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Abstract

In the post-merger phase of a black hole binary system, the remnant object is a

perturbed black hole emitting gravitational radiation in the form of Gravitational

Waves (quasi-normal modes) before admitting a stable state. Observations of

gravitational waves can thus be used to test and constrain deviations from Ein-

stein’s theory of gravity. The no-hair theorem says that only 2 parameters are re-

quired to characterize an astrophysical black hole described by the Kerr metric;

mass and spin. However, in the post-Kerr approximation, themetric incorporates

non-Kerr parameters. We assume that the observed ringdown can be described

by the Johanssen-Psaltis metric and use LIGO data to constrain the deviation pa-

rameter. Compared to existing constraints, our analysis finds a tighter constraint

on the deviation parameter ϵ3 using GW190521 ringdown data.
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Chapter 1

Introduction

1.1 Einstein’s Field Equations

One of the profound findings of the 20th century is the establishment of General

Relativity by Albert Einstein where he connects space and time into one object

and describes the universe in this new picture. His interpretation of the universe

is based on the interplay of spacetime curvature andmatter within it, given by the

famous Einstein’s Field Equations (EFE):

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.1)

The quantity gµν is the metric tensor that describes the spacetime, the quantities

Rµν andR are the Ricci Curvature Tensor and the Ricci scalar, respectively, built

out of the spacetimemetric gµν , Tµν encodes information about the distribution of

matter in the spacetime, G is the universal gravitational constant, c is the speed

of light, π is the mathematical constant and 8 is an integer. EFE are nonlinear

partial differential equations in gµν .

Depending on the complexity of the spacetime, the components of the metric

can be different. To describeMinkowski (flat) spacetime in cartesian coordinates

we use the metric:

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (1.2)
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Sincewe are now dealingwith (3,1), three space and one time, dimensional space-

time, we need a 4-vector to address the information associated with a particle. So

instead of just using vectors of the form [x, y, z], we will be using 4-vectors of the

form [t, x, y, z] to properly denote the position, velocity, momentum etc of the

particle. In cartesian coordinates, the position of a particle would look like this:

xα = (t, x, y, z) and xα = gαβx
β (1.3)

Where the upstairs and downstairs index is used to differentiate between con-

travariant and covariant vectors, respectively. One can transform between these

two kinds of vectors with the appropriate use of the metric tensor (upstairs to

downstairs) and the inverse of themetric tensor (downstairs to upstairs). Consid-

ering the simple example of flat spacetime metric tensor ηµν the transformations

shown above are performed as

ηαβx
β =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ∗ [t, x, y, z] = [−t, x, y, z] = xα (1.4)

Throughout this text, we set G = c = 1 and adopt the metric signature to

be (−1, 1, 1, 1).The vacuum solutions, where Tµν = 0, mentioned here are black

holes and Boyer-Lindquist coordinates (t, r, θ, ϕ) are used to write out the metric

that describes a black hole, as the reader will see in the coming sections. These

are singularities of the spacetime and have many interesting physical properties.

We will be going through one of these, the light ring structure which is caused

by photons/gravitons orbiting the black hole at a radial location r = rph. This

phenomenon was observed for Sagitarius A* which is to-date the best image we

have of a black hole and also, proof of their existence.
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Figure 1.1: First ever image of a black hole, Sagitarius A*, produced by the Event

Horizon Telescope.[1]

1.2 Gravitational Waves

Gravitational waves (GW) are ’ripples’ in space-time caused by some of the most

violent and energetic processes in the Universe. Einstein predicted the existence

of gravitational waves in 1916 in his general theory of relativity. Einstein’s math-

ematics showed that massive accelerating objects (things like neutron stars or

black holes orbiting each other) would disrupt space-time in such a way that

’waves’ of undulating space-time would propagate in all directions away from the

source. These cosmic rippleswould travel at the speed of light, carryingwith them

information about their origins, as well as clues to the nature of gravity itself[2].

There aremultiple expected types of gravitationalwaves like continuous, burst,

stochastic and compact binary inspiral[2]. Continuous ones are produced by a ro-

tating massive object such as a neutron star due to imperfections in its geometric

structure. Stochastic ones are small waves travelling in every direction in the the

universe and and randomly mixed together. They are expected to originate at the

Big Bang. Bursts are random occurrences of a signal where the origin of the sig-

nal is unknown. Lastly, we have compact binary inspiral. We are interested in

gravitational waves produced by the compact binary inspiral which are a conse-

quence of two massive objects spiralling toward each other and finally colliding.
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The entire process is referred to as a ’Compact Binary Coalescence’ where the two

compact objects can either be two black holes or a black hole and a neutron star

or a pair of neutron stars. More precisely, we focus of the port-merger phase of

the coalescence of two black holes where the progenitors have merged into a sin-

gle object which is an unstable black hole emitting gravitational radiation as it

stabilizes (ringdown). These are the GWs observed by LIGO at the Livingston

and Hanford detectors. All detected signals are catalogued by LIGO and can be

found in open-access documents called ’GravitationalWave Transient Catalogue’.

There are 3 catalogues currently available which contain the observations made

in three runs; O1, O2 and O3. A fourth run, O4, is currently active and LIGO

is recording data as you read this document. Detected signals are a completely

new window into the universe and currently one of the major research fields in

physics. One of the major objectives is to test GR with observational data.

The observed GW signal has two polarizations, due to polar and axial tensor

perturbation :

h+ + ιh× =
M

r

∑
lmn

Almne
ι(ωlmnt+ϕlmn)e−t/τlmnSlmn (1.5)

This might be a scary expression but the reader is advised to keep calm as there

is more discussion about it in the following sections. The objects of interest in

the above equation are ωlmn and τlmn, the orbital frequency and damping time.

The other parameters are irrelevant for our purpose since they mainly describe

the sky location and the distance of the event.
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Figure 1.2: Posterior distribution of frequency and damping time for the event

GW190521[3]. There are two modes visible for this event. The l = m = 2 mode

which corresponds to the bright region in Range A and l = m = 3mode which is

the bright region in Range B. These are the same frequency (ωlmn/2π) and damp-

ing time (τlmn) we have encountered in equation 1.5.

The analysis of GWdata is performed under the GR formalismwhere the final

object is described by the Kerr metric which characterizes the black hole with 2

parameters;Mass and Spin. As the readerwill see in coming sections, we consider

deviations from the knownSchwarzschild andKerrmetrics by allowing additional

parameters and we want to see the implications on the new parameters given

the LIGO data. Namely, we adopt the Johanssen-Psaltis (JP) metric which is

stationary and axisymmetric but not a vacuum solution of EFE. The motivation

to use this as an alternate comes from its stationarity, axisymmetry and that it

reduces to the Kerr case in the limiting case ϵ3 −→ 0. In principle, one can use any

other metric that possesses these two properties. The additional parameters due

to the JP metric are ϵk’s and these affect the geometric structure of the spacetime

and consequently the light ring properties. We have restricted ourselves to the

case of a non-zero ϵ3 because it is the first non-zero parameter after ϵ0, ϵ1 and ϵ2.

However, the same analysis can be performed for ϵk with k > 3 as well.

Having discussed the prerequisite knowledge, We will now dive in to the cal-

culation of expressions for the observables, frequency and damping time, with the

ultimate goal of measuring the likelihood of non-Kerr parameters. We get right

into the calculations part of this thesis by calculating the physical properties of

null orbits in different scenarios. A black hole and a test particle’s 4-velocity is
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the starting point for our calculations and then we consider the case of a photon.

This text is written such that it is increasing in complexity. As the text progresses,

the reader will notice the following trend:

Newtonian −→ Schwarzschild −→modified Schwarzschild −→ Kerr −→
modified Kerr −→ post-Kerr −→ ringdown analysis −→ PyCBC.

1.3 Outline

Given the background discussed in section 1,1 and 1.2, we will go through the

following milestones:

• Chapter 2 will calculate the light properties in known geometries, in their

modifications and briefly discuss the calculation of quasi-normal modes

(QNM)

• Chapter 3 will establish the validity of the QNM spectrum and discuss the

Johanssen-Psaltis metric

• Chapter 4will produce results for the two gravitationalwave events: GW150914

and GW190521, and introduces the Bayesian inference package PyCBC and

we run inference for GW150941

• Chapter 5 summarizes with a discussion and possible future directions

• Chapter 6 concludes the thesis

6



Chapter 2

Gravitational Null Orbits

One way of looking at black hole ringdowns is to calculate the properties of circu-

lar orbits in different scenarios because it turns out to give a good approximation

to the frequency and damping times of gravitational wave the same. We are in-

terested in the null circular orbits in different situations where a photon/graviton

is orbiting a source mass. It turns out and the reader will see that period of a cir-

cular orbit calculated in Newtonianmechanics happens tomatch exactly with the

period of a particle orbiting a Schwarzschild black hole. We will also see the co-

incidence that the location of the peak of the potential affecting a test scalar field

in the Schwarzschild case is the same as the location we find using Keplar’s third

law. With these ideas in mind. Let us now have a look at the steps required to

reach the above stated prophecies.

2.1 Newtonian case

In Newtonian mechanics, Kepler’s third law gives the relation between the ra-

dius and period of the circular orbit of a particle gravitationally bound to a source
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mass:

Fcentripetal = Fgravity

mv2

r
=
Mm

r2

mω2r2

r
=
Mm

r2

T 2 =
4π2

M
r3 (2.1)

Since Newtonian gravity is the limiting case of GR, the same relation must be

recovered when the gravitational field is weak. The geodesic equation gives the

equation of motion of the particle in the 4-vector formalism.

2.2 Schwarzschild Black Holes

We go one step forward in complexity and now consider the Schwarzschild met-

ric:

dS2 = −∆(r)dt2 +
dr2

∆(r)
+ r2dΩ2 (2.2)

gµν =


−∆(r) 0 0 0

0 1
∆(r) 0 0

0 0 r2 0

0 0 0 r2sin2θ

 (2.3)

where,∆(r) = (1− rs
r
), rs = 2M

We choose the 4-Velocity of the particle to be:

Uα =
(
A, 0, 0, B

)
so that the there is no dependence on the r and θ components, making the calcu-

lation easier. If we set A and B to 0 as well, the particle would stay at a point in

spacetime. We make this choice because we only consider the θ = π/2 plane and

a particular r = rph. This means that the position of the particle does not change

in the r and θ directions. Plus, the goal of this section is to find the value of rph.
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A timelike geodesic has the property

UαUα = −1 (2.4)

−∆A2 + r2sin2θB2 = −1 (2.5)

We do not need this property here but it is important to be mentioned for the

light-like case. The geodesic equation allows us to handle 4-vectors to find the

orbital period for any circular orbit.

