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Motivated by the fact that both the classical and quantum description of nature rest on 
causality and a variational principle, we develop a novel and highly versatile discretization 
prescription for classical initial value problems (IVPs). It is based on an optimization 
(action) functional with doubled degrees of freedom, which is discretized using a single 
regularized summation-by-parts (SBP) operator. Formulated as optimization task it allows 
us to obtain classical trajectories without the need to derive an equation of motion. The 
novel regularization we develop in this context is inspired by the weak imposition of 
initial data, often deployed in the modern treatment of IVPs and is implemented using 
affine coordinates. We demonstrate numerically the stability, accuracy and convergence 
properties of our approach in systems with classical equations of motion featuring both 
first and second order derivatives in time.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The numerical treatment of dynamical phenomena in classical and quantum systems is at the core of progress in natural 
sciences and engineering. In computational fluid dynamics [1] or electrodynamics [2], a set of coupled partial differential 
equations is solved on a predefined geometric domain with boundary conditions, starting from an initial condition, in order 
to predict trajectories of point particles or configurations of fields. In the study of atomic properties, linear and non-linear 
variants of the Schrödinger equation or more generally Lindblad equations [3] of multiple entangled particles are solved as 
initial value problems. For an understanding of the nuclei of atoms on the other hand, an ensemble of fluctuating quantum 
fields of a non-linear variant of Maxwell’s equations (Yang-Mills theory) needs to be simulated on a hypercubic grid (lattice 
QCD) [4].

Much progress has been made in developing accurate and cost effective discretization schemes for partial differential 
equations over the past two decades. Due to their ease of implementation, finite difference schemes have long enjoyed 
popularity, but historically were challenged when confronted with intricate simulation geometries. It took the development 
of summation-by-parts (SBP) finite difference operators (for reviews see e.g. [5–7]), to elevate finite difference schemes to a 
similar level of versatility as traditional functional basis approaches, such as Galerkin schemes [8]. The SBP approach both in 
spatial dimensions, as well as in time [7,9,10] provides proofs of stability for finite difference based discretization schemes 
via the so-called energy method and is easily extended to higher order approximations.

* Corresponding author.
E-mail addresses: alexander.rothkopf@uis.no (A. Rothkopf), jan.nordstrom@liu.se (J. Nordström).
https://doi.org/10.1016/j.jcp.2023.111942
0021-9991/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jcp.2023.111942
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.111942&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:alexander.rothkopf@uis.no
mailto:jan.nordstrom@liu.se
https://doi.org/10.1016/j.jcp.2023.111942
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A. Rothkopf and J. Nordström Journal of Computational Physics 477 (2023) 111942
Implementing the integration-by-parts property of the underlying continuum IVP, summation-by-parts operators are an 
example of so-called mimetic discretizations. It has been shown that SBP operators form a versatile framework, which en-
compasses various other numerical approximation techniques besides finite differences [11], such as finite volume schemes 
[12], spectral element [13], flux reconstruction [14] and both continuous [15] and discontinuous Galerkin (dG) [16,17]
schemes.

A crucial development in the numerical treatment of differential equations is the concept of weak boundary or initial 
conditions. It acknowledges that the solution of a discretized PDE not only in the interior of the domain but also on the 
boundary (or initial time slice) need only be as accurate as the order of the discretization. By allowing the solution to 
deviate from the initial or boundary conditions within the tolerance of the discretization, one obtains a new lever, which 
one can exploit in the construction of discretization schemes. The simultaneous approximation term (SAT) approach [18] e.g. 
implements weak boundary or initial conditions by the addition of appropriately designed penalty terms to the differential 
equation of interest. In recent studies it has been shown how to absorb part of these penalty terms into a redefinition of the 
SBP operators, in order to reduce their null-space to the corresponding physical dimension, leading to so called null-space 
consistent SBP operators [19–22].

In spite of this substantial progress in the numerical treatment of IVPs, challenges of both conceptual and technical nature 
remain. The treatment of intrinsic constraints, e.g. the divergence constraint for Maxwell’s equations and the discretization of 
second order systems are two examples. The third one is the derivation of the equations of motion of linear electrodynamics 
or non-linear Yang-Mills theory in terms of the gauge potentials (see e.g. [23]). It is relevant for quantum theory and 
depends on a choice of gauge. The choice of setting the zeroth component of the four-potential to zero A0 = 0 renders the 
role of Gauss’ law opaque, since A0 is actually the Lagrange multiplier that preserves this intrinsic constraint. On the other 
hand, the discretized Lagrangian of these theories remains manifestly gauge invariant and A0 retains its central role. If one 
could solve the associated initial value problem, i.e. determine future field configurations directly on the level of the action, 
without the need to derive the equation of motion, no choice of gauge is necessary and the manifested gauge invariance 
would render Gauss’ law automatically fulfilled.

In the treatment of initial value problems for second order ODEs with the SBP-SAT technique it was found that using 
the same regularized SBP operator for the first and second derivative does not lead to stable procedures. Instead, different 
SBP operators for the position and velocity degree of freedom had to be defined [10]. On the other hand in the action 
formulation of second order systems, at most first order derivatives act on the degrees of freedom [24]. This reduction of 
the order of the derivatives compared to the corresponding governing equations by at least one power is a general feature of 
the action formulation. A lower order derivative operator is more robust against rough data than a higher order one, which 
requires more regularity [25]. By expressing the theory directly on the level of the action one can reduce the highest order 
of derivatives and in particular for second order systems, a single modified SBP operator suffices to obtain a regularized and 
null-space consistent discretization.

In this paper we develop a discretization scheme for one-dimensional initial value problems, based on a generalized 
variational principle applied directly to the action of the system of interest. I.e. we will determine the classical trajectory 
of the system, given an initial condition, without the need to derive an equation of motion. To this end we deploy the SBP 
technique to approximate derivatives occurring in the continuum formulation of the problem and will take inspiration by 
the SAT approach to regularize the resulting difference operators. This is achieved by the use of affine coordinates to absorb 
the whole penalty term including data into a redefined null-space consistent SBP operator.

Of course all examples treated in this study have well known ODEs as equation of motion, which can be solved with 
established numerical methods. As proof of principle, the intention of this study is merely to establish the validity of the 
direct action based approach and prepare the ground for its application to higher dimensional theories in future work, 
where its utility is more obvious. Our direct action approach allows us to formulate the system using any geometry for 
which SBP operators have been developed and therefore allows us to avoid the intricate construction of dual meshes [26], 
which underlie implementations of other variational approaches to IVPs, such as discrete exterior calculus [27].

It is important to note that the main point of this paper is to present a new technique for solving IVPs without utilizing 
governing equations.

The paper is structured as follows: In section 2 we review the continuum formulation of the conventional variational 
principle of classical physics for initial value problems, featuring equations of motion with second order derivatives in time. 
In the subsequent section 3 we introduce our discretization prescription, discuss the need for regularization and construct 
a regularized SBP operator based on initial value data. To extend the applicability of our discretization scheme to a more 
general class of systems, we consider a generalized variational principle in section 4 and show that our approach successfully 
captures differential equations of motion containing also first order derivatives. We close with a brief summary in section 5.

