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Integral controllers with single negative feedbacks were subjected to a step-perturbation

at constant but different backgrounds. Response amplitudes of the controlled variable,

here called A, decreased monotonically with increasing backgrounds, which was op-

posed and corrected for by compensatory actions of the manipulated variable E. The

controllers divided equally into two classes, in which the compensatory fluxes were either

based on derepression or activation. Controllers with derepression-based compensatory

fluxes showed decreased sensitivity but accelerated response kinetics, which is analogous

to the resetting kinetics seen in vertebrate photoreceptors. Retinal light adaptation also

involves compensating backgrounds according to remarks in the literature. We therefore

became interested in understanding the underlying feedback mechanisms of background

compensation. As such, we created controllers or oscillators that show robust back-

ground compensation independent of the applied background. These controllers need a

second feedback layer, where the additional integral controllers (I1 and I2) feed directly

or coherently back to the controlled variable. These feedback conditions were termed

”coherent feedback” in analogy to a similar feedback mechanism used in quantum control

theory and optics. Finally, simple three-neuron retinal light adapation (RLA) models,

representing the retina as a whole, were subjected to the same perturbations. It was the

feedback organization in the two-layered oscillator that was responsible for eliminating

backgrounds. Robust background compensation, here described theoretically, could be

of interest in terms of regulatory properties. Although, no biological relevanse of the

concept has been identified.
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2.1 Controller motifs m1-m8. Step-perturbations and constant background
reactions are indicated by red and blue arrows, respectively. Solid lines
indicate chemical reactions. Dashed lines represent signaling events, in
which activation-based compensatory fluxes are indicated by a brown
color and derepression-based compensatory fluxes by a green color. Plus
and minus signs represent, respectively, activation and inhibition. Inte-
gral control is incoporated by zero-order kinetics. Figure was taken from
Ref. [1] with permisssion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Integral control in terms of zero-order kinetics. Figure was redrawn from
Ref. [2], Fig. 1. a) Controller motif m5 from Fig. 2.1 is shown together
with rate constants ki (where i=1, 2, 3...). The negative feedback loop
shows robust perfect adaptation of A due to removing E by zero-order
kinetics. For explanation, see text. b) Typical flow chart of integral
control. Uncontrollable perturbations (orange arrows) add or remove the
controlled variable A. The difference between A and the set-point Aset,
Aset-A, is measured and integrated over time (brown ”integral controller”
box). This gives the concentration of the manipulated variable E (green
line) that is necessary to bring A back to Aset through a negative feedback
loop (blue line). The colors in panel b correspond to those in panel a. . . 8

3.1 Regulation of photoadaptation by an overlay of three negative feedback
loops. Lower and higher levels of light intensities, represented by the
perturbation k2, increase or decrease the concentration of cGMP in the
photoreceptors, respectively. cGMP activates the inflow of calcium ions
(outlined in purple). These ions further affect cGMP by inhibiting the
synthesis of GC in feedback loop 1, and by activating the breakdown
of cGMP by PDE in feedback loop 2. In feedback loop 3 Ca2+ ions
inhibit their own transport through the CNG-channels in order to avoid
cytotoxicity. Finally, their ions, along with potassium (K+) ions, are
pumped out of the cell by NCKX-channels of the outer segment. Also,
there is a constant leak of Ca2+ out of the endoplasmic reticulum indicated
by the term ”leak”. Figure was redrawn from Ref. [1], Fig. 18. . . . . . . 12
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3.2 Cellular interactions within the retina. This figure illustrates the retinal
interactions that occur when a spot of light (indicated by yellow arrows)
excites the center (indicated by yellow ”cylinder”) of the receptive field.
An on-center cone (colored blue) is first hit with light. Neurotransmitter
is then released from its synaptic terminal and onto the on-center bipolar
cell (colored green) and horizontal cells (colored orange). An on-center
ganglion cell (colored purple) and amacrine cell (colored pink) then re-
ceives this signal. Ganglion cell axons come together in the nerve fiber
layer to create the otic nerve that enters the central nervous system. Cells
outside of the center (yellow ”cylinder”) are in the annulus of the recep-
tive field. Each of the ten retinal layers has a distinctive name (indicated
by horizontal arrows) and background color. Figure was redrawn from
Ref. [3], Fig. 11.5 and Fig. 11.21. . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Resetting kinetics of controller motif m1. (a) Reaction scheme with in-
tegral control incoporated as a zero-order Michaelis-Menten (MM) type
degredation of E. The MM parameters Vmax and Km are represented by
k6 and k7, respectively. k2 is a perturbation (red arrow) and k4 repre-
sents a background reaction (blue arrow). Solid arrows represent chemical
reactions. Dashed lines indicate signaling events, where activation is rep-
resented by a plus sign. Figure was redrawn from Ref. [1], Fig. 3. (b)
Response kinetics of the m1 controller (in a.u.) at a step-wise perturba-
tion k2 (indicated by vertical arrow) from phase 1 (k2=1.0) to phase 2
(k2=5.0) at time t=10 with different but constant backgrounds k4 from
0→64 (k4 variable, phases 1 and 2). The concentration of A is plotted
as a function of time. Controller m1 shows a successive decrease in the
maximum excursion of A, ∆Amax, along with a slower resetting time for
A. ∆Amax for k4=0 is indicated. Other rate constants (phases 1 and 2):
k3=1.0, k5=3.0, k6=1.0, k7=1×10−6. Initial concentrations of A: A0=3.0
(k4 from 0→64). Initial concentrations of E: E0=3.0 (k4=0); E0=6.0
(k4=1); E0=9.0 (k4=2); E0=15.0 (k4=4); E0=27.0 (k4=8); E0=51.0
(k4=16); E0=99.0 (k4=32); E0=195.0 (k4=64). See Appendix A and
B for python and MATLAB scripts, respectively. . . . . . . . . . . . . . . 18



List of Figures vii

3.4 Resetting kinetics of controller motif m3. (a) Reaction scheme with in-
tegral control incoporated as a zero-order Michaelis-Menten (MM) type
degredation of E. The MM parameters Vmax and Km are represented
by k6 and k7, respectively. k2 is a perturbation (red arrow) and k4 rep-
resents a background reaction (blue arrow). Solid lines represent chem-
ical reactions. Dashed lines indicate signaling events, where activation
is represented by a plus sign and inhibition by a minus sign. Figure
was redrawn from Ref. [1], Fig. S1 (S1 Text). (b) Response kinet-
ics of the m3 controller (in a.u.) at a step-wise change k2 (vertical ar-
row) from phase 1 (k2=1.0) to phase 2 (k2 = 5.0) at time t=50 with
different but constant background reactions k4 from 0→64 (k4 variable,
phases 1 and 2). The concentration of A is plotted as a function of
time. Similarily to the m1 controller (Fig. 3.3b), m3 shows a successive
decrease in the maximum excursion of A, ∆Amax, along with a slower
resetting time for A. ∆Amax for k4=0 is indicated. Other rate constants
(phases 1 and 2): k3=1.0, k5=31.0, k6=1.0, k7=1×10−6, k8=0.1. Ini-
tial concentrations of A: A0=3.0 (k4 from 0→64). Initial concentrations
of E: E0=3.0 (k4=0); E0=6.0 (k4=1); E0=9.0 (k4=2); E0=15.0 (k4=4);
E0=27.0 (k4=8); E0=51.0 (k4=16); E0=99.0 (k4=32); E0=195.0 (k4=64).
See Appendix A and B for python and MATLAB scripts, respectively. . . 20

3.5 Resetting kinetics of controller motif m5. (a) Reaction scheme with in-
tegral control incoporated as a zero-order Michaelis-Menten (MM) type
degredation of E. The MM parameters Vmax and Km are represented
by k6 and k7, respectively. k1 is a perturbation (red arrow) and k3 rep-
resents a background reaction (blue arrow). Solid lines represent chem-
ical reactions. Dashed lines indicate signaling events, where activation
is represented by a plus sign. Figure was redrawn from Ref. [1], Fig.
S3 (S1 Text). (b) Response kinetics of the m5 controller (in a.u.) at
a step-wise perturbation k1 (indidcated by vertical arrow) from phase 1
(k1=1.0) to phase 2 (k1 = 5.0) at time t=100 with different but constant
background reactions k3 from 0→64 (k3 variable, phases 1 and 2). The
concentration of A is plotted as a function of time. m5 shows a suc-
cessive decrease of the maximum excursion in A, ∆Amax, along with a
longer resetting time for A. ∆Amax for k3=0 is indicated. Other rate
constants (phases 1 and 2): k4=0.005, k5=1.0, k6=3.0, k7=1×10−6. Ini-
tial concentrations of A: A0=3.0 (k3 from 0→64). Initial concentra-
tions of E: E0=66.667 (k3=0); E0=133.33 (k3=1); E0=200.0 (k3=2);
E0=333.33 (k3=4); E0=600.0 (k3=8); E0=1133.33 (k3=16); E0=2200.0
(k3=32); E0=4333.33 (k3=64). See Appendix A and B for python and
MATLAB scripts, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 22



List of Figures viii

3.6 Resetting kinetics of controller motif m7. (a) Reaction scheme with in-
tegral control incoporated as a zero-order Michaelis-Menten (MM) type
degredation of E. The MM parameters Vmax and Km are represented by
k6 and k7, respectively. k1 is a perturbation (red arrow) and k3 repre-
sents a background reaction (blue arrow). Solid lines represent chemical
reactions. Dashed lines indicate signaling events, where activation is rep-
resented by a plus sign and inhibition by a minus sign. Figure was redrawn
from Ref. [1], Fig. 5. (b) Response kinetics of the m7 controller (in a.u.)
at a step-wise perturbation k1 (indicated by vertical arrow) from phase 1
(k1=1.0) to phase 2 (k1 = 5.0) at time t=100 with different but constant
backgrounds k3 from 0→64 (k3 variable, phases 1 and 2). The concentra-
tion of A is plotted as a function of time. m7 shows a successive decrease
of the maximum excursion, ∆Amax, along with a longer resetting time
for A. ∆Amax for k3=0 is indicated. Other rate constants (phases 1 and
2, in au): k4=0.003, k5=1.0, k6=31.0, k7=1×10−6, k8=0.1. Initial con-
centrations of A: A0=3.0 (k3 from 0→64). Initial concentrations of E:
E0=11.11 (k3=0); E0=22.22 (k3=1); E0=33.33 (k3=2); E0=55.55 (k3=4);
E0=99.99 (k3=8); E0=188.89 (k3=16); E0=366.67 (k3=32); E0=722.22
(k3=64). See Appendix A and B for python and MATLAB scripts, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Response kinetics of controller motif m2. (a) Reaction scheme with in-
tegral control incoporated as a zero-order Michaelis-Menten (MM) type
degredation of E. The MM parameters Vmax and Km are represented by
k6 and k7, respectively. k2 is a perturbation (red arrow) and k4 (blue
arrow) represents a background reaction. Solid lines represent chemical
reactions. Dashed lines indicate signaling events, where activation is rep-
resented by a plus sign and inhibition by a minus sign. Figure was redrawn
from Ref. [1], Fig. 7. (b) Response kinetics of the m2 controller (in a.u.)
at a step-wise perturbation k2 (indicated by vertical arrow) from phase 1
(k2=1.0) to phase 2 (k2 = 5.0) at time t=50 with different but constant
backgrounds k4 from 0→64 (k4 variable, phases 1 and 2). The concentra-
tion of A is plotted as a function of time. m2 shows a successive decrease
of the maximum excursion of A, ∆Amax, along with a shorter resetting
period. ∆Amax is indicated for k4=0. Other rate constants (phases 1
and 2, in au): k3=1×104, k5=1.0, k6=3.0, k7=1×10−6, k8=0.1. Initial
concentrations of A: A0=3.0 (k4 from 0→64). Initial concentrations of
E: E0=333.15 (k4=0); E0=166.57 (k4=1); E0=111.01 (k4=2); E0=66.57
(k4=4); E0=36.94 (k4=8); E0=19.51 (k4=16); E0=10.00 (k4=32); E0=5.03
(k4=64). See Appendix A and B for python and MATLAB scripts, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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3.8 Response kinetics of autocatalytic m2 controller motif. (a) Reaction
scheme with integral control incorporated by autocatalysis. k2 is a pertur-
bation (red arrow) and k4 (blue arrow) represents a constant background
reaction. Solid lines represent chemical reactions. Dashed lines indicate
signaling events, where activation is represented by a plus sign and in-
hibition by a minus sign. Figure was redrawn from Ref. [1], Fig. 7.
(b) Response kinetics of the autocatalytic m2 controller (in a.u.) at a
step-wise perturbation k2 (indicated by a vertical arrow) from phase 1
(k2=1.0) to phase 2 (k2 = 5.0) at time t=100 with different but constant
backgrounds k4 from 0→64 (k4 variable, phases 1 and 2). The concen-
tration of A is plotted as a function of time. The controller shows a
successive decrease of the maximum excursion of A, ∆Amax, along with
a shorter resetting period. Notice the much faster resetting time com-
pared to m2 in Fig. 3.7b. ∆Amax is indicated for k4=0. Other rate con-
stants (phases 1 and 2): k3=1×10+4, k5=1.0, k6=3.0, k8=1×10−1. Initial
concentrations of A: A0=3.0 (k4 from 0→64). Initial concentrations of
E: E0=333.23 (k4=0); E0=166.57 (k4=1); E0=111.01 (k4=2); E0=66.57
(k4=4); E0=36.94 (k4=8); E0=19.51 (k4=16); E0=10.00 (k4=32); E0=5.03
(k4=64). See Appendix A for python script. . . . . . . . . . . . . . . . . . 28

3.9 Response kinetics of controller motif m4. (a) Reaction scheme with in-
tegral control incoporated as a zero-order Michaelis-Menten (MM) type
degredation of E. The MM parameters Vmax and Km are represented by
k6 and k7, respectively. k2 is a perturbation (red arrow) and k4 (blue
arrow) represents a background reaction. Solid lines represent chemical
reactions. Dashed lines indicate signaling events, where inhibition is rep-
resented by a minus sign. Figure was redrawn from Ref. [1], Fig. S1 (S2
Text). (b) Response kinetics of the m4 controller (in a.u.) at a step-wise
perturbation k2 (indicated by a vertical arrow) from phase 1 (k2=1.0)
to phase 2 (k2 = 5.0) at time t=50 with different but constant back-
grounds k4 from 0→64 (k4 variable, phases 1 and 2). The concentration
of A is plotted as a function of time. m4 shows a successive decrease
of the maximum excursion of A, ∆Amax, along with a shorter resetting
period. ∆Amax is indicated for k4=0. Other rate constants (phases 1
and 2): k3=1×104, k5=1.0, k6=31.0, k7=1×10−6, k8=0.1, k9=0.1. Initial
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3.10 Resetting kinetics of controller motif m6. (a) Reaction scheme with in-
tegral control incoporated as a zero-order Michaelis-Menten (MM) type
degredation of E. The MM parameters Vmax and Km are represented by
k6 and k7, respectively. k1 is a perturbation (red arrow) and k3 (blue
arrow) represents a background reaction. Solid lines represent chemi-
cal reactions. Dashed lines indicate signaling events, where activation is
represented by a plus sign and inhibition by a minus sign. Figure was re-
drawn from Ref. [1], Fig. S3 (S2 Text). (b) Response kinetics of the m6
controller (in a.u.) at a step-wise perturbation k1 (indicated by vertical
arrow) from phase 1 (k1=1.0) to phase 2 (k1 = 5.0) at time t=100 with
different but constant backgrounds k3 from 0→64 (k3 variable, phases 1
and 2). The concentration of A is plotted as a function of time. m6 shows
a successive decrease of the maximum excursion of A, ∆Amax, along with
a shorter resetting period. ∆Amax is indicated for k3=0. Other rate con-
stants (phases 1 and 2): k4=1×104, k5=6.0, k6=2.0, k7=1×10−6, k8=0.1.
Initial concentrations of A: A0=3.0 (k3 from 0→64). Initial concentra-
tions of E: E0=2999.81 (k3=0); E0=1499.90 (k3=1); E0=999.90 (k3=2);
E0=599.90 (k3=4); E0=333.23 (k3=8); E0=176.37 (k3=16); E0=90.81
(k3=32); E0=46.05 (k3=64). See Appendix A and B for python and
MATLAB scripts, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.11 Resetting kinetics of controller motif m8. (a) Reaction scheme with in-
tegral control incoporated as a zero-order Michaelis-Menten (MM) type
degredation of E. The MM parameters Vmax and Km are represented by
k6 and k7, respectively. k1 is a perturbation (red arrow) and k3 (blue
arrow) represents a background reaction. Solind lines represent chem-
ical reactions. Dashed lines indicate signaling events, where inhibition
is represented by a minus sign. Figure was redrawn from Ref. [1], Fig.
10. (b) Response kinetics of the m8 controller (in a.u.) at a step-wise
perturbation k1 (indicated by the vertical arrow) from phase 1 (k1=1.0)
to phase 2 (k1 = 5.0) at time t=100 with different but constant back-
grounds k3 from 0→64 (k3 variable, phases 1 and 2). The concentration
of A is plotted as a function of time. m8 shows a successive decrease
of the maximum excursion of A, ∆Amax, along with a shorter resetting
period. ∆Amax is indicated for k3=0. Other rate constants (phases 1 and
2, in au): k4=1×104, k5=620.0, k6=20.0, k7=1×10−6, k8=0.1, k9=0.1.
Initial concentrations of A: A0=3.0 (k3 from 0→64). Initial concentra-
tions of E: E0=2998.35 (k3=0); E0=1499.91 (k3=1); E0=999.90 (k3=2);
E0=599.90 (k3=4); E0=333.23 (k3=8); E0=176.37 (k3=16); E0=90.81
(k3=32); E0=46.05 (k3=64). See Appendix A and B for python and
MATLAB scripts, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 34
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3.12 Example of an oscillator with frequency control and coherent feedback,
i.e., with background compensation. Figure was redrawn from Ref. [4],
Fig. 4. a) Reaction scheme of oscillator with two negative feedback layers,
in which the central A-e-E-A loop is based on derepression-based motif
m2 (Fig. 3.7a). Solid arrows represent chemical reactions. Dashed lines
indicate signaling events, where activation is represented by a plus sign
and inhibition by a minus sign. b) Integral control scheme with coherent
feedback, where I1 and I2 feed directly back to A. Coherent feedback,
which is a term used in quantum control theory and optics [5, 6], yields an
additional control of E via A by I1 and I2. In particular, uncontrollable
perturbations (orange arrows) add or remove A. The difference or error
between the controlled variable and its set-point (Aset-A) is measured
and integrated over time (lower grey ”integration box”). This gives the
necessary E-concentration (horizontal green line) for maintaining A under
robust homeostatic control. A difference from the basic integral controller
(Fig. 2.2b), is that the outpout of E (vertical green line) is also used as
input in a second control system. Here, the error between E and Eset

is measured and integrated over time (upper grey ”integration box”).
This gives the I1- and I2-concentrations (brown line) to be fed directly
or coherently back to A through a negative feedback loop (blue line) in
order to maintain EsetI1 and EsetI2 , respectively. . . . . . . . . . . . . . . 37

3.13 Frequency compensation of the feedback scheme in Fig. 3.12a at a con-
stant background k10=0. The controller is tested at a step-perturbation
k2 from 1→9 at time t=100. Panels a and b show the resetting kinetics
of A and E as a function of time, as well as their average concentra-
tions <A> and <E>, respectively. Panel c shows the contributions of
the controller species I1 and I2 over time. In panel d the frequency, or
inverse of the period length, is plotted as a function of time. Notice the
oscillator’s frequency homeostasis. Other rate constants (phases 1 and
2, in a.u.): k4=k11=k15=1.0, k5=0.1, k6=2.0, k7=k8=k13=k16=1×10−6,
k9=20.0, k12=5.0, k14=4.99, kg=kg3=1×10−2. Initial concentrations of
A, E, e, I1, and I2 (in au), respectively: 2.2084, 7.7021, 1.1354×10−1,
1.5773×102, and 4.3563. See Appendix A for python scripts. . . . . . . . 39

3.14 Frequency compensation of the feedback scheme in Fig. 3.12a at a con-
stant background k10=2048. The controller is tested at a step-perturbation
k2 from 1→9 at time t=100. Panels a and b show the resetting kinetics
of A and E as a function of time, as well as their average concentra-
tions <A> and <E>, respectively. Panel c shows the contributions of
the controller species I1 and I2 over time. In panel d the frequency, or
inverse of the period length, is plotted as a function of time. Notice the
oscillator’s frequency homeostasis. Other rate constants (phases 1 and 2,
in a.u.) as in Fig. 3.13. Initial concentrations of A, E, e, I1, and I2 (in
au), respectively: 2.1377, 7.6720, 1.0996×10−1, 1.1354×10−1, 3.4304, and
2.0465×105. See Appendix A for python scripts. . . . . . . . . . . . . . . 40
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3.15 Frequency and background compensations of the oscillator from Fig. 3.12a.
The figure shows the number 2 frequency (in phase 2) as a function of

kph22 +k10. Frequency adaptation of the controller (in a.u.) at a step-
wise perturbation from phase 1 (k2=1.0) to phase 2 (k2 variable, k2 from
2→10) with constant background perturbations k10 from 0→16 in panel a
and 32→2048 in panel b (k10 variable, phases 1 and 2). The total pertur-
bations (k2+k10) induce parallel lines, which show frequency adaptation.
Other rate constants (phases 1 and 2, in a.u.) as in Fig. 3.13. Initial
concentrations of A, E, e, I1, and I2 (in a.u.), respectively: A0=0.3780,
E0=2.4784, e0=1.5993×10−2, I1,0=4.5727×102, I2,0=2.9817×102 (k10 from
0→128); A0=0.9866, E0=7.3508, e0=5.2447×10−2, I1,0=5.8243, I2,0=2.5447×104

(k10=256); A0=8.3872×10−4, E0=4.8793, e0=3.9572×10−5, I1,0=7.6544,
I2,0=5.1046×104 (k10=512); A0=1.7657, E0=7.6866, e0=9.1430×10−2,
I1,0=4.2379, I2,0=1.0225×105 (k10=1024); A0=2.1377, E0=7.6720, e0=1.0996×10−1,
I1,0=3.4304, I2,0=2.0465×105 (k10=2048). . . . . . . . . . . . . . . . . . . 41

3.16 Frequency response of the feedback scheme in Fig. 3.12a when eliminating
I1 and I2. The controller is tested at a step-perturbation k2 from 1→9
at time t=100 and a constant background k10=32. Panel a shows the
response of A as a function of time, as well as the average concentration
<A>. Notice how the frequency in panel b increases from phase 1 to 2,
i.e. the oscillator does not show frequency adaptation. Other rate con-
stants (phases 1 and 2, in a.u.): k4=1.0, k5=0.1, k6=2.0, k7=k8=1×10−6,
k9=20.0. Initial concentrations of A, and E (in a.u.), respectively: 4.7695
and 9.1501×10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.17 Example of an oscillator with frequency control and incoherent feedback,
i.e., no background compensation. Figure was redrawn from Ref. [4],
Fig. 15. a) Reaction scheme of oscillator with two negative feedback
layers, in which the central A-E-a-A loop is based on derepression-based
motif m2 (Fig. 3.7a). Solid arrows represent chemical reactions. Dashed
lines indicate signaling events, where activation is represented by a plus
sign and inhibition by a minus sign. b) Integral control scheme with
incoherent feedback, where I1 and I2 feed back to A through the precursor
a. Incoherent feedback, which is a term used in quantum control theory
and optics [5, 6], yields an additional control of E via A by I1 and I2. In
particular, uncontrollable perturbations (orange arrows) add or remove A.
The difference or error between the controlled variable and its set-point
(Aset-A) is measured and integrated over time (lower grey ”integration
box”). This gives the necessary E-concentration (horizontal green line)
for maintaining A under robust homeostatic control. A difference from
the basic integral controller (Fig. 2.2b), is that the outpout of E (vertical
green line) is also used as input in a second control system. Here, the
error between E and Eset is measured and integrated over time (upper
grey ”integration box”). This gives the I1- and I2-concentrations (brown
line) to be fed incoherently back to A, i.e., into the process that generates
A, in order to maintain EsetI1 and EsetI2 , respectively. . . . . . . . . . . . 44
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3.18 Frequency compensation of the feedback scheme in Fig. 3.17a at a con-
stant background k10=0. The controller is tested at a step-perturbation
k2 from 1→9 at time t=500. Panels a and b show the resetting kinetics
of A and E as a function of time, as well as their average concentrations
<A> and <E>, respectively. Panel c shows the contributions of the con-
troller species I1 and I2 over time. In panel d the frequency, or inverse of
the period length, is plotted as a function of time. Notice the oscillator’s
frequency homeostasis. Other rate constants (phases 1 and 2, in a.u.):
k3=1×106, k4=1.0, k5=k7=k13=k16=1×10−6, k6=k9=2.0, k11=k15=5.0,
k12=100, k14=99.99, kg=1×10−3, kg3=1.0×102. Initial concentrations of
A, E, a, I1, and I2 (in a.u.), respectively: 4.0427, 35.257, 6.4860×10−4 ,
4.3800×104, and 4.5757×102. See Appendix A for python scripts. . . . . . 46

3.19 Frequency compensation of the feedback scheme in Fig. 3.17a at a con-
stant background k10=2. The controller is tested at a step-perturbation
k2 from 1→9 at time t=500. Panels a and b show the resetting kinetics
of A and E as a function of time, as well as their average concentra-
tions <A> and <E>, respectively. Panel c shows the contributions of
the controller species I1 and I2. In panel d the frequency, or inverse of
the period length, is plotted as a function of time. Notice the oscillator’s
frequency homeostasis. Other rate constants (phases 1 and 2, in a.u.)
as in Fig. 3.18. Initial concentrations of A, E, a, I1, and I2 (in a.u.),
respectively: 1.4906×10−1, 1.6789×10−1, 5.6795×10−1, 2.2515×104, and
2.1643×104. See Appendix A for python scripts. . . . . . . . . . . . . . . 47

3.20 Frequency compensated oscillator without background compensation from
Fig. 3.17a. The figure shows the number 2 frequency (in phase 2) as a

function of kph22 +k10. Frequency adaptation of the oscillator (in a.u.) at
a step-wise perturbation from phase 1 (k2=1.0) to phase 2 (k2 variable,
k2 from 2→10) with constant background perturbations k10 from 0→5
(k10 variable, phases 1 and 2). Notice how the gradient of the straight
lines decreases with increasing k10 values. Other rate constants (phases 1
and 2, in a.u.) as in Fig. 3.18. Initial concentrations of A, E, a, I1, and
I2 (in a.u.), respectively: A=3.7479×10−3, E=9.8732, a=2.2113×10−3,
I1=4.4299×104, I2=1.2833×102 (k10=0); A=2.5176×10−3, E=28.864, a=2.4152×10−3,
I1=3.2608×104, I2=1.1810×104 (k10=1); A=3.6061×10−1, E=37.282, a=3.6550×10−3,
I1=2.3614×104, I2=2.0794×104 (k10=2); A=6.7083×10−3, E=17.367, a=1.7148×10−2,
I1=1.3637×104, I2=3.0761×104 (k10=4); A=6.1278×10−3, E=22.250, a=1.8648×10−2,
I1=1.0208×104, I2=3.4180×104 (k10=5). . . . . . . . . . . . . . . . . . . . 48

3.21 Controller scheme of the frequency independent oscillator. (a) Controller
motif with integral control incoporated as a zero-order Michaelis-Menten
(MM) type degredation of E. The MM parameters Vmax and Km are
represented by k6 and k7, respectively. k15 is a perturbation and k14 rep-
resents a background reaction. Solid arrows represent chemical reactions.
Dashed lines indicate signaling events, where activation is represented by
a plus sign. (b) Basic integral controller that is incorporated into the os-
cillator. Uncontrollable perturbations (orange arrows) add or remove A.
The difference or error between the controlled variable and its set-point
(Aset-A) is measured and integrated over time (brown ”integral controller
box”). This gives the necessary E-concentration (green line) for main-
taining A under robust homeostatic control. Figure was redrawn from
Ref. [7], Fig. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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3.22 Response kinetics of the feedback scheme in Fig. 3.21a at a constant
background k14=2. The controller is tested at a step-perturbation k15
from 1→2 at time t=100. The resetting kinetics (in a.u.) of A and E
are shown as a function of time, as well as their average concentrations
<A> and <E>, respectively (panel a). Panel b shows the frequency (x
100) as a function of time (a.u.). Notice the frequency indepence of the
controller. Other rate constants (phases 1 and 2, in a.u.): k1=k5=100,
k2=k4=k6=1.0, k3=k7=1×10−6. Initial concentrations of A, E, and e (in
au), respectively: 2.4708×10−1, 1.0235×102, 2.4065×10−3. See Appendix
A for python scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.23 Response kinetics of the feedback scheme in Fig. 3.21a at a constant
background k14=16. The controller is tested at a step-perturbation k15
from 1→10 at time t=100. The resetting kinetics (in a.u.) of A and
E are shown as a function of time, as well as their respective average
concentrations <A> and <E>. Panel b shows the frequency (x 100)
as a function of time (a.u.). Notice the frequency independence of the
controller. Other rate constants (phases 1 and 2, in a.u.) as in Fig. 3.22.
Initial concentrations of A, E, and e (in a.u.), respectively: 3.6316×10−1,
1.1780×102, 3.7122×10−3. See Appendix A for python scripts. . . . . . . 53

3.24 Oscillator from Fig. 3.21a with frequency independence. The figure shows
the maximum frequency (in phase 2) as a function of kph215 +k14. The
controller is applied a step-wise perturbation from phase 1 (k15=1.0) to
phase 2 (k15 variable, k15 from 2→10) with constant background pertur-
bations k14 from 0→64 (k14 variable, phases 1 and 2). The controller
shows frequency independence. Other rate constants (phases 1 and 2, in
a.u.): k1=k5=1×102, k2=k4=k6=1.0, k3=k7=1×10−6. Initial concentra-
tions of A, e, and E (in a.u.), respectively: A0=1.6912, e0=1.6838×10−2,
E0=1.0027×102, I10=4.4299×104, I20=1.2833×102 (k14 from 0→64). . . . 54

3.25 Cellular interactions within the retinal layers. This figure is a simplified
version of the retinal structure shown in (Fig. 3.2). Here, light (indicated
yellow arrows) travels through the center (and not the annulus) of the
receptive field. This excites the on-center cone (colored blue) in the first
feedbak layer, in which an inhibitory signal is received by the on-center
bipolar cell (colored green) of the second layer. A subsequent on-center
ganglion cell (colored purple) then receives a signal from the bipolar cell,
before ganglion cell axons come together to form the optic nerve that
enters the central nervous system. Horizontal cell (colored orange) inter-
actions are also indicated in the figure. . . . . . . . . . . . . . . . . . . . . 55
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3.26 Retinal light adaptation (RLA) model with frequency control at the gan-
glion cell level. a) Simple RLA controller with three layers of nega-
tive feedback. The first negative feedback layer constitutes the m2 mo-
tif (Fig. 3.7), in which integral control is incoporated as a zero-order
Michaelis-Menten (MM) type degredation of E. This allows for robust
perfect adaptation of A. The controller is subjected to outflow pertur-
bations k2 and k4. Inhbitory information from E is sent to the bipolar
cell in the second layer, and B further activates the removal of App in the
ganglion cell layer. App is homeostatically controlled by Epp. I1 and I2
ensure Epp- and frequency-homeostasis of the oscillator. I1 and I2 feed
coherently [5, 6] back to App, which enable the controller to neutralize
backgrounds. Solid arrows represent chemical reactions. Dashed lines
indicate signaling events, where activation is represented by a plus sign
and inhibition by a minus sign. b) Cellular interactions within the retinal
layers. This figure is a simplified version of the retinal structure shown
in (Fig. 3.2). Here, light (yellow arrows) travels through the center (and
not the annulus) of the receptive field. This excites the on-center cone
(colored blue) in the first feedbak layer, in which an inhibitory signal is
received by the on-center bipolar cell (colored green) of the second layer.
A subsequent on-center ganglion cell (colored purple) then receives a sig-
nal from the bipolar cell, before ganglion cell axons come together to form
the optic nerve that enters the central nervous system. Horizontal cell in-
teractions are also indicated in the figure. Figure was redrawn from Fig.
11.21, Ref. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.27 Response kinetics of the RLA controller from Fig. 3.26a with background
k4=0. The controller is tested at a step-perturbation k2 from 1.0 (phase
1) to 20.0 (phase 2) at time t=100. Panel a shows the resetting kinet-
ics of A and E as a function of time. Panel b shows the increase in B
over time. The resetting kinetics of App and Epp are shown in panel c
and d, respectively, along with their respective average concentrations
<App> and <Epp>. Panel e shows the contributions of the controller
species I1 and I2 over time. In panel d the frequency, or inverse of
the period length, is plotted as a function of time. Notice the con-
troller’s frequency homeostasis. Other rate constants (phases 1 and 2,
in a.u.): k3=1×104, k5=k21=k28=k32=1.0, k6=3.0, k7=k22=k26=1×10−3,
k8=k9=k10=k11=k27=0.1, k19=8.0, k20=100.0, k23=16.0, k24=0.5, k25=80,
k29=5.0, k30=k33=1×10−6, k31=4.99, kg=kg3=1×10−2. Initial concentra-
tions of A, E, B, App, e, Epp, I1, and I2 (in a.u.), respectively: 3.0000,
3.3323×102, 3.0000×10−2, 3.9304, 1.0647×102, 1.9892×10−3, 5.4263×103,
9.7850×10−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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3.28 Response kinetics of the RLA controller from Fig. 3.26a with background
k4=128. The controller is tested at a step-perturbation k2 from 1.0 (phase
1) to 20.0 (phase 2) at time t=100. Panel a shows the resetting kinetics
of A and E as a function of time. Panel b shows the increase in B
over time. The resetting kinetics of App and Epp are shown in panel c
and d, respectively, along with their respective average concentrations
<App> and <Epp>. Panel e shows the contributions of the controller
species I1 and I2 over time. In panel d the frequency, or inverse of the
period length, is plotted as a function of time. Notice the controller’s
frequency homeostasis. Other rate constants (phases 1 and 2, in a.u.) as
in Fig. 3.27. Initial concentrations of A, E, B, App, e, Epp, I1, and I2
(in a.u.), respectively: 2.9988, 2.4850, 3.8684, 2.6784×10−4, 1.7625×102,
9.8798, 3.7092×103, 1.3583×103. . . . . . . . . . . . . . . . . . . . . . . . 61

3.29 Frequency and background compensations of the RLA controller from
Fig. 3.26a. The figure shows the maximum frequency (in phase 2) as a

function of kph22 +k4. The controller is applied step-wise perturbation from
k2=1.0 (phase 1) to k2=2→100 in phase 2 (with increments of one) with
constant background perturbation k4 from 0→2048 (k4 variable, phases 1
and 2). The controller shows robust background and frequency compensa-
tions. Other rate constants (phases 1 and 2, in a.u.) as in Fig. 3.27. Initial
concentrations of A, E, B, App, e, Epp, I1, and I2 (in a.u.), respectively:
3.0000, 3.3323×102, 3.0000×10−2, 3.9304, 1.0647×102, 1.9892×10−3, 5.4263×103,
9.7850×10−1 (k4=0); 3.0000, 1.1101×102, 9.0000×10−2, 9.7940, 2.0076×102,
3.2180, 5.3753×103, 3.9409 (k4=2); 3.0000, 1.0001×101, 9.9000×10−1,
1.8289×101, 1.4873×102, 1.2631×10−2, 2.9836×104, 2.5182×104 (k4=4);
3.0000, 3.6937×101, 2.7000×10−1, 4.4809, 1.0678×102, 2.0061×10−3, 3.0351×104,
2.5117×104 (k4=8); 3.0000, 1.9508×101, 5.1000×10−1, 2.7090×10−5, 1.4408×102,
9.8073, 5.0887×103, 4.6678×101 (k4=16); 3.0000, 1.0001×101, 9.9000×10−1,
5.6417×10−5, 1.3432×102, 8.3457, 4.8472×103, 1.8810×102 (k4=32); 3.0000,
5.0282, 1.9500, 4.8072×10−3, 1.8646×102, 8.6693, 2.9876×104, 2.5992×104