Uα∇αU
β = 0 (2.6)

Where∇α is the covariant derivative given by:

∇αU
β = ∂αU

β + Γβ
ακU

κ (2.7)

The components of the chosen 4-velocity are functions of t andϕ, the term ∂αU
β is

zero andweonly need to compute theChristoffel symbolsΓβ
ακ in the Schwarzschild

geometry. The only relevant non-zero Christoffel symbols for this case are:

Γr
tt =

1

2

( rs
r2

+
r2s
r3

)
, Γr

ϕϕ = rs − r (2.8)

These are the only relevant ones because of the choice of our 4-velocity. These

correspond to the radial geodesic equation and using them in (2.6) we have,

M

r3
=

(
B

A

)2

(2.9)

We also know that ϕ-component is the dϕ
dτ and the r-component is

dr
dτ where τ is

the affine parameter of motion. Hence, using chain rule:

dϕ

dt
=

dϕ
dτ
dt
dτ

where,
dϕ

dt
=
B

A
(2.10)

9



We can now use integration to find the orbital period:∫ 2π

0
dϕ =

∫ T

o

B

A
dt

2π =

√
M

r3
T

T 2 =
4π2

M
r3 (2.11)

We have successfully found the period of a particle on a circular orbit around the

sourcemass in the Schwarzschild case and it is indeed the same as the Newtonian

period.

Now we specify that the particle is light-like and impose the Null condition. A

light-like particle is one that travels at the speed of light, such as a photon/graviton

and obeys the property:

UαUα = 0 (2.12)

−∆A2 + r2sin2θB2 = 0 (2.13)

We can use the same chain rule followed by integration to find the orbital period

of a light-like particle:

B

A
=

√
∆

r2∫ 2π

0
dϕ =

∫ T ′

o

B

A
dt

2π =

√
∆

r2
T ′

T ′2 =
4π2

∆
r2 (2.14)

This is the orbital period of a photon travelling in a circular orbit around the black

hole. We already know the orbital period of any circular orbit regardless of the

properties of the test particle. It is not surprising that equation 2.14 is different

from equation 2.11. This is because the geodesic equation does not take the nature

of the particle into consideration. 2.14 is an additional condition which is only

valid for light-like particles. The photon’s orbital period T ′ must coincide with

10



the T we calculated from the geodesic equation for any circular orbit. Therefore,

T ′2 = T 2

4π2

∆
r2 =

4π2

M
r3

r =
M

∆

r =
M

(1− rs
r )

r = 3M (2.15)

The radial position r = 3M , which we had called rph earlier, is the location of a

light ring in the Schwarzschild spacetime. Any light-like particle (photons, gravi-

tons) will have circular orbits at rph = 3M Using equation 2.15 in the orbital

period equation 2.14:

T ′2 =
4π2

∆
r2

T ′2 =
4π2

(1− rs
r )
r2

T ′2 =
4π2

(1− rs
3M )

(3M)2

ω =
1

3
√
3M

(2.16)

We have now reached the goal of our calculation and found the orbital frequency

of a photons/gravitons orbiting a Schwarzschild black hole.

This result does not account for a perturbed Schwarzschild black hole, the

black holes we are dealing with are ringing down i.e perturbed and must have

have a decaying orbital frequency as the photon leaves the light ring location. This

is referred to as a quasi-normal mode (QNM) and we need to be more specific in

our calculation by introducing some perturbation to the Schwarzschild black hole

and make use of spherical harmonics. The next section helps us find the QNM

spectrum of a perturbed Schwarzschild black hole.

11



2.3 Spherical Harmonics (l,m,n)

This formalism [4] reduces the equation of a test scalar field to a wave equation

which has eikonal quasi-normal mode (QNM) solutions. The eikonal approxima-

tion is widely used inwave scattering computations, allowing the calculation to be

simplified by assuming that the wave scatters in a a special direction and reduces

the system to a differential equation of one variable. For the situation at hand, the

scattering takes place due to the perturbation in the spacetime. This section will

provide an overview of the calculation in Schwarzschild background. What we

are trying to do is solve EFE for a metric that is close to Schwarzschild is different

due to the presence of a scalar field. This is similar to the standard calculation of

finding gravitational waves by introducing a perturbation to an exact and know

solution of EFE such as the Schwarzschild metric. A massless scalar test field ϕ

in the background Schwarzschild metric (gBµν) obeys the Klein-Gordon equation:

□ϕ =
1√
−gB

∂µ(
√

−gBgµνB ∂ν)ϕ = 0 (2.17)

where□ is theD’Alembert operator and gB is the determinant of the Schwarzschild

metric.

Since the background is spherically symmetric, ϕ can be written in terms of

spherical harmonics which are represented by Legendre polynomials Ylm(θ, ϕ).

ϕ(t, r, θ, ϕ) =
1

r

∞∑
l=0

l∑
m=−l

ϕlm(t, r)Ylm(θ, ϕ) (2.18)

substituting ϕ(t, r, θ, ϕ) in 2.17, the following expression in obtained:

∆∂r(∆∂rϕlm)− ∂2t ϕlm − V ϕ
l (r)ϕlm = 0 (2.19)

where V ϕ
l (r) = ∆( l(l+1)

r2
+ 2M

r3
). This is a radial potential that affects the orbital

properties.

Moving to a tortoise coordinate (r −→ x), a coordinate transformation such

that x −→ ∞ as the observer approaches the event horizon

x ≡ r + 2M ln
r − 2M

2M
(2.20)

12



andFourier transformingϕmodifies thewave equation andmakes the calculation

easier. Then, the relevant expression for QNM calculation becomes:

∂2xϕ̃lm + [ω2 − V ϕ
l ]ϕ̃lm = 0 (2.21)

Recall that one can have the three types of perturbations to the metric; scalar,

vector and tensorial. Equation 2.21 holds for scalar perturbation (spin = 0) as

well as tensor perturbations (spin = 2) with even (+, polar) and odd (-, axial)

parity such that:

∂2xψ± + [ω2 − V ±
l (r)]ψ± = 0 (2.22)

Notice that we have changed the function from ϕ to ψ to make the distinction

clear. There are two kinds of potentials in the above equation, V −
l (r) is the Regge-

Wheeler potential[5] and V +
l (r) is the Zerilli[6] potential. These are different

because of the two kinds of tensorial perturbations, axial and polar respectively.

The peaks of the potential, where V ′(r) = 0, give the location of the light ring

(r = 3M).

Assuming the solution ψ± = A±(x) exp[
ιS±(x)

ϵ ] where S±(x) is a phase func-

tion, and taking the double expansion ϵ << 1 and l >> 1, equation 2.22 reduces

to

− 1

ϵ2
(∂xS±)

2 + ω2 − l2U = 0 with U(r) =
∆(r)

r2
(2.23)

∂xS± −→ 0 at the the radial location r = rph and the frequency calculated in an

arithmetic fashion in section 2.2 is recovered from the above formalism with the

addition of a factor of l which comes from the spherical harmonics.

ω
(0)
R = l

√
U(rph) =

l

3
√
3M

(2.24)

We still don’t have the damping time for the QNM. In order to do that, we allow

the ω′s to be complex (ω = ωR + ιωI) and adopt the ansatz

ωR = ω
(0)
R + ω

(1)
R +O(l−1), ωI = ω

(1)
I +O(l−1) (2.25)

Plugging this ansatz in the the tensorial wave equation and doing the same ex-

13



pansions again we find:

2ι

ϵ
(∂xS±)(∂xA±) + (

ι

ϵ
∂2xS± + 2ιω

(0)
R ω

(1)
I + 2ω

(0)
R ω

(1)
R − lU)A± = 0 (2.26)

Now our expression now contains both, the real and imaginary parts of the fre-

quency. This allows us to treat real and imaginary parts the expression indepen-

dently. Again solving for the imaginary part in the bracket we find ω(1)
I , and the

real part for ω(1)
R .

ω
(1)
I = − 1

6
√
3M

(2.27)

ω
(1)
R =

1

6
√
3M

(2.28)

Putting all of this back into our complex frequency:

ω = (l +
1

2
)

1

3
√
3M

− ι
1

6
√
3M

(2.29)

Now we have the QNM frequency spectrum that depends on the spherical har-

monics (l) and the damping time, which is independent of l.
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Figure 2.1: Frequency-Mass plot for l = 2 and l = 3 mode in the Schwarzschild

background. For GW190521, the blue and yellow dashed lines represent the mea-

sured frequency values and and the dotted ones are the errors in the measure-

ment. This is a naive test but still shows that Schwarzschild is not enough and we

need to incorporate the spin of the black hole in the analysis.

2.4 Modified Schwarzschild (toy model)

It is interesting to see what happens if we keep the spherical symmetry and allow

the Schwarzschild mass to be a function of r and not just a constant parameter.

We introduce a new parameter ”C” associated with the mass function such that

M(r) → M − C
2 r

k−1. This is not the most general case as a modification can

be achieved by any M(r) with the condition that the geometry must be station-

ary and spherically symmetric. We make this choice because our objective is to

simply observe what happens and the fact that it is generally easier to handle and
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visualize polynomials. The geometry is still spherically symmetric with a new∆k;

∆k(r) = 1− 2M(r)

r
= 1− 2M

r
+ Crk−2 (2.30)

where M is the Schwarzschild mass and the C is the new parameter, of course

depending on the index k. The metric then becomes:

gµν =


−∆k(r) 0 0 0

0 1
∆k(r)

0 0

0 0 r2 0

0 0 0 r2sin2θ


The piece of information we need is the light ring position and frequency. We

do not go into the calculation of the damping time unless something physically

relevant is going on. Choosing a particular k changes the light ring position as ex-

pected and we also check if the resulting expression reduces to the Schwarzschild

r = 3M in the limit C −→ 0:

k-value # of roots of

ωnull − ωgeod = 0

(LR)

LR same as

Schwarzschild

case for C=0?

≤ -1 piece-wise yes

-1 3 yes

0 2 (r =
3M±

√
−8C+9M2

2 )

yes

1 1

(r = −1.5C + 3M)

yes

2 1 (r = 3M
C+1) yes

3 2 (r =
−1±2.5

√
CM+1/6

C )

yes

4 1 (r = 3M) yes

≥ 5 piece-wise yes

TABLE I: The choice of k decides the LR position and consequently, the or-

bital frequency. This table shows some values of k and their corresponding LR

positions Some of the k-values return piece-wise roots which means that the ex-

pression is valid for different values of C andM . We do not show the piece-wise
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expressions as they are lengthy and uninteresting.

2.4.1 Schwarzschild - de Sitter Case

The interesting situation out of the ones tabulated in Table 1 is when k = 4, where

we have the Schwarzschild - de Sitter case with M(r) → M − C
2 r

3. The new

parameter C is then identified as the cosmological constant Λ in EFE.

