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Abstract

Homomorphic encryption (HE) is a technique that allows computations to be
performed on encrypted data, just as if the data were unencrypted. This has
numerous potential applications, such as sensitive medical data, mainly when
privacy and anonymity are critical. HE can also be used in cases where multiple
parties need to perform computations on shared data without revealing the
data to one another. One fascinating application of HE is in machine learning,
specifically in a process known as federated learning (FL). FL is a cutting-edge
method that is particularly useful in situations where privacy is essential, as it
eliminates the need for data to be shared with a central server, as is the case
with traditional distributed machine learning models. However, privacy risks
are associated with sharing model parameters, as inference attacks can obtain
sensitive information. This issue can be addressed by encrypting the model
parameters with HE on the client side and aggregating the encrypted data.
In this paper, we explore federated learning with homomorphic encryption to
improve the privacy of 5G networks. The results of our experiments show that
encryption has a minimal effect on the the predictive performance of the model,
but leads to an increase in computation time by 587 %, 624 % and 679 % for
2, 5, and 7 clients, respectively.
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Chapter 1

Introduction

1.1 Background

Over the past decades, there have been rapid advancements in networking tech-
nology. This progression has allowed many devices to be connected. However,
as the number of devices grow, the wireless spectrum becomes more occupied
due to its finite nature. Therefore, the wireless spectrum needs to be utilized
effectively. The problem of efficiently utilizing the wireless spectrum, known
spectrum sensing, is a major challenge in cognitive radios (CRs) [1].

In recent years, deep learning (DL), has been demonstrated as a method for
spectrum sensing [2, 3]. Using a convolutional neural network (CNN), the
authors in [2] demonstrate that their model can achieve the state of art detection
performance, requiring no prior knowledge about the channel state information
or background noise, unlike traditional techniques.

A major challenge of utilizing DL models is the need of a large amount of
training data to make reliable predictions. Typically, these models are trained
in the cloud, using a large amount of user data. However, this entails potential
privacy and security risks, as the data needs to be shared with a third party.

To address this problem, the researchers at Google proposed a new method
called federated learning (FL) in 2017 [4]. This method allows for training a
decentralized model without needing to share the user data. The data can
remain on edge devices, with needing to only share the model parameters.
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Despite being a major improvement in terms of privacy, sending model param-
eters can also entail privacy risks. Previous research has shown that adversaries
can expose sensitive user information by doing inference attacks on the models
parameters [5].

One way of protecting the parameters is by using homomorphic encryption (HE)
[6, 7]. With this approach, the weights are encrypted ahead of time locally, and
only the the encrypted parameters are sent to the server, adding an extra layer
of security to federated learning.

1.2 Problem Statement

Deep learning is a potential solution to making spectrum sensing more effective
than the previous methods. However, the large amount of data needed to make
such models reliable comes with a privacy risk. This project aims to address
this challenge by utilizing federated learning and a variant of homomorphic
encryption, CKKS [8].

1.3 Outline and Contribution

The contribution in this project are threefold. Firstly, we do a comparison of
various PyTorch models on a spectrum dataset. Furthermore, we pick a best
suited model and measure its performance in a FL setting. Lastly, we add
homomorphic encryption, and measure its impact on performance using various
encryption parameters.

• Chapter 2 provides a theoretical overview of the key concepts used in the
report.

• Chapter 3 describes the experiment setup and mentions the required tools
for experiments.

• Chapter 4 presents the results of the experiments from chapter 3.

• Chapter 5 summarizes the results.

• Chapter 6 concludes the report.
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Chapter 2

Theory

2.1 Homomorphic Encryption

Homomorphic encryption (HE) is a type of encryption that enables computa-
tions on encrypted data, yielding the same value if the computation was done
on unencrypted data. A comprehensive overview of the subject can be found in
the survey [9]. This following summary of HE based on that source:

The idea of homomorphic encryption itself is not a new concept. It dates
back to 1978 when it was first introduced by Rivest et al. [10]. However the
approach was limited by only enabling either one type or a limited amount of
computations on the encrypted data.

In 2009, a breakthrough was made by Gentry [11], creating a new approach to
HE, enabling both computations for an unlimited amount of times. This is also
known as fully homomorphic encryption (FHE).