(k4=64); 2.9988, 2.4850, 3.8684, 2.6784×10−4, 1.7625×102, 9.8798, 3.7092×103,
1.3583×103 (k4=128); 3.0000, 1.1970, 7.7100, 5.1717×10−4, 1.5576×102,
1.0597×101, 2.0078×103, 2.7276×103 (k4=256); 3.0000, 5.4977×10−1, 1.5390×101,
5.7915×10−3, 1.7878×102, 9.6191, 2.4551×104, 3.1417×104 (k4=512); 3.0000,
2.2520×10−1, 3.0750×101, 1.9292×101, 1.5661×102, 2.9704×10−2, 3.4338×102,
1.9497×104 (k4=1024); 3.0000, 6.2684×10−2, 6.1469×101, 8.4807×10−1,
1.9810×102, 6.6854, 5.5685×103, 4.9299×104 (k4=2048). . . . . . . . . . . 62
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3.30 Retinal light adaptation (RLA) model without frequency control at the
ganglion cell level. a) Simple RLA controller with three layers of negative
feedback. The first negative feedback layer constitutes the autocatalytic
m2 controller (Fig. 3.8). This allows for robust perfect adaptation of A.
The controller is subjected to outflow perturbations k2 and k4. Inhbitory
information from E is sent to the bipolar cell in the second layer, and B
further activates the removal of App in the ganglion cell layer. App is home-
ostatically controlled by Epp. Solid arrows represent chemical reactions.
Dashed lines indicate signaling events, where activation is represented by
a plus sign and inhibition by a minus sign. b) Cellular interactions within
the retinal layers. This figure is a simplified version of the retinal structure
shown in (Fig. 3.2). Here, light (yellow arrows) travels through the center
(and not the annulus) of the receptive field. This excites the on-cecnter
cone (colored blue) in the first feedbak layer, in which an inhibitory sig-
nal is received by the on-center bipolar cell (colored green) of the second
layer. A subsequent on-center ganglion cell (colored purple) then receives
a signal from the bipolar cell, before ganglion cell axons come together to
form the optic nerve that enters the central nervous system. Horizontal
cell interactions are also indicated in the figure. Figure was redrawn from
Fig. 11.21, Ref. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.31 Response kinetics of the RLA controller from Fig. 3.30a with background
k4=0. The controller is tested at a step-perturbation k2 from 1.0 (phase
1) to 4.0 (phase 2) at time t=1000. Panel a shows the resetting kinet-
ics of A and E as a function of time. Panel b shows the increase in
B over time. The resetting kinetics of App is shown in panel c, along
with its average concentration <App>. Panel d shows the response kinet-
ics of Epp as a function of time together with its average concentration
<Epp>. In panel d the frequency, or inverse of the period length, is plot-
ted as a function of time. Notice the controller’s inability to produce
frequency homeostais. Other rate constants (phases 1 and 2, in a.u.):
k3=1×104, k5=k21=1.0, k6=3.0, k8=k9=k11=k27=0.1, k10=10, k19=8.0,
k20=100, k22=k26=1×10−3, k23=16.0, k24=0.5, k25=80.0. Initial con-
centrations of A, E, B, App, e, and Epp (in a.u.), respectively: 3.0000,
3.3323×102, 3.0000×10−2, 5.8034, 2.6501×102, 1.2184×104. . . . . . . . . 66

3.32 Response kinetics of the RLA controller from Fig. 3.30a with background
k4=160. The controller is tested at a step-perturbation k2 from 1.0 (phase
1) to 128.0 (phase 2) at time t=1000. Panel a shows the resetting kinetics
of A and E as a function of time. Panel b shows the increase in B over
time. The resetting kinetics of App is shown in panel c, along with its
average concentration <App>. Panel d shows the response kinetics of
Epp as a function of time together with its average concentration <Epp>.
In panel d the frequency, or inverse of the period length, is plotted as a
function of time. Notice the controller’s inability to produce frequency
homeostais. Other rate constants (phases 1 and 2, in a.u.) as in Fig. 3.31.
Initial concentrations of A, E, B, App, e, and Epp (in a.u.), respectively:
3.0000, 1.9704, 4.8300, 3.4535×10−6, 1.4768×102, 7.3201×101. . . . . . . . 67
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3.33 Frequency adaptation of the RLA controller from Fig. 3.30a. The figure
shows the maxmimum frequency (in phase 2) as a function of kph22 +k4.
The controller is applied a step-wise perturbation from k2=1.0 (phase 1)
to k2=2→128 in phase 2 (with increments of one) with constant back-
ground perturbation k4 from 0→160 (k4 variable, phases 1 and 2). The
controller does not show frequency nor background compensation. Other
rate constants (phases 1 and 2, in a.u.) as in Fig. 3.31. Initial con-
centrations of A, E, B, App, e, and Epp (in a.u.), respectively: 3.0000,
3.3323×102, 3.0000×10−2, 5.8034, 2.6501×102, 1.2184×104 (k4=0); 3.0000,
3.3323×102, 3.0000×10−2, 5.8034, 2.6501×102, 1.2184×104 (k4=20); 3.0000,
3.3323×102, 3.0000×10−2, 5.8034, 2.6501×102, 1.2184×104 (k4=40); 3.0000,
4.0152, 2.4300, 1.4076×10−6, 3.5068×102, 3.4797×102 (k4=80); 3.0000,
1.9704, 4.8300, 1.9703×103, 3.4535×10−6, 1.4768×102, 7.3201×101 (k4=160). 68

3.34 Retinal light adaptation (RLA) model with frequency control at the gan-
glion cell level. a) Simple RLA controller with three layers of nega-
tive feedback. The first negative feedback layer constitutes the m2 mo-
tif (Fig. 3.7), in which integral control is incoporated as a zero-order
Michaelis-Menten (MM) type degredation of E. This allows for robust
perfect adaptation of A. The controller is subjected to outflow perturba-
tions k2 and k4. Inhbitory information from E is sent to the bipolar cell in
the second layer, and B further activates the inflow of App in the ganglion
cell layer. App is homeostatically controlled by Epp. I1 and I2 ensure Epp-
and frequency-homeostasis of the oscillator. I1 and I2 feed coherently
[5, 6] back to App, which enable the controller to neutralize backgrounds.
Solid arrows represent chemical reactions. Dashed lines indicate signaling
events, where activation is represented by a plus sign and inhibition by a
minus sign. b) Cellular interactions within the retinal layers. This figure
is a simplified version of the retinal structure shown in (Fig. 3.2). Here,
light (yellow arrows) travels through the center (and not the annulus)
of the receptive field. This excites the on-center cone (colored blue) in
the first feedbak layer, in which an inhibitory signal is received by the
on-center bipolar cell (colored green) of the second layer. A subsequent
on-center ganglion cell (colored purple) then receives a signal from the
bipolar cell, before ganglion cell axons come together to form the optic
nerve that enters the central nervous system. Horizontal cell interactions
are also indicated in the figure. Figure was redrawn from Fig. 11.21, Ref.
[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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3.35 Response kinetics of the RLA controller from Fig. 3.34 with background
k4=0. The controller is tested at a step-perturbation k2 from 1.0 (phase
1) to 10.0 (phase 2) at time t=100. Panel a shows the resetting kinet-
ics of A and E as a function of time. Panel b shows the increase in B
over time. The resetting kinetics of App and Epp are shown in panel c
and d, respectively, along with their respective average concentrations
<App> and <Epp>. Panel e and f show the contributions of the con-
troller species I1 and I2, respectively, over time. In panel g the frequency,
or inverse of the period length, is plotted as a function of time. Notice the
controller’s frequency homeostasis. Other rate constants (phases 1 and
2, in a.u,): k3=k15=1×104, k5=k18=k22=k24=1.0, k6=3.0, k7=1×10−3,
k8=k9=k11=k16=0.1, k10=k12=10.0, k13=k20=k23=k26=1×10−6, k14=0.0,
k17=1×103, k19=k21=k25=50, kg1=kg2=1×10−2. Initial concentrations of
A, E, B, App, e, Epp, I1, and I2 (in a.u.), respectively: 3.0000, 3.3323×102,
3.0000×10−2, 1.7893×102, 3.3126×101, 7.6836×101, 1.2108×104, 4.1468×10−9. 73

3.36 Response kinetics of the RLA controller from Fig. 3.34 with background
k4=320. The controller is tested at a step-perturbation k2 from 1.0 (phase
1) to 10.0 (phase 2) at time t=100. Panel a shows the resetting kinetics
of A and E as a function of time. Panel b shows the increase in B
over time. The resetting kinetics of App and Epp are shown in panel
c and d, respectively, along with their respective average concentrations
<App> and <Epp>. Panel e and f show the contributions of the controller
species I1 and I2, respectively, over time. In panel g the frequency, or
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Chapter 1

Introduction

1.1 About the thesis

This thesis is a computational study on models for photoadaptation. A certain set of

negative feedback loops, also called controllers, were studied and they showed robust

homeostasis. These controllers respond to perturbations in a coordinated and regulated

way, and keep their variables within narrow limits due to the application of integral

control. It was found that the controllers have the same type of resetting kinetics (i.e.,

background and/or frequency compensations) as certain retinal cells, and are therefore

analyzed with regards to photoadaptation.

1.2 Cannon’s concept of homeostasis

Homeostasis is the property of a physiological system to maintain its internal stability

while being subjected to external perturbations. This is made possible by coordinated

responses that keep these disturbances within narrow limits. The presence of (homeo-

static) defense mechanisms in animals and plants is crucial for their health and survival.

Different physiological variables, such as body temperature, blood glucose levels, and

hormones in animals, are kept within an optimal, functional, and healthy range of val-

ues. By not maintaining homeostasis the internal stability weakens and the organism

can experience damage, disease, and even death [9, 10].

The original concept of homeostasis took many years to develop. In the eighteenth cen-

tury, Charles Blagden [11, 12] and John Hunther [13] came to understand that body

temperature remains constant over a wide range of external temperature values, indi-

cating that it is internally stable. This idea of internal stability was further established

1
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in the nineteenth century by scientists such as Charles Robin, Claude Bernard, Leon

Fredericq, and Charles Richet [10]. Bernard, in particular, realized that the internal

environment is stable and not dependent on external conditions. He also recognized

that the internal stability, or as he called it: ”Le milieu interieur”, is vital for the or-

ganism’s health and survival [14–16]. Richet, who was a student of Bernard, stressed

that the internal environment is dynamically regulated and can be modified to oppose

the changes caused by external stimuli [17]. The physician Walter B. Cannon built on

ideas like these and eventually coined the term ”homeostasis” in 1929, which describes

a self-regulatory process in living systems that adapts to external perturbations and

maintains stability [9, 10, 16, 17].

The constant conditions of homeostasis can be explained by maintaining a steady state.

This is because a complex and (open) biological system might have some variations, in

which the internal environment is held within narrow limits without being constant and

rigid. Cannon therefore acknowledged that the prefix ”stasis” in homeostasis could be

misleading. He tried to explain the variations by using the prefix ”homeo” instead of

”homo”, which indicates similar instead of like, respectively [10].

1.3 Alternative definitions of homeostasis

Even though Cannon mentioned that homeostasis can show some variations, the term

is today often recognized in its most simplistic form. As a result, alternative names

and definitions have been suggested to account for the more complex and dynamic

homeostasis (i.e., oscillations) that is known to occur in (open) biological systems.

Moore-Ede recognized that the classical concept of homeostasis is reactive, i.e., devia-

tions from the set-point are measured before being corrected for by negative feedback.

He suggested to expand Cannon’s definition to include predictive homeostasis. This

would account for circadian timing systems, which first anticipate and then adapts to

environmental changes [18].

The term allostasis was introduced by Sterling and Eyer [19] and means ”stability

through change”. They argued that the classical concept of homeostasis fails to explain

that an organism may benefit from a non-constant internal environment. Instead it

adapts to perceived and anticipated challenges by changing the internal milieu [19–21].

This is true when a bear prepares for hibernation by gaining fat, or when a cow undergoes

morphological, physiological and behavioural changes in order to produce lactate for a

calf [22].
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Also, Lloyd suggested to use the term homeodynamics instead of homeostasis since

adaptation mechanisms are very dynamic. In fact, he stated that it is the dynamic

organization of having a homeodynamic system that makes the organized complexitiy

of life possible [23].

Lastly, Mrosovosky introduced rheostasis to consider shifting set-points. He explained

that an organism is under homeostastic control at all times, but that the regulated set-

point may change over time. This is the case when we are running a fever, and the

body experiences a sustained and controlled rise in temperature [24]. Another example

is when an animal adapts to a change in season by gaining fat. Mrosovsky argued

that environmental changes like this could explain the physiological plasticity that an

organism experiences during evolution [25].

These alternative definitions to homeostasis are not necessary, according to Carpenter

[26]. Homeostatic principles are often used in an oversimplified way, and deviations

from this are rediscovered and wrongly treated as something new and distinct from

homeostasis. Carpenter further argues that Cannon’s definition of homeostasis can take

onto different and more complex forms by allowing the cooporation of different feedback

mechanisms, and that the term homeostasis can still stand as an unified approach.

1.4 The apperance of cybernetics

Regardless of the definition that is used, we now know that homeostatic processes in-

volve a complex combination of feedback mechanisms, i.e., feedback loops, that respond

to environmental changes in an automatic and coordinated way. A negative feedback

loop is able to maintain the preferred set-point of its physiological variable (i.e., body

temperature, blood glucose level, and hormones) by feeding the results from previous

actions into the system, and thereby adjusting the outcome of future actions [17].

The idea that animals respond to perturbations in an automatic and coordinated way

originated from mechanics with the invention of self-regulatory devices. The study of

these self-regulatory products has been around for a long time, but really took off in

the late 18th century. At this time the steam engine, which was regulated by corrective

feedback, was developed and later improved by James Watt. Then in the 19th century,

James Clerk Maxwell built on his work and published a mathematical analysis that

explained the principles of self-regulatory devices [17, 27]. This eventually became the

foundation to which control theory is built upon, and is defined as a feedback-regulated

system that controls its behaviour without being directed by external factors [17]. Two

important papers, published in 1943, found that the mathematical principles of control
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theory can be used to explain the self-regulatory behaviour in living organisms [28, 29].

One of the authors was Norbert Wiener, which later introduced the term ”cybernetics”

as the science of communications and self-regulated control in both machines and animals

[17, 30].

With the development of cybernetics ”integral control”, which was introduced in the

beginning of the 20th century as a way to regulate industrial processes, was applied

in the study of living organisms in order to achieve homeostasis [31, 32]. Integral con-

trol is a control-engineering method that involves system analysis and control theory

(see Ch. 2.3). Upon external perturbations it is able to keep a controlled variable, say

A, preciesly and robustly at its set-point by feeding the integrated error back into the

perturbation-independent process. This is due to the compensatory actions of the ma-

nipulated variable [1, 2, 33, 34], which is here called E. Different kinetic requirements

of integral control can be used in physiological processes to achieve homeostasis, and

among them are zero-order kinetics in the removal of E [7], antithetic or dual-E control

[35, 36], and a mixture of autocatalytic synthesis of E and first-order kinetics in the

removal of E [37].

1.5 Background and frequency compensations

Retinal light adaptation, according to the literature, involves compensating backgrounds

[3, 8, 38, 39]. We therefore became interested in understanding the underlying feedback

mechanisms of this phenomenon. As such, we created controllers that (mainly) incor-

porate integral control in terms of zero-order kinetics. Also incorporating a type of

feedback, here termed ”coherent feedback”, will enable these controllers to compensate

for step-wise perturbations (i.e., frequency) at different but constant backgrounds. The

term ”coherent feedback” was introduced by Lloyd and others [5, 6]. Since the feed-

back, which can compensate for backgrounds is similar to Lloyd’s coherent feedback

definition [6], we adopted this term. A variant of coherent feedback is ”incoherent feed-

back”. In this case controllers can still compensate for step-wise perturbations, which is

here termed ”frequency compensation”, without having the ability to adapt to different

backgrounds.
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1.6 Layout of the thesis

Since the work of this thesis is to study the photoadaptation of light in the retina,

photoadaptation is the first topic that is introduced. Light that enters the eye hits the

photoreceptors in the outer part of the retina. This initiates a phototransduction cascade

that activates the subsequent bipolar and ganglion cells, in which the latter cell’s axons

come together to form the optic nerve that enters the central nervous system for further

image processing [3, 8, 40, 41].

This thesis deals with three types of controllers that correspond to the behaviours of

different retinal cells. First, a set of eight single-layered (also called one-layered) basic

negative feedback motifs will be provided. These controllers respond to different but

constant light increments with decreasing amplitudes, where some of them show faster

resetting times in anology to the resetting kinetics seen in vertebrate photoreceptors [8,

42, 43]. Their ability to reset at their pre-perturbation levels are due to the incorporation

of a basic integral controller [7].

Retinal ganglion cells are known to oscillate, as well as having partial frequency com-

pensations [39]. We therefore created two-layered frequency compensated oscillators in

order to represent these cells. These controllers are subjected to step-wise perturba-

tions at different but constant background illuminations, which test their adaptation

to frequency and light, respectively. Coherent or incoherent feedback are included into

the controllers and enable them to show frequency compensation. Those with coherent

feedback also manage to compensate backgrounds.

Lastly, retinal light adaptation (RLA) models will be introduced as a way to study

the cellular interactions in the whole retina. These controllers have three feedback

layers that correspond to different retinal cells. The first layer represents one of the

photoreceptor models, which sends an inhibitory signal to a hypothetical bipolar cell in

the second layer. The bipolar cell then feeds a signal to the third and final layer, which

is represented by a frequency compensated ganglion cell. It is the feedback organization

in the ganglion cell layer that regulates retinal background compensation.

Part of my work, regarding the eight negative feedback motfis, has been published in

PLOS ONE (see Appendix C). A manusscript has also been submitted to PLOSE ONE

(see Appendix D), which deals with some of my results of the frequency compensated

oscillators. This manusscript was under review at the time this thesis was submitted.



Chapter 2

Materials and Methods

2.1 Computational methods

Computations were made by using the Fortran subroutine LSODE (https://computing.ll

nl.gov/projects/odepack), and the graphical outputs were generated with Gnuplot (www.

gnuplot.info). These plots, as well as other figures, were annotated with Adobe Illustra-

tor (https://www.adobe.com/). The time derivative of different variables are indicated

by the dot notation, and rate constants are given in arbitary units (a.u.) with the

notation ki (where i=1,2,3...). The number i does not depend on the type of kinetic

conditions (i.e., Michaelis constants, turnover number, inhibition constants, or activa-

tion constants). Computations have been made more accessible to the general public

by converting some of the Fortran results to python (see Appendix A) and MATLAB

scripts (see Appendix B).

2.2 Types of chemical negative feedbacks

There are eight basic single (one-layered) negative feedback loops (Fig. 2.1), which are

analyzed with respect to an applied step and constant but different backgrounds. These

controllers divide equally into inflow and outflow controllers, and are able to keep a

controlled variable A robustly at its set-point. In particular, the controlled variable A is

back-regulated to its set-point after step-perturbations are applied. A is compensated

by compensatory fluxes provided by the manipulated variable E, which either stimulates

the increase or reduction of A, depending on whether the feedback motif is an inflow or

outflow controller, respectively [1]. Step-wise perturbations were used because integral

controllers, in general, are known to fully compensate them [44].

6
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Figure 2.1: Controller motifs m1-m8. Step-perturbations and constant background
reactions are indicated by red and blue arrows, respectively. Solid lines indicate chem-
ical reactions. Dashed lines represent signaling events, in which activation-based com-
pensatory fluxes are indicated by a brown color and derepression-based compensatory
fluxes by a green color. Plus and minus signs represent, respectively, activation and
inhibition. Integral control is incoporated by zero-order kinetics. Figure was taken

from Ref. [1] with permisssion.

In the inflow controllers, m1-m4, step-perturbations (red arrows) and constant back-

ground reactions (blue arrows) are applied such that A is reduced, and it is increased

back to its set-point either by an activation-based compensatory flux (controllers m1

and m3) that directly stimulates the production of A or by a derepression-based com-

pensatory flux (controllers m2 and m4) in which the synthesis of A is inhibited by a

negative feedback.

In controllers m5-m8, which are outflow controllers, the opposite occurs and A is in-

creased when step-perturbations (red arrows) and backgrounds (blue arrows) are ap-

plied. The activation-based compensatory flux (controllers m5 and m7) reduces A back

to its set-point by directly activating the breakdown of A, whereas the derepression-

based compensatory flux (controllers m6 and m8) inhibits the breakdown of A through

negative feedback [1].

Details about each of these controllers can be found in Ch. 3.2, along with their response

kinetics to changes in illumination. These controllers incoporate integral control by zero-

order kinetics (see next chapter). However, an additional m2 controller that incorporates

integral control by autocatalysis, will also be provided.
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2.3 Integral control

As mentioned, integral control is a control-engineering concept that keeps a controlled

variable (A) precisely and robustly at its set-point (Aset), which is accomplished by

feeding the integrated error back into the perturbation-independent process. We will

use outflow controller m5 (Fig. 2.2a) to illustrate how integral control (Fig. 2.2b) can

be incorporated into this controller motif by zero-order kinetics.

Inflow perturbations (by k1 and k3) in m5 (panel a) will temporarily increase the level

of A to above Aset, which means that more E is activated through the rate constant k5.

The compensatory actions of E (with k6 and k7) then contribute to a higher removal

of A (through k4) and, as a result, the controller shows robust perfect adaptation of A.

This is due to the incoporation of integral control as zero-order Michaelis Menten (MM)

kinetics in the removal of E. The MM parameters Vmax and Km are represented by k6

and k7, respectively.

k4

k6, k7

k5

k3

k1

a b

Figure 2.2: Integral control in terms of zero-order kinetics. Figure was redrawn from
Ref. [2], Fig. 1. a) Controller motif m5 from Fig. 2.1 is shown together with rate
constants ki (where i=1, 2, 3...). The negative feedback loop shows robust perfect
adaptation of A due to removing E by zero-order kinetics. For explanation, see text.
b) Typical flow chart of integral control. Uncontrollable perturbations (orange arrows)
add or remove the controlled variable A. The difference between A and the set-point
Aset, Aset-A, is measured and integrated over time (brown ”integral controller” box).
This gives the concentration of the manipulated variable E (green line) that is necessary
to bring A back to Aset through a negative feedback loop (blue line). The colors in

panel b correspond to those in panel a.

In panel b this is illustrated in terms of an integral controller scheme. Environmental

perturbations (orange arrows) remove the concentration of A in comparison to Aset.

This difference or error, ϵ=Aset−A, is integrated over time (brown ”integral controller”

box) and yields the concentration of E (green line). This new level of E feeds into

the process (grey box) that generates A and brings A back to its set-point through a

negative feedback loop (blue line) [45].
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The time derivative of the controlled variable (Ȧ) can be determined by subtracting

the sum of outflow perturbations kinflowpert (arrows pointing away from A) from the sum

of inflow perturbations kinflowpert (arrows pointing towards A) that remove and add A,

respectively. These perturbations also need to be multiplied with the species that (may)

have influenced the inflow or outflow of A (i.e. A or E):

Ȧ = kinflowpert − koutflowpert = (k1 + k3)− (k2 + k4·E)·A (2.1)

where A and E both affect the outflow perturbations.

A similar process is done for the time derivative of the manipulated variable (Ė). How-

ever, the removal of E occurs by zero-order MM kinetics due to the application of integral

control:

Ė = kinflowpert − koutflowpert = k5·A− k6·E
k7+E

(2.2)

where the inflow and outflow perturbations are affected by A and E, respectively.

By incorporating this type of integral control one assumes that k7≪Ess (ss: steady

state) and, as such, that E/(k7+E) ≈ 1. Finally, the set-point Aset can be determined

together with the steady state assumption, i.e. Ė=0:

Ė = k5·A− k6·E
k7 + E

≈k5·A− k6=− k5

 k6
k5︸︷︷︸
Aset

−A


︸ ︷︷ ︸

error

(2.3)

where E is proportional to the integrated error.



Chapter 3

Results

3.1 Photoadaptation in the retina

This section provides information about photoadaptation in the retina, i.e., how retinal

cells adapt to changes in illumination. Incoming light goes through the optical com-

ponents of the eye before it is focused onto the retinal surface. The light then travels

through the retinal layers and towards the photoreceptors’ outer segments. These seg-

ments contain light-sensitive photopigments that change configuration in response to

light, which initiates a phototransduction cascade [3, 8, 40, 41]. This cascade of events

will be explained, along with the basic types of retinal cells and their interactions within

the retinal layers.

3.1.1 Phototransduction cascade

Phototransduction is the process of converting photons from light into electrical signals

or potentials across the cell membrane of photoreceptors. Rods and cones contain light-

sensitive photopigments of rhodopsin and photopsin, respectively, which are located in

membraneous disks of their outer segments. These pigments change configuration in

response to light, and are responsible for initiating the phototransduction cascade. This

series of events will be explained by using rods as an example. However, a similar process

occurs in cones when photopsin is hit with light instead of rhodopsin.

Rhodopsin consists of the light-absorbing chromophore and vitamin-A derivative reti-

nal and one or several types of the protein opsin, with each opsin absorbing light at

a particular wavelength. An incoming photon of light is absorbed by retinal and, as a

result, breaks a double carbon-bond that changes the configuration of 11-cis retinal into

All-trans retinal. This triggers a cascade of events in which opsin first leaves retinal

10
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to activate the intracellular messenger transducin. Transducin then activates phospho-

diesterase (PDE) that is responsible for hydrolyzing the nucleotide cyclic guanosine

monophosphate (cGMP). The role of cGMP is to gate or control the amount of cations

(Ca2+ and Na+) that flow into the membrane channels of the photoreceptor’s outer seg-

ment. This influx of ions is opposed by the efflux of cations (K+) in potassium-selective

channels of the photoreceptor’s inner segment. A decreased concentration of cGMP

means that there is less cGMP to bind to the membraneous channels. The channels of

the outer segment therefore start to close when illumination is increased.

The increased concentration of cGMP in the dark, however, allows for a higher influx

of cations through the cGMP-gated channels. This inward current of ions contributes

more than the efflux of K+ ions in the inner segment. Photoreceptors are therefore

depolarized in the dark with a membrane potential of about -40 mV, and have a high

neurotransmitter release of glutamate at the synapse. In light, however, the decreased

concentration of cGMP yields a lower influx of positive ions. The membrane potential

therefore starts to hyperpolarize, i.e., it becomes more negative until it reaches a satu-

ration around -65 mV. Hyperpolarized photoreceptors release less glutamate due to the

fewer channels that are open. Photoreceptors show graded membrane potentials and

not action potentials.

How much the phototransduction cascade is amplified varies with the level of illumina-

tion. The amplification process stops by bringing the activated molecules back to their

inactive states. The first step is when rhodopsin kinase phosphorylates the activated

rhodopsin, which allows the protein arrestin to bind to rhodopsin. This stops the latter

molecule from activating transducin and, as a consequence, the rest of the phototrans-

duction cascade. Lastly, rhodopsin is regenerated by a complex process involving the

retinoid cycle [3, 8, 40, 41].

3.1.1.1 Intracellular feedback loops in photoreceptors

The phototransduction cascade is said to be regulated by an overlay of three nega-

tive feedback loops, which is illustrated in Fig. 3.1. cGMP first activates the inflow of

Ca2+ ions through cyclic nucleotide-gated (CNG) channels of the outer segment (out-

lined in purple). Ca2+ ions then regulate cGMP and itself by three feedback loops.

In feedback loop 1 (outlined in red) Ca2+ ions inhibit guanylate cyclase (GC), which

synthesizes cGMP. cGMP is also regulated in feedback loop 2, where Ca2+ ions activate

the breakdown of cGMP through transducin and PDE. Feedback loop 3 (outlined in

yellow) is activated when the concentration of Ca2+ ions become high. In this loop

calcium inhibits its own influx of ions through the CNG-channels, which is necessary
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to avoid cytotoxic concentrations of Ca2+ ions. Lastly, K+ ions are pumped out of the

cell through potassium-dependent sodium-calcium exchangers (NCKX) of the inner seg-

ment. This has a negative effect on calcium’s contribution on the membrane potential

[1].

cGMP

+

−

−
Ca2+

i

+

K+
i K+

ex

1 2

3

GC PDE

NCKXCNG-channel

leak

perturbationk2

Figure 3.1: Regulation of photoadaptation by an overlay of three negative feedback
loops. Lower and higher levels of light intensities, represented by the perturbation k2,
increase or decrease the concentration of cGMP in the photoreceptors, respectively.
cGMP activates the inflow of calcium ions (outlined in purple). These ions further
affect cGMP by inhibiting the synthesis of GC in feedback loop 1, and by activating
the breakdown of cGMP by PDE in feedback loop 2. In feedback loop 3 Ca2+ ions
inhibit their own transport through the CNG-channels in order to avoid cytotoxicity.
Finally, their ions, along with potassium (K+) ions, are pumped out of the cell by
NCKX-channels of the outer segment. Also, there is a constant leak of Ca2+ out of the
endoplasmic reticulum indicated by the term ”leak”. Figure was redrawn from Ref. [1],

Fig. 18.

3.1.2 Interactions within the retinal layers

Five basic types of cells are distributed throughout the ten retinal layers, which is

illustrated in Fig. 3.2. One of these is the light-sensitive photoreceptor, which is made

of an an outer segment, inner segment, and a synaptic terminal. There are two types of

photoreceptors, rods and cones, and their outer segments have stacks of membraneous

disks containing the photopigments rhodopsin and photopsin, respectively. Rods have

free-floating disks whereas cones have disks that are connected to the plasma membrane.

Another difference structurally is that the outer segment of rods are long and cylindrical

whereas the ones for cones are shorter and more tapered. Rods are sensitive to light and

operate under dim-light conditions. However, as the light increases rods stop functioning

and cones take over. The cones are less sensitive to light but can operate at a wide range

of the visual spectrum [3, 8, 40, 41]. In the human retina there are about 100 million
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rods, and they are typically found throughout the periphery of the retina. There are

way less cones, about 5 millions, and most of them are found in the fovea. The fovea

only contains cones and has high visual acuity [8, 38].

The base of the photoreceptors are connected to the outermost retinal pigmented ep-

ithelium layer (PE) (layer 1), which is a thin and single layer of epithelial cells that

are connected through tight junctions. There are no blood vessels in the retina and the

choroid below the PE therefore supplies the retina with necessary nutrients, water, and

molecules. The RPE therefore functions as a barrier between the blood and nutrient

supply from the choroid to the retina. PE also prevents scattering of light by absorbing

photons through its pigmented molecules of melanin, as well as to recycle photopig-

ments. The outer segment of the photoreceptors, which are partially submerged in the

PE, constitues the photoreceptor layer (PRL) (layer 2). The inner segment of photore-

ceptors stretches over both the outer limiting membrane (OLM) (layer 3) and outer

nuclear layer (ONL) (layer 4).

Upon light exposure the photoreceptor experiences a graded membrane potential and

releases glutamate at its synaptic terminal in the outer plexiform layer (OPL) (layer 5).

As previously mentioned, the photoreceptor cell becomes depolarized in the dark and

releases much glutamate. With increasing illumination the cell becomes hyperpolarized

and releases less glutamate. In the same outer plexiform layer a downstream bipolar

cell receives the signal, as well as a horizontal cell. A bipolar cell has its central body in

the inner nuclear layer (INL) (layer 6) with a synaptic terminal on both sides. There

are two main types of bipolar cells. These are the on-center and off-center bipolar cells,

in which the center or annulus of the receptive field, respectively, is excited by a spot

of light. Off-center bipolar cells have ionotropic AMPA kainate receptors that open

Ca2+-channels in response to glutamate. Thus, when an off-center bipolar cell reacts

to a depolarized photoreceptor it receives many glutamates. This means that there is a

higher influx of Ca2+ ions, which also makes the bipolar cell depolarized. The opposite

occurs when the off-center bipolar cell responds to a hyperpolarized photoreceptor that

releases less glutamate, and the cell becomes hyperpolarized. The other main type of

bipolar cell, on-center bipolar cell, has the metabotropic glutamate receptor 6 (mGluR6),

which instead closes Ca2+-channels in response to glutamate. This means that on-

center bipolar cells that receive synaptic inputs from depolarized and hyperpolarized

photoreceptors become, respectively, hyperpolarized and depolarized.

After the bipolar cell has experienced a graded membrane potential, either in terms of

depolarization or hyperpolarization, it relases glutamate onto the downstream ganglion

cell in the inner plexiform layer (IPL) (layer 7). The neurotransmitter is also released
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onto amacrine cells in the same layer. Ganglion cells also follow the on-center and off-

center pathways, and there are both on-center and off-center ganglion cells. The ganglion

cell axons are located in the ganglion cell layer (GCL) (layer 8) and come together in

the nerve fiber layer (NFL) (layer 9) to form the optic nerve that enters the central

nervous system. Ganglion cells instead show action potentials and generate spikes in

response to light, which is due to the longer travelling distance of the signal. Lastly,

there is an inner limiting membrane (ILM) (layer 10) next to the NFL.

As mentioned, there are also horizontal and amacrine cells in the retina. The horizontal

and amacrine cells receive glutamate from the synaptic terminals of photoreceptors

and bipolar cells, respectively. Horizontal cells inhibit the photoreceptors by releasing

GABA onto their synaptic terminals. They also span laterally over a wide region in the

outer plexiform layer to aid in the signaling between photoreceptors and bipolar cells.

Amacrine cells instead send inhibitory feedback to the bipolar cells in terms of GABA.

In addition to the five basic types of retinal cells there are interplexiform cells that

stabilize the outer and inner plexiform layers. There are also glial cells, i.e. muller cells,

astrocytes, and microglica, distributed throughout the retina [3, 8, 40, 41].
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Figure 3.2: Cellular interactions within the retina. This figure illustrates the retinal
interactions that occur when a spot of light (indicated by yellow arrows) excites the
center (indicated by yellow ”cylinder”) of the receptive field. An on-center cone (col-
ored blue) is first hit with light. Neurotransmitter is then released from its synaptic
terminal and onto the on-center bipolar cell (colored green) and horizontal cells (colored
orange). An on-center ganglion cell (colored purple) and amacrine cell (colored pink)
then receives this signal. Ganglion cell axons come together in the nerve fiber layer to
create the otic nerve that enters the central nervous system. Cells outside of the center
(yellow ”cylinder”) are in the annulus of the receptive field. Each of the ten retinal
layers has a distinctive name (indicated by horizontal arrows) and background color.

Figure was redrawn from Ref. [3], Fig. 11.5 and Fig. 11.21.
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3.2 One-layered controller motifs m1-m8

In the following chapter we are looking at how the single-negative feedback motifs (from

Fig. 2.1) are influenced by a step-wise perturbation at constant but different back-

grounds. All controllers incorporate integral control by zero-order kinetics. This enable

them to keep the controlled variable A under robust homeostatic control by the manip-

ulated variable E, where the compensatory fluxes of E are either based on activation or

derepression. As mentioned, Fig. 3.1 illustrates how the phototransduction cascade is

regulated by an overlay of three negative feedback loops. In fact, the m1-m8 controllers

represent a simplified version of this figure with two negative feedbacks (feedback loop 3

is absent), where cGMP and Ca2+ are represented by A and E, respectively. Feedback

loops 1 and 2 manage to keep cGMP homeostatically regulated as long as the levels of

GC and PDE (represented by their respective ki-values) are high enough [1]. The single-

negative (or one-layered) feedback motifs are therefore meant to represent the retinal

photoreceptor.
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3.2.1 Controllers with activation-based compensatory fluxes

This subsection contains the results for inflow controllers m1 and m3, as well as the

outflow controllers m5 and m7. All motifs have activation-based compensatory fluxes.

These fluxes oppose the change in A, caused by a step-wise perturbation and constant

but different background, and eventually direct A back to its set-point Aset in order to

maintain homeostasis.

Controller m1

Regarding the inflow controller m1 in Fig. 3.3a, a step-perturbation k2 (red arrow) and

constant background k4 (blue arrow) are applied in such a way that A is temporarily

reduced. The change in A is compensated by the activation-based compensatory flux

j3=k3·E, directed by E, which increases the level of A by directly activating the synthesis

of A.