∆4(r) = 1− 2M(r)

r
= 1− 2M

r
+ Λr2 (2.31)

∆4(r) necessarily affects the metric components 2.3 and consequently the light

ring properties. However, this metric also admits the same light ring position

as the Schwarzschild case (r = 3M) and going forward with the eikonal QNM

calculation we find:

• As shown in Table I, the light ring position does not change i.e. it is still

r = 3M .

• The frequency and damping times, both, change by a factor of
√
1 + 27M2Λ.

Thismeans thatwe canuse observational data and study it under the Schwarzschild

- de Sitter background and try to infer the value of Λ. We use the frequency and

damping time measurements of the event GW190521. Plotting the Λ−M curves

for the 220 and 330 mode frequencies and damping time, we have the following

result:
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(a) The frequency and damping times in the

Schwarzschild - de Sitter case, the parameter C

is identified with the cosmological constant, Λ.

With this calculation we see that Λ is of the or-

der of 10−12 in SI units. This is about 40 orders

of magnitude away from the current value of Λ

and means that Schwarzschild - de Sitter is not

a good candidate for measuring Λ.

(b) Zoomed in. For Λ = 0, the corresponding

Mass values of the two modes are similar to Fig-

ure 2.1 up to truncation errors in Python.

Having looked at the Schwarzschild metric and analyzed its light ring structure,

we are now ready to move on to a more complex system by considering spinning

black holes described by the Kerr metric. From here on, we will consider spin-

ning black holes only and add new parameters just as we did with non-spinning,

Schwarzschild black holes.

2.5 Kerr Black Holes

The Kerr solution is a stationary, axisymmetric solution to Einstein’s equation. It

includes two parameters, mass(M) and spin(a) and reduces to the Schwarzschild
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metric if a −→ 0. In Boyer-Lindquist coordinates, the Kerr metric reads:

ds2 = −(1− rsr

Σ
)dt2 +

Σ

∆
dr2 +Σdθ2

+ (r2 + a2 +
rsra

2 sin2 θ
Σ

) sin2 θdϕ2 − 2rsra sin
2 θ

Σ
dtdϕ (2.32)

gµν =


−(1− rsr

Σ ) 0 0 − rsra sin2 θ
Σ

0 Σ
∆ 0 0

0 0 Σ 0

− rsra sin2 θ
Σ 0 0 (r2 + a2 + rsra2 sin2 θ

Σ ) sin2 θ

 (2.33)

We perform the same calculations for the Kerr metric as in the Schwarzschild

case. Keep in mind that any result found in this section will only correspond to

photon orbits of an unperturbed black hole. To accommodate for a ringdown, we

will have to introduce perturbations. This is taken care of in section 2.7.

Proceeding with the calculation using the Null condition and the Geodesic

equation for the Kerr Metric:

UαUα = 0 (2.34)

−(1− rsr

Σ
)A2 + (r2 + a2 +

rsra
2 sin2 θ
Σ

)B2 − rsra sin
2 θ

Σ
(2AB) = 0 (2.35)

B2

A2
(r2 + a2 +

rsa
2

r
)− B

A
(2rsa)− (r − rs) = 0 (2.36)

Notice that now there are quadratic as well as linear terms in B/A because of the

non-zero gtϕ = gϕt terms in the metric. Solving the quadratic equation for B
A :

B

A
=

2rsa±
√
−4rsr3 − 4rsa2r + 4r4 + 4a2r2 + 4rrsa2

2r3 + 2a2r + 2rsa2
(2.37)

This is the orbital frequency of a massless particle orbiting a Kerr black hole. Just

to check if this result goes to the Schwarzschild case if a −→ 0,

B

A
= ω =

√
4rsr3 + 4r4

2r3
=

√
1− rs

r

r
(2.38)

which is the sameas the orbital frequency of amassless particle in the Schwarzschild

case, equation 2.14. Now we need the geodesic equation to find the orbital fre-
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quency of any circular orbit around a Kerr black hole.

Uα∇αU
β = 0 (2.39)

Where∇α is the covariant derivative given by:

∇αU
β = ∂αU

β + Γβ
ακU

κ (2.40)

Again, the term ∂αU
β is zero and we only need to handle the second half of equa-

tion 2.40. Furthermore,the only relevant non-zero Christoffel symbols for the

Kerr case are:

Γr
tt , Γ

r
tϕ , Γ

r
ϕt , Γ

r
ϕϕ , Γ

ϕ
tt , Γ

ϕ
tϕ , Γ

ϕ
ϕt , Γ

ϕ
ϕϕ (2.41)

All Christoffel symbols of the form Γθ
αβ terms are zero for the equatorial plane

(θ = π
2 ). Plugging these in the geodesic equation we have:

0 =
B2

A2
(rsa

2r − 2r4)− B

A
(2arrs) + rsr (2.42)

(2.43)

Solving the quadratic equation for B
A :

B

A
=

2arrs ±
√
8r5rs

2rsra2 − 4r4
(2.44)

Once again to check for the limiting case a −→ 0

B

A
= ω =

√
8r5(rs)

4r4
=

√
r5M

r4
(2.45)

ω =
2π

T
=

√
r5M

r4
(2.46)

4π2

T 2
=
r5M

r8
=
M

r3
(2.47)

Which is same as the period calculated in the Schwarzschild case, equation 2.11.

Following the same procedure as in the previous sections, the expression we get

after equating the Null frequency and the Geodesic frequency can be solved to
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find the position of the light ring in the Kerr geometry and is given by[7]:

rph = 2M(1 + cos [
2

3
cos−1 (

a

M
)]) (2.48)

and the light ring frequency is given by[8]:

ω =
1

M
(
a

M
+ (

r

M
)3/2)−1 (2.49)

Notice that we have not yet calculated the damping time has not for the Kerr ge-

ometry. It is found by computing the Lyapunov exponent of the light ring orbits

and is addressed in section 2.8 which calculates the general expressions for light

ring position, frequency and damping time.

2.6 Modifying Kerr

We want to see what happens if, once again, we allow the mass parameter to be

a function of r and check the implications on the frequency. This time we do not

specify a particular form of the function as in Schwarzschild. Instead we Taylor

expand a general mass functionM(r) and the coordinate r around the light ring

location (rph) to first order in ϵ as follows:

M(r) −→M0 +M ′(r)rϵ (2.50)

We have already seen in the Schwarzschild case that allowingM(r) changes the

light ring position depending on the explicit form of the function. As such, we

expect the light ring position to change and keep terms up to linear order in the

expansion parameter ϵ:

r −→ rph + δrϵ (2.51)

ThisM(r)will of course affect the components of themetric andwewrite themet-

ric such that O(ϵ) represent the term away from the Kerr component and linear
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in ϵ.

gµν =


g0tt +O(ϵ) 0 0 g0tϕ +O(ϵ)

0 g0rr +O(ϵ) 0 0

0 0 g0θθ +O(ϵ) 0

g0ϕt +O(ϵ) 0 0 g0ϕϕ +O(ϵ)


Using thisM(r) in place ofM in the Kerr metric, we equate the Null orbital

frequency equation and Geodesic orbital frequency equation again to reveal the

relation:

0 =
√
∆(r3 − a2(M(r)−M ′(r)r))

+ a(2M(r)r2 + (r2 + a2)(M(r)−M ′(r)r))

− rgϕϕ
√
r(M(r)−M ′(r)r) (2.52)

In the casewhereM ′(r) = 0, the roots of this equation is the rph shown in equation

2.48. Plugging the Taylor expansions into the above expression and only keeping

the terms linear in ϵ, we find that the change in the light ring position is linearly

dependent on the first derivative of the mass function up to a constant.

δr =
rph

√
M0rph(−2

√
∆0a(a

√
M0r0 − rph

2) + a2M0 − rph
3)

D
M ′(r) (2.53)

where

D = −
√

∆0M0(2a
2M0 + a2rph + rph

3)

+
√

∆0M0rph(3
√
∆0rph

2 − a2
√
M0rph + 6aM0rph − 3rph

2
√
M0rph)

+
√
M0rph(a

2M0
2 − 2a2M0rph −M0rph

3 + 2rph
4)) (2.54)

Plugging the same Taylor expansion and using the above result in the Null fre-

quency, again only keeping the terms linear in ϵ, the change in the frequency is

again found to be linearly dependent on the first derivative of the mass function

up to a constant, C, which is also in terms of rph,M0 and the metric components

of the Kerr geometry.

δω = CM ′(r) (2.55)

Weare slowly building towards trying to understand apost-Kerrmetric, which
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we discuss in chapter 3.

2.7 TeukolskyMasterEquationandQuasi-normalmodes

In an axisymmetric geometry, we can no longer make use of the spherical har-

monics as in Schwarzschild. We must now invoke spheroidal harmonics where

the geometric object is a spheroid.

Figure 2.2: Spheroids with vertical rotational axes. The structure on the left cor-

responds to oblate spheroids and on the right corresponds to prolate ones.

The Kerr metric, as we already know, is axisymmetric and its ergosphere, the

region outside the horizon of a rotating black hole, can be visualized with the

above picture. The calculation of QNMs under this geometry is also modified

by changing the ansatz of the wave function from spherical to spheroidal. This

increases the complexity of the calculation and we need to adopt the Teukolsky

Master Equation for the Kerr metric. We will briefly outline the procedure in this

section and conclude with Teukolsky’s findings.

Saul Teukolsky calculated the QNMs in a Kerr background by using the the

Newman-Penrose formalism[9] to find decoupled partial differential equations

perturbatively. The null tetrad consists of the following 4 null vectors, lµ, nµ,

mµ and m∗µ. l and n are real, m is complex and m∗ is its conjugate. The null

vectors must satisfy have normalization lµnµ = 1 and mµm∗
µ = −1. The next

piece we want is theWeyl Tensor, Cαβγδ, which is the trace free Riemann Tensor.

Combining these two pieces under the NP formalism, we arrive at the 5 Newman-
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Penrose complex scalars defined as follows:

ψ0 = −Cαβγδ n
αmβnγmδ (2.56)

ψ1 = −Cαβγδ n
αlβnγmδ (2.57)

ψ2 = −Cαβγδ m
∗αlβnγmδ (2.58)

ψ3 = −Cαβγδ m
∗αlβnγlδ (2.59)

ψ4 = −Cαβγδ m
∗αlβm∗γlδ (2.60)

The choice of the null vectors depends on the spacetime wewant to describe. Per-

turbatively, the tetrad can be written as a sum of the background and the pertur-

bation:

lµ = lµA + lµB (2.61)

nµ = nµA + nµB (2.62)

mµ = mµA +mµB (2.63)

m∗µ = m∗µA +m∗µB (2.64)

(2.65)

where the A and B correspond to the the background and the perturbation, re-

spectively. Plugging these into the NP formalism and only keeping terms up to

first order in B, the relevant NP complex scalars are ψB
0 and ψB

4 for any Petrov

type D metric.

