color)
¥

go sendMessage (peer, color)
log.Infof ("Peer %d sent double spend msg: %v", peer.ID, color)
}
}
}
}

Caption : In the case of Adversary, honest nodes do not implement adversary
behavior, a node is cast to Adversary. main.go

4.1.2 Multiverse Module

The multiverse module is the module that is responsible for a majority of the
processes that are being used in the simulation tool. This module is responsible
for the important aspects of the tool. We explain all the parts of this module.
This module is compromised of 11 files, we explain in short and concise words
what part of the system each file is responsible for.

approvalweight_manager.go and booker.no The first file in this module
is approvalweight_manager.go, the file is responsible for managing the approval
weights of the nodes in the network. It determines the level of power a node
has in validating a transaction. Its task is to keep track of the approval weights
of nodes, it keeps track of the number of incoming and outgoing transactions
of a node and the cumulative weight of the node, and the tips it approves. The
approval weight of a node is an important factor in determining the probability
that the node’s message will be selected for approval and confirmed by other
nodes. The method that does this is the ApproveMessages(), this method
starts of by retrieving the message from the message database, then using a
byte map we get the weight of the issuer of the message. After the weight is
checked and information is logged a Walker is initiated to traverse the message
DAG down to genesis to properly calculate the approval weight.

The next file in the multiverse module is booker.go, this file is responsible for

initiating new transactions and the color inheritance for the messages and their
parents.

22

messagefactory.go messagefactory.go is as the name states the place where
messages are created, and have their fields filled in. The function Create M essage
is called upon in node.go, where the nodes handle different types of messages
arriving.

models.go The models.go file contains the definitions of different data models
used throughout the simulation. It defines structs such as, a Message, the
MessageMetaData, a MessageRequest, the Messagel D(s) and some methods
to go along with Messagel Ds, and the color structure.

node.go In the node.go, the behavior of a single node is defined. This includes
the setup of a node, the becoming a part of the network as a peer, the func-
tion IssuePayload for sending color to the socket for creating new messages,
and the function HandleNetworkMessage which works with functions from
both the message factory.go/Create M essage and tangle.go/ ProcessMessage.
This HandleNetworkMessage function receives messages of 3 different types,
namely a Message Request which is a request for re-sending a missing message
to a peer, the Message which is a new message from the network that the nodes
need to process, and the last type is color which is a color the nodes receives
and attaches to a new message as an opinion.

opinion_manager.go The opinion_-manager.go is the component in the sys-
tem that manages the opinions of nodes and the tips they see in the Tan-
gle. Everything from forming an opinion and updating weights, to updating
the con firmation for tips that the nodes assign an opinion to. The opinion
manager updates the opinion score of the tips as the nodes in the network
issue new messages. It also checks and confirms the colors of messages accord-
ingly to find the opinion with max score in the color branches.

requester.go The Requester.go is where the requesting of missing messages
is defined. This component of the system is vital as it deals with filling miss-
ing gaps in the local Tangle of nodes. It has a few functions defined, there
is Start Request, which checks if the missing the messagel D is in the queued
elements, if this is the case nothing will happen but if the messagel D is not in
the list of queued elements it will trigger a request for the missing messagel D
and schedules a retry for the request. In the other function StopRequest, this
function does the opposite of StartRequest. In this function there is a check
in the list of queued elements, if the messagel D in question is in the queue

23

of pending requests it cancels the pending and deletes the element from the
queue. Both these functions acquire a lock on the Requester mutex which is
a synchronized mechanism to prevent concurrent access to the shared resource.
The last function in this component is trigger Request AndSchedule Retry is the
function used by the StartRequest to schedule a re-send of the missing mes-
sage, it schedules a retry of the request for the missing messagel D and uses a
timedExecutor to schedule the retries.

solidifier.go In contrast to the approvalweight_manager.go, solidifier.go
implements the solidification process where in the network. What the solidi-
fication process does is that it confirms messages in the Tangle, this means that
the message is a permanent and immutable part of the Tangle. There are three
functions defined for the solidification process in the system. The Solidify
function takes in a messagelD as the argument, the function then traverses
the tangle from that messagel D and examines the messages and metadata
along the way. Then it sets the Message with the given messagel D as solid
if it already was not. If the message is flagged as solid a MessageSolid event
is triggered notifying listeners in the network. This is the main function and
uses messageSolid and parentSolid functions to flag the message and parent
as solid.

storage.go and tangle.go The last three components in this module are
storage.go, tangle.go, and tipmanager.go. The storage.go is where the storage
object in the system is defined and created, this object is accompanied by the
function for storing messages and the functions for looking up stores messages
and MessageMetaData. The Store function implements the process of storing
a message but first checks if the message is already stored, then if this is not
the case it stores the message and triggers an event to notify the network. The
helper functions for this component are Message, which looks up a message
based on its messagel D in the messageD B which is a map with messagel D
and message as key,value. The same setup is also implemented for the look-up
of MessageMetaData, weakChildren, strongParent, and childRe ferences.

tangle.go is probably the most important part of the entire simulation tool
as this is where the Tangle structure is defined. The Tangle structure is defined
and the Setup function is implemented with peer and weightDistribution is
put in as arguments. This is done with a single peer because each node runs its
own local version of the Tangle and the weight Distribution object which rep-
resents the consensus weight distribution of the network. In this Setup function
the other components that were defined in the rest of the module are set up
and initialized. These include the Solidfier, the Requester, the Booker, the

24

OpinionM anager, TipManager, and the Approval Manager. There is also the
ProcessMessage function which takes in a message object as an argument,
stores it in Storage, and starts the processing of this message by the other
components of the Tangle.

func (t *Tangle) Setup(peer *network.Peer, weightDistribution *network.ConsensusWeightDistr:
t.Peer = peer
.WeightDistribution = weightDistribution

ot

.Solidifier.Setup()
.Requester.Setup()
.Booker.Setup()
.OpinionManager.Setup ()
.TipManager.Setup()
.ApprovalManager.Setup ()

“ ct o o ot ot ot

Caption : The Tangle is set up with all the components of the multiverse
module. tangle.go

tipmanager.go The last component of this module is the tipmanager.go
which is responsible for analyzing a given message by looking it up in the storage
and determining whether it should be added as a strong tip or a weak tip. This
process is implemented in the AnalyzeMessage function, this function looks
up the message based on messagel D in storage and then first determines the
color of the message based on its parents. It uses this information to decide
which tipset(s) the message should be added to. The function fetches the tip
set corresponding to the color using the TipSet function and checks the pool
size before potentially adding it to the tip set as a new strong tip using the
AddStrongTip method. If any tips remain they will be put into other tip sets
as a weak tip. The method also keeps a counter to keep track of processed
messages of each color and triggers an MessageProcessed event to notify the
network. There are definitions for tip sets and the initialization of new tip
sets, and methods for adding strong/weak tips. The method Tips() returns
a slice of strong and weak tips from the tip set of the current opinion of the
OpinionManager. From the tipset object, the StrongTips() method is called
on it to retrieve the set of StrongTips. The method StrongTips() takes in two
arguments, the number of parent messages to consider indirect approval calcu-
lation and a TimeSourceAdapter object to calculate the time-based weight of
a message.