The rate constants of A and E are, respectively:

Ȧ = k3·E − (k2 + k4)·A (3.1)

Ė = k5 −A

(
k6·E
k7+E

)
(3.2)

Integral control is incorporated by a zero-order degredation of E with the assumption

that k7≪Ess, which means that E/(k7+E) ≈ 1. Together with the steady state approx-

imation (i.e. Ė=0) the set-point Aset can be determined:

Ė = 0 ⇒ k5 = k6·Ass ⇒ Aset=Ass=

(
k5
k6

)
(3.3)

Rearranging the previous equation also shows that E is proportional to the integrated

error (ϵ=Aset−A):

Ė = k6(
k5
k6︸︷︷︸
Aset

−A) = k6·ϵ ⇒ E(t) = k6

∫ t

0
ϵ(t′)·dt′ (3.4)



Results 18

a b

A

E

k3 k4

+

k2

k5 k6, k7

background

perturbation

+

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 20 40 60 80 100
A

(a
u)

time (au)
k4=0
k4=1

k4=2
k4=4

k4=8
k4=16

k4=32
k4=64

Figure 3.3: Resetting kinetics of controller motif m1. (a) Reaction scheme with
integral control incoporated as a zero-order Michaelis-Menten (MM) type degredation
of E. The MM parameters Vmax and Km are represented by k6 and k7, respectively.
k2 is a perturbation (red arrow) and k4 represents a background reaction (blue arrow).
Solid arrows represent chemical reactions. Dashed lines indicate signaling events, where
activation is represented by a plus sign. Figure was redrawn from Ref. [1], Fig. 3.
(b) Response kinetics of the m1 controller (in a.u.) at a step-wise perturbation k2
(indicated by vertical arrow) from phase 1 (k2=1.0) to phase 2 (k2=5.0) at time t=10
with different but constant backgrounds k4 from 0→64 (k4 variable, phases 1 and 2).
The concentration of A is plotted as a function of time. Controller m1 shows a successive
decrease in the maximum excursion of A, ∆Amax, along with a slower resetting time
for A. ∆Amax for k4=0 is indicated. Other rate constants (phases 1 and 2): k3=1.0,
k5=3.0, k6=1.0, k7=1×10−6. Initial concentrations of A: A0=3.0 (k4 from 0→64).
Initial concentrations of E: E0=3.0 (k4=0); E0=6.0 (k4=1); E0=9.0 (k4=2); E0=15.0
(k4=4); E0=27.0 (k4=8); E0=51.0 (k4=16); E0=99.0 (k4=32); E0=195.0 (k4=64). See

Appendix A and B for python and MATLAB scripts, respectively.

The response kinetics of controller m1 can be seen in Fig. 3.3b, where the concentration

of A is followed as a function of time. A k2-step from 1→5 is applied at time t=10

and the background k4 is increased from 0→64. As is typical for controllers based on

activated compensatory fluxes, the ∆Amax decreases with increasing background and

the response period increases. However, the controller is clearly able to correct for the

deviations and defends its set-point Aset=3.0.
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Controller m3

The m3 controller in Fig. 3.4a is exposed to a step-perturbation k2 (red arrow) and con-

stant background k4 (blue arrow) that (temporarily) reduce the concentration of A, and

in which A is increased back to its set-point Aset by an activation-based compensatory

flux j3=k3·E.

The rate equations of A and E become, respectively:

Ȧ = k3·E − (k2 + k4)·A (3.5)

Ė =
k5k8
k8+A

− k6·E
k7+E

(3.6)

As for the m1 controller (Fig. 3.3a), integral control is assumed to follow zero-order

kinetics in the removal of E (k7≪Ess), and, together with the steady state assumption,

the set-point Aset is given by:

Ė=0 ⇒ k5k8
k8+Ass

= k6 ⇒ Ass=Aset=k8

(
k5
k6

− 1

)
(3.7)
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Figure 3.4: Resetting kinetics of controller motif m3. (a) Reaction scheme with
integral control incoporated as a zero-order Michaelis-Menten (MM) type degredation
of E. The MM parameters Vmax and Km are represented by k6 and k7, respectively.
k2 is a perturbation (red arrow) and k4 represents a background reaction (blue arrow).
Solid lines represent chemical reactions. Dashed lines indicate signaling events, where
activation is represented by a plus sign and inhibition by a minus sign. Figure was
redrawn from Ref. [1], Fig. S1 (S1 Text). (b) Response kinetics of the m3 controller
(in a.u.) at a step-wise change k2 (vertical arrow) from phase 1 (k2=1.0) to phase
2 (k2 = 5.0) at time t=50 with different but constant background reactions k4 from
0→64 (k4 variable, phases 1 and 2). The concentration of A is plotted as a function
of time. Similarily to the m1 controller (Fig. 3.3b), m3 shows a successive decrease
in the maximum excursion of A, ∆Amax, along with a slower resetting time for A.
∆Amax for k4=0 is indicated. Other rate constants (phases 1 and 2): k3=1.0, k5=31.0,
k6=1.0, k7=1×10−6, k8=0.1. Initial concentrations of A: A0=3.0 (k4 from 0→64).
Initial concentrations of E: E0=3.0 (k4=0); E0=6.0 (k4=1); E0=9.0 (k4=2); E0=15.0
(k4=4); E0=27.0 (k4=8); E0=51.0 (k4=16); E0=99.0 (k4=32); E0=195.0 (k4=64). See

Appendix A and B for python and MATLAB scripts, respectively.

The resetting kinetics of m3 (Fig. 3.4b), in response to a step-wise perturbation k2

from 1→5 at time t=50 with a constant background k4 from 0→64, is similar to the m1

controller’s (Fig. 3.3b) decreased ∆Amax excursion and increased period length. Despite

showing a somewhat longer resetting time, possibly caused by the inhibition of E, m3

is able to maintain Aset=3.0.
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Controller m5

Controller m5 (Fig. 3.5a), which is an outflow controller, is exposed to an inflow step-

perturbation k1 (red arrow) that temporarily incresases the concentration of A to above

Aset. The perturbation-induced change is opposed by the compensatory flux j3=k4·E·A
that directly activates the breakdown of A. This behaviour is also balanced by a constant

background inflow k3 (blue arrow), as well by A activating the synthesis of E.

The rate equations of A and E become, respectively:

Ȧ = k1 + k3 − k4 · E ·A (3.8)

Ė = k5 ·A− k6·E
k7+E

(3.9)

Determining the set-point Aset (k7≪Ess):

Ė=0 ⇒ k5 ·Ass=k6 ⇒ Ass=Aset=
k6
k5

(3.10)



Results 22

a b

2

3

4

5

6

7

8

9

10

11

0 100 200 300 400 500
A

(a
u)

time (au)
k3=0
k3=1

k3=2
k3=4

k3=8
k3=16

k3=32
k3=64

A

E

k3

k4

+
k5 k6, k7

background

k1perturbation

+

Figure 3.5: Resetting kinetics of controller motif m5. (a) Reaction scheme with in-
tegral control incoporated as a zero-order Michaelis-Menten (MM) type degredation of
E. The MM parameters Vmax and Km are represented by k6 and k7, respectively. k1
is a perturbation (red arrow) and k3 represents a background reaction (blue arrow).
Solid lines represent chemical reactions. Dashed lines indicate signaling events, where
activation is represented by a plus sign. Figure was redrawn from Ref. [1], Fig. S3
(S1 Text). (b) Response kinetics of the m5 controller (in a.u.) at a step-wise pertur-
bation k1 (indidcated by vertical arrow) from phase 1 (k1=1.0) to phase 2 (k1 = 5.0)
at time t=100 with different but constant background reactions k3 from 0→64 (k3
variable, phases 1 and 2). The concentration of A is plotted as a function of time.
m5 shows a successive decrease of the maximum excursion in A, ∆Amax, along with
a longer resetting time for A. ∆Amax for k3=0 is indicated. Other rate constants
(phases 1 and 2): k4=0.005, k5=1.0, k6=3.0, k7=1×10−6. Initial concentrations of A:
A0=3.0 (k3 from 0→64). Initial concentrations of E: E0=66.667 (k3=0); E0=133.33
(k3=1); E0=200.0 (k3=2); E0=333.33 (k3=4); E0=600.0 (k3=8); E0=1133.33 (k3=16);
E0=2200.0 (k3=32); E0=4333.33 (k3=64). See Appendix A and B for python and

MATLAB scripts, respectively.

The response kinetics of A in controller m5, as a function of time, can be seen in Fig. 3.5b,

with Aset=3.0 and constant background k3 varying from 0 to 64. The step-perturbation

k1 goes from 1→5 at time t=100. m5 shows a decreased ∆Amax and a longer resetting

period as the background k3 increases.
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Controller m7

The outflow controller m7 (Fig. 3.6a) has an activation-based compensatory flux j4=k4·A·E
that opposes the inflow of A caused by the step-perturbation k1 (red arrow) and constant

background k3 (blue arrow).

Determining the rate equations of A and E, respectively:

Ȧ = k1 + k3 − k4·A·E (3.11)

Ė = k5 −
(

k6·E
k7+E

)
·
(

k8
k8+A

)
(3.12)

The set-point Aset is given by:

Ė = 0 ⇒ k5 =
k6k8

(k8+Ass)
⇒ Aset=Ass=k8

(
k6
k5

−1

)
(3.13)
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Figure 3.6: Resetting kinetics of controller motif m7. (a) Reaction scheme with
integral control incoporated as a zero-order Michaelis-Menten (MM) type degredation
of E. The MM parameters Vmax and Km are represented by k6 and k7, respectively.
k1 is a perturbation (red arrow) and k3 represents a background reaction (blue arrow).
Solid lines represent chemical reactions. Dashed lines indicate signaling events, where
activation is represented by a plus sign and inhibition by a minus sign. Figure was
redrawn from Ref. [1], Fig. 5. (b) Response kinetics of the m7 controller (in a.u.)
at a step-wise perturbation k1 (indicated by vertical arrow) from phase 1 (k1=1.0) to
phase 2 (k1 = 5.0) at time t=100 with different but constant backgrounds k3 from
0→64 (k3 variable, phases 1 and 2). The concentration of A is plotted as a function
of time. m7 shows a successive decrease of the maximum excursion, ∆Amax, along
with a longer resetting time for A. ∆Amax for k3=0 is indicated. Other rate constants
(phases 1 and 2, in au): k4=0.003, k5=1.0, k6=31.0, k7=1×10−6, k8=0.1. Initial
concentrations of A: A0=3.0 (k3 from 0→64). Initial concentrations of E: E0=11.11
(k3=0); E0=22.22 (k3=1); E0=33.33 (k3=2); E0=55.55 (k3=4); E0=99.99 (k3=8);
E0=188.89 (k3=16); E0=366.67 (k3=32); E0=722.22 (k3=64). See Appendix A and B

for python and MATLAB scripts, respectively.

The response kinetics of m7, as a function of time, in Fig. 3.6 (panel b) shows a decreased

∆Amax and longer response period with increasing backgrounds k3 from 0→64 at time

t=100. It has the same set-point Aset=3.0 as the other controllers, and is subjected to a

step-perturbation k1 from 1→5. The response kinetics of m7 is very similar to m5 (see

Fig. 3.5b).
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3.2.2 Controllers with derepression-based compensatory fluxes

In this subsection the results for inflow controllers m2 and m4 and outflow controllers

m6 and m8 are described. In these controllers the concentration of A is homeostatically

regulated upon a step-wise perturbation and constant but different background, where

the compensatory actions of E are based on derepression. There is also provided a m2

controller which incorporates integral control by autocatalysis.

Controller m2

Inflow controller m2 (Fig. 3.7a) has a derepression-based compensatory flux j3=k3k8/(k8+E)

that opposes the outflow of A caused by the step-perturbation k2 (red arrow) and con-

stant but different background k4. When A is decreased by k2 there is less A to activate

E, which means that A gradually returns to its set-point since there is less E to inhibit

the synthesis of A.

Determining the rate equations of A and E, respectively:

Ȧ =
k3k8
k8+E

− (k2 + k4)·A (3.14)

Ė = k5·A− k6·E
k7+E

(3.15)

Assuming integral control by zero-order kinetics (i.e. E/(k7+E)≈1) and that Ė=0

(steady state approximation), the set-point Aset is given by:

Ė=0 ⇒ k5 ·Ass=k6 ⇒ Ass=Aset=
k6
k5

(3.16)
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Figure 3.7: Response kinetics of controller motif m2. (a) Reaction scheme with
integral control incoporated as a zero-order Michaelis-Menten (MM) type degredation
of E. The MM parameters Vmax and Km are represented by k6 and k7, respectively.
k2 is a perturbation (red arrow) and k4 (blue arrow) represents a background reaction.
Solid lines represent chemical reactions. Dashed lines indicate signaling events, where
activation is represented by a plus sign and inhibition by a minus sign. Figure was
redrawn from Ref. [1], Fig. 7. (b) Response kinetics of the m2 controller (in a.u.)
at a step-wise perturbation k2 (indicated by vertical arrow) from phase 1 (k2=1.0) to
phase 2 (k2 = 5.0) at time t=50 with different but constant backgrounds k4 from 0→64
(k4 variable, phases 1 and 2). The concentration of A is plotted as a function of time.
m2 shows a successive decrease of the maximum excursion of A, ∆Amax, along with a
shorter resetting period. ∆Amax is indicated for k4=0. Other rate constants (phases 1
and 2, in au): k3=1×104, k5=1.0, k6=3.0, k7=1×10−6, k8=0.1. Initial concentrations of
A: A0=3.0 (k4 from 0→64). Initial concentrations of E: E0=333.15 (k4=0); E0=166.57
(k4=1); E0=111.01 (k4=2); E0=66.57 (k4=4); E0=36.94 (k4=8); E0=19.51 (k4=16);
E0=10.00 (k4=32); E0=5.03 (k4=64). See Appendix A and B for python and MATLAB

scripts, respectively.

The m2 controller (Fig. 3.7 b) is able to maintain Aset=3.0 when being subjected to

a step-perturbation k2 from 1→5 at time t=50. Compared to the controllers with

activation-based compensatory fluxes (see Ch. 3.2.1), the m2 controller also shows a

successive decrease of ∆Amax but a shorter response time with increasing backgrounds

k4 from 0→64.
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Autocatalytic m2 controller

Inflow and autocatalytic m2 controller (Fig. 3.8a) has a derepression-based compensatory

flux j3=k3k8/(k8+E) that opposes the outflow of A caused by the step-perturbation k2

(red arrow) and constant but different background reaction k4 (blue arrow). An outflow

of A causes less E to inhibit the synthesis of A, which means that A gradually returns

to its set-point. What is different from this controller, compared to the m2 controller

with integral incorporated as zero-order kinetics (Fig. 3.7a), is that E also activates its

own synthesis.

The rate equations of A and E are, respectively:

Ȧ =
k3·k8
k8 + E

+ k1 − (k2 + k4)·A (3.17)

Ė = k5·A·E − k6·E (3.18)

The set-point Aset is:

Ė=0 ⇒ k5 ·Ass·Ess=k6·Ess ⇒ Ass=Aset=
k6
k5

(3.19)
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Figure 3.8: Response kinetics of autocatalytic m2 controller motif. (a) Reaction
scheme with integral control incorporated by autocatalysis. k2 is a perturbation (red
arrow) and k4 (blue arrow) represents a constant background reaction. Solid lines
represent chemical reactions. Dashed lines indicate signaling events, where activation
is represented by a plus sign and inhibition by a minus sign. Figure was redrawn from
Ref. [1], Fig. 7. (b) Response kinetics of the autocatalytic m2 controller (in a.u.) at
a step-wise perturbation k2 (indicated by a vertical arrow) from phase 1 (k2=1.0) to
phase 2 (k2 = 5.0) at time t=100 with different but constant backgrounds k4 from 0→64
(k4 variable, phases 1 and 2). The concentration of A is plotted as a function of time.
The controller shows a successive decrease of the maximum excursion of A, ∆Amax,
along with a shorter resetting period. Notice the much faster resetting time compared
to m2 in Fig. 3.7b. ∆Amax is indicated for k4=0. Other rate constants (phases 1
and 2): k3=1×10+4, k5=1.0, k6=3.0, k8=1×10−1. Initial concentrations of A: A0=3.0
(k4 from 0→64). Initial concentrations of E: E0=333.23 (k4=0); E0=166.57 (k4=1);
E0=111.01 (k4=2); E0=66.57 (k4=4); E0=36.94 (k4=8); E0=19.51 (k4=16); E0=10.00

(k4=32); E0=5.03 (k4=64). See Appendix A for python script.

The autocatalytic m2 controller (Fig. 3.8 b) shows a successive decrease of ∆Amax and

shorter response time with increasing background k4 from 0→64. The controller is

subjected to a step-perturbation k2 from 1→5 at time t=50 and is able to maintain its

set-point Aset=3.0. However, notice the much faster resetting time compared to the

m2 controller with integral control incorporated by zero-order kinetics (Fig. 3.7b). At

a constant background k4=0, for instance, the resetting time for the autocatalytic m2

controller is about 100 times faster than for the m2 controller.
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Controller m4

Inflow controller m4 (Fig. 3.9a) has a derepression-based compensatory flux j3=k3k8/(k8+E)

(with inhibitory constant k8) that counteracts the decrease of A caused by the step-

perturbation k2 (red arrow) and constant but different background k4. There is another

inhibition term (with k9) where A inhibits the breakdown of E.

The rate equations of A and E become, respectively:

Ȧ = k2·A− k4·A+
k3k8
k8+E

(3.20)

Ė = k5 −
(

k6·E
k7+E

)
·
(

k9
k9+A

)
(3.21)

Using the assumptions that E/(k7+E)≈1) and Ė=0, the set-point Aset becomes:

Ė=0 ⇒ k6k9
k9+Ass

= k5 ⇒ Ass=Aset=k9

(
k6
k5

− 1

)
(3.22)
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Figure 3.9: Response kinetics of controller motif m4. (a) Reaction scheme with
integral control incoporated as a zero-order Michaelis-Menten (MM) type degredation
of E. The MM parameters Vmax and Km are represented by k6 and k7, respectively.
k2 is a perturbation (red arrow) and k4 (blue arrow) represents a background reaction.
Solid lines represent chemical reactions. Dashed lines indicate signaling events, where
inhibition is represented by a minus sign. Figure was redrawn from Ref. [1], Fig. S1 (S2
Text). (b) Response kinetics of the m4 controller (in a.u.) at a step-wise perturbation
k2 (indicated by a vertical arrow) from phase 1 (k2=1.0) to phase 2 (k2 = 5.0) at time
t=50 with different but constant backgrounds k4 from 0→64 (k4 variable, phases 1
and 2). The concentration of A is plotted as a function of time. m4 shows a successive
decrease of the maximum excursion of A, ∆Amax, along with a shorter resetting period.
∆Amax is indicated for k4=0. Other rate constants (phases 1 and 2): k3=1×104,
k5=1.0, k6=31.0, k7=1×10−6, k8=0.1, k9=0.1. Initial concentrations of A: A0=3.0
(k4 from 0→64). Initial concentrations of E: E0=333.18 (k4=0); E0=166.57 (k4=1);
E0=111.01 (k4=2); E0=66.57 (k4=4); E0=36.94 (k4=8); E0=19.51 (k4=16); E0=10.00
(k4=32); E0=5.03 (k4=64). See Appendix A and B for python and MATLAB scripts,

respectively.

The resetting kinetics of m4 (Fig. 3.9b) shows a successive decrease of ∆Amax and de-

creased resetting time as the background k4 increases from 0→64 at a step-perturbation

k2 from 1→5 at time t=50. Controller m4 behaves very similar to m2 (Fig. 3.7b) with

the exception that m2 has a shorter resetting time.
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Controller m6

Controller m6 (Fig. 3.10a) has a derepression-based compensatory flux j4=k4k8·A/(k8+E)

(with inhibitory constant k8) that opposes the inflow of A. The inflow of A is due to a

step-perturbation k1 (red arrow) and constant but different background k3 (blue arrow).

Determining the rate equations of A and E, respectively:

Ȧ = k1 + k3 −
(

k4·k8
k8+E

)
·A (3.23)

Ė = k5 −
(

k6·E
k7+E

)
·A (3.24)

The set-point Aset is given by:

Ė=0 ⇒ k5 − k6·Ass = 0 ⇒ Ass=Aset=
k5
k6

(3.25)
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Figure 3.10: Resetting kinetics of controller motif m6. (a) Reaction scheme with
integral control incoporated as a zero-order Michaelis-Menten (MM) type degredation
of E. The MM parameters Vmax and Km are represented by k6 and k7, respectively.
k1 is a perturbation (red arrow) and k3 (blue arrow) represents a background reac-
tion. Solid lines represent chemical reactions. Dashed lines indicate signaling events,
where activation is represented by a plus sign and inhibition by a minus sign. Fig-
ure was redrawn from Ref. [1], Fig. S3 (S2 Text). (b) Response kinetics of the m6
controller (in a.u.) at a step-wise perturbation k1 (indicated by vertical arrow) from
phase 1 (k1=1.0) to phase 2 (k1 = 5.0) at time t=100 with different but constant
backgrounds k3 from 0→64 (k3 variable, phases 1 and 2). The concentration of A is
plotted as a function of time. m6 shows a successive decrease of the maximum ex-
cursion of A, ∆Amax, along with a shorter resetting period. ∆Amax is indicated for
k3=0. Other rate constants (phases 1 and 2): k4=1×104, k5=6.0, k6=2.0, k7=1×10−6,
k8=0.1. Initial concentrations of A: A0=3.0 (k3 from 0→64). Initial concentrations of
E: E0=2999.81 (k3=0); E0=1499.90 (k3=1); E0=999.90 (k3=2); E0=599.90 (k3=4);
E0=333.23 (k3=8); E0=176.37 (k3=16); E0=90.81 (k3=32); E0=46.05 (k3=64). See

Appendix A and B for python and MATLAB scripts, respectively.

Outflow controller m6 in Fig. 3.10b shows a successive decrease of both ∆Amax and the

resetting period when the step-perturbation k1 is increased from 1→5 at time t=100,

while having a constant but different background inflow k3 from 0→64. The controller

is able to defend its set-point Aset=3.0.
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Controller m8

Fig. 3.11a shows an outflow controller m8 with a compensatory flux j4=k4·k9·A/(k9+E)

(with k9) that opposes the increase of A when a step-perturbation k1 (red arrow) is

applied at a constant background inflow k3 (blue arrow). A inhibits the synthesis of E

through the inhibitory constant k8.

The rate equations of A and E become, respectively:

Ȧ = k1 + k3 − k4·A·
(

k9
k9+E

)
(3.26)

Ė = k5·
(

k8
k8+A

)
− k6·E

k7+E
(3.27)

The set-point Aset is given by:

Ė=0 ⇒ k5·
(

k8
k8+Ass

)
= k6 ⇒ Aset=Ass=k8

(
k5
k6

−1

)
(3.28)
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Figure 3.11: Resetting kinetics of controller motif m8. (a) Reaction scheme with
integral control incoporated as a zero-order Michaelis-Menten (MM) type degreda-
tion of E. The MM parameters Vmax and Km are represented by k6 and k7, re-
spectively. k1 is a perturbation (red arrow) and k3 (blue arrow) represents a back-
ground reaction. Solind lines represent chemical reactions. Dashed lines indicate sig-
naling events, where inhibition is represented by a minus sign. Figure was redrawn
from Ref. [1], Fig. 10. (b) Response kinetics of the m8 controller (in a.u.) at a
step-wise perturbation k1 (indicated by the vertical arrow) from phase 1 (k1=1.0) to
phase 2 (k1 = 5.0) at time t=100 with different but constant backgrounds k3 from
0→64 (k3 variable, phases 1 and 2). The concentration of A is plotted as a function
of time. m8 shows a successive decrease of the maximum excursion of A, ∆Amax,
along with a shorter resetting period. ∆Amax is indicated for k3=0. Other rate con-
stants (phases 1 and 2, in au): k4=1×104, k5=620.0, k6=20.0, k7=1×10−6, k8=0.1,
k9=0.1. Initial concentrations of A: A0=3.0 (k3 from 0→64). Initial concentrations of
E: E0=2998.35 (k3=0); E0=1499.91 (k3=1); E0=999.90 (k3=2); E0=599.90 (k3=4);
E0=333.23 (k3=8); E0=176.37 (k3=16); E0=90.81 (k3=32); E0=46.05 (k3=64). See

Appendix A and B for python and MATLAB scripts, respectively.

The resetting kinetics in m8 (Fig. 3.11b) shows a decreased ∆Amax excursion, along with

a shorter resetting time. The controller is subjected to a step-perturbation k1 from 1→5

at time t=100, and a constant but different background k3 from 0→64. This controller

behaves similarly to m6 (Fig. 3.10b), with the exception that m8 has a slightly faster

resetting period.
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3.3 Two-layered frequency compensated oscillators

Retinal ganglion cells are known to oscillate, as well as having partial frequency compen-

sations [39]. We created frequency compensated oscillators in order to represent these

retinal cells. These controllers have a central feedback layer that is based on motif m1-m8

(Fig. 2.1), in which the time average vaule of A (Eq. 3.29) is kept homeostatically sta-

ble by the manipulated variable E. Upon step-perturbations and constant background

reactions the oscillator goes from <A> to its set-point Aset.

<A>(t) =
1

t

∫ t

0
A·dt (3.29)

In these controllers there is a second feedback layer that keeps the the time average

concentration of E (of the central layer) (Eq. 3.30) robustly at a certain set-point. This

is due to the outer layer having two additional controller species, I1 and I2, which act

directly or indirectly on A. In addition to maintaining E-homeostasis, I1 and I2 ensure

frequency homeostasis.

<E>(t) =
1

t

∫ t

0
E·dt (3.30)

It has previously been shown that these two-layered layered oscillators show robust fre-

quency homeostasis [2]. However, the oscillators also show background compensation

when I1 and I2 feed directly or ”coherently” back to A (see Ch. 3.3.1), i.e., the con-

troller responds to a step-perturbation independent of the level of an applied constant

background. This type of feedback was termed ”coherent feedback” in analogy to a

similar feedback mechanism used in quantum control theory and optics. Background

compensations are not seen when I1 and I2 feed into the process that generates A by

so-called ”incoherent feedback” (see Ch. 3.3.2) [5, 6].
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3.3.1 Frequency compensated oscillator with coherent feedback

In this section we are looking at a frequency compensated oscillator (Fig. 3.12a) that

incorporates integral control in terms of coherent feedback (Fig. 3.12b) [5, 6], which

allows the controller to neutralize backgrounds (Fig. 3.15).

It is structured into two negative feedback layers (Fig. 3.12a), in which one of them

constitutes the m2-based (Fig. 3.7) central A-e-E-A loop (colored green). This basic

derepression-based m2 scheme has an additional intermediate e that turns the central

oscillator into a limit-cycle oscillator [2]. The central oscillator is an inflow controller and

can therefore only (in theory) compensate for outflow perturbations [46]. Thus, when

there is an outflow of A due to a step-wise perturbation k2 (colored red) and constant

backgrounds k10 (colored blue), the compensatory actions of E (j3=k3·k5/(k5+E)) keeps

the average concentration of A, <A>, homeostatically stable at Aset.

In the other feedback layer (colored orange) the average concentration of E, <E>, is

instead kept under robust homeostatic control. This is made possible by the controller

species I1 and I2 that function as outflow or inflow controllers of A, respectively. In fact,

it is the control of <E> by I1 and I2 that allow for the oscillator’s frequency homeostasis

[2]. Since the integral controller species I1 and I2 feed directly or coherently [5, 6] back

to A (see Fig. 3.12b), the controller shows robust background compensation.
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Figure 3.12: Example of an oscillator with frequency control and coherent feedback,
i.e., with background compensation. Figure was redrawn from Ref. [4], Fig. 4. a)
Reaction scheme of oscillator with two negative feedback layers, in which the central
A-e-E-A loop is based on derepression-based motif m2 (Fig. 3.7a). Solid arrows rep-
resent chemical reactions. Dashed lines indicate signaling events, where activation is
represented by a plus sign and inhibition by a minus sign. b) Integral control scheme
with coherent feedback, where I1 and I2 feed directly back to A. Coherent feedback,
which is a term used in quantum control theory and optics [5, 6], yields an additional
control of E via A by I1 and I2. In particular, uncontrollable perturbations (orange
arrows) add or remove A. The difference or error between the controlled variable and
its set-point (Aset-A) is measured and integrated over time (lower grey ”integration
box”). This gives the necessary E-concentration (horizontal green line) for maintain-
ing A under robust homeostatic control. A difference from the basic integral controller
(Fig. 2.2b), is that the outpout of E (vertical green line) is also used as input in a second
control system. Here, the error between E and Eset is measured and integrated over
time (upper grey ”integration box”). This gives the I1- and I2-concentrations (brown
line) to be fed directly or coherently back to A through a negative feedback loop (blue

line) in order to maintain EsetI1 and EsetI2 , respectively.

The rate equations of A, e, E, I1, and I2, respectively, are given by:

Ȧ = kg3·I2 +
k3·k5
k5+E

− kg·A·I1
k17+A

− k2·A
k8+A︸ ︷︷ ︸

perturbation

− k10·A
k8+A︸ ︷︷ ︸

background

(3.31)

ė = k4·A− k9·e (3.32)

Ė = k9·e−
k6·E
k7 + E

(3.33)

İ1 = k11·E − k12·I1
k13 + I1

(3.34)
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İ2 = k14 −
(

k15·I2
k16 + I2

)
·E (3.35)

Integral control, in the central layer, is enabled by zero-order kinetics in the removal

of E (i.e. E/(k7+E)≈1), which is necessary for achieving robust perfect adapation of

<A>. Given the steady state (ss) approximation (i.e., Ė=ė=0) the set-point Aset can

be determined:

k4·<Ass> = k9·<ess> = k6 ·
(

Ess

k7+Ess

)
︸ ︷︷ ︸
≈ 1 (zero−order)

⇒ <Ass>=Aset=
k6
k4

(3.36)

where the oscillating system goes from <Ass> to Aset when oscillatory and A to Aset

when non-oscillatory [2].

The controller variables I1 and I2 (in the outer feedback layer) are assumed to be de-

graded by zero-order kinetics. I1 and I2 function, respectively, as outflow and inflow

controllers with respect to <E> when oscillatory and E while non-oscillatory [2]. When

considering the steady state (ss) approximation (i.e., E=0) the manipulated variable’s

set-points, EI1
set and EI2

set, with regards to, respectively, I1 and I2 become:

k11·<Ess> = k12 ·
(

I1,ss
k13+I1,ss

)
︸ ︷︷ ︸
≈ 1 (zero−order)

⇒ <Ess>=EI1
set=

k12
k11

(3.37)

k14 = k15·<Ess>

(
I2,ss

k16+I2,ss

)
︸ ︷︷ ︸
≈ 1 (zero−order)

⇒ <Ess>=EI2
set=

k14
k15

(3.38)

Since I1 is an outflow controller it becomes active when <E> is higher than EI1
set. The

opposite occurs for the inflow controller I2, which operates whenever <E> is lower than

EI2
set. Due to wind-up [2] the concentration of EI2

set should be lower than EI1
set.
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Figure 3.13: Frequency compensation of the feedback scheme in Fig. 3.12a at a con-
stant background k10=0. The controller is tested at a step-perturbation k2 from 1→9
at time t=100. Panels a and b show the resetting kinetics of A and E as a function
of time, as well as their average concentrations <A> and <E>, respectively. Panel
c shows the contributions of the controller species I1 and I2 over time. In panel d
the frequency, or inverse of the period length, is plotted as a function of time. No-
tice the oscillator’s frequency homeostasis. Other rate constants (phases 1 and 2, in
a.u.): k4=k11=k15=1.0, k5=0.1, k6=2.0, k7=k8=k13=k16=1×10−6, k9=20.0, k12=5.0,
k14=4.99, kg=kg3=1×10−2. Initial concentrations of A, E, e, I1, and I2 (in au), re-
spectively: 2.2084, 7.7021, 1.1354×10−1, 1.5773×102, and 4.3563. See Appendix A for

python scripts.

Fig. 3.13 shows the oscillator’s behaviour to a step-wise perturbation k2 from 1.0 (phase

1) to 9.0 (phase 2) at time t=100, while having a constant background outflow k10=0.

Panels a and b show the oscillations of A and E, respectively, over time. They also

show their respective average concentrations, <A> and <E>, which are homeostatically

regulated by the compensatory actions of I1 and I2 in panel c. If I1 and I2 were absent,

i.e., no control of <E> via A by I1 and I2, then E would be the only regulator of <A>.

In panel d the frequency, or inverse of the period length, is plotted as a function of time.

The frequency clearly resets to its pre-perturbation level after some time.
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Figure 3.14: Frequency compensation of the feedback scheme in Fig. 3.12a at a
constant background k10=2048. The controller is tested at a step-perturbation k2 from
1→9 at time t=100. Panels a and b show the resetting kinetics of A and E as a function
of time, as well as their average concentrations <A> and <E>, respectively. Panel
c shows the contributions of the controller species I1 and I2 over time. In panel d
the frequency, or inverse of the period length, is plotted as a function of time. Notice
the oscillator’s frequency homeostasis. Other rate constants (phases 1 and 2, in a.u.)
as in Fig. 3.13. Initial concentrations of A, E, e, I1, and I2 (in au), respectively:
2.1377, 7.6720, 1.0996×10−1, 1.1354×10−1, 3.4304, and 2.0465×105. See Appendix A

for python scripts.

The same k2-step is applied in Fig. 3.14 at k10=2048. Based on the feedback scheme

in Fig. 3.12a the larger background will result in a higher removal of A. This is clearly

compensated for in panel a by a large increase in the inflow controller I2, as well as

a reduction in the outflow controller I1 (panel c). I1 and I2 continue to maintain the

set-points for A and E in panels a and b, respectively. Frequency homeostasis (panel d)

is also observed at this k10-value. In fact, the same sensitivity is shown for the maximum

frequency, indicating that the oscillator shows frequency compensation independent of

the applied background.
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Figure 3.15: Frequency and background compensations of the oscillator from
Fig. 3.12a. The figure shows the number 2 frequency (in phase 2) as a function of

kph22 +k10. Frequency adaptation of the controller (in a.u.) at a step-wise perturba-
tion from phase 1 (k2=1.0) to phase 2 (k2 variable, k2 from 2→10) with constant
background perturbations k10 from 0→16 in panel a and 32→2048 in panel b (k10 vari-
able, phases 1 and 2). The total perturbations (k2+k10) induce parallel lines, which
show frequency adaptation. Other rate constants (phases 1 and 2, in a.u.) as in
Fig. 3.13. Initial concentrations of A, E, e, I1, and I2 (in a.u.), respectively: A0=0.3780,
E0=2.4784, e0=1.5993×10−2, I1,0=4.5727×102, I2,0=2.9817×102 (k10 from 0→128);
A0=0.9866, E0=7.3508, e0=5.2447×10−2, I1,0=5.8243, I2,0=2.5447×104 (k10=256);
A0=8.3872×10−4, E0=4.8793, e0=3.9572×10−5, I1,0=7.6544, I2,0=5.1046×104

(k10=512); A0=1.7657, E0=7.6866, e0=9.1430×10−2, I1,0=4.2379, I2,0=1.0225×105

(k10=1024); A0=2.1377, E0=7.6720, e0=1.0996×10−1, I1,0=3.4304, I2,0=2.0465×105

(k10=2048).

In Fig. 3.15 the frequency of A is plotted as a function of kph22 +k10, where the oscilla-

tor’s response to a step-wise perturbation from k2=1.0 (phase 1) to k2=2→10 in phase

2 (with increments of one) is shown. This is repeated at lower backgrounds from 0→16

in panel a and higher k10 values from 32→2048 in panel b. Notice how the total per-

turbations (k2+k10) induce parallel lines, i.e., the oscillator is capable of eliminating

backgrounds. Thus, the frequency compensated oscillator with coherent feedback shows

robust background compensation.
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Figure 3.16: Frequency response of the feedback scheme in Fig. 3.12a when elimi-
nating I1 and I2. The controller is tested at a step-perturbation k2 from 1→9 at time
t=100 and a constant background k10=32. Panel a shows the response of A as a func-
tion of time, as well as the average concentration <A>. Notice how the frequency
in panel b increases from phase 1 to 2, i.e. the oscillator does not show frequency
adaptation. Other rate constants (phases 1 and 2, in a.u.): k4=1.0, k5=0.1, k6=2.0,
k7=k8=1×10−6, k9=20.0. Initial concentrations of A, and E (in a.u.), respectively:

4.7695 and 9.1501×10−1

The necessesity of I1 and I2 in ensuring frequency homeostasis was tested by eliminating

their effects in Fig. 3.12a, i.e., by setting I1 and I2 to zero. The results can be seen in

Fig. 3.16, in which the oscillator was subjected to a step-perturbation k2 from 1→9 at

time t=100 and background k10=32. Panel a shows the oscillations of A over time,

where its average concentration remains the same (<A>=2.0) due to the compensatory

actions of E. However, in panel b the controller becomes sensitive to k2-steps and does

no longer show frequency homeostasis. This indicates that I1 and I2 are necessary in

ensuring the oscillator’s frequency compensation.
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3.3.2 Frequency compensated oscillator with incoherent feedback

This section deals with a two-layered frequency compensated oscillator (Fig. 3.17a),

where integral control is incorporated by incoherent feedback (Fig. 3.17b) [5, 6]. A

feedback mechanism like this does not enable the controller to eliminate backgrounds

(Fig. 3.20).