2. Continuum formalism for second order equations of motion

The classical physics of closed systems (i.e. systems that are not in contact with their environment) is conveniently 
captured via their Lagrangian. In point mechanics the Lagrangian is a functional, which depends on the trajectory of the 
point mass x(t) and its velocity ẋ(t). In a field theory, such as in electromagnetism, it is formulated in terms of the vector 
fields Aμ(x) and their derivatives ∂ν Aμ(x). In the simple systems under consideration here, the Lagrangian can be written 
2
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as the difference between the kinetic energy of the system and its potential energy. Taking a point mass in a constant 
gravitational field as an explicit example we have

L = T − V = 1

2
mẋ2(t) − mgx(t). (1)

In the 19th century, physicists discovered that the trajectory of a classical particle can be obtained from a variational 
principle (see e.g. ref. [28]). If a point mass starts out at position x(t1) at t1 and ends up at position x(t2) at t2 then the 
classical trajectory that is realized in nature between those points is given by the critical point of the classical action1

S[x(t), ẋ(t)] =
t2∫

t1

dt L[x(t), ẋ(t)]. (2)

This observation is stated as a boundary value problem, where the start and end point of the trajectory are specified. While 
it is of conceptual interest that such a formulation exists, we cannot use it to determine the classical trajectory itself in a 
causal fashion, since in order to formulate the variational principle, we already need to know where the point mass will 
end up at t2. When setting up an experiment, we are of course only in control of the initial position and velocity.

To proceed, physicists conventionally convert the above boundary value problem into an initial value problem using the 
following strategy: one derives a set of differential equations that are equivalent to the variational principle and which can 
be solved as initial value problem. These are the celebrated Euler-Lagrange equations. We wish to inspect the variation of 
the Lagrangian using a slightly deformed path x(t) + δx(t). Here δx(t) is an arbitrary function with the only condition that 
it goes to zero at t1 and t2, as the points x(t1) and x(t2) are fixed. Varying the action we obtain

δS =
t2∫

t1

dt
{∂L

∂x
δx + ∂L

∂ ẋ
δẋ

}
=

t2∫

t1

dt
{∂L

∂x
δx + ∂L

∂ ẋ

d

dt
δx

}
(3)

=
t2∫

t1

dt
{∂L

∂x
− d

dt

∂L
∂ ẋ

}
δx +

[∂L
∂ ẋ

δx
]∣∣∣∣

t2

t1

, (4)

where the last line results from integration by parts (IBP). Since the variation δx by construction vanishes on the boundary, 
the term in the square brackets also vanishes. If we inspect the critical point of the functional S , defined by δS = 0, we find 
that it is equivalent to the term in the curly brackets equalling zero, since δx can be any (well behaved) function between 
t1 and t2.

In other words, if we assume the validity of the variational principle, i.e. that the classical trajectory follows from the 
critical point of the action, then this trajectory must fulfill the Euler-Lagrange equations, which are just the terms inside the 
curly brackets set to zero

δS[x, ẋ]
δx

∣∣∣∣
x=xclassical

= 0
BVP⇐⇒
IVP

∂L
∂x

− d

dt

∂L
∂ ẋ

= 0. (5)

Since for more complex systems (with internal constraints etc.) it is often easier to formulate the action than to derive the 
Euler-Lagrange equations as initial value problem, our goal here is to formulate and solve the initial value problem as a 
variational problem directly on the level of the action. To this end we follow the reasoning of ref. [29], which establishes 
the continuum formalism for the variational IVP.

Retracing the train of thought of ref. [29], we first note that the equivalence between the Euler-Lagrange equations 
(which provide the correct classical equations of motion) and the stationarity of the action requires that the variation of the 
path vanishes at initial t1 and final time t2 (see eq. (4)). Since we do not know x(t2) apriori and we only know x(t1) and 
ẋ(t1), we must instead find a way how to formulate the variational principle in such a way that the value of x at t2 does 
not need to be fixed. This can be accomplished by doubling the degrees of freedom with one trajectory x1(t) describing a 
forward path and one trajectory x2(t) describing a backward path. Intuitively we will use the doubled degrees of freedom in 
a way reminiscent of the shooting method, extended such that the aim is to find the trajectory which returns to the starting 
point given by the initial conditions (see Fig. 1 for a sketch of the difference in the approaches).

In order to achieve the necessary cancellation of the boundary terms between the forward and backward path at t2, 
ref. [29] constructs a new joint action for the two degrees of freedom x1(t) and x2(t) as

1 More specifically, for short times, where the classical trajectory has not yet reached any turning point, the action exhibits an actual minimum. In the 
presence of turning points in the classical trajectory it in general represents a saddle point of the action. (see e.g. ref. [24]).
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Fig. 1. Differences between the variational principle as boundary value problem (left) and as initial value problem (right). In the BVP setting there may exist 
multiple paths that fulfill the boundary conditions, but only one of them, xcl(t), represents an extremum of the action. In the IVP setting, a doubling of the 
degrees of freedom is required in order to allow the path at time t2 to vary freely. Figure adapted from ref. [29].

S IVP[x1(t), ẋ1(t), x2(t), ẋ2(t)] =
t2∫

t1

dt
(
L[x1(t), ẋ1(t)] −L[x2(t), ẋ2(t)]

)
, (6)

=
t2∫

t1

dt
(

L[x1(t), ẋ1(t), x2(t), ẋ2(t)]
)
. (7)

The Lagrangian housing the backward path x2 is introduced with a relative minus sign, which, as we will show, allows the 
boundary terms arising in the variation of L[x1(t), ̇x1(t)] and L[x2(t), ̇x2(t)] to cancel. Let’s carry out the variation of this 
new S IVP explicitly, which yields twice as many terms

δS =
∫

dt
({ ∂L

∂x1
− d

dt

∂L

∂ ẋ1

}
δx1 −

{ ∂L

∂x2
− d

dt

∂L

∂ ẋ2

}
δx2

)
(8)

+
[ ∂L

∂ ẋ1
δx1

]∣∣∣∣
t2

t1

−
[ ∂L

∂ ẋ2
δx2

]∣∣∣∣
t2

t1

. (9)

In order to see how the cancellations come about, it is advantageous to change coordinates, going over to relative 
x− = x1 − x2 and centered coordinates x+ = (x1 + x2)/2. This change is not necessary, but expressed in x− and x+ the new 
variational principle can be formulated in a very concise form and the relation between the functional and the resulting 
differential equation of motion becomes much more lucid.

We vary the action using x±(t) + δx±(t). The new path deformations δx±(t) vanish at the initial time t1, as the original 
deformations are set to zero there δx1(t1) = δx2(t1) = 0. As the action is now a functional of the newly introduced paths 
SIVP[x+(t), ̇x+(t), x−(t), ̇x−(t)], its variation produces the following expression

δSIVP =
∫

dt
({ ∂L

∂x+
− d

dt

∂L

∂ ẋ+

}
δx+ +

{ ∂L

∂x−
− d

dt

∂L

∂ ẋ−

}
δx−

)

+
[ δL

δẋ+
δx+ + δL

δẋ−
δx−

]∣∣∣∣
t2

t1

. (10)

In order to correctly cancel the boundary contribution δL
δẋ− δx− at t2, we see that the values of x1(t2) and x2(t2) have 

to agree, i.e. x−(t2) = 0. It is important to note that the paths x1 and x2 themselves are not fixed to a certain value at t2, 
since we do not know that value apriori. I.e. the forward and backward paths need to be connected, corresponding to the 
condition x1(t2) = x2(t2).