A metric expressed in terms of the null tetrad is

gµν = lµnν + nµlν −mµm∗ν −m∗µmν (2.66)

and substituting the Kerr versions of the null tetrad, brings us to the famous

Teukolsky master equation:

[(r2 + a2)2

∆
− a2 sin2 θ

]∂2ψ
∂t2

+
4Mar

∆

∂2ψ

∂t∂φ
+

[
a2

∆
− 1

sin2 θ

]
∂2ψ

∂φ2

−∆−s ∂

∂r

(
∆s+1∂ψ

∂r

)
− 1

sin θ
∂

∂θ

(
sin θ

∂ψ

∂θ

)
− 2s

[a(r −M)

∆
+
ι cos θ
sin θ

]∂ψ
∂φ

−2s
[M(r2 − a2)

∆
− r − ιa cos θ

]∂ψ
∂t

+ (s2 cot2 θ − s)ψ = 4πΣT (2.67)

24



The s corresponds to the type of perturbation introduced and is called the spin

weight of the field. s = 0 corresponds to scalar fields, s = ±1/2 corresponds to

fermionic fields, s = ±1 corresponds to electromagnetic fields and finally s = ±2

corresponds to gravitational fields. Since we are interested in the gravitational

perturbations to the Kerr metric, we will stick to the s = ±2 case and also restrict

ourselves to the vacuum case where T = 0. In this scenario, we use the separation

of variables technique and assume a solution of the form

ψ = e−ιωtF (r, θ, ϕ) (2.68)

with, F (r, θ, ϕ) =
∑
l,m

eιmϕSm
l (θ)Rωlm(r) (2.69)

This allows us to write the huge expression 2.67 into smaller chunks for the func-

tions Sm
l (θ) and Rωlm(r). We do not go about trying to solve these equations in

this text, but highlight the key outcomes of Teukolsky’s work. For the angular

part, the relevant differential equation is:

1

sin θ
d

dθ

(
sin θ

dS

dθ

)
+
(
a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ

− 2ms cos θ

sin2 θ
− s2 cot2 θ + E − s2

)
S = 0 (2.70)

and for the radial equation:

∆
d2R

dr2
+ 2(s+ 1)(r −M)

dR

dr
+
(K2 − 2ιs(r −M)K

∆
= 4ιωsr − λ

)
R = 0 (2.71)

whereE are the eigenvalues of the differential equation,K ≡ (r2+a2)ω−am and

λ ≡ E − 2amω + a2ω2 − s(s+ 1). Further manipulation of the angular equation

is required which essentially provides the spin weighted spherical harmonics in

terms of Legendre polynomials as such

S(θ) = Y m
l (θ), l = |s|, |s|+ 1 . . . (2.72)

E = l(l + 1), −l ≤ m ≤ +l (2.73)

The radial equation finds regular and irregular radial solutions when the s = ±2

case is considered. These solutions can be thought of as incoming and outgoing

at the horizon and theWKBmethod helps with solving the problem at hand. This
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is denoted by considering the fraction Zout/Zin in the limiting case of ω −→ 0

Zout

Zin
=

16ω4

(l − 1)(l + 1)(l + 2)
[1 +O(aω)], aω ≪ 1 (2.74)

Conveniently defining

Z(a, ω, l,m) ≡
∣∣∣Zout

Zin

(l − 1)(l + 1)(l + 2)

16ω4

∣∣∣ (2.75)

which has the symmetry property under complex conjugation of the radial equa-

tion

Z(a, ω, l,m) = Z(a,−ω, l,−m) (2.76)

. Figures 2.3 (a) and (b) are taken from Teukolsky’s paper and demonstrate his

results for l = m = 2 and l = m = 3, the two modes we are interested in.

(a) (b)

Figure 2.3: These figures show numerical results from Teukolsky’s paper[10] for

the two modes, l = m = 2 and l = m = 3. The quantity on the horizontal axis is

the dimensional frequency and the vertical axis is the quantity Z defined earlier.

In the limit caseω −→ 0, we that the plot converges toZ = 1. Another noteworthy

observation is that higher modes correspond to higher frequencies.

Expressed in a similar way as we wrote the Schwarzschild QNM spectrum, the
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eikonal-limit Kerr QNM spectrum is:

ωR = lΩ, ωI = −(n+
1

2
)
|γ|
2

(2.77)

where Ω and γ are the orbital frequency and the damping time, respectively. It

should benoted that there aremultiple technicalities involved in this computation

which are purposely being omitted since this calculation is not the main goal of

this text. The reader is directed toward the original series of papers[11, 10], which

is much more detailed.

2.8 Light ring in a general stationary axisymmetric

spacetime

The goal now is to compute general expressions for a stationary axisymmetric

spacetime which we will then apply to a particular metric in section 4.4. Let us

assume that there exists a metric:

gµν =


−gtt 0 0 gtϕ

0 grr 0 0

0 0 gθθ 0

gϕt 0 0 gϕϕ


that describes a stationary axisymmetric spacetime and allow the 4-velocity of

the test particle to have radial component C as well. Since the interest is only in

equatorial orbits only, θ-component of the 4-velocity is zero:

Uα =
(
A, C, 0, B

)
Physically, the t-component of the 4-velocity represents the conserved energy,

−A = E of the orbit and the ϕ-component represents the conserved angular mo-

mentum, B = L. Now to write down the equivalent of equation 63; the equation

of motion in curved spacetime:

A2gtt + 2ABgtϕ + C2grr +B2gϕϕ = 0 (2.78)
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Notice that there are no terms in the θ-coordinate because the θ-component of

the 4-velocity is zero. In order to make our lives easier and after a little algebra,

the A and B can be written in terms of the metric components

A =
gϕϕE + gtπL

g2tϕ − gttgϕϕ
(2.79)

B = −gttL+ gtπE

g2tϕ − gttgϕϕ
(2.80)

Additionally, as we now know that the ratio of B to A corresponds to dϕ
dt , the or-

bital frequency is given by:

B

A
=
dϕ

dt
= − gttL+ gtπE

gϕϕE + gtπL
= Ω (2.81)

Combining these expressions and plugging back in equation 2.78:

gϕϕE
2 + 2gtϕEL+ gttL

2 = (g2tϕ − gttgϕϕ)grrC
2 ≡ Veff (2.82)

The Veff here is due to the non-zero r-component of the 4-velocity and deter-

mines the radial behaviour of the particle in this spacetime. Setting the r-component

to zero (meaning that the particle is turning at some radial location r = rorb), re-

turns the expression we have already found for closed orbits with the geodesic

equation in the previous section. The above expression holds for any closed orbit

and one can find the orbital frequency at the radius r = rorb. There is another

quantity that needs to be defined because we will use it in the following sections,

the impact parameter. It is simply the ratio of the angular momentum to the en-

ergy of the orbit

borb =
L

E
=

1

Ωorb
(2.83)

Since our concern is photon orbits at the radial location r = rph, where the

peak of the potential lies and hence the condition to be met is:

V ′
eff (rorb) = 0 (2.84)

The solution of the above equation is the position of the light ringwhich is denoted
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by rorb = rph. We denote all photon orbit related quantities with the subscript’ph’,

so that borb = bph and Ωorb = Ωph at the location rorb = rph. Rewriting equation

2.82 and its radial derivative in terms of bph take these forms:

gtt(rph)b
2
ph + 2gtϕ(rph)bph + gϕϕ(rph) = 0 (2.85)

g′tt(rph)b
2
ph + 2g′tϕ(rph)bph + g′ϕϕ(rph) = 0 (2.86)

Solving these equations for the impact parameter b for the photon orbit at r = rph

gives

bph =
−g′tϕ ±

√
g′2tϕ − g′ttg

′
ϕϕ

g′tt
(2.87)

and using equation 2.83 we find the expression for the orbital frequency of the

photon orbit:

Ωph = b−1
ph =

g′tt

−g′tϕ ±
√
g′2tϕ − g′ttg

′
ϕϕ

(2.88)

Wehavenow found the orbital frequency of photon ring in a general axisymmetric

spacetime. For the Kerr case, the expression is evaluated using the Kerr metric

components and their derivatives to reach thewell-knownKerr orbital frequency,

equation 2.49.

We turn our attention to the Lyapunov exponent that gives the characteristic

time during which the photons escape the light ring due to the perturbed geome-

try. The way to think about this is to consider photons approaching the light ring

from infinity and grazing the light ring as if on a parabolic path with their turning

point coinciding with the light ring. This means that the photon will tangentially

touch the light ring and escape without being captured in the light ring. To do

this mathematically, consider the Binet equation and assume an exponential so-

lution where the argument of the exponent gives the characteristic timescale of

this grazing. Formally we set out to solve the following equation

dU

dϕ
= −U2C

B
(2.89)

where C and B are the r- and ϕ-components of the 4-velocity of the photon. Ad-
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ditionally, we have defined a new variable; U = 1
r so that we can have a Binet-like

equation

(dU
dϕ

)2
=
U4(g2tϕ − gttgϕϕ)

grr

gttb
2 + 2gtϕb+ gϕϕ
(gttb+ gtϕ)2

≡ f(U) (2.90)

At the turning point, Uph = 1
rph

where rph is the location of the light ring and in

this scenario also the periapsis of the parabolic trajectory of the incoming photon,

the function f(Uph) and it’s derivative f ′(Uph)must vanish such that we have

f(Uph) = f ′(Uph) = 0 =
df

dU
(Uph) (2.91)

Close to the periapsis we can expand U so that and only keep the leading order

term,

U = Uph + ϵU1 +O(ϵ2) (2.92)

To incorporate the connection of the periapsis to the light ring, the leading or-

der term needs to be such that it corresponds with the ϕ-component of the 4-

velocity[12].

dU1

dϕ
= ±κphU1 (2.93)

where, κ2ph =
1

2

d2f

dU2
(Uph) =

f ′′(Uph)

2U2
ph

This differential equation admits exponential solutions of the form U1 = Ce±κ0ϕ.

Also know the orbital frequency of the light ringwe can substituteϕ = Ωpht+const

to rewrite the solution U up to leading order in ϵ, which is now a function of time:

U(t) = Uph + ϵCeκphΩpht (2.94)

and rescale C so that

U(t) = Uph + ϵe±γpht (2.95)

where, γph = |κphΩph| (2.96)

We have now found the characteristic timescale, 1
γph

, for incoming photons graz-
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ing the light ring of a general stationary axisymmetric spacetime.
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Chapter 3

Post-Kerr Approximation

In light of the previous section 2.8, it is essentially possible to build such an alter-

nate metric that can be used to describe stationary and axisymetric spacetimes.

