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Abstract

Wind turbines, as critical components of the renewable energy industry, present unique
maintenance challenges, particularly in remote or challenging locations such as offshore wind
farms. These are amplified in the inspection of leading-edge erosion on wind turbine blades, a
task still largely reliant on traditional methods. Emerging technologies like computer vision and
object detection offer promising avenues for enhancing inspections, potentially reducing
operational costs and human-associated risks. However, variability in image resolution, a
critical factor for these technologies, remains a largely underexplored aspect in the wind energy
context.

This study explores the application of machine learning in detecting and categorizing
leading edge erosion damage on wind turbine blades. YOLOvV7, a state-of-the-art object
detection model, is trained with a custom dataset consisting of images displaying various forms
of leading edge erosion, representing multiple categories of damage severity. Trained model is
tested on images acquired with three different tools, each providing images with a different
resolution. The effect of image resolution on the performance of the custom object detection
model is examined. The research affirms that the YOLOv7 model performs exceptionally well
in identifying the most severe types of LEE damage, usually classified as Category 3,
characterized by distinct visual features. However, the model's ability to detect less severe
damage, namely Category 1 and 2, which are crucial for early detection and preventive
measures, exhibits room for improvement.

The findings point to a potential correlation between input image resolution and
detection confidence in the context of wind turbine maintenance. These results stress the need
for high-resolution images, leading to a discussion on the selection of appropriate imaging
hardware and the creation of machine learning-ready datasets. The study thereby emphasizes
the importance of industry-wide efforts to compile standardized image datasets and the potential
impact of machine learning techniques on the efficiency of visual inspections and maintenance
strategies. Future directions are proposed with the ultimate aim of enhancing the application of
artificial intelligence in wind energy maintenance and management, enabling more efficient
and effective operational procedures, and driving the industry towards a more sustainable
future.
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1. Introduction

Management and maintenance of industrial assets plays a significant part in achieving optimal
levels of efficiency in critical energy infrastructure, such as wind turbine systems. Effective
maintenance practices are essential in sustaining reliability across operational time periods,
considering that these systems are exposed to a variety of environmental conditions that eventually
reduce or compromise their effectiveness or lifespan to alarming levels. One such issue is leading
edge erosion (LEE), which, if unchecked, can affect structural integrity as well as appropriate
aerodynamic properties of the blades. It is crucial to identify and evaluate LEE proactively with
emphasis on accuracy in order to enable optimal maintenance planning and reduce operational
Costs.

The way that inspections and maintenance activities are carried out has the potential to change
and adapt substantially as a result of the integration of computer vision technologies into industrial
asset management. In particular, its application to assessing leading edge erosion (LEE) damage to
wind turbine blades presents a promising possibility of conducting reviews more precisely and
rapidly. The quality and resolution of the input visuals, however, play an important role on how
well these strategies work. This thesis explores the impact of image resolution variances from
different sources on the precision of LEE damage identification and categorization using a computer
vision algorithm. Ultimately, the aim is to strengthen asset management procedures for maintenance
planning.

Three primary objectives guide this study and determine its methodology. They include:

e Evaluating how effectively computer vision technologies detect and classify LEE
damage on wind turbine blades utilizing multiple datasets.

e Examining the effects of several picture resolution/quality levels when analyzing LEE
damage.

e Determining the most useful sources of images in determining different cases of LEE.

1.1. Background and Problem Presentation

It is increasingly becoming essential to include wind energy as a key component in order to
effectively meet the goals set for the production of renewable energy on a worldwide scale.
Managing the effectiveness and efficiency of wind turbine systems through appropriate asset
management procedures is an important part of this change. Leading-edge erosion (LEE) on the
turbines' blades, however, is one of the primary obstacles encountered throughout these
maintenance procedures. Failures resulting from erosion damages could lead to decreased
aerodynamic capabilities and limited lifespan for these assets. Therefore, early detection of LEE is
crucial for efficient maintenance planning with the objective at minimizing operational expenses.
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Despite the importance of detecting and evaluating LEE, traditional methods of inspection
can be time-consuming, labor-intensive, and often expose maintenance personnel to safety risks.
For instance, manual visual inspections require workers to physically access turbine blades,
sometimes in challenging weather conditions or at great heights.

The emergence of computer vision technology offers a promising alternative to these
conventional methods. Computer vision can enable the automation of LEE damage identification
and categorization with the use of machine learning techniques on high resolution imagery. The
accuracy, effectiveness, and safety of wind turbine inspections are prone to improvement with such
applications.

Within the potential that computer vision brings, one major component of successful
application on maintenance cases is the resolution of the input images. The accuracy of LEE
detection is open to be influenced to a certain degree by the quality of the images to be analyzed.
The focus, then, lies on how the performance of computer vision algorithms might vary with
different resolutions.

From cameras embedded on drones to everyday smartphones, given the variety of imaging
devices available, there is a need to understand which sources of images are most useful in detecting
and categorizing levels of LEE. In this study, a Ryze Tello drone with a built-in lens, an iPhone,
and a consumer-grade digital camera will be utilized to capture images of a 2.5-meter blade section
with artificially recreated LEE damages.

Overall, the problem this thesis aims to address is the gap in understanding about the impact
of image resolution variances on the effectiveness of computer vision algorithms in identifying and
categorizing LEE damages. Successful understanding could therefore support the selection of
imaging devices for wind turbine inspections and provide a novel approach to maintenance
applications in the field.

1.2. Research Objectives and Relevance

The study looks at optimal input equipment for this application as well as how image
resolution affects a computer vision algorithm's ability to detect and categorize LEE damage. The
goals defined to be achieved are:

e Determine the impact of using different resolutions collected from different sources for
identifying and classifying LEE damage on wind turbine blades.

e Establish the ideal level of resolution that produces optimal results with the given inputs,
while evaluating how variation affects performance ratings.

e Evaluate how well various imaging tools perform when it comes to capturing images that
meet the criteria for carrying out computerized analyses of LEE damage.
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The increasing focus on wind energy on a global scale, and the use of computer vision for
asset management provides the basis for the study's significance. This research will contribute to
the knowledge-base regarding how image resolution affects computer vision algorithms, which will
ultimately assist stakeholders choose the best imaging systems to enhance the effectiveness and
efficiency of wind turbine blade inspections.

The results of the study can also benefit fields beyond wind turbine maintenance. It can
inform researchers on how to use computer vision technologies in comparable circumstances where
inspections are important, such as in construction, infrastructure, or manufacturing quality control.
From this perspective, the overall understanding of industrial computer vision applications can be
expanded.

1.3. Research Question

The primary research question that drives the work completed in this thesis is:

"Does image resolution have an impact on the performance of customized object detection
models within wind turbine blade inspections?”

This research aims to explore the link between the resolution of input images fed to
computer vision algorithms and the level of accuracy achieved by specific applications in
generating outputs. Due to its presence at the intersection of two areas that are quickly evolving,
renewable energy and artificial intelligence, this particular focus carries significant weight. Its
prospective effects on visual maintenance initiatives and asset management techniques, particularly
in the wind energy sector, are particularly important.

By answering the question defined above, the study seeks to contribute novel perspectives
to the body of knowledge that exists on computer vision applications and to reveal insightful
information that can improve the general effectiveness of maintenance procedures across a variety
of fields.

1.4. Methodology

The methodology of this study is built on an interdisciplinary approach, combining elements
of physical operations, experimental procedures, and computational analysis to explore the impact
of image resolution on the identification and categorization of leading edge erosion (LEE) in wind
turbine blades using a computer vision algorithm.

The physical component of this research involves the utilization of a wind turbine blade
section that is subjected to controlled erosion to simulate different stages of LEE damage. The blade
serves as the physical representation of real-world conditions and provides the base for the
collection of image data. Furthermore, various imaging devices, including a drone, a smartphone,
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and a digital camera, are used in capturing these representation of real-world conditions for further
computational analysis.

Experimental procedures in this study encompass the controlled capture of image data from
the eroded blade model using the selected imaging tools. These procedures are performed under
uniform conditions to ensure the consistency of the data collected.

The core of the computational analysis involves the application of a computer vision
algorithm to the collected image data. This algorithm, selected based on its relevance and efficiency
in handling object detection tasks, serves to process the images, detect and categorize the LEE
damage. The impact of image resolution on the performance of the algorithm is evaluated by
comparing the algorithm's output with the ground truth data. Additionally, the computational part
of the methodology extends to the evaluation of the imaging tools, comparing their effectiveness in
capturing images that lead to the successful detection and classification of LEE. It also involves the
analysis of the results, which will help understand the relation between image resolution and the
performance of the computer vision algorithm.

This methodology's structure combines physical, experimental, and computational elements
to offer a comprehensive approach for addressing the research question, providing an innovative
insight into the interaction between image resolution and computer vision technology in the context
of wind turbine maintenance.

1.5. Thesis Scope

This thesis' main objective is to investigate how variations in picture resolution might impact
how well a computer vision system works to identify and classify leading edge erosion (LEE)
damage on wind turbine blades. The goal is to investigate how variations in picture resolution affect
the accuracy levels reached by computer vision algorithms and to determine the imaging equipment
that is most suited for precisely recognizing and characterizing LEE.

Through the controlled erosion of a blade's tip portion by 2.5 meters in length, it will be
possible to examine LEE damage in the context of wind turbine blades. Three different photo-taking
tools are used in order to get clear photographs for analysis: a Ryze Tello drone, a smartphone
camera, and a consumer-grade digital camera. The computer vision algorithm will be equipped
through the use of the most recent computer vision model appropriate especially for this application
and relevant machine learning techniques.

The fundamental restriction on the scope of this thesis is to build upon current computer
vision models. The goal of this project does not entail creating a novel computer vision model or a
commercial application. Instead, it focuses on using an existing computational technique to handle
particular challenges associated with wind turbine maintenance tasks. The direct application of the
findings to industrial settings is outside the scope of this study, which instead intends to establish
relevant foundational information for directing future research and potential implementation
strategies for stakeholders.
14



Finally, it is important to point out that, while there is a possibility of this study

encouraging and having consequences on other fields utilizing computer vision technology, its
primary focus is on using the techniques to address erosion at the leading edge of wind turbine
blades. The study does not intend to thoroughly investigate potential uses in other industries.

1.6. Thesis Structure

The thesis is structured into seven primary sections that are allocated to a significant area of

the research undertaken:

1)

2)

3)

4)

5)

6)

Introduction: This section opens with an outline of the subjects covered in the thesis. The
background of the issue, the goals of the research, its importance, and the methods used are
all briefly addressed. Then, a summary of this thesis's structure is given while highlighting
its range of application.

Theoretical Background: The second chapter delves into existing literature and past
research in the areas of wind turbine maintenance, leading edge erosion (LEE), and
computer vision technology. It establishes the current understanding in these fields and
identifies the gaps this research aims to fill.

Methodology: This chapter of the work aims to provide a further detailed overview in how
the research and experiment was designed and executed. The creation of artificial erosion,
the process of image capture through different devices, the configuration of the computer
vision application, and finally the analysis of the findings will be discussed.

Results: The fifth chapter provides the output directly from the computer vision algorithm.
It details the performance of the algorithm in identifying and categorizing LEE damage
using images of different resolutions.