The latter part of tipmanager.go is where the TipSelector is defined and the
different types of TipSelectors are defined and initialized. There are two types
of TipSelectors, there is the URT'S type which implements the uniform ran-
dom tip selection algorithm. The other type is RURTS which implements a

25

restricted uniform random tip selection algorithm where any messages is valid
up to an age D. There is a method defined for both types of TipSelectors, for
the URT'S the tip selector takes in a random map of tips and max amount as
arguments. The random map is a data structure used in the IOTA protocol
to store and manage a set of data items with a unique identifier. It’s similar
to hash tables or dictionaries where key — value pairs are stored and retrieved
but it adds an element of randomization. The maxAmount argument is the
number of tips to be retrieved from the random map. The tip selection method
for the RURT'S has an additional requirement for the tips. Its starts by getting
a maxAmount from by calling the RandomUniqueEntries method defined in
the Random M ap which returns a amount Le ft slice of randomly selected unique
tips. Then it checks the issuance time of each tip in the slice and if they are
older than a predefined value DeltaU RT'S they are deleted from the map else it
appends the tip to the tipsToReturn slice and decreases the amountLeft. This
process is repeated until the maxzAmount tips are appended to tipsToReturn
or until the tips map is empty.

4.1.3 Network Module

This module is compromised of 5 components and is responsible for the weight
distribution for the system and also the Adversary nodes. In this module, the
network is defined and implemented along with the Watts Strogats network.
The creation of peers and connecting them is also done here and the overall
configuration structure is defined in this module.

func ZIPFDistribution(s float64) WeightGenerator {

return func(nodeCount int, totalWeight float64) (result[Juinté4) {
rawTotalWeight := uint64(0)

rawWeights := make([Juint64, nodeCount)

for i := 0; i < nodeCount; i++ {

weight := uint64(math.Pow(float64(i+1), -s) * totalWeight)
rawWeights[i] = weight

rawTotalWeight += weight

}

normalizedTotalWeight := uint64(0)

result = make([Juint64, nodeCount)

for i := 0; i < nodeCount; i++ {

normalizedWeight := uint64((float64(rawWeights[i]) / float64(rawTotalWeight)) * totalWeight.
result[i] = normalizedWeight

normalizedTotalWeight += normalizedWeight

}

result[0] += uint64(totalWeight) - normalizedTotalWeight

return

26

}
3

Caption : Implementation of Zipf’s law, returns a weight generator based
on this law. consensus_weight.go

consensus_weight.go The first component of the network module is the
consensus_weight.go. This component handles the network consensus weight
distribution and defines the Zipf Distribution function. As we mentioned ear-
lier in the paper, the node weights in the network are distributed with the
use of Zipf empirical law. The Zipf Distribution function implements this law
(Figure 4.4) and the parameter for the distribution is specified in the configura-
tion file. The other part of this component is the ConsensusW eight Distribution,
which is the object in the system that keeps track of the weights of the nodes in
the network. The structure of this object has the parameters, a weight map of
all the nodes in the network, the total weight of the network, and the weight of
the node with the highest weight. The NewConsensusW eightDistribution is a
constructor function that creates a new ConsensusW eight Distribution object.
This object is used to keep track of the node weights in the network as they are
updated. It uses the method SetWeight to update the weight of a given node.
The method receives PeerID and weight and starts the process of updating
the weight by first checking if the peer already has an existing weight. This
step is done to make sure that the total weight of the distribution is updated
accurately and correctly. If the weight already exists then the existing weight
is subtracted from the total weight, then a check is done to if the largest weight
parameter needs to be changed. Then it ends the method by assigning the peer
the new weight that was given as a parameter. There are also some helper
methods to get the weight of a given peer, the total weight of the network, the
largest weight, and a method for calculating the largest weight.

groups.go The groups.go is the component in the system that defines the
structure and methods for groups of nodes in the simulation. This simulation
component allows users to define the characteristics of nodes such as consensus
weights, number of peers, and delays. The creation of such groups allows for a
realistic simulation and can be used to create a heterogeneous network topol-
ogy where nodes with different characteristics can be connected to each other.
The groups.go file contains structures and functions for creating groups that
can be a mixture of adversary nodes and honest nodes. The file defines both
AdversaryGroup and AdversaryGroups, the latter just being a slice of the
type AdversaryGroup. AdversaryGroup type is defined with parameters such
as Nodel Ds slice of the nodes in the group, GroupM ana which is a measure-
ment used in TOT A’s consensus mechanism for measuring a node’s influence
on the network. The GroupMana is the total amount of mana that is owned
by the group. There is also the TargetManaPercentage parameter which is
a target measurement for how much mana of the total mana in the network

27

the group should control. Other parameters such as the AdversaryType of
the group and the nodeCount are also defined in this AdversaryGroup type
structure. The functions and methods implemented in this file are used for i.e.
initializing the groups for each of the types of adversaries that are specified
in the configuration. The methods are implemented for purposes like adding
nodes to groups and updating weights. The function for initializing the groups
is the NewAdversaryGroups. This function creates an empty groups slice
with the length being the number of adversary types from the configuration,
then it loops through all of the types and sets the parameters we mentioned
earlier. Then it checks the lengths of the mana, delays, and nodeCount to
check if they are all above 0, then mana, delays, and nodeCount are set to
their appropriate value corresponding to their type (see Figure 4.1). The way
it’s implemented is that the con fig. AdversaryTypes, config.AdversaryMana,
config.AdversaryDelays, and config.AdversaryNodeCounts are slices, and
for each type of Adversary, there is a corresponding number. So when the
config.AdversaryTypes is being looped through for each i, i = 0 is an honest
node, and so forth of each of the four types of nodes. Then each type is ini-
tialized with its corresponding starting parameters from the configuration using
the other slices we mentioned earlier. Then when a group has been initialized,
the group is put in the groups slice.

The rest of the methods in this component is for calculating weights, updating
weights, updating mana, and also connecting the adversaries in each group to
their peers. The authors also implement the function GetAccidentallssuers for
the accidental issuing of messages. This is done with the intention of modeling a
real-life scenario where messages are not intentionally generated but somewhat
random events or spam.

network.go The network.go component defines the network structures and
methods for simulating the network of peers in the Tangle. It’s in this compo-
nent the network is initialized, and the management of the peers is done. The
Network structure provides methods for selecting random peers and managing
the peer connection.

This component is split into three parts, they are namely the definition of the
network, its creation, and methods and functions for this type, then there is
the definition of the configuration, the creation of a new configuration, and the
methods for this type. The last part is the part for the node specification for the
behavior and peering strategy which is the Watts Strogatz network topology.
The network.go structure is defined with the parameters, a slice of the peers in
the network, the weight distribution, and all the adversary groups. A network is
created with these parameters being filled with information from the configura-
tion, also the function used in GetAccidentall ssuers is defined here. This func-
tion gets random peers from the network and gives them to Get Accidentall ssuers

28

NewAdversaryGroups() (

Figure 4.1: The different types of Adversaries are initialized with parameters.
groups.golt]

as a parameter. The methods used in the main.go for starting and shutting
down the network are also defined in this system component.

The next part of the network component defines the structure used for hold-
ing the various configuration options for the simulation tool. The parameters
defined are used for inter-network communication, parameters like i.e. mini-
mum delay, maximum delay, and the peering strategy used for nodes to select
peers. Methods for generating random network delays and packet losses are
also implemented. The two most important methods in this part of the network
component are the CreatePeers and ConnectPeers. The former creates and
configures the peers that will form the network and the latter is responsible for
connecting the peers in the network using the specified peering strategy. Both
of the methods also log their activity at key points of the process. The Watts
Strogatz network topology is implemented here as the PeeringStrategy type.