In general, we distinguish between three types of HE: Partially Homomorphic
Encryption (PHE) allows for only one operation: either addition or multiplica-
tion, but not both. Somewhat Homomorphic Encryption (SHE) allows for both
addition and multiplication, but only for a limited amount of times. Fully Ho-
momorphic Encryption (FHE) allows for both operations for a unlimited number
of times.

Although Gentry’s method to FHE was groundbreaking, his method uses a
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process known as bootstrapping which makes the scheme computationally ex-
pensive and often not feasible in real world scenarios. As a result numerous
different schemes have emerged in the following years. In particular, a fairly
recent scheme, CKKS, will be a part of this project.

2.1.1 CKKS Scheme

The Cheon-Kim-Kim-Song (CKKS) scheme is a form of HE that enables arith-
metic operations such as addition or multiplications on real numbers [8]. While
the details of CKKS scheme can be complex and require an understanding of
advanced mathematics and cryptography, a quite comprehensive summary can
be found in [12]. This paper summarizes all of main components of the CKKS
scheme including encoding and decoding, key generation, encryption and de-
cryption, evaluation, and arguably its most important feature, rescaling. The
following formulas are obtained from that source.

Encoding and decoding. To encrypt a message with CKKS, it has to be
encoded first. Encoding works by mapping a vector of complex numbers, z to
a plaintext object, a. For this, a scale factor ∆ and a canonical embedding
function π are used. The encoding function is given by:

Encode(z,∆) = [∆ · π−1(z)] (2.1)

The encoded result will be an element of the polynomial ring Rq = Zq[x]/f(x),
where q is a prime number used for modulus and f(x) is a polynomial.

The decoding is just the opposite of encoding. It maps the plaintext objects to
a vector of complex numbers. The decoding function can be written as:

Decode(a,∆) = π(
1

∆
· a) (2.2)

Key generation. The key generation is done accordingly. A secret key Sk is
sampled from a polynomial of degree n with coefficients {-1, 0, +1}. Then,
the public key are calculated as follows:

Pk1 = [−a · Sk + e]qL

Pk2 = a
U←− RqL

(2.3)
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where a is a random polynomial sampled uniformly from RqL, and e is an error
term. The [·]qL denotes a modulo operation by prime q.

Encryption and decryption. After the keys have been generated, encryption
can be performed. To encrypt a plaintext message M, the following formula is
used:

C1 = [Pk1 · u+ e1 +M ]qL

C2 = [Pk2 · u+ e2]qL
(2.4)

where u are random polynomials from R2 and e1 and e2 are error terms. The
results are then combined to form a ciphertext C = (C1, C2) in R2

ql

To decrypt a ciphertext, a secret key is needed. The result will give an approx-
imate value of M:

M̂ = [C1 + C2 · Sk]ql (2.5)

Evaluation. The CKKS scheme offers two evaluation functions on ciphertexts:
multiplication and addition. The function for addition is given as:

EvalAdd(C(1), C(2)) =([C
(1)
1 + C

(2)
1 ]ql, [C

(1)
2 + C

(2)
2 ]ql)

= (C
(3)
1 , C

(3)
2 ) = C(3)

(2.6)

while the function for multiplication is given as:

EvalMult(C(1), C(2)) =([C
(1)
1 · C

(2)
1 ]ql, [C

(1)
1 · C

(2)
2 + C

(1)
2 · C

(2)
1 ]ql,

[C
(1)
2 · C

(2)
2 ]ql) = (C

(3)
1 , C

(3)
2 , C

(3)
3 ) = C(3)

(2.7)

Rescaling is an important part of the CKKS scheme, and is what contributes
to reducing the noise levels. As seen from the evaluation function, the mul-
tiplication causes the polynomial size to grow by one, and thus also leading
to a larger scale. If the scale factor grows too big, it can have an impact on
evaluation and provide wrong results. To keep the scale factor down, rescaling
needs to be performed:

Rescale(C,∆) =
1

∆
· [C1, C2]ql = [Ĉ]ql−1 (2.8)
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2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural networks that are
used to process image data. Generally, they can be summarized as convolutional
layers, pooling layers and fully connected layers [13]:

• Convolutional layers are the fundamental features of CNNs. These layers
are responsible for extracting the features of the data. For that purpose
they utilize learnable kernels, which are small matricies. Once the layer
receives an input, the kernel is mapped onto it, where it is then used
’slide’ to over the whole spatial dimension. For every step in the sliding
process, a dot product is calculated between the input and the kernel
resulting in activation maps. These activations are then followed up with
activation functions. A common one is rectified linear unit, better known
as ReLu.

