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1 Introduction

The determination of the equation of state (EoS) of neutron-star (NS) cores is one of the
grand questions of nuclear astrophysics [1, 2]. The EoS determines many of the macroscopic
properties of neutron stars and its features may give a unique inroad into determining the
phase structure of Quantum Chromodynamics (QCD) at large baryon number densities [3–6].

In the past years there has been an extremely rapid evolution in NS observations,
e.g. [7–19], combined with maturing theoretical and statistical techniques, e.g. [20–35], to
constrain and infer the EoS using a variety of observational and theoretical inputs. Among
the theoretical inputs are the ab-initio calculations determining the EoS directly from
the Lagrangian of QCD using perturbation theory [36–43]. These calculations rely on the
asymptotic freedom of QCD dictating that at high densities the EoS can be expanded in
powers of the strong coupling constant αs.

At sufficiently high densities, well above the density range reached in stable NSs,
perturbation theory gives a good approximation of the true EoS. It has furthermore been
recently shown that these calculations — combined with the requirement that the EoS
be mechanically stable, causal, and thermodynamically consistent (SCC) at all densities
— give robust constraints to the EoS down to a few saturation densities n ∼ 2.3ns [44],

– 1 –



J
H
E
P
0
6
(
2
0
2
3
)
0
0
2

with ns ≈ 0.16 fm−3. The interaction between the astrophysical and the QCD constraints
has also been studied, showing that the QCD input leads to a softening of the EoS at the
highest densities reached inside the cores of stable NSs [3, 4, 33, 45–49] (cf. [50]). This
feature has been interpreted as a sign of loss of hadronic structure, and a phase change to
quark matter [3–5, 34].

The importance of the theoretical inputs in the EoS inference necessitates reliable
and statistically interpretable uncertainty estimation of the calculations. In the low-
density nuclear regime, theoretical uncertainty estimation including statistical uncertainty
quantification has been an increasingly studied problem in recent years [1, 51–61]. Such
quantified uncertainties are now routinely incorporated when inferring the NS-matter
EoS. With this paper, we improve the treatment of corresponding uncertainties from the
perturbative-QCD (pQCD) input used in the inference to produce statistically interpretable
error estimates of the pQCD results and their impact at low densities.

The accuracy of the pQCD calculation is limited by the ignorance of the terms in the
perturbative series beyond the last computed order, i.e., the missing-higher-order (MHO)
terms. The current standard has been to estimate the MHO uncertainty of the result
through its variation with respect to an unphysical renormalization scale Λ̄. Explicitly,
within the Λ̄MS renormalization scheme, Λ̄ is varied by a factor of two around a central
scale of 2µ/3, with µ the baryon chemical potential, to produce an uncertainty band for the
result [37–41]. While this ad-hoc procedure is rooted in historical practice and experience
in perturbative calculations, it lacks a well-defined statistical interpretation.

Recently, a Bayesian approach to estimate perturbative uncertainties has received
attention in the high-energy community producing predictions for LHC physics [62–66].
These studies have differentiated between scale-variation uncertainties (i.e., those arising from
setting the unphysical renormalization scale) and MHO corrections (i.e., those arising from
the truncation of the perturbative series). For the MHO errors, various machine-learning-
based models have been suggested to synthesize information from all the computed partial
sums of the perturbative series (instead of solely from the highest order). Uncertainties due
to scale-variation can also be folded in using different marginalization procedures.

In this work, we explore these different possibilities for quantifying the uncertainties of
the high-density pQCD EoS at different chemical potentials µ using the MiHO code [66, 67].
Additionally, we further develop the statistical framework to propagate the pQCD results
to NS densities [33, 44]. In particular, we discuss the marginalization of the chemical
potential where the pQCD result is used. In this way we can combine the information of
how constraining the pQCD results are with how convergent the pQCD series is at different
chemical potentials. This extends the previous works that have so far considered only a
fixed chemical potential for applying the pQCD results. The organization of the paper is
outlined in the following section.

2 Overview of the setup

In this section we present the overview of our setup of first estimating the perturbative
uncertainties of the EoS at high densities using the Bayesian machine-learning-based
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framework MiHO [66, 67] and then applying robust equation-of-state constraints [33, 44]
to translate the high-density information to NS densities. The different elements of the
framework are introduced here while the details are discussed in the following sections.

Our goal is to determine the posterior probability

P (εL, pL|nL,p(k),n(k)) (2.1)

of the (reduced) EoS pL(εL) at NS densities nL, given the first k+1 terms of the perturbative
series for the pressure1 p(k) ≡ (p(0), · · · , p(k)) and number density n(k) ≡ (n(0), . . . , n(k)) at
high densities where the perturbative description of QCD is reliable. Here, εL, pL, and nL
are the energy density, pressure, and baryon number density to which we wish to propagate
the perturbative input; that is, at and around NS densities. The subscript L refers to low
densities as opposed to the high densities, H, where the pQCD results converge and are
directly valid.

The first step is to convert the information about the perturbative series of the pressure
p(k) and particle-number density n(k) to a statistically interpretable probability distribution
of pressure pH and density nH at a given large baryon number chemical potential µH . To
this end we use statistical machine-learning models that bound the higher-order terms
{p(k+1), p(k+2), . . .} given the lowest k + 1 terms. We denote the resulting joint probability
distribution quantifying the remaining MHO uncertainty as

PMHO(pH , nH |p(k)(µH , X),n(k)(µH , X)), (2.2)

where X = 3Λ̄/(2µ) is related to the unphysical renormalization scale Λ̄ upon which
the perturbative coefficients depend. We use the MiHO computer code to estimate these
probabilities [67]. The current state-of-the-art perturbative coefficients p(k) are reported in
section 3 and the details of the probability distribution of eq. (2.2) is discussed in section 4.1.