What happens to the other boundary term δL
δẋ+ δx+? Since ẋ1(t) = ẋ+(t) + 1

2 ẋ−(t) and ẋ2(t) = ẋ+(t) − 1
2 ẋ−(t), we find the 

following expression for the derivative of the joint Lagrangian L

δL

δẋ+
= δL

δẋ1

∂ ẋ1

∂ ẋ+
+ δL

δẋ2

∂ ẋ2

∂ ẋ+
= δL

δẋ1
− δL

δẋ2
= π1 − π2. (11)

In the second equality we have explicitly written L as the difference between the individual Lagrangians L for the forward 
path x1 and backward path x2. In the last step we furthermore introduced the conjugate momenta of the paths, defined as 
π1,2 = δL/δẋ1,2. This relation between the functional derivative with respect to x+ and the difference between the momenta 
on the forward and backward path tells us that we can make the remaining boundary term in eq. (10) vanish at t2 if we 
construct our paths such that the difference between the momenta π1(t2) − π2(t2) = 0 vanishes at time t2.
4
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For the systems considered here, which exhibit second order derivatives in their equation of motion, we have the kinetic 
term T = 1

2 ẋ2 in the Lagrangian L. This term leads to the identification π1,2 = ẋ1,2. In turn we find that if we require that in 
addition to the values of the paths at t2 also the derivatives are identified ẋ1(t2) = ẋ2(t2), both boundary terms in eq. (10)
will vanish. This establishes the necessary conditions for joining the forward and backward path

x1(t2) = x2(t2), ẋ1(t2) = ẋ2(t2), (12)

in order to relate the extremum of the joint functional L to the Euler-Lagrange equation expressions in the curly brackets in 
eq. (10).

We had to introduce doubled degrees of freedom to correctly cancel the boundary terms that arise from the fact that for 
an IVP the value of the classical path is unknown at time t2. In the end there only exists a single classical trajectory and we 
hence must undo the proliferation of degrees of freedom. To this end ref. [29] introduces what they call the physical limit, 
which enforces x1(t) − x2(t) = x−(t) = 0 at all times. When applied to the equations of motion resulting from eq. (10), i.e.

∂L

∂x±
= d

dt

∂L

∂ ẋ±
(13)

only those equations independent of x− survive. Since the functional L = L[x1, ̇x1] −L[x2, ̇x2] is constructed from a differ-
ence of the Lagrangians on the forward and backward paths it will always contain at least a linear dependence on x− and 
ẋ− . Thus only the equation in eq. (13), in which the derivative with respect to x− is taken can survive.

Combining the variation of the joint action of the forward and backward path with the physical limit, we thus arrive at 
the following concise formulation of the variational principle for a classical initial value problem

δS IVP[x±]
δx−

∣∣∣∣
x−=0,x+=xclass

= 0. (14)

Note that in deriving eq. (14), integration by parts (IBP) took center stage. This fact motivates the use of summation-by-parts 
(SBP) operators in the discretization of the variational principle in the next section 3. Indeed, if the discretization is able to 
exactly mimic IBP, all steps up to this point follow through also in the discrete setting (see eq. (25) in section 4.1).

Formulating classical mechanics as variational problem offers further insight derived from Noether’s theorem. Following 
ref. [30] one can show that Noether’s theorem for an action with doubled degrees of freedom can be established and it 
provides two important results. Using as starting point the action SIVP and using only integration by parts and the swapping 
of differentiation and variation, it follows that the sum of the energy of the forward and the backward path is preserved 
in time, as is the difference between the two. This establishes that even though the additional backward path has been 
added to the system the energy associated with it remains bounded and the system is in fact stable. For more details and 
discussion see Appendix A.

Take as explicit example the point mass in a constant gravitational field. Its Lagrangian is L = 1
2 mẋ2(t) − mgx(t) and the 

Euler-Lagrange equation reads

ẍclass(t) = −g, xclass(t) = −1

2
gt2 + ẋ(0)t + x(0), (15)

which is nothing but Newtons law in terms of acceleration and can be solved in a straightforward manner. We will take g
to be positive to indicate that gravity is acting downwards.

Using the formalism based on the doubled degrees of freedom we have instead

S IVP =
∫

dt
(1

2
m(ẋ2

1(t) − ẋ2
2(t)) − mg(x1(t) − x2(t))

)
, (16)

=
∫

dt
(

mẋ+(t)ẋ−(t) − mgx−(t)
)
. (17)

In computing the variation of the action, we carried out one integration by parts, which, in effect, allows us to re-express 
δS as depending solely on the variation of the paths and not on their derivatives (see eq. (3)). Similarly we can integrate 
by parts here to move the time derivative on x− in the kinetic term to x+

S IVP =
∫

dt
(

− mẍ+(t)x−(t) − mgx−(t)
)
. (18)

Since we identify both the values and derivatives of the paths at t2 no boundary terms contribute. Taking the functional 
derivative of eq. (18) with respect to x− , setting the result to zero and identifying x+ = xclass in the physical limit yields 
exactly the conventional Euler-Lagrange equation

ẍ+(t) = ẍclass(t) = −g. (19)
5
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We have by now seen how the continuum variational principle for IVPs is derived and have acquired intuition in a 
simple system what form the joint action SIVP takes on in terms of x+ and x− . In the remainder of the paper we will only 
work on the level of the joint action and not need to refer to the equation of motion anymore. Let us briefly mention that 
the corresponding functional L[x+, ̇x+, x−, ̇x−] for a large variety of systems with second order equations of motion of the 
form ẍ + f (x) = 0 can be written as

SIVP =
∫

dt
(

mẋ+(t)ẋ−(t) − f (x+)x−(t)
)
. (20)

In section 4, after having established the discrete formalism for systems with a second order equation of motion in time, 
we will consider a generalized variational principle also derived in ref. [29], which will allow us to extend the discrete 
treatment to systems with differential equations of motion containing also single derivatives in time.

3. Variational IVP based on SBP operators in time

3.1. A naive SBP discretization of the model boundary value problem

As a first step, let us formulate the discretized variational principle in its conventional form as boundary value problem. 
The point mass in a constant gravitational field will again serve as an explicit example.

Our goal here is to discretize the action for the single forward path x(t)

S =
∫

dt
(1

2
mẋ2(t) − mgx(t)

)
, (21)

with Dirichlet boundary conditions x(0) = xi and x(1) = x f , in order to compute the classical trajectory at its critical point. 
To this end we introduce the path x = (x(0), x(�t), x(2�t), . . .)T resolved at Nt points with time step �t = 1/(Nt − 1). The 
integral can be approximated by a quadrature rule, whose particular form is captured in a (diagonal) positive definite matrix 
H and which defines an inner product on discretized paths (x, x′) = xTHx′ .

Remember that the derivation of the continuum variational principle in eq. (4) and eq. (9) required us to carry out 
integration by parts. In order to guarantee the equivalence between the stationarity of the action and the solution of the 
Euler-Lagrange equation, we must therefore use a discretization that mimics IBP in the discrete setting. Hence we discretize 
the time derivative with a summation by parts operator D = H−1Q, compatible with our choice of H, where QT + Q =
EN −E0 = diag[−1, 0, . . . , 0, 1].

The lowest order SBP discretization scheme SBP21 of order two in the interior and order one on the boundary ensues 
when choosing the trapezoid rule for integration

H[2,1] = �t

⎡
⎢⎢⎢⎢⎢⎣

1/2
1

. . .

1
1/2

⎤
⎥⎥⎥⎥⎥⎦

, D[2,1] = 1

2�t

⎡
⎢⎢⎢⎢⎢⎣

−2 2
−1 0 1

. . .

−1 0 1
−2 2

⎤
⎥⎥⎥⎥⎥⎦

.