To reduce complexity of the model, a few parameters of the convolutional
layer can be set. These are depth, step-size and zero-padding.

• Pooling layers are aimed at reducing dimensionality and thus the com-
putational complexity of the model. They function by covering each
activation map and applying an operation on it. A common operation is
max function, better known by max-pooling. There are also other other
pooling operations such as average-pooling.

• Fully connected layers are layers that have every neuron of one layer
connected to every neuron of the next layers, hence their name.

In essence, a CNN takes an input vector and passes it through a sequence of
layers. These layers are responsible for extracting and learning features from the
data, producing a final result. The nature of the result varies on the specific
task of the CNN. For instance, in object classification tasks, the CNN given
image, is used to assign a label to an image indicating its content, e.g. cat or
a dog [14].

On the other hand, another application is called semantic segmentation. The
aim of semantic segmentation, unlike object detection, is not to label an en-
tire object, but rather the individual pixels [15]. In this project we will utilize
semantic segmentation to classify pixels in wireless spectrograms into one of
three possible classes: LTE signals, 5G NR signals, or noise signals.
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2.3 Federated Learning

Federated Learning (FL) is a type of distributed machine learning that enables
entities to train a global model without sharing their local data. Since the origin
of FL, there have been proposed many variants of FL. The most common one,
however, is called FederatedAveraging or FedAvg [4].

FedAvg can be summarized as follows. The participants train a model for a
certain amount of rounds, producing a locally updated model. Then, the models
parameters are sent to a central server where they are averaged to produce a
global model. This averaging is weighted to ensure that models with a large
amount training data will have a greater influence over the models parameters.
After the averaging step, the global model is sent back to the clients. This
concludes one round of FL. The process is done iteratively for an arbitrary
amount of rounds, usually until the model converges.

FL has these key properties that make it an attractive option compared to other
methods [4]:

• It can handle a large amount clients simultaneously. The authors ex-
pect the number of participating clients be much larger than the average
number of training samples per client.

• It is designed to handle non-IID data. Because clients hold a different set
of data, the distribution of data might vary among them. For instance, if
training a language model, the difference in distribution may be influenced
by each clients unique vocabulary.

• The size of data may be different from one client to another. FL is
designed to handle these imbalances.

• FL aims to limit the communication between clients, as the amount of
speed and availability might vary across the clients. It does so by sending
the parameters which are a lot smaller in size than raw data.

The nature of FL, making the raw data stay on the local device, makes FL
a much more privacy friendly option than traditional methods. However, one
downside is that if one server is compromised and an unwanted party gets access
to to the parameters, it can lead to inference attacks [5].
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In this project we will be adding an additional layer of security by encrypting
the weights before sending them with HE.

2.4 Spectrum Sensing

Spectrum sensing is a method for detecting the presence of primary users within
a licensed spectrum, and is a key aspect of of cognitive radios. When secondary
users want to utilize a licensed band, they must perform spectrum sensing to
detect the presence of primary users. If the presence is detected, the secondary
users have to change channel or reduce transmit power to not cause interference
[16].
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Chapter 3

Methodology

Client 2Client 1 Client n

Server

w1
w2

wnw
w

w

Σ
n

i=1

wiw=
1_
n

Figure 3.1: An overview of the proposed model.

In this chapter, we explain our approach. Figure 3.1, provides a simplified
overview of how it might be applied to a real-world setting. Each client collect
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wireless spectrum data from a nearby cell tower to train a local model. Next, the
weights are encrypted and transmitted to a central server for aggregation, using
the FedAvg approach. Upon receiving the averaged weights from the server,
they can be combined with the local model. The result is an improved model as
every client indirectly benefits from the data of others, while preserving privacy
by avoiding the sharing of raw data.