The controller in Fig. 3.17a is a frequency compensated oscillator with incoherent feed-

back [5, 6], where the central a-A-E-a feedback loop (colored green) is based on motif m2

(Fig. 3.7). This controller uses an intermediate a in front of A to turn the central oscilla-

tor into a limit-cycle oscillator [2]. There is an outflow of A when a step-perturbation k2

(colored red) and background reaction k10 (colored blue) are applied. Since the central

oscillator is an inflow controller it will compensate for the ouflow perturbations [46], in

which the compensatory fluxes of E (j3=k3·k5/(k5+E)) keep the average concentration

of A, <A>, under robust homeostatic control.

An outer feedback layer (colored orange), with controller species I1 and I2, keep the

average concentration of E, <E>, homeostatically regulated. The outflow controller

I1 and inflow controller I2 are also responsible for enabling the oscillator’s frequency

homeostasis [2]. This oscillator does not show background compensation since I1 and I2

feed incoherently (Fig. 3.17b) [5, 6] back to A in the central oscillator.
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Figure 3.17: Example of an oscillator with frequency control and incoherent feed-
back, i.e., no background compensation. Figure was redrawn from Ref. [4], Fig. 15. a)
Reaction scheme of oscillator with two negative feedback layers, in which the central
A-E-a-A loop is based on derepression-based motif m2 (Fig. 3.7a). Solid arrows rep-
resent chemical reactions. Dashed lines indicate signaling events, where activation is
represented by a plus sign and inhibition by a minus sign. b) Integral control scheme
with incoherent feedback, where I1 and I2 feed back to A through the precursor a.
Incoherent feedback, which is a term used in quantum control theory and optics [5, 6],
yields an additional control of E via A by I1 and I2. In particular, uncontrollable
perturbations (orange arrows) add or remove A. The difference or error between the
controlled variable and its set-point (Aset-A) is measured and integrated over time
(lower grey ”integration box”). This gives the necessary E-concentration (horizontal
green line) for maintaining A under robust homeostatic control. A difference from the
basic integral controller (Fig. 2.2b), is that the outpout of E (vertical green line) is
also used as input in a second control system. Here, the error between E and Eset

is measured and integrated over time (upper grey ”integration box”). This gives the
I1- and I2-concentrations (brown line) to be fed incoherently back to A, i.e., into the

process that generates A, in order to maintain EsetI1 and EsetI2 , respectively.

The rate equations of A, a, E, I1, and I2 are, respectively:

Ȧ = (k2 + k10)·A+ k9·a (3.39)

ȧ =
(k3 + kg3·I2)·k5

k5 + E
− (k9 + kg·I1)·a (3.40)

Ė = k4·A− k6·E
k7 + E

(3.41)

İ1 = k11·E − k12·I1
k13 + I1

(3.42)
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İ2 = k14 −
(

k15·I2
k16 + I2

)
·E (3.43)

Integral control is implemented as a zero-order removal of E (i.e. E/(k7+E)≈1) in the

central A-E-a-E loop, where the set-point Aset is determined together with the steady

state (ss) approximation:

k4·<Ass> = k6 ·
(

Ess

k7+Ess

)
︸ ︷︷ ︸
≈ 1 (zero−order)

⇒ <Ass>=Aset=
k6
k4

(3.44)

in which <Ass> goes to Aset when oscillatory and A goes to Aset when non-oscillatory

[2].

In the outer feedback layer I1 and I2 are also assumed to follow zero-order kinetics in

their removal, which assumes that k13≪I1,ss and k16≪I1,ss, respectively. As such, the

set-points for the manipulated variable, EI1
set and EI2

set, can be determined together with

the steady state (ss) approximation:

k11·<Ess> = k12 ·
(

I1,ss
k13+I1,ss

)
︸ ︷︷ ︸
≈ 1 (zero−order)

⇒ <Ess>=EI1
set=

k12
k11

(3.45)

k14 = k15·<Ess>

(
I2,ss

k16+I2,ss

)
︸ ︷︷ ︸
≈ 1 (zero−order)

⇒ <Ess>=EI2
set=

k14
k15

(3.46)

Since I1 works as an outflow controller it becomes active whenever <E> is above EI1
set,

whereas the inflow controller I2 becomes operative when <E> is below EI2
set [2].
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Figure 3.18: Frequency compensation of the feedback scheme in Fig. 3.17a at a con-
stant background k10=0. The controller is tested at a step-perturbation k2 from 1→9 at
time t=500. Panels a and b show the resetting kinetics of A and E as a function of time,
as well as their average concentrations <A> and <E>, respectively. Panel c shows the
contributions of the controller species I1 and I2 over time. In panel d the frequency, or
inverse of the period length, is plotted as a function of time. Notice the oscillator’s fre-
quency homeostasis. Other rate constants (phases 1 and 2, in a.u.): k3=1×106, k4=1.0,
k5=k7=k13=k16=1×10−6, k6=k9=2.0, k11=k15=5.0, k12=100, k14=99.99, kg=1×10−3,
kg3=1.0×102. Initial concentrations of A, E, a, I1, and I2 (in a.u.), respectively: 4.0427,
35.257, 6.4860×10−4 , 4.3800×104, and 4.5757×102. See Appendix A for python scripts.

The oscillator’s behaviour in response to outflow perturbations k2 and k10 can be seen in

Fig. 3.18. A step-wise perturbation k2 from 1.0 (phase 1) to 9.0 (phase 2) at time t=500

and a background k10=0 are applied. Panel a shows the oscillations of A as a function

of time, along with its average concentration <A>=2.0. The average concentration of

A is kept robustly at Aset by the compensatory actions of E (panel b). I1 and I2 in

panel c are responsible for maintaining the manipulated variable’s average concentration

<E> (panel b). In panel d the frequency, or inverse of the period length, is plotted as

a function of time. This controller clearly shows frequency homeostasis.



Results 47

a b

c d

0.10

0.20

0.30

0.40

0.50

0.60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

fre
qu

en
cy

(a
u)

time (au)

Figure 3.19: Frequency compensation of the feedback scheme in Fig. 3.17a at a
constant background k10=2. The controller is tested at a step-perturbation k2 from
1→9 at time t=500. Panels a and b show the resetting kinetics of A and E as a
function of time, as well as their average concentrations <A> and <E>, respectively.
Panel c shows the contributions of the controller species I1 and I2. In panel d the
frequency, or inverse of the period length, is plotted as a function of time. Notice
the oscillator’s frequency homeostasis. Other rate constants (phases 1 and 2, in a.u.)
as in Fig. 3.18. Initial concentrations of A, E, a, I1, and I2 (in a.u.), respectively:
1.4906×10−1, 1.6789×10−1, 5.6795×10−1, 2.2515×104, and 2.1643×104. See Appendix

A for python scripts.

Fig. 3.19 shows the results from the same k2-step at k10=2. I1 and I2 (panel c) still

keep <A> (panel a) and <E> (panel b) homeostatically regulated. They also ensure

frequency homeostasis (panel d) but the maximum frequency for this background has

increased. Thus, the controller does not show the same sensitivity to the maximum

frequency at different backgrounds.
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Figure 3.20: Frequency compensated oscillator without background compen-
sation from Fig. 3.17a. The figure shows the number 2 frequency (in phase 2)

as a function of kph22 +k10. Frequency adaptation of the oscillator (in a.u.) at
a step-wise perturbation from phase 1 (k2=1.0) to phase 2 (k2 variable, k2
from 2→10) with constant background perturbations k10 from 0→5 (k10 vari-
able, phases 1 and 2). Notice how the gradient of the straight lines decreases
with increasing k10 values. Other rate constants (phases 1 and 2, in a.u.) as
in Fig. 3.18. Initial concentrations of A, E, a, I1, and I2 (in a.u.), respectively:
A=3.7479×10−3, E=9.8732, a=2.2113×10−3, I1=4.4299×104, I2=1.2833×102

(k10=0); A=2.5176×10−3, E=28.864, a=2.4152×10−3, I1=3.2608×104,
I2=1.1810×104 (k10=1); A=3.6061×10−1, E=37.282, a=3.6550×10−3,
I1=2.3614×104, I2=2.0794×104 (k10=2); A=6.7083×10−3, E=17.367,
a=1.7148×10−2, I1=1.3637×104, I2=3.0761×104 (k10=4); A=6.1278×10−3,

E=22.250, a=1.8648×10−2, I1=1.0208×104, I2=3.4180×104 (k10=5).

In Fig. 3.20 the frequency of A as is plotted as a function of kph22 +k10. A step-

perturbation from k2=1.0 (phase 1) to k2=2→10 in phase 2 (with increments of one) is

applied, along with a constant background reaction k10 from 0→5. Notice how the fre-

quency of the oscillator (with incoherent feedback) decreases with increasing k10-values.

This means that the controller lacks the ability to robustly compensate backgrounds.

Also, the oscillator breaks down and stops functioning at k10 values higher than 5.5.



Results 49

3.3.3 Oscillator with frequency independence

Finally, the necessity of I1 and I2 in ensuring frequency and background compensations

are tested, which is done by excluding the second feedback layer in a limit-cycle m5-

based oscillator (Fig. 3.21a). A basic integral controller (Fig. 3.21b) is incorporated into

this single negative feedback layer. This oscillator shows frequency independence and

no background compensation (Fig. 3.24).

The controller in Fig. 3.21a is a quasi-harmonic oscillator based on the inflow controller

m5 (Fig. 3.5) and shows frequency independence. The difference from m5 is that this

oscillator has an additional intermediate e that turns it into a limit-cycle oscillator

[2]. When applying a step-perturbation k15 (colored red) and background reaction k14

(colored blue) there is an inflow of A, which is opposed by the compensatory fluxes of

E (j3=k2·k3/(k3+E)) in order to keep A robustly at its set-point. The basic integral

controller (Fig. 3.21b) is incoporated into the oscillator since there is no control of <E>

by I1 and I2.

A

Ee

k14 k15

k2, k3

k6, k7

k1

k4 k5

background perturbation

A-homeostasis
+

+

a b

Figure 3.21: Controller scheme of the frequency independent oscillator. (a) Controller
motif with integral control incoporated as a zero-order Michaelis-Menten (MM) type
degredation of E. The MM parameters Vmax and Km are represented by k6 and k7,
respectively. k15 is a perturbation and k14 represents a background reaction. Solid
arrows represent chemical reactions. Dashed lines indicate signaling events, where
activation is represented by a plus sign. (b) Basic integral controller that is incorporated
into the oscillator. Uncontrollable perturbations (orange arrows) add or remove A. The
difference or error between the controlled variable and its set-point (Aset-A) is measured
and integrated over time (brown ”integral controller box”). This gives the necessary E-
concentration (green line) for maintaining A under robust homeostatic control. Figure

was redrawn from Ref. [7], Fig. 1.
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The rate equations of A, e, and E are, respectively:

Ȧ = k1 −
(

k2·A
k3 +A

)
·E (3.47)

ė = k4·A− k5·e (3.48)

Ė = k5·e−
k6·E
k7 + E

(3.49)

where for simplicity’s sake k1=k1+k14+k15.

Assuming steady state (ss) and zero-order degredation of E gives the following set-point

Aset:

k4·<Ass> = k5·<ess> = k6 ·
(

Ess

k7+Ess

)
︸ ︷︷ ︸
≈ 1 (zero−order)

⇒ <Ass>=Aset=
k6
k4

(3.50)

where <Ass> goes to Aset when oscillatory whereas A goes to Aset when non-oscillatory

[2].



Results 51

Determining the harmonic set-point

Since this is a quasi-harmonic oscillator the harmonic set-point can also be determined.

First, by assuming steady state (i.e. Ȧ = 0) the following expression is obtained:

Ȧ=k1 − k2· E (3.51)

Taking the time derivative once more gives the expression of Ä:

Ä=− k2·Ė = −k2·k5·e− k6 = k4·A− k6 (3.52)

Rearranging Eq. 3.52 gives the harmonic set-point:

Ä

ω2
+A = ⟨Aset⟩ (3.53)

where ω = k2 · k4.

The notation of Eq. 3.53 is:

A(t) = A0·sin·(ω·t+ γ) +Aset (3.54)

where ω = 2·π
P and P is the period length.

Taking the time derivative of Eq. 3.54 gives:

Ȧ(t)=ω·A0·cos·(ω·t+ γ) (3.55)

and by taking the time derivative of Eq. 3.56 one gets:

Ä(t)=− ω2·A0·sin·(ω·t+ γ) (3.56)

Then by rearranging the equations one gets the expression for the harmonic set-point:

Ä(t)

ω2
= −A0·sin·(ω·t+ γ) +A0·sin·(ω·t+ γ) + ⟨Aset⟩ = ⟨Aset⟩ (3.57)
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Figure 3.22: Response kinetics of the feedback scheme in Fig. 3.21a at a constant
background k14=2. The controller is tested at a step-perturbation k15 from 1→2 at
time t=100. The resetting kinetics (in a.u.) of A and E are shown as a function
of time, as well as their average concentrations <A> and <E>, respectively (panel
a). Panel b shows the frequency (x 100) as a function of time (a.u.). Notice the
frequency indepence of the controller. Other rate constants (phases 1 and 2, in a.u.):
k1=k5=100, k2=k4=k6=1.0, k3=k7=1×10−6. Initial concentrations of A, E, and e (in
au), respectively: 2.4708×10−1, 1.0235×102, 2.4065×10−3. See Appendix A for python

scripts.

The oscillator’s response to inflow perturbations k14 and k15 are shown in Fig. 3.22. In

addition to a constant background k14=2 the controller is subjected to a k15-step from

1.0 (phase 1) to 2.0 (phase 2) at time t=100. Panel a shows the oscillations of A and

E over time, as well as their respective average concentrations <A> and <E>. There

is a homeostatic control of <A>=1.0 by E. However, since this oscillator has a single

negative feedback layer there is no additional control of <E> by I1 and I2. The lack of

I1 and I2 becomes even more apparent in panel b, where the oscillator shows complete

frequency independence.
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Figure 3.23: Response kinetics of the feedback scheme in Fig. 3.21a at a constant
background k14=16. The controller is tested at a step-perturbation k15 from 1→10 at
time t=100. The resetting kinetics (in a.u.) of A and E are shown as a function of
time, as well as their respective average concentrations <A> and <E>. Panel b shows
the frequency (x 100) as a function of time (a.u.). Notice the frequency independence
of the controller. Other rate constants (phases 1 and 2, in a.u.) as in Fig. 3.22.
Initial concentrations of A, E, and e (in a.u.), respectively: 3.6316×10−1, 1.1780×102,

3.7122×10−3. See Appendix A for python scripts.

Fig. 3.23 shows instead the results of a step-wise perturbation k15 from 1.0 (phase 1) to

10.0 (phase 2) at k14=16. The set-point of <A>=1.0 (panel a) remains the same. Panel

b still shows frequency independence. In fact, the frequency value is exactly the same

for this background.



Results 54

0.1575

0.1580

0.1585

0.1590

0.1595

0.1600

0.1605

0.1610

0 10 20 30 40 50 60 70 80

m
ax

fre
qu

en
cy

in
ph

as
e

2
(a

u)

k15+k14 (au)

k14=0 k14=2 k14=4 k14=16 k14=64

Figure 3.24: Oscillator from Fig. 3.21a with frequency independence. The figure
shows the maximum frequency (in phase 2) as a function of kph215 +k14. The controller
is applied a step-wise perturbation from phase 1 (k15=1.0) to phase 2 (k15 variable,
k15 from 2→10) with constant background perturbations k14 from 0→64 (k14 variable,
phases 1 and 2). The controller shows frequency independence. Other rate constants
(phases 1 and 2, in a.u.): k1=k5=1×102, k2=k4=k6=1.0, k3=k7=1×10−6. Initial
concentrations of A, e, and E (in a.u.), respectively: A0=1.6912, e0=1.6838×10−2,

E0=1.0027×102, I10=4.4299×104, I20=1.2833×102 (k14 from 0→64).

In Fig. 3.24 the maximum frequency of A is plotted as a function of kph215 +k14. The

oscillator is subjected to a step-perturbation k15=1.0 (phase 1) to k15=2→10 in phase

2 (with increments of one) is applied, along with a constant background reaction from

k14=0→64. The frequency value of the oscillator remains completley flat at different

backgrounds. There is no frequency compensation due to the lack of an outer feedback

layer with I1 and I2.
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3.4 Three-layered retinal light adaptation (RLA) models

This section provides a set of three-layered retinal light adaptation (RLA) models, where

each negative feedback layer corresponds to a different retinal cell. Exposing these

controllers to a step-perturbation and constant but different backgrounds allow us to

examine their response to frequency and light, respectively.

The retinal interactions are illustrated in Fig. 3.25. In fact, this is a simplified version

of the retinal structure shown in (Fig. 3.2). Here, light (indicated by yellow arrows)

travels through the center (and not the annulus) of the receptive field. This excites the

on-center cone (colored blue) in the first feedbak layer, which are represented by the

m1-m8 controllers (Fig. 2.1). In this layer the controlled variable A is homeostatically

regulated due to the compensatory actions of the manipulated variable E. A hypotheti-

cal on-center bipolar cell (colored green) then receives an inhibitory signal from E. This

determines the concentration of App in the subsequent on-center ganglion cell (colored

purple), which is represented by a frequency compensated oscillator (see Ch. 3.3).
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Figure 3.25: Cellular interactions within the retinal layers. This figure is a simplified
version of the retinal structure shown in (Fig. 3.2). Here, light (indicated yellow arrows)
travels through the center (and not the annulus) of the receptive field. This excites the
on-center cone (colored blue) in the first feedbak layer, in which an inhibitory signal is
received by the on-center bipolar cell (colored green) of the second layer. A subsequent
on-center ganglion cell (colored purple) then receives a signal from the bipolar cell,
before ganglion cell axons come together to form the optic nerve that enters the central
nervous system. Horizontal cell (colored orange) interactions are also indicated in the

figure.
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App is the controlled variable in the ganglion cell and its time average concentration,

<App>(t), is homeostatically regulated by the manipulated variable Epp.

<App>(t) =
1

t

∫ t

0
A·dt (3.58)

There is an additional control of Epp or its time average concentration, <Epp>(t), by

the controller species I1 and I2.

<Epp>(t) =
1

t

∫ t

0
E·dt (3.59)

I1 and I2 also ensure frequency control of the oscillator. In fact, it has been shown that

these two-layered oscillators enable robust frequency homeostasis [2]. The controller

variables I1 and I2 feed back to App directly by coherent feedback or incoherently [5, 6]

into the process that generates App.

3.4.1 Background compensated RLA controller dominated by I2

This section provides a RLA controller (Fig. 3.26a) capable of eliminating backgrounds

(Fig. 3.29). This is due to the coherent feedback of I1 and I2 [5, 6] in the frequency

compensated ganglion cell.

The RLA controller, shown in Fig. 3.26a, is structured into three negative feedback

layers. Each layer represents a retinal cell and their interactions are illustrated in panel

b. The first photoreceptor layer, with an on-center cone (colored blue), constitutes the

derepression-based inflow controller m2 (Fig. 3.7). There is an outflow of A due to a

step-perturbation k2 (colored red) and a background k4 (colored blue). A is maintained

under robust homeostatic control by the compensatory actions of E (j3=k3k8/(k8+E)).

E further sends inhibitory information to the on-center bipolar cell (colored green),

which further activates the removal of App in the on-center ganglion cell (colored purple).

This third and final layer is represented by a frequency compensated oscillator (see Ch.

3.3). Thus, I1 and I2 also ensure Epp- and frequency-homeostasis in this oscillator, as

well as background compensation due to their coherent feedback back to App [5, 6].
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Figure 3.26: Retinal light adaptation (RLA) model with frequency control at the
ganglion cell level. a) Simple RLA controller with three layers of negative feedback.
The first negative feedback layer constitutes the m2 motif (Fig. 3.7), in which integral
control is incoporated as a zero-order Michaelis-Menten (MM) type degredation of E.
This allows for robust perfect adaptation of A. The controller is subjected to outflow
perturbations k2 and k4. Inhbitory information from E is sent to the bipolar cell
in the second layer, and B further activates the removal of App in the ganglion cell
layer. App is homeostatically controlled by Epp. I1 and I2 ensure Epp- and frequency-
homeostasis of the oscillator. I1 and I2 feed coherently [5, 6] back to App, which enable
the controller to neutralize backgrounds. Solid arrows represent chemical reactions.
Dashed lines indicate signaling events, where activation is represented by a plus sign
and inhibition by a minus sign. b) Cellular interactions within the retinal layers. This
figure is a simplified version of the retinal structure shown in (Fig. 3.2). Here, light
(yellow arrows) travels through the center (and not the annulus) of the receptive field.
This excites the on-center cone (colored blue) in the first feedbak layer, in which an
inhibitory signal is received by the on-center bipolar cell (colored green) of the second
layer. A subsequent on-center ganglion cell (colored purple) then receives a signal from
the bipolar cell, before ganglion cell axons come together to form the optic nerve that
enters the central nervous system. Horizontal cell interactions are also indicated in the

figure. Figure was redrawn from Fig. 11.21, Ref. [3].
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The rate equations of A and E in the photoreceptor layer become, respectively:

Ȧ =
k3·k8
k8 + E

− (k2 + k4)·A (3.60)

Ė = k5·A− k6·E
k7 + E

(3.61)

The rate equation of B in the bipolar cell layer is:

Ḃ =
k10·k9
k9 + E

− k11·B (3.62)

The rate equations of App, e, Epp, I1, and I2 in the ganglion cell layer are, respectively:

˙App = kg3·I2 +
k20·k27

k27 + Epp
−

(
kg·App

k22+App

)
·I1 −

k21·App

k22 +App
−
(

k19·App

k22 +App

)
·B (3.63)

ė = k23·App − k24·e (3.64)

˙Epp = k24·e−
k25·Epp

k26 + Epp
(3.65)

İ1 = k28·Epp −
k29·I1
k30 + I1

(3.66)

İ2 = k31 −
(

k32·I2
k33 + I2

)
·Epp (3.67)

E is assumed to be removed by zero-order MM-kinetics in the photoreceptor layer.

Together with the steady state approximation (i.e. Ė=0) the set-point Aset can be

determined:

k5·Ass = k6 ⇒ Ass=Aset=
k6
k5

(3.68)

The same assumptions are made with regards to the set-point App,set in the ganglion

cell layer:

k23·<App,ss> = k24·<ess>

(
Epp,ss

k26 + Epp,ss

)
︸ ︷︷ ︸
≈ 1 (zero−order)

·k25 ⇒ <App,ss> = App,set =
k25
k23

(3.69)
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Epp has two set-points, EI1
set and EI2

set, depending on whether it interacts with I1 or I2,

respectively:

k28·<Epp,ss> =

(
I1,ss

k30 + I1,ss

)
︸ ︷︷ ︸
≈ 1 (zero−order)

·k29 ⇒ <Epp,ss> = EI1
pp,set=

k29
k28

(3.70)

k31 =

(
I2,ss

k33 + I2,ss

)
︸ ︷︷ ︸
≈ 1 (zero−order)

·k29·<Epp,ss> ⇒ <Epp,ss> = EI2
pp,set=

k31
k32

(3.71)
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Figure 3.27: Response kinetics of the RLA controller from Fig. 3.26a with
background k4=0. The controller is tested at a step-perturbation k2 from 1.0
(phase 1) to 20.0 (phase 2) at time t=100. Panel a shows the resetting kinet-
ics of A and E as a function of time. Panel b shows the increase in B over
time. The resetting kinetics of App and Epp are shown in panel c and d, re-
spectively, along with their respective average concentrations <App> and <Epp>.
Panel e shows the contributions of the controller species I1 and I2 over time. In
panel d the frequency, or inverse of the period length, is plotted as a function of
time. Notice the controller’s frequency homeostasis. Other rate constants (phases
1 and 2, in a.u.): k3=1×104, k5=k21=k28=k32=1.0, k6=3.0, k7=k22=k26=1×10−3,
k8=k9=k10=k11=k27=0.1, k19=8.0, k20=100.0, k23=16.0, k24=0.5, k25=80, k29=5.0,
k30=k33=1×10−6, k31=4.99, kg=kg3=1×10−2. Initial concentrations of A, E, B, App,
e, Epp, I1, and I2 (in a.u.), respectively: 3.0000, 3.3323×102, 3.0000×10−2, 3.9304,

1.0647×102, 1.9892×10−3, 5.4263×103, 9.7850×10−1.

Fig. 3.27 shows the RLA controller’s response to a step-wise perturbation k2 from 1.0

(phase 1) to 14.0 (phase 2) at time t=100 at a constant background outflow k4=0. In

panel a the concentration of A and E are plotted as a function of time. The outflow

of A is opposed by the compensatory actions of E, which back-regulates A to Aset. An

increase in B from phase 1 to 2 (panel b) is observed due to the outflow of E. This

results in an outflow of App and Epp in panel c and d, respectively. Both App and Epp are
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kept under robust homeostatic control by I1 and I2 (panel e). In panel f the frequency is

plotted as a function of time. The frequency clearly resets at its pre-perturbation level

after some time, which is caused by the control of Epp by I1 and I2.
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Figure 3.28: Response kinetics of the RLA controller from Fig. 3.26a with background
k4=128. The controller is tested at a step-perturbation k2 from 1.0 (phase 1) to 20.0
(phase 2) at time t=100. Panel a shows the resetting kinetics of A and E as a function
of time. Panel b shows the increase in B over time. The resetting kinetics of App

and Epp are shown in panel c and d, respectively, along with their respective average
concentrations <App> and <Epp>. Panel e shows the contributions of the controller
species I1 and I2 over time. In panel d the frequency, or inverse of the period length,
is plotted as a function of time. Notice the controller’s frequency homeostasis. Other
rate constants (phases 1 and 2, in a.u.) as in Fig. 3.27. Initial concentrations of A, E,
B, App, e, Epp, I1, and I2 (in a.u.), respectively: 2.9988, 2.4850, 3.8684, 2.6784×10−4,

1.7625×102, 9.8798, 3.7092×103, 1.3583×103.

Fig. 3.28 shows instead the results of a step-perturbation k2 from 1.0 (phase 1) to 20.0

(phase 2) at k4=128. The resetting kinetics of A is much faster due to the higher outflow

of E (panel a). This further increases the concentration of B in panel b, which results

in a larger outflow of App and Epp in panel c and d, respectively. At this higher k4-value
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App and Epp are still homeostatically regulated. The higher background is compensated

for by I1 and I2 (panel e), in which the inflow controller I2 seems to contribute a lot.

Although the maximum frequency has increased in panel f (due to the higher k2-step),

frequency compensation is still seen.
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Figure 3.29: Frequency and background compensations of the RLA controller from
Fig. 3.26a. The figure shows the maximum frequency (in phase 2) as a function of

kph22 +k4. The controller is applied step-wise perturbation from k2=1.0 (phase 1) to
k2=2→100 in phase 2 (with increments of one) with constant background perturbation
k4 from 0→2048 (k4 variable, phases 1 and 2). The controller shows robust background
and frequency compensations. Other rate constants (phases 1 and 2, in a.u.) as in
Fig. 3.27. Initial concentrations of A, E, B, App, e, Epp, I1, and I2 (in a.u.), respectively:
3.0000, 3.3323×102, 3.0000×10−2, 3.9304, 1.0647×102, 1.9892×10−3, 5.4263×103,
9.7850×10−1 (k4=0); 3.0000, 1.1101×102, 9.0000×10−2, 9.7940, 2.0076×102,
3.2180, 5.3753×103, 3.9409 (k4=2); 3.0000, 1.0001×101, 9.9000×10−1, 1.8289×101,
1.4873×102, 1.2631×10−2, 2.9836×104, 2.5182×104 (k4=4); 3.0000, 3.6937×101,
2.7000×10−1, 4.4809, 1.0678×102, 2.0061×10−3, 3.0351×104, 2.5117×104 (k4=8);
3.0000, 1.9508×101, 5.1000×10−1, 2.7090×10−5, 1.4408×102, 9.8073, 5.0887×103,
4.6678×101 (k4=16); 3.0000, 1.0001×101, 9.9000×10−1, 5.6417×10−5, 1.3432×102,
8.3457, 4.8472×103, 1.8810×102 (k4=32); 3.0000, 5.0282, 1.9500, 4.8072×10−3,
1.8646×102, 8.6693, 2.9876×104, 2.5992×104 (k4=64); 2.9988, 2.4850, 3.8684,
2.6784×10−4, 1.7625×102, 9.8798, 3.7092×103, 1.3583×103 (k4=128); 3.0000, 1.1970,
7.7100, 5.1717×10−4, 1.5576×102, 1.0597×101, 2.0078×103, 2.7276×103 (k4=256);
3.0000, 5.4977×10−1, 1.5390×101, 5.7915×10−3, 1.7878×102, 9.6191, 2.4551×104,
3.1417×104 (k4=512); 3.0000, 2.2520×10−1, 3.0750×101, 1.9292×101, 1.5661×102,
2.9704×10−2, 3.4338×102, 1.9497×104 (k4=1024); 3.0000, 6.2684×10−2, 6.1469×101,

8.4807×10−1, 1.9810×102, 6.6854, 5.5685×103, 4.9299×104 (k4=2048).

Fig. 3.29 shows the maximum frequency of App over total outflow perturbations (k2+k4).

A step-perturbation k2=1.0 (phase 1) to k2=2→100 in phase 2 (with increments of one)

is applied, along with a constant background reaction k4 of 0→2048. The controller

shows parallell sigmodial curves at different but constant background reactions, i.e., the

oscillator is able to compensate backgrounds.
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3.4.2 RLA controller without background compensation

This section provides a RLA controller (Fig. 3.30a) that lacks the ability to compensate

backgrounds (Fig. 3.33), which is a result of eliminating I1 and I2 from the ganglion cell

layer.

A three-layered RLA controller without frequency control is shown in In Fig. 3.30a.

The negative feedback layers represent different retinal cells, in which their cellular

interactions are illustrated in panel b. The first layer constitutes the photoreceptor cell,

with an on-center cone (colored blue), and is based on the autocatalytic m2 controller

(Fig. 3.8). An outflow of A is observed when a step-perturbation k2 (colored red) and

background k4 (colored blue) are active. This is opposed by the compensatory fluxes

of E (j3=k3·k8/(k8+E)), which is responsible for keeping A under robust homeostatic

control. E further sends an inhibitory signal to B in the on-center bipolar cell (colored

green) layer, which then activates the removal of App in the on-center ganglion cell

(colored purple) layer. Since I1 and I2 are absent in the (oscillatory) ganglion cell, there

is no additional control of App by I1 and I2 nor is there frequency compensation.
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Figure 3.30: Retinal light adaptation (RLA) model without frequency control at the
ganglion cell level. a) Simple RLA controller with three layers of negative feedback.
The first negative feedback layer constitutes the autocatalytic m2 controller (Fig. 3.8).
This allows for robust perfect adaptation of A. The controller is subjected to outflow
perturbations k2 and k4. Inhbitory information from E is sent to the bipolar cell in
the second layer, and B further activates the removal of App in the ganglion cell layer.
App is homeostatically controlled by Epp. Solid arrows represent chemical reactions.
Dashed lines indicate signaling events, where activation is represented by a plus sign
and inhibition by a minus sign. b) Cellular interactions within the retinal layers. This
figure is a simplified version of the retinal structure shown in (Fig. 3.2). Here, light
(yellow arrows) travels through the center (and not the annulus) of the receptive field.
This excites the on-cecnter cone (colored blue) in the first feedbak layer, in which an
inhibitory signal is received by the on-center bipolar cell (colored green) of the second
layer. A subsequent on-center ganglion cell (colored purple) then receives a signal from
the bipolar cell, before ganglion cell axons come together to form the optic nerve that
enters the central nervous system. Horizontal cell interactions are also indicated in the

figure. Figure was redrawn from Fig. 11.21, Ref. [3].
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The rate equations of A and E in the photoreceptor layer become, respectively:

Ȧ =
k3·k8
k8 + E

− (k2 + k4)·A (3.72)

Ė = k5·A·E − k6·E (3.73)

The rate equation of B in the bipolar cell layer is:

Ḃ = k10·E − k11·B (3.74)

Rate equations of App, e, and Epp in the ganglion cell layer are, respectively:

˙App =
k20·k27

k27 + Epp
−

(
k19·App

k22+App

)
·B − k21·App

k22 +App
(3.75)

ė = k23·App − k24·e (3.76)

˙Epp = k24·e−
k25·Epp

k26 + Epp
(3.77)

Integral control is assumed to follow an autocatalytic removal of E. Together with the

steady state (ss) approximation (i.e. Ė=0) the set-point Aset in the photoreceptor layer

can be determined:

k5·Ass·Ess = k6·Ess ⇒ Ass=Aset=
k6
k5

(3.78)

By considering the same assumptions for the ganglion cell layer, the set-point App,set

becomes:

k23·<App,ss> = k24·<ess>

(
Epp,ss

k26 + Epp,ss

)
︸ ︷︷ ︸
≈ 1 (zero−order)

·k25 ⇒ <App,ss> = App,set =
k25
k23

(3.79)
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Figure 3.31: Response kinetics of the RLA controller from Fig. 3.30a with back-
ground k4=0. The controller is tested at a step-perturbation k2 from 1.0 (phase 1)
to 4.0 (phase 2) at time t=1000. Panel a shows the resetting kinetics of A and E as
a function of time. Panel b shows the increase in B over time. The resetting kinet-
ics of App is shown in panel c, along with its average concentration <App>. Panel
d shows the response kinetics of Epp as a function of time together with its average
concentration <Epp>. In panel d the frequency, or inverse of the period length, is
plotted as a function of time. Notice the controller’s inability to produce frequency
homeostais. Other rate constants (phases 1 and 2, in a.u.): k3=1×104, k5=k21=1.0,
k6=3.0, k8=k9=k11=k27=0.1, k10=10, k19=8.0, k20=100, k22=k26=1×10−3, k23=16.0,
k24=0.5, k25=80.0. Initial concentrations of A, E, B, App, e, and Epp (in a.u.), respec-

tively: 3.0000, 3.3323×102, 3.0000×10−2, 5.8034, 2.6501×102, 1.2184×104.

Fig. 3.31 shows the controller’s response to a step-wise perturbation k2 from 1.0 (phase

1) to 4.0 (phase 2) at time t=1000, while having a constant background outflow k4=0.

Panel a shows the response of A and E over time. The outflow of A is quickly brought

back to its set-point by the compensatory actions of E, which decreases from phase 1 to

2 due to the outflow perturbations. There is therefore more B in panel b to activate the

removal of App in panel c. However, the compensatory actions of Epp brings App back to

its set-point. This RLA controller does not show Epp- (panel d) or frequency-homeostasis

(panel e) due to the lack of I1 and I2.
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Figure 3.32: Response kinetics of the RLA controller from Fig. 3.30a with background
k4=160. The controller is tested at a step-perturbation k2 from 1.0 (phase 1) to 128.0
(phase 2) at time t=1000. Panel a shows the resetting kinetics of A and E as a function
of time. Panel b shows the increase in B over time. The resetting kinetics of App

is shown in panel c, along with its average concentration <App>. Panel d shows the
response kinetics of Epp as a function of time together with its average concentration
<Epp>. In panel d the frequency, or inverse of the period length, is plotted as a
function of time. Notice the controller’s inability to produce frequency homeostais.
Other rate constants (phases 1 and 2, in a.u.) as in Fig. 3.31. Initial concentrations of
A, E, B, App, e, and Epp (in a.u.), respectively: 3.0000, 1.9704, 4.8300, 3.4535×10−6,

1.4768×102, 7.3201×101.