Imposing the null condition and the geodesic equation one can find physically

significant orbits such as the light ring in our case. Since these metrics are not

particularly vacuum GR solutions, they allow for additional parameters like the

M ′(r) in the section 2.6. With the condition that the metric must reduce to the

Kerr metric in the limiting case, the additional parameters are deviations from

the Kerr geometry. These deviationsmust be centered around 0 if GR is to be true

and can be measured using the data from experiments like LIGO. The following

sub-sections, establish the validity of the post-Kerr approximation, describe the

overall recipe for finding deviations from the Kerr light ring due to a non-Kerr

spacetime and then choose a particular case to analyze.

3.1 Validity for post-Kerr QNM.

Glampedakis et al.[12] describe the post-Kerr scenario and outline the track for

finding theQNMspectrumup to numerical error in the new geometry. Given that

we have eikonal limit formulae[13](σK) and the exact Kerr QNM frequency (ωK)

we can write down the following relation, with the superscript K denoting Kerr

values:

ωK = σK + βK (3.1)
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where βK accounts for the offset between the exact and the eikonal limit frequen-

cies. We introduce this new factor in order to facilitate our computation in the

sense that we want to maintain this offset if we are to come up with a modified

version of the Kerr QNM frequency. In the post-Kerr scenario, the eikonal limit

QNM can be found by computing the light ring properties and is necessarily dif-

ferent from the Kerr scenario, we denote this with σ and use the observed QNM

frequency ωobs along with βK so that we can write

ωobs = σ + βK . (3.2)

If ωobs is exactly a Kerr signal then obviously σ = σK and we are done. We are

interested in a signal that is not Kerr and therefore we need to find this new tem-

plate that describes the non-KerrQNM frequency. The βK offset function ensures

that we are within reasonable bounds of describing the observation with a non-

Kerr template σ. Furthermore, since we know that we are going beyond Kerr, it

is reasonable to define

σ = σK + δσ (3.3)

where δσ is the deviation from the Kerr QNM frequency. The goal is to find this

deviation, given some non-Kerr spacetime. Some details about βK are provided

in appendix A.2.

3.2 Recipe for light ring in the post-Kerr scenario

We turn our attention to computing the QNM frequency in a post-Kerr scenario.

As addressed in previous sections, we need a total of four quantities to obtain the

properties of the light ring, with the subscriptsK and 0 representing the Kerr and

non-Kerr quantities respectively:

• The metric expressed in perturbative form so that

gµν = gKµν(r) + ϵhµν(r) +O(ϵ2).

where we are only interested in terms up to linear order in ϵ.

• The light ring position
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r0 = rK + ϵδr +O(ϵ2)

• The light ring frequency

Ω0(r) = ΩK(r) + ϵδΩ(r) +O(ϵ2)

• The Lyapunov exponent of the orbit

γ0(r) = γK(r) + ϵδγ(r) +O(ϵ2)

Using the perturbative form of themetric helps simplify the computation because

we already know the Kerr quantities. Glampedakis et al.[12] find the deviation

terms in all of the above expressions in terms of the derivatives of hµν and the

Kerr parametersM and a. These are summarized as follows:

δΩ(r) = ∓1

4
ΩK

( r

M

)1/2
[2h′tϕ +ΩKh

′
ϕϕ

+
ΩK

M
(r3 ± 2aM1/2r3/2 +Ma2)h′tt] (3.4)

δr = −1

6
+

(rK −M)−1

rK
[Ctth

′
tt ± 4(Ctϕh

′
tϕ

+ 4Dtϕhtϕ) + 4M [(3r2K + a2)htt+ hϕϕ]] (3.5)

The derivatives of the metric components h′µν depend on the specific metric one

chooses. For the deviation in γ0(r), we know that γ0 ≡ |κ0Ω0|. We already know

Ω0 and now the object of interest is κ0. To this end we find

κ20 = κ2K = ϵ(κ2δr + κ2h) +O(ϵ2) (3.6)

In the above expression, κ2δr originates due to the shift in the light ring position

and κ2h is due to the perturbation metric hµν . Glampedakis et al[12] find these

terms as follows and collect them to find the total shift in the Lyapunov exponent:

κ2δr = − 24MRKδrM

r4K(rK −M)3

(M
rK

)3/2
(3.7)

κ2h = − 4∆KHK

r4K(rK −M)3

(M
rK

)3/2
(3.8)
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The coefficient RK is in terms of KerrM and a and HK is a function of hµν and

its derivatives. Combining these results, the total post-Kerr κ0 is

κ0 = κK + ϵ
κ2δr + κ2h
2κK

≡ κK + ϵδκ0 (3.9)

δκ0 = − 2MNK√
3r5K∆K

(rK −M)−1 (3.10)

The total post-Kerr γ0(r) is then given as follows:

γ0 = κKΩK + ϵ(ΩKδκ0 + κKδΩ0) ≡ γK + ϵδγ (3.11)

δγ = ∓ 4M2

√
3∆Kr5K

(rK + 3M)−2(rK −M)−3[(rK + 3M)(Gtth
′′
tt +Gϕϕh

′′
ϕϕ

+ 2Ztth
′′
tt + 2Zϕϕh

′′
ϕϕ + 6Errhrr)± (rK + 3M)

(M
rK

)1/2
(Gtϕh

′′
tϕ

+ 4Ztϕh
′
tϕ) + 2M(Stthtt + Sϕϕhϕϕ ± Stϕhtϕ)] (3.12)

The reader can find the complete expressions for RK ,HK , NK , Err, Stt, Stϕ, Sϕϕ,

Ztt, Ztϕ, Zϕϕ in appendix A.1. The complex template σ we mentioned earlier is

now ready. In the eikonal-limit, we associate the real part of the σ with the orbital

frequency and the imaginary part with the damping time of the QNM signal so

that σ = σR + ισI with

σR = mΩ0, σI = −|γ0|
2

(3.13)

and knowing Ω0 and γ0

σR = m(ΩK + ϵδΩ) (3.14)

σI = −|γK + ϵδγ|
2

(3.15)

Having found the post-Kerr eikonal-limit formulae, we can now choose a partic-

ular metric and find the new light ring orbital frequency and Lyapunov exponent.

We select the Johanssen-Psaltis metric and implement our findings to compute

the eikonal limit QNM frequency and then turn our attention to estimating the

likelihood of the deviation parameter using GW data.

35



3.3 Johanssen-Psaltis Metric

ds2 = −[1 + h(r, θ)](1− 2Mr

Σ
)dt2 − [1 + h(r, θ)]

4aMr sin2 θ
Σ

dtdϕ

+
Σ[1 + h(r, θ)]

∆ + a2 sin2 θh(r, θ
)dr2 +Σdθ2

+
[
sin2 θ(r2 + a2 +

2a2Mr sin2 θ
Σ

) + h(r, θ)
a2(Σ + 2Mr) sin4 θ

Σ

]
dϕ2 (3.16)

The Johannsen-Psaltis (JP) metric is a parameterization of deviations from the

Kerr metric, where the function h(r, θ) introduces deviations from the Kerr ge-

ometry. In its full form, h(r, θ) is given by

h(r, θ) =

∞∑
k=0

(ϵ2k + ϵ2k+1
Mr

Σ
)
(M2

Σ

)k
(3.17)

Where the ϵ’s are new parameters, in addition to the already existing mass and

spin. It was constructed by Tim Johannsen and Dimitrios Psaltis [14] through

the Newman-Penrose formalism[15]. It is a still a stationary axisymmetric space-

time but not a vacuum solution to Einstein’s Field Equations. This is not a prob-

lem for us because we are simply approximating a black hole under a geome-

try that is not Kerr. The choice of a particular ϵ3 is made based on the require-

ments of asymptotic flatness and quadrupole moment. Asymptotic flatness re-

quires that ϵ0 = ϵ1 = 0 and |ϵ2| ≤ 4.6x10−4 is constrained by the Lunar Rang-

ing Experiment[16]. ϵ3 corresponds to a deformation in the Kerr quadrupole

formula[12] such that

QJP = QKerr + ϵ3M
3 (3.18)

Hence in our analysis we limit ourselves to constraining ϵ3 using ringdown data

available fromGWevents. There has been a study[17] of black hole accretion disk

thermal spectra that find ϵ3 ≤ 5. It is generally assumed that ϵ3 takes values of

order O(10) and it is interesting to see how GW affect this parameter. All ϵk’s,

where k > 2, can be considered for analysis. Since ϵ3 is the next non-zero param-

eter after ϵ2 and other attempts have been made to constrain it, we will try and

constrain it with gravitational wave data. We drop the higher ϵ’s by setting ϵk = 0

36



for k > 3.

For the specific case of ϵ3, h(r, θ) takes the form:

h(r, θ) = ϵ3
M3r

Σ2
(3.19)

Furthermore, we only consider the equatorial orbits to make our life easier and

set θ = π
2 . All results found in this text are only valid for equatorial orbits. As we

saw in figure 2.2, one can imagine 3D-equivalents (the hypersurface (r, θ, ϕ), at

some time t) of Kerr and JP spacetimes.

Figure 3.1: Ergospheres of Kerr and JP spacetime for a visual representation of

how ϵ3 affects the geometric structure of the black hole. ϵ3 = 0 would correspond

to a Kerr black hole. For the JP spacetime, when ϵ3 > 0 the ergosphere would

become more prolate and when ϵ3 < 0 it would be more oblate. This change

in the structure of the ergosphere causes the physical observables to be different

relative to Kerr. The purpose of this figure is purely illustrative for arbitrary, non-

zero ϵ3.
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Having established the development of the JP metric, let us now turn our at-

tention back to finding the orbital frequency and Lyapunov exponent in this set

up. Assuming that deviations from Kerr are small and keeping only up to linear

order in ϵ3, we can really see the structure gJPµν = gKµν + ϵhJPµν . :

gJPtt = −(1− 2Mr

Σ
)− ϵ3

M3(r − 2M)

r4
(3.20)

gJPrr =
Σ

∆
+ ϵ3

M3(r − 2M)

∆2
(3.21)

gJPθθ = Σ (3.22)

gJPϕϕ = (r2 + a2
2Ma2r sin2 θ

Σ
) sin2 θ + ϵ3

a2M3(r + 2M)

r3
(3.23)

gJPtϕ = −2Mar sin2 θ
Σ

− ϵ3
2aM4

r4
(3.24)

where Σ and∆ are the usual Kerr functions.