3.1 Data

The dataset is downloaded by following the Matlab tutorial on deep learning for
spectrum monitoring in [17]. In total, it consists of 900 256 x 256 images of
wireless signals and their corresponding ground truth labels, where each image
consists of three types of signals: 5G NR, LTE and noise signals. A sample of
three wireless frames is shown in the figure 3.2.
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Figure 3.2: The raw signals and their corresponding label masks.

Matlab also provides a way to create synthetic data, by using the 5G- and LTE
Toolbox, if more data is needed. The possible range of parameters can be seen
in the table 3.1.
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Table 3.1: The parameters of the 5G NR and LTE signals

Parameters 5G NR LTE Units

Bandwidth [10, 15, 20, 25, 30, 40, 50] [10, 5, 15, 20] MHz
SNR [40, 50, 100] [40, 50, 100] dB

Doppler [0, 10, 500] [0, 10, 500] Hz
Sub-Carrier Spacing [15, 30] - kHz
SSB Block Pattern [’Case A’, ’Case B’] -

SSB Period 20 - ms
Duplex Mode - FDD

The images included in the dataset were stored in PNG files, and the truth
labels were stored in Hierarchical Data Format (HDF4) files. Because HDF4 is
an older format and generally is not well supported for Python, the labels were
converted to a newer format, HDF5. For that purpose, the tool h4toh5tools
[18] was used.

3.2 Tools and materials

The experiments in FL were carried out in the Flower framework [19], which
has the flexibility of setting up the experiments. The homomorphic encryption
was done using Pyfhel [20], which has support for the CKKS scheme. During
the training, functions from Scikit-learn [21] were used to calculate intersection
over union (see 3.4.3), and F-score (3.4.4): The machine learning was done
using the PyTorch library [22].

3.3 Solution Approach

3.3.1 Model Selection

Given the limited computational resources and large computational cost of ma-
chine learning and encryption, it is crucial to find the most optimal model for
a given task. As of the time of writing, there are three available models for
semantic segmentation tasks in PyTorch: DeepLabV3 [23], Fully-Convolutional
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Network (FCN) [24] and LR-ASPP [25], each with a different backbone.

In order to find the right model, we split the data into train, test and validation
sets in a 60:20:20 ratio. Next, we train every model for 10 epochs and test it
on the validation set every iteration. The training performance can be seen in
the figure 3.3.

Figure 3.3: Model performance on the validation set.

Furthermore, we flatten the parameters and encrypt them using Pyfhel in
batches of size 214. The final evaluation on the test set, the encryption times,
and the model sizes are presented in 3.2.
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Table 3.2: Performance of each model on the spectrum dataset.

Model Params. Enc. T. Train T. Loss IoU Acc. F-Sc.

DL (MN) 11 M 15.58 s 193 s 1.34× 10−6 0.80 0.88 0.88
DL (RN101) 58.6 M 83.08 s 987 s 1.13× 10−6 0.79 0.87 0.87
DL (RN50) 39.6 M 55.58 s 711 s 9.7× 10−7 0.81 0.89 0.89
FCN (RN50) 32.9 M 45.61 s 528 s 1.25× 10−6 0.76 0.85 0.85
FCN (RN101) 51.9 M 72.14 s 804 s 1.21× 10−6 0.77 0.86 0.86

LR-ASPP (MN) 3.2 M 4.45 s 144 s 1.14× 10−6 0.82 0.90 0.90

Based on the results in figure 3.3 and table 3.2, the LR-ASPP model is chosen
as it the smallest in size and achieves similar performance compared to the other
models.

3.3.2 Pyfhel

The encryption is done with Pyfhel [20], an open source library for HE in Python,
which uses Microsoft SEAL [26] as backend: a popular library for HE in C++
that supports the BFV [27] and the CKKS schemes.

To encrypt an object with Pyfhel, a Pyfhel object must first be initialized. This
object can be configured with these parameters: polynomial degree n, scale,
polynomial modulus qi_sizes, as well as security level sec.

The polynomial degree n determines the vector size that can be encrypted. In
our scenario, given that we want to encrypt flattened parameters (which are
long 1d vectors), we set this value as the highest currently possible 215. From
experiments, we found that a lower value resulted in increased encryption time,
due to the need to encrypt more batches for the same amount of parameters.
The qi_sizes is an array of integers, each representing the bit size of primes
is used for the modulus operations. For our initial, testing we set this value to
qi_sizes = [60, 30, 30, 30, 60], which gives a total bit size of 210. The scale
is used for rescaling operations to reduce the noise.