In order to remove the dependence on the unphysical renormalization scale X, one is
forced to integrate over a sufficiently wide range of scales

P (pH , nH |p(k)(µH),n(k)(µH)) =
∫
dX PMHO(pH , nH |p(k)(µH , X),n(k)(µH , X))

× Psa/sm(X|p(k)(µH),n(k)(µH)), (2.3)

where Psa/sm(X|p(k)(µH),n(k)(µH)) is an integration weight to be determined by a spe-
cific prescription. In this context we will discuss the scale-marginalization (sm) and
scale-averaging (sa) prescriptions introduced in [65] and [66], respectively; for details, see
section 4.2. This procedure is applied to the known non-perturbative results at high
temperatures and zero chemical potential in section 4.3.

Given the EoS at high chemical potentials µH — that is, the triplet of values pH , nH ,
and µH — we can determine the region of allowed values εL, pL at some lower density nL
using the robust equation-of-state constraints introduced in [44]. These robust constraints
are based on considering the most extreme extrapolations of the pQCD EoS that are allowed

1We refer here to the first k + 1 terms being summed and not the first k + 1 partial sums.
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by mechanical stability, causality, and thermodynamic consistency to lower densities relevant
to neutron stars. They can be expressed as a conditional probability2

PSCC(εL, pL|nL, µH , pH , nH), (2.4)

which takes a value 1 if the low density EoS at (nL, εL, pL) can be connected to the high
density one at (µH , nH , pH) with any stable, causal, and consistent (SCC) extension and 0
otherwise. For details see section 5.1. Combined with the joint probability distribution for
the high-density EoS in eq. (2.2), we can write down the distribution for εL and pL at some
given density nL and a matching scale µH

P (εL, pL|p(k),n(k), nL, µH , X) =
∫
dpHdnHPSCC(εL, pL|nL, µH , pH , nH)

× PMHO(pH , nH |p(k)(µH , X),n(k)(µH , X)). (2.5)

Finally, since the matching scale µH is in principle arbitrary (as long as perturbative
calculations remain reliable), we may marginalize over possible values of it similarly to what
is done for the renormalization scale; the details are given in section 5.2. The complete
formula is then given by

P (εL, pL|nL,p(k),n(k)) =
∫
dµHdpHdnHdX

× PSCC(εL, pL|nL, µH , pH , nH)

× Psa/sm(µH , X|p(k),n(k))

× PMHO(pH , nH |p(k)(µH , X),n(k)(µH , X)). (2.6)

While optimally we would use the above expression to estimate the final posterior
probability distribution, for practical reasons we have to make certain well-justified sim-
plifications to it. Currently the MiHO computer code produces posterior distributions of
one variable and is unable to compute joint probability distributions of two variables as
required by eq. (2.2). To estimate the joint probability distribution, we conservatively
assume independent distributions for pH and nH such that

PMHO(pH , nH |p(k)(µH , X),n(k)(µH , X))

≈ PMHO(pH |p(k)(µH , X))PMHO(nH |n(k)(µH , X))

≈ PMHO(pH |p(k)(µH , X))δ(n(k)(µH , X)− nH), (2.7)

where we have also used the fact that the series for n converges faster than the series for p
in pQCD. Similarly, we estimate the integral weights arising from the scale marginalization
procedure using only information about the perturbative series in pressure

Psa/sm(µH , X|p(k),n(k)) ≈ Psa/sm(µH , X|p(k)). (2.8)
2We note that we use different thermodynamic variables at high and low densities. Namely, at low

densities we characterized the EoS based on density nL whereas we use the chemical potential µH at high
densities. The reason for this choice is that the chemical potential is the natural variable in the pQCD
calculation whereas the density is more directly relevant for the physics of NSs.
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Both of these approximations are well justified given that the perturbative series for the
number density n(k) converges faster than the corresponding series for the pressure p(k).
We leave improvements to the MiHO computer code and associated models discussed below
in section 4.1 to future work.

With these approximations the final result can be written as

P (εL, pL|nL,p(k)) =
∫
dµHdpHdnHdX

× PSCC(εL, pL|nL, µH , pH , nH)

× Psa/sm(µH , X|p(k))

× PMHO(pH |p(k)(µH , X))

× δ(n(k)(µH , X)− nH) (2.9)

In the next three sections, we discuss the three types of input used in the master
formula eq. (2.9).

3 pQCD at high densities

In this section we discuss the current state-of-the-art pQCD results for the EoS at zero
temperature T in β-equilibrium. We limit the discussion to 3 flavors of massless quarks, for
which the β-equilibrium condition trivializes and the individual quark chemical potentials
are given by µu = µd = µs = µ/3 ≡ µq, with µ being the baryon-number chemical potential.
The approximation of zero quark masses is justified as we use the pQCD result only at very
large chemical potentials, much larger than the strange quark mass µq � ms, such that the
corrections from the strange quark masses are small [37, 38, 41]. At the same time, the
chemical potential is below the charm threshold justifying restricting to 3 flavors.

In the following we consider only the results for the pressure because the pressure and
density are linked to each other through the thermodynamic identity

n(µ) ≡ ∂p(µ)
∂µ

∣∣∣∣
T

. (3.1)

The perturbative expansion for the pressure reads

p(µ) ' pn(µ, Λ̄) ≡
n∑
k=0

p(k)(µ, Λ̄) (3.2)

where the different coefficients depend on Λ̄ explicitly as well as through the strong coupling
constant αs(Λ̄). The leading-order (LO) and next-to-leading-order (NLO) results are easily
extracted as the T → 0 limit of results in [39]

p(0) = CANf

12π2 µ
4
q

QCD=
3µ4

q

4π2 , (3.3)

p(1) = −αs(Λ̄) 3dA
4CAπ

p(0) QCD= − 2
π
αs(Λ̄)p(0), (3.4)

