

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Comparative Analysis of Sampling
Methods for Imbalanced Classification

Master’s Thesis in Computer Science
by

Piotr Kazimierz Koloszyc and
Rongbing Li

Supervisors

Mina Farmanbar
Muhammad Sulaiman

June 15, 2023

“Programming is a nice break from thinking.”

Leslie Lamport

Abstract

Assigning class labels to instances is a key component of the machine learning technique
known as classification predictive modeling. While concentrating largely on balanced
classification problems, which are thought to be the easiest type, the prevalent models
and assessment metrics used in classification learning assume an equal distribution of
data across class labels.

Many machine learning algorithms fail when the distribution of instances among classes is
unbalanced, and the assessment measures used, including classification accuracy, become
dangerously misleading. Numerous real-world issues, including as fraud detection, churn
prediction, medical diagnosis, and many more, frequently include imbalanced class
distributions. In fact, it is frequently more frequent to find unbalanced courses than
balanced ones, emphasizing how important it is to solve this problem.

This thesis primarily investigates innovative strategies for managing imbalanced data. One
of the approaches examined is the utilization of the Majority and Minority repositioning
Technique (MaMiPot) algorithms in combination with different variations of SMOTE and
the application of K-means clustering before repositioning. Another method emphasized
in this research is the implementation of Generative Adversarial Networks (GAN), a
neural network-based technique designed for addressing imbalanced data issues. The
evaluation of these approaches was performed on 25 imbalanced datasets obtained from
the KEEL repository, encompassing various levels of class imbalance ratios spanning
from 5.14 to 129.44.

To assess the performance of the proposed method in mitigating the class imbalance
problem, several evaluation metrics were utilized. These metrics include F-score, G-
mean, and AUC, which provide valuable insights into the effectiveness of the approach
in improving classification results and addressing the challenges posed by imbalanced
datasets.

Acknowledgements

We would like to extend our heartfelt appreciation to our supervisors, Professor Mina
Farmanbarand and Muhammad Sulaiman, for their invaluable guidance and constructive
feedback throughout the course of this thesis. Their unwavering support, expert advice,
and continuous encouragement have played a pivotal role in the successful completion
of this research. Their profound understanding of thesis research, coupled with their
valuable insights and suggestions, have significantly contributed to our academic growth
and assisted us in overcoming the obstacles we encountered.

Piotr and Rongbing are also deeply grateful to their parents and friends, whose unwavering
belief in our abilities and unwavering support have been a constant source of motivation.
Their encouragement to excel and better ourselves in every aspect of life has been
instrumental in our journey.

Piotr Kazimierz Koloszyc and Rongbing Li

Stavanger, June 2023.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Approach and Contributions . 2
1.3 Outline . 3

2 Background 5
2.1 Class imbalance problem . 5
2.2 Classification algorithms . 6
2.3 Undersampling . 8
2.4 Oversampling . 11

2.4.1 SMOTE . 11
2.4.2 SMOTE variants . 12

2.5 MaMiPot . 17
2.6 Generative Adversarial Network . 18
2.7 Performance metrics for imbalanced data 19

2.7.1 F-score . 20
2.7.2 G-mean . 20
2.7.3 AUC . 21

3 Approach 23
3.1 Overview . 23
3.2 Dataset . 23
3.3 SWIM - Sampling with the majority class 25

3.3.1 Method Description . 25
3.3.2 Result . 27

3.4 SMOTEFUNA . 28
3.4.1 Method Description . 28
3.4.2 Result . 29

3.5 MaMiPot . 30
3.5.1 Method Description . 30
3.5.2 Result . 33

vii

3.6 K-means MaMiPot . 34
3.6.1 Method Description . 34
3.6.2 Result . 35

3.7 GAN . 36
3.7.1 Result . 38

4 Experimental Evaluation 41
4.1 Overview . 41
4.2 Experimental Setup . 42
4.3 Experimental Results . 45
4.4 Result Analysis . 49

5 Conclusions 53
5.1 Future Directions . 55

List of Figures 55

List of Tables 59

A Source Code 61

Bibliography 63

Chapter 1

Introduction

1.1 Background and Motivation

Unbalanced datasets [1] , or datasets where the distribution of the target class labels is
not uniform, are frequently encountered in classification tasks. When training a machine
learning model, data imbalance might be problematic since the model tends to be biased
towards predicting the majority class because it is trained mostly on that class.

Therefore, before moving further with the modeling pipeline, it is imperative to solve the
problem of class imbalance. Sampling techniques are extensively utilized for managing
imbalanced data due to their wide adoption and effectiveness. Sampling techniques
modify the dataset to enhance the balance of classes. Different sampling strategies are
employed to alter the class ratio within an imbalanced modeling dataset, which may be
generally divided into three groups.

1. Oversampling strategies: These strategies create fictitious minority class samples.
Oversampling methods like Random Oversampling, ADASYN, and SMOTE are
often employed.

2. Undersamplig strategies: These strategies entail fewer samples from the majority
class. Edited Nearest Neighbour, Random Undersampling, and Tomek links removal
are among popular undersampling strategies.

3. Combination of oversampling and undresampling: SMOTE can be combined
with various undersampling techniques like ENN (Edited Nearest Neighbors) and
Tomek links removal to increase its effectiveness in dealing with unbalanced classes.
SMOTE with ENN and SMOTE with Tomek links removal are two famous instances
of combining undersampling methods with SMOTE.

1

2 Chapter 1 Introduction

However, underampling methods cause a large loss of data points from the majority
class, which might have an impact on the model’s overall performance. On the other
hand, when several synthetic samples are created within the minority class as a result of
oversampling procedures, overfitting might result.

SMOTE is a well-known and often applied oversampling technique among data scientists.
Within clusters created by the existing minority class samples, it creates fictional minority
data points.

SMOTE has been criticized for a number of drawbacks [2]. One of the key problems
is that, particularly in dense clusters of minority samples, it might produce synthetic
samples that are overly similar to the ones that already exist. Overfitting and worse
generalization performance may result from this. Additionally, SMOTE generates
synthetic samples in the wrong regions of the feature space since it does not take into
account the relative placements and distances of minority samples when choosing nearest
neighbors. Additionally, some SMOTE variants may oversample the minority class in a
non-selective or global manner, which may prevent some minority samples from benefiting
from oversampling.

1.2 Approach and Contributions

The primary objective of this thesis is to assess both conventional and contemporary
methods for managing imbalanced data.

One of the more recent methods is the Majority and Minority repositioning Technique
(MaMiPot) [3], which focuses on repositioning samples to enable the classifier to learn
the decision regions of the minority class. By adjusting the positions of majority class
samples, the classifier is encouraged to pay more attention to the minority class. This
repositioning scheme can be utilized as a preprocessing step before oversampling with
other methods.

In this thesis we make a significant contribution by extending the MaMiPot method
by incorporating different SMOTE variants and applying K-means clustering before
repositioning. Additionally, we assess a deep learning technique by employing the
Generative Adversarial Network (GAN) [4]. GAN utilizes neural networks to produce
synthetic minority samples. We evaluate this approach on 25 imbalanced datasets with
imbalance ratios ranging from 5.14 to 129.44, sourced from the KEEL repository [5]. The
evaluation metrics used include F-score, G-mean, and AUC, which provide insights into
the performance of the proposed method in addressing the class imbalance problem.

Chapter 1 Introduction 3

1.3 Outline

The remainder of this paper is structured as follows.

In Section 2, we provide the necessary background information, as well as a description
of several popular sampling methods commonly used in machine learning analysis.
Additionally, we discuss the potential flaws associated with these methods, including
their limitations and potential biases.

Section 3 is specifically dedicated to outlining the implementation of all the sampling
methods developed for this thesis. It includes a detailed explanation of the structure and
functioning of these methods.

In Section 4, we describe our experimental setup, including the data sources and method-
ologies used to evaluate the effectiveness of all data sampling techniques used in this
thesis. We provide a detailed overview of the statistical tests and measures employed to
analyze our results.

Section 5 presents the results of our experiments, including a comprehensive set of
empirical tests that compare the performance of all sampling methods. We provide a
detailed analysis of the results, discussing the strengths and weaknesses of each approach
and drawing conclusions about the effectiveness of different sampling methods.

Chapter 2

Background

2.1 Class imbalance problem

Class imbalance [1] is a common problem in machine learning where the distribution of
classes in the training data is skewed. Specifically, one class (referred to as the minority
class) is represented by a much smaller number of samples than another class (referred
to as the majority class).

The causes of class imbalance can vary depending on the domain and the task. In some
cases, the minority class might simply be rare, making it difficult to collect enough
samples to balance the dataset. In other cases, the data collection process itself might
introduce bias towards the majority class. For example, in credit card fraud detection,
the majority of transactions are legitimate, making it difficult to collect enough fraudulent
transactions to balance the dataset. Moreover, fraudulent transactions are usually much
more difficult to detect, which could introduce additional bias towards the majority class.

The impact of class imbalance can be severe, particularly in applications where the
cost of misclassifying the minority class is high. For example, in medical diagnosis,
misclassifying a patient with a rare disease as healthy could have serious consequences.
In fraud detection, misclassifying a fraudulent transaction as legitimate could result in
significant financial losses. In such cases, a machine learning model that is biased towards
the majority class can be unacceptable.

5

6 Chapter 2 Background

2.2 Classification algorithms

Classification algorithms are employed to assign labels to provided data. In order to
establish decision boundaries between classes, classifiers need to undergo training using
labeled training data. In this thesis, we utilize a range of diverse classifiers to evaluate
the effectiveness of our sampling methods.

Logistic regression [6] is a classification technique that involves attempting to match a
sigmoid function to the given samples. The sigmoid function is defined as

f(x) = 1
1 + e−x

(2.1)

Although logistic regression is a straightforward method, it may encounter challenges
when dealing with datasets that contain a large number of features.

K-Nearest Neighbour [7] is a classification algorithm that makes predictions by
measuring the distance between samples. The choice of distance metric can vary depending
on the type of dataset being classified. By employing the distance metric, the classifier
identifies the k nearest neighbours to the new sample being classified. The predicted label
is determined by the most commonly occurring value among these k nearest neighbours.

Gaussian Naive Bayes [8] is a specific type of Naive Bayes classifier that is used for
handling continuous data. The general concept of Naive Bayes involves employing Bayes’
theorem to classify samples. Bayes’ theorem can be expressed as follows:

P (A|B) = P (B|A)P (A)
P (B) (2.2)

The posterior probability of assessment A being true given assessment B (P(A|B)) is
equal to the product of the likelihood probability of assessment A being true given
assessment B (P(B|A)) and the prior probability of assessment A (P(A)), divided by the
evidence probability of assessment B (P(B)).

In this context, we calculate the posterior probability for each class and assign a new
sample to the class with the highest posterior probability.

The term "naive" in Naive Bayes stems from the assumption that all features in the
dataset are independent of each other. Additionally, Gaussian Naive Bayes assumes that
the data within each feature follows a normal distribution. It’s important to note that if
these assumptions are not met, the performance of the Gaussian Naive Bayes classifier
may not be optimal.

Chapter 2 Background 7

Support Vector Machine (SVM) [9] is a classification algorithm that aims to identify
the optimal separating hyperplane between classes. In a two-dimensional dataset, this
hyperplane would correspond to a line. During the training process, the SVM algorithm
explores various lines to find the one that best separates the classes.