We tested multiple configurations of the precision scale and polynomial modulus
to measure the impact in the federated setting. For the security parameters,
the available options are 128, 192 and 256 bit security.
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3.3.3 Flower

We utilized the open-source Flower framework [19] for our experiments. This
framework, designed for experimental research, is an easy-to-use API for FL.
Figure 3.4 provides an simplified flow of the program with added encryption.

Start Simulation

Server

Send Parameters

Encrypt and Serialize

Deserialize

Aggregate

Evaluation Client

Deserialize and
Decrypt

Evaluate ModelTrain Model

Yes

Send Parameters

Serialize

Training Client

No

First Iteration? Request Parameters
From A Client

Deserialize and
Decrypt

Encrypt and Serialize

Distribute Global
Parameters

for each round in totalRounds:

Figure 3.4: Simplified flow of the program in Flower with added encryption.
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Starting off, we followed examples on Flowers website to set up the experiments.
In general, the set-up consists of four main stages: data loading and partitioning,
model creation, the Flower client setup and simulation parameters setup.

• Data loading and partitioning. The data is loaded, split to training
and testing sets and partitioned to all clients. In our setup, we read the
images stored in the ’dataset’ folder, which contains two subfolders for
images and labels. In the reading process we use a mapping function to
convert the labels from 0, 127 and 255 to 2, 0, and 1 respectively. This
step is needed because Pytorch’s Cross Entropy Loss function expects the
labels to contain indices in range [0,C) where C is the number of classes.
Without this mapping, the function might interpret it as a 255-class, and
not a 3 class problem, yielding wrong results. In the preprocessing step,
we also perform data normalization to scale the input data from [0, 255]
to [-1, 1].

• Model creation. We load the 3.4 million parameter model, LR-ASPP
(MobileNetV3) for every client as it was shown to provide the best results
in section 3.3.1, provided by Pytorch.

• The Flower client. There are two types of clients in Flower: NumPy-
Client and Client. The main difference is that the NumPyClient takes
care the of the serialization and deserialization itself, but in Client that
can be customized. However, our experiments showed that NumPyClient
would return an error when trying to serialize an encrypted Pyfhel object.
Therefore, a decision was made to use Client instead.

• Parameters. To start the simulations, we used Flower’s start_simulation
function which requires the following input: a client function, the number
of clients, configurations (number of rounds), a strategy and client re-
sources. The client function is used to initialize the client objects. Here,
we specify the dataset partition for each client, the model and a boolean
value used to determine if client should use HE. In each experiment we
used a total of 10 clients, and a sample pool of 5 evaluation clients and
2, 5 or 7 training clients.

3.3.4 Strategy

The strategy was FedAvg both for the unencrypted and encrypted scenarios.
However, we changed the aggregation function to accommodate for the en-
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crypted encrypted case.

3.3.5 Weighting function

Flower allows specifying a weighting function for either a distributed evaluation
on client side or on the server side. Since the server does not have access to the
unencrypted parameters, we use distributed evaluation only. The distributed
function allows finding a weighted average of evaluation results, thus giving
more accurate results. Here we used a sample of 5 evaluation clients.

3.3.6 Serialization and Deserialization

To send the parameters using Client, they need to be stored in Flowers own
Parameters object. Here, we also did serialization using Pyfhels to_bytes()
method. The serialization function is given by:

Algorithm 1 Serialize function

1: function Serialize(encryptedParameters)
2: batches← []
3: for each batch in encryptedParameters do
4: bytes← batch.to_bytes()
5: append bytes to batches
6: end for
7: return Parameters(tensors = batches, tensorType =′ PY Ctxt′)
8: end function

Once the parameters object is received, it needs to be deserialized. In Pyfhel,
this can be done with converting the stream of bytes back into a PyCtxt object,
together with a Pyfhel object. The deserialize function is given as follows:

16



Algorithm 2 Deserialize function

1: function Deserialize(parameterObject, HE)
2: output← []
3: for each batch in parametersObject.tensors do
4: append PyCtxt(bytestring = batch, pyfhel = HE) to output
5: end for
6: return output
7: end function

3.3.7 Encryption

The encryption function is used by the training clients and can be summarized
as follows. The function takes the flattened parameters as input and divides
them into batches defined of size defined by the Pyfhel object. The batches are
stored in a list and returned. The batch size is determined by the polynomial
modulus degree parameter of Pyfhel and is always n/2, as determined by the
HE.get_nslots() method.