Using thismetric for the recipe described in the previous section, we set out to

finding the light ring properties for finding an eikonal limit QNM formula. The

first object we need is the modified light ring position, which we obtain by de-

manding that the potential and its derivative must vanish for an orbit to be circu-

lar. In the JP geometry, this condition leads to the following expressions:

V ′
eff (r) = (ϵ3M

3 + 4r3)(a2 − b2) + 6Mr2(a− b)2 + 6r5 = 0 (3.25)

Veff (r) = (ϵ3M
3 + 4r3)[2M(a− b)2 + r(a2 − b2)] + r6 = 0 (3.26)

This system of equations is not exactly solvable but we can assume small pertur-

bations around the Kerr metric and consider an expansion in ϵ3 to look for an

approximate solution. With the following ansatz:

r0 = rK + δr1ϵ3 + δr2ϵ
2
3 + . . . (3.27)

b0 = bk + δb1ϵ3 + δb2ϵ
2
3 + . . . (3.28)

solving order by order in ϵ3 to obtain:

Ω0 =
1

bK
− 2δb1

b2K
ϵ3 +O(ϵ23) (3.29)

γ0 = γK + δγ1ϵ3 (3.30)
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The terms corresponding to the deviations, δr1, δb1 and δγ1 are provided in ap-

pendix A.3.

Since we are assuming that the expansion parameter ϵ3 is small, we only keep

leading order terms in the orbital frequency and Lyapunov exponent. We use

equations 3.29 and 3.30 in equation 3.14 and 3.15 respectively to find the eikonal-

limit QNM spectrum. Figures 2 and 3 produced by Glampedakis et al.[12] show

the trends in the light ring position, orbital frequency and the Lyapunov exponent

for different values of ϵ3.

Figure 3.2: The light ring radius r0 in JP. The yellow band represents the mea-

sured spin of a = 0.670.050.07M[8] of the event GW150914. This plot shows the de-

viation from the Kerr light ring due to |ϵ3| = 0.1, 1, 10. The bottom panel shows

the relative difference between between JP and Kerr light rings. Figure from [12].

Figure 3.3: Orbital frequency and Lyapunov exponent for the same values of |ϵ3|.
The bottom panel shows the relative difference between between JP and Kerr

orbital frequency and Lyapunov exponent.[12]
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In another paper[18], Carson and Yagi find equivalent and more pleasing-to-

the-eye results

σR = σKR + ϵ3

( 1

81
√
3M

+
10

729M
χ+

47

1458
√
3M

χ2
)

(3.31)

σI = σKI − ϵ3

( 1

486M
χ+

16

2187
√
3M

)
(3.32)

We will use these expressions for the results produced by Python scripts in the

next chapter.

40



Chapter 4

Ringdown Analysis

The first task is to prepare the data so that it does not know anything about Kerr,

an agnostic data file if you will. This is produced by fitting damped sinusoids to

the actual data and this task was performed by Dr. Shilpa Kastha of the Strong

Team at NBI, Copenhagen. Now that we have an agnostic data file, we can per-

form computational tasks on the data to find the likelihood of parameters. The

algorithm used by the Python script is outlined as follows:

• Import the necessary packages

• Read the relevant data file

• Define Python functions for computing the frequency and damping times,

provided some combination of (M ,χ,ϵ3)

• Invert the frequency and damping time functions to find a value of M for

each function temp and Temp, respectively.

• Check if the absolute difference between temp and Temp is less than 0.001

• Loop over the ranges of χ and ϵ3 and use the mass value, temp, in combi-

nation with each value of χ and ϵ3 to produce the frequency and damping

time for each combination

• Check if the absolute difference between computed frequency (damping time)

and data frequency (damping time) is within 0.0001.

• Convert values to SI units
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• Register computed frequency, damping time,M , χ and ϵ3

• Produce scatter plots

• Produce contour plots and 1D histograms

The Python script for implementing the described algorithm is available on the

author’s GitHub repository [19].

4.1 GW150914

LIGO’s first ever observed gravitational wave event is GW150914 and it is truly a

huge milestone in scientific research. Some properties of the event are tabulated

below. We will use openly available LIGO data and assume that the perturbed

black hole in the ringdown is described by the JP metric, in order to find con-

straints on the deviation parameter ϵ3.

Focusing on the 220 mode (l = m = 2, n = 0), first we produce frequency-

damping time distributions by choosing ϵ3 discretely and plot them on top of each

other to see how the distribution changes.

Figure 4.1: Frequency-damping time distribution. The general features of the

distribution remain the same, except that the distribution shrinks (ϵ3 < 0) or

expands(ϵ3 > 0).
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One can clearly see that the overlap of the data pointswith the produced values

is much greater for ϵ3 > 0 and for ϵ3 < 0 the produced distribution starts to leave

the data points region formore andmore negative values. Weuse this observation

to predict that when the algorithm described earlier is implemented, the output

for the ϵ3 will favour more positive values than negative values. Let us now look

at themass-spin distribution and since we already know about the Kerr mass and

spin of the black hole, we can once again discretely choose ϵ3 to see how themass-

spin distribution is affected by non-zero ϵ3.

(a) Change in the 90% contours of the mass-spin

distributions due to non-zero ϵ3, given the data for

GW150914.

(b) Quadratic curve fit to track the trajec-

tory of the mass-spin distribution (left) as

ϵ3 changes from -5 to 40. The dots repre-

sent the mass and spin value for each ϵ3,

computed for a single value of frequency

and damping time from the data.

Figure 4.2: GW150914: Mass-spin distributions for discrete values of ϵ3

Combining all of the informationwe have gathered and discussed and running

the Python script for the GW150914 agnostic data file, we can produce corner

plots that show the correlations between each pair of the parameter space. First

we check by considering the parameter ranges to beM = [20, 200], χ = [0, 1] and

a smaller range of ϵ3 = [−1, 1], so that we can see how the non-zero but small ϵ3
affects the mass-spin distribution but does not deviate too much. After all, we
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have assumed small perturbations around the Kerr metric in our theoretical set

up.

Figure 4.3: GW150914: Posteriors obtained by running the Python script with

parameter rangesM = [20, 200], χ = [0, 1] and ϵ3 = [−1, 1]. Kerr values ofM and

χ are also shown for comparison. The ϵ3 posteriors are almost flat, meaning that

there is still room for larger ϵ3’s that can satisfy equation 3.31, 3.32 suggesting

that a larger range of ϵ3 should be considered.

We increase the range of ϵ3 while keeping the ranges ofM and χ the same and

run the same script to see if we observe the expected changes.
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(a) 220 mode data from GW190521 used

to produce the plot on the right.

(b) GW150914:Corner plot showing the posteriors for

M , χ and ϵ3. These values are produced by inverting

the expressions 3.31, 3.32 and using the data shown on

the left.

Figure 4.4: Using GW150914 data to estimate the posterior for ϵ3

With a larger range on ϵ3, the posterior is no longer flat and we see that the

distribution is slightly skewed and favoring ϵ3 > 0. The features of the contours

can already be predicted just by staring at equation 3.31. The non-Kerr term in

equation 3.31 needs to be small and so higher values of ϵ3 are compensated by

higher values ofM and lower values of χ and vice versa. This result is consistent

with the expectations of the algorithm.

While working on this project, there was a paper by Dey et al.[20] where

they perform the same task but with a different Python package, PyRing[21], and

produce the likelihoods of two geometries; the Johanssen-Psaltis metric and the

Manko-Novikov metric. The authors were contacted to ask for the posterior data

they produce with their analysis and they were happy share their work. Figure

4.5 shows the comparison between the two analyses. One key difference is that

they do not use the post-Kerr approximation formulae and consider the JP met-

ric in its full form, as they mention in their paper[20], leading to the difference

in the posterior distributions. The similarity between the two posteriors is that

the general structure of the contours depicts the same trend that is predicted by
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equation 3.31. Additionally, both approaches indicate that the data is supported

by ϵ3 > 0 values.

Figure 4.5: GW150914: Comparative results between thiswork andDey et al.[20].

The general structure of the contours are similar but the sharpness of features is

different due to the difference in the two approaches.

4.2 GW190521

The analysis performed on GW150914 data can be applied to any GW event with

appropriate prior ranges. This section addresses the case of GW190521 where we

swap theGW150914 agnostic data filewithGW190521 agnostic data file. GW190521

is important and interesting because, as shown by Capano et al.[3], it has another

excited mode in the ringdown. We have already seen this result in the figure 1.2.

The community agrees on the existence of the 220 mode and it is generally be-

lieved that other modes are too weak to be seen in the ringdown signal. Capano

et al. show that the 330 mode is in fact visible in GW190521 and also provide a
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statistical validation of their methods[22].

Sincewehave already seen the 220mode results forGW150941, we go through

the same steps for the 220 mode of GW190521 first and then the code can be

modified to incorporate the 330 mode as well. Figure 4.6 shows the mass-spin

distribution and its trajectory as the value of ϵ3 changes discretely. Notice that

the separation between the contours is larger than in figure 4.2. This means that

GW190521 is more sensitive to the change in ϵ3 and also that the expressions 3.31

and 3.32, given the data, will not allow ϵ3 to be as large as it turns out to be in the

case of GW150914. This happens due to the fact that GW190521 is better mea-

sured and the errors in the measurement are smaller compared to GW150914.

(a) Change in the 90% contours of the mass-spin

distributions due to non-zero ϵ3, given the data for

GW190521. Note that the distribution is more sen-

sitive to change in ϵ3 compared to the GW150914

distributions.

(b) Quadratic curve fit to track the trajec-

tory of the mass-spin distribution (left) as

ϵ3 changes from -5 to 40. The dots repre-

sent the mass and spin value for each ϵ3,

computed for a single value of frequency

and damping time from the data.

Figure 4.6: GW190521: Mass-spin distributions for discrete values of ϵ3

It is already known from GW150914 analysis that the upper bound on ϵ3 ≫ 1 and

the Kerr mass for GW190521 is around 300M0, therefore the prior ranges for the

parameters are adjusted to be; M = [200, 600], χ = [0, 1] and ϵ3 = [−30, 100].

The range for ϵ3 is kept the same to maintain the agnostic approach toward this
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parameter. Running the code for this configuration and of course the relevant

data file for GW190521, it is clear that using GW190521 gives a better constraint

on ϵ3.

(a) 220 mode data from GW190521 used

to produce the plot on the right.

(b) GW190521:Corner plot showing the poste-

riors for M , χ and ϵ3. These values are pro-

duced using by inverting the expressions 3.31,

3.32 and 220 mode data only. Since the mea-

surement of the ringdown is much better com-

pared to GW150914, this event allows for a bet-

ter measurement of ϵ3.