To determine the ideal line, SVM identifies the points closest to the line from each class,
referred to as support vectors. Subsequently, the algorithm calculates the margin, which
represents the distance between the line and the support vectors. The line with the
highest margin is considered the best fit. SVM’s objective is to discover a hyperplane
that maximizes this margin, effectively providing the greatest separation between the
classes.

Decision tree [10] is an algorithm used for classifying data by dividing a dataset into
different segments based on the values of its features. This process rearranges the dataset
into a tree-like structure.

Figure 2.1: Decision tree

The construction process of decision trees is depicted in Figure 2.1. The initial node in the
decision tree is referred to as the root node. As the decision tree algorithm progresses, the
final nodes eventually become the leaf nodes. The decision tree construction terminates
either when a predetermined number of splits is reached or when there is no further data
available for splitting.

To construct a decision tree, we need to make decisions about how to perform the splits.
These splits are based on the values of the features. The primary objective is to divide
the tree in such a way that each node contains only one class, ensuring purity. When
training a decision tree, various loss functions like entropy or Gini impurity are utilized
to determine the purity of a node before and after a split. The dataset is split based on
the feature that yields the lowest loss value. Ideally, the leaf nodes of the decision tree
would consist of only one class. However, if that is not the case, the label is determined
by the most frequent class present in the leaf node.

8 Chapter 2 Background

Random Forest [11] is an ensemble technique that classifies data by constructing
multiple decision trees. It utilizes bagging, a method that generates several subsets of
the dataset with replacement, to train the decision trees. For each subset, a decision
tree is built. Once all the decision trees are trained, the final prediction is computed by
averaging the predictions from each individual decision tree.

Adaptive Boosting (AdaBoost) [12] is an ensemble method that shares similarities
with random forest. However, there are distinct differences in how AdaBoost operates.
Instead of constructing decision trees for each subset of data like random forest, AdaBoost
creates decision stumps. A decision stump is a small decision tree comprising a single
root node and multiple leaf nodes.

AdaBoost is trained using the boosting method, which differs from bagging used in
random forest. Boosting involves sequentially creating and training each decision stump.
After a decision stump is trained, the misclassified samples are assigned higher sample
weights. This means that when the next decision stump is trained, it pays more attention
to those misclassified samples. The classification error is calculated for each decision
stump, and stumps with lower error contribute more significantly to the final prediction.

Multi Layer Perceptron (MLP) [13] is a type of neural network model that is composed
of multiple layers. Each layer contains a collection of neurons. The initial layer in the
MLP is referred to as the input layer, while the final layer is known as the output layer.
In between the input and output layers, there can be any number of hidden layers. The
input layer is designed to match the size of the features present in the given samples.

The structure of the MLP is shown in Figure 2.2. Each layer employs its own activation
function to modify the data. Every neuron alters the sum of the inputs based on the
activation function of its corresponding layer. Each neuron possesses its own weight,
which determines the degree of influence the input has on the output of the subsequent
layer. The output layer computes the probabilities of a sample belonging to each class.
Consequently, the number of neurons in the output layer matches the number of classes
in the dataset. The MLP is trained by forwarding a sample through the neural network.
The resulting predicted label is compared to the label in the training data. Based on
this comparison, the loss is calculated. The loss is then propagated backward through
the network, and the weights are updated.

2.3 Undersampling

Undersampling the majority class involves removing instances from the majority class
to balance the number of instances in each class. The idea is to focus on the minority

Chapter 2 Background 9

Figure 2.2: Multi Layer Perceptron

class by reducing the influence of the majority class. This can be done using techniques
such as random undersampling or Tomek links removal. Undersampling can be useful
when the majority class is significantly larger than the minority class, as it can reduce
the computational cost of training the classifier and improve the performance on the
minority class. However, undersampling can lead to loss of information and may not be
effective if the majority class contains important instances.

NearMiss [14] Alternative approaches, such the "near neighbor" methodology and its
modifications, have been suggested to solve the worry of potential information loss. The
close neighbor family’s core algorithms function as follows: The first step is to compute
the distances between every instance of the majority class and every instance of the
minority class. Then, the k instances of the majority class that are closest to the minority
class are chosen. The "nearest" technique will choose k*n examples from the majority
class when there are n instances in the minority class.

Based on their least average distances to the three nearest cases in the minority class, the
"NearMiss-1" technique locates samples from the majority class. In contrast, "NearMiss-2"
chooses the minority class samples that are closest to it. For each sample in the minority
class, "NearMiss-3" selects a predetermined number of the closest samples from the
majority class.

Edited Nearest Neighbor Rule (ENN) In order to exclude instances from the
majority class whose class labels differ from the majority of their three nearest neighbours,

10 Chapter 2 Background

Wilson [15] devised the ENN in 1972. The goal of this strategy is to locate and eliminate
instances of the majority class that are found on or near class borders. By identifying
these examples using the closest neighbour (NN) concept, the ENN method seeks to
improve the classification accuracy of minority instances rather than majority ones. ENN
aims to enrich the dataset and maybe enhance the performance of classification models
on minority class cases by selectively deleting borderline majority class examples.

Tomek Links Similarly, Tomek [16] presented a successful technique that concentrates
on locating samples close to the class borders. The idea of Tomek links is the foundation
of this approach.

Tomek links are groups of samples in a dataset that are close to one another and from
distinct classes, but are not considered to be nearest neighbors. A (Ei, Ej) pair is said
to be a Tomek link if there isn’t an example El such that d(Ei, El) < d(Ei, Ej) or
d(Ej , El) < d(Ei, Ej), given two instances Ei and Ej belonging to separate classes, and
d(Ei, Ej) is the distance between Ei and Ej . When two instances connect via a Tomek
link, one of the examples is either noise or both examples are on the edge.

Tomek links removal can be applied as a data cleansing technique or as an under-sampling
technique. Only instances from the majority class are dropped when the undersampling
technique is applied. Examples of both types are eliminated when the procedure is
applied to clean up the data. Tomek links removal can enhance the performance of
machine learning models by reducing noisy or borderline samples, particularly in the
case of unbalanced datasets.

One Sided Selection (OSS) [17] is a method created especially to address the issues
brought on by unbalanced training sets in machine learning. Its main goal is to correct
the imbalance by choosing examples from the majority class that are most similar to
those from the minority class. By doing this, the method hopes to lessen the impact
noisy or unreliable majority class examples have on how the learning algorithm behaves.

The method finds the cases of the majority class that resemble the minority class examples
the most. Different distance metrics or similarity measurements can be used to determine
how similar things are. A new, more balanced training set is created by combining the
selected subset of cases from the majority class with all of the examples from the minority
class. This balanced training set offers a more representative and insightful training
sample, which can aid in improving the performance of classifiers trained on unbalanced
data.

Neighbourhood Cleaning Rule(NCR) [18] is a method for dealing with the problems
presented by noisy and borderline cases in unbalanced data by utilizing the one-sided

Chapter 2 Background 11

selection (OSS) concept. By balancing the unbalanced class distribution through data
reduction, NCR seeks to improve the identification of challenging tiny classes.

The first step of the procedure is to locate each example’s closest neighbors in the
minority class. It then looks at these closest neighbors to see if they misclassified any
samples from the majority class. The related majority class examples are dropped from
the dataset if such misclassifications take place. Through the elimination of noisy and
borderline cases from the majority class, this selective removal technique contributes to
improving the overall quality of the training data.

2.4 Oversampling

Random over-sampling [19] attempts to solve class imbalance by randomly reproducing
minority class examples. It’s crucial to remember that this strategy can have a downside.
Overfitting has been linked to an increased chance of random oversampling. Because a
biased dataset might result from repeating instances of minority classes, the learning
system can become unduly sensitive to such cases. As a result, the model can have
trouble applying successfully to fresh, unknown data. It is advised to use methods like
cross-validation or regularization in addition to random oversampling to reduce the
chance of overfitting. Alternative oversampling techniques, such as SMOTE [20], can
add more variability and possibly lower the danger of overfitting.

2.4.1 SMOTE

SMOTE [20] presented the Synthetic Minority Over-sampling Technique (SMOTE)
to solve the over-fitting problem. SMOTE is frequently referred to as a cutting-edge
technique and has been successful in a number of applications. By using the commonalities
of existing minority occurrences’ features, this method produces synthetic data.

SMOTE initially determines the K-nearest neighbors of each minority instance before
generating a synthetic instance. Then, it chooses one of these neighbors at random, and
between that neighbor and the original instance, it computes linear interpolations. A
new minority instance is produced as a result of this operation nearby the current data
points.

In order to address class inequality and broaden the variety of the minority class, SMOTE
generates synthetic instances based on feature space similarities. It is well known that
using this method will enable classifiers trained on unbalanced datasets to perform better.

12 Chapter 2 Background

SMOTE creates synthetic examples along the line segments connecting minority class
examples in feature space. By doing so, SMOTE avoids creating redundant examples
and helps to maintain the distribution of the minority class in the original dataset.

Overall, SMOTE is a simple but effective technique for dealing with imbalanced datasets
in machine learning. It can help to improve the performance of classifiers on the minority
class by creating synthetic examples that reflect the distribution of the minority class in
the original dataset.

The SMOTE algorithm, while widely used for imbalanced data classification tasks, has
several shortcomings that can impact its effectiveness. Various researchers [3] have
discussed these shortcomings:

1. Overfitting and poor generalization performance due to synthetic samples generated
in dense clusters that may be near replicas of the seed sample [21].

2. Synthetic samples being located in incorrect regions due to the relative positions
and distances of minority samples not being considered in k-nearest-based neighbor
selection [21].

3. Synthetic samples being located in the space of the majority class when the nearest
neighbor of a seed is in a different cluster [21].

4. Distortion of the true distribution of minority samples due to linear interpolation-
based sample generation, leading to incorrect variance estimates and additional
challenges for classifiers during testing [22, 23].

5. Ignoring variations in the density of samples in different regions due to using a
fixed k value in k-nearest neighbor selection [24].

6. Treating all minority samples equally, even those that may be located close to
the decision boundary and are harder to classify, which can lead to synthetic
samples being generated in regions where they may not be as useful for improving
classification performance [21, 24].

Researchers have proposed various modifications to SMOTE to address these limitations.
These modifications highlight ongoing efforts to improve upon SMOTE and develop more
effective approaches for imbalanced data classification.

2.4.2 SMOTE variants

ADASYN [25] is an adaptive learning method for issues with unbalanced data cat-
egorization is called ADASYN. In order to lessen the bias caused by the unbalanced

Chapter 2 Background 13

data distribution, it creates synthetic data samples for the minority class based on the
original data distribution. To achieve this goal, the method employs an adaptive learning
approach and modifies weights in response to data distributions. ADASYN enhances
learning in two ways by producing synthetic data for minority class instances that are
more challenging to learn: lowering the bias created by class imbalance and adaptively
pushing the classification decision boundary toward challenging cases.

K-means SMOTE [26] is proposed to overcome some of the limitations of SMOTE.
One limitation of SMOTE is that it can generate noisy samples if synthetic samples are
generated too close to existing minority class instances.

The suggested approach operates in three steps:

1. Clustering: Using k-means clustering, the input space is divided into k groups.

2. Filtering: The amount of synthetic samples to be generated is distributed depending
on the sparsity of minority samples inside each cluster, and clusters with a high
proportion of minority class samples are chosen for oversampling.