Algorithm 3 Encryption function

1: function Encrypt(flatParameters,HE) ▷ HE: Pyfhel object
2: B ← HE.get_nSlots() ▷ B: Batch size
3: N ← ceil(length(flatParameters)/batchSize) ▷ N: # of batches
4: Res← [] ▷ Res: Result list
5: for i← 0 to N do
6: a← i ∗B
7: b← (i+ 1) ∗B
8: Batch← flatParameters[a : b]
9: encryptedBatch← HE.encryptFrac(Batch)

10: Res.append(encryptedBatch)
11: end for
12: return Res
13: end function

17



3.3.8 Aggregation

The aggregation function is used by the server. It can be summarized as follows.
It takes a list containing sub-lists of parameters. It uses two loops. The first
one adds the parameters of each client to a single list, as seen in lines 6 to 10.
The second one finds the average by dividing the list by the number of clients.
Since the division is not possible with the CKKS scheme, we find a fraction
number by dividing 1 by the number of clients and multiply the results.

Algorithm 4 Aggregation function

1: function Aggregate(paramsLists,HE)
2: C ← length(paramsLists) ▷ C: Number of clients
3: P ← length(paramsLists[0]) ▷ P: Number of parameters
4: N ← HE.encode(1.0/C)
5: aggParams = paramsLists[0]
6: for each params in paramsLists[1 :] do
7: for i← 0 in params do
8: aggParams[i]← aggParams[i] + params ▷ Calculating sum
9: end for

10: end for
11: for i← 0 to P do
12: aggParams[i]← aggParams[i] ∗N ▷ Calculating average
13: end for
14: return aggParams
15: end function

3.3.9 Decryption

The decryption function is called on the client side and is the one of the last
steps of the FL round. This function consists of two steps: the initial decryption
of parameters and reshaping these parameters back to their original form. The
original shapes of the parameters, obtained from the flattening operation, are
stored in the clients class object. The first step happens from line 4 to 7 in
the algorithm. For every encrypted parameter, the HE.decryptFrac function
is called. The resulting decrypted parameters are then stored in a list. The
following step, can be seen in the line 12 to 18. Here is where the reshaping
is done. For that purpose Numpy’s reshape function is used. Once complete,
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the decrypted parameters can be then combined together to the model’s state
dictionary to update the model and conclude one round of the FL process.

Algorithm 5 Decryption function

1: function Decrypt(encryptedParams,HE, originalShapes)
2: flatParams← []
3: N ← length(encryptedParameters)
4: for i← 0 to N do
5: decParams← HE.decryptFrac(encryptedParams[i])
6: extend flatParams by decParams
7: end for
8: M ← sum(product(dimensions in originalShapes))
9: flatParams← flatParams[: M ] ▷ Remove padding caused by

encryption
10: decParams← []
11: i← 0
12: for each shape in originalShapes do
13: D ← product(shape)
14: batch← flatParams[i : i+D]
15: batch← batch.reshape(shape)
16: append batch to decParams
17: i← i+D
18: end for
19: return decParams
20: end function

3.4 Evaluation metrics

3.4.1 Loss

Loss is a measurement of how well the model makes predictions compared to
the actual data. It can be used both in training and validation. In training,
the models main objective to minimize the loss by adjusting the parameters
by comparing the prediction output and the actual data [28]. When used in
validation data, it is used as a measure of how well the model generalizes on
unseen data.
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In this project, we use one specific type of loss know as called cross-entropy loss.
This type of loss measures the difference between the probability distributions of
the model’s output and the target labels. For a given sample n the cross-entropy
loss can be calculated as follows [29]:

ln = −wyn log
exp(xn,yn)∑C
i=1 exp(xn,c)

· yn (3.1)

where x is the input, y is the target, wc is a weighting factor, C is the number
of classes, N is the mini-batch dimension.