Discussion: This section provides a further in-depth analysis of the results obtained from
the computer vision algorithm, while touching upon what the output indicates. It discusses
the impact of image resolution variation on the effectiveness of the algorithm, and the
performance of the different imaging devices used. A methodical comparison between the
devices is provided, before drawing final conclusions.

Conclusion and Future Work: With the final chapter, the research is concluded while
providing recommendations for future research. The main findings of the experiment are
summarized and the study’s implications are discussed. Looking back on the overall
achievement of the work; potential areas for improvement, suggestions on future research
and the ways in which the study can be extended upon finalizes the paper.
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2. Theoretical Background

This section provides a comprehensive exploration of the theoretical principles associated with
wind energy generation, particularly focusing on the maintenance of wind turbine blades. It delves
into the significance of maintenance strategies, the unique challenges encountered with wind
turbine deployment in diverse locations, and the potential role of advanced technology in
revolutionizing maintenance procedures. The discussion also considers the competitive dynamics
of the industry and their implications for cooperative efforts aimed at enhancing reliability. The
emergence of innovative technologies such as unmanned aerial vehicles (UAVs) and computer
vision, and their potential impacts will be assessed, including the limitations of implementing these
technologies, such as the influence of input resolution on the effectiveness of object detection
models, within the context of wind turbine inspections. Finally, this fundamental theoretical
groundwork will guide the study in the following sections, through the identification of knowledge
gaps in the existing literature.

2.1. Wind Turbine Operations and Maintenance
2.1.1. Reliability, Costs and Failures

The emergence of wind power generation as a competitive alternative and the increasing
pace of technological developments on wind turbines over different scales have emphasized the
importance of effective operation and maintenance (O&M) practices. The reliability and efficiency
of these large-scale turbines is a multifaceted issue that has a significant impact on the total cost of
energy (COE) from wind power projects. Substantial research on wind turbine O&M have provided
valuable insights, and present key challenges within the industry.

In their research, Walford (2006) emphasizes the importance of reliability for a project's
revenue stream, points out that the reliability of wind turbines varies with the operating
environment and is influenced by factors such as design assumptions, knowledge of the operating
environment, and manufacturing quality control. Its highlighted that O&M costs can represent up
to 20% of a project's total cost of energy (COE), with unscheduled maintenance costs accounting
for 30%-60% of total O&M costs, thereby emphasizing the necessity for improved certainty in the
O&M cost estimations (Walford, 2006). The study suggests that effective maintenance programs,
including comprehensive condition monitoring and early identification of critical components and
failure modes, can help optimize costs and prevent catastrophic failures.

Pinar Pérez et al. (2013) underscores the fact that larger turbines tend to fail more frequently
than smaller ones, necessitating the implementation of robust condition monitoring systems to
enhance their reliability. Their paper also details the structural and functional aspects of WTs and
considers the need for sophisticated maintenance systems due to the high costs of WT machinery
and infrastructure. Finally, the authors define the increasing failure rates of certain components,
such as rotor blades and gearboxes, stressing the necessity of predictive and preventive maintenance
strategies, especially for larger wind turbines.
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Artigao et al. (2018) provide a detailed overview of the reliability analysis of wind turbines,
drawing from thirteen different studies in the domain. Their work underscores the shared crucial
parts between onshore and offshore uses, and also points out the variability in failure rates among
different geographical areas. The authors emphasize the critical role of Operation and Maintenance
(O&M) activities in enhancing turbine availability, with O&M costs constituting a substantial part
of wind farm project expenditures. They point out that larger wind turbines, despite their benefits,
show higher failure rates than smaller ones, underscoring the need for efficient condition
monitoring. The research further unveils that condition monitoring systems (CMS) help optimize
preventive and corrective maintenance, preventing unnecessary repairs and unplanned downtime.
The study also underscores the significant disparities in O&M strategies between onshore and
offshore wind turbines, primarily due to accessibility issues and cost variations (Artigao et al.,
2018). Ultimately, this review determines that the electric and control systems, the gearbox, the
generator, and the hub & blades are the most critical assemblies needing attention in CMS design,
suggesting that condition-based maintenance could improve wind turbine availability and cost-
effectiveness (Artigao et al., 2018).

Carroll et al. (2016) present an exhaustive analysis of failure rates, repair times, and
unscheduled operations and maintenance (O&M) costs based on offshore wind turbines. Drawing
from a sample of approximately 350 offshore wind turbines spanning 5 to 10 wind farms across
Europe, the authors provide unique insight into failure rates of the overall turbine and its various
sub-assemblies, repair times, costs, and resource requirements, and reveal that reliability and
maintenance resources can constitute around 30% of the overall energy cost, with blades accounting
for 6.2% of the overall failure rates (Carroll et al., 2016). Notably, their analysis identifies that
offshore turbines in high wind speed areas exhibit higher failure rates. The researchers suggest that
this correlation is stronger offshore than onshore, and it could be attributed to factors such as the
harsher marine environment, the larger size of offshore turbines, and potential differences in
maintenance standards due to accessibility (Carroll et al., 2016). This study is instrumental in
understanding and optimizing O&M cost modeling, ultimately aiding in the decision-making
process for O&M planners and managers.

Turbine blades are a particularly crucial component, as they contribute to for 15-20% of
overall turbine costs (Ciang et al., 2008). The blades' structural health is, therefore, of primary
concern due to the expensive and time-consuming nature of repairs. Ciang et al. (2008) also
highlight that minor blade damage can lead to significant secondary damage to the entire wind
turbine system, which could result in the collapse of the whole tower if prompt repair action isn't
taken. Consequently, the study suggests regular monitoring of the blades is essential to ensure early
detection and repair of potential damage, effectively reducing the total cost of repair and preventing
more serious damage.

Taken together, these studies emphasize the need for improving wind turbine reliability,
optimizing O&M strategies, and utilizing data and predictive analytics. They also underline the
need to focus on the maintenance of wind turbine blades due to their significant contribution to
turbine costs and overall cost of energy. Enhancements in public databases, structural health
monitoring (SHM) systems, and O&M cost reductions are all necessary steps towards improving
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wind turbine reliability and efficiency, which is essential for the long-term viability and
sustainability of wind power generation.

2.1.2. Damage Detection and Repairs

The growing recognition of the importance of wind turbine operation and maintenance,
particularly in regards to reliability, costs, and failures, has inspired the development of innovative
damage detection and assessment technologies. Du et al. (2020) and Zhang et al. (2020) emphasize
the urgency of early damage detection in wind turbine blades, driven by escalating maintenance
costs associated with the increasing size and complexity of these structures. McGugan and
Mishnaevsky (2020) introduce a novel approach to the structural health monitoring of wind turbine
blades, focusing on various physical degradation mechanisms such as surface erosion, adhesive
fatigue, and laminate cracking, among others.

Mishnaevsky (2019) highlights the critical task of wind turbine blade repair in the
advancement of renewable energy technologies. In a comprehensive review, the research
underscores the significance of blade repair for the progression of renewable energy technologies,
given that an out-of-service turbine can be exceedingly costly, with repair fees ranging from $800
to $1600 per day (Mishnaevsky, 2019). The study stresses the importance of improving and
optimizing repair methodologies to reduce costs, shorten repair times, and ensure that repaired
structures maintain initial performance levels.

Xu et al. (2019) provide an innovative perspective on blade surface inspection by proposing
a method that utilizes deep learning and unmanned aerial vehicles (UAVS), treating blade inspection
as an image recognition task. This approach is intended to overcome the limitations of traditional
methods, such as stability issues, sensor installation challenges, and difficulties in data storage and
processing (Xu et al., 2019). Utilizing UAVs for image acquisition, they propose improved
efficiency and ensured personnel safety.

Stokkeland et al. (2019) expands on the use of UAVs in wind turbine inspection by exploring
the autonomous visual navigation of UAVs. They illustrate how UAVSs, especially when
autonomous or remotely controlled, can approach inspection targets closely and accurately, given
the large dimensions of modern wind turbines. The cost-effectiveness of UAVs over manual
inspection by climbing, particularly for offshore wind turbines, was also highlighted.

Tchakoua et al. (2012) contribute to the discourse on wind turbine condition monitoring by
underscoring the necessity for remote, intelligent, and integrated systems, particularly as the wind
energy industry leans towards larger and more remotely located wind turbines. A key focus of the
authors’ work is discussing emerging trends such as non-contact and remote non-destructive testing
(NDT) methods, and the automation of condition monitoring and diagnostic systems. They also
discuss the role of visual inspection (V1) as a complementary method in condition monitoring,
although traditional methods rely on human intervention and can benefit from further research.
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Together, the insights from literature create a compelling narrative for the future of wind
turbine operations. The integration of machine vision, UAVs, artificial intelligence, localized
nanoscale sensors for damage detection and assessment, and advanced computational modeling
presents significant potential for cost savings, reduced human risks, and enhanced operational
efficiency. Despite challenges such as capturing high-definition images, extracting damage
information from complex backgrounds, managing environmental factors, and ensuring that sensor
deployment does not weaken the blade structure, these technological advancements signal a
promising future for wind turbine maintenance and operation. Continual research and technological
innovation remain vital to fully exploit these opportunities and tackle the remaining challenges.

2.2. Leading Edge Erosion
2.2.1. Impact on Energy Production

Surface material degradation at the forward facing edge of wind turbine blades, also known
as leading edge erosion (LEE), is a significant issue in wind energy studies. This deterioration,
brought about by elements such as wind and rain, primarily concerns researchers due to its
pronounced effect on both the energy output and the structural soundness of the wind turbine blades.
A common attention within the literature is given to accurately estimating the impact of LEE on
annual energy production (AEP) over a turbine's lifetime, given the associated maintenance costs
and lost AEP (Herring et al., 2019; Law and Koutsos, 2020; Sareen et al., 2014). The transition of
the wind industry towards larger blade lengths, higher tip speeds, and new markets characterized
by harsh climatic conditions, has further brought forward the issue of leading edge erosion (Herring
et al., 2019). Moreover, the current aggressive expansion of the offshore wind industry, coupled
with the persistent lack of a permanent solution that offers protection on the leading edge for blades’
dedicated lifetime of 25-years on average, further underscores the importance of addressing LEE
(Herring et al., 2019).

Understanding the complexity of leading edge erosion is not a recent effort literature.
Keegan et al. (2013) conducted an in-depth examination of the potential wear and tear caused by
various environmental factors, with a special emphasis on the effects of raindrop and hailstone
collisions on the leading edge of the blade. The researchers studied various methods and resources
like weather and climate information, lab-controlled rain and hailstone exposure tests, and
computational modeling techniques to assess and alleviate the threats linked with leading edge
erosion. Their review clearly showed that overcoming issues related to leading edge erosion and
crafting superior materials that can withstand these conditions is a considerable challenge (Keegan
et al., 2013). This difficulty is compounded by the various environmental elements involved and
the increasing size of contemporary wind turbine blades.

Mishnaevsky et al. (2021) focused on the issue of leading edge erosion (LEE) in wind

turbine blades, underlining the serious negative effects of LEE on the blades' aerodynamic efficacy.
The study stressed that severe erosion could cut annual energy output by more than 5%
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(Mishnaevsky et al., 2021), and also observed that geographical differences substantially influence
the way erosion processes occur.