Fig. 3.32 shows instead the results of a step-wise perturbation k2 from 1.0 (phase 1) to 128

(phase 2) at time t=1000 at k4=160. At this background the concentration of B (panel

b) is much higher, which is due to outflow perturbations reducing the concentration of E

(panel a). The controller is still able to keep <A> (panel c) homeostatically regulated.

However, due to the lack of I1 and I2 there is no regulation of <E> (panel d) or the

frequency (panel e).
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Figure 3.33: Frequency adaptation of the RLA controller from Fig. 3.30a. The fig-
ure shows the maxmimum frequency (in phase 2) as a function of kph22 +k4. The
controller is applied a step-wise perturbation from k2=1.0 (phase 1) to k2=2→128
in phase 2 (with increments of one) with constant background perturbation k4
from 0→160 (k4 variable, phases 1 and 2). The controller does not show fre-
quency nor background compensation. Other rate constants (phases 1 and 2, in
a.u.) as in Fig. 3.31. Initial concentrations of A, E, B, App, e, and Epp (in
a.u.), respectively: 3.0000, 3.3323×102, 3.0000×10−2, 5.8034, 2.6501×102, 1.2184×104

(k4=0); 3.0000, 3.3323×102, 3.0000×10−2, 5.8034, 2.6501×102, 1.2184×104 (k4=20);
3.0000, 3.3323×102, 3.0000×10−2, 5.8034, 2.6501×102, 1.2184×104 (k4=40); 3.0000,
4.0152, 2.4300, 1.4076×10−6, 3.5068×102, 3.4797×102 (k4=80); 3.0000, 1.9704, 4.8300,

1.9703×103, 3.4535×10−6, 1.4768×102, 7.3201×101 (k4=160).

The maximum frequency of App is plotted as a function of total outflow perturbations

(k2+k4) in Fig. 3.33. The controller is subjected to a step-perturbation from k2=1.0

(phase 1) to k2=2→128 in phase 2 (with increments of one), along with a constant

background reaction k4 from 0→160. Although there is some type of relationship in

terms of overlapping and continuous curves with increasing backgrounds, the controller

does not possess the ability to neutralize backgrounds.
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3.4.3 Background compensated RLA controller dominated by I1

This section provides a second type of RLA controller (Fig. 3.34a) that can neutralize

backgrounds (Fig. 3.37), which is also here caused by coherent feedback [5, 6] in the

frequency compensated ganglion cell.

The RLA controller in Fig. 3.34a is structured into three negative feedback layers. Each

layer corresponds to different retinal cells, in which their cellular interactions are il-

lustrated in panel b. The first photoreceptor layer, with an on-center cone (colored

blue), represents the derepression-based inflow controller m2 (Fig. 3.7). An outflow of

A (caused by step-perturbation k2 (colored red) and background k4 (colored blue)) is

opposed by E (j3= k3·k8/(k8+E)). E then sends inhibitory information to B in the sec-

ond layer, which represents an on-center bipolar cell (colored green). B further activates

the inflow of App in the on-center ganglion cell (colored purple) layer, which is repre-

sented by a frequency compensated oscillator (see Ch. 3.3). This third and final layer

therefore includes the inflow controller I1 and outflow controller I2. I1 and I2 ensure

Epp- and frequency-homeostasis, and their coherent feedback [5, 6] leads to background

compensation.
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Figure 3.34: Retinal light adaptation (RLA) model with frequency control at the
ganglion cell level. a) Simple RLA controller with three layers of negative feedback.
The first negative feedback layer constitutes the m2 motif (Fig. 3.7), in which integral
control is incoporated as a zero-order Michaelis-Menten (MM) type degredation of E.
This allows for robust perfect adaptation of A. The controller is subjected to outflow
perturbations k2 and k4. Inhbitory information from E is sent to the bipolar cell in the
second layer, and B further activates the inflow of App in the ganglion cell layer. App is
homeostatically controlled by Epp. I1 and I2 ensure Epp- and frequency-homeostasis of
the oscillator. I1 and I2 feed coherently [5, 6] back to App, which enable the controller
to neutralize backgrounds. Solid arrows represent chemical reactions. Dashed lines
indicate signaling events, where activation is represented by a plus sign and inhibition
by a minus sign. b) Cellular interactions within the retinal layers. This figure is a
simplified version of the retinal structure shown in (Fig. 3.2). Here, light (yellow arrows)
travels through the center (and not the annulus) of the receptive field. This excites the
on-center cone (colored blue) in the first feedbak layer, in which an inhibitory signal is
received by the on-center bipolar cell (colored green) of the second layer. A subsequent
on-center ganglion cell (colored purple) then receives a signal from the bipolar cell,
before ganglion cell axons come together to form the optic nerve that enters the central
nervous system. Horizontal cell interactions are also indicated in the figure. Figure was

redrawn from Fig. 11.21, Ref. [3].
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The rate equations of A and E in the photoreceptor cell are, respectively:

Ȧ =
k3·k8
k8 + E

− (k2 + k4)·A (3.80)

Ė = k5·A− k6·E
k7 + E

(3.81)

The rate equation of B in the bipolar cell layer is given by:

Ḃ =
k10·k9
k9 + E

− k11·B (3.82)

Rate equations of App, e, Epp, I1, and I2 in the ganglion cell layer are, respectively:

˙App = k14 + kg1·I1 + k12·B −
(

kg2·App

k13 +App

)
·I2 −

(
k15·App

k13 +App

)
·
(

k16
k16 + Epp

)
(3.83)

ė =
k17·k16

k16 +App
(3.84)

˙Epp = k18·e−
k19·Epp

k20 + Epp
(3.85)

İ1 = k24·Epp −
k25·I1
k26 + I1

(3.86)

İ2 = k21 −
(

k22·I2
k23 + I2

)
·Epp (3.87)

Assuming zero-order degredation of E and steady state (ss) gives Aset in the photore-

ceptor layer:

k5·Ass = k6 ⇒ Ass=Aset=
k6
k5

(3.88)

The same assumptions are made with regards to App,set in the ganglion cell layer:

k17·k16
k16·<App,ss>

= k19 = ⇒ <App,ss> = App,set =

(
k17
k19

− 1

)
·k16 (3.89)

The set-points for Epp when affected by I1 and I2 are, respectively, given by:
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k24·<Epp,ss> =

(
I1,ss

k26 + I1,ss

)
︸ ︷︷ ︸
≈ 1 (zero−order)

·k25 ⇒ <Epp,ss> = EI1
pp,set=

k25
k24

(3.90)

k21 =

(
I2,ss

k23 + I2,ss

)
︸ ︷︷ ︸
≈ 1 (zero−order)

·k22·<Epp,ss> ⇒ <Epp,ss> = EI2
pp,set=

k21
k22

(3.91)
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Figure 3.35: Response kinetics of the RLA controller from Fig. 3.34 with background
k4=0. The controller is tested at a step-perturbation k2 from 1.0 (phase 1) to 10.0
(phase 2) at time t=100. Panel a shows the resetting kinetics of A and E as a function
of time. Panel b shows the increase inB over time. The resetting kinetics of App and Epp

are shown in panel c and d, respectively, along with their respective average concentra-
tions <App> and <Epp>. Panel e and f show the contributions of the controller species
I1 and I2, respectively, over time. In panel g the frequency, or inverse of the period
length, is plotted as a function of time. Notice the controller’s frequency homeostasis.
Other rate constants (phases 1 and 2, in a.u,): k3=k15=1×104, k5=k18=k22=k24=1.0,
k6=3.0, k7=1×10−3, k8=k9=k11=k16=0.1, k10=k12=10.0, k13=k20=k23=k26=1×10−6,
k14=0.0, k17=1×103, k19=k21=k25=50, kg1=kg2=1×10−2. Initial concentrations of A,
E, B, App, e, Epp, I1, and I2 (in a.u.), respectively: 3.0000, 3.3323×102, 3.0000×10−2,

1.7893×102, 3.3126×101, 7.6836×101, 1.2108×104, 4.1468×10−9.
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Fig. 3.35 shows the RLA controller’s response to a step-wise perturbation k2 from 1.0

(phase 1) to 10.0 (phase 2) at time t=100, while having a constant background outflow

k4=0. The outflow of A is compensated by E in panel a, where the variables are plotted

as a function of time. The concentration B over time (panel b) increases from phase 1

to 2. B further activates the inflow of App in panel c, in which its average concentration

<App> is kept robustly at its set-point by an outflow of Epp (panel d). <Epp> is instead

homeostatically regulated by I1 and I2 in panels e and f, respectively. Finally, the ability

of I1 and I2 in ensuring frequency homeostasis can be seen in panel f.



Results 75

a b

d

e f

c

g

0
50

100
150
200
250
300
350
400

0 200 400 600 800 1000
120

140

160

180

200

220

240

260

A
pp

(a
u)

<A
pp

>
(a

u)

time (au)

9.60

9.65

9.70

9.75

9.80

9.85

9.90

0 200 400 600 800 1000

B
(a

u)

time (au)

0
10
20
30
40
50
60
70
80
90

0 200 400 600 800 1000
40
45
50
55
60
65
70
75
80
85

E
pp

(a
u)

<E
pp

>
(a

u)

time (au)

0.2435

0.2440

0.2445

0.2450

0.2455

0.2460

0 200 400 600 800 1000

fre
qu

en
cy

(a
u)

time (au)

2200

2250

2300

2350

2400

2450

2500

2550

0 200 400 600 800 1000

I 1
(a

u)

time (au)

0.000000020

0.000000021

0.000000021

0.000000022

0.000000022

0.000000023

0.000000023

0 200 400 600 800 1000

I 2
(a

u)

time (au)

2.90

2.92

2.94

2.96

2.98

3.00

3.02

0 200 400 600 800 1000
0.905

0.910

0.915

0.920

0.925

0.930

0.935

0.940

0.945

A
(a

u)

E
(a

u)

time (au)

Figure 3.36: Response kinetics of the RLA controller from Fig. 3.34 with background
k4=320. The controller is tested at a step-perturbation k2 from 1.0 (phase 1) to 10.0
(phase 2) at time t=100. Panel a shows the resetting kinetics of A and E as a function of
time. Panel b shows the increase in B over time. The resetting kinetics of App and Epp

are shown in panel c and d, respectively, along with their respective average concentra-
tions <App> and <Epp>. Panel e and f show the contributions of the controller species
I1 and I2, respectively, over time. In panel g the frequency, or inverse of the period
length, is plotted as a function of time. Notice the controller’s frequency homeostasis.
Other rate constants (phases 1 and 2, in au) as in Fig. 3.35. Initial concentrations of
A, E, B, App, e, Epp, I1, and I2 (in au), respectively: 2.9968E, 9.3953×10−1, 9.6198,

1.2536×102, 5.3802×101, 8.0468×101, 2.5032×103, 2.0381×10−8.
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Fig. 3.36 shows the results of the same k2-step at k4=320. At this higher k4-value the

resetting kinetics of A is much faster since there is less E to inhibit the synthesis of

A. A higher concentration of B is observed in panel b. The controller still manages

to maintain <App> (panel c) and <Epp> (panel d) under robust homeostatic control.

This is due to the compensatory actions of I1 and I2 in panels e and f, respectively,

where a particular large change is observed for the inflow controller I1. Although panel

g shows a different sensitivity to the maximum frequency, the frequency resets to its

pre-perturbation level after some time.
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Figure 3.37: Frequency and background compensations of the RLA from Fig. 3.34.
The figure shows the maximum frequency (in phase 2) as a function of kph22 +k4. The
controller is tested at a step-perturbation from k2=1.0 (phase 1) to k2=2→100 in phase
2 (with increments of one) with constant backgrounds k4 from 0→1120 (k4 variable,
phases 1 and 2). The oscillator shows parallell curves at different backgrounds. No-
tice, in the lower left corner, that the controller becomes oscillatory at higher back-
grounds. Other rate constants (phases 1 and 2, in a.u.) as in Fig. 3.35. Initial concen-
trations of A, E, B, App, e, Epp, I1, and I2 (in a.u.), respectively: 3.0000, 3.3323×102,
3.0000×10−2, 1.7893×102, 3.3126×101, 7.6836×101, 1.2108×104, 4.1468×10−9 (k4=0);
2.9999, 3.0204×101, 3.2999×10−1, 2.6012×101, 1.3489×102, 4.4650×101, 1.1775×104,
4.2642×10−9 (k4=10); 2.9998, 1.5774×101, 6.2996×10−1, 3.0816×102, 9.8665,
3.8609×101, 1.1520×104, 4.3592×10−9 (k4=20); 2.9996, 8.0311, 1.2298, 1.0126×102,
6.6940×101, 7.8222×101, 1.0887×104, 4.6140×10−9 (k4=40); 2.9993, 4.0163, 2.4294,
2.3534×102, 1.9783×101, 6.4162×101, 9.7192×103, 5.1710×10−9 (k4=80); 2.9985,
1.9714, 4.8276, 2.2409×102, 2.1944×101, 6.7249×101, 7.3194×103, 6.8781×10−9

(k4=160); 2.9968, 9.3953×10−1, 9.6198, 1.2536×102, 5.3802×101, 8.0468×101,
2.5032×103, 2.0381×10−8 (k4=320); 2.9950, 5.9417×10−1, 1.4406×101, 2.3875×102,
1.9448×101, 6.3218×101, 9.2579×101, 2.2308×103 (k4=480); 2.9929, 4.2126×10−1,
1.9184×101, 2.9206×102, 1.1643×101, 4.5278×101, 9.5719×101, 7.0601×103 (k4=640);
2.9906, 3.1746×10−1, 2.3955×101, 3.2501×102, 8.3990, 3.1632×101, 9.1661×101,
1.1794×104 (k4=800); 2.9880, 2.4826×10−1, 2.8714×101, 3.5602×102, 5.6819,
1.4126×101, 8.0765×101, 1.6554×104 (k4=960); 2.9850, 1.9885×10−1, 3.3462×101,

3.3942×10−8, 3.5223×101, 2.3835×10−6, 6.4296×101, 2.1294×104 (k4=1120).
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Fig. 3.37 shows the maximum frequency of App over total outflow perturbations (k2+k4).

A step-perturbation from k2=1.0 (phase 1) to k2=2→100 in phase 2 (with increments

of one) is applied, along with a constant background reaction k4 from 0→1120. This

controller shows parallell curves with increasing backgrounds, indicating that the os-

cillator is background compensated. An interesting observation is that the controller

becomes oscillatory at higher backgrounds starting from k4=320. This is illustrated in

the smaller figure in the lower right corner.



Chapter 4

Discussion

4.1 Derepression-based fluxes induce ”photoreceptor” re-

setting kinetics

All one-layered (single-layered) controller motifs m1-m8 (Fig. 2.1) were subjected to a

step-perturbation at constant but different backgrounds, in which their response ampli-

tude decreased monotonically with increasing background. The homeostatic controllers

divided (equally) into two classes based on whether the compensatory flux was based

on activation or derepression.

Controllers with derepression-based compensatory fluxes showed a faster response time

with increasing background. This type of response, i.e., decreased sensitivity but ac-

celerated response kinetics, is analogous to the derepression kinetics seen in vertebrate

photoreceptors (rods and cones) that respond to light [8, 42, 43]. This is illustrated by

the voltage response of a Macaque monkey’s rod cell in in Fig. 4.1, where the photore-

ceptor cell has been subjected to flashes of 10 ms at different but constant intensities

of light. An increase in background gives also here a decreased sensitivity and shorter

resetting time.
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Figure 4.1: Photoadaptation of a Macaqaue monkey’s rod cell. The rod cell was
subjected to flashes of 10 ms at different but constant intensities of light. Notice
the decreased sensitivity but accelerated response kinetics at increasing backgrounds.
Background light intensities (in photons µm−2s−1): 0, 0; 1, 3.1; 2, 12; 3, 41; 4, 84; 5,

162. Figure was redrawn from Ref. [8], Fig. 22-19c.

The time for the activation-based controllers to reach steady state, however, increased

with increasing backgrounds. A prolonged response time like this could possibly have

a negative effect in physiological systems. For instanse, blood glucose is homeostati-

cally regulated by two major feedbak loops involving insulin and glucagon. Insulin and

glucagon are secreted from the pancreas when blood sugar levels are, respectively, high

and low. Continuous high levels of blood sugar (”glucose overload”) [47, 48] could possi-

bly result in a slower resetting of the insulin-based feedback loop. Slower resetting times

may be one of the causes for insulin resistanse and early diabetes. This topic would, of

course, need further investigation.
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4.2 Coherent feedback yields background compensated os-

cillators

In order for the oscillators to show frequency compensation there must be two layers

of negative feedback, in which I1 and I2 keep <E> homeostatically regulated. The con-

troller species function as either inflow or outflow controllers. A change in the controlled

variable A, however, is mainly compensated by the inflow controller. Thus, an outflow

or inflow of A results in, respectively, a large increase or decrease in the inflow con-

troller. Inflow controllers, on the other hand, show a much smaller change in response

to background changes. It would therefore be interesting to test if the oscillators possess

frequency homeostasis without the integral outflow controllers.

Frequency control in ganglion cells [39] are not, to the best of our knowledge, partic-

ularly discussed in the litterature. An interesting topic of study would therefore be

whether ganglion cells possess this trait or not. One can also wonder if there are other

retinal cells (i.e., amacrine cells) that induce this type of behaviour or if it arises by

intracellular interactions within the ganglion cell. Based on results from the frequency

compensated controllers the ganglion cell would need two additional controller species

to obtain frequency homeostasis.

For the oscillators to also have background compensation, I1 and I2 must feed di-

rectly or coherently to the controlled variable A in the central layer. This type of

feedback was termed coherent feedback in analogy to a similar concept used in quan-

tum control theory and optics [5, 6]. To conclude, oscillators with coherent feedback

shows automatic frequency control and maintain the response profile in a perturbation.

The outer layer can also feed into the process that generates A by incoherent feedback.

These oscillators still show frequency compensation but lose their ability to compensate

for backgrounds. Loss of background compensation is also seen in the single negative

feedback controllers. We are not aware of any biological examples where ”robust back-

ground compensation” is seen. This ability to compensate backgrounds, however, could

possibly be of interest in synthetic biology.
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4.3 Retinal background compensation regulated at the gan-

glion cell level

The three-layered RLA controllers, representing the retina as a whole, consisted of a

photoreceptor, bipolar, and ganglion cell. There needs to be a frequency compensated

ganglion cell in order for the retinal controller to show frequency homeostasis. A change

in the controlled variable App in the ganglion cell layer is mainly regulated by the com-

pensatory actions of the integral inflow controller. Thus, a bipolar cell that activates

the outflow or inflow of App causes, respectively, a large increase or decrease of the in-

tegral inflow controller. For the RLA controllers to also be background compensated

the ganglion cell layer must incorporate coherent feedback, in which I1 and I2 feed di-

rectly or coherently back to the controlled variable App. To conclude, it is the feedback

organization in the ganglion cell that decides whether the frequency shows background

compensation.
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4.4 Are retinal cells capable of compensating backgrounds?

A hallmark in retinal light adaptation, according to Ref. [8], is that ganglion cells have

some form of background compensating mechanisms. This statement was based on the

response of a cat’s ganglion cell (Fig. 4.2) towards a test spot of light in the receptive field

center, while being under the influence of constant but different background luminances.

This resulted in a sigmoidal curve, where the response profile remained stable at different

intensities of light.
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Figure 4.2: Light adaptation of a cat’s on-center ganglion cell. Average maximum
frequency (Hz) is plotted as a function of test spot luminance (cd/m2) at background
illuminations (from 9·10−5 to 9·10−0 cd/m2). A vertical dashed line indicates a test
spot luminance of 9·10−2 cd/m2. Notice how the mean maximum frequency decreases
as the background illumination increases from the red (9·10−3 cd/m2) towards the green

curve (9·10−1 cd/m2). Figure was redrawn from Ref. [8], Fig. 8.

We therefore became interested in understanding the underlying mechanisms of back-

ground compensation. ”Background compensation” was defined by us as a negative

feedback system that has a compensatory mechanism, in which the response to a per-

turbation remains unchanged with regards to different but constant background levels.

This definition of background compensation, however, is not in agreement with the re-

sults of Fig. 4.2. For instance, for the red, blue and green curves, which represent three

different backgrounds, the average maximum frequency (Hz) decreases with increasing

background at a test spot luminance of 9·10−2 cd/m2 (indicated by a vertical dashed

line). This type of adaptation can also be shown for the non-background compensated

photoreceptor cell in Fig. 4.1.

In order to show this we need to use the Hill-type Michaelis-Menten equation:
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V =
VmaxI

α

Iα+σα
(4.1)

where V is the response amplitude of retinal cells, and I represents the light perturbation.

The cooperativity α is 1.0 and 0.7-0.8, respectively, for photoreceptor and ganglion cells.

For bipolar and sustained ganglion cells α=1.2−1.4. The α-value of transient ganglion

cells, however, is approximately 3.4 [8].

Since the photoreceptor is represented by α=1.0, the above equation becomes:

V =
VmaxI

I+σ
(4.2)

This equation describes the response amplitude V1 of a single pigment system when there

is a background I0 and a perturbation I1 [49]. However, as the cooperativity increases

from α to α1=α+ I0 it is described in the following way:

At a constant background I0 Eq 4.2 becomes:

V0 =
VmaxI0
I0+σ

(4.3)

When a light perturbation I1 is applied in addition to I0 the total response amplitude

yields:

V1 + V0 =
Vmax(I0+I1)

I0+I1+σ
(4.4)

Finally, by subtracting Eq 4.3 from Eq 4.4 the following expression is obtained for the

reponse amplitude V1:

V1 = Vmax

[
(I0+I1)

I0+I1+σ
− I0

I0+σ

]
= Vmax

[
(I0+I1)·(I0+σ)− I0·(I0+I1+σ)

(I0+I1+σ)·(I0+σ)

]
= Vmax

[
I1·σ

(I0+I1+σ)·(I0+σ)

]
=

Vmax·σ
I0+σ

(
I1

I0+I1+σ

)
= Vmax,1

(
I1

I1+σ1

) (4.5)

In Fig 4.3 Eq 4.2 has been plotted for six different values of α, which represent different

backgrounds. Vmax was, for the sake of simplicity, set to one. In panel a and d both



Discussion 84

axes are, respectively, linear and logarithmic. Panel b has a logarithmic ordinate and

linear abscissa wheras panel c has a logarithmic abscissa and linear ordinate.
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Figure 4.3: Photoreceptors’ adaptation to light in terms of the Michaelis-Menten
equation. Eq 4.2 has been plotted for six different values of α. Vmax=1. The dashed
vertical line shows how V decreases from the orange towards the purple curve as back-
ground illumination increases. In panel a and d both axes are, respectively, linear and
logarithmic. Panel b has a logarithmic ordinate and linear abscissa wheras panel c has

a logarithmic abscissa and linear ordinate.

The results of the photoreceptor in Fig 4.3c are similar to the response of the ganglion cell

in Fig. 4.2. Although the photoreceptor cell lacks background compensation (Fig. 4.1),

the parallel curve-shifts in panels c and d can be misleading in thinking that they do.

As was the case for the ganglion cell (Fig. 4.2), the photoreceptor cell also shows a

decrease in frequency when the background changes from the orange to the purple curve

(indicated by a dashed vertical line). This could indicate that parallel curves (in log-

plots) with decreasing frequencies are not sufficient to decide whether retinal cells possess

background compensation mechanisms or not.

Kleinschmidt and Dowling [50] showed the light response of a gecko photoreceptor in a

log-log plot. This also gave parallel lines independent of the applied background illumi-

nation. They concluded that the response profile’s lateral shifts were due to adaptation



Discussion 85

mechanisms in the photoreceptor.

To conclude, although background compensation mechanisms cannot be excluded, semi-

or double-logarithmic plots with parallel lines are not sufficient in concluding with back-

ground compensation.
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Python scripts

A.1 Python scripts for m1-m8 controllers

This section provides python scripts for each of the m1-m8 controllers’ (Fig. 2.1) response

kinetics. The m1 controller will be used as an example. The other python scripts are

run in a similar way.

m1 controller

Two python scripts regarding the m1 controller, ”m1.py” (Fig. A.1) and ”plot m1 A merged.py”

(Fig. A.2), must be inside the current working folder, as well as two additional folders

called ”A-data” and ”plots”. ”m1.py” must be run before ”plot m1 A merged.py”.

”m1.py” containes the controller’s information (rate constants, step-perturbations, ini-

tial concentrations, rate equations, etc.) in order to generate the response amplitude of

A at different backgrounds k4. An example of this script at k4=64 is given in Fig. A.1.

Running this script generates ”k4=64.txt” (inside ”A-data”) and ”m1plot k4=64.pdf”

(inside ”plots”) containing the response amplitude. This script should also be run

k4=0, 1, 2, 4, 8, 16, 32, 64.

86
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For instance, if we wanted to generate the response amplitude for k4=0 the following

changes must be made:

• Change the background k4 (line 15) from 64 to 0.

• Change the initial concentrations of A and E at k4=64 (line 29) to the ones for

k4=0 (Fig. 3.3b).

• Change ”...k4=64.txt” to ”...k4=0.txt” (line 43).

• Change ”...m1plot k4=64.pdf” to ”...m1plot k4=0” (line 53).

This will instead generate ”k4=0.txt” and ”m1plot k4=0.pdf”, where the latter is shown

in the upper right corner of Fig. A.1.

Figure A.1: Python script for generating m1’s response amplitude of A at background
k4=64. Making some changes (see above) gives the response amplitude for k4=0 (see
upper right corner). Run this script at k4=0, 1, 2, 4, 8, 16, 32, 64. Insert the corre-

sponding initial concentrations of A and E from Fig. 3.3b.
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Finally, the response amplitudes for different k4-values can be merged together by run-

ning ”plot m1 A merged.py” (Fig. A.2). This creates ”A plots merged.pdf” (inside

”plots”), and shows the resetting kinetics of m1 from Fig. 3.3b. This can be seen in

the upper right corner of Fig. A.2.

Figure A.2: Python script for generating m1’s resetting kinetics (see upper right
corner) from Fig. 3.3b. Run this script after producing the response amplitudes for

k4=0, 1, 2, 4, 8, 16, 32, 64 (Fig. A.1)

.
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m2 controller

Figure A.3: Python script for generating m2’s response amplitude of A at background
k4=64. Making some changes (see above) gives the response amplitude for k4=2 (see
upper right corner). Run this script at k4=0, 1, 2, 4, 8, 16, 32, 64. Insert the corre-

sponding initial concentrations of A and E from Fig. 3.7b.

Figure A.4: Python script for generating m2’s resetting kinetics (see upper right
corner) from Fig. 3.7b. Run this script after having producing the response ampltidues

for k4=0, 1, 2, 4, 8, 16, 32, 64 (Fig. A.3)
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autocatalytic m2 controller

Figure A.5: Python script for generating autocatalytic m2’s response amplitude of A
at background k4=64 (see upper right corner). By making some changes (see above),
run this script at k4=0, 1, 2, 4, 8, 16, 32, 64. Insert the corresponding initial concen-

trations of A and E from Fig. 3.8b.

Figure A.6: Python script for generating autocatalytic m2’s resetting kinetics (see
upper right corner) from Fig. 3.8b. Run this script after producing the response am-

plitudes for k4=0, 1, 2, 4, 8, 16, 32, 64 (Fig. A.5)
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m3 controller

Figure A.7: Python script for generating m3’s response amplitude of A at background
k4=64. Making some changes (see above) gives the response amplitude for k4=0 (see
upper right corner). Run this script at k4=0, 1, 2, 4, 8, 16, 32, 64. Insert the corre-

sponding initial concentrations of A and E from Fig. 3.4b.

Figure A.8: Python script for generating m3’s resetting kinetics (see upper right
corner) from Fig. 3.4b. Run this script after producing the response amplitudes for

k4=0, 1, 2, 4, 8, 16, 32, 64 (Fig. A.7)



Appendix A 92

m4 controller

Figure A.9: Python script for generating m4’s response amplitude of A at background
k4=64. Making some changes (see above) gives the response amplitude for k4=8 (see
upper right corner). Run this script at k4=0, 1, 2, 4, 8, 16, 32, 64. Insert the corre-

sponding initial concentrations of A and E from Fig. 3.9b.

Figure A.10: Python script for generating m4’s resetting kinetics (see upper right
corner) from Fig. 3.9b. Run this script after producing the response amplitudes for

k4=0, 1, 2, 4, 8, 16, 32, 64 (Fig. A.9)
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m5 controller

Figure A.11: Python script for generating m5’s response amplitude of A at back-
ground k3=64. Making some changes (see above) gives the response amplitude for
k3=1 (see upper right corner). Run this script at k3=0, 1, 2, 4, 8, 16, 32, 64. Insert

the corresponding initial concentrations of A and E from Fig. 3.5b.

Figure A.12: Python script for generating m5’s resetting kinetics (see upper right
corner) from Fig. 3.5b. Run this script after producing the response amplitudes for

k5=0, 1, 2, 4, 8, 16, 32, 64 (Fig. A.11)
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m6 controller

Figure A.13: Python script for generating m6’s response amplitude of A at back-
ground k3=64. Making some changes (see above) gives the response amplitude for
k3=0 (see upper right corner). Run this script at k3=0, 1, 2, 4, 8, 16, 32, 64. Insert

the corresponding initial concentrations of A and E from Fig. 3.10b.

Figure A.14: Python script for generating m6’s resetting kinetics (see upper right
corner) from Fig. 3.10b. Run this script after producing the response amplitudes for

k6=0, 1, 2, 4, 8, 16, 32, 64 (Fig. A.13)
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m7 controller

Figure A.15: Python script for generating m7’s response amplitude of A at back-
ground k3=64. Making some changes (see above) gives the response amplitude for
k3=4 (see upper right corner). Run this script at k3=0, 1, 2, 4, 8, 16, 32, 64. Insert

the corresponding initial concentrations of A and E from Fig. 3.6b.

Figure A.16: Python script for generating m7’s resetting kinetics (see upper right
corner) from Fig. 3.6b. Run this script after producing the response amplitudes for

k7=0, 1, 2, 4, 8, 16, 32, 64 (Fig. A.15)
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m8 controller

Figure A.17: Python script for generating m8’s response amplitude of A at back-
ground k3=64. Making some changes (see above) gives the response amplitude for
k3=2 (see upper right corner). Run this script at k3=0, 1, 2, 4, 8, 16, 32, 64. Insert

the corresponding initial concentrations of A and E from Fig. 3.11b.

Figure A.18: Python script for generating m8’s resetting kinetics (see upper right
corner) from Fig. 3.11b. Run this script after producing the response amplitudes for

k8=0, 1, 2, 4, 8, 16, 32, 64 (Fig. A.17)
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A.2 Python scripts for frequency compensated controllers

Frequency compensated oscillator with coherent feedback at k10=0

This section containes python scripts for the frequency compensated oscillator with

coherent feedback from Fig. 3.13. A background k10=0 and step-wise perturbation k2

from 1→9 at time t=100 are applied. A and E are plotted as a function of time in

Fig. A.19 and Fig. A.20, respectively. Frequency is plotted as a function of time in

Fig. A.21, and I1 and I2 are shown as a function of time in Fig. A.22.
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Figure A.19: Frequency compensated oscillator with coherent feedback at k10=0 and
k2 from 1→9. A is plotted as a function of time.



Appendix A 99

Figure A.20: Frequency compensated oscillator with coherent feedback at k10=0 and
k2 from 1→9. E is plotted as a function of time.
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Figure A.21: Frequency compensated oscillator with coherent feedback at k10=0 and
k2 from 1→9. Frequency is plotted as a function of time.
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Figure A.22: Frequency compensated oscillator with coherent feedback at k10=0 and
k2 from 1→9. I1 and I2 are plotted as a function of time.
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Frequency compensated oscillator with coherent feedback at k10=2048

This section containes python scripts for the frequency compensated oscillator with

coherent feedback from Fig. 3.14. A background k10=2048 and step-wise perturbation

k2 from 1→9 at time t=100 are applied. A and E are plotted as a function of time

in Fig. A.23 and Fig. A.24, respectively. Frequency is plotted as a function of time in

Fig. A.25, and I1 and I2 are shown as a function of time in Fig. A.26.

Figure A.23: Frequency compensated oscillator with coherent feedback at k10=2048
and k2 from 1→9. A is plotted as a function of time.
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Figure A.24: Frequency compensated oscillator with coherent feedback at k10=2048
and k2 from 1→9. E is plotted as a function of time.
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Figure A.25: Frequency compensated oscillator with coherent feedback at k10=2048
and k2 from 1→9. Frequency is plotted as a function of time.
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Figure A.26: Frequency compensated oscillator with coherent feedback at k10=2048
and k2 from 1→9. I1 and I2 are plotted as a function of time.
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Frequency compensated oscillator with incoherent feedback at k10=0

This section containes python scripts for the frequency compensated oscillator with

incoherent feedback from Fig. 3.18. A background k10=0 and step-wise perturbation

k2 from 1→9 at time t=500 are applied. A and E are plotted as a function of time

in Fig. A.27 and Fig. A.28, respectively. Frequency is plotted as a function of time in

Fig. A.29, and I1 and I2 are shown as a function of time in Fig. A.30.

Figure A.27: Frequency compensated oscillator with incoherent feedback at k10=0
and k2 from 1→9. A is plotted as a function of time.
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Figure A.28: Frequency compensated oscillator with incoherent feedback at k10=0
and k2 from 1→9. E is plotted as a function of time.
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Figure A.29: Frequency compensated oscillator with incoherent feedback at k10=0
and k2 from 1→9. Frequency is plotted as a function of time.
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Figure A.30: Frequency compensated oscillator with incoherent feedback at k10=0
and k2 from 1→9. I1 and I2 are plotted as a function of time.
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Frequency compensated oscillator with incoherent feedback at k10=2

This section containes python scripts for the frequency compensated oscillator with

incoherent feedback from Fig. 3.19. A background k10=2 and step-wise perturbation

k2 from 1→9 at time t=500 are applied. A and E are plotted as a function of time

in Fig. A.31 and Fig. A.32, respectively. Frequency is plotted as a function of time in

Fig. A.33, and I1 and I2 are shown as a function of time in Fig. A.34.

Figure A.31: Frequency compensated oscillator with incoherent feedback at k10=2
and k2 from 1→9. A is plotted as a function of time.
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Figure A.32: Frequency compensated oscillator with incoherent feedback at k10=2
and k2 from 1→9. E is plotted as a function of time.
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Figure A.33: Frequency compensated oscillator with incoherent feedback at k10=2
and k2 from 1→9. Frequency is plotted as a function of time.
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Figure A.34: Frequency compensated oscillator with incoherent feedback at k10=2
and k2 from 1→9. I1 and I2 are plotted as a function of time.
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Oscillator with frequency independence at k14=2

This section containes python scripts for the frequency independent oscillator from

Fig. 3.22. A background k14=2 and step-wise perturbation k15 from 1→2 at time t=100

are applied. A and E are plotted as a function of time in Fig. A.35 and Fig. A.36,

respectively.

Figure A.35: Frequency independent oscillator at k14=0 and k15 from 1→2. A is
plotted as a function of time.
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Figure A.36: Frequency independent oscillator at k14=0 and k15 from 1→2. E is
plotted as a function of time.
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Oscillator with frequency independence at k14=16

This section containes python scripts for the frequency independent oscillator from

Fig. 3.23. A background k14=16 and step-wise perturbation k15 from 1→10 at time

t=100 are applied. A and E are plotted as a function of time in Fig. A.37 and Fig. A.38,

respectively.

Figure A.37: Frequency independent oscillator at k15=2 and k2 from 1→2. A is
plotted as a function of time.
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Figure A.38: Oscillator with frequency independence. E is plotted as a function of
time.
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MATLAB scripts

B.1 MATLAB scripts for m1-m8 controllers

This section provides MATLAB scripts for each of the m1-m8 controllers’ (Fig. 2.1)

response kinetics. The m1 controller will be used as an example. The other MATLAB

scripts are run in a similar way.

m1 controller

Three MATLAB scripts regarding the m1 controller, ”m1.m”, ”run m1.m”, and ”A merged

data.m”, must be inside the current working folder, as well as an additional folder called

”output” that has three subfolders named ”A-data”, ”t-data” and ”figures”. ”m1.m”

containes the rate equations of m1. The response amplitude of A at a particular back-

ground k4 can be seen by running ”run m1.m”. These scripts incorporate different k4

values from the one used in Fig. 3.3b but they generate the same type of resetting

kinetics.