3. Oversampling: SMOTE is used to obtain the desired ratio of minority and majority
instances in each chosen cluster.

The technique avoids creating noisy samples while aiming to remove both between-class
imbalances and within-class imbalances

Borderline-SMOTE [27] aims to exclusively oversample the minority cases that are
close to the boundary.

According to Han et al. [27], to identify the minority samples near the threshold,
Borderline-SMOTE identifies the minority samples that are near the borderline by using a
distance measure. Then, synthetic samples are generated along the line segments joining
these examples. There are two versions of Borderline-SMOTE: Borderline-SMOTE1 and
Borderline-SMOTE2.

• Borderline-SMOTE1 generates synthetic samples for each minority example that
has at least one majority neighbor and at least one minority neighbor within its
k nearest neighbors. The synthetic samples are generated along the line segment
joining each minority example with its nearest minority neighbor.

• Borderline-SMOTE2 generates synthetic samples for each minority example that
has at least one majority neighbor within its k nearest neighbors but no minority
neighbors within its k nearest neighbors. The synthetic samples are generated

14 Chapter 2 Background

along the line segment joining each minority example with its nearest majority
neighbor.

Borderline-SMOTE tries to enhance classification performance while avoiding overfitting
brought on by oversampling too many minority cases by concentrating solely on the
minority examples close to the borderline.

Density-Based Synthetic Minority Over-sampling TEchnique (DBSMOTE)
[28] creates synthetic instances by finding the shortest route between each positive
instance and the center of a minority-class cluster. The objective of this method is to
produce synthetic instances that are concentrated in the vicinity of the centroid, while
being sparse in regions far away from the centroid. DBSMOTE uses DBSCAN to find
clusters with arbitrary geometries before oversampling inside clusters, particularly near
the centroid. As a result, synthetic instances frequently do not exist in classes with a
majority.

DBSMOTE has several benefits over other over-sampling strategies, including its capacity
to produce synthetic instances in the most suitable locations, which improves accuracy,
F-value, and AUC when using different classifiers. In contrast to other strategies that
rely on certain assumptions about the data distribution, DBSMOTE is more versatile
since it can handle datasets with various cluster shapes and sizes.

Combined Cleaning and Resampling (CCR) [29] is a cutting-edge solution to the
problems presented by unbalanced datasets in pattern recognition. The CCR method
deliberately generates fake data points surrounding risky samples in order to oversample
the minority class. It uses two main concepts: first, to remove majority instances that
are too near to minority examples from the decision border; and second, to deliberately
oversample with a greater number of synthetic data points produced around risky samples.

The CCR algorithm’s key benefit is that it incorporates cleaning and resampling methods
into a single framework, which can enhance classification performance while lowering
computing complexity. Additionally, it can deal with skewed distributions, noisy data,
and not enough observations, all of which make the classification process more challenging.
It is crucial to remember that the efficiency of this technique may vary depending on the
dataset being examined.

Majority Weighted Minority Oversampling Technique (MWMOTE) [2] Ac-
cording to their Euclidean distance from the closest majority class samples, MWMOTE
determines the hard-to-learn informative minority class samples and provides weights
to them. Using a clustering method, it creates synthetic samples from the weighted
informative minority class data, making sure that every sample produced is contained
inside a minority class cluster.

Chapter 2 Background 15

MWMOTE offers a number of benefits over currently used oversampling techniques.
First, it prevents the creation of incorrect and unneeded synthetic samples, which can
make learning tasks challenging, and instead creates valuable synthetic minority class
examples. To further enhance its performance, it can be used with various undersampling
and boundary estimation techniques. Third, depending on the particular issue at hand,
MWMOTE involves a variety of characteristics that may be tuned for the greatest results.

Overall, MWMOTE generates valuable synthetic minority class samples while avoiding
overfitting and other problems associated with conventional oversampling techniques,
making it an excellent strategy for enhancing classifier performance on unbalanced data
sets.

SMOTEFUNA [30] Synthetic Minority Over-Sampling Technique based on the Far-
thest Neighbor Algorithm (SMOTEFUNA) is a brand-new, parameter-free approach
for applying synthetic oversampling to unbalanced datasets. SMOTEFUNA creates a
cuboid-shaped ovesampling space between two most distant minority samples. By using
this strategy, the produced samples are guaranteed to be less sensitive to outliers and
more representative of the minority class.

On 33 benchmark machine learning datasets utilizing two distinct classifiers, SMOTE-
FUNA surpasses existing oversampling methods including SMOTE, ADASYN, and
SWIM in terms of ROC and PR curves as well as AUC and AUPR values. Principal
component analysis (PCA) projection findings show that SMOTEFUNA inhibits the
development of synthetic instances that overlap with the majority class and compels the
data to follow the distribution of the minority class. SMOTEFUNA’s main benefit is that
it can provide high-quality synthetic samples that enhance classification performance on
unbalanced datasets and is parameter-free, computationally effective, and economical.

Sampling With the Majority (SWIM) [31] makes use of the knowledge provided
by the majority class data to produce synthetic minority class cases, in contrast to
conventional oversampling techniques that concentrate on inflating the rare class by
creating synthetic data. Due to this, SWIM is able to provide synthetic data in a way
that results in a more broad decision boundary without going too far into the majority
class. The fundamental benefit of SWIM over current approaches for severe imbalance is
that it offers more performance improvements in terms of the geometric mean (g-mean)
than other cutting-edge oversampling methods on very unbalanced domains.

SMOTE-Tomek SMOTE (Synthetic Minority Over-sampling Technique) and Tomek
links removal are two existing techniques that are combined in SMOTE-Tomek[32].

While Tomek links removal technique locates pairs of samples that are similar to one
another but belong to different classes and delete the sample from the majority class from

16 Chapter 2 Background

each pair, SMOTE interpolates between existing samples to create synthetic samples
for the minority class. SMOTE-Tomek attempts to oversample the minority class and
eliminate noisy majority class samples by combining these two techniques.

For data sets with a small number of positive examples, SMOTE-Tomek produced
extremely good results in comparison to other oversampling techniques examined in the
study. Compared to other oversampling techniques, it has benefits including enhanced
classification performance and decreased overfitting.

SMOTE-Tomek is an effective method for handling imbalanced datasets because it
addresses both the problem of class imbalance and noisy samples in a single process. By
generating synthetic samples for the minority class and removing noisy samples from
both classes, SMOTE-Tomek can improve classification accuracy and reliability in many
real-world applications.

SMOTE-ENN The Synthetic Minority Over-sampling Technique (SMOTE) and Edited
Nearest Neighbor (ENN) algorithms are combined in the oversampling technique known
as SMOTE-ENN [32]. While ENN eliminates noisy and borderline cases from the majority
class, SMOTE develops synthetic samples by interpolating between instances of the
minority class.

Step 1: SMOTE The first step of SMOTE-ENN is to use the Synthetic Minority Over-
sampling Technique (SMOTE) to generate synthetic examples of the minority class. This
oversampling method creates new examples by interpolating between existing examples.
The basic idea behind SMOTE is to randomly select an example from the minority class
and then select one or more of its nearest neighbors. New examples are then created by
interpolating between the selected example and its neighbors.

Step 2: ENN The second step of SMOTE-ENN is to use Edited Nearest Neighbors (ENN)
to remove any noisy or misclassified examples from both the minority and majority
classes. This is an under-sampling method that removes examples that are considered
noisy or misclassified based on their nearest neighbors. The basic idea behind ENN is
to find the k-nearest neighbors for each sample in the training set and then remove any
sample whose class label does not agree with the majority class label among its k-nearest
neighbors.

SMOTE-ENN offers the benefit of not only raising the number of minority class instances
but also decreasing the number of noisy majority class instances as compared to other
oversampling techniques. This aids in enhancing the generalization capabilities of
classifiers developed using unbalanced data sets.

Chapter 2 Background 17

By combining these two methods, SMOTE-ENN helps to balance overfitting and under-
fitting issues associated with imbalanced datasets. The synthetic samples generated by
SMOTE help to increase the size of the minority class, while ENN helps to remove any
noisy or misclassified examples from both classes.

According to Batista et al. [32] SMOTE-ENN was found to be one of the most effective
methods for improving classification performance on imbalanced data sets with a small
number of positive instances.

SMOTE-IPF [33] solves the issue of noisy and borderline instances in unbalanced
classification. It combines two methods: IPF, which recognizes and eliminates noisy
samples, and SMOTE, which evens out the distribution of the class and fills in the
interior of minority class sub-parts. SMOTE-IPF functions by combining the SMOTE
and IPF procedures. SMOTE is used first to even out the distribution of classes and fill
in the interior of minority class sub-parts. IPF is then used to find and eliminate noisy
samples. Due to the minority class’s under-representation in the dataset and potential for
being mistaken for noisy samples, using IPF before SMOTE may result in the removal of
all examples from that class.

By interpolating between existing samples, SMOTE creates synthetic examples of the
minority class. This evens out the distribution of classes and fills in the interior of
minority class subgroups.

The noise filter known as IPF (Iterative Partitioning Filter) locates and eliminates noisy
cases from the dataset. It does this by classifying instances with comparable traits and
labeling deviations as noise.

SMOTE-IPF has a number of benefits over other oversampling strategies. First, it can
handle samples that are noisy and on the edge, which are frequent in datasets with
imbalances. Second, it doesn’t require prior knowledge of the data distribution and may
be used with any kind of unbalanced dataset. Thirdly, by regularizing the class borders,
it increases classification accuracy. Last but not least, it is adaptable enough to replace
SMOTE with any of its variations while still functioning.

2.5 MaMiPot

The SMOTE algorithm and its variants are commonly used for imbalance learning, but
they have some shortcomings. One of the main issues [3] is that they tend to create
synthetic samples that are very close to existing minority instances, which can lead to
overfitting and poor generalization performance. This is because SMOTE generates

18 Chapter 2 Background

synthetic samples by interpolating between existing minority instances, which can result
in a high degree of similarity between the original and synthetic samples.

The MAjority and MInority rePOsitioning Technique (MaMiPot) [3] addresses these
shortcomings by proposing a new approach that repositions majority samples in smaller
steps, rather than just oversampling the minority class. This helps to avoid distorting
the distribution of minority samples while still achieving better balance in the dataset.
MaMiPot can be used as a preprocessing step before oversampling with other methods,
providing several advantages such as a smaller balancing factor and similar imbalance
for training and test data.

2.6 Generative Adversarial Network

Generative Adversarial Network (GAN)[4] is a machine learning model that generates
synthetic instances of training data. GAN consists of two neural networks a generator
and a discriminator. The purpose of the generator is to generate new synthetic samples
that are indistinguishable from real data , while the discriminator aims to differentiate
between real training data and the data created by the generator. Throughout the
training process, the generator improves its ability to generate more realistic data, while
the discriminator enhances its ability to accurately discriminate between real and fake
data As the training progresses, the generator becomes capable of producing data that is
highly similar to real data, making it difficult for the discriminator to distinguish between
the two. This is the point at which the GAN reaches equilibrium.

Figure 2.3: GAN structure

Chapter 2 Background 19

The structure of a GAN can be observed in Figure 2.3. Generator and discriminator are
connected to each other to form a single, interconnected neural network. The generator’s
output size matches the input size of the discriminator. The discriminator is associated
with two distinct loss functions. One loss function is used to train the discriminator itself,
while the other is used to train the generator.