Figure 4.7: Using GW190521 to estimate the posterior for ϵ3.

Figure 4.8 is a comparison between the values of ϵ3 we find using the two events.

Even with just considering the 220 mode, the improvement in the constraint on

ϵ3 is clearly visible and thus GW190521 is in fact a better candidate for analysis,

compared to GW150914. This constraint is expected to get tighter when the 330

mode is also included in the analysis.
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Figure 4.8: Comparison of ϵ3 posterior for the two events GW150914 and

GW190521

Now to include the additional information provided by the 330 mode, we can

modify our code to consistently add the 330 mode and perform the same task

to produce the following posteriors. An important detail about the relation be-

tween the 220 and 330 modes is that the real part of the two QNM frequencies

are related by a ratio:

ω330
R =

3

2
ω220
R (4.1)

This means that the 330 mode is not some entirely new information but a sup-

porting piece for the 220 mode. Consequently, improving our knowledge about

the 220 mode, in a sense, further reducing the errors. This task is intentionally

left to be performed with PyCBC inference.

4.3 PyCBC

We now move on to perform the analysis in a more formal way by including the

statisticalmethod, Bayesian inference, by usingPyCBC. PyCBC is a software pack-

age used to explore astrophysical sources of gravitational waves. It contains algo-

rithms that can detect coalescing compact binaries and measure the astrophysi-

cal parameters of detected sources. PyCBC was used in the first direct detection

of gravitational waves by LIGO and is used in the ongoing analysis of LIGO and
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Virgo data. PyCBC was featured in Physics World as a good example of a large

collaboration publishing its research products, including its software.[23]

It has been used in the closing phase of this thesis for more formal results

where the package uses Bayesian inference to look for posteriors given a particu-

lar event.The ’CBC’ in PyCBC stands for compact binary coalescence and is used

forKerr black hole spectroscopywhere it usesKerr predictions to compute aQNM

spectrum and then fits it available data. Given a set of priors on the parameters,

it produces GW waveforms of the form

h+ + ιhX =
M

r

∑
lmn

Almne
ι(ωlmnt+ϕlmn)e−t/τlmnSlmn (4.2)

Where theSlmn are the spheroidal functions evaluated at theQNMfrequencies[13].

The relevant pieces of the above expression that we need are the ωlmn and τlmn.

PyCBCmaps (M,χ) −→ (ω, τ)byusing the followingdimensionless frequency

and quality factor expressions obtained by Berti et al.[13]:

Flmn = f1 + f2(1− χ)f3 (4.3)

Qlmn = q1 + q2(1− χ)q3 =
ωlmnτlmn

2
(4.4)

where the fitting coefficients f1, f2, f3, q1, q2, and q3 are obtained by numerical

fits.

Figure 4.9: Fitting coefficients tabulated for the l = m = 2 mode. A similar

routine is used to produce coefficients of higher modes, l > 2.

For a given value of l, m, and n, the built-in Python function get_lm_f0tau in
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the module ”conversions.py” converts a given (M,χ) to (ω, τ) and then the func-

tion get_lm_f0tau_allmodes produces values for all possible modes supported

by PyCBC. Once a value of (ω, τ), the code moves ahead and uses this value in the

”ringdown.py” module to produce damped sinusoids by passing the values to the

function td_damped_sinusoid which produces the h+ and hX polarization. And

then the function multimode_base, in the same module, sets up this damped si-

nusoid for further processing by taking an ’approximant’ as an argument which

specifies the parameters to be used and the output that will be generated. As soon

as awaveform is successfully generated, then the codemoves ontomatch-filtering

where the all of the statistics comes in. As the name implies, produced-waveforms

are matched with the data-waveforms and the parameters for which there is a

match, are registered. This is accomplished by sampling through the parameter

space. In ringdown analysis, the usual sampler of choice is Dynesty. Running

inference for a particular event with appropriate priors on the parameters, spits

out the posteriors given the data.

The previous paragraph outlines the routine followed by PyCBC but specif-

ically for Kerr. Since we are now dealing with a new geometry, the parameter

space is different and therefore the QNM spectrum is different. We must con-

sistently alter the relevant source code to accommodate the new parameter, ϵ3
introduced by the JP metric, so that we can produce waveforms due to the new

geometry. The mapping to be done is (M,χ, ϵ3) −→ (ω, τ), using equation 3.31

and 3.32 or equations 3.29 and 3.30, since they are equivalent. The author suc-

cessfully introduced these new expression in the source code and modified the

sinusoid-producing functions.
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TABLE II Summary of all the changes made to the source code and can be

viewed in detail in the author’s PyCBC GitHub repository[19].
Kerr Johanssen-Psaltis

get_lm_f0tau get_JP_lm_f0tau

get_lm_f0tau_allmodes get_JP_lm_f0tau_allmodes

mass_spin_required_args mass_spin_eps_required_args

multimode_base multimode_base (with ϵ3)

get_td_from_final_mass_spin get_td_from_final_mass_spin_eps

TdQNMfromFinalMassSpin TdQNMfromFinalMassSpinEps

select_waveform_generator additional conditions for ϵ3

TDomainMassSpinRingdownGenerator TDomainMassSpinEpsRingdownGenerator

One important output was to plot the waveform using the newly defined func-

tions and check the if limiting case, where ϵ3 = 0, gives the same waveform as

Kerr. Figure 4.10 shows this comparison and figure 4.11 shows different wave-

forms due to different values of ϵ3.

Figure 4.10: Waveforms produced by using the

functions ringdown.get_td_from_mass_spin_eps and

ringdown.get_td_from_mass_spin for the JP and Kerr geometries, respec-

tively.
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Figure 4.11: Waveforms produce by using the function

ringdown.get_td_from_mass_spin_eps with ϵ3 = −5, 0, 5.

Having successfully produced the waveform, the next step is to run the full

inference and analyze the output. We already have some idea from the Python

script outputs and so we expect PyCBC results to be along the same lines. The

syntax and configuration files can be found in the author’s GitHub repository[19].
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Figure 4.12: Posterior distributions obtained by running inference for GW150914.

Figure 4.12 shows the output of the inference run for GW150914 and we see

that is not quite the same as what we saw in the Python script output. There are

some similarities such as the ϵ3 posterior here is still favouring more positive val-

ues and trailing off after 50, theMf and χf are also somewhat in the same range

as the previous result. Some refinement is still needed in terms of the mapping

and the expressions used formapping and itmust be noted that the inference runs

are still a work in progress and some refinement is still needed. The features of

figure 4.4 are expected to be reproduced andmore defined once the PyCBC issues

are resolved and this task is marked for follow up work after submission of this

document.
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Chapter 5

Discussion

The first point to keep in mind is that the post-Kerr approximation we make by

using the Johanssen-Psaltis metric is through a truncated metric where the as-

sumption is that ϵ3 is small enough so that only linear order terms are kept and

also the Kerr metric must be reproduced in the limit where ϵ3 −→ 0. This is easily

checked by taking the limit of the expressions we wrote for the JP metric 3.20-

3.24. The requirement of ϵ3 being small is still a concern which is alarming at first

sight because the measurement we make on the parameter are≫ 1 in both cases,

sections 4.1 and 4.2.

For GW150914, we see that ϵ3 = 1428−15. For GW190521, it is more tightly con-

strained near zero, ϵ3 = 3.13.4−2.7. Both of these are consistent with ϵ3 = 0 as

shown in the mass-spin distributions (figures 4.2 and 4.6) as well as the 1D his-

tograms for ϵ3 in figures 4.4 and 4.7. The GW190521 constraint is better because

it is closer to being ’small’ comparedwith the GW150914 result. Althoughwe have

not included the 330mode from GW190521 in this analysis, this measurement is

expected to be even better because we have access to a larger data set if the 330

mode of a ringdown is observed. Therefore, we can reduce the error bars on the

measurement of ϵ3 andmay even be able to get closer to ϵ3 ~1. This is a predictive

result and future work could examine what further constraints can be obtained

by including the 330 mode.The analysis performed with PyCBC inference (4.12)

is also a validation of our Python script results (4.4). Meaning that whatever we

did in our Python script was on the right track. There are some differences such

as theM − χ contours are different for the two approaches. However, the values

on the 1D histograms are still similar.
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The differences in the results between this work and Dey et al.’s (figure 4.5)

are due to the difference in the calculation of the frequency and damping time ex-

pressions, as theymention in their paper[20].We have used a truncated JPmetric

whereasDey et al. do not use this approach andkeep the JPmetric intact through-

out. Due to this difference in calculation methods, our ϵ3 is not the same as Dey

et al.’s ϵ3. Ours is a perturbative parameter whereas theirs is a more ’pure’ ϵ3. It

must be noted that this differences affect more the sharpness of the features in

the 90% contours of the corner plots and the posteriors we find are still within

the same ballpark values.

We turn our attention to the largeness of ϵ3 in our results. Since this is a per-

turbative calculation, the expectation would be that ϵ3 ≪ 1 because that is the

assumption wemake while making the expansion and also when dropping higher

order terms because they would be too small to be significant. The higher order

terms are essential error-reducing quantities that help control themeasurements.

Our ϵ3 is much larger than 1 and therefore it would not make sense to incorporate

higher order terms in our analysis. What we are interested in, is not somuch con-

straining ϵ3, but rather finding cases where the Kerr assumption is violated. As

such we are looking for anomalies, not quantitative precision measurements of

deviation parameters. This is particularly true in the JP metric, where ϵ3 is only

one of an infinite number of parameters. Onewouldn’t expect all the other param-

eters to be zero in a general modified theory anyway, so assuming they are zero is

as artificial as truncating the Taylor expansion when converting to frequency and

damping time.

Our methods can be extended to more complicated situations. An example

would be the case where we allow higher ϵk where k > 3 and find the light ring

properties.As we have already seen with the modified-Kerr case (section 2.6),

a deformation of the metric that is dependent on radial coordinate necessarily

changes the light ring position and consequently, the orbital frequency anddamp-

ing times. Let’s assume that now we have two non-zero ϵ’s, ϵ3 and ϵ4. We already

have results pertaining to ϵ3 but since ϵ4 has it’s own radial dependence, the fi-

nal expressions for the QNM spectrum may have an interplay of these two pa-

rameters. Now, there will be a space of four parameters, (M,χ, ϵ3, ϵ4) instead of

the three-dimensional one we have been handling, (M,χ, ϵ3). The frequency and

damping time templates produced with these four may be completely different

but still useful to find constraints on ϵ3 and ϵ4. In this scenario, the constraints
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on ϵ3 shown in figure 4.8 will be different due to the presence of non-zero ϵ4.

However, this is simply a matter of motivation and time required to perform this

calculation. Additionally, including more and more parameters also raises the

issue of trying to fit too many parameters with just two numbers, frequency and

damping time.