Node This node.go component is different from the component with the same
name from the Multivers module. The node.go component in the previous mod-
ule is responsible for the definition, setup, network participation, and network
message handling, while node.go in this module is an extension of peer.go. The
node type is defined here with Setup and HandleN etworkMessage from peer.go
are initialized and used. The NodeF actory type definition along with the helper

29

function NodeClosure is the last part of this component. NodeFactory type is
a function type that is a factory function for creating nodes in the simulation
tool, it does not take any arguments and returns a node. The helper function
NodeClosure is a function that takes in closure function Closure as an argu-
ment. It returns a NodeFactory function that wraps the closure and converts
its return value to a Node. The returned NodeFactory function can then be
used to create nodes in the simulation.

Peer.go This last component of the Network module is where a Peer is ac-
tually defined. Peer and Peers are used throughout the simulation tool but
it’s here that it’s defined and created. This component is split into two parts,
there is the node type definition, creation, and the methods for this type, and the
other part is the node Con figuration definition and its corresponding methods.
The parameters of a peer are I D, Neighbors, Socket channel, Node, AdversarySpeedup,
and also some parameters for shutdown and shutdown signal channel. The
methods for this structure are of a functional nature, i.e. setup(), Start(), Shutdown(),
ReceiveNetworkMessage, and Run(). The setup method sets up the peer
node with the Setup() function from Node.go and with the parameters p for
the peer and the consensus weight distribution. The Start() starts up the peer,
the method is executed only once using the StartOnce sync.Once object, then
the run method is executed as a goroutine for concurrency. The Shutdown()
method is used to shut down the peer, it ensures that the shutdown signal chan-
nel is closed only once with the use of the same sync.Once object as the Start()
method. ReceiveNetworkMessage gets a message as an argument, then it
send this message into the socket channel. Both the shutdown signal and the
message that is sent into the socket channel are handled in run(). In the run()
method there is an endless loop that does two things, the first is checking if the
shutdown signal is sent if that is the case just end the run() by returning, the
other case is if a network message has been received through the socket channel,
in this case, the peer calls the p.Node.HandleNetworkMessage() where the
argument is the received message.

The peer’s network connection is defined in the second part of this module.
The parameters set for a peer are defined in the Connection structure. Pa-
rameters such as the socket for sending the messages received, the network
delay, packetloss percentage, shutdownOnce signal, and con figuration param-
eter which is other configurations from the con fig.go that can be specified. The
methods implemented for this structure are methods for getting and setting a
delay, packet loss and shutting down the peer. There is also the method send()
used to send a message through the socket connection, but first, it checks if the
packet loss probability c.packetLoss is greater than a random value generated
from erypto. Randomness.Float64(). If the random value is less than the packet
loss probability then the packet is dropped and if not, then the packet is sched-
uled to be executed by the use of a timed Executor after a random network delay.

30

4.1.4 Scripts Module

This module serves as a location for scripts and programs that automate the
execution of the simulation and perform additional analysis of the simulation
results. It provides a convenient way to alter or extend the simulation tool.
It’s split into 6 components that cover this description, the components are
con fig.py, constant.py, main.py, parsing.py, plotting.py, and utils.py.

config.py This component serves as the configuration file for defining the var-
ious parameters and settings for running simulations. It provides a centralized
place for specifying simulation parameters, such as node configuration, network
topology, peering strategy, simulation duration, and more. The main purpose
of this component is to allow users of the simulation tool to easily configure
and customize the simulation by changing the parameters. Some of the key
functionalities that can be modified are :

1. Network Topology:

The network topology can be modification allows users to define the struc-
ture of the simulated network. This includes the number of nodes, their
connections, and other network topology-related properties.

2. Node Configuration:

Users can specify the behavior of nodes, initial opinions of nodes, mana
values, node delays, packet loss probabilities, and other parameters. These
configurations specify how the nodes in the network interact and commu-
nicate.

3. Simulation Duration:

The parameters for setting the duration of the simulation can be modi-
fied. Parameters such as the total number of simulation rounds, and the
simulation time in seconds. This allows users to control how long the
simulation runs and also how the simulated network changes over time.

4. Peering Strategies:

Users can select and configure different peering strategies that determine
how nodes in the network establish connections and form neighbors. The
simulation is run with the Watts Strogatz peering strategy, but users can
implement other types of peering strategies and use them as a base for their
simulation, this provides an opportunity for comparing peering strategies.

5. Adversary types:

The component allows the users to define different types of adversaries
that be present in the network. The user can configure the behavior of
the adversaries, the mana distribution, and other parameters.

31

6. Statistical Analysis and Output:

The simulation tool allows for the specification of various options for sta-
tistical analysis and output generation. This means that the users can
define metrics that will be tracked throughout the simulation run, also
specifying output files and enabling/disabling certain logging or debug-
ging information. The plotting and visual representation of the acquired
result can also be modified to show the results in the way that the user
specifies.

constant.py This component of the simulation tool is responsible for defining
and keeping track of constant values that are used throughout the simulation.
Constant values typically do not change during the run of the simulation and
are used to configure different parts of the simulation.

Some of the purposes this component can serve are:

1. Parameter Configuration:

The constant.py component is used to define and store configurable pa-
rameters that affect the simulation behavior. Some of the parameters in
question are network-like parameters (i.e., delays and packet loss), node
parameters (i.e., mana values and weights), and (or) simulation parame-
ters (i.e., max simulation time and number of rounds)

2. Code readability and maintainability:

Centralizing the constant values in a single separate file makes reading
and maintaining the code easier, defining these constant values in a single
place makes it easier to locate and modify if necessary.

3. Consistent naming;:

This touches upon the same issue as the previous section. The single
placement of all the constant values in the simulation tool allows for a
consistent naming convention. With the use of descriptive names and
following consistent naming conventions, the code becomes much more
readable and understandable.

4. Flexibility and Customization:

Because the constant values are separated from the main code logic, the
simulation becomes easier to customize according to user(s) preferences
by simply modifying the values in this file.

Overall the constant.py component manages the execution and setting up of
the simulation and provides a place for easy configuration of constant values.

main.py The main.py component serves as the entry point and coordinates
the running of the simulation. It is responsible for setting up the simulation
environment, configuring the parameters, executing the simulation loop, and
generating output. The main areas this component is responsible for and exe-
cutes are:

32

1. Simulation Setup:

The initialization of the necessary simulation parts and resources required
for running the simulation. This covers the creation of the network, defin-
ing the nodes, parameter configuration such as network topology, and
simulation duration.

2. Simulation Loop Execution:

Executing the simulation when everything is set up and configured. The
execution consists of a loop that iterates over each simulation round where
then nodes perform their action and communicate with each other based
on the specified algorithms.

3. Interfacing with External tools:

The main.go component also interacts with external tools and libraries to
perform analysis on the results or make the implementation easier by the
use of existing functions and not having to implement them themselves.

parsing.py The parsing.py component in the simulation tool is responsible
for the parsing and processing of the input data and configuration. This file
provides functions to read and interpret the input, but also extract the useful
information and then perform the conversion into a format understandable to
the simulation. Some of the work that is done in this component are:

1. Parsing Configuration file:

Configuration files that specify various parameters, settings, and initial
conditions for the simulation are parsed in this component. The format
of these configuration files can be in different formats. The parsing file
extracts the information that is required from the configuration file and
passes it to the parts of the simulation for further processing if needed
and setup.

2. Data extraction and Converting:

The simulation requires input data such as network topology and node
initial states, and other relevant data. The parsing component implements
the function to parse and extract input data from external sources, reads
them, and converts them to a format that can be used by the simulation.