The next higher order SBP scheme SBP42 is fourth order in the interior and second order on the boundary

H[4,2] = �t

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

17
48

59
48

43
48

49
48

1
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

D[4,2] = 1

�t

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 24
17

59
34 − 4

17 − 3
34− 1

2 0 1
2 0

4
43 − 59

86 0 59
86 − 4

43
3

98 0 − 59
86 0 32

49 − 4
49

1
12 − 2

3 0 2
3 − 1

12
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

In this section we will show explicit results based on the SBP21 operator and include the outcomes from the SBP42
operator in our scaling tests.
6
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Fig. 2. Using a SBP21 operator in time for the boundary value formulation we find (left) the discretized path x (red circles) (Nt = 32) that optimize 
the functional eq. (23). The discretized path x1 (red circles) and x2 (blue crosses) (Nt = 32) that optimize the functional eq. (24) for the initial value 
formulation, corresponding to the discretized S IVP is shown in the right panel. Note that only half of the path elements reproduce the correct solution. 
Continuum solution of the Euler-Lagrange equation ẍ(t) = −g is shown as solid gray line. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

The discretized action, on which the variational boundary value problem rests, reads

SBVP = 1

2
m

(
Dx

)T
H

(
Dx

) − mg1THx + λ1(x(0) − xi) + λ2(x(1) − x f ). (23)

We have added two Lagrange multipliers that are treated as additional dynamical degrees of freedom of our system and 
in turn enforce the boundary conditions of the numerical solution. This procedure may appear to introduce the boundary 
conditions strongly, however it does not amount to an apriori replacement of x(t1) and x(t2) by xi and x f . During the 
procedure to locate the critical point of SBVP, we find that the minimization algorithms approach the extremum of the 
functional globally. I.e. the boundary conditions are fulfilled to machine precision for the actual solution, while deviations 
are possible at intermediate steps.

Note that when adding Lagrange multipliers to introduce constraints to an optimization functional, the relevant ex-
tremum may become a saddle point. If only algorithms are available that locate the minima of a functional, one can 
circumvent this issue by optimizing the norm of the gradient of the functional instead, for which the saddle point be-
comes a local minimum. In this study we use as a preconditioning step the gradient-free Nelder-Mead minimizer with a 
subsequent application of the Newton method and the Interior Point method.2

Having derived the continuum Euler-Lagrange equations for the point mass in a constant gravitational field before in 
eq. (15), we compute the explicit solution for the classical trajectory in the time interval t ∈ [0, 1], based on a value of 
m = 1, g = 1 and initial conditions x(0) = 1, ẋ(0) = 0.3. In that case the point mass reaches the position x(1) = 0.8 at time 
t2 = 1. Supplying these values to eq. (23), we can solve for the extremum and, as shown the left panel of Fig. 2, obtain a 
solution (red dots) that recovers the correct solution of the Euler-Lagrange equations (gray solid line).

While we succeed in recovering the correct solution, this approach, as mentioned before, is conceptually not satisfactory, 
since the formulation of the BVP relied on information about x(1) obtained from the prior solution of the Euler-Lagrange 
equations as initial value problem.

3.2. A naive SBP discretization of the model initial value problem

Let us continue by turning our attention to discretizing the continuum formulation of the variational principle for initial 
value problems, which is based on two paths. Introducing discretized paths x1 = (x1(0), x1(�t), x1(2�t), . . .)T and corre-
spondingly x2 and using the same symbols as before for the integration H and summation-by-parts difference operators D, 
we arrive at the following action

SIVP =
{1

2
(Dx1)

TH(Dx1) − g1THx1

}
−

{1

2
(Dx2)

TH(Dx2) − g1THx2

}
+ λ1(x1(0) − xi) + λ2((Dx1)(0) − ẋi)

+ λ3(x1(Nt) − x2(Nt)) + λ4((Dx1)(Nt) − (Dx2)(Nt)). (24)

Here we have introduced four Lagrange multipliers to both enforce the initial conditions for position xi and derivative ẋi of 
the forward path (λ1, λ2), as well as to enforce the correct identification of the position and derivatives at the last point 
of the forward and backward path (λ3, λ4). We consider all λi ’s as dynamical degrees of freedom, such that the constraints 

2 Standard implementations of the aforementioned algorithms in the NMinimize and FindMinimum functions provided by the software Mathemat-
ica 12.0 [31] have been used.
7
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Fig. 3. Right (red circles) and left (blue crosses) eigenvector associated with a zero eigenvalue in D[2,1] , based on Nt = 32 points. Note the highly oscillatory 
character of the latter.

are enforced exactly on the final solution of the optimization problem, while permitting deviations from the constraints at 
intermediate steps.

Before we continue to determine the optimal paths according to SIVP, we show that this discrete functional yields the 
correct equations of motion according to the stationarity condition eq. (14), if SBP operators are used. Focusing on the terms 
in curly brackets in eq. (24), we introduce the discretized x1 = x+ + (1/2)x− and x2 = x+ − (1/2)x− so that

S = 1

2
(Dx+)TH(Dx−) + 1

2
(Dx−)TH(Dx+) − g1THx−

= (Dx+)TH(Dx−) − g1THx−
= −(DDx+)THx− + (Dx+)T(EN −E0)x− − g1THx− (25)

Here we have used the symmetry of H to arrive at the second line and explicitly exploited the SBP property of D in the 
third line. As we enforce the initial conditions and identify the forward and backward path at the final time, both boundary 
terms involving x− vanish. Mimicking the continuous derivation, let us take the derivative of S with respect to the i-th 
component of the vector x− , which yields the following expression(

− (DDx+)T − g1T
)
Hei = 0. (26)

Since H is diagonal, eq. (26) establishes the discrete equation of motion (DDx+) = −g1, a faithful representation of the 
continuum result ẍ(t) = −g .

Let us continue to determining the optimal paths x1 and x2 that correspond to the critical point of SIVP using H[2,1] and 
D[2,1] on Nt = 32 discrete points, we find the solution shown in the right panel of Fig. 2. We plot the values of the forward 
path as red circles, while those of the backward path are given as blue crosses. Note that they lie on top of each other, 
which tells us that the optimal solution fulfills the physical limit condition x1 = x2. On the other hand we also immediately 
see that only around half of the points on each path agree with the correct solution from the Euler-Lagrange equations 
(gray solid line). The other half lies significantly below the correct solution, forming a highly oscillatory structure. For an 
even number of grid points the last point of x1 and x2 lies on the correct trajectory, while for an odd number of points, the 
path ends on the oscillatory structure below.

We have identified the origin of these oscillatory structures to arise from the particular structure of the null-space of 
the finite difference operator. In the kinetic terms of SIVP both D and DT appear. The study of null-space consistency 
of the lowest order SBP21 operator considered here, reveals that it contains exactly two zero eigenvalues. The space of 
right eigenvectors of D, associated with this doubly degenerate eigenvalue, is only one-dimensional. Both eigenvectors are 
proportional to the constant function.

However when we study the form of the left eigenvectors of D, or equivalently the right eigenvectors of DT, we find 
that those projecting into the null space are not at all constant but highly oscillatory, reminiscent of the so-called π -mode. 
An example of these eigenvectors is shown in Fig. 3.

Such unphysical oscillatory solutions have recently been identified to also interfere in determining the solutions of dif-
ferential equations with non-trivial boundary conditions in one- and multiple dimensions in [32]. In the context of the 
variational problem considered here, the oscillatory solutions did not affect the solution when formulated as a boundary 
value problem in section 3.1. The fixing of the boundary at t2 in the BVP formulation apparently prevents the oscillatory 
solution. On the other hand the IVP action eq. (24) clearly accommodates these oscillatory paths.