Contreras Lopez et al. (2023) suggested a computational model capable of predicting the
progression of leading edge erosion and its impact on energy output over time, which can be applied
in operation and maintenance decision making. They tested this model using a 5SMW wind turbine
in the North Sea as an example, and the results showed that the greatest annual energy production
losses ranged between 1.6 and 1.75% (Contreras Lopez et al., 2023).

The impact of leading edge erosion on the aerodynamic properties of a wind turbine was
explored by Sareen et al (2014). Their results suggest that even a relatively trivial stage of leading
edge erosion leading to an 80% increase in drag, has to potential to decrease annual energy
production (AEP) by 5%, and in more severe cases of LEE, this loss could be as high as 25%.
(Sareen et al., 2014) Their research underpins the urgency of addressing LEE and devising
mitigation strategies.

LEE negatively impacts the performance of turbines and necessitates expensive repairs.
Over time, it has evolved from a challenge limited to a few turbines in harsh conditions to a
widespread problem that impacts whole wind farms, even those located in relatively mild climates
(Herring et al., 2019). Consequently, leading edge erosion is now one of the most significant
concerns in the wind industry, a point also underscored by Duthé et al. (2021) in their discussion of
the detrimental effects of LEE on power performance and the functionality of blades.

Moreover, the nature and evolution of leading edge erosion, influenced by variables such as
the speed of the tip, the composition and form of the blade, and the surrounding environment,
complicates the task of both comparing erosion rates across various blades and establishing an
accurate timeline for its progression (Herring et al., 2019).. The need for early detection and
intervention is crucial given this context, as noted by Mishnaevsky et al. (2021) in their discussion
of the importance of predicting erosion and setting the frequency of control and maintenance events.

Existing diagnostic techniques predominantly rely on direct visual inspection, and statistical
analysis of supervisory control and data acquisition (SCADA) output (Duthé et al., 2021). However,
research suggests these techniques have not been effective in terms of accurately determining and
standardizing the severity and spatial extent of erosion on the blades. Meanwhile, the increasing
use of drone inspections reduces turbine downtime and speeds up the inspection process, offering
a promising alternative to traditional methods (Law and Koutsos, 2020).

Herring et al. (2019) highlight that performing repairs on eroded blades can lead to a
significant period of downtime and substantial costs due to the need for suitable wind and weather
conditions, equipment, and technicians. The expenses tied to comprehensive turbine inspections
often result in operators conducting these only every two to three years, which can leave repair
issues undetected until the next review period (Herring et al., 2019).
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In conclusion, the far-reaching impacts of leading-edge erosion on wind turbine blades
necessitate continuous research and innovation. The complex mechanisms underlying LEE, the
promising advancements in monitoring techniques, the need for accurate prediction models, and the
vital role of timely maintenance collectively underscore the significance of this issue. With these
insights, the wind energy sector continues to strive towards mitigating the economic and energy
production losses associated with leading-edge erosion.

2.2.2. Inspections Against Leading Edge Erosion

As wind turbines continue to play a central role in renewable energy production, ensuring
their efficient operation remains critical. Key to this is the early detection and proper management
of the erosion of their leading edges. Anisimov et al. (2021) highlights the limitations of the current
visual or drone-based camera system inspections, and the need for a more reliable and precise means
of detecting and monitoring leading-edge erosion. The authors employ a customized long-range
laser line scanner, detecting eroded and damaged areas with sub-millimeter resolution, thus moving
towards a condition-based and predictive maintenance approach (Anisimov et al, 2021).

Dimitrov (2018) suggested a method for evaluating the risks associated with blade damage
identified during visual checks, aiming to pinpoint the most cost-effective repairs. The research
showed that the best repair strategy varies depending on the severity of the damage, and that a risk
evaluation can help to find the most economically viable solution (Dimitrov, 2018). This idea
corresponds closely with the call for better evaluation methods found in related research. The
procedure developed for assessing the severity of an issue relied on the use of a model to estimate
how fast the damage was developing.

The existing literature on wind turbine blade inspection methods against leading edge
erosion damage is limited, and collectively underscores the significance of developing reliable,
sensitive, high-resolution methods for detecting, monitoring, and assessing leading-edge erosion of
wind turbine blades. The laser line scanner approach proposed by Anisimov et al. (2021) represents
a promising avenue for achieving these goals, while the risk-based assessment procedure by
Dimitrov (2018) offers a rational way of categorizing damage severity and determining optimal
interventions. These integrated efforts suggest a path forward towards condition-based and
predictive maintenance, though further advancements are still needed to address the challenges
inherent in offshore wind turbine inspections.

2.3. Machine Learning and Computer Vision
2.3.1. Object Detection and Improvement of Learning

Object detection is a key task within the broader field of computer vision that involves
identifying specific objects within a digital image or a video sequence. It differs from related tasks
such as image classification and segmentation by not only categorizing what is present in an image,
a task that usually is attributed to image classification, but also precisely locating each object via a
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bounding box or a similar method. Unlike image segmentation, which aims to assign a class to each
pixel in the image for a detailed breakdown, object detection provides a higher-level overview of
object locations and classes. This balance makes object detection a crucial tool in many applications
such as self-driving vehicles, video surveillance, and augmented reality, where both recognizing
and locating objects are important.

The comprehensive reviews by Zou et al. (2023) and Liu et al. (2020), alongside the work
by Zoph et al. (2020), have offered an insightful understanding of the evolution, achievements, and
challenges in the field of object detection, including the significant role played by data
augmentation. In this context, the research presented by Perez and Wang (2017) provides valuable
insights into the effectiveness of data augmentation in the closely related field of image
classification.

Perez and Wang (2017) explore and compare various solutions to the problem of data
augmentation in image classification, a challenge also underscored by Zoph et al. (2020) in the
domain of object detection. Their work highlights the effectiveness of simple techniques such as
cropping, rotating, and flipping images. Their conclusions align with Zoph et al.'s (2020) findings,
emphasizing that such techniques, when combined with the creation of specialized data
augmentation policies, can lead to improvements in the generalization performance of models
trained on limited data.

Echoing Zoph et al.'s (2020) assertions about the benefits of data augmentation, Perez and
Wang (2017) highlight that it offers a promising way to enhance the accuracy of classification tasks,
even when the quality of data is relatively low. They posit that the more data a machine learning
algorithm has access to, the more effective it can be, as long as useful information can be extracted
from the original dataset.

Perez and Wang (2017) further explore the idea of taking a small, structured dataset and
augmenting it to improve model performance, an approach they found to be effective in multiple
problems. This notion is particularly crucial for specialized image and video classification tasks,
such as object detection, which often suffer from insufficient data (Perez and Wang, 2017). The
problem is potentially even more pronounced in industries where data access is heavily protected
due to privacy concerns.

While both Zou et al. (2023) and Liu et al. (2020) highlight the role of large and unbiased
datasets in pushing object detection research forward, Perez and Wang's (2017) work underscores
the importance of techniques that can effectively augment and leverage smaller datasets. They
discuss the problems of overfitting in models trained on small datasets, which do not generalize
well to validation and test sets, a challenge that resonates with Liu et al.'s (2020) concerns about the
limitations of fully supervised learning.

Finally, Perez and Wang (2017) introduce the concept of transfer learning, a technique
closely related to data augmentation. They describe it as a method where pre-trained weights of a
neural network trained on similar or more comprehensive data are fine-tuned to best solve a more
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specific problem. This technique, coupled with data augmentation, provides additional ways to
reduce overfitting on models (Perez and Wang, 2017). Overfitting in computer vision refers to a
model learning the training data too well, to the point where it performs poorly on unseen data
because it has picked up on noise or irrelevant patterns in the training set, rather than generalizable
features.

In summary, the reviews by Zou et al. (2023) and Liu et al. (2020), along with the
contributions from Zoph et al. (2020) and Perez and Wang (2017), provide a comprehensive
understanding of the field of object detection. They emphasize the need for data augmentation and
transfer learning strategies, particularly for models trained on limited datasets, and highlight the
necessity for ongoing research to further refine these techniques and methodologies. These efforts
are all directed towards the ultimate goal of creating detection systems with abilities rivalling those
of the human visual system.

2.3.2. Computer Vision in Industrial Maintenance

In the realm of industrial maintenance, the intelligent detection of defects and faults has
become an increasing necessity. The applications of computer vision has found use in many
different industries. This is highlighted by recent increased focus on research in the field. Xu et al.
(2022) identify the limitations of traditional methods in road crack monitoring, especially with the
growing road network requiring more advanced and intelligent technologies. Their study
demonstrates the potential of state-of-the-art algorithms in intelligently detecting road cracks,
building upon previous research in computer vision and digital image processing. However, they
emphasize the need for large datasets for training and the continuous evolution of deep learning
methods.

Parallelly, Wang et al. (2022) address fundamental issues in unmanned aerial vehicle
(UAV)-based inspection, a key area of research in the wind energy industry. They propose an
improved model for segmenting wind turbines from UAV-taken images. The results present
superior performance in terms of performance metrics such as intersection over union (loU), and
recall values after 20 epochs of training, providing evidence of the effectiveness and practical utility
of deep learning in industrial maintenance. (Wang et al., 2022)

Furthermore, Shihavuddin et al. (2019) explores a deep learning-based automated damage
suggestion system for wind turbine blade surface inspection using drone imagery. Their approach
achieved near-human-level precision in suggesting damage location and types on wind turbine
blades. By utilizing a specialized model architecture within Faster R-CNN, they present a model
achieving a mean average precision (mAP) of 81.10% for four different types of damages
(Shihavuddin et al., 2019). The study also demonstrates the effectiveness of data augmentation in
improving the generalization of the trained model and highlights the potential cost advantages of
automating the inspection and analysis process.

In the field of wind turbine blade crack inspections, Wang et al. (2019) suggested a method
to accurately identify cracks on the surface of wind turbine blades by examining images taken by
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drones. The initial stage of their approach utilizes a fundamental detection framework to accurately
locate cracks. The method's reliability and efficiency is further validated through images captured
by drones from a commercial wind farm.

Furthermore, Xu et al. (2019) propose the use of convolutional neural networks (CNNs) for
image recognition of common wind turbine blade defect conditions, while constructing a
preliminary dataset consisting of 25,773 images depicting five common wind turbine blade defect
conditions and trained three different deep learning models. The authors’ proposed method
demonstrates advantages such as intuitive understanding of wind turbine blade conditions, reduced
downtime, improved productivity, and increased economic benefits (Xu et al., 2019). The study
also acknowledges the importance of considering regional variations in wind turbine blade damage.

Moreover, Ye et al. (2016) provides a comprehensive review to highlight the advantages of
noncontact, nondestructive, and high-precision monitoring techniques. The review offers valuable
insights into the initial efforts on the integration of machine vision technology, and highlights the
challenges and limitations in the field.