3. Data Validation: The data used by the simulation needs to be validated
to make sure that the input data is in the right format, that the data is
structured correctly, and that it satisfies any constraints it might have.

4. Error Handling:

In any simulation there are errors and it’s in this component of the system
that any error that occurs in the parsing process is also handled. Checking
errors, raising exceptions, and logging error messages to provide the user
with about any errors that may take place.

33

parsing.py plays a crucial role in reading, interpreting, and preparing the data
for use in the simulation. It ensures that the simulation runs smoothly and
received data in the correct format. In the case of any errors or incompatibility
of the input data.

plotting.py The main purpose of this component is to generate plots and
create visuals based on the simulation output results. By making these plots and
visuals it makes it easier to understand and interpret the simulation outcome.
To go into detail about the main aspects of this component we can describe
some of the work that happens in this component. Some of the aspects are:

1. Data Visualization The primary purpose of this component is to make vi-
suals of the simulation results. The output data from the simulation such
as network statics and performance metrics are used to make plots. Some
of the types of plots used in this simulation are Box Plot and Violet Plot
(see Figure 4.6 for examples).

. O s=0
S 40 O s=09
- O s=2
2 =
= T4
f 20 E
z =
EFR
oLl L i o e o By B :
1 2 3 4 5 6 7 8 9 101 &
Node Index [— ——
9] 100 200 300 400 500 600 700 800 500 1000
» i o)) Node Count
Figure 3: Node weight distribution example with ¢ = 33%,
N = 11. The node index of the adversary is 11. Figure 6: Confirmation time distributions with different N's

(&=L,

Figure 4.2: Two types of plots are used in TangleSim, Box Plot (Left) and Violet
Plot (Right). [6]

2. Output Generation The visuals generated from the simulation results can
also be generated in formats such as image files (e.g., JPEG and PNG).
These image files can be used further for analysis and included in reports
or research papers.

The plotting.py component is crucial for visualization and interpreting the sim-
ulation results in a graphical and understandable way. It provides a way to
analyze the outcome of the simulation and also provides an easy way of com-
municating any findings with other researchers and other peers.

34

utils.py The utils.py component is mainly a utility file that contains helper
methods used for the plotting of figures. Overall the utils.py is a toolbox for
the plotting part of the simulation and handles the fetches information from the
simulation like node weights and network delays and plots the row and column
information.

4.1.5 Simulation Module

The counter.go component serves as the system clock and provides mechanisms
for counting and tracking the different metrics or events that happen in the
simulation. There are two types of counters defined and implemented, there is
the AtomicCounters and ColorCounters. The former counter is a counter used
for atomic operations to provide safe thread access to do modifications. The
latter counter is specifically designed for this simulation tool. It’s responsible
for tracking multiverse color occurrences. The counter is defined here along
with helper methods for various tasks.

Atomic Counter The atomic counter is defined as a AtomicCounters type,
which is implemented with a map of counters. This is a map of (key, value)
where counter keys are associated with their corresponding atomic counters.
For security purposes so as not to override and access shared resources, there is
also defined a mutex countersMutex which is sync. RW Mutex object to protect
against concurrent access to the counters map. The method Create AtomicCounter
is used for creating new atomic counters. The way its implemented is straight-
forward, first, the mutex lock is called to prevent concurrent creation, then check
if the key is passed as an argument exists in the map, and if not add to the
map, and the mutex is unlocked. The rest of the methods implemented for this
AtomicCounters type are helper methods for getting, adding, or setting a given
counter.

type ColorCounters struct {
counts map [string]map[multiverse.Color]int64
mu sync.RWMutex

}

func NewColorCounters() *ColorCounters {
return &ColorCounters{
counts: make(map[string]map[multiverse.Color]int64),
}

}

Color Counter struct definition and associated implementation. [0

Color Counter This specifically designed counter is of the type ColorCounters.
The counter structure is initialized with a nested counts map. The nested map

35

associates a counter string key to another map that maps the multiverse colors
to their assigned counter values (See Figure 4.7). For the same reason as the
AtomicCounters type, a mutex is also defined as a parameter for this structure.
The function NewColorCounters() is implemented to create this counter, then
the method CreateCounter for creating an individual counter. This method
takes in three parameters, a counterKey string, a colors slice of multiverse col-
ors, and a slice of initial values. This method first acquires the lock to ensure
exclusive access, then checks if the length of the slice of initial values is empty.
This check is done for flexibility, as some of the counters may not need initial
values for all the colors. Then the method checks if the given key does not
exist in the map. If that is the case, then a new inner map is created. It then
iterates over the colors slice and assigns the initial values from the initValue
slice to each color in the inner map. Then finally the inner map is added to the
counts map with the provided counterKey. As with the AtomicCounters type,
helper functions are implemented for C'olorCounters to provide easy access and
modification to the color map.

4.1.6 Configuration Module

This module consists of a single con fig.go file and is responsible for setting up
the simulation parameters for all the previous main modules. This file catego-
rizes the parameters after the main components of the simulation. It’s split into
five categories, the simulator settings, the network setup, the weight setup, the
tip selection algorithm, and the Adversary setup which is only triggered when
simulating double spending in the network.

Simulator Settings This section of the configuration file specifies the target
for the simulation, and monitoring the AW of nodes while the simulation runs.
This is also where a threshold for ending the simulation is put in, this threshold
value is calculated using SimulationStopT hreshold x NodesCount is larger or
equal to confirmed nodes. The two metrics that are being simulated are double
spending in the network and consensus time in the network. These two metrics
can be set in the SimulationT arget field as either D.S for double spending or C'T'
for consensus time. Other parameters are ConsensusM onitorTick which tracks
the consensus time in milliseconds and MonitoredWitnessWeight Messagel D,
a parameter that tracks the witness weights.

Network Setup In the network setup part of the configuration file there are
parameters for the number of nodes, network throughput, and other network-
related parameters. To not go into detail we will briefly mention the network
parameters and give a short explanation.

1. NodesCount:

This field specifies the total number of nodes in the simulated network.
So it specifies the actual size of the network.

36

2. TPS:

Transaction per second is a measurement of the network throughput and
this parameter defines the desired network throughput rate.

3. ParentsCount:

This parameter defines the number of parents a new message should select
from the tip pool. Parents refer to previous messages in the network.

4. NeighborCountWS:

Every node in the network is connected to a peer, this parameter deter-
mines the number of neighbors each node is connected to. In this simula-
tion tool, we use the Watts Strogatz network topology model which is a
random graph generation model that creates networks.

5. RandomnessWS:

This parameter is the Watts-Strogatz randomness parameter and deter-
mines the degree of randomness in the network topology. The higher value
of this parameter the more random the network topology becomes.

6. IMIF":

IMIF stands for Inter Message Issuance Function is the function that
determines the specific interval between message activity in the network.
In this simulation, it can be set to either Poisson or Uni form distribution.
The difference between the distributions is that with Poisson models a
random event occurrence while the Uni form represents a linear constant
time delay between events.

7. PacketLoss, MinDelay, MaxDelay:

The packet loss parameter specifies the probability in the network for
packet loss. Min and Max delay parameters define the minimum and
maximum network delays that can happen in the network in milliseconds.

8. SlowDownFactor:

This parameter is used to control the simulation speed. It can be slowed
down or sped up, depending on the user’s needs. The time dilation makes
observation and analysis of the simulation results easier.

Weight Setup This part of the configuration file control the weight distribu-
tion among nodes and the confirmation threshold for nodes based on the AW.
We will now explain shortly the parameters in this part.