– 5 –



J
H
E
P
0
6
(
2
0
2
3
)
0
0
2

X = 3 /2
0.0

0.2

0.4

0.6

0.8

1.0
p/

p(0
) =2.2 GeV

Pressure

NLO
N2LO
N3LO *

0.3 0.5 1 2
0.0
0.2
0.4
0.6
0.8
1.0

n/
n(0

) =2.2 GeV

Number density

NLO
N2LO
N3LO *

0.0

0.2

0.4

0.6

0.8

1.0

p/
p(0

) =2.6 GeV

NLO
N2LO
N3LO *

0.3 0.5 1 2
0.0
0.2
0.4
0.6
0.8
1.0

n/
n(0

) =2.6 GeV

NLO
N2LO
N3LO *

0.3 0.5 1 2
X = 3 /(2 )

0.0

0.2

0.4

0.6

0.8

1.0

p/
p(0

) =3 GeV

NLO
N2LO
N3LO *

0.3 0.5 1 2
X = 3 /(2 )

0.0
0.2
0.4
0.6
0.8
1.0

n/
n(0

) =3 GeV

NLO
N2LO
N3LO *

Figure 1. Order-by-order perturbative-QCD results for (left) the normalized pressure and (right)
normalized density as a function of renormalization scale [see eq. (3.2)] at different chemical potentials
µ = {2.2, 2.6, 3.0}GeV, corresponding roughly to densities of n ≈ {23, 40, 63}ns, respectively.

where CA = Nc = 3, dA = N2
c − 1 = 8 are the usual color factors and Nf = 3 is the number

of active fermion flavors.
The next-to-next-to-leading-order (N2LO) result consists of two types of terms,

p(2) = p
(2)
hard + p

(2)
soft. (3.5)

The first one is the hard contribution,3

p
(2)
hard =− α2

s(Λ̄) dA
96CAπ2

[
284CA − 153CF + 2Nf (11− 36γE + 48 log(2))

+ 12(11CA − 2Nf ) log
(

Λ̄
2µq

)
− 72Nf log

(
µq

2πT

)]
p(0), (3.6)

that arises from the 3-loop bubble diagrams. In these diagrams, the momenta are of order
µq. The second term in eq. (3.5) is due to the soft divergence of QCD that is regulated by

3We note that in eq. (B7) of [39], there is a factor 3/2 missing from in the second term. This factor is
present in eq. (B6).
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the in-medium screening of color charges, which leads to an enlarged set of diagrams with
soft momenta ∼ α1/2

s µq. In this case, one must perform an all-loop-orders resummation of
a particular class of “ring diagrams” to correctly capture all of the physics from this soft
momentum scale at this order in the coupling; for details, see [43]. The resummation is most
conveniently performed using the hard-loop effective theory [68] leading to the result [39]

p
(2)
soft = dAm

4
E

128π2

[
log

(
T 2

m2
E

)
+ 6.6719

]
, (3.7)

where m2
E = 2αs(Λ̄)

π Nfµ
2
q is the in-medium screening mass scale.

Separately the two contributions in eq. (3.5) are divergent at zero temperature, but the
T dependence vanishes in the sum of the two contributions. Only the hard contribution has
a physical UV divergence that is regulated by renormalization. Therefore, only the hard
contribution explicitly depends on the unphysical renormalization scale Λ̄. The dependence
on Λ̄ appears naturally in the logarithm together with the scale 2µq. This factor of 2 can
be traced to the coefficient of ε in performing Feynman integrals with integer powers of
propagators in D = 4− 2ε spacetime dimensions in the Λ̄MS-scheme. This is the motivation
for choosing the central renormalization scale Λ̄ = 2µq = 2

3µ. The dimensionless quantity
parameterizing the variation around the central scale is denoted by X, such that Λ̄ = 2µqX,
and the conventional scale variation by a factor of two is given by varying X ∈ [1/2, 2].4

At N3LO only the soft contribution to the pressure is known (this time at exactly zero
T ) [42, 43],

p
(3)
soft = 0.26587αs(Λ̄)CAdAm4

E

(8π)2 . (3.8)

We will not use this result unless explicitly stated, and when doing so we will denote this
order with an asterisk — N3LO∗ — to remind the reader that not all contributions at this
order are included.

In our results, we use the above expressions for the EoS, including the two-loop
running of the strong coupling αs(Λ̄) in all results. We set the non-perturbative scale
ΛQCD = 378MeV, which fixes αs(2 GeV) = 0.2994. The renormalization-scale dependence
of different perturbative orders of pressure and number density is depicted in figure 1 at
different values of the baryon chemical potential. The fiducial range of scale variation is
shown as vertical lines. We note that for all but the N3LO∗ results, there exists a smallest
value of X for which the pressure remains positive. As µ is decreased, this smallest value
of X increases, eventually approaching or moving into the fiducial range. We note that
this diverging behavior at small X is the origin of sizeable scale variation errors in the
conventional practice. The number density has a much smaller dependence on X and
remains positive in the fiducial range even at µ = 2.2GeV.

4Note that in other works (cf. [38, 42, 45]), a different convention for X is used, namely Λ̄ = µqX
′,

with X ′ ∈ [1, 4].
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4 Estimating MHO and renormalization-scale uncertainties

In this section, we discuss our handling of the uncertainties of the high-density QCD EoS.
On the one hand, the truncated perturbative expansion eq. (3.2) differs from the actual
value by MHO terms. On the other hand, the truncated series depends on the choice of
the renormalization scale, which is controlled by the parameter X. We use the recently
introduced MiHO framework to estimate both uncertainties using Bayesian machine-learning
techniques [66]. The main idea of the framework is to assume that the perturbative coeffi-
cients can be taken as independent draws from distributions arising from a statistical model
of convergent series. Performing Bayesian inference on the available perturbative orders
allows one to constrain the model parameters and construct the probability distribution for
the next term in the series. The spread of the posterior distribution can then be used to
quantify the uncertainty of the MHO terms. The scale uncertainty is incorporated by com-
bining the probability distributions at different scales using a particular scale prescription,
which will be specified below.