These studies collectively contribute to the growing body of knowledge in the field of
intelligent defect detection and maintenance, showcasing the potential of machine learning and deep
learning algorithms in various industrial applications. Overall, the existing literature highlights the
ongoing efforts to enhance inspection processes, reduce downtime, and improve the overall
efficiency of maintenance operations through automated analysis of collected data. The continual
evolution and refinement of these approaches are crucial for ensuring the reliability and safety of
industrial assets in sectors such as transportation and renewable energy.

2.3.3. Real-time Object Detection and State-of-the-Art

Over time, the realm of object detection has seen substantial progress, characterized by
remarkable improvements in both speed and accuracy, as demonstrated in various studies and
publications. Ren et al. (2017) introduced Faster R-CNN, an innovative solution aimed at efficiently
generating high-quality region proposals. This work was crucial in tackling the processing
limitations of the top-tier detection systems of that period, allowing for a deep-learning-oriented
object detection system to operate in near-real time. However, it was still not considered suitable
for complete real time applicaitons. The resulting system was able to achieve remarkable object
detection accuracy that led the field for a substantial amount of time (Ren et al., 2017).

On the other hand, Redmon et al. (2016) proposed a novel architecture, known as YOLO
(You Only Look Once), within the object detection landscape. YOLO employed a network that is
capable of mitigating the need for the complex pipelines associated with earlier approaches, through
analyzing the entire image during training and testing in one go, yielding fewer background errors.
(Redmon et al., 2016) However, YOLO had its own limitations, such as the challenge to localize
small objects accurately.
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Wang et al. (2022) focused on enhancing the training process through optimized modules
and introduced YOLOV7. In comparison to its predecessors, YOLOvV7 demonstrated improvements
in accuracy and efficiency, having 75% fewer parameters and requiring 36% less computational
resources (Wang et al., 2022). The researchers also found that YOLOV7 surpassed all known real-
time object detectors in speed and accuracy, solidifying its position as a highly effective and
efficient object detection solution (Wang et al., 2022).

In conclusion, while both YOLOV7 and Faster R-CNN present significant advancements in
object detection, YOLOvV7 seems to have the edge over object detection models in terms of speed
and still obtains remarkable levels of accuracy. This makes it the more efficient solution for real-
time object detection tasks, such as damage detection on the edge cases. Future developments in
the field of object detection could further leverage the strengths of both approaches, pushing the
boundaries of what is currently achievable.

2.3.4. Impact of Resolution on Performance

The importance of input resolution and quality on the performance of machine learning
models, specifically for object detection, is increasingly recognized as a crucial aspect of achieving
high-performance results. In their study, Wu et al. (2022) highlighted how variations in image
resolution can substantially influence the efficacy of deep learning models in the diagnosis of breast
cancer. Their research used grayscale ultrasound breast images from two Chinese hospitals, with
resolutions of 224x224, 320x320, and 448x448 pixels, which are commonly used values due to
their balance of performance and computational efficiency (Wu et al., 2022). The findings from this
study underline that smaller resolution images, while requiring less computational time, may
sacrifice critical information, thereby impacting the diagnosis outcomes. It was noted that different
combinations of machine learning models and input image resolutions yielded diverse results,
emphasizing the importance of finding the optimal pairings (Wu et al., 2022).

On the same theme, Talebi and Milanfar (2021) focused on the potential impacts of image
size on training accuracy. They argued that the input images' resizing to a relatively small resolution
has been treated as an afterthought in many machine learning applications, despite its potential to
influence the overall performance of the trained models. Their research indicated that the commonly
used image resizers could be replaced with learned resizers to improve performance. Interestingly,
it was found that the replacement of these classical resizers with learned ones did not necessarily
enhance the visual quality of the downscaled images, but they did improve task performance (Talebi
and Milanfar, 2021). This demonstrates that a balance must be found between image quality and
computational efficiency, which, in turn, could affect object detection performance.

The significance of image resolution was further underscored by Thambawita et al. (2021),
who found that image resolution had a substantial impact on the performance of convolutional
neural network (CNN)-based image classification in gastrointestinal endoscopy. They used a
dataset comprising 10,662 images of 23 different findings to assess the performance of two models
at different image resolutions. The findings of this study revealed that higher image resolution
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generally led to better performance (Thambawita et al., 2021). They suggested that the reduction of
image resolution might lead to the loss of critical details, such as fine vessels and other patterns of
the findings, which are important for accurate classification. Their research further demonstrated
that upscaling from lower resolution images resulted in a more significant performance loss than
downscaling from higher resolution images. This calls for high-resolution image collection in deep
learning context, given that downscaling is easier than upscaling to the original resolution with the
tools available at the time of the study (Thambawita et al., 2021).

Examining the impact of low resolution on image recognition, Koziarski and Cyganek
(2018) discovered that even relatively mild decreases in image resolution could significantly
decrease classification accuracy of deep neural networks. They observed that the performance
decline was particularly noticeable for low-resolution levels and that super-resolution techniques
could partially mitigate the negative impact but were still far from achieving results comparable to
undistorted data (Koziarski and Cyganek, 2018). The authors acknowledged the ongoing research
in super-resolution methods, suggesting that future improvements may further reduce the negative
effects of low resolution on classification accuracy (Koziarski and Cyganek, 2018).

Dodge and Karam (2016) assessed the efficacy of cutting-edge deep neural network models
in the realm of image classification, particularly when faced with different quality distortions. The
results revealed these networks' vulnerability to distortions such as blur and noise, but they
demonstrated resilience when dealing with compression artifacts and modifications in contrast
(Dodge and Karam, 2016). Given that image quality is frequently compromised in real-world
scenarios, the authors brought forward the importance of engineering deep neural networks that can
better withstand quality distortions.

Overall, resolution impact on detection performance has been a focus of numerous studies
within the medical field, but lacks attention in industrial applications. The studies explored so far
highlight the significant impact of image resolution and quality on the efficiency of machine
learning models. The choice of image resolution and the consideration of quality distortions are
crucial factors in achieving optimal results, particularly in object detection within medical imaging
applications. Further research on input resolution within specific use cases of computer vision,
such as wind turbine inspection and other relevant industrial applications, is necessary to achieve
more robust and invariant models.

2.4. Summary and Gaps in Literature

Wind turbine blades are central components in the operation of wind energy systems. Their
maintenance is an area of increasing focus within the academic and industrial sectors, given the
accelerating adoption of wind as a viable and competitive alternative source of energy. The steady
increase in the number of turbines coming in operations, particularly those in remote or challenging
locations such as offshore wind farms, has amplified the inherent complexities involved in
maintaining these essential equipment. This rapidly expanding scheme of turbine operations
demands emphasis on robust and efficient maintenance protocols for turbine blades, a factor critical
to overall sustainability of operations and performance.
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Currently, the focus is on predictive maintenance approaches through advanced sensor
technologies and data-driven decision-making systems. The collection and utilization of real-time
data offers a path to preemptive maintenance strategies that can significantly increase the
operational lifespan of wind turbine blades. However, despite the promising potential of such
approaches, the competitive nature of the wind energy industry may impose constraints on the kind
collaboration necessary for large-scale reliability enhancements. This shared commitment to
reliability is an essential aspect of ensuring the long-term sustainability of wind energy operations
across the global energy industry.

Despite advancements in technology, inspections of leading-edge erosion on wind turbine
blades remain largely reliant on traditional, labor-intensive methods. Inspectors typically have to
physically climb towers to conduct visual checks, a process that is both time-consuming and inhibits
potential safety risks. The potential for leveraging UAVSs to enhance and simplify this process has
been explored, however, their use has yet to be widely adopted or standardized, limiting their
current impact on inspection practices.

Simultaneously, the progressive evolution of computer vision and object detection technologies
has drawn considerable attention within the wind energy industry. These advancements lead to
opportunities for enhancing turbine inspections. They can potentially drive down operational costs
but also mitigate the human safety risks associated with manual inspections. By automating image
analysis and damage detection, these emerging technologies can substantially streamline and
upgrade the inspection process.

However, there's a lack of standardization in the tools required to implement this technology.
The devices used in inspections, irrespective of UAV usage, currently produce variable resolutions.
As object detection depends heavily on visual data, the size and quality of inspection images have
the potential to influence the performance of models that detect and categorize erosion damage
levels on wind turbine blades.

While other sectors, such as healthcare and medical technology, have investigated the impact
of image resolution on machine learning performance, this critical factor remains comparatively
under-researched in the realm of wind energy. This suggests a gap in the existing body of literature,
emphasizing the need for research efforts to drive the industry towards the successful and effective
deployment of these emerging technologies. As the world strives to utilize the power of wind more
efficiently and sustainably, such research initiatives will be effective in shaping the future of wind
turbine maintenance and management.
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3. Methodology

This study employs a research design that applies the principles image processing techniques to
the field of industrial asset management. The foundation of the research is based on the
experimental method, where artificially created leading edge erosion (LEE) damages, created in a
controlled environment, on a wind turbine blade section will be imaged, analyzed, and categorized
using object detection capabilities of the YOLOv7 computer vision algorithm.

The experimental design includes the examination of the impact of image resolution variances
obtained from different imaging devices on the accuracy of the computer vision algorithm. To
effectively analyze this, the research is designed to compare the performance of the algorithm across
three distinct types of imaging devices: (1) Ryze Tello, a mini drone available for educational
purposes with an embedded lens, (2) a smartphone, which currently is a common tool in
documenting damages in manned inspections due to its availability, and (3) Panasonic Lumix
DMC-GF®6, a consumer-grade digital camera. These devices were chosen due to their ability to
represent a range of potential resolution and image quality outputs altogether.

The research seeks to explore new insights and understandings into how image resolution can
impact the effectiveness of a computer vision algorithm in the context of wind turbine blade
inspections. The outcomes of this research could potentially help to inform decisions around the
imaging systems to enhance the effectiveness and efficiency of wind turbine blade inspections,
contributing to both theoretical and practical advancements in the field.

3.1. Creation of Artificial Erosion

The first step of the methodology involved the acquisition of a decommissioned wind
turbine blade, provided by the industry partner. This ensured an authentic experimental subject,
embodying real-world conditions. A 2.5-meter section from the blade's tip was selected, as this area
traditionally faces the highest wind velocities. Following the acquisition, the blade section was
relocated to an area within the university grounds. This provided an appropriate environment for
implementing controlled damage to the blade in a safe and practical manner.

To prepare the blade section for the creation of artificial LEE, it underwent an initial
cleaning process. This stage was vital to ensure that the artificial damages created would be as
accurate and representative as possible, removing any residues that could have interfered with the
erosion simulation or detection process.

Acrtificial erosion was then implemented onto the blade's leading edge at three distinct
locations, each corresponding to a different stage of LEE severity. This design choice ensured the
study spanned across the spectrum of erosion, thus providing a comprehensive assessment of the
capabilities of the computer vision algorithm under different damage conditions.
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The first level of inflicted damage was primarily cosmetic, emulating the initial stages of
erosion buildup. This level was minimal and did not expose the structural material beneath the
surface layer of the blade.

The second level of damage was more advanced, with a deeper erosion that allowed for the
partial visibility of the structural material beneath. This stage represented a more advanced state of
LEE, which often leads to the need for repair or replacement actions in real-world conditions.

Finally, the third level of damage was the most severe, with the structural material of the
blade completely exposed and a measurable depth to the erosion. This stage served to simulate the
extreme cases of LEE, where the functionality and safety of the blade are compromised, and
immediate maintenance action is necessary.