An accurate discretization scheme for the IVP system action must therefore be able to avoid the appearance of unphysical 
oscillatory modes and several strategies to do so have been explored in the literature. One class of strategies consists of 
modifying the first order derivative operator D by adding higher order derivative operators to it. A conventional SBP finite 
8
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difference operator of order p needs to fulfill the derivative property D(p)xn = (n − 1)xn−1 exactly only on monomials up 
to order n = p − 1. Therefore, adding a higher derivative operator �t D(p+2) , scaled by the grid spacing does not affect this 
property, as it annihilates all lower order monomials. In addition, this correction term vanishes in the limit of taking �t → 0. 
In the context of upwind schemes one e.g. adds the symmetric second derivative operator to the SBP first derivative, turning 
it into an upwind derivative. If one deals with complex functions one may instead add the symmetric second derivative 
multiplied with the imaginary unit. This modification is known as adding a Wilson term [33] in the physics literature.3

Both of these approaches present challenges, which we wish to avoid here. By turning the central stencil into an upwind 
stencil, we lose the symmetry of the system, which adversely affects the accuracy of the solutions. Introducing a purely 
imaginary modification on the other hand requires the difference operator to act on complex functions to be meaningful. 
One may contemplate the possibility to complexify the functions involved in the variational problem, which while only 
cumbersome in the classical case will lead to conceptual problems when trying to use the discretization in the context of 
quantum path integrals (cf. sign problem).

We therefore wish to explore a different route to remove the unphysical zero modes of the operator D, taking inspiration 
from more recent works on null-space consistent SBP operators, such as in refs. [19–22]. The central ingredient in these 
approaches is to exploit the weak formulation of boundary and initial conditions. Concretely, when boundary conditions are 
enforced weakly via a penalty term, this penalty term can be partially absorbed into the derivative operator to remove the 
zero modes of that operator. On the level of differential equations, the strategy works as follows. Consider the following IVP, 
the differential equation for the exponential function

d

dt
u(x) = λu(x), u(0) = u0, (27)

which in its discretized form reads

Du = λu + σ0H
−1E0

(
u − g

)
. (28)

Here we have added a so-called SAT penalty term on the RHS, which includes the matrix E0 = diag[1, 0, . . . , 0] that singles 
out the first entry in the discretized functions u and g. The former u refers to the solution of the differential equation 
and the latter g = (u0, 0, . . . , 0) contains the initial value as its first entry. Note that H−1 contains �t−1, which contributes 
with increasing weight as �t → 0. The parameter σ0 in the SBP-SAT approach is tuned to satisfy stability properties and 
its optimal value is found to be σ0 = −1, a choice we adopt in the following. The standard approach developed in the 
conventional SBP-SAT treatment of IVPs consists of absorbing the penalty term proportional to u into a redefined D̃ =
D −σ0H

−1 E0, which does not feature any zero modes anymore. That operator is now non-singular [34] and may be inverted 
to obtain the solution u. In the next section we will develop a similar strategy applicable to the variational problem.

3.3. Regularized SBP discretization of the model initial value problem

Taking inspiration from the work on regularizing SBP operators in differential equations, we set out to absorb information 
about the initial conditions into the SBP operator as means of regularization. In the functional of eq. (24) we do not have an 
equality sign, such as in our example (28), to rearrange terms. Instead we must find a way to incorporate the whole penalty 
term in D. Note that the penalty term contains one expression that is proportional to the function that the SBP operator 
acts on and one expression proportional to a constant. I.e. we have to modify the difference operator to include a shift. In 
other words, we are dealing with an affine transformation.

There exists an elegant way to express affine transformations using so-called affine coordinates. One defines Ā[b]x̄ =
Ax + b, where Ā[b] refers to the matrix A amended by one more row and column with 1 placed in the lower right corner. 
The additional column available in Ā[b] is filled with the values of b. The vector x̄ is just x amended by one more entry 
with value one. For our application to the variational formulation of the IVP we therefore define a new D̄ using as shift 
the vector containing the initial values b = σ0H

−1 E0g where g = diag[xi, xi + �t ẋi, 0, · · · , 0]. For the SBP21 operator4 the 
explicit expression we obtain reads

D̄[2,1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
�t − σ0

2
�t

1
�t σ0

2
�t xi

− 1
2�t 0 1

2�t 0
. . .

...

− 1
2�t 0 1

2�t 0
− 1

�t
1
�t 0

0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

3 Wilson derived that regularization after investigating the Green’s function of the differential operator that defines the equation of motion of the system. 
What he found is that in Fourier space the Green’s function exhibits not only a pole corresponding to the physical trajectory, but due to the finite grid 
spacing a second pole appeared at the end of the Brillouin zone, which introduces exactly the oscillatory mode we observed above.

4 For a higher order SBP operator, the values of g need to be chosen, so that [Dg](0) = ẋi and [g](0) = xi .
9
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Fig. 4. (Left) Eigenvalue spectrum of the unregularized SBP21 operator D[2,1] (blue crosses) for Nt = 32 grid points and corresponding spectrum of the 
regularized operator D̄[2,1] (red circles), which does not feature any zero modes. The zoomed inset on the right reveals the presence of the zero modes in 
the unregularized SBP21 operator D[2,1] .

Note that in this paper we choose the parameter σ0 = −1, whenever a penalty term is incorporated in D̄. This choice is 
motivated by the fact that in the conventional treatment of IVPs using the SBP-SAT approach, this value leads to a minimal 
discretization error (see e.g. ref. [7]). We find that σ0 = −1 is optimal for our approach too, as only in this case the correct 
classical solution is recovered.

All zero modes of the original operator D[2,1] have been lifted in D̄[2,1] and the resulting spectrum of eigenvalues ν
is shown in Fig. 4. Note that D̄[2,1] still correctly annihilates the constant function, as long as it is compatible with the 
initial conditions x(0) = xi . In affine coordinates this annihilation does not lead to a resulting zero vector, but a vector that 
contains vanishing entries, except for the final one associated with the single real eigenvalue of value one, shown in Fig. 4.

When formulating the action with the modified SBP operator, we obtain

SIVP =
{1

2
(D̄x̄1)

TH̄(D̄x̄1) − g1THx1

}
−

{1

2
(D̄x̄2)

TH̄(D̄x̄2) − g1THx2

}
+ λ1(x1(0) − xi) + λ2((Dx1)(0) − ẋi)

+ λ3(x1(Nt) − x2(Nt)) + λ4((Dx1)(Nt) − (Dx2)(Nt)). (30)

In order to implement the inner product in affine coordinates, we define H̄, which denotes the matrix H, amended by 
one extra row and column of values zero. The last entry of the vector D̄x̄1,2 serves only to implement the shift in affine 
coordinates, hence it can be discarded via H̄ since the regularized SBP operator has already acted on the path.

Note that here we again add Lagrange multipliers as dynamical degrees of freedom, to fulfill the initial conditions. One 
may ask whether enforcing the initial conditions in this way neutralizes the effect of the regularization. We emphasize that 
this is not the case. Minimization algorithms approach the extremum of the functional globally, allowing the regulator to 
remain effective and to avoid the oscillatory solutions.