4.1 Posterior distribution at fixed scale

As explained in section 2 [see eq. (2.7)], we desire the probability distribution of the
pressure and number density given the first k + 1 terms in the perturbative expansion
p(k) = (p(0)(µ,X), . . . p(k)(µ,X)) for fixed µ and X

PMHO(p|p(k)(µ,X)). (4.1)

For a convergent series the probability for the sum can be approximated by the posterior
probability for the next partial sum in the series, which we will infer using two models: the
geometric and abc models.

In practice we work with perturbative corrections normalized to the LO term. That is,
we define a sequence of coefficients

δk(µ,X) = p(k)(µ,X)
p(0)(µ,X)

(4.2)

and δk ≡ (δ0, . . . , δk−1, δk) with δ0 = 1 by definition. The Bayesian model consists of a
parameterized prior distribution for each δk.

The geometric model assumes a flat distribution for
|δk|
ak
≤ c (4.3)

with hidden model parameters a and c [65]. The normalized prior distribution for the δk is

Pgeo(δk|a, c) ≡
1

2akcθ
(
c− |δk|

ak

)
. (4.4)

That is, the sequence of perturbative coefficients is considered to be random variables,
drawn from a uniform distribution δk ∼ U[−cak,cak] whose width decreases geometrically
with increasing order for 0 < a < 1.

The abc model introduced in [66] was proposed to allow for an asymmetric distribution

b− c ≤ δk
ak
≤ b+ c (4.5)
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with
Pabc(δk|a, b, c) ≡

1
2|a|kcθ

(
c−

∣∣∣∣ δkak − b
∣∣∣∣) . (4.6)

Note that in the abc model, the parameter a can take negative values (−1 < a < 1), and
therefore it can differentiate between alternating and non-alternating series.

The model is then trained using the sequence of known terms, leading to posterior
distributions for the model parameters a, (b), and c using Bayes’s theorem

P (a, c|δk) = P (δk|a, c)P0(a)P0(c)
P (δk)

, (4.7)

where P (δk|a, c) is the product of eq. (4.4) [or eq. (4.6)] for each term in δk and P0(a) and
P0(c) are judiciously chosen priors.

For the geometric model P0(a) and P0(c) are chosen to satisfy 0 < a < 1 and c ≥ 1:

P0(a) ≡ (1 + ω)(1− a)ωθ(a)θ(1− a), (4.8)

P0(c) ≡ ε

c1+ε θ(c− 1). (4.9)

Here ε = 0.1 and ω = 1 are default constants defining the prior distributions.
For the abc model the priors are chosen as

P0(a) ≡ 1
2(1 + ω)(1− |a|)ωθ(1− |a|), (4.10)

P0(b, c) ≡ εηε

2ξc2+ε θ(c− η)θ(ξc− |b|). (4.11)

The default constants for the abc model are (ε, ω, ξ, η) = (0.1, 1, 2, 0.1).5

The marginalized likelihood (or evidence) for the geometric model is given by

P (δk) ≡
∫
dadcP (δk|a, c)P0(a)P0(c), (4.12)

and similarly for the abc model. The marginalized distribution measures the (relative)
confidence in the model’s capabilities to reproduce the known terms in the series.

We use the trained model to find the posterior distribution of the next order in the
series

P (δk+1|δk) =
∫
dadcP (δk+1|a, c)P (a, c|δk). (4.13)

Then our desired posterior probability distribution for the pressure is approximated by [66]

PMHO(p|p(k)(µ,X)) ≈ 1
p(0)P

(
δk+1 = p−

∑k
i=0 p

(i)

p(0) |δk

)
. (4.14)

In the top panels of figure 2 we show the posterior distributions for the pressure at fixed
µ = 2.6GeV and X = 1 for the geometric (left) and abc models (right). By construction,

5The sensitivity to the choices of these constants was studied in [66]. Generically, the sensitivity to priors
reduces with increasing perturbative order.
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Figure 2. (Top) Order-by-order estimates of the pressure and its MHO uncertainty [eq. (4.14)] at
µ = 2.6GeV with the renormalization scale parameter X = 1. The left panel assumes a geometrical
model for the sequence of the perturbative corrections while in the right panel assumes an abc model.
(Bottom) 68%- and 95%-credible intervals (1σ and 2σ) predicted by the geometric and abc models
given the terms up to N2LO as a function of X at µ = 2.6GeV.

the LO distribution contains no useful information and is completely determined by priors.
At NLO the distribution for the abc model is asymmetric, in contrast to the geometric
model. Because the NLO correction is negative, the abc model infers an alternating series;
hence, the distribution is skewed towards larger pressure values, i.e., it expects a positive
N2LO correction. However, the actual N2LO correction is again negative. This causes the
abc-model posteriors to become symmetric. In general both models predict similar posterior
distributions with more input orders, as seen in the figure. In the bottom panels of figure 2
we show the 68% and 95% credible intervals (CIs) for the N2LO posterior distributions.6

We see that the 68% CI fully incorporates the N3LO∗ corrections. The 95% CI for the abc
model is noticeably wider than that of the geometric model. If the series were alternating
as expected by the abc model, then the posterior CIs would be narrower than the ones of
the geometric model.

4.2 Incorporating scale dependence

The truncated perturbative series depends on the unphysical renormalization scale Λ̄ = 2
3µX,

which is related to the characteristic hard scale of the process — the baryon number chemical
6Credible intervals are defined to contain the specified percentage of the probability distribution with the

remaining probability split symmetry on either side of the CI.
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Pressure p [GeV/fm3]
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0.4

0.6

0.8

1.0

X=1/2 X=1 X=2

=2.6 GeV
   SA abc

Central 1, variation by 2
X [1/2,2]
Central 1.5, variation by 2
X [0.75,3]
Central 0.75, variation by 2
X [0.375,1.5]
Central 1.2, variation by 4
X [0.3,4.8]
N2LO

Figure 3. Estimation of the MHO uncertainty in pressure at µ = 2.6GeV using (left) the scale
marginalization prescription and (right) scale-averaging prescription, both using the abc model for
different ranges of the renormalization-scale parameter X. The black dashed lines correspond the
N2LO values of the pressure for different X. The green line corresponds to the central value of X = 1
varied by a factor of 2. The red and blue lines demonstrate the effect of varying the central value
(X = 0.75 and X = 1.5, respectively). The effect of the variation range is depicted by the violet line,
where the renormalization scale is varied by a factor of 4 instead of 2. Only mild dependence on the
choice of the range of X is observed.

potential µ— via the dimensionless scaling factor X. Consequently, the posterior probability
of a Bayesian model is also sensitive to the choice of X. As there is no physical reason to
prefer one scale choice over another, the scale dependence must be considered in estimating
the observable’s true value.