1. Nodes Total Weight:

This parameter defines the total weight of all nodes in the network. Weight
in this simulation represents the voting power of the nodes, so this param-
eter is the total voting power of the network. In the simulation, this value
is set to 100000 by the authors.

37

2. Zipf Parameter

This specifies the parameter s for the Zipf distribution used to model the
weight distribution among the nodes. The parameter s controls the shape
of the distribution. When s is set to 0, all nodes have equal weight, and
as s increases, the weight distribution becomes more centralized, with a
few nodes having significantly higher weight than others.

3. Confirmation Threshold: This parameter defines the threshold for message
confirmation. It measures the Active Walk, which is a measure of how
the messages spread in the network. If the AW exceeds the confirmation
threshold it indicates how much confidence is in the confirmation of a
message.

4. Confirmation Threshold Absolute

Con firmationThresholdAbsolute determines whether the confirmation
threshold is counted from zero or from the next peer’s weight. If this is
set to true which it is in this simulation, then the threshold is counted
from zero. This means that the weight collected in AW must exceed
the threshold to be counted confirmed. If set to false, then it means
that the weight collected is counted from the next peer’s weight, so the
AW in addition to the next peer’s weight must exceed the threshold of
confirmation.

5. Relevant Validation Weight:

This parameter represents a threshold for whether a node will issue any
messages. If the product of a node’s weight with RelevantV alidatorW eight
is less than or equal to the weight of the largest node it will not issue any
messages. Currently simulation, this is set to 0, which means that any
nodes can issue messages regardless of weight.

Tip Selection Algorithm Setup The settings in this part of the setup de-
termine the characteristics and behavior of the Tip Selection Algorithm in the
simulation. They influence the selection of tips for transaction confirmation and
play a role in the overall dynamics and performance of the simulated network.

1. Tip Selection Algorithm:

Tip selection algorithm (TSA), is the parameter where it’s defined which
TSA to use during the simulation. In the simulation, there are defined
two types of T'SA’s as we explained earlier in this thesis. The two types
are uniform random tip selection (URT'S) and restricted uniform random
tip selection (RURTS).

2. Delta URTS:

It defines the time delta in seconds for the Unreferenced Tip Selection
(URTS) algorithm. The DeltaU RT'S parameter determines the time win-
dow within which tips are considered unreferenced and eligible for selec-
tion.

38

3. Weak Tip Ratio

This sets the ratio of weak tips to strong tips in the tip pool. Weak tips
are tips that have a lower chance of being selected as the trunk and branch
transactions in the Tangle. This is set to 0.0, which means every tip has
an equal chance of being chosen, while a non-zero value indicates a bias
towards strong tips.

Adversary Setup The settings in the Adversary setup configure the behav-
ior and parameters of the adversary in the simulation, specifically for double-
spending (DS). This setup part has some important parameters that we will
explain in short detail.

1.

Simulation Mode:

The simulation model specifies what type of double spending scenario that
will be run in the simulation. There are two types of scenarios that can be
used in the simulation, the scenarios are Accidental and Adversary. The
Accidental scenario simulates accidental double-spending done by nodes
in the network. On the other hand, the Adversary scenario simulates a
malicious attempt at double-spending done by the adversary nodes in the
network.

. Double-Spend Delay:

This parameter defines the delay in seconds between the issuance of double-
spend transactions. So in principle the interval between double-spending
attempts done by the nodes.

Accidental Mana

The accidental mana parameter specifies the node that will be used for
the accidental double-spend attempt. Selection of the accidental DS node
is based on the mana values, the actual selection is done by using three
parameters for mana value. The parameters that can be used in this sim-
ulation is Min, Max, or Random. Min refers to the node with the least
amount of mana in the network, Max is the node with the most amount
of mana, and Random refers to choosing a random node independent of
mana value.

Adversary Delay:

This parameter’s purpose is to introduce some variability to the actions of
the adversary nodes. These delays introduce an artificial delay because, in
reality, the actions done by adversary nodes are random and not scheduled.
So in theory what these delays do is affect the interactions the adversaries
have with the network.

Adversary Types

As we mentioned earlier in the thesis, there are different types of adver-
saries. This parameter specifies the type(s) of adversaries that will be used

39

in each run of the simulation. The values that can be put into this param-
eter are 0 (honest node behavior), 1 (shifts opinion), 2 (keeps the same
opinion), and 3 (nodes not gossiping anything, even double spends). By
using these adversary types in different combinations we can get different
views on how the network will operate.

. Adversary Node Counts and Adversary Initial Colors:

The AdversaryN odeCount specifies the number of adversary nodes in the
network, if this parameter is left as empty the default value will be 1. The
AdversaryInitColors defines the initial colors of the adversary groups.
The colors available in this simulation are R(red), G(green), and B(blue).
The reason for this is that every adversary group needs a specified initial
color at the start of the simulation.

. Adversary Peering All and Adversary Speedup

The AdversarySpeedup is a flag that is set for the adversaries indicating
if the adversaries should be able to send messages to all the nodes in the
network, effectively bypassing the peering algorithm for the network. If
the flag is set to true then the adversaries will be able to communicate
with any node in the network.

In the same fashion as the simulation speed-up parameter for the sim-
ulation, the AdversarySpeedup parameter specifies the speed-up factor
for the adversaries. This factor determines how many more messages the
adversaries can issue compared to the other nodes.

40

Chapter 5

Research Design

In this section of the thesis, we introduce our own version of the TangleSim
simulation tool. We explain in detail what modifications we have done and the
purpose behind each of them. As we mentioned in our introduction section,
our hypothesis is that it is easier to implement proof-of-work in a Tangle 2.0
simulator than implement Tangle 2.0 in a proof-of-work simulating tool. We
make this hypnotizes because we believe that implementing POW on top of the
Tangle 2.0 simulator as the consensus mechanism is easier, because of the fact
that POW is a consensus mechanism and not a blockchain system like Bitcoin
or Tangle. We also wish to show that other types of consensus mechanisms
can be implemented in the Tangle 2.0 simulating tool. We will approach the
modifications we implemented one file at a time, and conclude our work at the
end.

5.0.1 models.go

The Message object defined in Modesl.go that we mentioned briefly earlier in
the thesis is where we started modifying the code base. For POW we need the
longest chain to add blocks onto. We created a new parameter for the Message
structure. We created the height parameter for the messages so we could keep
track of the longest chain of messages. This parameter will come into use later
in the process of updating message heights.

5.0.2 messagefactory.go

As we mentioned in the design background (ref section 4.1.2), the message
factory component handles the creation of messages and passing in the mes-
sage fields. The modification we did here is fourfold. We mainly changed the
CreateMessage method in this file. The first thing that happens in this method
is retrieving the strong and weak tips from the tip manager. The tip manager
has a function called T'ips() which selects tips from the tip set according to the
nodes’ current opinion.

41

The Tips() returns the strong and weak tips, in the message factory we only
want the strong tips and look away from the weak tips because the strong tips
provide the tips with the most references and are most likely to be confirmed.
The next step of our process is to find the parent of the strong tip we can up-
date the height for the new message that will be created and published. We
find the parent of the strong tip by using the GetT'ip() method we defined in
TipManager.go. We will explain the implementation of this method in the next
section also. But this method returns an integer height and a boolean which
we use to confirm successful retrieval of the parent height. Then we increment
the height field of the message object with parent height + 1.

5.0.3 tipmanager.go

The tip manager component is an important part of the process of integrating
proof-of-work into the simulation tool. Because in POW the blocks published
by the miners are added to the main chain, there can only be one block at a
time. So we have to make it so that the tip provided by the tip manager must
be the one with the longest chain, but in our case, we use a strong tip. The
way we filter out the strongest tip is by finding the tip from the strong tips set
that has the highest height. We will explain the different parts of our process
in detail in the next steps.