In essence, these three levels of artificial damage created on the leading edge of the blade
provided a broad range of scenarios for testing the computer vision algorithm's ability to detect and
categorize varying degrees of LEE. This was critical for measuring the impact of image resolution
on the effectiveness of these algorithms, serving as the foundation of this study's experiment.

3.2. Data Collection

The data collection process was initialized with the imaging of the artificially eroded
sections on the wind turbine blade. Three different imaging devices were selected to achieve this
aim:

o The Ryze Tello drone, providing images with a resolution of 960 x 720
o A personal smartphone, capturing images with a resolution of 1536 x 2048

« A high-definition digital camera, producing images with a resolution of 4592 x 3448

In order to standardize the photography process and ensure the images were comparable
across different erosion categories and devices, a structured process was carefully devised and
followed throughout the image acquisition activity. This protocol required each erosion category to
be photographed from three specified distances: 50cm, 100cm, and 150cm. At each distance, five
images were taken while facing the leading edge directly (0 degrees), then again at an angle of 45
degrees, and finally at an angle of -45 degrees relative to the blade's leading edge. This was repeated
for each damage instance located on the blade, and with each unique imaging device. Figure 3.2
visualizes the imaging layout of the process. This systematic approach provided a comprehensive
visual dataset of each erosion category from multiple perspectives, resulting in an initial pool of
405 images.
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Figure 3.2 — Image Collection Layout

The capturing of images through the smartphone and the digital camera was conducted
manually, however the capabilities of the drone allowed for a “mission” to be programmed for this
process. The mission was coded in Python and sequentially commanded the drone to assume its
position on image capture points and commence capturing pictures of the damages. The initial
mission included one complete cycle for the drone to capture images at all dedicated points,
however, this process consumed excessive power from the already limited capacity of the drone’s
battery, therefore was deemed infeasible. Following this discovery, the mission was adjusted so that
in a single execution, the drone would only capture images at points lying on individual angle lines.
This modification required the drone to be placed at 50 centimeters distance from the blade’s
leading edge as the takeoff position, and the mission to be executed thrice. The modified mission
code can be found in Appendix A.

Following the image acquisition phase, a detailed selection was conducted to refine the
dataset. From every combination of device, distance, and angle for each erosion category, one
representative image was chosen out of the five available. This selection was based on factors such
as clarity, focus, and how well they represented the damage stage in question. By the conclusion of
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this selection process, the dataset was reduced to 81 unique images that provided a comprehensive
representation of the various categories of leading-edge erosion.

In addition to the images collected from the artificially damaged wind turbine blade, the
dataset was further supplemented with real-world images obtained from an industrial partner. These
images, taken during actual manned inspections of wind turbines, were carefully reviewed and a
selection of these, representing various stages of leading-edge erosion, was added to the dataset.
The inclusion of these real-world images provided an additional layer of validity to the study,
offering insight into natural erosion on top of artificially created patterns. This combined dataset,
representative of both simulated and actual conditions, formed the basis for the subsequent data
analysis and machine learning model training stages of this research.

3.3. Image Preprocessing, Augmentation and Dataset Generation

This stage concentrated on preparing the images for successful machine learning
applications. The images were annotated on Roboflow, a platform suitable for such operations,
which involved marking every occurrence of damage visible on each image, categorizing them
based on their levels of severity. This annotation process is essential for machine learning tasks, as
it ensures precise algorithm training and accurate computer vision in later stages.

After thorough annotation, the dataset was separated into three distinct subsets for training,
validation, and testing purposes. The division ensured the allocation of almost all the images
provided by the industrial partner to the training and validation sets. Furthermore, 7 images from
each device category were chosen for the testing process, 8 were assigned for validation, and 12
were set apart for training. This distribution aimed to ensure a comprehensive and thorough
evaluation during each phase.

Training subsets tend to be the largest subset of datasets within computer vision applications
and is used to train the model. The training set helps the model to learn the patterns, features, and
relationships between inputs, image features, and the desired outputs, object labels and locations.
The validation set is used to evaluate the model's performance during the training phase and to fine-
tune model parameters. It acts as an “internal testing” set as the model trains over each epoch. Once
the model's training and validation is complete it is then evaluated on the test set. This is a
completely separate set of data that the model hasn't seen during its training or validation phases.
The performance on the test set gives an unbiased estimate of the final model's performance and
generalizability to unseen data.

The main difference between the validation and test sets is when and how they're used within
the process. The validation set is used during training to make adjustments to the model's parameters
and prevent overfitting, while the test set is used after training to provide an unbiased evaluation of
the model's performance on previously unseen images.

In any computer vision application, the quantity of images with unique details provided for
training is proportional to the performance of the model. Hence, to optimize the efficiency of this
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study's model, image augmentation and preprocessing was integrated into the methodology using
Roboflow once more. This ensured that the training set was adequately robust, aiding in the
development of a more accurate and efficient damage detection model.

The process of preprocessing specifically targeted the resizing of images, with the final
dimensions of all being standardized to 640x640 pixels. This standardization enables the model to
extract information from the images with increased effectiveness without losing source
characteristics, therefore decreasing the computational load and considerably enhancing the training
speed.

Simultaneously, the augmentation process included various operations on images aimed at
artificially expanding the dataset. These included:

e Horizontal and vertical image flipping,

e 90-degree rotations both clockwise and counter-clockwise,
e Brightness adjustment within a range of 0% and +15%,

e Gaussian blur up to 1.5 pixels,

e and the inclusion of random noise up to 2% of the pixels.

Such augmentation methods help the machine learning model to better generalize by
simulating a variety of possible scenarios it might face during the deployment phase.

The integration of these comprehensive preprocessing and augmentation steps resulted in a
substantial increase in the overall dataset size, bringing it up to a total of 557 images, with a majority
of 480 being allocated to training. The rest were utilized for validation and testing, with 50 images
dedicated to the former and 27 to the latter. These steps ensured the creation of a well-rounded,
high-quality, and extensive image dataset to be utilized in the following stages of the research.

3.4. Model Training

This section involves the essential process of feeding the improved and finalized dataset into
the YOLOvV7 object detection model, training it for the identification of different categories of
damages in the test images. The objective was to train the model to efficiently place bounding boxes
around the detected areas of damage in these images, as well as ensuring smooth categorization of
the degree of damage.

The training was conducted on Google Colab, chosen for its superior GPU capabilities, a
critical component in machine learning operations. Google Colab's available infrastructure allows
for the use of high-performance GPUs such as the NVIDIA A100 with 40GB memory, which was
utilized in this study. This GPU was selected for its proven efficiency, though it should be noted
that alternative GPUs could also have been employed, based on available resources and specific
project requirements.
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The chosen GPU's capabilities informed the selection of certain adjustable training
parameters, such as the batch size and the number of epochs. Batch size refers to the number of
training examples utilized in one iteration, meanwhile, an epoch is a complete pass through the
entire training dataset (Brownlee, 2018). These parameters can be adjusted to optimize model
performance, balancing the speed of training against the final accuracy of the model. As you
increase the number of epochs, the model has more opportunities to learn from the data, but this
also increases the risk of overfitting. Essentially, overfitting is when the model becomes too well-
adjusted to the training data. If the model is allowed to train for too many epochs, it may become
“too specialized”, performing poorly on the validation or new input (Ying, 2019). Therefore, careful
tuning of the number of epochs is necessary. Enough epochs should be allowed for the model to
learn from the data sufficiently, but not so many that it starts to overfit. For this study, through trial
and error, the chosen final number of epochs reflects a balance between allowing the model to
adequately learn from the data while avoiding overfitting to ensure it generalizes well.

To accelerate the training process and enhance the final performance, the model training
began using a “checkpoint”. This strategy means that the training process wasn't initiated from
scratch; rather, it was built upon a pre-existing, successful iteration. MS COCO, which stands for
Microsoft Common Objects in Context, is an extensive dataset used for tasks such as object
detection, segmentation, and others (Lin et al., 2014). It's commonly utilized as a base for training
models that are designed for object detection. By using this checkpoint, the model was able to
leverage prior learnings, focusing on refining its ability to detect and categorize the specific wind
turbine blade erosion damage as presented in the dataset. The complete code ran on Google Colab
can be found in Appendix B.

3.5. Performance Analysis & Reparameterization

The performance of the trained YOLOvV7 model was represented visually using a confusion
matrix. A confusion matrix is a specific table layout that enables easy visualization of the
performance of an algorithm, typically a machine learning model. In the context of a binary or
multiclass classification problem such as the one in this study, each column of the matrix
corresponds to instances of an actual class, and each row corresponds to instances in a predicted
class. Thus, the confusion matrix presents a comprehensive view of how well the machine learning
model has performed with respect to the annotated images, or the ground truth, thereby capturing
outcomes.

True positives and true negatives represent the model's correct predictions, whereas false
positives and false negatives reflect incorrect predictions. Ideally, a perfectly performing model
would have all true positives and true negatives, meaning the model correctly identified all the
damages according to their categories. On the other hand, the presence of any false positives and
false negatives indicates the areas where the model has failed to identify the damage correctly. A
clear advantage of using a confusion matrix is that it not only presents the errors, false positives and
negatives, made by a model, but also shows the types of errors, allowing for targeted improvement.
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The training, by default, outputs valuable insights into the model's performance. The output
contained various performance metrics graphically plotted per epoch; including Precision, Recall,
mAP@0.5, and mAP@0.5:0.95. Precision refers to the proportion of correctly predicted positive
observations out of the total predicted positives. Recall is the proportion of correctly predicted
positive observations out of the actual positives. Mean Average Precision (mAP) is a popular metric
in measuring the accuracy of object detectors like YOLOv7. mAP is calculated by taking the mean
of average precision scores for each class. Two critical values in this metric are mMAP@0.5 and
mAP@0.5:0.95, which specifically involve the concept of Intersection over Union (loU).

loU is an evaluation metric used to measure the overlap between the predicted bounding
box (by the object detection model) and the ground truth bounding box. It is the ratio of the area of
overlap and the area of union of the two bounding boxes. A higher loU indicates a more accurate
detection and is therefore preferred. The term mAP@0.5 refers to the scenario where the model is
evaluated at a single loU threshold of 0.5. This means that if the overlap between the predicted
bounding box and the ground truth bounding box is at least 50%, the detection is considered a "true
positive™; otherwise, it is considered a "false positive". On the other hand, mMAP@0.5:0.95 means
the model is evaluated at multiple loU thresholds, from 0.5 to 0.95, in steps of 0.05. Here, average
precision is calculated at each step and the mean of these values is reported. This provides a more
robust metric, reflecting the model's performance across different levels of overlap and detection
difficulty.

Observing the mAP values’ progress over time allowed the identification of a suitable epoch
number to prevent overfitting. Subsequently, separate training sessions were conducted, adjusting
the number of epochs, to determine the optimal point that maximized model performance while
minimizing the risk of overfitting. Ultimately, a final selection on the number of epochs was made
to proceed into the further stages of the study. As the batch size parameter primarily concerns the
total training time of the model, the selected size of 64 was not modified. It’s worth noting that this
selection was compatible only with the NVIDIA A100 GPU or higher models on Google Colab.