2.7 Performance metrics for imbalanced data

Ghaderi Zefrehi and Altınçay [3] explains that accuracy is inappropriate for evaluating
imbalanced datasets. In an imbalanced dataset, the majority class will dominate the
accuracy measure, while the minority class will be largely ignored. This can lead to
misleading results and poor performance evaluation of classifiers. Therefore, alternative
metrics such as F-score, G-mean and AUC evaluate classifier performance on imbalanced
datasets. These metrics provide a more comprehensive classifier performance evaluation
by considering minority and majority classes. The F-score is defined as the harmonic
mean of precision and recall, while G-mean is defined as the geometric mean of sensitivity
(recall) and specificity. AUC measures a classifier’s ability to distinguish between positive
and negative samples across all possible threshold settings.

The confusion matrix is shown in Figure 2.4 where TP is the number of true positives,
TN is the number of true negatives, FP is the number of false positives, and FN is the
number of false negatives. True positives are instances that are correctly classified as
positive, while true negatives are instances that are correctly classified as negative. False
positives and false negatives are instances that are incorrectly classified.

Figure 2.4: Confusion matrix in binary classification [34]

TNR = TN

TN + FP
(2.3)

Recall(TPR) = TP

TP + FN
(2.4)

Precision = TP

TP + FP
(2.5)

20 Chapter 2 Background

FPR = FP

TN + FP
(2.6)

The accuracy[35] of a classifier is calculated by dividing the number of correctly classified
instances (both positive and negative) by the total number of instances in the dataset.
The formula for accuracy is:

Accuracy = TP + TN

P + TN + FP + FN
= TPR + TNR

2 (2.7)

The accuracy formula measures a classifier’s overall performance on a given dataset.

2.7.1 F-score

The F-score [36], also known as the F1-score, is a widely used metric in binary classification
problems that combines precision and recall into a single score. Precision measures the
proportion of true positive predictions among all positive predictions made by the
classifier, while recall measures the proportion of true positive predictions among all
actual positive samples in the dataset.

The F-score is calculated as the harmonic mean of precision and recall:

F1 − score = 2 × Precision × Recall
Precision + Recall = 2 × TP

2 × TP + FP + FN
(2.8)

The F-score ranges from 0 to 1, with higher values indicating better performance. A
perfect classifier would have an F-score of 1.

The advantage of using F-score over other metrics such as accuracy or precision-recall
curves is that it considers both false positives and false negatives, which can be especially
important when the classes are imbalanced. For example, in a medical diagnosis problem
where detecting true positives (patients with a disease) is more important than avoiding
false positives (healthy patients diagnosed with a disease), using only accuracy or precision
may not be sufficient to evaluate the performance of a classifier.

2.7.2 G-mean

The geometric mean [37] (G-mean) is a performance metric that combines the true
positive rate (TPR) and true negative rate (TNR) of a binary classifier. It is calculated
by taking the square root of the product of TPR and TNR. The formula for G-mean is:

Chapter 2 Background 21

G-mean =
√

TPR × TNR (2.9)

where TPR is the number of true positive predictions divided by the total number of
actual positive samples, and TNR is the number of true negative predictions divided by
the total number of actual negative samples.

The advantage of using G-mean over other metrics such as accuracy or precision-recall
curves is that it considers the balance between TPR and TNR, which can be especially
important when the classes are imbalanced. For example, if there are many more negative
samples than positive samples, a classifier that always predicts negative will have high
accuracy but low sensitivity. In this case, G-mean can provide a more balanced evaluation
of the classifier’s performance.

In addition to its use in binary classification problems, G-mean has also been extended
to multi-class classification problems using various approaches such as one-vs-all and
pairwise comparisons.

2.7.3 AUC

AUC [37] (area under the ROC curve) is a metric used to evaluate the performance of
binary classifiers. It measures how well a classifier can distinguish between positive and
negative samples across all possible decision thresholds. The ROC curve in figure 2.5 is
a plot of true positive rate (TPR) against false positive rate (FPR) for different decision
thresholds of the classifier. TPR is the ratio of true positives to all actual positives, while
FPR is the ratio of false positives to all actual negatives.

The AUC represents the area under the ROC curve, which ranges from 0 to 1. A value
of 1 indicates perfect classification, while a value of 0.5 indicates random guessing.

The formula for AUC involves integrating over all possible decision thresholds:

AUC =
∫ 1

0
TPR(FPR−1(t))dt (2.10)

where TPR is the true positive rate and FPR−1 is the inverse function of false positive
rate.

AUC has several advantages over other metrics such as accuracy or precision-recall curves.

Firstly, AUC is not affected by class imbalance and misclassification costs. In many
real-world classification problems, the number of positive samples is much smaller than

22 Chapter 2 Background

Figure 2.5: ROC Curve [38]

the number of negative samples. This class imbalance can lead to biased classifiers that
perform well on negative samples but poorly on positive samples. AUC is not affected
by class imbalance because it measures the ability of a classifier to distinguish between
positive and negative samples across all possible decision thresholds.

Secondly, AUC provides a single scalar value that summarizes overall performance across
all possible decision thresholds. This makes it easier to compare the performance of
different classifiers or to evaluate the performance of a single classifier under different
operating conditions.

In contrast, accuracy and precision-recall curves depend on the choice of decision threshold
and may not provide a complete picture of classifier performance. For example, a classifier
with high accuracy may have poor performance on positive samples if it has a high
false negative rate. Similarly, precision-recall curves may be misleading if there are few
positive samples or if the cost of false positives and false negatives is not balanced.

Overall, AUC is a robust metric for evaluating binary classifiers that overcome some of
the limitations of other metrics such as accuracy or precision-recall curves.

Chapter 3

Approach

3.1 Overview

The aim of this thesis is to evaluate various data sampling techniques for imbalanced
learning. To achieve this goal, we explore both established traditional approaches
and newer methods. To implement the well-known undersampling and oversampling
techniques, we utilize two Python libraries: imblearn and smote-variants. Imblearn is
a python package offering a range of basic undersampling and oversampling methods.
The library smote-variants implements 85 different variants of the SMOTE algorithm
[39]. In addition, we utilize the Scikit-learn library to preprocess and manage our
data. Scikit-learn is a python module that performs various machine learning operations.
Additionally, we develop novel methods from scratch to address more recent challenges
not covered by the aforementioned libraries.

3.2 Dataset

By using the imblearn library we create a two dimensional imbalanced dataset in order
to test our methods.

23

24 Chapter 3 Approach

Figure 3.1: Distribution of the imbalanced dataset

Figure 3.2: Class imbalance

Figure 3.1 depicts the sample distribution within our dataset, whereas Figure 3.2 show
the class imbalance.

Chapter 3 Approach 25

3.3 SWIM - Sampling with the majority class

3.3.1 Method Description

SWIM [31] is a technique for addressing severe class imbalance through oversampling.
The primary goal of the SWIM algorithm is to position synthetic minority samples on the
density contours that align with the original minority samples in relation to the majority
class. To accomplish this, the Mahalanobis distance is computed. The Mahalanobis
distance measures the distance between a sample and the centroid of a sample group.
The concept behind SWIM is to position synthetic minority samples at an equivalent
distance from the centroid of the majority class as the original minority samples.

The formula for Mahalanobis distance is as follows:

DM (x) = (x − µ)T Σ−1(x − µ) (3.1)

Here, Σ represents the estimated covariance matrix between all features, and μ denotes
the mean of all samples. The Mahalanobis distance measures the distance in a correlated
space. If the space is uncorrelated, meaning there is no covariance between features, the
Mahalanobis distance simplifies to the Euclidean distance, which is a more straightforward
calculation.

Pseudo code 3.1 shows the construction of the SWIM method. In line 6, we verify the
rank of the majority samples matrix to determine the number of linearly independent
(i.e., uncorrelated) columns. If the rank is lower than the total number of columns,
we select the indices of all linearly dependent columns. We identify linearly dependent
columns by utilizing QR decomposition, which expresses a matrix as the product of
an orthogonal vector and an upper triangular matrix. If the upper triangular matrix
contains zero values, it signifies linear dependency. In such cases, we remove the linearly
dependent features and generate new samples within the subspace of the original data.

26 Chapter 3 Approach

1 A = majority samples

2 B = minority samples

3 rank = matrix_rank (A)

4 dim = n_columns (A)

5

6 if rank < dim:

7 # perform QR decomposition

8 independent_columns = get_independent_columns (A)

9 A = A[independent_columns]

10 B = B[independent_columns]

11

12 mu_a = mean(A)

13 A_centered = (A - mu_a)

14 B_centered = (B - mu_a)

15

16 sigma = covariance_matrix (A_centered)

17

18 if determinant (sigma) <= 0:

19 # Covariance matrix is singular

20 return

21

22 sigma_scaled = square_root (inverse (sigma))

23

24 if sigma_scaled is complex == True:

25 # Complex numbers in sigma_scaled

26 return

27

28 # Whitening transformation

29 Bw = B_centered * sigma_scaled

30

31 for i in range (0, number of synthetic samples):

32 x = Bw[random sample] # random minority sample

33 s = [] #empty list

34 for feature in num_features :

35 uf = x[feature] + alpha * sd_feature

36 lf = x[feature] - alpha * sd_feature

37 s. append (random_float (lf , uf))

38

39 s_norm = s * (euclidean_norm (x)/ euclidean_norm (s))

40 s_new = inv(sigma_scaled) * s_norm # new sample

Pseudo Code 3.1: SWIM method

In lines 13 and 14, we center the majority and minority samples around the mean of the
majority. This centering aids in calculating distances between the mean of the majority
class and the minority samples.

Chapter 3 Approach 27

From lines 16 to 29, we perform a whitening transformation on the minority class. The
whitening transformation modifies the data to eliminate covariance between features. In
the whitened space, we can utilize the Euclidean distance to measure distances between
samples. It’s important to note that this approach may not be suitable for all datasets.
In some cases, the covariance matrix can be singular, meaning it cannot be inverted.
Additionally, after taking the square root of the inverted covariance matrix, complex
numbers may arise in the scaled covariance matrix. In such instances, the transformation
is halted, and the original dataset is returned.

Between lines 31 and 40, we generate synthetic minority samples. Firstly, a random
minority sample is selected. Then, lower and upper bounds for each feature of the
synthetic samples are computed. The feature bounds are determined as follows:

lf = xf − α ∗ sdf (3.2)

uf = xf + α ∗ sdf (3.3)

Here, sdf represents the standard deviation for each feature in the transformed minority
set Bw, xf is a feature of a random minority sample and α is a user-defined parameter
that defines the spread around a density contour where the synthetic samples will be
placed. A higher value of α allows the synthetic minority samples to be positioned in a
wider area around the corresponding density contour. On lines 39 and 40, we transform
the new sample back to its original space.

3.3.2 Result

We evaluate the performance of the SWIM method on our dataset to verify if it generates
samples accurately.

Figure 3.3 displays our dataset after applying the SWIM oversampling method with a
value of α set to 0.25. To provide a point of comparison, let’s contrast this with the
conventional SMOTE oversampling approach.

When comparing Figure 3.3 and Figure 3.6, the distinctions between these two methods
become apparent. It is evident that SWIM positions synthetic minority samples along the
contour lines surrounding the majority centroid. This results in more distinct decision
regions for both the minority and majority classes. In contrast, SMOTE distributes new
minority samples across the decision region of the majority class.