Another question of both conceptual and practical relevance is whether the functional eq. (30) houses one or multiple 
different local extrema. For the case of the point particle in a constant gravitational field, we find that the answer is that the 
functional is convex and a thus any local extremum is also a global extremum. Let us determine the curvature of eq. (30)
with respect to the individual entries of the paths x1,2. The matrix Aij = ∂2SIVP/∂xi∂x j = [D̄TH̄D̄]i j is indeed positive semi-
definite, as can be checked explicitly using a computer algebra system. However, in general convexity is not automatic and 
needs to be checked on a case-by-case basis.5

For the point particle in a constant gravitational field, the solutions x1 and x2 obtained with eq. (30) and the regularized
SBP21 operator are shown in Fig. 5 as red circles and blue crosses respectively.6 The regularization has successfully removed 
the contamination by an unphysical oscillatory mode and we are able to reproduce the correct classical solution.

The initial conditions, implemented using Lagrange multipliers and expressed in a variational formulation, have provided 
us with a novel discretization prescription for a wide range of classical systems whose differential equations of motion contain 
second order derivatives. We emphasize that we did not have to derive the equation of motion to compute the classical 
trajectory here.

Let us take a look at the accuracy and convergence properties of the discretization scheme constructed in this section. 
The simple model of a point mass in a constant gravitational field again serves as explicit example. To this end we compute 

5 None of the functionals treated in this study suffered from multiple extrema, allowing the Newton and Quasi-Newton methods implemented in Math-
ematica [31] to arrive at a single solution independent of starting point.

6 An explicit implementation of all examples discussed in this manuscript can be found as open-access Mathematica script at the Zenodo repository [35].
10
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Fig. 5. Numerical solution of the discretized path x1 (red circles) and x2 (blue crosses) (Nt = 32) that optimize the functional eq. (30) corresponding to the 
discretized S IVP . We use the regularized SBP21 operator in time. Continuum solution of the Euler-Lagrange equation ẍ(t) = −g is shown as solid gray line. 
Note that the solution successfully avoids oscillatory contamination.

Fig. 6. Deviation of the value (left plot) and the derivative (right plot) between the optimal numerical solution of eq. (30) and the true solution at the final 
time t2 = 1. The deviation for the regularized SBP21 operator is given as blue crosses, the one for the SBP42 operator as red circles. Note that while in 
the SBP21 case the solution improves steadily with diminishing �t ∼ 1/Nt , the results for the SBP42 operator are already exact to machine precision. For 
a more detailed view of the SBP21 behavior see Fig. 7.

Fig. 7. Deviation of the value between the optimal numerical solution of eq. (30) and the true solution at the final time t2 = 1 (blue crosses) for the SBP21
operator. The best power law fit to the behavior is shown as the gray solid line which corresponds to �t2.03.

the optimal path x1 according to the appropriately regularized eq. (30) using both the regularized SBP21 and regularized
SBP42 operator on different grids using Nt ∈ [16, . . . , 512] points. We compare the values of the path at the final step 
t2 = 1 to the analytically known solution and compute the absolute error between them. These errors are shown in Fig. 6.

The lowest order SBP21 approximation (blue crosses) exhibits steady improvement in the residual deviation from the 
true solution, as the grid spacing is reduced. In Fig. 7 we zoom in on the SBP21 errors and fit them with a power-law 
ansatz, which on the log-log plot appears as a straight line. The best fit exponent �t2.03 we obtain, tells us that our 
discretization scheme achieves second order accuracy in the solution values. Interestingly, when considering the SBP42
operator, we find that irrespective of the grid spacing we are able to reproduce the true solution down to machine pre-
cision (which in our case, using the Mathematica software package, was set to 10−30). This result is reassuring, as by 
construction the SBP operator and the corresponding quadrature rule are able to differentiate and integrate polynomials up 
to second order exactly. Since the solution of the point mass in the constant gravitational field is a parabola, we do not find 
any residual dependence on the grid spacing.
11
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Fig. 8. Numerical solution of the discretized path x1 (red cricles) and x2 (blue crosses) (Nt = 32) that optimize the functional eq. (33) corresponding to the 
discretized S IVP. We use the regularized SBP21 summation-by-parts operator in time. Continuum solution of the Euler-Lagrange equation ẍ(t) + κx3(t) = 0
for κ = 20 is shown as solid gray line. Note that the solution successfully avoids oscillatory contamination.

3.4. Discretization of non-linear second-order IVPs

While instructive, our model example described a very simple linear system. Let us use the formalism established in 
eq. (20) to apply our discretization prescription to a system, which features a genuinely non-linear differential equation of 
motion instead. The action functional behind the ODE

ẍ(t) + κx3(t) = 0, (31)

is given by the following expression

SIVP =
∫

dt
(

ẋ+(t)ẋ−(t) − κx3+(t)x−(t)
)
, (32)

which we must subsequently discretize. The resulting optimization functional reads

SIVP =
{1

2
(D̄x̄1)

TH̄(D̄x̄1)
}

−
{1

2
(D̄x̄2)

TH̄(D̄x̄2)
}

− κ
(
(x1 + x2)/2

)3
H(x1 − x2)

+ λ1(x1(0) − xi) + λ2((Dx1)(0) − ẋi)

+ λ3(x1(Nt) − x2(Nt)) + λ4((Dx1)(Nt) − (Dx2)(Nt)). (33)

The third power in the second line is understood as acting element-wise on the entries of (x1 + x2)/2. The continuum 
trajectory for the choice κ = 20 is given as the gray solid line in Fig. 8. We plot it together with the numerical solutions x1
(red circles) and x2 (blue crosses) based on the SBP21 operator along Nt = 32 grid points.

Let us consider how the new discretization prescription performs on this second order non-linear problem. The con-
tinuum solution is given in terms of the Jacobi elliptic function and its inverse, i.e. it is not polynomial. Thus neither the
SBP21 nor the SBP42 operator is able to reproduce it exactly. We find minute oscillations around the true solution exhib-
ited by the data points in Fig. 8, which diminish monotonously with grid refinement, as expected from a stable procedure. 
The deviation of the numerical solution x1 from the true solution is shown in the left panel of Fig. 9 as blue crosses for the
SBP21 operator and as red circles for the SBP42 operator.

One finds that compared to the linear system, the error made in the non-linear system is around one order of magnitude 
larger at the same lattice spacing for the SBP21 operator. However the order of convergence remains close to quadratic 
with a best fit �t2.12 shown by the gray lines in Fig. 9. For the SBP42 operator, we find that the error at Nt = 16 improves 
by one order of magnitude and convergence to the continuum limit proceeds with �t3.35. The expected behavior from 
solutions of ODEs [19,21] in this case is �t3, and while our method seems to perform better in this scenario, we believe 
that to be a coincidence.

In line with established results for the conventional numerical treatment of differential equations, we see in Fig. 9
that the error in the derivative ẋ = [Dx1](Nt) of the numerical solution shows convergence with one full order less than the 
values of the solution itself. As plotted in the right panel of Fig. 9 we obtain for the regularized SBP21 operator convergence 
for the derivative according to �t1.06, while the SBP42 operator exhibits �t1.87.

Having established the applicability and convergence properties of our novel discretization approach for both a linear 
and non-linear second order differential equation of motion, let us continue to treat systems with equations of motion that 
feature different orders of time derivatives.
12
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Fig. 9. Deviation of the value (left plot) and the derivative (right plot) between the optimal numerical solution of eq. (33) and the true solution at the final 
time t2 = 1. The deviation for the regularized SBP21 operator is given as blue crosses with best fit �t2.12 , the one for the regularized SBP42 operator as 
red circles with �t3.35. The best power law fit to the data is shown as gray lines. Both orders of the solution improve steadily with diminishing �t ∼ 1/Nt . 
We find that our approach exhibits convergence in the values with one higher power in the grid spacing than for the derivative, where for SBP21 we find 
as best fit �t1.06 and for SBP42 we have �t1.87.