In addition to the previous output graphs, the training results also included a graph for the
resulting F1 value, the harmonic mean of precision and recall, for the training against different
confidence values, allowing for the optimal confidence value to be identified for the following
stages of testing and detection. This phase of performance analysis and reparameterization
allowed for an iterative improvement in the model, enabling the fine-tuning of the number of
epochs to optimize performance, while ensuring the applicability and reliability of the model in
real-world scenarios.

3.6. Model Testing

Upon the completion of the training phase, the next step was to test the trained model. This
is a relatively simpler yet critical step, as it evaluates the model's performance and capacity to
accurately detect and categorize the damages. The testing process was conducted in the Google
Colab environment due to the powerful computational resources it offers, similar to the training
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phase, as well as to contain the computational part of the study to a single environment for better
control and customization.

The primary aim of this stage was to input the images that were specifically allocated to the
test subset into the trained YOLOvV7 model. This is a critical phase as the performance of the model
on this set of data helps to assess the effectiveness of the training process, providing insight into the
model's ability to generalize its learning to new, unseen data.

The testing process essentially allowed the trained model to scan the input images and use
its learnt parameters to identify possible areas of damage. Upon detection, the model drew bounding
boxes around these areas, categorizing the damage as per the classification it had learnt during
training. Not only did the model categorize the damage, but it also provided a corresponding
confidence value for each detection. This value represents the model's level of certainty regarding
the damage category of the detected area, hence providing a quantitative measure of the model's
detection accuracy.

An important parameter that was set during the testing phase was the minimum confidence
threshold. This threshold determined the confidence value below which a detection would not be
accepted as valid. Consequently, any detections that had a confidence value lower than this pre-
specified threshold were not marked with bounding boxes in the output images. This thresholding
serves to maintain the quality of detections, ensuring that only those detections that the model is
reasonably confident about are considered valid and presented in the final output. It is, therefore, a
crucial aspect of maintaining the accuracy and reliability of the model's damage detection
performance.

Overall, the testing phase provided a practical application of the trained model on new data,
serving as a crucial assessment of its real-world usability and performance.

3.7. Imaging Device Evaluation

The final stage of Imaging Device Evaluation was a critical point in the research process,
where the efficacy of three distinct sources of images was thoroughly evaluated. An evaluative
framework was developed for this purpose, using a point system to assess the success rate of damage
detection for each imaging device.

For each photograph captured, a potential detection scenario involved the algorithm
identifying a damage with a confidence value between 0 and 1. For instance, in a photograph
containing two discernible damages, regardless of their categories, the maximum overall confidence
value achievable would be the sum of the maximum confidence values per damage, amounting to
2 in this scenario. This maximum value constituted the upper bound of the rate to be calculated.

For the actual value present on an image instance, confidence values of true positive
detections were summed. However, exceptions were incorporated into the scoring system to address
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false detections. In the event of the algorithm detecting a damage but categorizing it incorrectly, the
confidence value assigned to that detection was halved before being added to the total. It's important
to note that this approach was taken because, regardless of the misclassification, a correct detection
can still provide valuable insights to industrial professionals. This information can be crucial in
maintenance planning for the asset, emphasizing the significance of correct detection despite
potential categorization errors. Moreover, in instances where the algorithm incorrectly detected
nonexistent damages, such as misinterpreting background objects as damages, the confidence value
was deducted from the total. Finally, this total was divided by the maximum theoretical confidence
achievable on the image based on the ground truth, forming the final “success” rate for every image.

Each test image, therefore, received a success rate based on this calculated score, effectively
quantifying the accuracy of damage detection per image. Subsequently, these images were grouped
according to their source, namely the drone, the smartphone, and the digital camera, and the average
success rate for each group was computed. This resulted in an overall success rate for each imaging
device, thus providing a comparison of their respective performances in the context of damage
detection.

This evaluative approach allowed for a thorough assessment of the three imaging devices,

providing crucial insights into their relative efficacy in capturing high-quality images in terms of
effective damage detection.
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4. Results and Analysis

In this chapter, the results and findings of the research are presented and evaluated. Each stage
of the methodology detailed in Chapter 3 has produced quantifiable outcomes, which will be
presented here in a structured manner. This structured presentation is designed to reflect against the
stages of the methodology, thereby providing a direct correlation between the applied methods and
the obtained results. In essence, this chapter's objective is to present and assess the findings,
following the steps of image preprocessing and augmentation, training of the YOLOV7 object
detection algorithm, testing of the trained model, performance analysis and reparameterization, and
the evaluation of imaging devices. The subsections of the chapter will correspond to the steps in the
methodology, presenting the related results, followed by a thorough analysis and interpretation of
these results.

4.1. Creation of Artificial Erosion

In accordance with the experimental procedures outlined in the methodology, the section of
the wind turbine blade was intentionally subjected to damage in three separate locations along its
leading edge. The purpose was to simulate distinct categories of leading edge erosion that could
occur in a real-world scenario. The types of damage ranged from the initial stages of cosmetic
erosion, characterized by minor surface wear and tear, to the severe end of the spectrum where the
structural material of the blade is completely exposed, necessitating urgent intervention. The
damages inflicted on the blade are visually represented in Figure 4.1.1.

Category 1 Category 2 Category 3

Figure 4.1.1 — Artificial LEE on Blade Section

The task of quantifying the distinct characteristics of each erosion category is notably
complex and poses a significant challenge, which is also reflected in industry practices and
academic literature. The scanner's capability to deliver reliable, quantitative results was found to be
more effective in the instances of severe erosion damage, specifically for Category 3. In this case,
the 3D scanner was able to accurately capture and quantify the depth of artificial erosion. Figure
4.1.2 shows reconstructed model of the blade where Category 3 erosion damage is present, captured
by the scanner.
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Figure 4.1.2 — 3D Model of Artificial Category 3 Erosion Damage on Blade

Although prior categories of damage cannot be accurately quantified regarding depth, Visual
inspections and the nature of machine learning applications considered in this research primarily
deals with the qualitative characteristics of the damage to categorize.

While the depth of the less severe erosion categories (Category 1 and 2) could not be
accurately quantified using the industrial 3D scanner, this does not provide a significant obstacle
for the further stages of the study. The nature of visual inspections and the machine learning
applications considered in this study primarily focus on recognizing the qualitative features of the
erosion damage for categorization, rather than relying heavily on the exact depth measurements.
Visual inspections are designed to identify and categorize the damage based on its appearance and
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observable characteristics. These could include the shape, size, and pattern of the erosion on the
blade's surface.

Moreover, the machine learning algorithms employed in this study are particularly adept at
identifying patterns, nuances, and deviations in the data. They work by extracting features from the
input images and learning to associate these features with particular categories of damage. This
implies that even if the exact depth of erosion cannot be quantified for the less severe categories,
the algorithms can still learn to recognize these damage categories based on other distinct,
qualitative features visible in the images. While the quantification of damage depth is beneficial for
certain analytical purposes, its absence does not delay the study's progress or its primary objective,
to assess the impact of image resolution captured in industrial inspections.

4.2. Image Preprocessing, Augmentation and Dataset Generation

The image preprocessing and augmentation phase played a critical role in enhancing the
dataset used in this study. Before any preprocessing and augmentation steps, the initial dataset
consisted of 173 images, with 310 annotations across 3 damage categories. The average number of
annotations per image was 1.8. The average size of the images was 15.68 megapixels, ranging from
0.25 megapixels to 16.06 megapixels. The median image ratio was 3006x3448, representing a tall
image orientation.
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Brightness +15%

Horizontal Flip Vertical Flip Noise +2%

90° Rotate 90° Rotate Gaussian Blur

Clockwise Counter-Clockwise up to 1.5px

Figure 4.2.1 — Augmentation Outpus

This initial dataset, while substantial, needed further enhancement to optimally train the
YOLOv7 model. The preprocessing and augmentation pipeline addressed this need by allowing for
an increase in the size of the dataset and contributing to the overall diversity of the images.
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The specific steps involved in this process, and their impacts, are analyzed in this section.

1) Resizing of Images: The initial step in the preprocessing was to resize the images to a
uniform dimension of 640x640. Ensuring uniformity in image size is critical in machine
learning models, as inconsistent image sizes can lead to irregularities in the learning
process. It is important to note that original images were stretched to achieve the desired
quality, rather than being cropped. The standard dimension of 640x640 pixels provided
an optimal balance between image quality and computational efficiency. The difference
between an original image and its resized version can be seen in Figure 4.2.1.

2) Augmentation Techniques: The augmentation process involved the application of
multiple techniques to the resized images, aimed at artificially expanding the dataset.
The techniques used were horizontal and vertical flipping, 90-degree clockwise and
counter-clockwise rotation, brightness adjustment between 0% and +15%, Gaussian blur
up to 1.5px, and the addition of random noise up to 2% of pixels. Examples of these
augmentations can be seen in Figure 4.2.1.

3) Increased Dataset Size: As a direct result of the augmentation techniques, the dataset
size increased from 81 unique images to a more substantial dataset of 557 images. This
increase expanded the training data available to the YOLOv7 model, which generally
leads to better model performance. Figure 4.2.2 provides a visualization of the dataset
size before and after the augmentation process.

W Training B Validation Test

0 200 400 600
Figure 4.2.2 — Dataset Size and Distribution

4) Allocations to Training, Validation, and Testing: Following the augmentation
process, the images were allocated to the training, validation, and testing subsets. The
training subset received the most significant portion with 480 images, while the
validation and testing subsets received 50 and 27 images, respectively. The allocation of
the dataset to these subsets was done to ensure the optimal performance of the YOLOv7
model. The proportion of images allocated to each subset is illustrated in Figure 4.2.2.

This comprehensive approach to image preprocessing and augmentation demonstrates the
importance of careful dataset construction in the successful application of machine learning models
to real-world scenarios.
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4.3. Model Training

The evaluation of the model training phase began with an analysis of the training outputs,
focusing on the evolution of various key metrics over the sequence of training epochs. For context,
an epoch in machine learning refers to one cycle through the entire training dataset. During each
epoch, the model learns and updates its parameters to minimize the difference between the predicted
and actual outputs. The key performance measures considered in this evaluation include precision,
recall, mMAP@0.5, mAP@0.5:0.95, and F1 values.

Precision is a metric that represents the proportion of true positive instances among all
instances that the model has predicted as positive. A higher precision indicates a model that
produces fewer false positives. In Figure 4.3.1, the trend of precision throughout the training process
can be observed. The decrease in variance between consecutive precision values displays the
learning process of the custom model.
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Figure 4.3.1 — Precision over Training

Similarly, recall, also known as sensitivity or true positive rate, is the portion of actual
positive instances that the model has accurately predicted as positive. Higher recall means the model
can identify more true positives, thereby producing fewer false negatives. Figure 4.3.2 presents the
evolution of recall over the course of the training epochs. Much like precision, a decrease in
variance is also present in the evolution of recall value, indicating successive learning.
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Figure 4.3.2 — Recall over Training

Next, the Mean Average Precision (mAP) is inspected, both at an Intersection over Union
(loV) threshold of 0.5 (MAP@0.5) and over a range of loU values from 0.5 to 0.95
(mAP@0.5:0.95). Figure 4.3.3 displays the evolution of mAP over the course of 620 training
epochs.

mAP@IloU over 620 Epochs

0.7278

mAP@0.5

0.4284

mAP@0.5:0.95

Epoch
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Figure 4.3.3 — mAP over Training

The mAP is a popular metric in measuring the accuracy of object detectors like YOLOvV7.
Specifically, mMAP@0.5 means the model is evaluated at a single loU threshold of 0.5, and
mAP@0.5:0.95 means the model is evaluated at multiple loU thresholds from 0.5 to 0.95. Recalling
the definition, Intersection over Union (loU) is a measure used in object detection to determine the
accuracy of the bounding boxes predicted by the model. It is essentially the ratio of the area of
overlap and the area of union of the predicted and actual bounding boxes.