28 Chapter 3 Approach

Figure 3.3: SWIM oversampling

Figure 3.4: SMOTE oversampling

3.4 SMOTEFUNA

3.4.1 Method Description

SMOTEFUNA [30], an acronym for Synthetic Minority OverSampling Technique Based on
Furthest Neighbour, differs from SMOTE in the way it generates minority samples. While
SMOTE produces minority samples within a convex hull formed by existing minority
samples, SMOTEFUNA creates an oversampling space in the shape of a hypercuboid.

Chapter 3 Approach 29

This approach allows for diversified placement of synthetic samples, reducing the risk of
overfitting the minority class.

1 majority = majority samples

2 minority = minority samples

3 synthetic_data = []

4 synthetic_labels = []

5 while i < num_samples :

6 s1 = minority [random sample]

7 s2 = get_furthest_neighbour (s1)

8 s_new = zeroes (num_features)

9 for j in range(num_features):

10 start = min(s1[j], s2[j])

11 stop = max(s1[j], s2[j])

12 s_new[j] = random (start , stop)

13 theta = get_closest_neighbour (minority , s_new)

14 beta = get_closest_neighbour (majority , s_new)

15 if theta <= beta:

16 synthetic_data . append (s_new)

17 synthetic_labels . append (minority_class)

18 i += 1

Pseudo Code 3.2: SMOTEFUNA

The pseudo code 3.2 outlines the operational procedure of the SMOTEFUNA function.
Commencing from line 6, a random sample is selected from the minority class. Subse-
quently, the furthest neighbor of the chosen sample within the minority class is identified.
By examining lines 10 and 11, the smallest and largest feature values between the two
samples are determined, establishing the boundaries of the oversampling space. Following
this, a new sample’s feature values are randomly generated within the range defined
by the largest and smallest feature values of the distanced samples. On lines 13 and
14, the distances of the synthetic sample to the nearest neighbor in both the minority
and majority classes are calculated. If the nearest neighbor from the majority class is
closer than the one from the minority class, the new minority sample is not added to
the dataset. This measure is implemented to prevent oversampling within the majority
region.

3.4.2 Result

We evaluate the performance of the SMOTEFUNA algorithm on our dataset to verify
its accuracy and effectiveness.

30 Chapter 3 Approach

Figure 3.5: SMOTEFUNA oversampling

A scatter plot in Figure 3.5 is clearly demonstrating the visual representation of the
outcome of the SMOTEFUNA oversampling technique. Upon comparing it with Figure
3.6, it becomes apparent that the synthetic minority samples are distributed across a
wider range while still maintaining a separation from the majority region’s boundaries.

3.5 MaMiPot

3.5.1 Method Description

MaMiPot, which stands for MAjority and MInority rePOsitioning Technique, presents
an alternative approach to address the class imbalance issue. Instead of oversampling the
minority samples, MaMiPot focuses on relocating both majority and minority samples
to effectively extend the minority region. To determine which samples should undergo
repositioning, a classifier is trained, and any samples falsely classified as either minority
(positive) or majority (negative) are identified. False negative samples are subsequently
shifted towards the minority centroid, while false positive samples are relocated towards
the majority centroid. Additionally, the MaMiPot algorithm necessitates a metric to
assess the impact of repositioning false negative and false positive samples on the overall
classification performance.

Chapter 3 Approach 31

1 classifier .fit(data , labels)

2 threshold = calculate_threshold ()

3 pred = classifier . predict (data , threshold)

4 metric_old = metric (tr_labels , pred)

5 # n = negative sample

6 # p = postive sample

7

8 stn = true negative samples # where pred = n and data = n

9 stp = true positive samples # where pred = p and data = p

10 sfn = false negative samples # where pred = n and data = p

11 sfp = false positive samples # where pred = p and data = n

12

13 mu_p = get_centroid (stp)

14 mu_n = get_centroid (stn)

15

16 iter = 0

17

18 while iter < 3:

19 iter += 1

20

21 if stp. num_samples > gamma and sfn. num_samples > 0:

22 for x in sfn:

23 x_new = alfa_p * mu_p + (1 - alfa_p) * x

24 sfn_new . append (x_new)

25

26 if stn. num_samples > gamma and sfp. num_samples > 0:

27 for y in sfp:

28 y_new = alfa_n * mu_n + (1 - self. alfa_n) * y

29 sfp_new . append (y_new)

30 data_new = concatenate (stp , stn , sfp_new , sfn_new)

31 classifier .fit(data_new , labels)

32 pred = classifier . predict (data , threshold)

33 metric_new = metric (tr_labels , pred)

34

35 if metric_new > metric_old :

36 metric_old = metric_new

37 data = data_new

38 iter = 0

39

40 if beta > 0:

41 data_res , labels_res = smote. sample (proportion =beta)

42 return tr_data_res , tr_labels_res

43 else:

44 return data , labels

Pseudo Code 3.3: MaMiPot

32 Chapter 3 Approach

Pseudo code 3.3 illustrates the process of MaMiPot. Initially, a classifier is trained using
the given dataset. Subsequently, the optimal threshold is determined to maximize the
decision boundary between the minority and majority classes. By default, classification
algorithms use a threshold value of 0.5, where samples are classified as positive if the
probability of being positive exceeds 0.5, and as negative if the probability is equal to
or lower than 0.5. However, the default threshold may not always be suitable, and it is
preferable to adjust it to maximize the performance metric used to evaluate the classifier.
In their MaMiPot implementation, Ghaderi Zefrehi and Altınçay [3] utilize the F1-score
as the performance metric, and the provided threshold that maximizes the F1-score is as
follows:

τ = 1
2(P

P + N
+ 0.5) (3.4)

In this equation, P denotes the count of positive samples, while N represents the count
of negative samples.

Afterwards, based on the classification algorithm, the data is divided into four subsets:
stn for true negative samples, stp for true positive samples, sfp for false positive samples,
and sfn for false negative samples. Centroids are then calculated for the true positive
and true negative samples by computing the mean values. The false positive and false
negative samples are subsequently moved towards their respective centroids. The number
of true positives and true negatives is checked against a user-defined threshold value γ on
lines 22 and 27. If the count of correctly classified samples is too low, it becomes difficult
to calculate a meaningful centroid for them. The formulas for moving the samples are
provided in lines 24 and 29, where αp and αn represent repositioning factors for false
negative and false positive samples, respectively. These repositioning factors indicate the
proportion by which the samples should be moved towards their centroids.

Next, a new dataset is created consisting of the true positive and negative samples, along
with the repositioned false negative and positive samples. The classifier is trained on
this new dataset, and a new metric is calculated. If the new metric surpasses the old
metric, the original data is replaced with the new data. This process is repeated until
the new metric fails to exceed the old metric for three consecutive iterations.

Following the repositioning step, we have the option to oversample the minority region.
As shown in lines 40 to 44, we can employ SMOTE or one of its variations for the
oversampling process. The parameter β which is determined by the user, dictates the
ratio of synthetic minority samples relative to the number of majority samples.

Chapter 3 Approach 33

3.5.2 Result

We evaluate the performance of the MaMiPot approach on our dataset. We utilize the
logistic regression classifier and the F1-score metric to carry out the MaMiPot method.

Figure 3.6: MaMiPot

It is evident that the minority and majority samples have reduced overlap compared to
their previous state. The majority samples have been repositioned at a rate of 0.9, while
the minority samples have been repositioned at a rate of 0.1. The repositioning of the
minority samples has been kept relatively conservative to maintain the distribution of
the minority class.

Next we check how MaMiPot with combination with SMOTE works.

MaMiPot in combination with SMOTE demonstrates the expected performance. The
oversampling process employs a β parameter of 0.25. It is observed that SMOTE generates
synthetic samples that overlap with the majority class. Hence, it might be beneficial
to combine MaMiPot with a technique that takes into account both the majority and
minority regions more effectively.

34 Chapter 3 Approach

Figure 3.7: MaMiPot with SMOTE

3.6 K-means MaMiPot

3.6.1 Method Description

K-means MaMiPot, a modified version of MaMiPot developed for this thesis, incorporates
k-means clustering into the process. This approach involves dividing the majority and
minority classes into multiple clusters and subsequently relocating the false negative and
false positive samples towards their nearest cluster. The objective is to distribute the
repositioned samples across different locations rather than concentrating them in a single
area. By implementing this approach, there is a possibility of enhancing the classification
outcomes as it would mitigate the risk of the classifier overfitting the data.

Pseudo code 3.4 provides an implementation overview of KMeans-MaMiPot. In essence,
this method shares similarities with plain MaMiPot, but there is a notable distinction
in how centroids are calculated. Specifically, on lines 13 to 17, two k-means clustering
algorithms are trained—one on the true positive samples and the other on the true
negative samples. Users can define the values of p_clusters and n_clusters to specify
the number of clusters for the positive and negative classes, respectively. False negative
samples are assigned to clusters of true positive samples, while false positive samples
are assigned to clusters of true negative samples. Subsequently, on lines 25 to 35, the
false negative and false positive samples are repositioned towards the centroids of their
respective clusters.

Chapter 3 Approach 35

1 classifier .fit(data , labels)

2 threshold = calculate_threshold ()

3 pred = classifier . predict (data , threshold)

4 metric_old = metric (tr_labels , pred)

5 # n = negative sample

6 # p = postive sample

7

8 stn = true negative samples # where pred = n and data = n

9 stp = true positive samples # where pred = p and data = p

10 sfn = false negative samples # where pred = n and data = p

11 sfp = false positive samples # where pred = p and data = n

12

13 kmeans_tp = KMeans (num_clusters = p_clusters).fit(stp)

14 clusters_fn = kmeans_tp . predict (sfn)

15

16 kmeans_tn = KMeans (num_clusters = n_clusters).fit(stn)

17 clusters_fp = kmeans_tn . predict (sfp)

18

19 iter = 0

20 while iter < 3:

21 iter += 1

22 if stp.shape [0] > (gamma + p_clusters) and sfn. num_samples > 0:

23 for index , x in sfn:

24 mu_p = kmeans_tp . cluster_centers [clusters_fn [index]]

25 x_new = alfa_p * mu_p + (1 - alfa_p) * x

26 sfn_new . append (x_new)

27

28 if stn.shape [0] > (gamma + n_clusters) and sfp. num_samples > 0:

29 for inde , y in sfp:

30 mu_n = kmeans_tn . cluster_centers [clusters_fp [index]]

31 y_new = alfa_n * mu_n + (1 - self. alfa_n) * y

32 sfp_new . append (y_new)

Pseudo Code 3.4: KM-MaMiPot

3.6.2 Result

We evaluate the performance of KMeans-MaMiPot on our dataset using a logistic
regression classifier and the F1 metric. For this evaluation, we configure the majority
class to have three clusters and the minority class to have a single cluster.

The outcome depicted in Figure 3.8 exhibits similarities to the outcome of plain MaMiPot.
The primary distinction between the regular MaMiPot and KMeans-MaMiPot becomes
apparent when we observe that instead of one centroid, we now have two centroids for

36 Chapter 3 Approach

Figure 3.8: KMeans-MaMiPot

the majority class. Consequently, this leads to a broader distribution of majority samples
across the majority region.