The scale-averaging prescription advocated in [66] treats all scales on equal footing
and adds them coherently:

Psa(δk+1|δk) ≡
∫
dXP0(X)P (δk+1(X)|δk(X)). (4.15)

Here the left-hand side should be understood as a scale-independent probability distribution
for the N(k+1)LO correction given terms up to NkLO. The weight function

P0(X;X0, F ) ≡ 1
2XF θ

(
logF −

∣∣∣∣log X

X0

∣∣∣∣) (4.16)

with F = 2, X0 = 1 implements a log-uniform weight for the range 1/2 < X < 2. Note that
the relative weight of the distributions does not depend on the convergence of the series.

Alternatively, in the scale-marginalization prescription [65] the scale parameter X
is treated as a hidden model parameter. The scale-independent probability is obtained by
marginalization over X

Psm(δk+1|δk) ≡
∫
dXP (X|δk(X))P (δk+1(X)|δk(X)), (4.17)

where the likelihood of X given δk is

P (X|δk(X)) = P0(X)P (δk(X))∫
dXP0(X)P (δk(X)) . (4.18)
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Here P (δk(X)) is the marginalized likelihood (evidence) given by eq. (4.12) and P0(X)
is now interpreted as a prior for X. The marginalized likelihood is the largest for values
of X for which the perturbative series is most convergent, i.e., favoring fastest apparent
convergence [69, 70]. In the case of pressure, the convergence is the fastest for the largest
values of X, so that the weighting with the marginalized likelihood slightly favours higher
values of X, see figure 2 for the marginalized likelihood as a function of X. In contrast, for
the scale-averaging prescription, the integral eq. (4.15) is dominated by the accumulation
of probability distributions with slow X dependence, i.e., it accords with the principle of
minimal sensitivity [70].

In figure 3 we display the scale-marginalized distributions for the pressure given in
eq. (2.3) at N2LO with different choices for the central scale X0 = {1, 1.5, 0.75, 1.2} and the
size of the marginalization window F = {2, 2, 2, 4} for a fixed µ = 2.6GeV. The position of
the peak of distributions changes only by approximately 10%. Notably, the perturbative
series at low scale values does not affect the marginalized distribution. We also observe
from this figure that the scale-marginalization prescription leads to distributions that are
skewed to higher pressures than results of the naive scale-variation prescription, varying
X ∈ [1/2, 2]. Scale-averaged distributions are also biased towards larger X, because there
the scale dependence is slowing down. However, in this case convergence properties are not
taken into account and the resulting distributions are wider.

In figure 4 we can see how the scale-marginalized distribution of the pressure (green
line in figure 3) changes with the chemical potential µ. The green bands show the 68% and
95% CIs. The 68% CIs lies at the upper edge of the naive scale-variation estimate, shown
in the figure as the hatched purple band. However the distributions have long power-law
tails leading to 95% CIs with larger bands than scale variation, especially for large µ values.

4.3 Comparison with Lattice-QCD calculations at finite T and µ = 0

At high T and µ = 0, lattice computations of the EoS are available [71]. This enables
the comparison between the precise nonperturbative value of the pressure p(T ) and the
Bayesian inference from the perturbative calculations. In the high-T pQCD regime, due to
the presence of thermally over-occupied, long-wavelength gluonic modes, the weak-coupling
expansion for p is structured as a power series in g ≡

√
4παs, rather than in αs itself. Hence,

in this context the terms p(k) denote terms of order O(gk) = O(αk/2s ), rather than O(αks).
Note however, that the hard contributions (from momenta of order T ) are still structured
as a power series in αs ∼ g2, since they arise from a finite number of individual bubble
diagrams at the same naive order in the coupling. The resummed contributions on the other
hand, arising from multiple Feynman diagrams featuring soft momenta ∼ α

1/2
s T appear

at all orders starting at O(g3). The p(k) are known up to k = 5, and can once again be
extracted from [39] (see appendix A).

As is well known [72] the perturbative expansion for the pressure at high-T is not well
behaved without additional non-trivial resummations [73–76]. This can be readily seen
from figure 5, where we show in different linestyles the different perturbative orders in the
expansion. In particular, the result alternates above and below the free Stefan-Boltzmann
(SB) value. In this case, due to the non-convergence of the series, the training of the
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Figure 4. The pressure normalized by that of free Fermi gas of quarks as a function of chemical
potential. The green bands correspond to the N2LO pQCD calculations whose uncertainties are
estimated by the abc model using the scale-marginalization prescription for the renormalization
scale X; the darker and the lighter bands represent 68% and 95%-credible intervals, respectively.
The relative confidence in the abc model is qualified by the marginalized likelihood P (µ) defined in
eq. (5.11) and illustrated by the black dashed line (and the fading of the green bands). The hatched
purple band represents the standard error estimation of pQCD results obtained by renormalization
scale variation by a factor of 2. Colored lines are the sample from the ensemble of NS EoSs used
in [33] conditioned with astrophysical observations and QCD input for the scale-marginalization
prescription for X in the range [1/2, 2] and µQCD in the range [2.2, 3]GeV. The coloring of individual
EoSs corresponds to the posterior likelihood. The higher likelihood is associated with darker shades
of red.

statistical models is sensitive only to the g5 term (i.e., if the model with given set of
parameters can reproduce this term, it by construction can reproduce all the lower orders as
well). Nevertheless, we show the CIs extracted with abc model with scale-marginalization
(left panel) and scale-averaging prescriptions (right panel). Scale-marginalization leads to
narrower CIs and only the 95% CI covers the non-perturbative results. Scale-averaging
weights equally small X values which go downwards at small temperatures.