After a thorough iterative approach, which will be further detailed in section 4.3
Performance Analysis & Reparameterization, it was decided to train the model for 620 epochs,
using an NVIDIA A100 GPU on Google Colab, which took roughly 1.5 hours to conclude. This
number was decided based on the observation that mAP@0.5:0.95 converged into its optimal value
around this mark, and any further training could risk overfitting. The mAP@0.5:0.95 was prioritized
over mMAP@0.5 as it provides a more comprehensive evaluation, taking into account the mAP over
a range of loU values between 0.5 and 0.95. The model achieved mAP@0.5 and mAP@0.5:0.95 of
0.7278 and 0.4284, respectively, at the end of 620 epochs, with their peak values of 0.7458 and
0.4497 achieved at epochs 403 and 602. This confirms that average precision over lower loU values
converges into optimum more quickly, as detections with higher loU values require further training
to improve precision.
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Figure 4.3.4 — F1 over Confidence Values
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The F1 value, which is the harmonic mean of precision and recall, also plays an important
role in the training outputs. Figure 4.3.4 shows the F1 value plotted over different confidence values.
The term "confidence™ in this context refers to the probability assigned by the model to the
prediction of the object class and the bounding box. A higher confidence score implies that the
model is more certain about the class of the object and the location of the bounding box. The best
F1 value across all categories was observed around a confidence value of 0.25. As a result, this
confidence value was used in the subsequent detection and test results evaluations.

Category 1 Erosion

Category 2 Erosion

Predicted

Category 3 Erosion

-04

— 0.2

0.45 0.11 0.05

background FN

Category 1 Erosion Category 2 Erosion Category 3 Erosion background FP
True

Figure 4.3.5 — Confusion Matrix (Training)

The confusion matrix is another essential output of the training phase. It is a representation
that illustrates the performance of the model by comparing the actual and predicted damage
categories, as well as false positives (FPs) and false negatives (FNs). This matrix allows us to see
where the model is most and least “confused” in its predictions. It is noticeable from the confusion
matrix, provided within the outputs of the model and displayed in Figure 4.3.5, that the model
demonstrated less confusion when detecting Category 3 Erosion but struggled more with Category
1 Erosion. This finding is understandable, as Category 3 Erosions tend to be larger and more distinct
due to exposed blade material, making them easier for the model to identify. Conversely, Category
1 Erosions, being less severe, smaller in size, and more challenging to detect as the distance
increases, understandably resulted in greater confusion for the model. Meanwhile, Category 2
Erosion detection results provided a midpoint between the extremes.
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These training outputs and the analysis therein set the foundation for further model testing
and refinement as discussed in the following sections.

4.4. Performance Analysis & Reparameterization

Performance analysis and reparameterization efforts, within the scope of this study, were
primarily concentrated on achieving a balance between the successful training of the model and the
risk of overfitting. The primary training performance metric under observation was the
MAP@0.5:0.95 score across different numbers of training epochs, namely 220, 300, 500, 620, 1000,
and 1500 epochs. Graphical representations of mAP over epochs, displayed in Figure 4.4, for these
respective training instances reveal noteworthy patterns and insights, providing a valuable visual
aid in understanding the model's performance evolution.

MAP@0.5:0.95 over Different Epochs
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Figure 4.4 - mAP over Different Training Instances

Upon a detailed review of these varied training instances, it can be seen that each instance

of training follows a similar pattern, but is actually unique in detail. This makes it quite complex to
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pinpoint the exact epoch that results in optimal training, rather it is more practical to approximate
this epoch based on the results of each training. The aim was, therefore, to identify the
mAP@0.5:0.95 value to which the training sessions converged. Once identified, the training was
supposed to be terminated to prevent the model from training too long at this convergence point,
which increases the risk overfitting.

Through the evaluation of the various training instances, it was found that the
mMAP@0.5:0.95 score, to which the trainings converged, ranged approximately between 0.4 and
0.45. The maximum concluding mAP recorded among the training instances was 0.4534, achieved
at 1000 epochs. However, a notable deceleration in the increase of mAP over epochs was observed
at around 620 epochs. The final MAP score reached at the end of training for 620 epochs was 0.4327.
This 620-epoch instance offered an ideal compromise between training thoroughness and
overfitting risk, thereby serving as the chosen model configuration for the remaining phases of the
research.

4.5. Model Testing

Following the model training, the testing phase was carried out to evaluate the trained
model's performance on a separate set of images. Each image was processed by the model, which
then identified potential areas of damage based on its training. Bounding boxes were drawn around
these regions, with the model assigning a category of damage and a confidence value to each
detected area. A sample of detections made by the model are shown in Figure 4.5.1, additional
output images can also be found in Appendix C. The confidence value signifies the model's certainty
regarding the type of damage detected and serves as a quantifiable measure of its precision.

The minimum confidence threshold, a critical parameter that was identified during the
testing phase, plays a crucial role in validation of the detections. Only detections with confidence
values surpassing this threshold were deemed valid and marked with bounding boxes in the images.
To optimize the balance between precision and recall, this threshold was set to 0.25, as per the best
F1 score achieved during training.
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Source: Smartphone

False Positive on Coating

Source: Drone

Correct Detection and Categorization

Figure 4.5.1 — Model Detections

An essential component of the test results once more is the confusion matrix displayed in
Figure 4.5.2, a graphical representation illustrating the model's performance against the ground truth
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for the test set. Upon examination, it becomes evident that the model performed exceptionally well
in detecting Category 3 Erosion damages. In fact, every instance of actual Category 3 damage in
the test set was correctly identified by the model. However, among the total detections made, a
minor portion of Category 3 detections were false positives, with the model mistakenly identifying
background elements as damage.

Category 1 Erosion

Category 2 Erosion

Predicted

Category 3 Erosion

-0.4

-0.2

041 0.06

background FN

Category 1 Erosion Category 2 Erosion Category 3 Erosion background FP
True

Figure 4.5.2 — Confusion Matrix (Testing)

This superior detection rate for Category 3 damages can be attributed to the unique visual
characteristics of these damages, which makes them easier to recognize. On the other hand, the
performance was somewhat less precise for Category 2 Erosion damages. Although the model
accurately classified the majority of Category 2 instances, it can tend to incorrectly classify a quarter
of the instances as Category 1 Erosion. A small fraction of Category 2 Erosions were also
mislabeled as background objects.

Turning the attention to Category 1 Erosion damages, the model demonstrated a satisfactory
degree of detection and categorization accuracy. Despite being the most challenging to detect due
to their smaller size and lesser impact on the turbine's performance, the detection of Category 1
damages is arguably the most critical aspect of this study. The early detection of these damages can
drive proactive maintenance planning, which in turn prevents the development of these damages to
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more severe categories. Therefore, while the overall detection rate for Category 1 Erosion is the
lowest among the three categories, it remains at an acceptable level, thus making the model a viable
tool for maintenance activities in most cases. An analysis of false positives reveals that most errors
occur with Category 1 Erosion. Approximately half of the instances, background objects were
categorized as Category 1 Erosion, with the remainder divided between Categories 2 and 3.

On a broader perspective, the testing outcomes correlate closely with the results obtained
during the training phase. For instance, the model's superior performance in identifying Category 3
Erosion damages and the greater degree of difficulty it encounters when detecting Category 1
Erosion damages are aspects that persist between both stages. This consistent pattern of
performance reinforces the model's strengths and highlights areas where further fine-tuning may be
necessary.

This level of consistency is a promising indicator of the model's ability to generalize and
reliably detect and categorize damages in wind turbine blades, regardless of the dataset it is applied
to. This adaptability is also crucial as it affirms the model's utility in a real-world context, where
input data can greatly vary. This is a significant achievement, as the primary goal of any machine
learning model is to not only perform well on training data but also maintain that performance level
on new, untrained data.

Therefore, the close alignment of the testing results with the training outputs underscores
the model's robustness and its potential as a valuable tool in the ongoing maintenance and
monitoring of wind turbines. These findings suggest that the model can potentially aid in the early
detection of blade erosion, paving the way for timely maintenance activities and, in turn, potentially
contributing to more efficient and sustainable wind energy production.

4.6. Imaging Device Evaluation

The implementation of the evaluative framework detailed in the methodology section
yielded specific success rates for each of the three imaging devices. The results show that the digital
camera was the most successful with a rate of 84%, followed by the smartphone at 78%, and the
drone at 75%. It's crucial to clarify that these percentages do not represent the proportion of damages
correctly identified; instead, they signify the confidence level of the detections produced by each
imaging device. In other words, a success rate of 75% for the drone does not suggest that it misses
1 out of every 4 damage present. Rather, it indicates that the confidence levels associated with its
detections tend to be lower than those of the other devices. Figure 4.6.1 provides a comprehensive
representation of these detailed percentages and corresponding visual data.

50



7

Success Rate

70% 72% 74% 76% 78% 80% 82% 84%

Success Rate
Camera
(4592x3448)

B Smartphone
(1536x2048)

H Drone
(960x720)

84%
78%

75%

Figure 4.6.1 — Success Rate of Devices

To put things into perspective, the resolutions of the images from the drone, smartphone,
and digital camera were 960x720, 1536x2048, and 4592x3448 pixels, respectively. In order to lay
the foundations for an appropriate comparison, diagonal resolution values were used in visuals,
instead of length and width resolution values of images. When these values are compared directly
with the respective success rates, a clear pattern emerges, suggesting that the resolution of the input
images indeed impacts the performance of the custom model. This correlation can be attributed to
the fact that higher resolution images are able to represent more detailed and unique characteristics
of each damage category, thereby enabling the model to make more confident detections. Indeed, a
higher resolution tends to yield sharper images, which in turn allows for more precise and accurate
damage detections. This is supported by Figure 4.6.2, illustrating the relationship between the
diagonal resolution of each device and their respective success rates.
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In conclusion, while all three devices achieved considerable success rates, the digital camera
emerged as the most effective imaging device for damage detection, likely due to its superior
resolution capabilities. This evaluation and the resulting findings contribute a valuable perspective
on the role of imaging devices in damage detection and categorization for wind turbine blades, as
well as providing guidance for future studies and industrial applications.
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5. Discussion

This chapter of the research is dedicated to a comprehensive discussion on the interpretation of
the study's findings, their potential implications for the industry, the key takeaways, and how future
studies can build upon this work. This discussion provides an opportunity to touch upon the aspects
that could influence the future direction of research in this field.