4. Discretization of first order derivative terms

So far we have considered the simplest case of physical systems with classical equations of motion that contain a 
second derivative in time. These follow naturally from the conventional formulation of the continuum variational principle, 
based on an action that is written in terms of a Lagrangian. As has been shown in [29], the variational principle is able 
to accommodate a much larger variety of systems, including those with dissipative forces, which are not time-reversal 
invariant. Such systems exhibit equations of motion, which contain also first order derivatives in time. The crucial step is to 
realize that, one may generalize the classical variational principle by adding to the Lagrangian L another functional 
 that 
may depend on both the forward and backward path7 and their derivatives as follows

SGIVP[x1(t), ẋ1(t), x2(t), ẋ2(t)] =
t2∫

t1

dt
(
L[x1(t), ẋ1(t)] −L[x2(t), ẋ2(t)] + 
[x1(t), ẋ1(t), x2(t), ẋ2(t)]

)
. (34)

Ref. [29], aided by ref. [36], shows in detail that the classical equations of motion also for this generalized variational 
principle are obtained by going over to relative x− = x1 − x2 and centered coordinates x+ = (x1 + x2)/2 with the defining 
equation

δSGIVP[x±]
δx−

∣∣∣∣
x−=0,x+=xclass

= 0. (35)

The stability properties of these systems, as shown explicitly in ref. [30], can also be formulated in terms of a generalized 
Noether’s theorem in which e.g. the time-dependence of the total system energy is correctly captured. This immediately 
invites us to apply the discretization prescription developed in the previous section to two systems often considered in the 
literature, the one which features the defining equation of the exponential function as equation of motion, as well as the 
damped harmonic oscillator. By considering these two examples, we acquire intuition in how to construct the appropriate 
continuum functional 
 of eq. (34), in order to describe systems, which feature a differential equation of motion also 
containing first order derivatives.

4.1. A purely first order system

Our goal here is to determine the classical trajectory of a system, which features as its equation of motion the defining 
equation of the exponential function

ẋ(t) − κx(t) = 0. (36)

Since there are no second order derivatives present in eq. (36) we do not need to supply the standard kinetic term to L
in (34). The term linear in x(t) can be thought of as arising from a potential contribution in L, which must contain one 
power of x+ and one power of x− similar to our argument in eq. (20). The new ingredient is the term that features a single 

7 It is interesting to note that the term 
 also arises naturally in the classical limit of the Schwinger-Keldysh contour formalism of the quantum path 
integral for dissipative systems, after integrating out the environment degrees of freedom. In that context it is known as the so called Feynman-Vernon 
influence functional.
13
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Fig. 10. Numerical solution of the discretized path x1 (red circles) and x1 (blue crosses) (Nt = 32) that optimize the functional eq. (39) corresponding to 
the discretized SGIVP. We use the regularized SBP21 operator in time. Continuum solution of the Euler-Lagrange equation ẋ(t) − 5

2 x(t) = 0 is shown as 
solid gray line.

Fig. 11. Deviation of the value (left plot) and the derivative (right plot) between the optimal numerical solution of eq. (39) and the true solution at the final 
time t2 = 1. The deviation for the regularized SBP21 operator is given as blue crosses with best fit �t2.03 , the one for the regularized SBP42 operator as 
red circles and �t2.95. The best power law fit to the data is shown as gray lines. Both orders of the solution improve steadily with diminishing �t ∼ 1/Nt . 
We find that our approach exhibits convergence in the values with one higher power in the grid spacing than for the derivative, where for SBP21 we find 
�t1.06 and for SBP42 we have �t1.99.

time derivative. It has to emerge from SGIVP after functional differentiation with respect to x− . This behavior is achieved by 
choosing the following Lagrangian and 
 functional

L = −1

2
κx2(t), 
 = ẋ+x−, (37)

which amounts to the joint Lagrangian

L = −κx+(t)x−(t) + ẋ+x−. (38)

Note that if one rewrites eq. (38) explicitly in terms of x1 and x2, the contribution from 
 indeed does not factorize into 
terms that depend on x1 or x2 separately.

Using the strategy developed in the previous section, let us write down the discretized action functional, keeping in 
mind that for a first order equation only the initial position needs to be supplied at the beginning of x1 . Correspondingly 
only the position information needs to be matched at the end of the paths

SGIVP =
{

− 1

2
κ(x1)

THx1

}
−

{
− 1

2
κ(x2)

THx2

}

+ 1

2

(
D̄

(
x̄1 + x̄2

))T
H̄(x1 − x2)

+ λ1(x1(0) − xi) + λ3(x1(Nt) − x2(Nt)). (39)

The solutions x1 (red circles) and x2 (blue crosses) to this equation on the interval t ∈ [0, 1] discretized with Nt = 32
equidistant steps �t and a κ = 5

2 with initial condition xi = 1 produce the data shown in Fig. 10.
In Fig. 11 we plot the difference between the classical trajectory obtained from eq. (39) and the true solution at the final 

time t2 = 1 focusing on the value itself in the left plot and the derivative in the right plot. The results for the regularized
SBP21 operator are given as blue crosses, those for the SBP42 operator as red circles. Since the solution is not a simple 
polynomial, the SBP42 operator cannot exactly integrate it. Both the SBP21 and SBP42 cases show the same convergence 
rates, as observed in the conventional formulation of IVPs (cf. ref. [21]). We find again that the convergence is one order 
higher in the values of the solution than in the derivative of the solution. The SBP21 operator yields a �t2.03 improvement 
for the values of x1(1), while the SBP42 operator exhibits �t2.95.
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Fig. 12. Numerical solution (red dots) of the discretized path x1 (red circles) and x2 (blue crosses) (Nt = 32) that optimize the functional eq. (43) cor-
responding to the discretized SGIVP. We use the regularized SBP21 operator in time. Continuum solution of the Euler-Lagrange equation μẍ(t) + ξ ẋ(t) +
κx(t) = 0 is shown as solid gray line.

4.2. The damped harmonic oscillator

As final challenge let us now turn to a physics system, which exhibits both first and second order derivatives in its 
equation of motion: the damped harmonic oscillator. The damped harmonic oscillator is characterized by an Euler-Lagrange 
equation that reads

μẍ(t) + ξ ẋ(t) + κx(t) = 0. (40)

Even though this system underlies a wealth of experimentally relevant phenomena, the conventional formulation of classical 
mechanics is unable to accommodate it in terms of a classical Lagrangian. In the generalized approach of ref. [29] the kinetic 
and conservative force term are captured by the Lagrangian and the dissipative term is included via the 
 functional. Re-
membering that only terms linear in x− survive the stationarity condition and using the intuition we built in the preceding 
sections, we can now write down the corresponding expressions for the functionals of the damped harmonic oscillator

L = 1

2
μẋ2(t) − κx2(t), 
 = −ξ ẋ+x−, (41)

which correspond to the joint Lagrangian

L = μẋ+(t)ẋ− − 2κx+(t)x−(t) − ξ ẋ+x−. (42)

Inserting the above into eq. (35) immediately yields eq. (40). The discretized joint action functional based on eq. (42) reads

SGIVP =
{1

2
μ(D̄x̄1)

TH̄(D̄x̄1) − 1

2
κ(x1)

THx1

}
−

{1

2
μ(D̄x̄2)

TH̄(D̄x̄2) − 1

2
κ(x2)

THx2

}

− ξ
1

2

(
D̄

(
x̄1 + x̄2

))T
H̄(x1 − x2)

+ λ1(x1(0) − xi) + λ2((Dx1)(0) − ẋi)

+ λ3(x1(Nt) − x2(Nt)) + λ4((Dx1)(Nt) − (Dx2)(Nt)). (43)

Searching for the extremum of this functional numerically using the parameters μ = 0.5, κ = 1, ξ = 0.00071 (cf. ref. [37]) 
with initial conditions xi = 1 ẋi = 0 on discretized paths with Nt = 32 steps and regularized SBP21 operator leads to the 
results for x1 (red circles) and x2 (blue crosses) shown in Fig. 12.