5 Propagating pQCD to low densities

We turn now to a discussion of how pQCD results at high densities constrain the EoS at
densities that are relevant for NSs. We use the recently introduced prescription from [44]
to determine the allowed region for the low-density EoS given pQCD predictions at some
fixed large value of µH . The choice of this reference scale µH is arbitrary as long as pQCD
results are reliable. We will incorporate the uncertainty arising from the value of this scale
into our predictions using a similar scale prescription as was done for the renormalization
scale Λ̄.
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Figure 5. Applying the statistically interpretable error estimation to QCD thermodynamics at
zero chemical potential. In this case the pressure can also be accessed non-perturbatively using
lattice-field-theory methods [71]. The green bands correspond to the 68% and 95%-CIs predicted by
the abc model using (left) the scale-marginalization and (right) scale-averaging prescription for X in
the range [1/2, 2]. The HTL-resummed perturbative result from [39] is shown with lines denoted by
their order in the coupling constant g. The confidence in the model at various temperatures T is
characterized by the marginalized likelihood P (T ) (displayed in arbitrary units).

5.1 Constraints at low densities

Knowledge of the EoS at high densities nH and baryon number chemical potentials µ = µH
where the pQCD calculation is convergent imposes robust constraints to lower densities nL
reached in cores in NSs [33, 44]. The most conservative way of using the high-density infor-
mation is to demand only that the EoS at lower densities can be connected to the EoS at µH
using an interpolation that is mechanically stable, causal, and thermodynamically consistent.

Given the triplet of values at high densities

~βH(µH , X) ≡ (pH(µH , X), nH(µH , X), µH), (5.1)

we can impose a condition on the corresponding triplet at lower densities ~βL =
(
pL, nL, µL

)
.

Specifically, if the difference in pressure ∆p ≡ pH − pL does not lie in the interval
[∆pmin,∆pmax] where

∆pmin ≡
c2

s,lim
1 + c2

s,lim

(
µH

(
µH
µL

)1/c2
s,lim
− µL

)
nL, (5.2)

∆pmax ≡
c2

s,lim
1 + c2

s,lim

(
µH − µL

(
µL
µH

)1/c2
s,lim

)
nH , (5.3)

with c2
s,lim = 1, then there is no mechanically stable, causal and thermodynamically consistent

way to connect the EoS at low densities to the EoS at high densities. Therefore any EoS
with ∆p /∈ [∆pmin,∆pmax] is excluded by pQCD.

These conditions restrict the area of allowed values the pressure pL and the energy
density εL can take at the given low density nL. In particular, to be able to match to the

– 14 –



J
H
E
P
0
6
(
2
0
2
3
)
0
0
2

Figure 6. The constraints on the ε–p values arising from the requirement of the causal, mechanically
stable and thermodynamically consistent EoS connected to the theoretical calculations. The red
dashed region represents the allowed area if the EoS is connected only to the cEFT results averaged
between stiff and soft from [77]. The green line shows pmin / max(ε) [see eq. (5.4)] indicating the
region allowed by pQCD; the area bounded by the green line is given by eq. (5.6).

triplet βH , the energy density and pressure at the lower density nL, must be bounded by
the curves pmin(ε) < p < pmax(ε)

pmin(ε) ≡ pH −
√
ε2 + 2εpH − µ2

Hn
2
L + p2

H ,

pmax(ε) ≡
nL
√
µH

(
−2εnH + µHn2

L + µHn2
H − 2nHpH

)
nH

− ε+ µHn
2
L

nH
, (5.4)

with ε being bounded by the intersections of the pmin and pmax curves denoted as εmin
and εmax

εmin ≡ µHnL − pH ,

εmax ≡
µH

(
n2
L + n2

H

)
2nH

− pH .
(5.5)

See figure 6 for illustration. In this figure, we also show the corresponding region of pL
and εL values consistent with chiral effective field theory (cEFT) at low densities [77] (see
appendix B for the expressions for this corresponding boundary). Note that negative values
of pressure are allowed by pQCD since it is possible to draw casual and stable EoS from
these point to high-density limit (they might be, however, excluded for different reasons).

As the information from a fixed high-density triplet βH is propagated down to a lower
density nL, it gets spread over a wider and wider area in the ε, p plane. Specifically, the
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information becomes spread over the area bounded by the allowed curves in eqs. (5.4)
and (5.5), namely

A(~βH , nL) ≡
∫ εmax

εmin
dε
[
pmax(ε)− pmin(ε)

]
= µ2

HnL
12n2

H

(
4n3

H − 3n2
HnL − 6n2

HnL log
(
nH
nL

)
− n3

L

)
. (5.6)

Now, the probability that a valid point (ε, p) lies within the bounded region at nL is unity,
so that

1 =
∫
A(~βH ,nL)

dε dp
d2P (ε, p|~βH , nL)

dε dp
, (5.7)

where d2P/(dε dp) is the differential probability of finding p and ε in the element of area.
Taking the agnostic approach and not assigning higher likelihoods to less extreme EoSs, we
may consider all allowed points equally likely, i.e.

d2P (ε, p|~βH , nL)
dε dp

= const. = 1/A(~βH , nL), (5.8)

where the constant is determined by the normalization condition of probability.
Therefore the conditional probability is

PSCC(εL, pL|nL, ~βH) ≡
1[∆pmin,∆pmax](∆p)

A(~βH , nL)
, (5.9)

where 1S is the indicator function on the set S. Note that for fixed µH and nL the X
dependence of the area is mild, since the dependence nH(X) is mild and the more X-sensitive
pH(X) does not appear in the expression for the area.

5.2 Marginalization over µH

In [33] it was argued that one should use the perturbative information at the smallest
possible density where MHO uncertainties are under control. However, the choice of µH is
arbitrary as long as perturbative results are reliable. Hence, here we shall incorporate the
µH dependence using the more sophisticated scale-marginalization prescription discussed
above. Note that there are alternative ways to handle this µH dependence such as the
scale-averaging prescription.