Panel a in Fig. B.1 shows ”run m1.m” at k4=128. Running this script generates

”k4=128.txt” (inside ”A-data” and ”t-data”). Together with ”m1.py” (panel b) the re-

sulting response amplitude (panel c) can be seen in ”A k4=128.pdf” (inside ”figures”).

This script can be run at different backgrounds by changing the k4 value in panel a, and

inserting the corresponding initial concentrations of A and E.
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Figure B.1: MATLAB scripts for generating m1’s response amplitude of A at back-
ground k4=128. Run the script in panel a in order to generate the response amplitude
of A in panel c. This can be run at different backgrounds by changing the k4 value
in panel a, and inserting the corresponding initial concentrations of A and E. Panel b

contains the rate equations.

Response amplitudes for different k4-values (k4=0, 1, 2, 4, 8, 16, 32, 64, 128) can be merged

together by running ”A merged data.m” (Fig. B.2a). This creates ”A merged.pdf” (in-

side ”figures”), and shows similar resetting kinetics (panel b) as in Fig. 3.3b.
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a b

Figure B.2: MATLAB script (panel a) for generating m1’s resetting kinetics (panel
b). The resetting kinetics are similar to Fig. 3.3b. Run this script after producing the

response amplitudes for k4=0, 1, 2, 4, 8, 16, 32, 64, 128.
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m2 controller
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Figure B.3: MATLAB scripts for generating m2’s response amplitude of A at back-
ground k4=80. Run the script in panel a in order to generate the response amplitude
of A in panel c. This can be run at different backgrounds by changing the k4 value
in panel a, and inserting the corresponding initial concentrations of A and E. Panel b

contains the rate equations.
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Figure B.4: MATLAB script (panel a) for generating m2’s resetting kinetics (panel
b). The resetting kinetics are similar to Fig. 3.7b. Run this script after producing the

response amplitudes for k4=0, 1, 5, 10, 20, 40, 80.
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m3 controller
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Figure B.5: MATLAB scripts for generating m3’s response amplitude of A at back-
ground k4=128. Run the script in panel a in order to generate the response amplitude
of A in panel c. This can be run at different backgrounds by changing the k4 value
in panel a, and inserting the corresponding initial concentrations of A and E. Panel b

contains the rate equations.
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a b

Figure B.6: MATLAB script (panel a) for generating m3’s resetting kinetics (panel
b). The resetting kinetics are similar to Fig. 3.4b. Run this script after producing the

response amplitudes for k4=0, 1, 2, 4, 8, 16, 32, 64, 128
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m4 controller
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Figure B.7: MATLAB scripts for generating m4’s response amplitude of A at back-
ground k4=80. Run the script in panel a in order to generate the response amplitude
of A in panel c. This can be run at different backgrounds by changing the k4 value
in panel a, and inserting the corresponding initial concentrations of A and E. Panel b

contains the rate equations.

0 100 200 300 400 500 600
time (au)

0.5

1

1.5

2

2.5

3

3.5

A
 (

au
)

k4=0
k4=2
k4=5
k4=10
k4=20
k4=40
k4=80

a b

Figure B.8: MATLAB script (panel a) for generating m4’s resetting kinetics (panel
b). The resetting kinetics are similar to Fig. 3.9b. Run this script after producing the

response amplitudes for k4=0, 2, 5, 10, 20, 40, 80
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m5 controller
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Figure B.9: MATLAB scripts for generating m5’s response amplitude of A at back-
ground k3=128. Run the script in panel a in order to generate the response amplitude
of A in panel c. This can be run at different backgrounds by changing the k3 value
in panel a, and inserting the corresponding initial concentrations of A and E. Panel b

contains the rate equations.
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Figure B.10: MATLAB script (panel a) for generating m5’s resetting kinetics (panel
b). The resetting kinetics are similar to Fig. 3.5b. Run this script after producing the

response amplitudes for k3=0, 1, 2, 4, 8, 16, 32, 64, 128
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m6 controller
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Figure B.11: MATLAB scripts for generating m6’s response amplitude of A at back-
ground k3=80. Run the script in panel a in order to generate the response amplitude
of A in panel c. This can be run at different backgrounds by changing the k3 value
in panel a, and inserting the corresponding initial concentrations of A and E. Panel b

contains the rate equations.
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Figure B.12: MATLAB script (panel a) for generating m6’s resetting kinetics (panel
b). The resetting kinetics are similar to Fig. 3.10b. Run this script after producing the

response amplitudes for k3=0, 1, 2, 5, 10, 20, 40, 80
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m7 controller
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Figure B.13: MATLAB scripts for generating m7’s response amplitude of A at back-
ground k3=128. Run the script in panel a in order to generate the response amplitude
of A in panel c. This can be run at different backgrounds by changing the k3 value
in panel a, and inserting the corresponding initial concentrations of A and E. Panel b

contains the rate equations.
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Figure B.14: MATLAB script (panel a) for generating m7’s resetting kinetics (panel
b). The resetting kinetics are similar to Fig. 3.6b. Run this script after producing the

response amplitudes for k3=0, 1, 2, 4, 8, 16, 32, 64, 128
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m8 controller
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Figure B.15: MATLAB scripts for generating m8’s response amplitude of A at back-
ground k3=80. Run the script in panel a in order to generate the response amplitude
of A in panel c. This can be run at different backgrounds by changing the k3 value
in panel a, and inserting the corresponding initial concentrations of A and E. Panel b

contains the rate equations.
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Figure B.16: MATLAB script (panel a) for generating m8’s resetting kinetics (panel
b). The resetting kinetics are similar to Fig. 3.11b. Run this script after producing the

response amplitudes for k3=0, 1, 5, 10, 20, 40, 80
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Abstract

We have studied the resetting behavior of eight basic integral controller motifs with respect

to different but constant backgrounds. We found that the controllers split symmetrically

into two classes: one class, based on derepression of the compensatory flux, leads to

more rapid resetting kinetics as backgrounds increase. The other class, which directly

activates the compensatory flux, shows a slowing down in the resetting at increased back-

grounds. We found a striking analogy between the resetting kinetics of vertebrate photore-

ceptors and controllers based on derepression, i.e. vertebrate rod or cone cells show

decreased sensitivities and accelerated response kinetics as background illuminations

increase. The central molecular model of vertebrate photoadaptation consists of an over-

lay of three negative feedback loops with cytosolic calcium (Ca2þ

i ), cyclic guanosine mono-

phosphate (cGMP) and cyclic nucleotide-gated (CNG) channels as components. While in

one of the feedback loops the extrusion of Ca2þ

i by potassium-dependent sodium-calcium

exchangers (NCKX) can lead to integral control with cGMP as the controlled variable, the

expected robust perfect adaptation of cGMP is lost, because of the two other feedback

loops. They avoid that Ca2þ

i levels become too high and toxic. Looking at psychophysical

laws, we found that in all of the above mentioned basic controllers Weber’s law is followed

when a “just noticeable difference” (threshold) of 1% of the controlled variable’s set-point

was considered. Applying comparable threshold pulses or steps to the photoadaptation

model we find, in agreement with experimental results, that Weber’s law is followed for

relatively high backgrounds, while Stephens’ power law gives a better description when

backgrounds are low. Limitations of our photoadaption model, in particular with respect to

potassium/sodium homeostasis, are discussed. Finally, we discuss possible implication of

background perturbations in biological controllers when compensatory fluxes are based

on activation.
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Introduction

In 1929 Walter B. Cannon [1] defined homeostasis as the sum of the physiological processes

which keep the steady states in a cell or organism within narrow limits [2]. Since then many

facets of homeostatic regulation has been discovered and alternative concept names have

been suggested. For example, Mrosovsky [3] argued that the term rheostasis would be more

appropriate since there is often a change in a defended set-point, for example, the elevated

(and controlled) temperature when we are running a fever. He further argues (see [3], ch. 1)

that homeostasis has often been equated to a single negative feedback loop. The term allos-
tasis [4–6] was introduced to focus on changing environmental conditions, feedforward

loops, and on the control mechanisms which deviate from a simple negative feedback loop

with a single set-point [5]. With respect to circadian adaptation and anticipation mecha-

nisms Moore-Ede [7] coined the term predictive homeostasis. As adaptation mechanisms

are highly dynamic Lloyd [8] argued for the use of the term homeodynamics instead of

homeostasis. While all these aspects point to important properties of homeostatic regula-

tion, we agree with Carpenter that the term homeostasis still stands as an unified approach

[9]. We believe, that when multiple feedback and feedforward loops are studied theoretically

in more detail, many of the above mentioned homeostatic facets can be accounted for, such

as rheostatic control can be observed in a model of p53 regulation upon variable stress con-

ditions [10].

In this paper we explore the influence of background perturbations on a set of eight basic

negative feedback (controller) motifs [11]. We found that some of the motifs show an astonish-

ing analogy to retinal photoreceptor adaptation when various background illuminations are

applied.

The paper consists of two major parts. In the first part results from a systematic study of all

eight controller motifs are shown. In the second part we show how certain of these controller

motifs can provide an understanding about the kinetics of retinal photoreceptor adaptation.

All eight feedback motifs show robust perfect homeostasis due to the implementation of inte-

gral control.

Integral control is a control-engineering concept [12], which allows a controlled variable

to reset precisely at its set-point when step perturbations are applied. In biochemical systems

several kinetic requirements have been identified which lead to integral control. Among them

we have zero-order kinetics in the removal of the manipulated (controller) variable [11, 13],

antithetic control in which two controller variables are removed by second-order [14, 15] or

enzyme [16] kinetics, or a (first-order) autocatalytic synthesis combined with first-order

removal kinetics of the manipulated variable [17–19]. When dealing with the different basic

controller motifs we will introduce integral control mostly by zero-order kinetics, but also by

antithetic control (see ‘Results and discussion’ below).

Psychophysical laws

Psychophysical laws relate the intensity of a physical stimulus with its perceived magnitude,

for example a human (or a receptor cell) perceived brightness of light in relation to a certain

applied light intensity. We will use the concept of a “just noticeable perturbation” (alternatively

“just noticeable difference” or “threshold”) in order to compare computational results with

corresponding experimental data. The concept of a “just noticeable difference” was first intro-

duced by Weber [20] in order to understand the relationship between an applied physical

stimulus and its (human) perception. We will focus on two well-known psychophysical laws,

i.e. on Weber’s law and on Stephens’ power law, because these laws are often applied in adapta-

tion studies (see for example Part IV in [21])).
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Weber’s law. Ernst Heinrich Weber [20, 22] found that the human perception of a just

noticeable difference dw = w0 − w between a reference weight w and a slightly heavier weight

w0 is approximately proportional to the reference weight w, i.e.,

dw ¼ w0 � w ¼ k � w ð1Þ

with k being a constant. Weber’s law implies a linear relationship between a just noticeable

perturbation (threshold perturbation) and an applied background perturbation. It was Gustav

Fechner [23] who made Weber’s law public and gave it its name, but expanded the perception

of a just noticeable difference dw to dp = dw/w (termed by Fechner as Contrast) and stated its

logarithmic form, i.e.,

dp ¼ a �
dw
w
) p ¼ a ln

w
w0

þ C ð2Þ

where α and C are constants. Instead of weight, w can generally be any other stimulus. The log-

arithmic form of Eq 2 is termed as Fechner’s law.

Stevens’ power law. Stevens [24] suggested (and revived) a power-law formulation

between the magnitude of a sensation/perception p and its stimulus s, i.e.

p ¼ k � sa þ p0 ð3Þ

where k, α, and p0 are constants depending respectively on the units used and the type

of stimulation. MacKay [25] suggested a model of perceived intensities by an adaptive

“counterbalancing” response mechanism. This “negative feedback” approach enabled

MacKay to make connections between the Weber-Fechner law and Stevens’ law. In a

model of retinal light adaptation we will show that Stephens’ power law or Weber’s law

are followed dependent whether the background perturbation range is either low or high,

respectively.

Materials and methods

Calculations and parameter estimations

Computations were performed by using LSODE [26], which is part of a set of Fortran

solvers at the Lawrence Livermore National Laboratory (https://computing.llnl.gov/

projects/odepack). Graphical results were generated with gnuplot (www.gnuplot.info).

Composite figures and additional annotations were done with Adobe Illustrator (https://

www.adobe.com/).

To make notations simpler, concentrations of compounds are denoted by compound

names without square brackets. Time derivatives are generally indicated by the ‘dot’ notation.

For the basic feedback loops m1-m8 (next section) concentrations and rate parameter values

are given in arbitrary units (au), while for the light adaptation model concentrations are in μM

(or nM) and time scale is in seconds (s). Rate parameters are presented as ki’s (i = 1, 2, 3, . . .)

irrespective of their kinetic nature, i.e. whether they represent turnover numbers, Michaelis

constants, or inhibition/activation constants.

For the light adaptation model some parameter values were estimated by using gnuplot’s

fit function with respect to experimental literature data. Graphical experimental data were

extracted with the program GraphClick (https://macdownload.informer.com/graphclick/).

To make the computations more accessible supporting information ‘S1 Programs’ in S1

File contains python scripts of Fortran results.
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Feedback motifs investigated

Fig 1 shows the investigated negative feedback loops. These are eight basic motifs (m1-m8),

which divide equally into a set of inflow and outflow controllers [11]. Compound A is the

homeostatic controlled variable, while E is the controller variable (or manipulated variable).

Red arrows indicate a step perturbation while blue arrows represent a constant background.

Black arrows indicate synthesis and removal of the controller variable E. Dashed lines repre-

sent signaling events which lead to the activation (plus signs) or inhibition (minus signs) of

target reactions.

We have applied step perturbations, because integral controllers are generally capable to

compensate them perfectly (for a proof see ch. 10.3.1 in Ref. [27]). Note however, that some

feedback loop kinetics, such as in m2, are capable to oppose even rapidly increasing perturba-

tions, such as hyperbolic growth [28, 29].

In the inflow controllers m1-m4 the manipulated variable E leads to the increase of a com-

pensatory inflow flux either by direct activation (brown plus signs) or by derepression (green

minus signs) and thereby opposing the step perturbations which remove A (red arrows). In

the outflow controllers m5-m8 the compensatory (outflow) flux compensates step perturba-

tions (red arrows) which increase A [30].

Results and discussion

Analyses of controller motifs

We have analyzed the eight controller schemes (Fig 1) with regard to step perturbations at dif-

ferent but constant backgrounds. Fig 2 shows the two idealized responses. In panel (a) the

Fig 1. Set of basic negative feedback motifs m1-m8. Red and blue arrows indicate, respectively, a step perturbation and a constant background

reaction. Integral control is implemented either by zero-order kinetics [11, 13] or by antithetic control [14, 16]. Outlined in brown and green we have

activating or derepressing compensatory fluxes, respectively.

https://doi.org/10.1371/journal.pone.0281490.g001
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resetting for inflow controllers is shown. In this case a step perturbation removes the con-

trolled variable A and temporarily decreases it. Panel (b) shows the behavior of an outflow con-

troller. When integral control is operative the controllers will defend the set-point of A (Aset)

and move the level of A during the on-going step perturbation precisely back to Aset.

The resetting period is rather loosely defined as the time required to reach Aset after a step

perturbation has been applied. Fig 2 also indicates the parameter ΔAmax, which is the maxi-

mum excursion of A after the applied step. tmax is the time the controller needs to reach ΔAmax

after the perturbation has been applied.

We found that the controllers’ response kinetics split into two classes independent whether

they are inflow or outflow controllers. In both classes an increase of a background reaction

leads to a reduced excursion ΔAmax. In the class where the compensatory flux is based on acti-

vation (controllers m1, m3, m5, and m7; outlined in brown in Fig 1), the controllers slow

down in their resetting with increasing backgrounds and decreasing tmax values. In the other

class, when compensatory fluxes are based on derepression, the controllers show an acceler-

ated resetting (controllers m2, m4, m6, and m8; outlined in green in Fig 1).

In the following we describe in more detail how the two classes of controllers differ in their

resetting behavior.

Controllers with activated compensatory fluxes

We show here the results for motifs m1 and m7. The supporting information ‘S1 Text’ shows

corresponding details for controllers m3 and m5.

Controller m1. In the m1 controller the compensatory flux j3 = k3�E is activated by E
while A activates the removal of E (Fig 3). Step-wise perturbations removing A are mediated

by k2 while k4 is a constant background outflow. For simplicity, we assume that activation

kinetics are first-order with respect to the concentration of the activating species. This

Fig 2. Idealized response kinetics of (a) inflow and (b) outflow controllers upon step perturbations. Indicated are the set-point of the controlled

variable A, Aset, the maximum excursion of A, ΔAmax. tmax is the time between the start of the perturbation until ΔAmax is reached.

https://doi.org/10.1371/journal.pone.0281490.g002
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assumption neglects possible saturation and controller breakdown at high activator concentra-

tions [31].

The rate equations are:

_A ¼ k1 � ðk2 þ k4Þ � Aþ k3 � E ð4Þ

_E ¼ k5 � A
k6 � E
k7 þ E

� �

ð5Þ

Integral control is incorporated by a zero-order kinetic removal of E, i.e. E/(k7 + E)� 1,

with the result that E becomes proportional to the integrated error � = Aset − A:

_E ¼ k6ð
k5

k6|{z}
Aset

� AÞ ¼ k6 � � ) EðtÞ ¼ k6

Z t

0

�ðt0Þ � dt0
ð6Þ

Fig 4 shows the response kinetics of the m1 controller with set-point Aset=3.0. Panel (a) shows

the concentration of A as a function of time when a k2 step 1!5 is applied. Clearly, ΔAmax (see

definition in Fig 2) decreases with increasing background k4. Typically for controllers where

the compensatory flux is based on activation, we observe that for increased backgrounds the

Fig 3. Inflow controller m1 with integral control implemented as a zero-order Michaelis-Menten (MM) type

removal of E. k2 undergoes a step perturbation, k3 is a rate constant for the inflow of A, while k4 is a constant

background reaction. k6 and k7 are MM parameters analogous to Vmax and KM, respectively. In the calculations the

grayed-out rate constant k1 will be set to zero.

https://doi.org/10.1371/journal.pone.0281490.g003
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Fig 4. Response kinetics and relationship to Weber’s law in the m1 controller (Fig 3). The set-point of A is 3.0. (a) Step-wise increase of k2 from 1.0

to 5.0 at time t=10 at different but constant backgrounds k4 (0–128.0, phases 1 and 2). Note the successive decrease in the maximum excursion of A
(ΔAmax) with slowed-down A resetting kinetics as k4 backgrounds increase. ΔAmax for k4=16.0 is indicated. The inset shows that even at high

backgrounds the controller is fully operative. Rate constants (in au): k1=0.0, k2=1.0 (phase 1), k2=5.0 (phase 2), k3=1.0, k4 variable, k5=3.0, k6=1.0,

k7=1 × 10−6. Initial concentrations (in au): A0=3.0, E0=3.0 (k4=0); A0=3.0, E0=6.0 (k4=1); A0=3.0, E0=9.0 (k4=2); A0=3.0, E0=15.0 (k4=4); A0=3.0, E0=27.0

(k4=8); A0=3.0, E0=51.0 (k4=16); A0=3.0, E0=99.0 (k4=32); A0=3.0, E0=195.0 (k4=64); A0=3.0, E0=387.0 (k4=128). The inset shows the full adaptation

response when k4=128.0 (b) Relationship to Weber’s law: When perturbation k2 in phase 2 is adjusted such that the maximum (just noticeable)

excursion in A is 0.03 (i.e. 1% of Aset) then both k2 and the “perception” Ess are linear functions of different but constant backgrounds k4. Rate constants

and initial concentrations as in (a), except that k2 in phase 2 has the following values: 1, k2 = 1.0367 (k4 = 2); 2, k2 = 1.0559 (k4 = 4); 3, k2 = 1.0950 (k4 =

8); 4, k2 = 1.1745 (k4 = 16); 5, k2 = 1.3350 (k4 = 32); 6, k2 = 1.6581 (k4 = 64); 7, k2 = 2.3030 (k4 = 128). (c) ΔAmax as a function of background k4 at three

different k2 steps. (d) tmax as a function of background k4 at three different k2 steps. Rate constants are as in panel (a), except for k2 and k4. Initial

concentrations are the steady state values of A and E prior to the step in k2.

https://doi.org/10.1371/journal.pone.0281490.g004
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resetting period is lengthend. Despite the increase in the resetting period the inset in panel (a)

shows that the controller is fully operational and is able to defend its set-point.

Fig 4b shows the response kinetics related to Weber’s law when probing a “just noticeable”

excursion in ΔA of 0.03 (1% of Aset=3.0) by applying appropriate k2 values in phase 2. We

observe that the different k2 values (in phase 2) and the corresponding steady-state values of E
(Ess) are linear functions of the background k4.

Fig 4c and 4d show the values of ΔAmax and tmax for three different k2 steps with increasing

backgrounds k4. Reflecting the behavior from Fig 4a, panel (c) shows that ΔAmax values

decrease monotonically as background increases, but that the magnitude of ΔAmax depends

on the size of the applied step. Despite that the resetting period increases with increasing back-

grounds we observe that tmax decreases with increasing k4 (panel (d)). The increase of the

resetting period at increased k4 levels can be explained by the high steady state levels of E in

phase 1 when k4 backgrounds become high and that the system needs more time to reach the

steady state of E in phase 2 by zero-order kinetics.

Controller m7. m7 is an outflow controller which opposes inflow perturbations k1 at dif-

ferent background reactions k3 by E-activation of the compensatory flux j4 (=k4�A�E). The neg-

ative feedback is closed by inhibiting the removal of E through A (Fig 5). The rate equations

are

_A ¼ k1 þ k3 � k2 � A � k4 � A � E ð7Þ

Fig 5. Outflow controller motif m7 with integral control implemented as a zero-order Michaelis-Menten (MM)

type degradation of E. The perturbation k1 changes step-wise (1.0!5.0), while k3 is a constant background. Rate

constant k4 relates to the outflow of A, and k8 is an inhibition constant. k6 and k7 are MM parameters analogous to

Vmax and KM, respectively. In the calculations the grayed-out rate constant k2 is, for the sake of simplicity, set to zero.

https://doi.org/10.1371/journal.pone.0281490.g005
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_E ¼ k5 �
k6 � E
k7 þ E

� �

�
k8

k8 þ A

� �

ð8Þ

The set-point for A is calculated from the steady-state condition of Eq 8 by using zero-

order degradation of E, i.e. E/(k7 + E)� 1.

_E ¼ 0 ) k5 ¼
k6k8

ðk8 þ AssÞ
) Aset ¼ Ass ¼ k8

k6

k5

� 1

� �

ð9Þ

Fig 6 shows the response kinetics of the m7 controller. Since the controller opposes inflow

perturbations excursions of A are above the set-point Aset (=3.0). Panel a shows the slowed-

down responses during the resetting in phase 2 as background k3 increases. The inset shows

that the controller is still operative even at the highest k3 and slowest resetting. Panel b shows

that a k1 step perturbation which results in a just noticeable maximum excursion ΔAmax of 0.03

(1% of Aset) increases, together with the corresponding steady state Ess values in phase 2, line-

arly with the background k3. ΔAmax in creases with increasing k1 step (Fig 6c), while for a given

background we find, somewhat surprisingly, that tmax is independent on the magnitude of the

k1 step (Fig 6d). Both ΔAmax and tmax decrease monotonically with increasing background k3.

We explain the delay in the resetting of A for large k3 backgrounds as the increased time

needed to change the high steady state values of E from phase 1 to its new steady state in phase

2 after the step.

Controllers with compensatory fluxes based on derepression

We show here the results for controllers m2 and m8 (Fig 1). Corresponding results for m4 and

m6 are given in supporting information ‘S2 Text’.

Controller m2. In the m2 controller scheme (Fig 7) activation of E by A is proportional to

the concentration of A, while the inhibition term on the compensatory flux is formulated as

k8/(k8 + E). The rate equations are:

_A ¼ k1 � k2 � A � k4 � Aþ
k3k8

k8 þ E
ð10Þ

_E ¼ k5 � A �
k6 � E
k7 þ E

ð11Þ

To achieve homeostasis in A a perturbation (removal) of A is counteracted by a decrease of

E (“derepression”), which increases the compensatory flux j3 = k3k8/(k8 + E) and moves, in the

presence of integral control, A to its set-point.

The set-point of A (Aset) is determined how integral control is implemented in the feedback

loop. In Fig 7 we use zero-order kinetics with respect to the removal of E, i.e. k7� Ess. This

implies that the steady state of A is also the set-point of A (Aset) and is given as the ratio k6/k5,

i.e.

_E ¼ 0 ¼ k5 � Ass � k6 � fE|{z}
�1

¼ � k5ð
k6

k5|{z}
Aset

� AssÞ
ð12Þ

with fE = E/(k7 + E)� 1.
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Fig 6. Response kinetics and relationship to Weber’s law in the m7 controller (Fig 5). The set-point of A is 3.0. (a) Step-wise increase of k1 from 1.0

to 5.0 at time t=100 at different and constant background perturbations k3 (0–128.0, applied in phases 1 and 2). Note the successive decrease in the

maximum excursion of A (ΔAmax) with slowed-down A resetting kinetics as k3 values increase. ΔAmax for k3=4.0 is indicated. Rate constants (in au):

k1=1.0, k2=0.0 (phases 1 and 2), k1=5.0 (phase 2), k3 variable, k4=0.03, k5=1.0, k6=31.0, k7=1×10−6, k8=0.1. Initial concentrations (in au): A0=3.0,

E0=11.11 (k3=0); A0=3.0, E0=22.22 (k3=1); A0=3.0, E0=33.33 (k3=2); A0=3.0, E0=55.55 (k3=4); A0=3.0, E0=100.0 (k3=8); A0=3.0, E0=188.89 (k3=16);

A0=3.0, E0=366.67 (k3=32); A0=3.0, E0=722.22 (k3=64); A0=3.0, E0=1433.33 (k3=128). The inset shows the full adaptation response when k3=128.0 (b)

Relationship to Weber’s law: When perturbation k1 in phase 2 is adjusted such that the maximum (just noticeable) excursion ΔAmax is 0.03 (i.e. 1% of

Aset) then both k1 and the “perception” Ess are linear functions of the background k3. Rate constants and initial concentrations as in (a), except that k1 in

phase 2 has the following values: 1, k1 = 1.0325 (k3 = 2); 2, k1 = 1.0520 (k3 = 4); 3, k1 = 1.0914 (k3 = 8); 4, k1 = 1.1709 (k3 = 16); 5, k1 = 1.3306 (k3 = 32); 6,

k1 = 1.6503 (k3 = 64); 7, k1 = 2.2900 (k3 = 128). (c) ΔAmax values as a function of background k3 for three step perturbations in k1. Note that the three

curves are congruent, i.e., their identical shape can be precisely moved onto each other. (d) tmax as a function of background k3. For a given background

tmax is practically the same and independent of the three k1 steps.

https://doi.org/10.1371/journal.pone.0281490.g006

PLOS ONE Homeostasis at different backgrounds

PLOS ONE | https://doi.org/10.1371/journal.pone.0281490 April 28, 2023 10 / 32



Fig 8a shows the response for step-wise changes in k2 from 1.0 (phase 1) to 5.0 (phase 2) at

different but constant background perturbations k4. Typically for derepression controllers is

both the decrease of ΔAmax at increasing backgrounds when a constant step perturbation is

applied and a decreasing response time.

We were interested to see how the m2 controller would respond when a just noticeable excur-

sion in A (ΔAmax) was applied for different background perturbations k4. For that purpose we

determined in phase 2 the steady state values of E and the k2 values when the excursion of A was

1% of Aset(=3.0), i.e. ΔAmax = 0.03. Fig 8b shows that (1/Ess) and k2 increase linearly with increas-

ing k4, a manifestation of Weber’s law. In this view, (1/Ess) could be interpreted as a “perceived”

variable. Fig 8c and d show how ΔAmax and tmax depend on the background k4, respectively.

Controller m2 with antithetic integral control. Since we later will use bimolecular (anti-

thetic) control [14, 19] to describe the simultaneous removal of Ca2+ and K+ out of a photore-

ceptor cell by potassium-dependent sodium-calcium exchangers (NCKX), we illustrate here

how scheme m2 works with antithetic integral control (Fig 9).

The rate equations are:

_A ¼ k1 � k2 � A � k4 � Aþ
k3k8

k8 þ E1

ð13Þ

_E1 ¼ k5 � A � k7 � E1 � E2
ð14Þ

Fig 7. Controller motif m2 with integral control implemented as a zero-order Michaelis-Menten (MM) type

degradation of E. Rate constant k2 undergoes a step-wise change (perturbation), k3 represents the maximum inflow of

A, while k4 is a (constant) background reaction. Rate constant k8 is an inhibition constant. k6 and k7 are MM

parameters analogous to Vmax and KM, respectively. The grayed-out rate constant k1 is set in the calculations to zero.

https://doi.org/10.1371/journal.pone.0281490.g007
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Fig 8. Response kinetics and relationship to Weber’s law in the m2 controller (Fig 7). The set-point of A is Aset=3.0 (a) Step-wise increase of k2 from

1.0 to 5.0 at time t=100 at different and constant background perturbations k4 (0–80). The maximum excusion in A, ΔAmax, for k4=5 is indicated. Note

the successive decrease in ΔAmax and the more rapid resetting of A at increased k4 values. Rate constants (in au): k1=0.0, k2=1.0 (phase 1), k2=5.0 (phase

2), k3=1×104, k4 variable, k5=1.0, k6=3.0, k7=1×10−6, k8=0.1. Initial concentrations (in au): A0=3.0, E0=333.23 (k4=0); A0=3.0, E0=166.62 (k4=1); A0=3.0,

E0=55.46 (k4=5); A0=3.0, E0=30.20 (k4=10); A0=3.0, E0=15.77 (k4=20); A0=3.0, E0=8.03 (k4=40); A0=3.0, E0=4.02 (k4=80). (b) Relationship to Weber’s

law: in phase 2 the perturbation k2 and (1/Ess) are linear functions of the background perturbation k4 when the “just noticable difference” ΔAmax is 0.03.

Rate constants and initial concentrations as in (a), except that k2 in phase 2 has the following values: 1, k2 = 1.0314 (k4 = 2); 2, k2 = 1.0627 (k4 = 5); 3, k2

= 1.1150 (k4 = 10); 4, k2 = 1.2195 (k4 = 20); 5, k2 = 1.4285 (k4 = 40); 6, k2 = 1.8465 (k4 = 80); 7, k2 = 2.6820 (k4 = 160). (c) Monotonic decrease of ΔAmax

as a function of background k4 for three different steps. At constant background ΔAmax increases with increasing step size. (d) tmax decreases

monotonically with increasing backgrounds k4. At constant background tmax decreases with increasing step size. Rate constants in panels (c) and (d) are

the same as for panel (a), apart from k2 and k4. Initial concentrations were taken as the steady state values of A and E at the different backgrounds k4

prior to the applied step in k2.

https://doi.org/10.1371/journal.pone.0281490.g008
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_E2 ¼ k6 � k7 � E1 � E2
ð15Þ

From the steady-state conditions for E1 (k5�Ass=k7�E1�E2) and E2 (k6=k7�E1�E2) the set-point for

A (Aset) is given by:

k5 � Ass ¼ k7 � E1 � E2 ¼ k6 ) Ass ¼ Aset ¼
k6

k5

ð16Þ

In many respects robust perfect adaptation by zero-order or bimolecular (antithetic) kinetics,

i.e., E (Eq 12) and E1 (Eq 14) behave dynamically identical. In fact, both E and E1 show zero-

Fig 9. Controller motif m2 with antithetic integral control. Here, antithetic control is implemented as a bimolecular

second-order reaction which removes the two controller molecules E1 and E2. See text on how A’s set-point is

calculated.

https://doi.org/10.1371/journal.pone.0281490.g009
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order kinetics with respect to E and E1, respectively. In the supporting information ‘S3 Text’ we

show the identical antithetic behavior of the m2 scheme when using step perturbations at vari-

ous backgrounds in comparison with the above m2 calculations using zero-order kinetics.

Controller m8. Fig 10 shows the scheme of controller m8. The compensatory outflow flux

j4 = k4�k9�A/((k9 + E)) and the signaling from A to E are based on derepression.

The rate equations are:

_A ¼ k1 � k2 � Aþ k3 � k4 � A �
k9

k9 þ E

� �

ð17Þ

_E ¼ k5 �
k8

k8 þ A

� �

�
k6 � E
k7 þ E

ð18Þ

The set-point of A is derived from the steady-state condition _E ¼ 0 together with the

assumption that E is removed by zero-order kinetics, i.e. E/(k7 + E)� 1:

_E ¼ 0 ) k5 �
k8

k8 þ Ass

� �

¼ k6 ) Aset ¼ Ass ¼ k8

k5

k6

� 1

� �

ð19Þ

Fig 11a shows the response of the m8 derepression controller at different but constant back-

grounds k3. Note the typical, more rapid, resetting when backgrounds are increased. Panel b

Fig 10. Outflow controller motif m8 with integral control implemented as a zero-order Michaelis-Menten (MM)

type degradation of E. Rate constant k1 undergoes a perturbation, while k3 is a background inflow rate. k8 and k9 are

inhibition constants. k6 and k7 are MM parameters analogous to Vmax and KM, respectively. For simplicity, the grayed-

out rate constant k2 is set to zero.

https://doi.org/10.1371/journal.pone.0281490.g010
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Fig 11. Response kinetics and relationship to Weber’s law in the m8 controller (Fig 10). The set-point of A is Aset=3.0. (a) Step-wise increase of k1

from 1.0 to 5.0 at time t=100 at different and constant background perturbations k3 (0–80). Note the successive decrease in the excursion of A (ΔAmax)

and the more rapid A resetting to the set-point at increased k3 values. Rate constants (in au): k1=1.0 (phase 1), k1=5.0 (phase 2), k2=0.0, k3 variable, k4 =

1×104, k5=620.0, k6=20.0, k7=1×10−6, k8=k9=0.1. Initial concentrations (in au): A0=3.0, E0=2999.90 (k3=0); A0=3.0, E0=1499.90 (k3=1); A0=3.0,

E0=499.90 (k3=5); A0=3.0, E0=272.63 (k3=10); A0=3.0, E0=142.76 (k3=20); A0=3.0, E0=73.07 (k3=40); A0=3.0, E0=36.94 (k3=80). (b) Relationship to

Weber’s law: the perturbation k1 and (1/Ess) in phase 2 are linear functions of the background perturbation k3 when k1 is adjusted such that a “just

noticable difference” of ΔAmax=0.03 is observed. Rate constants and initial concentrations as in (a), except that k1 in phase 2 has the following values: 1,

k1 = 1.0319 (k3 = 2); 2, k1 = 1.0637 (k3 = 5); 3, k1 = 1.1169 (k3 = 10); 4, k1 = 1.2231 (k3 = 20); 5, k1 = 1.4356 (k3 = 40); 6, k1 = 1.8604 (k3 = 80); 7, k1 =

2.7111 (k3 = 160). (c) ΔAmax values as a function of background k3 for three step perturbations in k1. Like for the m7 controller the three curves are

congruent and their shape can be moved onto each other. (d) tmax as a function of background k3. For a given background tmax values are practically the

same independent of the three steps. Rate constants in panels (c) and (d) are the same as for panel (a), apart from k1 and k3. Initial concentrations are

taken as the steady state values for A and E at the different backgrounds k3 prior to the applied step in k1.

https://doi.org/10.1371/journal.pone.0281490.g011
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shows that the controller follows Weber’s law (Eq 1), i.e. when setting a “just noticeable differ-

ence” of ΔAmax to 1% of the set-point of A (Aset=3.0) the required perturbations k1 in phase 2

needed to achieve ΔAmax=0.03 become a linear function of the background k3. Similarly, plot-

ting (1/Ess) against the background is likewise linear, suggesting that (1/Ess) may be interpreted

as the “perception” of ΔAmax. Fig 11c and 11d show how ΔAmax and tmax depend on the back-

ground k3, respectively.