POW Tip Selector For POW we created a custom tip selector algorithm in
the same way the authors created the other tip selectors. First, we create a new
type of tip selector algorithm type POW under the T'S A interface TipSelector.
The way our tip selector algorithm for POW works is that we first define a
maximum height variable to store the maxHeight of the tips in the random
map randommap.RandomM ap, a message variable for storing the message we
retrieve, and we also define a tipsToReturn interface slice.

As we mentioned in the design background section, the tips are stored in a
randommap.RandomMap object. This map has a method implemented for
different types of retrieval, we used the ForFach() method that iterates over
each element in the map and calls the consumer function. By using this method
we can iterate over the elements in the RandomMap and apply custom logic
to each element without having to manually handle the synchronization of con-
current access to the map. When we iterate over the elements we check if the
message height is larger than the maximum height which we defined as 0 in
the beginning. And as we iterate through the map we continuously update the
mazHeight and msg variables. When the loop is finished, we den we update
the tipsToReturn slice with the message height and then return tipsToReturn.

This implementation is our attempt at integrating POW into the tip selec-

tion algorithm. To form it to POW we only choose one tip, which has to be the
one with the highest height. This conforms to the POW system where only one

42

block is published to the chain. We also make the POW tip selection algorithm
a part of the swithc — case in the NewTipManager() function, this is where
the tip manager knows which of the T'SA’s is specified in the configuration to
use for the simulation run.

func (POW) TipSelect(tips *randommap.RandomMap, maxAmount int) [Jinterface{} {
maxHeight := uint64(0)
var msg *Message
var tipsToReturn []interface{}
tips.ForEach(func(key, value interface{}) {
if value. (*Message) .height > int(maxHeight) {
tipsToReturn = make([]interface{}, 1)
maxHeight = uint64(value. (*Message) .height)
msg = value. (*Message)
}
tipsToReturn[0] = msg
P return tipsToReturn}

Proof-of-work tip selector. tipmanager.go[3|

GetTip(): The GetT'ip() method is the method we defined in the TipManager
structure. The purpose of this method is to find the message height of a given
message. The first thing that we do is to get the tip set of the current opinion
of the calling node. Then use that tip set to access the StrongTips, then we
use the method Get() from the randommap.RandomMap object. This Get()
method returns a value to which the given key is mapped. After retrieving the
message from the RandomM ap we first check if the message is not empty, then
we cast the msg as a slice of the type Message with the length 1. We create this
slice because both messageI D and the msg returned from the Get() method
are both of the type inter face. We then return the height of the message by
indexing in the slice and a boolean true. This method is the same GetT'ip()
method that we mentioned in the messagefactory.go to return the height of
the strongParent (See Below).

func (t *TipManager) GetTip(messageID interface{}) (height int, true bool) {
tipSet := t.TipSet(t.tangle.OpinionManager.Opinion())
msg, _ := tipSet.strongTips.Get (messageID)
if msg == nil {
// return O and false if msg interface is empty
println("msg is nil")
return 0, false
} else {
// else cast interface to Message type, index and return height
msg := make([]Message, 1)
return msg[0] .height, true
3

43

}

The method for retrieving parent tip from the randomM ap, tipmanager.go [3]

5.0.4 approvalweight_manager.go

In POW we mentioned earlier that the difficulty of publishing blocks is the main
component of the consensus protocol. This keeps the network going forward at
a relatively same rate of publishing. In our implementation of the protocol in
this simulation tool, we used some other unorthodox methods to simulate the
same effect of the POW ever-changing difficulty.

The way we simulate the same effect as POW difficulty is by making use of
the random nature of the Poisson distribution. As we mentioned earlier, the
Poisson distribution models random event occurrences, so we use this property
to make the message publishing a random event similar to the randomness in
block publishing in Blockchain where the consensus protocol used is POW. In
addition to the random event occurrence of the poisson, we have made modifi-
cations to the approvalweight_manager.go. This component which is a part of
the Multiverse module is responsible for determining the level of power a node
has in validating a transaction. Its task is to keep track of the approval weights
of nodes, it keeps track of the number of incoming and outgoing transactions
of a node, and the cumulative weight of the node. We made a modification of
the weights of the messages, where all messages start off with a weight of 0.
Using a counter that is always increasing we compare the message weight with
the counter weight. We do this because we want the message weights to be
ever-increasing as the simulation runs and all messages have the same starting
point in terms of weight. After this counter check, we then have another check
where we ascertain if the message weight is larger than a set confirmation
value along with checking if the message has been given a weight before.

5.0.5 config.go

In the configuration file, we did not do many modifications, but the ones we did
have an important role in the process. The first thing we did is to change the
TS A parameter to reflect the change to POW instead of the other tip selection
algorithms. The second modification we made is to reduce the parentCount
parameter from the original number of 8 to instead 1. This makes sure that
each message can only have one parent, so a type of Greedy-Heaviest-Observed
Sub-tree (GHOST) is established instead of the DAG structure which it was
originally.

44

) ApproveMessages(

Figure 5.1: This method traverses(Walks) down the message chain to determine
approval weight. [3]

5.0.6 main.go

We made some modifications to the main.go file so we could gain some other
types of results from the output. What we did was make an additional header
to the header fields for the output, we added a parentID field in the main.go
and also created a simple loop in the information output method, where we
retrieved the parentID for the message that was being outputted. The reason
we did this was to gain an idea of the heritage of the message blocks, we will
explain more in the results and discussion chapters.

45

Chapter 6

Results and Discussion

In this chapter, we present and give a brief explanation of the results of our
research. We then discuss the results, the entirety of the thesis, and describe
the knowledge we have gained and if there is anything we would wish to make
different or improve upon.

6.1 Results
6.1.1 Tangle 2.0 with POW results

Confirmation Time

In this section, we present the confirmation time results obtained from our exper-
iments conducted using the extended TangleSim simulation tool incorporating
Proof-of-Work (PoW) in the Tangle protocol. The objective of this analysis is
to evaluate the impact of PoW on the confirmation time of transactions in the
Tangle network.

Confirmation time is a crucial metric that measures the time it takes for a
transaction to be deemed finalized and included in a confirmed state by the net-
work. A shorter confirmation time is desirable as it indicates faster transaction
settlement and improved user experience. By integrating PoW into the Tan-
gleSim simulation tool, we can observe how the computational effort required
for transaction validation affects the confirmation time in the Tangle network.

46

80
60
40
20

o

Confirmation Time (s)

|
N
o

100 200 300
Node Count

Figure 6.1: Confirmation time for different numbers of Nodes. With Zipf = 0.8,
Approval Threshold = 50. Simulation run with python3 main.py -rs -pf -v N
-vv 100 200 300 -df 1 -rt 5 -st CT [3]

In the figure above we can see how long it takes for 100,200, and 300 nodes. The
x-axis shows the number of nodes in the network, the y-axis shows the confir-
mation time in seconds. The simulation was run with 5 iterations with different
thresholds for approval of messages. The threshold used in our simulation runs
varied from 10-50. The Python command to run the simulation specifies what
types of variation we wish to simulate, in this case, we want to have a variety of
the number of nodes hence we use the N parameter which is node. After that,
we specify the different number of nodes and how many repetitions we want the
simulation to run for each of the node counts. At the very end, we specify that
the simulation target is confirmation time hence the CT" in the end.