3.7 GAN

GAN [4], which stands for Generative Adversarial Network, is composed of two neural
networks: a generator and a discriminator. The generator’s role is to generate synthetic
samples that closely resemble real samples, while the discriminator’s task is to distinguish
between real and synthetic samples. During training, the discriminator learns to improve
its ability to discriminate between genuine and fake data, while the generator learns to
produce more realistic data until both networks reach a state of equilibrium.

While GANs are commonly used for generating synthetic image or auditory data, in
this thesis, we aim to apply GANs for oversampling smaller tabular datasets. Our
implementation of GAN is based on the CIGAN approach proposed by Huang and Ma
[40]. To implement the GAN, we utilize the TensorFlow and Keras libraries in Python,
which provide robust support for machine learning and deep neural networks.

Before we commence the implementation of our GAN, it is essential to preprocess our
data appropriately. The primary distinction lies in the fact that, instead of standardizing
the data, we utilize a quantile transformer to ensure the data adheres to a uniform
distribution. This is performed to enable the generation of synthetic samples in datasets
with varying distributions. Subsequently, we employ the MinMaxScaler to scale the data,

Chapter 3 Approach 37

ensuring that all values fall within the range of -1 to 1. The rationale behind these
transformations will become evident as we delve into the construction of the generator.

1 kernel_initializer = initializers . random_normal (stddev =0.01)

2

3 generator = keras. models . Sequential ()

4 self. generator .add(keras. layers .Dense (128 , input_shape =input_size ,

kernel_initializer = kernel_initializer))

5 generator .add(keras. layers . LeakyReLU (alpha =0.7))

6 generator .add(keras. layers . BatchNormalization (momentum =0.9))

7 discriminator .add(keras. layers . Dropout (0.2))

8 generator .add(keras. layers .Dense (256))

9 generator .add(keras. layers . LeakyReLU (alpha =0.7))

10 generator .add(keras. layers . BatchNormalization (momentum =0.9))

11 discriminator .add(keras. layers . Dropout (0.2))

12 generator .add(keras. layers .Dense (512))

13 generator .add(keras. layers . LeakyReLU (alpha =0.7))

14 generator .add(keras. layers . BatchNormalization (momentum =0.9))

15 discriminator .add(keras. layers . Dropout (0.2))

16 generator .add(keras. layers .Dense(sample_size , activation =’tanh ’))

Pseudo Code 3.5: GAN generator

Pseudo code 3.5 outlines the construction of the generator. To begin, we establish the
initial weights of the generator by generating random numbers from a normal distribution.
The generator is defined as a sequential model, signifying that the layers are connected
in a sequential manner. It consists of an input layer, three hidden layers, and an output
layer. The input layer receives randomly generated noise values, which are sampled
from a uniform distribution. Each hidden layer incorporates a LeakyReLU activation
function, which determines the output of each node. LeakyReLU is a commonly used
activation function. Additionally, the output of each hidden layer is normalized, enabling
the model to converge more rapidly with a higher learning rate. Each hidden layer is
also equipped with a dropout layer. The purpose of the dropout layer is to randomly
disregard a portion of the layer’s outputs, thereby mitigating the risk of overfitting. Each
layer is specified as a dense layer, meaning that every node in a given layer is connected
to all nodes in the subsequent layer. The output layer employs a tanh activation function,
which produces values within the range of -1 to 1. This aligns with the scaling of our
data during the preprocessing phase.

The discriminator is built in a similar manner to the generator. Its input is derived from
the output of the generator. Like the generator, the discriminator comprises three hidden
layers that employ the LeakyReLU activation function. Each hidden layer is equipped
with a dropout layer and a normalization layer. The output layer of the discriminator

38 Chapter 3 Approach

employs the sigmoid activation function. The sigmoid function produces values ranging
from 0 to 1. Consequently, the discriminator outputs the probability of the generated
sample being genuine or not.

The generator and discriminator are combined into a single GAN neural network. The
binary crossentropy function is utilized to compute the training loss, and the weights of
the GAN are updated using the Adam optimization algorithm in accordance with the
loss.

Prior to training the GAN, the dataset is partitioned into several batches, with the
number of batches determined by the user. The GAN will be trained sequentially on
each batch of the dataset. The user also specifies the number of epochs for training. An
epoch refers to a complete iteration of the neural network training on the entire dataset.
The training loss is computed after each epoch.

During the training procedure, we initially focus on training the discriminator. Our
first step is to generate a set of synthetic samples using the generator. These synthetic
samples are created to match the size of the real sample batch. The fake samples are
labeled as 0 (False), while the real samples are labeled as 1 (True). The discriminator
is then trained on both batches of samples, allowing it to distinguish between real and
synthetic samples..

Following that, we proceed with training the generator. It is important to emphasize
that during the generator training, the discriminator is designated as non-trainable. This
implies that the discriminator’s weights remain unchanged throughout the generator’s
training process. The generator is trained using a batch of random noise samples, where
all the labels are set to 1 to indicate that the generated samples are considered genuine.
The discriminator will recognize that a significant portion of the samples are not authentic
and will penalize these predictions. Consequently, this will impact the way the generator’s
weights are updated.

As each epoch progresses, the generated samples should become increasingly comparable
to real minority samples.

Once the network has completed its training, the generator should possess the ability to
generate precise synthetic minority samples.

3.7.1 Result

We evaluate the effectiveness of the GAN model on our dataset, where we configure the
number of epochs to 50 and the batch size to 5.

Chapter 3 Approach 39

Figure 3.9: GAN

The depicted graph in Figure 3.9 illustrates the data sampling process of the GAN in a
two-dimensional space. By employing the tanh function, the GAN generates synthetic
minority samples that align in a manner resembling a hyperbolic line. This alignment
has the potential to cause overfitting during the classification phase. Typically, GAN
models are most effective when applied to large, high-dimensional datasets, making
their utilization on a small two-dimensional dataset potentially excessive. Therefore, our
implementation of the GAN is expected to yield more favorable results when employed
on a dataset with a greater number of features.

Chapter 4

Experimental Evaluation

4.1 Overview

The main objective of this research is to evaluate and compare various sampling methods
that have been previously published in the literature alongside newly proposed methods.
Handling class imbalance leads to more precise and significant evaluation metrics that
reflect the true performance of the model in each class. Traditional evaluation metrics
such as accuracy can be misleading when dealing with imbalanced data since they can
be heavily biased towards the majority class. Metrics such as precision, recall, and F1
score are better suited for evaluating models trained on imbalanced data.

The solution approach follows a workflow, illustrated in the figure 4.1:

Data Preprocessing: The initial stage involves preprocessing the data to ensure its
suitability for subsequent steps. This includes tasks like label encoding, feature scaling,
and splitting data for five-fold cross validation.

Resampling: In this step, we employ various techniques such as undersampling, over-
sampling, MaMiPot, and GAN to balance our dataset, addressing any class imbalance
issues.

Model Training: Once the data is prepared, we proceed to train the models using diverse
machine learning algorithms. These algorithms enable the models to learn patterns and
relationships within the data.

Model Evaluation: After training the models, it is crucial to assess their performance.
Evaluation metrics like F1-score, G-mean, and AUC are utilized to measure the models’
effectiveness. To obtain reliable performance estimates, we employ three iterations of

41

42 Chapter 4 Experimental Evaluation

5-fold cross validation, wherein we will fit and evaluate 50 models on the dataset during
each iteration.

Figure 4.1: Workflow

4.2 Experimental Setup

Datasets

In our study, we utilized 25 binary datasets that exhibited imbalanced class distributions,
with imbalance ratios ranging from 5.14 to 129.44, as described in table 4.1. These
datasets were obtained from the KEEL repository [5], which can be accessed via URL
http://sci2s.ugr.es/keel/imbalanced.php. Table 4.1 provides a summary of the
datasets, including their names and number of instances, number of attributes and the
imbalance ratio.

http://sci2s.ugr.es/keel/imbalanced.php

Chapter 4 Experimental Evaluation 43

Table 4.1: A summary of binary datasets available in the KEEL repository [5]

Dataset #Instances #Attributes Imbalance ratio
new-thyroid1 215 5 5.14
ecoli2 336 7 5.46
glass6 214 9 6.38
yeast3 1484 8 8.1
ecoli3 336 7 8.6
yeast-2_vs_4 514 8 9.08
yeast-0-3-5-9_vs_7-8 506 8 9.12
yeast-0-2-5-7-9_vs_3-6-8 1004 8 9.14
ecoli-0-1_vs_2-3-5 244 7 9.17
yeast-0-5-6-7-9_vs_4 528 8 9.35
vowel0 988 13 9.98
glass2 214 9 11.59
ecoli-0-1-4-6_vs_5 280 6 13
yeast-1_vs_7 259 7 14.3
glass4 214 9 15.47
ecoli4 336 7 15.8
page-blocks-1-3_vs_4 471 10 15.86
abalone9-18 731 8 16.4
glass-0-1-6_vs_5 184 9 19.44
glass5 214 9 22.79
yeast-2_vs_8 482 8 23.1
yeast4 1484 8 28.1
ecoli-0-1-3-7_vs_2-6 281 7 39.14
yeast6 1484 8 41.4
abalone19 4174 8 129.44

Preprocessing

During this specific stage, we begin by applying label encoding to the categorical target
feature, transforming it into numerical representation for usage in model fitting and
assessment. The Scikit-learn [41] module’s LabelEncoder method, which transforms
categorical variables into ordinal numbers, is used during the transformation process.

Subsequently, the data is normalized as the next step. Normalization is crucial to
eliminate any biases caused by features being in disparate ranges, which could potentially
confuse certain classifiers such as logistic regression.

We utilize the StandardScaler class from Scikit-learn to normalize our data. The Stan-
dardScaler removes the mean and scales the data to have a unit variance due to the
substantial fluctuations observed in the feature variances. This is achieved by calculating
the mean and standard deviation for each feature separately. The resulting standard score
of a sample is calculated by subtracting the sample from the mean of its corresponding
feature and dividing the result by the standard deviation [41, 42].

44 Chapter 4 Experimental Evaluation

Next we divide the dataset into five segments of equal size. This is done for performing
five-fold cross validation. It is essential to acknowledge that due to the dataset’s imbalance,
a stratified split is necessary. By employing a stratified split, we ensure that the class
labels’ proportions are equal in each split.

This preprocessing procedure is applied to all sampling methods, except for GAN, which,
as described in section 3, employs its own distinct preprocessing scheme.

Resampling

In this stage of the research, we apply the methods discussed in Chapters 2 and 3 to
address the class imbalance issue within the dataset. These methods are specifically
designed to resample the data and create a more equitable distribution across the different
classes, thus enabling effective classification modeling.

By applying these methods, we aim to achieve a balanced distribution of samples across
the classes, paving the way for effective classification modeling. This stage of the research
plays a critical role in mitigating the challenges posed by imbalanced datasets and
improving the overall performance and generalization of the classification models.

Each resampling method is employed to modify the data in such a way that an equal
number of minority and majority samples are present, except for the cases of MaMiPot and
Kmeans-MaMiPot combined with SMOTE variants. In these instances, we oversample
the minority class by 50%.