In eq. (5.9), we introduced the conditional probability for the SCC construction in [44]
weighted with the inverse area A(~βH , nL). The dependence of this area on µH approximately
scales as

A(~βH , nL) ∼ µ5
H ,

which follows from n
(0)
H ∼ µ3

H . Therefore, one can see that applying the QCD input at
larger values of µH entails spreading the information over a larger allowed region of ε–p
values. The area weight hence implies using smaller values of µH in order to increase the
constraining power. The scale-marginalization prescription introduces the opposite behavior
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(see the marginalized likelihood P (µ) in figure 4), i.e., increasing the value of µH leads
to more confidence in the perturbative calculation. This interplay allows a data-driven
determination (based on p(k)) of the relevant range of chemical potential that is at the
same time as constraining as possible while being perturbatively reliable.

For the scale-marginalization prescription over µH and X we use the following integral
weight

Psm(µH , X|p(k),n(k)) = P0(X)P0(µH)P (δk(X,µH))∫
dXdµHP0(X)P0(µH)P (δk(X,µH)) . (5.10)

Note that we use a common marginalized likelihood P (δk(X,µH)) for both X and µH .
This is justifiable because in the procedure dictated by [44] one compares predictions at
the same low-density point derived from different series labeled by µH and X. Therefore
eq. (5.10) assigns weight according to the convergence properties, which depend both on
µH and X. We can also define the marginalized likelihood over X for µH

P (µH) ≡
∫
dXP0(X)P (δk(X,µH)), (5.11)

which is shown in figure 4 as the dashed black line.
The interplay between scale-marginalization and the area weight can be seen in figure 7.

The panel of 9 likelihoods displays P (εL, pL|nL,p(k)) calculated from eq. (2.9) at fixed
nL = 10ns using different prescriptions for the X and µH variations. The range 1/2 ≤ X ≤ 2
is fixed for all likelihoods. Note that in these figures we have assumed also that the EoS can
be causally connected to the low-density nuclear EoS [77] in a mechanically stable, causal,
and thermodynamically consistent way (i.e., we have restricted to the purple shaded region
in figure 6); this is purely to highlight the relevant region of the QCD likelihood function.

The first row reproduces the likelihood function used in [33], where a scale-averaging
procedure for X was adopted, but µH was kept fixed. The MHO uncertainty was not
explicitly considered and only the highest available perturbative order (N3LO*) was used,
corresponding to replacing the MHO distribution in eq. (2.2) with δ-functions

PMHO(pH , nH |p(k)(µH , X),n(k)(µH , X))

→ δ
(
pH − p∗3(µH , X)

)
δ
(
nH − n∗3(µH , X)

)
. (5.12)

Going beyond [33] where only µH = 2.6GeV was used, we display in the first row results
for three different chemical potentials: µH = 2.2, 2.6, and 3GeV corresponding to nH ≈
23ns, 40ns, and 63ns. The smooth boundary of the likelihood function arises from the scale
variation of the pmax and pmin lines as a function of X. For lower µH values the allowed
area is smaller as expected because PSCC is more constraining; however, the boundaries are
less sharp because the X-variation of the pressure is stronger.

The effect of the MHO and the scale-variation uncertainties for fixed µH is demonstrated
in the second row. Here, the MHO uncertainty is estimated using the abc model (using
terms up to and including N2LO) and we have marginalized over X. We see (consistent
with speculation in [33]) that the MHO and scale-variation uncertainties have only a minor
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Figure 7. The panel of the likelihoods P (εL, pL|nL,p
(k)) within the allowed region of figure 6 at

fixed n = 10ns using different prescriptions. The first row corresponds to the fixed µH = 2.2, 2.6 and
3GeV and the log-uniform weight for X, and it assumes pH and nH are given by the N3LO∗ pQCD
values. The second row is obtained using the abc model with scale-marginalization prescription for
X and fixed µH . The third row introduces the simultaneous marginalization over X and µH in
the ranges [2.2, 2.6], [2.2, 3], [2.6, 3]GeV. The solid green (the dashed red) lines are the same as in
figure 6 indicating the allowed region if EoS is connected to only pQCD (cEFT).
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effect to the final likelihood function; the main effect is to somewhat further blur the pmax
and pmin boundaries compared to the first row.

Lastly, the third row constitutes a main result of this paper, in which the final QCD
likelihood function using the master formula eq. (2.9) is displayed. Compared to the
second row, it includes the simultaneous marginalization over X and µH from eq. (5.10)
with different µH ranges. We observe that the interplay between the area weight and
the marginalized likelihood makes the more aggressive range with lower values of µH ∈
[2.2, 2.6]GeV (lower left panel) rather consistent with the more agnostic range µH ∈
[2.2, 3]GeV (lower center panel). In particular it demonstrates the insensitivity to the upper
limit of the µH range. The most conservative range, µH ∈ [2.6, 3]GeV (right lower panel),
shows a somewhat larger allowed area in the ε–p plane; we note that this most conservative
choice produces a likelihood rather close to the likelihood function used in [33], given by
the µH = 2.6GeV panel in the top row.

6 Discussion and conclusions

In this paper, we have systematically discussed the effect of uncertainties of the perturbative-
QCD input on the theoretically allowed ε–p region at neutron-star densities (nL = 10ns)
arising from the missing higher-order terms, the renormalization-scale variation, and the
choice of reference density. To this end we employed Bayesian-inference techniques developed
in high-energy physics [62, 65, 66]. The main results of this inference are displayed in the
bottom row of figure 7, from which we conclude that pQCD constraints are robust with
respect to different sources of uncertainties.