Forks in the Network

TPS = 100 ,Threshold 50, zipf = 0.8

90 4
80
70 4
60 4 ’F\\
1 S~
50 1
1
40 4 é

30 4

Number of Forks
P
~
/

20

10

50 100 150 200 250 300 350 400
Number of Nodes

Figure 6.2: This figure shows the number of forks in the network in different
network sizes.

This figure shows the rate of change in the number of forks in the network.
Forks in our case where there is more than one branch going from one block to
another. So it means that there is not a main chain from Genesis, but many

47

branches, this can be associated with GHOST consensus protocol where there
is not 1 main chain but can be different branches one can build blocks on top
of. This figure is made using the results from the same simulation run as in
the previous figure. The figure itself does not give any conclusive answer to the
correlation between forks and the number of nodes, and we have observed that
it has a certain variability to it.

The simulation that produced the results of the plot was run with a confir-
mation threshold of 50 and zipf parameter of 0.8 which means that it’s not a
completely decentralized network. What we can see from this figure is that
there is a steady decline in the number of forks in the network as the network
size grows. A temporary decline was seen between 100 and 150 network size
but it was just a slight dip in forks that can be due to different reasons.

Figure 5.3 shows a different perspective, which shows the correlation between

TPS = 100, zipf = 0.8

20

80 4

60 4

50 1 - > ————eg—————e

Number of Forks
[]
1
1
/

40

30 4

20 4

10

Figure 6.3: This figure shows the number of forks in the network for the different
confirmation threshold values.

the number of forks in the network for different confirmation threshold values.
We found the mean number of forks throughout all of our simulation runs and
plotted them against the different values for the threshold. It shows that the
number of forks in the network is a steady line and it increases slightly around
threshold value = 25, then evens out for the remainder of the values. This shows
that there is no definitive answer to either a turn point where the number in-
creases downwards or upwards.

6.1.2 TangleSim results

In this section, we will present our simulation results from running the original
Tangle simulator [6]

Confirmation Time

The figure above illustrates the relationship between confirmation time and the
number of nodes in the TangleSim simulation with POW. The figure provides
insights into how the confirmation time varies as the network size increases.

48

80
60
40
20

o

Confirmation Time (s)

100 200 300
Node Count

Figure 6.4: Confirmation time for different numbers of Nodes. With Zipf = 0.8.
Simulation run with python3 main.py -rs -pf -v N -vv 100 200 300 -df 1 -rt 5 -st
CT [6]

Figure X illustrates the results obtained from our experiments, where we varied
the number of nodes in the network and measured the corresponding confirma-
tion time. The y-axis represents the confirmation time, which indicates the time
taken for a transaction to be confirmed in the Tangle. The x-axis represents the
number of nodes in the network, indicating the scale of the simulated Tangle
ecosystem.

What we can see from this figure is mainly the correlation between the number
of confirmed messages and the confirmation time. On the left of the figure we
can see that for a network size of 100, we can see that there is a slow start
and a majority of the messages start getting confirmed between 20s and 40s
into the simulation run. In the middle of the figure, we can see that similar
to the previous network size, when the network size is 200 the confirmation
of messages starts off slow, but in this case, the confirmations continue in an
increasing fashion from between 20s into the simulation and all the way to the
end of the simulation. In the last case of the network size of 300, we can see
that it differs from the previous two cases. It instead shows a continuous and
steady confirmation rate of the messages.

6.2 Discussion

In this section, we will discuss our results in a general manner while also com-
paring both the results from the two simulations and also comparing Tangle and
proof-of-work.

6.2.1 Comparison of results

The results we presented represented only one of the simulations we performed.
We will include the rest of our results in our GitHub repository. But what we
have observed is that the results have varied and do not give a conclusive view

49

that can be stated. Our results about the number of forks in our version of
the Tangle with POW, we analyzed the results from the simulation, by finding
the number of parents blocks and adding them up we found the total number
of nodes. In a traditional blockchain, every block has only one parent, in our
case, it’s more similar to GHOST where a block can be parent to a number of
different blocks creating forks. So after calculating the number of forks for an
entire simulation run, we plotted the results. What we have noticed in our re-
sults is that there are more forks and the number of these forks does not reduce
that much when the confirmation threshold is low. This was to be expected,
but we also noticed that the number of forks is higher when the network size
is smaller and reduces slightly when the network size is larger. We performed
similar calculations for the original Tangle simulator using the same commands
and observed a much higher number of "forks”. We cannot call these forks
because as we explained the Tangle creates a DAG structure so it’s a part of
the design and we confirmed it works as we expected. The forks in the network
can be removed by adjusting the network throughput, this will lead to a longer
simulation but also a longer confirmation time for the messages in the network.

When looking at the results from both simulators, we can see that there is
a varying degree of confirmation when talking about the number of messages
getting confirmed. We see that there is either a majority of messages get con-
firmed within the first 20s and 30s, but also the latter part of the confirmation
time i.e. from 20s to 80s. We also see in some of the results that there are
also instances where there is a steady rate of confirmed messages throughout
the simulation. In the case of the network size being 100 and 200, there is no
conclusive answer, but in almost all of the cases of network size of 300, there is
a steady confirmation rate in all of our simulation runs.

6.2.2 Comparison between Tangle 2.0 and Tangle 2.0 with
POW

This research has shown that incorporating POW into a Tangle setting pro-
vides better handling of confirmation and approval compared to the original
Tangle 2.0. The results have shown that there is not a major reduction in
important metrics such as confirmation time. Any reduction in confirmation
can be credited to the more mathematical burden of proof-of-work and this ex-
change of confirmation time to a more secure network that POW provides is to
be expected. An unexpected discovery was that incorporating POW produced
a greedy-heaviest sub-tree type of network topology with many branches in the
network instead of the originally intended traditional blockchain network topol-
ogy. Comparing Tangle and POW strictly then there are aspects of the two
consensus protocols such as the consensus algorithm, the network topology, and
network participation/participants.

The Tangle topology is a DAG structure where the blocks can be published
by every participating node. The blocks have two parents that they reference

50

upon issuing. In contrast, proof-of-work in traditional Blockchain systems has
one main-chain structure where from genesis there is one block as a parent creat-
ing a chain of blocks. The consensus mechanism used in the Tangle 2.0 is called
Tip Selection Algorithm. The tip selection algorithm in Tangle 2.0 is based
on a concept known as the Markov Chain Monte Carlo (MCMC) Random
Walk. The MCMC random walk algorithm selects tips based on a probabilistic
approach, considering various factors to determine the most suitable tips for
approval. In contrast, POW participants, known as miners, compete to solve a
computational puzzle or mathematical problem. The solution to this problem
requires a significant amount of computational power and time. If we look at
the process of block issuing we can see that POW has a barrier of entry that is
hardware needed for computational power in contrast to Tangle where there is
no need for particular hardware. This leads us to the participation of nodes in
the two networks, in Tangle there is a direct entry, by that we mean that one
does not need anything in particular before joining the network while in POW
you have to take into consideration that if one wants to publish a block there
will be a roadblock one has to overcome before joining the network.