Classification

On the training dataset, we used five-fold stratified cross-validation to evaluate the
performance of eight different machine learning models:

• logistic regression (LR) [6]

• K-Nearest Neighbors (KNN) [7]

• Support Vector Machine (SVM) [9]

• Naive Bayes (NB) [8]

• Decision Tree (DT) [10]

• Random Forest (RF) [11]

• AdaBoost [12]

Chapter 4 Experimental Evaluation 45

• Multilayer Perceptron (MLP) [13]

All the classifiers mentioned above are obtained from the Scikit-Learn library. During
training, we utilize the default parameters for each classifier. The process of five-fold
cross-validation involves conducting training, testing, and evaluation five times, using
a different data segment as the test set each time. The final metric is determined by
calculating the average of the five metrics obtained from each fold. This approach ensures
a more accurate and precise result.

Evaluation

To evaluate the effectiveness of the models, we computed each assessment metric men-
tioned in Chapter 2. Specifically, we used the Scikit-learn toolkit to compute F1, G-mean
and AUC scores. We then created ranking tables for each of these three measures.

4.3 Experimental Results

In this section, we showcase the outcomes of our analysis. The average results across all
datasets for each classifier and sampling method are displayed in Figures 4.2, 4.3 and 4.4.
The transition of colors from green to red signifies a progression from high values to low
values.

46 Chapter 4 Experimental Evaluation

Figure 4.2: Avarage F1-score across all datasets

Chapter 4 Experimental Evaluation 47

Figure 4.3: Avarage G-mean across all datasets

48 Chapter 4 Experimental Evaluation

Figure 4.4: Avarage AUC score across all datasets

Chapter 4 Experimental Evaluation 49

4.4 Result Analysis

This section focuses on comparing the performance of the proposed methods with other
sampling techniques. The evaluation is conducted on ensembles consisting of eight
classifiers.

Figure 4.2 illustrates the results obtained from the cross-validation process, with the
F1-score evaluation metric reflecting the average performance across all datasets. The
"None" model represents the implementation of the classifier using the original unbalanced
data. It becomes apparent that oversampling methods generally yield higher F1-scores
compared to the undersampling methods.

Based on the F1-score metric, MaMiPot demonstrates good performance overall, except
for the AdaBoost classifier. It can be concluded that the AdaBoost classifier does not
perform well when there are changes in the position of the samples.

The majority of classifiers exhibit poor performance with the GAN, except for AdaBoost,
which achieves the highest score. The Near-Miss algorithm appears to have the poorest
performance. This is likely due to Near-Miss removing an excessive number of sam-
ples, which subsequently leads to the classifier lacking essential information about the
distribution of the data.

Table 4.2 shows the ranking of different resampling methods based on their average
F1-score across all datasets and classifiers. The ranking is determined by aggregating
the scores of all classifiers. The results indicate that resampling a dataset can have a
substantial effect on its F1-score. It demonstrates that out of the 50 resampling methods
evaluated, 44 of them successfully improved the F1-score. Among these methods, the
top-rated one is the Version 1 of Borderline-SMOTE.

50 Chapter 4 Experimental Evaluation

Table 4.2: Sampling methods ranked by F1 score

method rank method rank
BD-SMOTE1 1 MaMiPot + SWIM 26
MaMiPot + SM-ENN 2 BD-SMOTE2 27
KM-MaMiPot + SM-ENN 3 KM-MaMiPot + SMOTEFUNA 28
SWIM 4 MaMiPot + DBSMOTE 29
NCR 5 KM-MaMiPot + DBSMOTE 30
KM-MaMiPot + SMOTE 6 KM-MaMiPot + MWMOTE 31
KM-MaMiPot + SM-IPF 7 MWMOTE 32
SMOTEFUNA 8 MaMiPot + SMOTEFUNA 33
ENN 9 KM-MaMiPot + KM-SMOTE 34
SMOTE-TM 10 MaMiPot + MWMOTE 35
CCR 11 MaMiPot + KM-SMOTE 36
MaMiPot + SMOTE 12 MaMiPot + BD-SMOTE2 37
MaMiPot + SM-TM 13 ADASYN 38
MaMiPot + SM-IPF 14 KM-MaMiPot + BD-SMOTE2 39
KM-MaMiPot + SM-TM 15 T-links 40
SMOTE 16 KM-MaMiPot + ADASYN 41
SMOTE-IPF 17 OSS 42
MaMiPot + CCR 18 MaMiPot + ADASYN 43
DBSMOTE 19 SMOTE-ENN 44
KM-MaMiPot + CCR 20 None 45
KM-MaMiPot + BD-SMOTE1 21 GAN 46
KM-SMOTE 22 KM-MaMiPot 47
ROS 23 MaMiPot 48
KM-MaMiPot + SWIM 24 RUS 49
MaMiPot + BD-SMOTE1 25 NearMiss 50

Figure 4.3 illustrates the average results for geometric mean across all datasets.

The G-mean scores show that LR, KNN, and SVM classifiers perform considerably better
than NB, DT, and AdaBoost classifiers across all resampling techniques. This can have
a number of causes, including:

• The fact that LR, KNN, and SVM classifiers are capable of handling both linear
and non-linear correlations in the data makes them particularly suitable for a
variety of classification problems. In contrast, the performance of the naive bayes,
decision tree, and AdaBoost may be hindered by their inability to recognize intricate
patterns and relationships in the data.

• Gaussian naive bayes makes an assumption that all features are independent and
that data in each feature is normally distributed, which might not be true for this
application. Although decision tree and decision tree based classifiers can handle
high-dimensional feature spaces or complicated relationships between features, it
still might be challenging.

Chapter 4 Experimental Evaluation 51

Table 4.3: Sampling methods ranked by G-mean

method rank method rank
RUS 1 MaMiPot + MWMOTE 26
SMOTE-TM 2 MaMiPot + SWIM 27
SMOTE 3 KM-MaMiPot + BD-SMOTE1 28
CCR 4 MaMiPot + BD-SMOTE1 29
SMOTE-IPF 5 SMOTEFUNA 30
MaMiPot + SM-ENN 6 KM-MaMiPot + BD-SMOTE2 31
KM-MaMiPot + SM-ENN 7 MaMiPot + BD-SMOTE2 32
ADASYN 8 NearMiss 33
ROS 9 DBSMOTE 34
MWMOTE 10 KM-MaMiPot + DBSMOTE 35
KM-MaMiPot + ADASYN 11 KM-MaMiPot + SMOTEFUNA 36
KM-MaMiPot + CCR 12 MaMiPot + DBSMOTE 37
MaMiPot + CCR 13 MaMiPot + SMOTEFUNA 38
SWIM 14 NCR 39
KM-MaMiPot + SM-IPF 15 ENN 40
BD-SMOTE1 16 KM-MaMiPot + KM-SMOTE 41
KM-MaMiPot + SMOTE 17 MaMiPot + KM-SMOTE 42
KM-MaMiPot + SM-TM 18 KM-SMOTE 43
MaMiPot + ADASYN 19 GAN 44
MaMiPot + SMOTE 20 KM-MaMiPot 45
MaMiPot + SM-TM 21 T-links 46
MaMiPot + SM-IPF 22 OSS 47
KM-MaMiPot + MWMOTE 23 MaMiPot 48
BD-SMOTE2 24 SMOTE-ENN 49
KM-MaMiPot + SWIM 25 None 50

Table 4.3 shows the ranking of different resampling methods based on their average
geometric mean across all datasets and classifiers.

Among the evaluated techniques, Random Under-sampling (RUS) achieved the highest
G-mean score, indicating its effectiveness in addressing the class imbalance issue. It is
followed by the SMOTE-Tomek Links (SMOTE-TM) and the regular SMOTE.

Figure 4.3 illustrates the average results for the AUC metric across all datasets.

Although the AUC scores generally align with the G-mean results, the differences
observed for each classifier are less pronounced in comparison to the G-mean results.
Based on the ranking of projected probabilities, AUC primarily analyzes the model’s
capacity to distinguish between positive and negative cases. The classifier’s capacity to
concurrently optimize sensitivity and specificity is also captured by G-mean. Classifiers
that successfully discriminate between good and bad occurrences by appropriately rating
them tend to perform consistently across both criteria.

52 Chapter 4 Experimental Evaluation

Table 4.4: Sampling methods ranked by AUC score

method rank method rank
CCR 1 MaMiPot + MWMOTE 26
SMOTE-TM 2 MaMiPot + SWIM 27
SMOTE 3 KM-MaMiPot + BD-SMOTE1 28
SMOTE-IPF 4 MaMiPot + BD-SMOTE1 29
RUS 5 SMOTEFUNA 30
MaMiPot + SM-ENN 6 DBSMOTE 31
KM-MaMiPot + SM-ENN 7 KM-MaMiPot + BD-SMOTE2 32
ROS 8 MaMiPot + BD-SMOTE2 33
ADASYN 9 KM-MaMiPot + DBSMOTE 34
MaMiPot + CCR 10 NCR 35
KM-MaMiPot + CCR 11 MaMiPot + DBSMOTE 36
SWIM 12 KM-MaMiPot + SMOTEFUNA 37
MWMOTE 13 ENN 38
BD-SMOTE1 14 MaMiPot + SMOTEFUNA 39
KM-MaMiPot + ADASYN 15 KM-SMOTE 40
KM-MaMiPot + SM-IPF 16 KM-MaMiPot + KM-SMOTE 41
KM-MaMiPot + SM-TM 17 MaMiPot + KM-SMOTE 42
KM-MaMiPot + SMOTE 18 GAN 43
MaMiPot + SM-IPF 19 T-links 44
MaMiPot + SMOTE 20 OSS 45
MaMiPot + ADASYN 21 KM-MaMiPot 46
MaMiPot + SM-TM 22 MaMiPot 47
KM-MaMiPot + SWIM 23 SMOTE-ENN 48
KM-MaMiPot + MWMOTE 24 None 49
BD-SMOTE2 25 NearMiss 50

Despite their similarities, AUC and G-mean offer different viewpoints on classifier
performance. While G-mean integrates sensitivity and specificity at a certain threshold,
AUC is a threshold-independent statistic that focuses on ranking predicted probabilities.

As a result, comparing the two measures can offer a more thorough insight of classifier
performance.

Table 4.4 shows the ranking of different resampling methods based on their average AUC
score across all datasets and classifiers. CCR achieved highest AUC score Following it
are the SMOTE-Tomek Links (SMOTE-TM) and regular SMOTE.

Chapter 5

Conclusions

This thesis has explored the challenges and techniques associated with imbalanced
classification in machine learning. We have investigated various resampling methods,
such as oversampling, undersampling, MaMiPot and Generative Adversarial Networks
to mitigate the impact of class imbalance. We aimed to assess established and widely
recognized methods in comparison to newer approaches.

We conducted experiments on a set of 25 imbalanced datasets with varying degrees of
class imbalance to evaluate the performance of all methods. The evaluation was based
on F1-score, geometric mean, and AUC score as the chosen metrics. These metrics were
specifically selected because they are well-suited for assessing performance in the context
of imbalanced data.

Table 5.1 displays the ranking of the top five methods according to their F1-scores. It
is clear that both plain oversampling methods and the combination of MaMiPot with
oversampling yield the most favorable outcomes.

Rank Method
1 BD-SMOTE1
2 MaMiPot + SM-ENN
3 KM-MaMiPot + SM-ENN
4 SWIM
5 NCR

Table 5.1: Five higiest scored sampling methods based on F1-score

53

54 Chapter 5 Conclusions

The top five sampling methods, ranked by the geometric mean, are presented in Table
5.2. The findings regarding the geometric mean are rather unexpected. Surprisingly, a
straightforward technique such as random undersampling is rated as the most effective
sampling method for maximizing the geometric mean.