It remains a pertinent question how much the improved pQCD uncertainty estimation
affects the global equation-of-state (EoS) inference of neutron-star matter. To provide the
first insights on this topic we interface the QCD likelihood function obtained here with the
EoS inference setup of [33]. All the details of the EoS inference strictly follow those of [33]
with the exception of the QCD likelihood function used. In figure 8 we show the effect of
the pQCD input on the posterior EoS region that has already been conditioned using a set
of astrophysical and cEFT constraints, shown in pink. The green hatched band shows the
effect for a fixed value of µH = 2.6GeV with log-uniform weights for X ∈ [1/2, 2], which
was denoted as “Pulsars+Λ̃+QCD” in [33]. The red dot-dashed band is the corresponding
result when QCD is imposed at a larger chemical potential of µH = 3GeV, which is the
most conservative choice discussed here. The blue dashed line corresponds to the case of
scale marginalizing µH in the range from 2.2 to 3GeV and X in the range from 1/2 to 2
obtained using the abc model, which is the most comprehensive and agnostic uncertainty
estimation we consider. We see that in all three of these cases, the pQCD input softens
the EoS at high densities. Marginalizing over µH only slightly widens the band at the high
energy densities. Even though we allow µH as high as 3.0GeV (or n ≈ 64ns) the band is
only mildly affected.

In figure 4 in the introduction we have already shown EoSs in the form of pressure
as a function of chemical potential, where the likelihood has been computed using the
prescription of the blue dashed lines in figure 8 (with the same astrophysical constraints as
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Figure 8. The impact of the QCD input using different prescriptions on the EoS inference. The
bands correspond to 68%-credible intervals. The ensemble conditioned only with astrophysical
observations and cEFT is shown in pink. The green and the red bands correspond to the QCD
input obtained using the log-uniform weight for X in the range [1/2,2] with QCD imposed at fixed
µH = 2.6 and 3GeV, respectively. The blue dashed band represents QCD input obtained using the
prediction of the abc model with scale-marginalization prescription for X and µH in range [2.2, 3]
GeV. Overall, the dependence on the ranges and the prescriptions is mild.

above). We see from figure 4 that the QCD EoS constrained by astrophysical observations
at low densities can be smoothly connected to our posterior distribution of the pQCD
pressure at higher densities. Remarkably, even at the maximal densities reached within
stable NSs, the EoS is in rough agreement with the 68% CIs from the posterior distribution.

We conclude that the effect of the pQCD input on the NS-EoS inference is insensitive
to the different prescriptions and choices used to estimate the uncertainties in the pQCD
calculation. This increases the confidence in their use within neutron-star EoS inference.
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A pQCD terms at high T and µ = 0

In this section, we provide the perturbative terms used in section 4.3. We remind the reader
that in this section, the terms of order k scale as O(gk) = O(αk/2s ). The perturbative terms
are [39]

p(0) = 19π2T 4

36 , (A.1)

p(1) = 0 (A.2)

p(2) = −3
8g(Λ̄)2T 4. (A.3)

Beginning with p(3), soft contributions appear in the form of terms arising from dimensional
reduction (DR) as well as hard-thermal-loop (HTL) resummation:

p(3) = p
(3)
soft,DR, (A.4)

p(4) = p
(4)
hard + p

(4)
soft,DR + p

(4)
soft,HTL, (A.5)

p(5) = p
(5)
soft,DR. (A.6)

These terms take the form

p
(3)
soft,DR = dAm

3
ET

12π (A.7)

p
(4)
hard = g(Λ̄)4

(4π)2

[
779
48 −378ζ ′(−1)−810ζ ′(−3)+ 117

4 log
(

Λ̄
4πT

)
+ 9γE

2 −
403 log(2)

60

]
T 4

(A.8)

p
(4)
soft,DR =−g(Λ̄)2m2

ET
2

(4π)2 dACA

[
log
(

Λ̄
2mE

)
+ 3

4

]
(A.9)

p
(4)
soft,HTL = dAm

4
E

256π2 fHTL(T/mE) (A.10)

p
(5)
soft,DR =−C

2
AdAg(Λ̄)4mET

3

(4π)3

[
π2

6 + 89
24−

11
6 log(2)

]

+ dAg(Λ̄)5T 4

128π3

√
3
2

[
27 log

(
Λ̄

4πT

)
+ 13

2 +27γE−12 log(2)
]

(A.11)

Here, m2
E = 3g(Λ̄)2T 2

2 is the screening mass scale, and fHTL is a numerical function discussed
in [39]. When we use these results, we use the same two-loop running coupling as used
above in previous sections, and we take as the central value of the renormalization scale by
Λ̄ = 0.723× 4πT , following [72], in place of the 2µq used at T = 0.

B Propagating cEFT to higher densities

Similar to how the pQCD calculations at high µH restrict the range of intermediate energy
densities and pressures at a fixed density nL using only the conditions of stability, causality
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and thermodynamic consistency, cEFT calculations at low densities also restrict the range
of pL and εL values at higher densities. Given a triplet of cEFT values

~βχ ≡ (pχ, nχ, µχ), (B.1)

the energy density and pressure at a fixed nL > nχ must be bounded by the curves
pχmin(ε) < p < pχmax(ε)

pχmin(ε) ≡ −
nL

√
µχ
(
−2εnχ + µχn2

L + µχn2
χ − 2nχpχ

)
nχ

− ε+ µχn
2
L

nχ
, (B.2)

pχmax(ε) ≡ pχ +
√
ε2 + 2εpχ − µ2

χn
2
L + p2

χ, (B.3)

with ε being bounded by the intersections of the pχmin and pχmax curves denoted as εχmin
and εχmax

εχmin ≡ µχnL − pχ,

εχmax ≡
µχ
(
n2
L + n2

χ

)
2nχ

− pχ.
(B.4)

The area bounded by these curves is given by

Aχ(~βχ, nL) ≡
∫ εχmax

εχmin

dε
[
pχmax(ε)− pχmin(ε)

]
= −

µ2
χnL

12n2
χ

(
4n3

χ − 3n2
χnL − 6n2

χnL log
(
nχ
nL

)
− n3

L

)
. (B.5)
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