As the research evolves, it becomes clear that the resolution of the input images can indeed have
a noticeable impact on the confidence with which detections are made by the YOLOvV7 object
detection model when it is trained on custom data. One of the key findings of this study is that the
model's performance is at its peak when dealing with Category 3 damages, which are the most
advanced and severe types of damage. These are also the largest in terms of size and are highly
distinguishable in color due to the often exposure of the blade's structural material. While this high
level of performance in detecting Category 3 damages is indeed encouraging, it is, however, to
some extent expected due to the distinct visual characteristics that this category typically displays.

On the other side of the spectrum, it is observed that while the model's performance in detecting
Category 1 and 2 damages is acceptable, there exists a degree of potential for further optimization
and fine-tuning. These initial categories of damage, which are relatively smaller in size and more
challenging to detect based on turbine performance metrics, could greatly benefit from an improved
detection model. As the accumulation and progression of leading-edge erosion typically begin with
these less noticeable damages, the model's ability to correctly identify them can provide significant
value.

Currently, the model has the potential provide beneficial insights and contribute to resource-
efficient maintenance planning when supervised. However, its readiness for unsupervised operation
is still uncertain due to the potential risk of generating false alarms. This characteristic brings into
focus the importance of Category 1 and 2 damages in terms of early detection and preventive
measures.

To enhance the model's performance in identifying these initial stages of damage, expanding
the dataset to cover a greater variety of unique examples from these categories could be a potential
solution. It is understood that, due to confidentiality concerns within the wind energy industry, there
is limited focus and prioritization towards compiling a standardized dataset among operators of
wind farms or parties overseeing maintenance activities. Yet, the insights gained from this study
hopefully should incentivize these industry players to consider developing their own image datasets,
varying in scale from turbine-specific to site or location-specific, as well as damage category-
specific.

The potential of machine learning techniques in visual inspections is undeniable. If datasets of
appropriate quality were readily available, it could significantly reduce the human labor required
for manual annotation of existing images and dataset generation, thereby boosting the efficiency
and effectiveness of these inspections. This shift towards leveraging artificial intelligence could
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help not only in damage detection but also in streamlining maintenance strategies, making a
significant impact on the industry as a whole.
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6. Conclusion and Future Work

Overall, this research highlights the stages of training a custom object detection model, suitable
for use in detecting and categorizing LEE damages, including testing its capabilities on a training
set comprised of images from different sources. This allowed for a comparison between the imaging
devices, thereby evaluating the model’s performance on different input resolutions.

The evaluation resulted in the discovery and affirmation that detection attempts on different
classes being made with greater confidence on images with higher resolution, by the custom model.
The outputs of the experiments brought forward a potential correlation between input image
resolution and detection confidence on multi-class object detection, in the context of wind turbine
maintenance. Ultimately, the findings highlight the importance and impact of imaging hardware
selection on inspections, as well as encouraging industry professionals to construct datasets of
appropriate quality to be machine learning-ready.

Looking ahead, there are several potentials for future research that could build upon the findings
of this study. The first concerns the exploration of other computer vision algorithms. While this
research was focused on the use of the main configuration of YOLOV7 object detection model due
to its superior performance within the time constraints of the study, examining other configurations
of YOLOV7 or exploring different architectures like Faster R-CNN might provide additional insight
onto the effect of input resolution on damage detection and categorization. Within each model itself,
exploring the optimal parameter selection regarding the number of epochs or confidence threshold
could also further enhance the existing practices.

Additionally, the method employed in this study for gathering damage information, namely
inspection photography, could be further enhanced with the inclusion of recent advancements in
Light Detection and Ranging (LIDAR) technology. LIDAR is a remote sensing method that uses
light in the form of a laser to measure distances between the source and objects, creating precise,
three-dimensional information about shapes and surface characteristics. By utilizing LIDAR
sensors, it may be possible to obtain the dimensional properties of each unique damage. This
information could offer a deeper understanding of natural erosion patterns, improving predictive
modeling on erosion and strategic maintenance planning.

A final promising field for future research lies on the use of artificial intelligence to enhance
image quality. Recent advancements in this field have led to the development and distribution of
image upscalers that can artificially increase the resolution of images to ultra-high values. It would
be worthwhile to examine the effects of such artificial upscaling on input images. If successful, this
could reduce the need for high-resolution inspection devices, further cutting hardware costs.
Instead, an optimal imaging mode could be identified and used in combination with artificial
upscaling to form a complete object detection input pipeline.

In conclusion, the findings of this study offer valuable insights into the role of image resolution
in damage detection and categorization for wind turbine blades, through utilizing machine learning
technology. It provides a strong foundation for future research, displaying new possibilities for the
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application of artificial intelligence in the field of wind energy maintenance and management. This
work, finally, serves as an incentive and encouragement for industry stakeholders to leverage the
power of machine learning and consider creating their own tailored image datasets with tools that
provide higher resolution, thus leading the way for more efficient and effective visual inspections.
Such advancements would introduce opportunities for more streamlined and efficient operational
procedures in the field of wind turbine maintenance, ultimately contributing towards a more
sustainable future.
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Appendices

Appendix A - Drone Image Capture Mission

# Import requirements

import time
from djitellopy import Tello
import cv2
import math

# Define function for image capture

def save_image(frame, file_path):
# Save the image to a file
cv2.imwrite(file_path, frame)
print(f"Image saved to {file_path}")

# Set mission parameters

init_dist = 50 # Takeoff point distance from blade
altitudes = [20, 30, 70] # Altitudes of damage locations

distances = [init_dist, init_dist*2, init_dist*3] # Distances for loop

num_photos = 5 # Number of images to capture

wait = 2 # Seconds between actions to prevent errors
name = "blade" # Part of saved image name

# Connect to the drone

try:
tello = Tello()

# Connect to the drone

tello.connect()

time.sleep(wait)

print(f"Battery percentage: {tello.get_battery()}%")

except:
print("ERROR: Could not connect to Tello.")
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# Initiate mission
time.sleep(wait)

# Take off and reach the desired altitude
print(f"Takeoff...")

tello.takeoff()

time.sleep(wait)

for alt in altitudes:

tello.move_up(altitudes)
time.sleep(wait)

for distance in distances:

# Image
for i in range(num_photos-1):
# Capture an image
tello.streamon()
frame = tello.get_frame_read().frame
time.sleep(wait-1)
tello.streamoff()
time.sleep(wait-1)

# Save the captured image

save_image(frame, f"photo_{name}_{distance}cm_{i+1}.jpg")
print(f"Image saved as: photo_{name}_{distance}cm_{i+1}.jpg.")
time.sleep(wait-1)

# Move to next position
if distance != distances[-1]:
tello.move_back(dist_incr)
time.sleep(wait)
print(f"Drone in position.")
else:
tello.move_forward((len(distances)-1)*dist_incr)
time.sleep(wait)

# Land

print(f"Landing...")

tello.land()

print(f"Battery percentage: {tello.get_battery()}%")

print(f"Mission completed in {tello.get_flight_time()} time units.")
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Appendix B - YOLOv7 Custom Training, Testing and Export

Download YOLOv7 and install requirements #
sk 3k 3 5k 5k 3k 3k 3 5k 5k ok 3k 3k 3k >k ok 3k 3% 3k 5k sk 3k 3k 3k >k ok 3k 3 >k >k ok 3 3k >k ok %k %k Kk kK

lgit clone https://github.com/WongKinYiu/yolov?7
%cd yolov7
Ipip install -r requirements.txt

# Export and paste connection training-validation-test dataset from Roboflow in "YOLOv7 PyTorch" format
# 3k 3k 3k >k >k >k 3k 3k 3k 3k 3k 5k 5k 3k >k >k >k 3k 3k 3k 3k 3k >k >k >k 3k 3k 3k 3k 5k 3k >k >k >k 3k 3k 3k 3k 3k 3k 5k 3k >k >k >k 3k 3k 3k 3k 5k >k >k >k >k 3k 3k 3k 3k 3k 5k >k >k 3k 3k 3k 3k 3k 3k 5k 5k >k >k >k >k 3k 3k 3k 3k 3k 5k >k >k >k 3k 3k 3k 3k 3k 3k >k >k >k 3k %k 3k 3k ok >k k Xk k.

Ipip install roboflow

from roboflow import Roboflow

rf = Roboflow(api key="**********************")

project = rf.workspace("*****") project("*krxxkkkdiirxn)
dataset = project.version(**).download("******")

# Download YOLOv7 MS COCO starting checkpoint
# 3k 3k 3k 5k 3k 5k 3k sk >k 3k >k sk ok 3k >k 3k ok 3k ok sk sk %k 5k >k 3k >k 3k >k 3k >k 3k >k 3k ok 3k ok >k 5k >k 5k k k ok

%cd /content/yolov?7
lwget https://github.com/WongKinYiu/yolov7/releases/download/v@.1/yolov7 training.pt

# Begin training on COCO checkpoint (set batch size 2”n based on GPU power, adjust number of epochs for training duration)
HE KRR KKK oK oK ok o K KKK oK K K oK ok KKK oK oK oK oK ok o KKK oK ok ok ok K KK oK oK ok o o o KK KoK oK ok o K KKK KK ok ok o KKK K oK ok ok KKK oK K oK oK R SR KKK ok ok ok ok ok KKK oK sk ok ok R KK ok sk ok ok o ok K K ok ok ok ok

%cd /content/yolov?7
Ipython train.py --batch 64 --epochs 300 --data {dataset.location}/data.yaml --weights 'yolov7_training.pt' --device ©

# Run detection on test images (adjust confidence based on F1 vs Confidence graph on training output)
H KRR KRR R R R R R oK oK oK ok Sk sk oK ok K Kk o ok ok ok ok sk ok KKK K ok ok ok sk ok ok ok ok ok KRR KK oK Sk ok sk sk ok ok KRR R R R ok sk sk sk sk sk ok KRR R R ok ok ok sk ok ok kKKK K R sk sk sk ok ok K F R R

%cd /content/yolov?7
Ipython detect.py --weights runs/train/exp/weights/best.pt --conf @.1 --source {dataset.location}/test/images
Ipython test.py --weights runs/train/exp/weights/best.pt --conf 0.1 --data {dataset.location}/data.yaml --device © --batch 64

# Zip training weights and results
# 3k 3k 3k 3k 3k >k >k >k >k 3k 3k 3k 3k 3k 5k >k >k >k 3k 3k 3k ok ok ok >k %k %k ok >k k ok ok

1zip -r export.zip runs/detect

1zip -r export.zip runs/test

Izip -r export.zip runs/train/exp/weights/best.pt
Izip export.zip runs/train/exp/*

# Download zipped results
HORERRR KRR KRR KRR Rk K

from google.colab import files
files.download("/content/yolov7/export.zip™)
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Appendix C - Certain Model Outputs

Category 1 Erosion 0.84

Image Device: Digital Camera
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Image Device: Ryze Tello (Drone)

Cotegory 1 Erosion 0.80

f

Category 3 Erosion 0.91

Cotegory 2 Erosion 0.57
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Image Device: Ryze Tello (Drone)
False Positive in Background
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Image Device: Digital Camera
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