Implications to photoreceptor adaptation

As a biological example, we found a striking analogy between the resetting kinetics of the dere-

pression controllers m2, m4, m6, and m8 and the responses in vertebrate photoreceptors. In

mammals and other animals photoadaptation occurs mainly in the retina, which consists of

five basic classes of neurons: photoreceptors, bipolar cells, ganglion cells, horizontal cells, and

amacrine cells, where each of them come in different subclasses. These neurons are arranged

in layers and form a complex interaction network [21, 32, 33]. Our focus here is on the light-

sensitive photoreceptor cells, which according to their physical shape are characterized as rods

and cones, and differ in their sensitivity to light. Rods and cones occur in all retinas with the

exception of the skate [33].

Fig 12 shows voltage responses of a rod cell to 10 ms light flashes at different background

light intensities [34]. The experiments show that increased backgrounds lead to diminished

Fig 12. Light adaptation in a Macaque monkey’s rod cell. 10 ms light flashes were applied to different light background intensities. Background

intensities (in photons μm−2s−1) were: 0, 0; 1, 3.1; 2, 12; 3, 41; 4, 84; 5, 162. Redrawn after Fig 2A from Ref [34].

https://doi.org/10.1371/journal.pone.0281490.g012
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response excursions, while the resetting to the initial steady state levels were found to be faster.

This behavior, a decreased sensitivity but accelerated response kinetics at increased back-

ground light intensities is considered typical for the light adaptation in vertebrate rod or cone

cells [35]. When corresponding photocurrents are studied as a function of different back-

ground light levels the observed resetting behavior is close to that found for m8 or m6 control-

lers (for experimental data see Fig 1 in Ref [36]).

In photoreceptor cells cytosolic calcium has been found to be the major regulator in verte-

brate light adaptation [37]. There, calcium takes part in a derepressing feedback loop analo-

gous as E in m2. Fig 13 shows a model with its main regulatory elements. In comparison

with extracellular Ca2+ concentrations, which are in the 10–100 mM range, cytosolic (internal)

Ca2+ levels (Ca2þ

i ) are considerably lower, around in the 100 nM range since too high cytosolic

Ca2þ

i concentrations are toxic and may lead to apoptosis. While Ca2+ is a versatile cellular sig-

nal its levels are also tightly regulated [38]. In photoreceptor cells dark Ca2þ

i levels are in the

Fig 13. Model with the main regulatory elements of vertebrate photoreceptor adaptation. Light leads to the removal of cyclic guanosine

monophosphate (cGMP) by phosphodiesterases (PDE), via transducin and the activation of PDE by internal Ca2+ (Ca2þ

i ). In the figure this path is split

into two components, one background with rate constant k4 (outlined in blue), and a perturbation on top of the background (rate constant k2, outlined

in red). cGMP is formed by guanylate cyclase (GC). cGMP’s constitutive non-light induced hydrolysis is described by a first-order reaction with rate

constant k9. GC is inhibited/derepressed by Ca2þ

i to keep cGMP under homeostatic control. cGMP activates cyclic nucleotide-gated (CNG) channels,

which leads to the inflow of Ca2+ into the cell, while high Ca2þ

i levels inhibit CNG channels. Calcium is removed from the cell by potassium-dependent

sodium-calcium exchangers (NCKX). Rate equations and used rate parameter values are described in the main text. Grayed reaction arrows indicate

reactions which are not included in the model.

https://doi.org/10.1371/journal.pone.0281490.g013
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range around 300–500 nM [37], which is sufficient to regulate photo-transduction, but at the

same time low enough to avoid cytotoxic Ca2+ effects.

In vertebrate photoreceptor cells Ca2þ

i is part of a negative feedback regulation of cyclic gua-

nosine monophosphate (cGMP), where cGMP activates the inflow of Ca2+ into the cytosol by

cyclic nucleotide-gated (CNG) channels [37–39]. Analogous to a m2 controller, Ca2þ

i on its

side inhibits guanylate cyclase (GC), which synthesizes cGMP. In addition, Ca2+ inhibits its

inflow by CNG channels and takes part, analogous to a m5 controller, in the light-dependent

removal of cGMP (with rate constants k2 and k4) by activating phosphodiesterases (PDE).

Potassium-dependent sodium-calcium exchangers (NCKX) pump Ca2þ

i out of the cell. In the

model the removal of Ca2þ

i by NCKX is formulated, for the sake of simplicity, as a bimolecular

second-order reaction, where K+ is removed together with Ca2þ

i , while keeping NCKX con-

stant. For certain feedback combinations the bimolecular (or a zero-order) removal of Ca2þ

i

and K+ by NCKX will lead to robust perfect adaptation of cGMP, which is discussed below. k1

represents an inflow perturbation with respect to cGMP. We have mostly ignored k1, except in

section “Roles of the feedback loops”, where k1 is used to test the homeostatic behaviors of the

individual feedback loops.

The rate equations of the model are:

_cGMP ¼ k1 þ k3

kr
8

kr
8
þ ðCa2þ

i Þ
r

� �

� k9 � cGMP � ðk2 þ k4Þ � ðcGMPÞ �
ðCa2þ

i Þ
p

kp
12 þ ðCa

2þ

i Þ
p

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
light induced

ð20Þ

_Ca2þ

i ¼ k5 �
ðcGMPÞn

kn
11
þ ðcGMPÞn

a �
km

10

km
10
þ ðCa2þ

i Þ
m þ b

0

� �

� k7ðCa
2þ

i ÞðK
þÞ þ vleak ð21Þ

_Kþ ¼ k6 � k7ðCa
2þ

i ÞðK
þÞ ð22Þ

Estimation of model parameters. Fig 14 gives an overview of the experimental data used

to estimate some of the model parameters. Panel a shows the results by Koutalos et al. (Fig 3

in [40]; see also Fig 3 in [41]), who studied the influence of Ca2+ on the light-stimulated PDE

activity in salamander rods. The experimental data were described by the function

f ðCa2þ

i Þ ¼
Vmax � ðCa

2þ

i Þ
p

kp
12 þ ðCa

2þ

i Þ
p ð23Þ

with Vmax=(100.01±2.53)%, p=0.894±0.0534, and k12=(622.612±55.01)nM.

Also using salamander rods, Fig 14b shows the inhibition of GC activity by Ca2+ when

using 0.5 mM GTP (Fig 13 in [42]). The function

gðCa2þ

i Þ ¼
kr

8

kr
8
þ ðCa2þ

i Þ
r ð24Þ

was fitted to the data with k8=(57.49±2.53)nM and r=1.65±0.12.

Using bovine retinae, Hsu and Molday [39] determined the influence of cGMP and Ca2+

on CNG channel activity in the presence of calmodulin (Fig 14, panels c and d, respectively).
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Fig 14. Normalized experimental data used to extract parameter values. (a) Light-induced PDE activity as a function of Ca2+ concentration [40, 41];

(b) Inhibition of GC activity by Ca2+ [42]; (c) CNG channel activity as a function of cGMP concentration [39]; (d) CNG channel activity as a function of

Ca2+ concentration [39].

https://doi.org/10.1371/journal.pone.0281490.g014
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For CNG channel activation by cGMP (panel c) the following trial function

hðcGMPÞ ¼
ðcGMPÞn

kn
11
þ ðcGMPÞn

ð25Þ

described the experimental data with k11=(32.81±0.39)μM and n=4.14±0.23 quite well. For the

inhibition of the CNG channel by Ca2+ (panel d) we fitted the function

kða; b;Ca2þ

i Þ ¼ 100 � a �
km

10

km
10
þ ðCa2þ

i Þ
m þ b ð26Þ

to the experimental data obtaining α=0.6067±0.0295, k10=(63.57±4.44)nM, m=2.50±0.38, and

β=40.07±1.29. In Eq 21 β0 is given by β/100.

Organelles, such as mitochondria and the endoplasmatic reticulum (ER), store calcium

with relative high concentrations (100–800μM). There is evidence that intracellular Ca stores

leak Ca into the cytosol [43–46]. Analyzing the data by Camello et al. [45] and Luik et al. [46],

we observed (S4 Text and [47]) that the kinetics of the two recorded leaks were surprisingly

different. While Camello et al. [45] found practically zero-order kinetics with respect to ER

calcium and leak rates at around 0.25 μM/s, the data by Luik et al. [46] show clean first-order
kinetics with respect to ER calcium. Here Ca-dependent leak velocities between 5.5 and 0.36

μM/s were observed (S4 Text). Also the results by Oldershaw et al. [43] and Missiaen et al. [44]

indicate single or dual first-order kinetics in the decrease of store Ca. We wondered how cal-

cium leaks may influence the photoadaptation of the model. As we will show in the section

“Roles of the feedback loops” calcium leaks will have an influence on the steady state level of

cGMP. In particular, when the leak rate vleak becomes larger than the K+ inflow rate k6 in the

NCKX-based calcium pump, then uncontrolled growth in Ca2þ

i may occur (S4 Text).

cGMP hydrolysis in darkness (rate constant k9) is described as a first-order reaction with

respect to cGMP. The value of k9 is taken from the modeling work by Nikonov et al. (Table IV

in [48]) with k9=1.0s−1. The rates for the light-induced removal of cGMP (described by k2 and

k4) are variable (light-dependent) parameters.

Parameter k3 represents the maximum rate of cGMP synthesis at low Ca2þ

i concentrations.

Its value (k3=50 μM/s) has been taken from the work by Nikonov et al. [48].

The extrusion of Ca2þ

i by NCKX is simplified as a second-order process with rate constant

k7, i.e. vextrude ¼ k7 � ðK
þÞ � ðCa2þ

i Þ. Apart from that, we have not considered sodium ion and

potassium ion currents.

It is interesting to note that in the absence of the CNG channel inhibition by Ca2þ

i the

NCKX pump would lead to robust perfect adaptation in cGMP by antithetic feedback [14],

like the zero-order removal of E in the above idealized controllers (see for example, Eq 12).

However, such an antithetic control of cGMP without CNG channel inhibition by Ca2þ

i would

lead to high Ca2þ

i concentrations and thereby to possible apoptosis of photoreceptor cells [49].

The remaining parameters k5, k6, and k7 have been chosen such that cGMP and Ca2þ

i levels

are close to the observed experimental values [35, 37, 50, 51], i.e., using k5=100 μM/s, k6=0.5

μM/s, and k7=2.0 μM−1s−1. While k7 has no influence on the steady state values of cGMP and

Ca2þ

i it has a significant influence on how fast steady state levels are approached after light per-

turbations are applied (S5 Text).

Application of pulse perturbations. In the majority of experiments on rod or cone cells

light perturbations are applied in form of flashes in the millisecond range (see for example

Fig 12). Fig 15 shows the application of 10 ms pulses of light in the model. A k2 pulse from

1! 50 s−1 is applied at time t=1.0 s for different k4 backgrounds. In panel a the graphs are
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scaled such that the steady state levels of cGMP are set to zero and the individual excursions in

cGMP can be compared. As for the above derepression controllers m2, m4, m6 and m8 the

excursion ΔcGMPmax of the controlled variable cGMP decreases with increasing backgrounds

while the speed of resetting to its original steady state increases with increasing backgrounds

(Fig 15a). These changes are considered to be typical for the light adaptation in vertebrate pho-

toreceptors (for example, see Ch. V in [35] and Fig 22–19C in [21]).

Fig 15b shows threshold light pulse (10 ms) perturbations k2 with a ΔcGMP of 0.03 μM as

a function of background light intensity k4. The main graph shows the log-log plot which

resembles the experimental results with rods or cones (see Fig 22–19B in [21]). The inset

shows that the threshold-background relationship is linear in agreement with Weber’s law, at

least for large backgrounds. Panel c shows, on the other hand, that for small backgrounds the

threshold-background relationship follows Stephens’ power law. In fact, replotting the original

experimental data [52] shown in Fig 22–19B of Ref [21], indicates that Stephens’ law describes

best the situation at low backgrounds, while at higher backgrounds the threshold-background

relationship tends towards Weber’s law (S6 Text).

Application of step perturbations. We applied step perturbations in the model to see to

what extent the CNG channel inhibition by calcium affects cGMP homeostasis and avoids

robust perfect adaptation. Fig 16a shows the influence of k21! 50 s−1 steps at different back-

grounds. The steps occur at time t=0.5 s and changes in cGMP are followed for 3 s. We also

measured the maximum excursion of cGMP (DcGMPmax) from its initial steady state level and

the time tmax at which DcGMPmax occurs (see inset).

Fig 15. Application of 10 ms k2 pulses (1! 50 s−1) at different k4 backgrounds. (a) the scaled ΔcGMP levels against time. Colored numbers indicate

the different background levels in s−1. Initial concentrations (in μM): cGMP0=9.04191, Ca2þ

i;0 ¼ 1:25717� 10� 1, Kþ
0
¼ 1:25717 (k4=0 s−1);

cGMP0=8.80039, Ca2þ

i;0 ¼ 9:89550� 10� 2, Kþ
0
¼ 2:52640 (k4=3 s−1); cGMP0=8.36375, Ca2þ

i;0 ¼ 6:80242� 10� 2, Kþ
0
¼ 3:67516 (k4=12 s−1);

cGMP0=7.86039, Ca2þ

i;0 ¼ 3:83237� 10� 2, Kþ
0
¼ 6:52333 (k4=41 s−1); cGMP0=7.67946, Ca2þ

i;0 ¼ 2:34638� 10� 2, Kþ
0
¼ 1:06543� 101 (k4=84 s−1);

cGMP0=7.61322, Ca2þ

i;0 ¼ 1:31981� 10� 2, Kþ
0
¼ 1:89421� 101 (k4=162 s−1); cGMP0=7.59537, Ca2þ

i;0 ¼ 6:58562� 10� 3, Kþ
0
¼ 3:79615� 101 (k4=320

s−1); cGMP0=7.59210, Ca2þ

i;0 ¼ 3:09110� 10� 3, Kþ
0
¼ 8:087735� 101 (k4=640 s−1); cGMP0=7.59160, Ca2þ

i;0 ¼ 1:42894� 10� 3, Kþ
0
¼ 1:74954� 102

(k4=1280 s−1). Panel b shows the threshold perturbation k2, which leads to a ΔcGMP of 0.03 μM as a function of background. The overall curved log-log

plot turns out to be linear and follows Weber’s law (inset) as: threshold perturbation k2 = a�(k4)n + b with a=(0.069±0.001)sn−1, n=1.012±0.002, and b=

(2.73±0.20)s−1. Panel c shows that at low backgrounds the threshold-background relationship follows Stephens’ power law, i.e., threshold perturbation

k2 = a�(k4)n + b with a=(0.175±0.006)sn−1, n=0.800±0.009, and b=(2.72±0.01)s−1. Parameter and rate constant values are as described in the previous

section. See also ‘S1 Programs’ in S1 File.

https://doi.org/10.1371/journal.pone.0281490.g015
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Fig 16. The model’s response towards k21! 50 s−1 steps at different backgrounds k4. (a) Unscaled cGMP concentrations as a function of time. The

steps occur at t=0.5 s. Background k4 values (s−1): 1, 0.0; 2, 2.0; 3, 4.0; 4, 8.0; 5, 16.0; 6, 32.0; 7, 64.0; 8, 128.0; 9, 256.0; 10, 512.0; 11, 1024.0; 12, 2048.0;

13, 4096.0. Initial concentrations (in μM): cGMP0=9.04191, Ca2þ

i;0 ¼ 1:25717, Kþ
0
¼ 1:25717 (k4=0 s−1); cGMP0=8.87243, Ca2þ

i;0 ¼ 1:05733, Kþ
0
¼

2:36445 (k4=2 s−1); cGMP0=8.73490, Ca2þ

i;0 ¼ 9:33822, Kþ
0
¼ 2:67717 (k4=4 s−1); cGMP0=8.52196, Ca2þ

i;0 ¼ 7:79015, Kþ
0
¼ 3:20918 (k4=8 s−1);

cGMP0=8.24168, Ca2þ

i;0 ¼ 6:08968, Kþ
0
¼ 4:10531 (k4=16 s−1); cGMP0=7.95044, Ca2þ

i;0 ¼ 4:40458, Kþ
0
¼ 5:67591 (k4=32 s−1); cGMP0=7.73313,

Ca2þ

i;0 ¼ 2:87344, Kþ
0
¼ 8:70036 (k4=64 s−1); cGMP0=7.62877, Ca2þ

i;0 ¼ 1:64393, Kþ
0
¼ 1:52075� 101 (k4=128 s−1); cGMP0=7.59845, Ca2þ

i;0 ¼ 8:33466,

Kþ
0
¼ 2:99952� 101 (k4=256 s−1); cGMP0=7.59259, Ca2þ

i;0 ¼ 3:95393, Kþ
0
¼ 6:3228� 101 (k4=512 s−1); cGMP0=7.59165, Ca2þ

i;0 ¼ 1:83312, Kþ
0
¼

1:36379� 102 (k4=1024 s−1); cGMP0=7.59154, Ca2þ

i;0 ¼ 8:44877, Kþ
0
¼ 2:95901� 102 (k4=2048 s−1); cGMP0=7.59152, Ca2þ

i;0 ¼ 3:88973, Kþ
0
¼

6:42718� 102 (k4=4096 s−1). Inset: Defining DcGMPmax and tmax. (b) cGMP data as in (a), but scaled relative to their initial steady state concentrations.

(c) and (d) DcGMPmax and tmax values as a function of backgrounds k4, respectively. Parameter and rate constant values are as described in section

“Estimation of model parameters” (see also S1 Programs in S1 File).

https://doi.org/10.1371/journal.pone.0281490.g016
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Fig 16b shows the same data as in (a), but scaled relative to their initial steady states. Due to

the inhibition of CNG channels by calcium (Fig 13) the model does not show robust perfect

adaptation (S5 Text, Fig 17). cGMP steady state levels during the step become significantly

lower than their initial values before the step. This is seen in Fig 16a, where the pre-step steady

state levels decrease as the background k4 increases. Not unexpected we see that with increas-

ing backgrounds the DcGMPmax excursions decrease monotonically (Fig 16c). Surprisingly,

however, we find that tmax first decreases, but then increases again (Fig 16d). Interestingly,

when studying turtle photoreceptors, an increase of tmax at increasing backgrounds has also

been reported by Baylor and Hodgkin [53]. They studied both flashes and steps [54, 55] and

provided several models [56] to explain the lengthening of the peak time tmax.

Fig 17a shows experimental results by Baylor and Hodgkin [53] when long steps of light are

applied to red-sensitive turtle cones. The behavior of our model (panel b) is analogous with a

typical overshooting when the step ends.

Roles of the feedback loops. Outlined in Fig 18 are the three feedback loops in the model.

Feedback loops 1 and 2, both based on the inflow activation of Ca2þ

i by cGMP (outlined in pur-

ple), feed respectively back to cGMP by a Ca2þ

i -based inhibition (derepression) of cGMP syn-

thesis (loop 1, analogous to m2, outlined in red) and by a Ca2þ

i -based activation of cGMP

turnover (loop 2, analogous to m5, outlined in blue). Both loops 1 and 2 promote robust per-

fect cGMP homeostasis by antithetic control and oppose perturbations on cGMP. Feedback 3

(outlined in orange) keeps Ca2þ

i levels low to avoid high and cytotoxic calcium levels inside the

cell.

When feedback loop 3 is absent, for example by low Ca2þ

i levels, the Ca2þ

i -inhibition term

in Eq 21 becomes 1, because

a �
km

10

km
10
þ ðCa2þ

i Þ
m þ b

0

� �
low Ca2þ

i
����! aþ b

0
¼ 1 ð27Þ

The remaining feedbacks 1 and 2 will provide robust perfect adaptation of cGMP, provided

that there are sufficiently high GC and PDE activities to work as compensatory fluxes. This

Fig 17. Experimental and model behaviors when applying step perturbations. (a) Experimental response of a red-sensitive turtle cone to a long step

of light. Redrawn from Ref [53] (Fig 14, trace 2). (b) Model calculation using a k21! 50 s−1 step at time t=100s. After 100 s k2 returned to its original

value. Background k4=0.0 s−1. All other rate parameters are as described in section “Estimation of model parameters”. Initial concentrations:

cGMP = 9.04μM, Ca2þ

i ¼ 125:7nM, K+=2.0μM. See also S1 Programs in S1 File.

https://doi.org/10.1371/journal.pone.0281490.g017
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robust perfect adaptation in cGMP is due to the simultaneous NCKX-based removal of Ca2þ

i

and K+ described by the term k7ðCa
2þ

i ÞðK
þÞ in Eqs 21 and 22. The k7ðCa

2þ

i ÞðK
þÞ transport

term leads to robust antithetic integral control [14]. Instead of using the term k7ðCa
2þ

i ÞðK
þÞ,

one could have explicitly included the NCKX transporter protein, as generally outlined in [16]

for catalyzed antithetic controllers. Anyway, using the k7ðCa
2þ

i ÞðK
þÞ term, the set-point of

cGMP (cGMPset) is calculated by setting Eqs 21 and 22 to zero and solving for cGMP. The

resulting steady state concentration of cGMP becomes cGMP’s set-point:

cGMPset ¼ cGMPss ¼ k11

ffiffiffiffiffiffiffiffiffiffiffi
b

1 � b
n

r

with b ¼
k6 � vleak

k5

ð28Þ

Using the experimentally determined rate parameters (see section “Estimation of model

parameters”) leads to cGMPset = 7.61μM. The two feedback loops 1 and 2 act as an antagonistic
pair as they will defend cGMPset robustly against both inflow and outflow perturbations,

respectively. Fig 19a shows the homeostatic behavior of the loop 1–2 antagonistic feedback

during three different phases where either inflow perturbation k1 or outflow perturbation k2

dominate. Although the antagonistic feedback can deal well with both inflow and outflow

Fig 18. Schematic outline of the feedback loops 1–3 in the model (Fig 13). CNG: cyclic nucleotide-gated; GC:

guanylate cyclase; PDE: phospho-diesterase; NCKX: potassium-dependent sodium-calcium exchangers (without the

sodium part).

https://doi.org/10.1371/journal.pone.0281490.g018
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Fig 19. Influence of the model’s three feedback loops on the homeostatic behavior of cGMP and Ca2þ

i . Perturbation profile in panels

(a)-(d): phase 1: k1=0.0μM/s, k2=1.0s−1, k4=0.0s−1; phase 2: k1=7.0μM/s, k2=0.0s−1, k4=0.0s−1; phase 3: k1=0.0μM/s, k2=7.0s−1, k4=0.0s−1. (a)

Both feedback 1 and 2 are operative. Robust homeostasis of cGMP is observed with cGMPset = 7.61μM. Other rate constants values are as

described in section “Estimation of model parameters”. Initial concentrations: cGMP = 7.612μM, Ca2þ

i ¼ 141:7 nM, K+=1.760μM. (b)

Feedback 2 is only operative. In order to keep cGMP at its set-point k4 needs to be increased to 8.0 μM/s in all three phases (indicated in

the scheme by the blue upright arrow). Initial concentrations: cGMP = 7.612μM, Ca2þ

i ¼ 1:071 mM, K+=2.335μM. (c) Feedback 1 is only

operative. To keep cGMP at its set-point k3 has been increased from 50.0 μM/s to 500.0 μM/s in phase 3 (indicated in the scheme by the red

upright arrow). Initial concentrations: cGMP = 7.612μM, Ca2þ

i ¼ 94:9 nM, K+=2.64μM. (d) All feedback loops are operative with rate

constants as in panel (a). Although perfect adaptation in cGMP is lost both cGMP and Ca2þ

i undergo only small variations when the

perturbations are applied with lowest Ca2þ

i levels. Initial concentrations: cGMP = 9.042μM, Ca2þ

i ¼ 125:7 nM, K+=1.989μM. See S4 Text

how the leak term affects this configuration.

https://doi.org/10.1371/journal.pone.0281490.g019
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perturbations it needs sufficiently large GC and PDE activities, reflected by sufficiently high k2,

k3, and k4 values, in order to provide the necessary compensatory fluxes.

Fig 19b shows the system’s behavior when only feedback loop 2 is operative. To achieve

control by only feedback 2 the condition in Eq 27 needs to hold and the inhibition of GC by

Ca2þ

i has to be abolished by using a high inhibition constant k8. We have used k8=1×109μM

with r = 1.0. When applying the same perturbation profile as in Fig 19a it turned out that the

PDE activity from Fig 19a was not sufficient to keep cGMP homeostasis at cGMPset = 7.61μM.

The reason for this is that the lack of feedback loop 1 causes a higher cGMP and Ca2+ inflow

into the cell. When becoming too high the Ca2+ inflow cannot be absorbed by the constant

Ca2þ

i removal speed k6 of NCKX. In other words, the antithetic zero-order removal kinetics

of Ca2þ

i by NCKX will become too slow and thereby lead to a steady increase (windup) in the

concentration of Ca2þ

i (S5 Text). To avoid this and to keep cGMP robustly at cGMPset =

7.61μM we have in Fig 19b increased the background k4 to 8 μM/s (indicated by the blue

upright arrow). Alternatively, one may increase the constant removal speed k6 of the NCKX

pump, but this will result in a change of cGMPset (see also S6 Text).

Fig 19c shows the system’s behavior when only feedback loop 1 is present. To get only loop

1 operative the condition of Eq 27 is imposted and the activation constant k12 (Fig 13) is set to

zero. To act as a robust inflow controller cGMP homeostasis requires sufficiently high k3 val-

ues. With the perturbation profile from panel (a) k3 needs to be increased in phase 3 by one

order of magnitude to k3=500μ/s (indicated by the red upright arrow in Fig 19c) in order to

avoid cGMP levels below cGMPset = 7.61μM (see also S6 Text).

When all three loops are operative (Fig 19d) the robust perfect adaptation of cGMP is lost

due to the presence of feedback loop 3. However, with respect to the applied perturbations

cGMP levels show only small variations and Ca2þ

i steady state concentrations have their lowest

values. The results in Fig 19 show that the antagonistic feedback between loops 1 and 2 is more

efficient than when loops 1 or 2 are isolated. Although the robust perfect adaptation of cGMP

is lost in the presence of feedback loop 3, the overlayed feedback structure between all three

feedbacks provides a compromise between robust perfect adaptation of cGMP and the need to

avoid high cytotoxic Ca2þ

i levels.

Another aspect of the three feedbacks’ overlay concerns the resetting times at varying/

increasing backgrounds. While a faster resetting with increasing backgrounds has been

described as a typical property of vertebrate photoadaptation (see section V in [35]), in turtle

photoreceptors Baylor et al. [53] found that increasing backgrounds first lead to a decrease in

peak time (analogous to tmax), but further increases of the background eventually lead to an

increase of the peak time (tmax), as qualitatively observed in Fig 16d. The increase of the time

to peak was explained by Baylor et al. [56] by a hypothetical autocatalytic reaction which

removed particles blocking the ionic channels. An additional factor could be a differential

dominance between feedback loops 1 and 2, since loop 1 and loop 2 affect the resetting differ-

ently analogous as described for the m2 (Fig 8) and m5 (S1 Text) controllers.

Fig 20 shows ΔcGMP and tmax as a function of the feedback arrangement. In panel (a) we

have feedback loops 1 and 3 combined, while in panel (b) we have only feedback loop 2. When

testing a 1.0! 50.0 μM/s k2 step for increasing backgrounds both feedback arrangements

show a monotonic decline of ΔcGMP as a function of background k4 (middle panels), but dif-

fer in their tmax responses (bottom panels). While combined feedback loop 1 and 3 show a

monotonic shortening of tmax, in the feedback 2 arrangement tmax first decreases, but then

increases again as background k4 increases, as found experimentally by Baylor et al. [53] and

when all three feedback loops are combined (Fig 16c and 16d). Since the single feedback 2

behavior (Fig 20b) resembles that of all three feedbacks combined (Fig 19c and 19d) we
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conclude that in our model with the used parameter values feedback 2 is dominating over the

two other feedbacks with respect to the system’s resetting behavior. In organisms where the

photoadaptation shows faster resettings (decreasing or constant tmax) with increasing back-

grounds, as found in Ref. [34] and highlighted in the review by Fain et al. [35], the feedback

loop 2 may be weakened and loops 1 and 3 may become more dominant. Since the rate param-

eters of our model were taken from different organisms it is possible that these combined

parameters reflect a situation closer to turtles [53] than, for example, to Macaque monkeys

[34].

Fig 20. The model’s resetting behavior for different feedback arrangements when applying a 1.0! 50.0 s−1 step in k2 as a function of

backgrounds k4. (a) Feedback loops 1 and 3 are combined. (b) Feedback 2 only. Used parameter values, rate constants, and definition of ΔcGMP and

tmax are as in Fig 16.

https://doi.org/10.1371/journal.pone.0281490.g020
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Other model approaches. There is an extensive literature in theoretical and computa-

tional approaches to understand various aspects of vertebrate photoadaptation. The

approaches range from phenomenological mathematical descriptions to reaction kinetic

and stochastic model calculations. For an overview we refer to chapter 19 in the book

by Keener and Sneyd [57], to the review by Roberts et al. [58] and to Pan et al. [59].

Although phenomenological models can provide quantitative descriptions and predic-

tions [60], they generally lack knowlegde of the involved chemical processes and their

regulations. Due to this, the need for reaction kinetic descriptions has been emphasized

[59, 61, 62].

Our approach, although primarily kinetic in nature, differs from previous adaptation mod-

els by looking at photoadaptation from a robust homeostatic viewpoint. In this respect we

agree with Billman [63] that homeostatic approaches are still underappreciated and are far too

often ignored as a central organizing principle in physiology.

Conclusion and outlook

Studying perturbations with backgrounds on eight basic feedback loops m1-m8 with integral

control show that these homeostatic controllers divide into two classes dependent on how

the compensatory flux is activated. In the class where the compensatory flux is based on dere-

pression faster resetting with respect to a standard step perturbation is observed when back-

grounds increase. In the other class when compensatory fluxes are based on direct activation

the resetting to the set-point slows down as backgrounds increase. In both cases the maximum

excursion of the controlled variable following the perturbation decrease monotonically as

backgrounds increase. We originally thought that vertebrate photoadaptation would be a nice

example of using sole derepression kinetics in a robust control of cGMP with cellular calcium

as the controller. However, the situations turned out to be more complex with an overlay of

three feedback loops, one based on derepression by Ca2+ on GC (feedback 1) and one based

on Ca2+-based light activation of PDE (feedback 2). The antagonistic pair of combined feed-

backs 1 and 2 show more improved properties than each of the individual controllers alone. In

addition, there is a third Ca2+-controlling feedback (feedback 3) which apparently avoids high

cytotoxic Ca2+ levels. This combination of three feedback loops indicates that robust perfect

adaptation of cGMP by feedback loops 1 and 2 is not by itself an evolutionary target, but that a

compromise between these three controllers has developed by keeping both cGMP and cyto-

solic Ca2+ levels at narrow limits, but not by robust perfect adaptation mechanisms. Further-

more, there is also evidence that photoadaptation with increasing backgrounds may both

accelerate or slow down the resetting kinetics dependent on the dominance of feedback 1 or

feedback 2.

The findings that controllers m1-m8 react so differently on perturbations with respect to

backgrounds may be of importance also in other physiological systems. For example, blood

sugar levels are controlled by two major feedback loops involving insulin and glucagon. Since

glucose control by insulin is based by an activation of beta cells via glucose (see Supporting

Material in Ref. [11]), constantly high glucose levels (“glucose overload”) [64, 65], for example,

may lead to a slower resetting of the insulin-based control loop in comparison with more

rapid anticipated adaptations at lower glucose levels. Such a slowing-down response may be

one of the causes that could participate in the mechanisms leading to insulin resistance and

early diabetes. To what extent these aspects of background perturbations in homeostatic sys-

tems apply to the development of diabetes or have implications in other homeostatic systems

needs certainly further investigations.
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Supporting information

S1 File. Documentation. (part 1). A zip-file with python scripts describing the results for

motifs m1 (Fig 4a), m7 (Fig 6a), m2 (Fig 8a), m8 (Fig 11a), m3 and m5 (S1 Text, Figs S2a and

S4a), m4 (S2 Text, Fig S2), and m6 (S2 Text, Fig S4a). (part 2). A zip-file with python scripts

describing the results for Figs 15, 16a, 16b, 17b and 19.

(ZIP)

S1 Text. Response kinetics of controllers m3 and m5. Applied step perturbations lead to

slower resetting kinetics for increasing backgrounds.

(ZIP)

S2 Text. Response kinetics of controllers m4 and m6. Applied step perturbations lead to

faster resetting kinetics for increasing backgrounds.

(ZIP)

S3 Text. Response kinetics controller m2 with antithetic integral control. The behavior is

dynamically identical to that of m2 with zero-order kinetics.

(ZIP)

S4 Text. Influence of Ca leak kinetics on photoadaptation. A comparison how experimen-

tally observed zero-order and first-order Ca leak kinetics affect photoadaptation in the model

and when homeostatic breakdown occurs.

(ZIP)

S5 Text. Influence of k5, k6, and k7 on the model’s photoadaptation. By using a k1-k2 pertur-

bation profile influences of k5, k6, and k7 on the model’s resetting kinetics are shown.

(ZIP)

S6 Text. Experimental light adaptation data. Replots of experimental data show, as indicated

by model calculations, that Stephens’ law is followed at low backgrounds, while at higher back-

grounds the response tends towards Weber’s law.

(ZIP)
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Abstract

When in an integral feedback controller a step perturbation is applied at a constant
background, the controlled variable (described here as A) will in general respond with
decreased response amplitudes �A as backgrounds increase. The controller variable E
will at the same time provide the necessary compensatory flux to move A back to its
set-point. A typical example of decreased response amplitudes at increased
backgrounds is found in retinal light adaptation. Due to remarks in the literature that
retinal light adaptation would also involve a compensation of backgrounds we became
interested in conditions how background compensation could occur. In this paper we
describe how background influences can be robustly eliminated. When such a
background compensation is active, oscillatory controllers will respond to a defined
perturbation with always the same (damped or undamped) frequency profile, or in the
non-oscillatory case, with the same response amplitude �A, irrespective of the
background level. To achieve background compensation we found that two conditions
need to apply: (i) an additional set of integral controllers (here described as I1 and I2)
have to be employed to keep the manipulated variable E at a defined set-point, and
(ii), I1 and I2 need to feed back to the A-E signaling axis directly through the
controlled variable A. In analogy to a similar feedback applied in quantum control
theory, we term these feedback conditions as ’coherent feedback’. When analyzing
retinal light adaptations in more detail, we find no evidence in the presence of
background compensation mechanisms. Although robust background compensation, as
described theoretically here, appears to be an interesting regulatory property, relevant
biological or biochemical examples still need to be identified.

Introduction 1

Homeostatic mechanisms play important roles in physiology and in the adaptation of 2

organisms to their environments [1]. For example in the vertebrate retina, 3

photoreceptor cells contain negative feedback loops which participate in light 4

adaptation [2–5]. A hallmark of vertebrate photoadaptation is that resetting kinetics 5

accelerate and response amplitudes decrease as backgrounds increase [5, 6]. This 6

behavior is seen in Fig 1 for a macaque monkey’s rod cell response towards a single 7

light flash applied at di↵erent background light levels. 8
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Fig 1. Light adaptation in a Macaque monkey’s rod cell. 10 ms light flashes were
applied to di↵erent light background intensities. Background intensities (in photons
µm�2s�1) were: 0, 0; 1, 3.1; 2, 12; 3, 41; 4, 84; 5, 162. The influence of the
background on the response amplitude and the speed of resetting is clearly seen. V0 is
the response amplitude for background 0. Redrawn and modified after Fig 2A from
Ref [7]. For a theoretical description of this behavior see Ref [5] and references therein.

Another retinal light adaptation example is shown in Fig 2. Here, the mean 9

maximum firing rates of a cat ganglion cell was measured with respect to di↵erent step 10

light perturbations (test spot luminance) which are applied at six di↵erent 11

backgrounds [8]. 12

Fig 2. Light adaptation of an on-center ganglion cell in the cat retina (redrawn from
Fig 8, Ref [8]). Averaged maximum ganglion cell frequencies are shown as a function
of six di↵erent background illuminations in response to applied light step
perturbations (test spot luminance). The three colored curves show the averaged
maximum frequencies at background illuminations 10�3, 10�2 and 10�1 cd/m2. A test
spot luminance (perturbation) of 9⇥10�2 cd/m2 is indicated as the vertical dashed
black line. The colored intersection points and vertical dashed lines indicate that for
this perturbation strength the maximum mean response frequency decreases with
increasing background illumination.