3.4.2 Accuracy

For an semantic segmentation problem, an important evaluation metric is ac-
curacy. Accuracy is a measure of how many points are classified as correct out
of the total number of points. More formally it can be given as

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

where TP is true positive, TN is true negative, FP is false positive, FN is
false negative [30].

One limitation of accuracy is that it does not take into the account the im-
balance of the datasets. If the class distribution is heavily skewed towards one
class, that can lead to a high accuracy score, despite doing bad predictions on
the minority classes.

3.4.3 Intersection over Union

Intersection over Union (IoU) or also known as Jaccard index, is another com-
monly used metric in computer vision problems. The IoU is defined as the size
of the intersection divided by the size of the union between two sets [31]. This
can be more formally written as:

IoU =
|A ∩B|
|A ∪B|

(3.3)

for two sets A and B.
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In practice, the set A usually represents the input images (input pixels), while B
represents the prediction output (output pixels). The numerator thus finds the
area of overlap between the input and the output. The denominator calculates
the total area. The division operation results in a score that 0 ≤ IoU ≤ 1. An
IoU that is close to 1 represents a large overlap and good prediction, while an
IoU close to 0 represents small overlap and bad prediction.

3.4.4 F-Score

The F-score is a combination of two other metrics, precision and recall. The
formula for it is given by [32]:

F-score =
2 · precision · recall
precision + recall

(3.4)

Precision is a measure of the correct predictions out of all the positive predictions
by the model:

precision =
TP

TP + FP
(3.5)

Recall is a measure of the correct classifications on the positive values:

recall =
TP

TP + TN
(3.6)

By using the formula in 3.4, we find a balance between the precision and recall.

3.5 Limitations and Challenges

The biggest challenge encountered from the experiments was the memory usage.
The experiments were done on a single PC with 32 GB of RAM, this meant
that the number of clients that could be simulated was limited.

For instance, when doing experiments with 10 clients and a high amount of
rounds, the program would use up all memory at round at some point and
crash. The addition of encryption made the problem worse.

This led to a reduction in the number clients being simulated. From testing
we found the highest possible was seven clients, both for the unencrypted and
encrypted case.
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Chapter 4

Results

4.1 Baseline model

First, we test the models performance in a centralized setting. Initially, we split
the data into a training, validation and testing set in a 60:20:20 ratio. Then, the
model is trained with early stopping and patience level of 5. The results show
that the model converges early and stops just after 16 epochs. The evaluation
on the test set after training the model show gives the following metrics: Loss
= 5.83×10−7, IoU = 0.83, Accuracy = 0.90, F-score = 0.90. Figure 4.1 shows
the evaluation metrics on the validation set after each iteration. 3.2 illustrates
the model predictions.
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Figure 4.1: Early convergence of validation metrics after only a few rounds.
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Figure 4.2: Top row shows the wireless signals. Middle row shows the ground-truth
labels, and the bottom row shows the labels predicted by the model.

4.2 FL Without Encryption

For our second experiment, we validate the model performance in the distributed
setting without using encryption. We do three different tests, each done with
either 2, 5, or 7 clients. In all cases, the tests are configured to run for 100
iterations, with one local update per iteration. Figure 4.3 provides the validation
metrics for each round. A quick look at the figure shows that the model
converges around the 20 round mark for all metrics.
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Figure 4.3: Results from plain FL, showing convergence after 20 rounds.

4.3 FL With Encryption

In the next experiment we reduced the amount of training rounds from 100 to
30, and re-run the experiments with and without encryption using 7 clients.
For the encrypted case, we set the initial parameters accordingly: n = 215,
scale = 230, qi_sizes = [60, 30, 30, 30, 60] (210 bits) and sec = 128 bits.
The performance results can be seen in the figure 4.4. The figure shows that
model performance during the training process is comparable to the plain model.
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Figure 4.4: FL with and without encryption, showing similar results for each metric.

There is, however, a noticeable difference in runtime. The experiment’s dura-
tion was 1636, 2514, 3353 seconds for 2, 5 and 7 clients respectively for the
encrypted case. This is a large increase compared to the plain model where the
experiment’s duration was 311, 402 and 652 seconds for 2, 5 and 7. Figure
4.5 shows the time distribution of the following tasks: encryption, decryption,
aggregation, evaluation, training. A quick look at the figure confirms that
encryption and decryption account for the majority of the time spent.
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Figure 4.5: The time distribution of clients using homomorphic encryption.