Rank Method
1 RUS
2 SMOTE-TM
3 SMOTE
4 CCR
5 SMOTE-IPF

Table 5.2: Five highest scored sampling methods based on geometric mean

Table 5.3 presents the top five sampling methods, ranked by the AUC score. Interestingly,
the methods that achieve the highest scores for AUC are quite similar to those that
achieve the highest scores for the geometric mean. This suggests that sampling methods
which excel at maximizing the geometric mean also tend to be effective in maximizing
the AUC score.

Rank Method
1 CCR
2 SMOTE-TM
3 SMOTE
4 SMOTE-IPF
5 RUS

Table 5.3: Five highest scored sampling methods based on AUC score

Based on our experiments, it is evident that both oversampling and MaMiPot can
significantly improve classifier performance in imbalanced datasets. However, our findings
indicate that the Generative Adversarial Network (GAN) yielded disappointing results.
One possible explanation for this outcome could be the small size of our datasets, which
might have resulted in the insufficient convergence of the GAN due to the limited
information contained in the small training batches.

Chapter 5 Conclusions 55

5.1 Future Directions

Our future goals encompass the following:

• Expand the application of our methods to handle imbalanced problems involving
multiple classes.

• Assess the impact of data size and dimensionality on the effectiveness of our
techniques.

• Enhance the GAN approach to improve its performance in imbalanced classification
scenarios.

List of Figures

2.1 Decision tree . 7
2.2 Multi Layer Perceptron . 9
2.3 GAN structure . 18
2.4 Confusion matrix in binary classification [34] 19
2.5 ROC Curve [38] . 22

3.1 Distribution of the imbalanced dataset . 24
3.2 Class imbalance . 24
3.3 SWIM oversampling . 28
3.4 SMOTE oversampling . 28
3.5 SMOTEFUNA oversampling . 30
3.6 MaMiPot . 33
3.7 MaMiPot with SMOTE . 34
3.8 KMeans-MaMiPot . 36
3.9 GAN . 39

4.1 Workflow . 42
4.2 Avarage F1-score across all datasets . 46
4.3 Avarage G-mean across all datasets . 47
4.4 Avarage AUC score across all datasets . 48

57

List of Tables

4.1 A summary of binary datasets available in the KEEL repository [5] 43
4.2 Sampling methods ranked by F1 score . 50
4.3 Sampling methods ranked by G-mean . 51
4.4 Sampling methods ranked by AUC score 52

5.1 Five higiest scored sampling methods based on F1-score 53
5.2 Five highest scored sampling methods based on geometric mean 54
5.3 Five highest scored sampling methods based on AUC score 54

59

Appendix A

Source Code

Source code is available at https://github.com/pio93/mst_code.git

61

https://github.com/pio93/mst_code.git

Bibliography

[1] Yunqian Ma and Haibo He. Imbalanced learning: foundations, algorithms, and
applications. 2013.

[2] Sukarna Barua, Md Monirul Islam, Xin Yao, and Kazuyuki Murase. Mwmote–
majority weighted minority oversampling technique for imbalanced data set learning.
IEEE Transactions on knowledge and data engineering, 26(2):405–425, 2012.

[3] Hossein Ghaderi Zefrehi and Hakan Altınçay. Mamipot: a paradigm shift for the
classification of imbalanced data. Journal of Intelligent Information Systems, pages
1–26, 2022.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Y. Bengio. Generative adversarial networks.
Advances in Neural Information Processing Systems, 3, 06 2014. doi: 10.1145/
3422622.

[5] J Derrac, S Garcia, L Sanchez, and F Herrera. Keel data-mining software tool: Data
set repository, integration of algorithms and experimental analysis framework. J.
Mult. Valued Logic Soft Comput, 17, 2015.

[6] David Roxbee Cox. Analysis of binary data. Routledge, 2018.

[7] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE
transactions on information theory, 13(1):21–27, 1967.

[8] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The
Journal of Machine learning research, 7:1–30, 2006.

[9] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20:273–297, 1995.

[10] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals
of eugenics, 7(2):179–188, 1936.

63

Bibliography BIBLIOGRAPHY

[11] D Richard Cutler, Thomas C Edwards Jr, Karen H Beard, Adele Cutler, Kyle T
Hess, Jacob Gibson, and Joshua J Lawler. Random forests for classification in
ecology. Ecology, 88(11):2783–2792, 2007.

[12] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm.
In icml, volume 96, pages 148–156. Citeseer, 1996.

[13] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[14] Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions: a case
study involving information extraction. In Proceedings of workshop on learning from
imbalanced datasets, volume 126, pages 1–7. ICML, 2003.

[15] Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems, Man, and Cybernetics, (3):408–421, 1972.

[16] Ivan Tomek. Two modifications of cnn. 1976.

[17] Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training
sets: one-sided selection. In Icml, volume 97, page 179. Citeseer, 1997.

[18] Jorma Laurikkala. Improving identification of difficult small classes by balancing
class distribution. In Artificial Intelligence in Medicine: 8th Conference on Artificial
Intelligence in Medicine in Europe, AIME 2001 Cascais, Portugal, July 1–4, 2001,
Proceedings 8, pages 63–66. Springer, 2001.

[19] Joonho Gong and Hyunjoong Kim. Rhsboost: Improving classification performance
in imbalance data. Computational Statistics & Data Analysis, 111:1–13, 2017.

[20] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321–357, 2002.

[21] Sukarna Barua, Md. Monirul Islam, Xin Yao, and Kazuyuki Murase. Mwmote–
majority weighted minority oversampling technique for imbalanced data set learning.
IEEE Transactions on Knowledge and Data Engineering, 26(2):405–425, 2014. doi:
10.1109/TKDE.2012.232.

[22] Halimu Chongomweru and Asem Kasem. A novel ensemble method for classification
in imbalanced datasets using split balancing technique based on instance hardness
(sbal_ih). Neural Computing and Applications, 33(17):11233–11254, 2021.

[23] Yuxi Xie, Min Qiu, Haibo Zhang, Lizhi Peng, and Zhenxiang Chen. Gaus-
sian distribution based oversampling for imbalanced data classification. IEEE

Bibliography 65

Transactions on Knowledge and Data Engineering, 34(2):667–679, 2022. doi:
10.1109/TKDE.2020.2985965.

[24] Krystyna Napierala and Jerzy Stefanowski. Types of minority class examples and
their influence on learning classifiers from imbalanced data. Journal of Intelligent
Information Systems, 46:563–597, 2016.

[25] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. Adasyn: Adaptive
synthetic sampling approach for imbalanced learning. In 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence), pages 1322–1328, 2008. doi: 10.1109/IJCNN.2008.4633969.

[26] Georgios Douzas, Fernando Bacao, and Felix Last. Improving imbalanced learning
through a heuristic oversampling method based on k-means and smote. Information
Sciences, 465:1–20, 2018.

[27] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-
sampling method in imbalanced data sets learning. In Advances in Intelligent
Computing: International Conference on Intelligent Computing, ICIC 2005, Hefei,
China, August 23-26, 2005, Proceedings, Part I 1, pages 878–887. Springer, 2005.

[28] Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap.
Dbsmote: density-based synthetic minority over-sampling technique. Applied Intelli-
gence, 36:664–684, 2012.

[29] Michał Koziarski and Michał Wożniak. Ccr: A combined cleaning and resampling
algorithm for imbalanced data classification. International Journal of Applied
Mathematics and Computer Science, 27(4):727–736, 2017.

[30] Ahmad S Tarawneh, Ahmad BA Hassanat, Khalid Almohammadi, Dmitry
Chetverikov, and Colin Bellinger. Smotefuna: Synthetic minority over-sampling
technique based on furthest neighbour algorithm. IEEE Access, 8:59069–59082,
2020.

[31] Shiven Sharma, Colin Bellinger, Bartosz Krawczyk, Osmar Zaiane, and Nathalie
Japkowicz. Synthetic oversampling with the majority class: A new perspective
on handling extreme imbalance. In 2018 IEEE International Conference on Data
Mining (ICDM), pages 447–456, 2018. doi: 10.1109/ICDM.2018.00060.

[32] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. A study of
the behavior of several methods for balancing machine learning training data. ACM
SIGKDD explorations newsletter, 6(1):20–29, 2004.

Bibliography BIBLIOGRAPHY

[33] José A Sáez, Julián Luengo, Jerzy Stefanowski, and Francisco Herrera. Smote–ipf:
Addressing the noisy and borderline examples problem in imbalanced classification
by a re-sampling method with filtering. Information Sciences, 291:184–203, 2015.

[34] Guillem Collell, Drazen Prelec, and Kaustubh R Patil. A simple plug-in bagging
ensemble based on threshold-moving for classifying binary and multiclass imbalanced
data. Neurocomputing, 275:330–340, 2018.

[35] CA Hartanto, S Kurniawan, D Arianto, and AM Arymurthy. Dcgan-generated
synthetic images effect on white blood cell classification. In IOP Conference Series:
Materials Science and Engineering, volume 1077, page 012033. IOP Publishing,
2021.

[36] David MW Powers. Evaluation: from precision, recall and f-measure to roc, in-
formedness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.

[37] Roghayeh Soleymani, Eric Granger, and Giorgio Fumera. F-measure curves: A tool
to visualize classifier performance under imbalance. Pattern Recognition, 100:107146,
2020.

[38] Jason Brownlee. Imbalanced classification with Python: better metrics, balance
skewed classes, cost-sensitive learning. Machine Learning Mastery, 2020.

[39] György Kovács. smote-variants: a python implementation of 85 minority oversam-
pling techniques. Neurocomputing, 366:352–354, 2019. doi: 10.1016/j.neucom.2019.
06.100. (IF-2019=4.07).

[40] Yuxiao Huang and Yan Ma. Cigan: A python package for handling class imbalance
using generative adversarial networks. 08 2022. doi: 10.48550/arXiv.2208.02931.

[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine
Learning research, 12:2825–2830, 2011.

[42] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques
Grobler, et al. Api design for machine learning software: experiences from the
scikit-learn project. arXiv preprint arXiv:1309.0238, 2013.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Background and Motivation
	1.2 Approach and Contributions
	1.3 Outline

	2 Background
	2.1 Class imbalance problem
	2.2 Classification algorithms
	2.3 Undersampling
	2.4 Oversampling
	2.4.1 SMOTE
	2.4.2 SMOTE variants

	2.5 MaMiPot
	2.6 Generative Adversarial Network
	2.7 Performance metrics for imbalanced data
	2.7.1 F-score
	2.7.2 G-mean
	2.7.3 AUC

	3 Approach
	3.1 Overview
	3.2 Dataset
	3.3 SWIM - Sampling with the majority class
	3.3.1 Method Description
	3.3.2 Result

	3.4 SMOTEFUNA
	3.4.1 Method Description
	3.4.2 Result

	3.5 MaMiPot
	3.5.1 Method Description
	3.5.2 Result

	3.6 K-means MaMiPot
	3.6.1 Method Description
	3.6.2 Result

	3.7 GAN
	3.7.1 Result

	4 Experimental Evaluation
	4.1 Overview
	4.2 Experimental Setup
	4.3 Experimental Results
	4.4 Result Analysis

	5 Conclusions
	5.1 Future Directions

	List of Figures
	List of Tables
	A Source Code
	Bibliography