6.3 Limitations and Future Improvements

This research was limited by factors such as time but also not having a deep
enough understanding of the original TangleSim simulation tool. The tool was
both very complicated in terms of unraveling the core functionality but also
tailored to Tangle 2.0 by people of far more knowledge and expertise than we.
If we could change some of the ways we proceeded with this research is that
we would split the components such as the network and the tip selection and
do more in-depth changes to make the POW protocol more ingrained in the
simulation tool and not shallow as we currently have.

o1

Chapter 7

Conclusion

In conclusion, we have simulated Tangle 2.0 with the TangleSim simulating tool
and analyzed it before making a simulator of our own. We have simulated how
POW works in a Tangle setting by changing the simulating tool in different key
places to make it a fit for POW. This has led us to make observations and given
us insight into how a POW consensus protocol operates in a Tangle environment.
The results of our research have made it possible for us to make the conclusion
that POW does not give a definitive improvement over the original Tangle in
a Tangle environment. Inserting the POW protocol into Tangle changes the
original DAG structure and creates a structure similar to GHOST. So we
conclude that this research has not yielded much in terms of value.

92

Bibliography

[1] The Tangle Serguei Popov, October 1, 2017. Ver-
sionl.3 http://cryptoverze.s3.us-east-2.amazonaws.com,/wp-
content /uploads/2018/11/10012054/I0TA-MIOTA-Whitepaper.pdf

[2] Silvano, W. F., Marcelino, R. (2020). Iota Tangle: A cryptocurrency to
communicate Internet-of-Things data. Future Generation Computer Systems,
112, 307-319. https://doi.org/10.1016/j.future.2020.05.047

[3] https://github.com/AdnanAhmed12/Multiverse.git

[4] On the Security and Performance of Proof of Work Blockchains
Arthur Gervais ETH Zurich,Switzerland arthur.gervais@inf.ethz.ch Ghassan
0O.Karame NEC Laboratories,Europe ghassan@karame.org Karl Wiist ETH
Zurich, Switzerland kwuest@student.ethz.ch Vasileio Glykantzis ETH Zurich,
Switzerland glykantv@student.ethz.ch Hubert Ritzdorf ETH Zurich, Switzer-
land hubert.ritzdorf@inf.ethz.ch Srdjan Capkun ETH Zurich, Switzerland
srdjan.capkun@inf.ethz.ch

[6] Tangle2.0 Leaderless Nakamoto Consensus on the Heaviest DAG Se-
bastian Miillerf, Andreas Penzkofert, Nikita Polyanskiit, Jonas Theist,
William Sanders, Hans Moogt Aix Marseille Université, CNRS,Centrale
Marseille,I2M-UMRT7373,13453 Marseille, France {IOTA Foundation,
Berlin,Germany https://arxiv.org/abs/2205.02177

[6] Robustness of the Tangle 2.0 Consensus Bing-Yang Lin,Daria Dzi-
ubaltowska,Piotr Macek,Andreas Penzkofer,Sebastia nMiillerf IOTA Foun-
dation,Berlin,Germany fAixMarseille Université, CNRS,Centrale Marseille,l
2M-UMR7373,13453 Marseille,France https://arxiv.org/abs/2208.08254
https://github.com/iotaledger/TangleSim.git

[7] D.J.Watts and S.H.Strogatz, “Collective dynamics of ‘small world’ networks,
"nature, n0.6684, pp.440-442,1998.

[8] D.M.W.Powers, “Applications and explanations of Zipf’s law,” in New Meth-
ods in Language Processing and Computational Natural Language Learning,
1998.[Online]. Available:https: //aclanthology.org/W98-1218

93

https://arxiv.org/abs/2205.02177
https://arxiv.org/abs/2208.08254
https://github.com/iotaledger/TangleSim.git

[9] ChainSim: A P2P Blockchain Simulation Framework Bozhi Wangl,2(B),
Shiping Chen, Lina Yao,and Qin Wang University of New South Wales, Syd-
ney,NSW 2062, Australia bozhi.wang@student.unsw.edu.au 2 CSIRO Data61,
Sydney,NSW2110, Australia 3 Swinburne University of Technology, Mel-
bourne, VIC3122, Australia

[10] DAGsim: Simulation of DAG-based distributed ledger protocols Manuel
Zander Department of Computing Imperial College London London,UK
manuel.zander17@ic.ac.uk, Tom Waite Department of Computing Imperial
College London London, UK thomas.waitel4@ic.ac.uk, Dominik Harz De-
partment of Computing Imperial College London London,UK d.harz@ic.ac.uk

[11] BlockSim:A Simulation Framework for Blockchain Systems Maher Al-
harby,Aadva nMoorsel School of Computing, Newcastle University, UK
m.w.r.alharby2, aad.vanmoorsel@ncl.ac.uk

[12] M.Di Pierro, ”What Is the Blockchain?,” in Computing in Science Engi-
neering, vol. 19, no. 5, pp. 92-95, 2017, doi: 10.1109/MCSE.2017.3421554.

[13] Bitcoin: A Peer-to-Peer Electronic Cash System, Satoshi Nakamoto,
satoshin@gmx.com, www.bitcoin.org

[14] Sompolinsky, Y., Zohar, A. (2015). Secure High-Rate Transaction Process-
ing in Bitcoin. In: Béhme, R., Okamoto, T. (eds) Financial Cryptography
and Data Security. FC 2015. Lecture Notes in Computer Science(), vol
8975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-
47854-732 AlexdeVries, Bitcoin' senergyconsumptionisunderestimated
Amarketdynamicsapproach, EnergyResearchSocialScience, Volume70, 2020, 101721, ISSN2214—
6296, https : //doi.org/10.1016/j.erss.2020.101721.

o4

List of Figures

2.1 DAG with weights assigned to each site, and scores calculated for |

[Aand C. I, 9

[2:2" Past and Tuture cone of a block, they are highlighted in the green |

| and yellow triangles respectively. 6] 12

[2.3 Calculation of AW done by tracking supports.J6]] 14

4.1 The different types of Adversaries are initialized with parameters. |

| groups.golBl] 29

[4.2 Two types of plots are used in TangleSim, Box Plot (Left) and |

| Violet Plot (Right). [6lf., 34

[5.1 This method traverses(Walks) down the message chain to deter- |

| mine approval weight. ﬂ:ﬂﬂ 45

6.1 Confirmation time for different numbers of Nodes. With Zipt |

= 0.8, Approval Threshold = 50. Simulation run with pythond |

main.py -rs -pf -v N -vv 100 200 300 -df L -t 5 -st CT [3]] 47

6.2 This figure shows the number of forks in the network in different |

[network sizes] 47

6.3 This figure shows the number of forks in the network for the |

L different confirmation threshold values). 48
6.4 Confirmation time for different numbers of Nodes. With Zipt =
0.8. Simulafion run with python3 main.py -rs -pf -v N -vv 100

200 300 -df T -1t 5 -st CT Bl . . .« v v v oo oo e e e 49

	Introduction
	Motivation and Problem Description

	Background
	Blockchain
	Proof-of-work (POW)
	GHOST
	Tangle
	Tangle 2.0
	DAG
	Approval Weight and Confirmation
	Synchronised Random Reality Selection & Asynchronous On Tangle Voting

	Tangle 2.0 simulation tool
	UTXO and Sybil Protection
	Colors and Conflicts
	Network Layer and Weight distribution

	Related Works
	Chain Sim
	DAGSim
	BlockSims

	Methodology
	Design Background
	Adversary Module
	Multiverse Module
	Network Module
	Scripts Module
	Simulation Module
	Configuration Module

	Research Design
	models.go
	messagefactory.go
	tipmanager.go
	approvalweight_manager.go
	config.go
	main.go

	Results and Discussion
	Results
	Tangle 2.0 with POW results
	TangleSim results

	Discussion
	Comparison of results
	Comparison between Tangle 2.0 and Tangle 2.0 with POW

	Limitations and Future Improvements

	Conclusion