In Kandel et al. [2] it was commented (see page 540, section Light Adaptation Is 13

Apparent in Retinal Processing and Visual Perception) that Fig 2 would indicate a 14

compensation of the background illumination and thereby causing the same response 15

due to a lateral shifting along the perturbation (test spot luminance) axis. Based on 16

this comment we became interested in mechanisms which would allow to compensate 17

for background levels and thereby give the same response for a given perturbation 18

irrespective of the applied background. 19

In this paper we present results on how such a robust background compensation 20

can be achieved in both oscillatory and non-oscillatory homeostats. 21

The paper is structured in the following way: We first show that a feedback type 22

similar to what quantum physicists have termed ’coherent feedback’ [9, 10] is required 23

to obtain background compensation in both oscillatory and non-oscillatory 24

homeostats. For oscillatory homeostats we show that coherent feedback control leads 25

to, besides background compensation, also to frequency control. In fact, robust 26

frequency control was previously observed by us [11], but without having recognized 27

the background-compensating property of coherent feedback. For non-oscillatory 28

controllers or homeostats with damped oscillations, coherent feedback leads to 29

conserved response profiles in the controlled variables, independent of an applied 30

background. We then look at the situation of a ’incoherent feedback’, where 31

background compensation is lost, but oscillatory homeostats may still show robust 32

frequency control. Finally we analyze photoreceptor responses in terms of a 33

Michaelis-Menten model [3] and show that parallel lines as in Fig 2 or as log-log plots 34

do not require the postulation of background compensation or additional adaptation 35

mechanisms. 36

Materials and methods 37

Computations were performed with the Fortran subroutine LSODE [12], which can be 38

downloaded from https://computing.llnl.gov/projects/odepack. Graphical output was 39
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generated with gnuplot (www.gnuplot.info) and annotated with Adobe Illustrator 40

(https://www.adobe.com/). 41

To make notations simpler, concentrations of compounds are denoted by compound 42

names without square brackets. Time derivatives are generally indicated by the ’dot’ 43

notation. Rate parameters are in arbitrary units (au) and are presented as ki’s 44

(i=1, 2, 3, . . . ) irrespective of their kinetic nature, i.e. whether they represent turnover 45

numbers, Michaelis constants, or inhibition/activation constants. To allow readers to 46

redo calculations, the supporting information S1 Programs contains python scripts for 47

a set of selected results. 48

Usage of integral control 49

In the calculations robust homeostasis of concentrations and frequencies is achieved by 50

implementing integral control into the negative feedbacks, a concept which comes from 51

control engineering [13–16], and has been indicated to occur in and being applied to 52

biological systems [17–21]. Briefly, in integral control the di↵erence (also termed error) 53

between the actual concentration of a controlled variable A and its set-point is 54

integrated in time. The integrated error can then be used to compensate precisely for 55

step-wise perturbations [15, 16]. Fig 3a shows the control scheme of integral control. 56

An example is given in panel b using ’motif 2’, one of eight basic feedback loops [22]. 57

Panel c shows how zero-order removal of controller species E leads to integral control 58

with a defined set-point of the controlled variable A. 59

Fig 3. Principle of integral control. Panel a: The controlled variable A (outlined in
blue) is compared with its set-point and the di↵erence/error (Aset�A) is integrated.
This leads to the integrated error E, which is able to compensate precisely for
step-wise perturbations [15]. Panel b: Basic negative feedback loop (motif 2, [22]).
Solid lines are chemical reactions, while dashed lines represent activations (plus sign)
and inhibitions (negative sign). Panel c: Rate equation of controller E. The zero-order
removal of E introduces integral control. The set-point for A is given as k5/k4, and
the concentration of E becomes proportional to the integrated error. For details, see
for example Ref [22].

In the below calculations we have used zero-order kinetics to implement integral 60

control [17, 22–24]. However, it should be mentioned that there are other kinetics 61

conditions to achieve integral control, such as antithetic control [21, 25, 26], which 62

generally will show identical resetting behaviors as in zero-order control [5, 26]. Also, 63

autocatalytic reactions can be used to obtain integral control [27–29], which will 64

generally show much faster resetting kinetics in comparison when integral control is 65

introduced by zero-order kinetics [30, 31]. 66

Results and discussion 67

Background compensation in negative feedback oscillators by 68

coherent feedback 69

In this section we describe feedback conditions which can achieve background 70

compensation in oscillatory homeostats. The type of oscillators we here focus on show 71

frequency homeostasis due to a two-layered negative feedback structure. The center 72

negative feedback layer ensures that the time average value of a controlled variable A, 73

defined by Eq 1, is kept robustly at a certain set-point by a controller species E via 74
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integral control. 75

<A>(t) =
1

t

Z t

0
A(t0)·dt0 (1)

A second ’outer’ negative feedback layer keeps on its side the time average value of E, 76

i.e. <E> (Eq 2), under robust homeostatic control by two additional controller 77

variables I1 and I2. 78

<E>(t) =
1

t

Z t

0
E(t0)·dt0 (2)

We previously showed [11] that these two-layered negative feedback structures enable 79

robust frequency homeostasis. Here we now report the additional finding that when 80

the I1 and I2 controllers feed back directly via A to control E, the oscillator has the 81

capability to neutralize backgrounds. In analogy to a closely related feedback 82

definition employed in quantum control theory and optics we call this type of feedback 83

for ’coherent feedback’ (see [9, 10] and references therein). 84

Background compensation in a motif 2 based oscillatory homeostat 85

Fig 4a shows an example of a frequency-compensated oscillator, but now with the 86

novel finding that it can also compensate for di↵erent but constant backgrounds. 87

Fig 4. Frequency-compensated oscillator with background compensation by coherent
feedback. Panel a: Reaction system based on derepression motif 2 (m2) [22] in the
inner A-e-E-A negative feedback. Figs S12-S14 in the supporting information of
Ref [11] describe some properties of this oscillator, but without having recognized at
that time the ability to robustly compensate for backgrounds. Solid arrows indicate
chemical reactions, while dashed lines show activations (plus signs) and one inhibition
(minus sign). Panel b: Flow scheme indicating the additional control of E via A by
controllers I1 and I2.

The center oscillator in Fig 4a is given by the A-e-E-A feedback loop based on 88

derepression motif 2 [22], where E keeps <A> under homeostatic control (see rate 89

equations and definitions of set-points below). Oscillations occur, because the 90

removals of A and E are zero-order with respect to A and E and thereby construct a 91

quasi-conservative oscillator. The intermediate e has been included to obtain 92

limit-cycle oscillations [11]. I1 and I2 are controller species, which keep <E> under 93

homeostatic control. It is the control of <E> by I1 and I2, which allows for the 94

frequency homeostasis of the oscillator [11]. Their A-coherent feedback directly to A 95

allows for robust background compensation. Since the central A-e-E-A negative 96

feedback is an inflow controller it principally can only compensate for outflow 97

perturbations [22]. The outflow perturbation considered here splits into two 98

components: a constant (zero-order) background with rate constant k10 (Fig 4a 99

outlined in blue) and a (zero-order) perturbation part where rate constant k2 100

undergoes a step-wise change (in Fig 4a outlined in red). Zero-order kinetics with 101

respect to A are achieved by small k8 and k17 values, i.e. A/(k8+A) ⇡ 1 and 102

A/(k17+A) ⇡ 1. Fig 4b shows the flow scheme and the control of E by I1 and I2 via 103

the A-coherent part of the controller. 104

The rate equations are: 105

Ȧ = kg3·I2 +
k3·k5
k5+E

� kg·A·I1
k17+A

� k2·A
k8+A| {z }

perturbation

� k10·A
k8+A| {z }

background

(3)
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ė = k4·A� k9·e (4)

Ė = k9·e�
k6·E
k7+E

(5)

İ1 = k11·E � k12·I1
k13+I1

(6)

İ2 = k14 �
✓

k15·I2
k16+I2

◆
·E (7)

The set-point of <A> (Aset) by controller E can be calculated from the steady state 106

condition of the time averages: 107

k4·<Ass> = k9·<ess> = k6 ·
✓

Ess

k7+Ess

◆

| {z }
⇡ 1 (zero�order)

) <Ass>=Aset=
k6
k4

(8)

The zero-order condition with respect to E in Eq 8 ensures a robust perfect 108

adaptation of <Ass> to Aset when the system oscillates, or of A to Aset in case the 109

feedback loop is non-oscillatory [11]. Since the control of A by E is an inflow controller 110

based on derepression of the flux k3·k5/(k5+E) the controller is active whenever <A> 111

is below Aset. 112

E is controlled by I1 and I2. They act as respectively outflow or inflow 113

controllers [22] with respect to <E> (if oscillatory) or E (if non-oscillatory). Also here 114

zero-order removals of both I1 and I2 ensure robust set-points. For controller I1 the 115

steady state condition gives: 116

k11·<Ess> = k12 ·
✓

I1,ss
k13+I1,ss

◆

| {z }
⇡ 1 (zero�order)

) <Ess>=EI1
set=

k12
k11

(9)

The I1 outflow controller becomes active whenever <E> is higher than EI1
set. 117

The set-point for the I2 inflow controller is determined by the steady state 118

condition: 119

k14 = k15·<Ess>

✓
I2,ss

k16+I2,ss

◆

| {z }
⇡ 1 (zero�order)

) <Ess>=EI2
set=

k14
k15

(10)

The I2 controller becomes active whenever <E> is lower than EI2
set. It should be 120

noted that the values of the inflow/outflow set-points EI1
set and EI2

set need to follow 121

certain rules to guarantee that inflow and outflow controllers cooperate. In this case 122

EI2
set should be lower than EI1

set, otherwise I1 and I2 will work against each other and 123

windup will occur. For a discussion about windup in combined controllers, see Ref [22]. 124

In the following we show how the above oscillator behaves in presence of a 125

step-wise perturbation at di↵erent but constant backgrounds. 126

Fig 5 shows the oscillator’s behavior for a step-wise perturbation in k2 from 1.0 127

(phase 1) to 10.0 (phase 2) at a background k10=0.0. The time of change in k2 is 128

indicated in each panel by a vertical arrow. Panel a shows the oscillations in A 129

together with its average <A> (Eq 1), while panel b shows E and <E> (Eq 2). Panel 130

c shows the changes in I1 and I2, and panel d shows the frequency (inverse of the 131

period length). The resetting of the frequency to its pre-perturbation value is clearly 132

seen. If I1 and I2 would not be present, <A> would be kept at Aset=2.0 by a reduced 133
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(derepressed) E as seen in panel b at 100 time units. However, since <E> is also 134

controlled by I1 and I2, i.e. between 5.0 (EI1
set=5.0) and 4.99 (EI2

set=4.99), I1 and I2 135

take over both for the control of <A> and of <E>. 136

Fig 5. Frequency compensation of feedback scheme in Fig 4a for a step-wise change
in k2 from 1.0 to 10.0 at a background of k10=0.0. Vertical arrows indicate the change
in k2. Other rate constants: k3=100.0, k4=1.0, k5=0.1, k6=2.0,
k7=k8=k13=k16=k17=1⇥10�6, k9=20.0, k11=1.0, k12=5.0, k14=4.99, k15=1.0, and
kg=kg3=1⇥10�2. Initial concentrations: A0=0.3780, E0=2.4784, e0=1.5993⇥10�2,
I1,0=4.5727⇥102, I2,0=2.9817⇥102 (see S1 Programs for python script).

Fig 6 shows the same perturbation in k2 as in Fig 5 but with a background of 137

k10=2048.0. The increased removal of A by the background is compensated by an 138

increase of I2 and a decrease of I1, which keep <A> and <E> at their respective 139

set-points. The maximum frequency, which occurs directly after the k2 step is not 140

a↵ected. In other words, the sensitivity of the oscillator with respect to k2-step 141

perturbations is compensated by I1 and I2 and is independent of the background k10. 142

Fig 6. Frequency compensation of feedback scheme in Fig 4a for a step-wise change in
k2 from 1.0 to 10.0 at a background of k10=2048.0. Vertical arrows indicate the change
in k2. Other rate constants as in Fig 5. Initial concentrations: A0=2.1377, E0=7.6720,
e0=1.0996⇥10�1, I1,0=3.4304, I2,0=2.0465⇥105 (see S1 Programs for python script).

Fig 7 shows how the maximum frequency depends on k2 steps at di↵erent but 143

constant backgrounds k10. The parallel lines indicate that the maximum frequency 144

responses are independent of the background (”background compensation”). 145

Fig 7. Background frequency compensation in the oscillator of Fig 4. The maximum
frequency (see Fig 5d or Fig 6d) is plotted as a function of kph22 +k10, where kph22 is the
k2 value during phase 2. The maximum frequency is determined for di↵erent step-wise
k2 changes, i.e. for 1.0!2.0, 1.0!3.0,..., 1.0!9.0, up to 1.0!10.0, which occur at
time t=100 at di↵erent but constant k10 backgrounds (bgs). Calculations have been
performed analogous to Fig 5 and Fig 6. The k10 background values are 0, 1, 2, 4, up
to 2048 (indicated in the figure). Other rate constants as in Fig 5. Initial
concentrations: bgs 0-128, as in Fig 5; bg 256, A0=0.9866, E0=7.3508,
e0=5.2447⇥10�2, I1,0=5.8243, I2,0=2.5447⇥104; bg 512, A0=8.3872⇥10�4,
E0=4.8793, e0=3.9572⇥10�5, I1,0=7.6544, I2,0=5.1046⇥104; bg 1024, A0=1.7657,
E0=7.6866, e0=9.1430⇥10�2, I1,0=4.2379, I2,0=1.0225⇥105; bg 2048, as in Fig 6.

Background compensation in a motif 8 (m8) based oscillatory homeostat 146

To provide an additional example of a frequency-compensated negative feedback 147

oscillator with background compensation we use a m8 outflow control motif [22] for 148

the center feedback. In this motif, A the controlled variable, inhibits the generation of 149

the controller E. E on its side inhibits the removal of A. The outer controllers, I1 and 150

I2, feed directly back to A. As for the m2 controller, oscillations in the central m8 151

oscillator are facilitated by removing A and E by zero-order processes. The scheme of 152

this oscillator is shown in Fig 8. The rate equations are (’pert’ stands for perturbation 153

and ’bg’ for background): 154

Ȧ = k1|{z}
pert

+ k3|{z}
bg

�
✓

kg2·A
k18+A

◆
·I2 + kg1·I1 �

✓
k4·A
k5+A

◆
·
✓

k9
k9+E

◆
(11)
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ė =
k6·k10
k10+A

� k11·e (12)

Ė = k11·e�
k7·E
k8+E

(13)

İ1 = k12·E � k13·I1
k14+I1

(14)

İ2 = k15 �
✓

k16·I2
k17+I2

◆
·E (15)

The inflow to A is divided into a step-wise perturbative component k1 (indicated in 155

Eq 11 by ’pert’ and outlined in red in Fig 8) and a background k3 (indicated in Eq 11 156

by ’bg’ and outlined in blue in Fig 8). All other in- and outflows to and from A are 157

compensatory fluxes. 158

Fig 8. Frequency-compensated oscillator with background compensation by coherent
feedback based on derepression motif m8 in the inner A-e-E-A negative feedback.
Solid arrows indicate chemical reactions, while dashed lines show activations (plus
signs) and inhibitions (minus sign).

As for the m2 oscillator above, we can calculate the set-points for <E> by I1 and 159

I2 by setting Eqs 14 and 15 to zero and assume that I1 and I2 are removed by 160

zero-order reactions, i.e.: 161

EI1
set=

k13
k12

; EI2
set=

k15
k16

(16)

Unfortunately, for this scheme the oscillatory Aset cannot be calculated analytically. 162

The closest analytical expression we can obtain is by setting Eqs 12 and 13 to zero, 163

eliminating the k11·e term, and then calculating the time average of 1/(k10+A): 164

k6·k10
k10+A

= k11·e = k7 ·
E

k8+E| {z }
⇡ 1

)
⌧

1

k10+A

�
(t) =

1

t

Z t

0

dt0

k10+A(t0)
large t����! k7

k6·k10
(17)

While calculations easily verify the right-hand side of Eq 17, <A> needs to be 165

calculated numerically. 166

Fig 9. Frequency compensation/homeostasis in the oscillator described in Fig 8. In
both panels a step-wise perturbation in k1 from 1.0 (phase 1) to 100.0 (phase 2) is
applied (the step is indicated by the vertical arrows on top of the plots). In panel a, a
constant background of k3=0.0 is applied (at both phases 1 and 2), while in panel b
the background is 1024.0. Other rate constant values are: k4=1⇥104,
k5=k8=k14=k17=k18=1⇥10�6, k6=1⇥103, k7=50.0, k9=0.1, k11=1.0, k12=5.0,
k13=50.00, k15=50.0, k16=1.0 and kg1=kg2=1⇥10�2. Initial concentrations (k3=0.0):
A0=3.3568⇥102, E0=2.6209⇥101, e0=7.3942, I1,0=2.4840⇥104, I2,0=1.2768⇥104.
Initial concentrations (k3=1024.0): A0=3.6188, E0=1.8696⇥101, e0=1.7115⇥102,
I1,0=4.6869, I2,0=9.0420⇥104. Two python scripts, which in addition show the
variations of A, E, I1, and I2, are included in S1 Programs.

Fig 9 shows that the oscillator described in Fig 8 shows frequency homeostasis at 167

di↵erent but constant k3 backgrounds. In panel a the background is k3=0.0, while in 168

panel b we have k3=1024.0. In both cases the maximum frequency for a k1 step of 169
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1.0!100.0 is the same, indicating that the maximum frequency is background 170

compensated. 171

Fig 10 shows maximum frequencies for di↵erent k1 steps and k3 backgrounds. 172

There, di↵erent but constant k3 backgrounds are applied with values 0, 2, 4, 8, 16, 32, 173

64, 128, 256, 512, and 1024. Step perturbations in k1 are applied starting with a 1.0 174

(phase 1) to 10.0 (phase 2) step and ends with a 1.0 (phase 1) to 500.0 (phase 2) step 175

by successively increasing the k1 values in phase 2 by 10.0. As the parallel lines in 176

Fig 10 show, once the oscillator has reached steady state for a certain background, the 177

maximum frequencies, although dependent on the k1 step become independent of the 178

background k3. 179

Fig 10. Background (bg) frequency compensation in the oscillator of Fig 8. The
maximum frequency (see Fig 9) is plotted as a function of the sum of kph21 and

background k3, where kph21 is the k1 value in phase 2. In analogy with the calculations
in Fig 5 and Fig 6 the maximum frequency is determined for di↵erent step-wise k1
changes, i.e. for 1.0!10.0, 1.0!20.0,..., 1.0!30.0, up to 1.0!500.0, which occur at
time t=100 at di↵erent but constant k3 backgrounds (bgs). The k3 background values
are 0, 2, 4, up to 1024 (indicated in the figure). Other rate constants as in Fig 9.
Initial concentrations: bg 0: as in Fig 9a; bg 2: A0=3.4008⇥102, E0=2.3906⇥101,
e0=7.0224, I1,0=2.4739⇥104, I2,0=1.2869⇥104; bg 4: A0=3.4461⇥102,
E0=2.1393⇥101, e0=6.6417, I1,0=2.4637⇥104, I2,0=1.2971⇥104; bg 8:
A0=4.8073⇥102, E0=6.0165⇥101, e0=1.0914⇥102, I1,0=2.4401⇥104, I2,0=1.3207⇥104;
bg 16: A0=4.3570, E0=1.9953⇥101, e0=1.6964⇥102, I1,0=2.4005⇥104,
I2,0=1.3603⇥104; bg 32: A0=3.9151⇥101, E0=5.4663⇥101, e0=1.1875⇥102,
I1,0=2.3201⇥104, I2,0=1.4407⇥104; bg 64: A0=3.0270⇥102, E0=4.1000⇥101,
e0=1.0456⇥101, I1,0=2.1646⇥104, I2,0=1.5962⇥104; bg 128: A0=3.2021⇥102,
E0=3.3534⇥101, e0=8.7470, I1,0=1.8443⇥104, I2,0=1.9165⇥104; bg 256:
A0=6.4511⇥101, E0=6.8158⇥101, e0=9.3623⇥101, I1,0=1.2002⇥104, I2,0=2.5606⇥104;
bg 512: A0=2.6297⇥102, E0=5.5584⇥101, e0=1.5294⇥101, I1,0=3.2525⇥103,
I2,0=4.2375⇥104; bg 1024: as in Fig 9b. Panel a shows an overview of the maximum
frequencies up to background 64, while panel b shows a blown-up part indicated in
panel a. Panel c shows the maximum frequencies for backgrounds from 64 up to 1024.

Background compensation in non-oscillatory homeostats 180

In this section we look at background compensation in non-oscillatory homeostats 181

where E is controlled by I1 and I2 via coherent feedback. We show two examples: in 182

the first one the controller’s response after a step perturbation is significantly damped, 183

while in the other example the response shows a larger train of (damped) oscillations. 184

In both cases the response profiles of the controlled variables A and E are preserved, 185

independent of the background. 186

For the first example we use the oscillator scheme from Fig 4a. To go over to a 187

non-oscillatory mode, we change the kinetics for all A-removing reactions from 188

zero-order to first-order kinetics with respect to A. The rate equation of A becomes 189

(compare with Eq 3): 190

Ȧ = k1 + kg3·I2 +
k3·k5
k5+E

� kg·A·I1
k17+A

� k2·A|{z}
perturbation

� k10·A| {z }
background

(18)

while the rate equations for the other components (Eqs 4-7) remain the same. 191

Fig 11. Same scheme as Fig 4a, but to facilitate a non-oscillatory homeostat all
A-removing reactions are changed to first-order kinetics with respect to A.
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Fig 12 gives an overview of the results. In panel a the maximum excursions �A 192

after the step (see inset) are plotted for di↵erent backgrounds k10 as a function of the 193

sum of the phase 2 k2 value and k10. For each background, the nine k2 steps 1!2, 194

1!3, ....,1!9, and 1!10 are applied and �A is determined. The parallel lines 195

indicate robust background compensation, i.e. �A is the same for a certain defined 196

step, independent of the background. Panel b shows the situation for a k2 1! 10 step 197

when background k10=0. In panel c the same step is applied, but the background has 198

been increased to k10=10. Comparing Figs 12b and 12c shows that profiles in both A 199

and E are the same with Aset=2.0 and Eset=100. 200

Fig 12. Background compensation in the non-oscillatory feedback scheme of Fig 11.
Panel a: Each colored curve shows the values of �A for the nine k2 steps: 1!2,
1!3,...,1!10 at k10 background levels: 0, 2, 4,...,8, 10. Inset shows how �A is
defined. kph22 is the value of k2 during phase 2. Panels in b: Time profiles of A, E (left
panel) and I1, I2 (right panel) for a 1!10 k2 step at background k10=0.0. The change
in k2 is applied at time t=500 indicated by the vertical arrow. Panels in c are similar
to the panels in b with the di↵erence that background k10 is 10.0. Other rate
constants: k3=5⇥103, k4=1.0, k5=0.5, k6=2.0, k7=1⇥10�5, k9=2.0, k11=0.1,
k12=10.0, k13=k16=1⇥10�4, k14=1.0, k15=0.01, kg=0.01, kg3=1⇥10�3. Initial
concentrations for panel b: A0=2.0, E0=100.0, e0=1.0, I1,0=2.5684⇥103,
I2,0=2.8492⇥104. Initial concentrations for panel c: A0=2.0, E0=100.0, e0=1.0,
I1,0=1.5734⇥103, I2,0=2.8592⇥104. For python scripts showing the results of panels b
and c, please see Supporting information S1 Programs.

Fig 13 shows another example of coherent feedback. Here we have two inflow 201

controllers E1 and E2, but only E2 is connected to A via I1 and I2 through a coherent 202

feedback. The reason why we looked at two E-controllers was to see whether E2 alone, 203

i.e. without the help of I1 and I2, was able to compensate backgrounds. This, 204

however, turned out not to be the case and I1 and I2 were included to control E2. 205

Fig 13. Coherent feedback loop A-E2-(I1,I2)-A with an additional inflow control of A
by E1.

The rate equations are: 206

Ȧ = kg·I2 � kg3·A·I1 � k2·A� k10·A+ k9·a+ k11·E2 (19)

ȧ =
k3·k5
k5+E1

� k9·a (20)

Ė1 = k4·A� k6·E1

k7+E1
(21)

Ė2 = k12 �A·
✓

k13·E2

k14+E2

◆
(22)

İ1 = k15 �
✓

k16·I1
k17+I1

◆
·E2 (23)

İ2 = k18·E2 �
k19·I2
k20+I2

(24)
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E1 and E2 provide two set-points for A: one, AE1
set, by setting Eq 21 to zero and 207

solving for the steady state level of A under zero-order conditions, and the other, AE2
set, 208

by doing the same for Eq 22. This gives: 209

AE1
set =

k6
k4

(k7⌧E1) (25)

and 210

AE2
set =

k12
k13

(k14⌧E2) (26)

In the calculations we have set AE1
set=2.1 and AE2

set=2.0. Since the E2 inflow controller 211

has a lower set-point in comparison with E1, E2 will take over the control of A [22], 212

while E1 will be inactive and allow a constant inflow to A via a. 213

Fig 14 shows that in this system a 1!10 perturbation in k2 induces a train of 214

damped oscillations with background (k10) independent concentration profiles. In 215

panels a and b �A (for definition see inset in Fig 12) is shown as a function of 216

increasing k2 steps at di↵erent but constant k10 backgrounds. Panel c shows the time 217

profile in A for a 1!10 k2 step with a k10 background of 0. In panel d the same step 218

is applied but now with a background of k10=1024. One clearly sees the conserved 219

background-independent transition profiles in A. 220

Fig 14. Background compensation by coherent feedback in the scheme of Fig 13.
Panels a and b: �A as a function of kph22 +k10 for di↵erent but constant backgrounds.

kph22 is the k2 value in phase 2. The background values (k10) are indicated above the
colored curves. Panels c and d: Concentration profiles in A when a k2 1!10 step is
applied at respective backgrounds of k10=0.0 and 1024.0. Other rate constants:
k3=2.5⇥103, k4=1.0, k5=0.1, k6=2.1, k7=1⇥10�5, k9=0.5, k11=0.5, k12=200.0,
k13=100, k14=k17=k20=1⇥10�5, k15=1⇥103, k16=10.0, k18=1.0, k19=99.99,
kg=kg3=0.1. Initial concentrations for c: A0=2.0, E1,0=2.0⇥10�4, E2,0=100.0,
a0=4.99⇥103, I1,0=2.5684⇥103, I2,0=2.8492⇥104. Initial concentrations for d:
A0=2.0, E1,0=2.0⇥10�4, E2,0=100.0, a0=4.99⇥103, I1,0=3.5195⇥103,
I2,0=2.0888⇥103. Supporting information S1 Programs includes the python scripts
showing the results of panels c and d.

Frequency homeostasis without background compensation 221

Fig 15a shows an oscillator scheme which we described previously in relation to robust 222

frequency homeostasis [11]. We wondered whether frequency homeostasis would imply 223

background compensation, but found out that this is not the case. In this case I1, I2, 224

and E do not feed back coherently to A, but (incoherently) to a, which is a precursor 225

of A. 226

Fig 15. Oscillator based on motif 2 [11, 22] with A-incoherent feedback, where E, I1,
and I2 feed back to a, a precursor of A. Panel a: reaction scheme. Panel b: Flow
scheme. For rate equations, see main text.

The rate equations are (’pert’ stands for perturbation and ’bg’ for background): 227

Ȧ = k9·a� k2·A|{z}
pert

� k10·A| {z }
bg

(27)

ȧ =

✓
kg3·I2+k3
k5+E

◆
·k5 � kg·a·I1 � k9·a (28)
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Ė = k4·A� k6·E
k7+E

(29)

İ1 = k11·E � k12·I1
k13+I1

(30)

İ2 = k14 �
✓

k15·I2
k16+I2

◆
·E (31)

Fig 16 shows an example of oscillations for the scheme in Fig 15 with background 228

k10=0 and a step perturbation in k2 from 1 (phase 1) to 10 (phase 2). It may be noted 229

that in this case oscillations occur although the removal reactions of a and A are 230

first-order with respect to a and A, indicating that first-order processes are only a 231

’weak’ condition to abolish oscillatory behavior, as has been indicated in the above 232

section ’Background compensation in non-oscillatory homeostats’. 233

Fig 16 clearly shows the occurrence of frequency homeostasis. However, when the 234

oscillator is tested for di↵erent but constant k10 backgrounds with changed k2 steps 235

the maximum frequency decreases with increasing backgrounds. Fig 17a shows the 236

decrease of the maximum frequency and loss of robust background compensation at 237

four di↵erent k10 backgrounds when k2 steps are applied from 1!2 up to 1!10 in 238

analogy to the calculation shown in Fig 16. When using a logarithmic ordinate 239

(Fig 17b) lines appear more or less parallel, which may give the illusion that the 240

system responds in a background compensated way. 241

Fig 16. Frequency homeostasis in the oscillator of Fig 15. Background k10=0.0. A k2
step 1!10 occurs at time t=500 indicated by the vertical arrows. Panel a:
Concentration of A and average <A> as a function of time. Panel b: Concentration of
E and average <E> as a function of time. Panel c: Concentrations of I1 and I2 as a
function of time. Panel d: Frequency as a function of time. Other rate constants:
k3=1⇥106, k4=1.0, k5=1⇥10�6, k6=2.0, k7=k13=k16=1⇥10�6, k9=2.0, k11=5.0,
k12=100.0, k14=99.99, k15=5.0, kg=1⇥10�3, and kg3=100.0. Initial concentrations:
A0=5.6920⇥10�3, E0=6.1163, a0=3.6221⇥10�3, I1,0=4.4051⇥104, I2,0=2.7566⇥102.
See S1 Programs for python scripts.

Fig 17. Maximum frequencies as a function of kph22 +k10, where kph22 is the k2 value in
phase 2. Calculations were performed with rate constants as described in Fig 16.
Panel a show results with linear scaling of axes, while panel b shows the same data set
as double-logarithmic plots. Initial concentrations: bg (k10)=0.0, see legend of Fig 16;
bg (k10)=1.0, A0=2.5946⇥10�3, E0=25.4830, a0=2.6844⇥10�3, I1,0=3.0980⇥104,
I2,0=1.3296⇥104; bg (k10)=2.0, A0=5.0041⇥10�3, E0=15.8930, a0=7.8102⇥10�3,
I1,0=2.2995⇥104, I2,0=2.1181⇥104; bg (k10)=4.0, A0=4.7328⇥10�3, E0=21.6050,
a0=1.2043⇥10�2, I1,0=1.3516⇥104, I2,0=3.0610⇥104.

Is retinal light adaptation background compensated? 242

Based on the comment in Ref [2] that the parallel lines in Fig 2 indicate the same 243

response at di↵erent backgrounds and involve a form of compensation mechanism, we 244

became interested to look into the conditions how background compensation could 245

occur. This requires of course how the term ’background compensation’ is defined. We 246

have applied the following, we think rather intuitive definition, where background 247

compensation for a negative feedback system means the presence of a compensatory 248

mechanism, which, when a perturbation is applied, the same response in a controlled 249
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variable occurs independent of an applied constant background in relationship to the 250

perturbation. This definition is, however, not in agreement with the results shown in 251

Fig 2, for example for the backgrounds indicated by the red, blue and green curves. 252

Increasing the background from the red, blue to the green curve leads to a reduction 253

in the average maximum frequency when a test spot luminance of 1⇥10�2 cd/m2 is 254

applied, as indicated by the vertical dashed bar. In fact, the adaptation behavior 255

shown in Fig 1 can show an analogous behavior as in Fig 2. 256

To see this we use the model where the response amplitude V of retinal cells with 257

respect to a light perturbation I are described by a Hill-type Michaelis-Menten 258

equation of the form 259

V =
VmaxI↵

I↵+�↵
(32)

The cooperativity ↵ is 1.0 for photoreceptor cells, but found to be 0.7 to 0.8 for 260

horizontal cells, 1.2-1.4 for bipolar and sustained ganglion cells, and about 3.4 for 261

transient ganglion cells (for an overview see [3]). 262

We consider here the response kinetics of rods and cones, i.e. �=1 with 263

V =
VmaxI

I+�
(33)

As pointed out by Naka and Rushton [32], in the presence of a background I0 the 264

response V1 upon a perturbation I1 of a single pigment system will follow Eq 33, but 265

with an increase of � to �1=�+I0 and a scaling of Vmax by a factor of �/(�+I0). This 266

can be shown as follows: 267

In the presence of a constant background I0 Eq 33 gives 268

V0 =
VmaxI0
I0+�

(34)

If a light perturbation I1 is applied in addition to background I0 the total response 269

amplitude is 270

V1 + V0 =
Vmax(I0+I1)

I0+I1+�
(35)

Subtracting Eq 34 from Eq 35 gives 271

V1 = Vmax


(I0+I1)

I0+I1+�
� I0

I0+�

�
= Vmax


(I0+I1)·(I0+�)� I0·(I0+I1+�)

(I0+I1+�)·(I0+�)

�

= Vmax


I1·�

(I0+I1+�)·(I0+�)

�
=

Vmax·�
I0+�

✓
I1

I0+I1+�

◆

= Vmax,1

✓
I1

I1+�1

◆
(36)

Fig 18 shows Eq 33 with six di↵erent � values which mimick six di↵erent background 272

levels. For the sake of simplicity we have set Vmax=1. In panel a both axes are linear, 273

while in panel b the ordinate is logarithmic and the abscissa is linear. In panel c the 274

ordinate is linear and the abscissa is logarithmic. Finally, in panel d both axes are 275

logarithmic. 276

Fig 18. Photoadaptation behaviors in rods and cones described by the
Michaelis-Menten equation. The colored lines in the panels show Eq 33 with � values
ranging over six orders of magnitudes from �=1⇥10�4 up to �=10. For simplicity,
Vmax=1. Panel a: Both axes are linear. Panel b: Ordinate is logarithmic and abscissa
is linear. Panel c: Ordinate is linear and abscissa is logarithmic. Panel d: Both axes
are logarithmic. The dashed vertical lines indicate an perturbation intensity of I=1.
The colored intersection points with the vertical dashed lines show the responses of V
for the di↵erent backgrounds with the same color.
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Fig 18c is analogous to the results in Fig 2 when for a given perturbation 277

(indicated by the vertical dashed lines) an increased background or an increased � 278

leads to a reduction in the averaged maximum frequency. No background 279

compensation, as indicated by Kandel et al. in Ref [2] appears necessary. 280

When studying the photoadaptation of gecko photoreceptors, Kleinschmidt and 281

Dowling [33] showed log-log relationships analogous to Fig 18d. Dowling interpreted 282

the parallel lines as follows: A second adaptive mechanism in the receptor shifts the 283

photoreceptor intensity-response curves along the intensity axis, thus extending the 284

range over which the receptor responds (cited from Ref [3], page 222, bottom section). 285

Clearly, as Fig 18 shows, the parallel lines in panels c or d neither require the need 286

for a compensation mechanism of a background or other additional adaptive 287

mechanisms. While adaptation mechanisms compensating for a background cannot be 288

excluded, the observation of parallel lines in semi-logarithmic or double-logarithmic 289

plots appear not su�cient to indicate additional background compensation 290

mechanisms besides the negative feedbacks, which lead to the responses in Fig 1 [5]. 291

Conclusion and outlook 292

We have shown how robust background compensation in oscillatory and non-oscillatory 293

homeostatic controllers can be realized. The needed feedback condition has been 294

termed ’coherent feedback’ in analogy to a corresponding concept applied in quantum 295

control theory. Although the property of robust background compensation appears 296

interesting, we are presently not aware of any biological or biochemical example that 297

shows or applies this property. Background compensation may become of interest in 298

synthetic biology to design cellular responses, which by some reason are needed to 299

become background independent. Concerning the case of retinal light adaptation, 300

parallel lines in semi-logarithmic or double-logarithmic plots do not necessarily imply 301

the presence of background compensating mechanisms as defined in this paper. 302

Supporting information 303

S1 Programs. Documentation. A zip-file with python scripts describing the 304

results for Figs 5, 6, 9a, 9b, 12b, 12c, 14c, 14d, and 16. 305
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