Carson and Yagi [18] perform an analysis for GW150914-like events but not

with ringdown data fromLIGO. They use future technologies and also include the

inspiral phase of the binary. We have not addressed the inspiral or future detec-

tors anywhere in this work because we are only limiting ourselves to ringdown

analysis and LIGO data. They perform the IMR (Inspiral-Merger-Ringdown)

analysis which means they are including more information about an event and

therefore will have better constraints. On top of additional information, they also

consider future technology like LISA and Cosmic Explorer for their predictions.

Table 5.1 summarizes their finding and predictions.

Figure 5.1: This is a snip from the paper [18] the text under the table elaborates

why LIGO is not reliable for constraining ϵ3. They also do the same analysis an-

other parameter, β, due to some other metric. Note that even with IMR results

the estimated value of ϵ3 is still larger than 1 for GW150914.

This implies that the analysis we have performed is a chunk of the larger anal-

ysis that can be performed. Our ringdown-only results (ϵ3 = 1428−15) are still rea-

sonable compared to the IMR results shown in 5.1 where ϵ3 = 7 from the O2 run.

Furthermore, the GW190521 posteriors are already better than GW150914.

The post-Kerr approximation as described in chapter 3, in the sense that we

write the some axisymmetric metric in a form which is gKµν + ϵhµν . It is only a
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deformation to the metric but useful in understanding non-GR scenarios. . In a

modified theory of gravity, one writes the action and looks for black hole solu-

tions. For example, the action of an Effective Field Theory extension of GR[24]

has the following structure:

Seff =

∫
dx4

√
−g2M2

pl

(
R− C2

Λ6
− C̃2

Λ̃6
− CC̃

Λ6
−

)
(5.1)

where C = RµναβR
µναβ and and C̃ = Rµναβ

˜Rµναβ . The QNM spectrum for the

case of non-spinning[24] black holes as well as spinning[25] black holes in this

theory have been calculated but not yet been constrainedwith observational data.

The methods used in this research can be extended provided that we have the

QNM spectrum of the theory we are interested in.
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Chapter 6

Conclusions

This thesis considers the JPmetric as a first step toward beyond-GR theories and

attempts to find constraints on non-Kerr parameters. We have found a tighter

constraint on the ϵ3 parameter compared to existing constraints. Figure 4.7 shows

that ϵ3 = 3.13.4−2.7 at 2σ using the 220 mode of GW190521 ringdown. It is ex-

pected to get get even smaller if the 330 mode is also included in the analysis.

Our constraint is tighter compared to existing constraints from GW150914 (ϵ3 =

3440−32)[20] and from the accretion disk thermal spectral where ϵ3 ≤ 5[17]. Our

constraint is obtained by using the truncated metric expressions for frequency

and damping time and the analysis is consistent when implemented for the two

events, GW10914 and GW190521, independently. Thereafter, the constraints ob-

tained by the procedure adopted by Dey et al. is implemented on GW190521 will

also be tighter than GW150914.

The JP metric is a simple and useful stepping stone leading to non-Kerr pa-

rameter estimation. We see thatwithLIGOringdowndata that ϵ3 is notwithin our

assumption that ϵ3 ≪ 1. The GW190521 constraint is closer to this assumption

than GW150914. Nonetheless, the task is useful in measuring non-Kerr parame-

ters with future technologies like LISA and Cosmic Explorer and the parameters

are expected to be constrained better.

The primary objective of this text is to report the results of the research. We

check for deviations from the Kerr geometry by using the GW190521 observation,

since the ringdown data is much better than GW150914 and has additional infor-

mation because of the 330 mode presence.
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Appendix A

Appendix

A.1 Explicit form of post-Kerr terms

Here we list the numerous terms mentioned in section 3 First we show the Kerr

coefficients labelled with a subscriptK. RK ,HK , NK :

RK = (19M2 + 26a2)MrK + 3Ma2(8M2 + 7a2)− (54M4 + 40M2a2 − 4a4)rK

(A.1)

HK =
1

2

(rK
M

)1/2
(rK −M)[6∆Khrr − r2K∆Kh

′′
ϕϕ]− 6rph(rK − 2M)hϕϕ

± rK∆KWtϕh
′
tϕ ∓ 2rKMtϕ[rK∆Kh

′′
tϕ + 6(rK − 2M)htϕ]

+
(rK
M

)1/2
rK [3Ktthtt −∆K(Qtth

′tt) + rKJtth
′′
tt]

+ rK∆K

(rK
M

)1/2
(2rK − 5M)h′ϕϕ (A.2)

NK = (MrK)1/2(Gϕϕh
′′
ϕϕ +Gtth

′′
tt

+ 2Ztth
′
tt + 2Gϕϕh

′
ϕϕ + 2Etthtt + 2Eϕϕhϕϕ + 6Errhrr)

±M(Gtϕh
′′
tϕ + 4Ztϕh

′
tϕ + 8Etϕhtϕ) (A.3)
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Now the remaining coefficients Err, Ett, Etϕ, Eϕϕ,Mtϕ,Wtϕ,Ktt, Qtt, Jtt, Stt,

Stϕ, Sϕϕ, Ztt, Ztϕ, Zϕϕ, Gϕϕ, Gtϕ and Gtt:

Mtϕ = 2r2K − 2MrK + a2 (A.4)

Wtϕ = 13r2K − 33MrK + 8a2 (A.5)

Ktt = −(33M2 + a2)r2K + 9(9M2 − a2)MrK − 38M2a2 (A.6)

Qtt = −21Mr2K + 2(27M2 − a2)rK − 19Ma2 (A.7)

Jtt =
1

2
[15Mr2K + (a2 − 27M2)rK + 11Ma2] (A.8)

Gϕϕ = −(351M6 + a6787M4a2 + 157M2a4)r2K + 12M(133M4a2

+ 81M6 + 3a4M2 − a6)rK − 48M2a2(2a4 + 16M2a2 + 9M4) (A.9)

Gtt = −(10935M8 + 36666M6a2 + a8 + 15160M4a4 + 742M2a6)r2K

+ 6M(2769M4a4 − 227M2a6 + 5103M8 + 13527M6a2 − 4a8)rK

− 24M2a2(485M2a4 + 567M6 + 13a6 + 1581M4a2) (A.10)

Gtπ = −3M(a2 + 27M2)(83a4 + 262M2a2 + 87M4)r2K + (19683M8

− 272M2a6 + 46683M6a2 + 6941M4a4 − 4a8)rK

− 12Ma2(7a6 + 459M2a4 + 729M6 + 1829M4a2) (A.11)

Ztt = −M(131a6 + 6345M4a2 + 3379a4M2 + 729M6)r2K

+ (2187M8 − 2a8 − 361M2a6 + 15309M6a2 + 4035M4a4)rK

− 4Ma2(11a6 + 1737M4a2 + 243M6 + 655a4M2) (A.12)

Ztϕ = −(1917M4a2 + 845a4M2 + 19a6 + 234M6)r2K

+M(847a4M2 − 91a6 + 729M6 + 4563M4a2)rK − 4a2(a6 + 81M6

+ 519M4a2 + 155a4M2) (A.13)
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Err = (4a6 + 154M2a4 + 135M6 + 436M4a2)r2K

− 2M(189M6 − 8a6 + 70M2a4 + 478M4a2)rK

+ a2(112M2a2 + 448M4a2 + a6 + 168M6) (A.14)

Ett = −(549M4a2 − a6 + 1377M6 − 161a4M2)r2K

+ 3M(15M2 − a2)(8M2a2 + 81M4 − 5a4)rK

− 4M2a2(405M4 − 29a4 + 65M2a2) (A.15)

Eϕϕ = −(39M4 − a4 − 2M2a2)r2K + 3M(33M4 + a4 − 10M2a2)rK

− 4M2a2(11M2 − 2a2) (A.16)

Etϕ = −4M(54M4 + 14M2a2 − 5a4)r2K + (567M6 − 45M4a2

− 19a4M6 + a6)rK − 12Ma2(21M4 +M2a2 − a4) (A.17)

Stt = 9(3673M4a2 + 1053M6 + 947a4M2 + 11a6)r2K −M(4151a4M2

+ 71901M4a2 + 26973M6 − 713a6)rK + 4a2(8409M4a2 + 2997M6

+ 1379a4M2 + 4a6) (A.18)

Sϕϕ = 3(226M2a2 + 105M4 + 17a4)r2K −M(1298a2M2

+ 891M4 − 101a4)rK + 4a2(158M2a2 + 99M4 + 4a4) (A.19)

Stϕ = (rK + 3M)(MrK)−1/2(M(2770M2a2 + 999M4 + 407a4))r2K

− (2835M6 + 5706M4a2 − 173a4M2 − 16a6)rK

+ 12Ma2(226M2a2 + 105M4 + 17a2) (A.20)

A.2 Post-Kerr offset function

The offset function βK we introduced in section 3.1 ensures that we are within

reasonable bounds for using a non-Kerr QNM template.

βK(a) is used as a numerical tool to fit tabulated Kerr QNM data [13] inspired

by the classic interatomic Buckingham potential.
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Figure A.1: Fitting the real and imaginary parts of βk numerically for l = m =

2, 3, 4. The trend is similar for higher modes.

This Buckingham potential takes the form:

f(x) = a1 + a2e
−a3(1−x)a4 − 1

a5 + (1− x)a6
(A.21)

Figure A.2: Fitting coefficients ai of the Buckingham potential for different l = m

modes
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A.3 JP Expansion Coefficients

The JP deviation terms in equations 3.29 and 3.30 are written in terms of the

coefficients C−,C+ and C0 as follows:

δr1 = −
bKMC5

+

18C2
−C0

(A.22)

δb1 =
54M2C−C

4
+ + C7

+

54C2
−C0

(A.23)

δγ1 = γ3K
27M2C2

− + a(a− 2bK)C2
+

2C5
+C0(3M2(5a− bK)C− + a2C2

+)
3
[a3(4a2 − abK − 6b2K)C10

+

+ 729M6C3
−(364a

4 − 227a3bK − 201a2b2K − 29ab3K + 13b4K)C2
+

+ 27M4C2
−(2a+ bK)(319a4 − 174a3bK − 216a2b2K − 38ab3K + 9b4K)C4

+

+ aM2C−(454a
4 − 133a3bK − 366a2b2K − 182ab3K + 2b4K)C7

+

+ 78732M8C5
−(5a− bK)(4a+ bK)] (A.24)

The coefficients are defined as:

C+ ≡ a+ bK (A.25)

C− ≡ a− bK (A.26)

C0 ≡ (4a+ bK)27M2C− + 2C4
+ (A.27)
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