4.4 Security levels

This section explores the impact on performance of varying encryption security
levels. We test for the three available security levels: 128, 192 and 256 bits,
with 7 clients each for each test. We also lower the qi_sizes parameter to a
total of 150 bits. The results can be seen in figure 4.6.

Interestingly, we observe no noticeable impact in terms of performance between
the three security levels. Each experiment had similar runtime, at around 2100
seconds each. However, given that the last experiment, which also included a
test for 128 bit security, had a runtime of 3353 seconds, we can infer that the
change was a result of reducing the qi_sizes parameter.
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Figure 4.6: Performance for 7 clients with 3 levels of security.

4.5 Scale parameter

In an effort to reduce computational overhead, we conducted experiments with
varying the scale parameter. The polynomial modulus was fixed at 120 bits,
while the scale values were tested in the range from 220 to 230. The results are
presented in figure 4.7.

Interestingly, the highest scale value at which the model converged was 225,
although a sharp decrease can be observed at the end of the training cycle. As
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such, 226 appears to be the smallest viable scale for the model. The experi-
ments also showed that the scale parameter had minimal impact on runtime;
all experiments ran for around 1630 seconds for 5 clients.

Figure 4.7: Impact of the scale parameter on models performance. A threshold at
225 can be observed.
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Chapter 5

Discussion

The results from figure 4.4 show that there is no noticeable difference in terms
of performance between the plain and the encrypted model. The noise added
from encryption is not enough to affect training in any meaningful way.

A big difference can be seen however in the runtime of the experiments. The
added encryption has caused an increase of 587 %, 624 % and 679 % for 2, 5,
7 clients respectively. As seen from figure 4.5, the majority of increase is caused
by the added computational overhead from encryption and decryption on the
client side. However, the encrypted aggregation could have an impact as well.

Surprisingly, a significant reduction in runtime was seen from reducing the mod-
ulus parameter from 210 to 150 bits. However, no significant change was seen
after reducing this parameter any further.

We infer that training a distributed model can indeed be done securely with help
of FL and HE to gain the benefits of CNN-based spectrum sensing, however
the computational cost of that needs to be carefully considered.

In this project we studied how the parameters affect the models computational
cost. However, more future work can be done to find the effect of using a
higher modulus size and scale. Furthermore, the experiments in this project
were conducted with a small amount of clients due to memory constraints.
More work can be done on a bigger scale with larger amount of clients using a
bigger dataset.
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Chapter 6

Conclusion

Machine learning (ML) techniques can serve a great benefit to the traditional
way of doing spectrum sensing. However, the large amount of data which is
needed to make these models reliable, and the nature of the spectrum sensing
data requires that such systems are designed in a secure and reliable manner in
order to not compromise users’ privacy.

In this project this problem is addressed by using FL, enabling a distributed
model to be trained without needing to share any client data to a central
server. As additional layer of security, HE was added to make inference attacks
on the models parameters impossible.

We did an evaluation of the LR-ASPP model in the federated learning setting
using 2, 5 and 7 clients and measured the results. A convergence of the model
after 20 rounds was found, which we utilized in the following experiments.

Furthermore, we did a comparison between an unencrypted and encrypted
model, showing no impact in terms of prediction performance, but a large
increase increase in computational overhead caused by the encryption and de-
cryption process.

Next, we examined the correlation between performance and key sizes of 128,
192 and 256 bits. We found no significant impact of the key size on perfor-
mance. A significant change was noticed that can be attributed to reducing
the qi_size parameter from 210 to 150.
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Lastly, we reduced the qi_size further to 120 bits and tested the scale parameter.
We found a threshold of 225 where the model can be trained.

In this project, we demonstrated that the CKKS scheme is a viable option for
distributed spectrum sensing with FL. We found minimal impact on prediction
performance between the plain and encrypted model. However, the increased
computational cost introduced by encryption, requires careful consideration to
determine if it feasible in real-world applications.
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Appendix A

Additional Information

A.1 GitHub repository

The code for this project can be found in the link below:

www.github.com/Empie/5G-Networks-Privacy
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