In the left panel of Fig. 13 we present the deviation between the numerically determined critical point of eq. (39) and 
the true solution at the final time t2 = 1. The deviation of the derivative is given in the right plot. Blue crosses denote the
SBP21 operator case, while red circles refer to the SBP42 operator. The power law fits show that also for the damped 
harmonic oscillator the convergence order agrees with the expectations from the conventional formulation of IVPs [21] and 
is one order higher in the values of the solution than in the derivative of the solution. The SBP21 operator yields a �t2.03

improvement for the values of x1(1), while the SBP42 operator exhibits �t3.04.
So far we have only investigated the short time behavior. However it is late-time stability that plays the most important 

role for the utility of a discretization scheme to the description of physical processes in practice. For initial boundary 
value problems this calls for so-called error-bounded schemes [38–40]. In the literature the damped harmonic oscillator is 
often used as a non-trivial test-bed to evaluate the late-time stability and accuracy of numerical solvers. Let us therefore 
determine the numerical solution to eq. (43) up to t2 = 204.8, which is shown in the left panel of Fig. 14, based on 
15
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Fig. 13. Deviation of the value (left plot) and the derivative (right plot) between the optimal numerical solution of eq. (43) and the true solution at the final 
time t2 = 1. The deviation for the regularized SBP21 operator is given as blue crosses with best fit �t2.03 , the one for the regularized SBP42 operator as 
red circles with �t3.04. The best power law fit to the data is shown as gray lines. Both orders of the solution improve steadily with diminishing �t ∼ 1/Nt . 
We find again that our approach exhibits convergence in the values with one higher power in the grid spacing than for the derivative, where for SBP21
we find �t1.01 and for SBP42 we have �t2.06.

Fig. 14. (Left panel) Numerical solution (red dots) of the discretized path x1 (Nt = 2048, �t = 0.1) that optimizes the functional eq. (43) corresponding 
to the discretized SGIVP using the SBP42 operator in time. The path x2 takes on the same values. Continuum solution of the Euler-Lagrange equation 
μẍ(t) + ξ ẋ(t) +κx(t) = 0 is given as solid gray line. (Right panel) Comparison of the optimal solutions at a different number of grids points Nt = 512 (green 
crosses), Nt = 1024 (blue crosses) and Nt = 2048 (red circles) at late times.

the regularized SBP42 operator at �t = 0.1. This choice of t2 allows the system to pass through multiple oscillations 
and to show a visible reduction of the oscillation amplitude. As our SBP in time discretization is inherently implicit, we 
find numerically that while the solution degrades in accuracy as we increase the grid spacing �t ∈ {0.1, 0.133, 0.2, 0.4} it 
remains bounded for all times. The behavior of the discrete solution for different grid spacings �t at late times, is shown 
in the right panel of Fig. 14. One finds that the solution converges as the grid spacing is decreased. The most pertinent 
error introduced by the discretization procedure appears to be an artificial phase shift, the dispersion error, which however 
vanishes as the continuum limit �t → 0 is approached.

A common quality criterion for numerical solvers in the physical sciences is the reproduction of the system energy. We 
consider here as energy the following Hamiltonian H = T + V = 1

2 μẋ2(t) +κx2(t), which is plotted for different grid spacings 
in Fig. 15. One can clearly see that the discretization procedure leads to an overall shift in the value of the energy and the 
appearance of oscillations around the mean value, known as dispersion and diffusion errors (for a detailed exposition of 
the dispersion errors of SBP operators see e.g. ref. [41] and references therein). However, both the shift, as well as the 
oscillations vanish with grid refinement and no artificial energy deviation or instability is observed.

5. Summary

We have presented a new and unified discretization strategy for a wide range of initial value problems, formulated in 
terms of a generalized variational problem. The classical trajectory is obtained as the critical point of an action functional 
with doubled degrees of freedom, without the need to derive equations of motion. Our approach is based on summation-by-
parts finite difference operators, which are regularized through a penalty term, associated with the initial conditions using 
affine coordinates. We introduce the initial conditions, as well as the identification of the forward and backward path in the 
IVP in section 3.3 using Lagrange multipliers. The approach has been successfully applied to systems with purely second 
order, first order and mixed time derivatives in their equations of motion. Explicit scaling tests for each of these systems 
confirmed that our prescription converges to the true solution under grid refinement, with the same convergence rates, as 
expected from the conventional formulation of IVPs. Convergence in the values of the solution of the systems investigated 
here occurs with one higher order in the grid spacing �t compared to the derivative of the solution. Our approach is based 
on a single realization of the first order SBP finite difference operator and does not require a separate treatment of systems 
with equations of motion containing first or second order derivatives in time.
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Fig. 15. Numerical solution of the energy of the solution path x1 from functional eq. (43) using the regularized SBP42 operator. The energy is plotted at a 
different number of grids points Nt = 512 (green crosses), Nt = 1024 (blue crosses) and Nt = 2048 (red circles) and compared to the continuum solution 
from the Euler-Lagrange equation, which is shown as solid black line. Note that refining the grid consistently leads to smaller oscillations and the numerical 
solution approaches the continuum result.

Our study describes a genuinely novel and versatile approach to the computation of trajectories of classical systems 
without the need to resort to their equation of motion. The extension to higher dimensions for the treatment of partial 
differential equations is the natural next step and is work in progress. We are looking forward to applying the formalism to 
the discretization of theories with intrinsic constraints, in particular gauge theories, such as classical electromagnetism and 
Yang-Mills theory.
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Appendix A. Noether theorem for generalized variational problems

Following ref. [30] we retrace here how Noether’s theorem connects global symmetries of the system with conserved 
quantities, the so called Noether charges in the case of doubled degrees of freedom. Note that transformations that act the 
same on the forward and backward path, due to the construction of L, will lead to vanishing Noether currents. To identify a 
finite conserved quantity, we need to consider transformations that act differently on the paths x1,2 . The relevant symmetry 
in our case is the invariance under opposite time translations. To formalize this statement, one converts an infinitesimal 
time shift τ in the argument of the paths via a Taylor expansion to Tτ x1,2(t) = x1,2(t) ± τ ẋ1,2(t) +O(τ 2). The Lagrangian L
is a scalar, just as the paths and therefore transforms the same way as δL[x1,2]/δτ = ±dL[x1,2]/dt . One thus obtains

δL =
( ∂L

∂x1
δx1 + ∂L

∂ ẋ1
δẋ1 − ∂L

∂x2
δx2 − ∂L

∂ ẋ2
δẋ2

)
(A.1)

=
( ∂L

∂x1
δx1 − d

dt

∂L
∂ ẋ1

δx1 − ∂L
∂x2

δx2 + d

dt

∂L
∂ ẋ2

δx2 + d

dt

{ ∂L
∂ ẋ1

δx1 − ∂L
∂ ẋ2

δx2

})
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where we have used integration by parts to arrive at the second line. The first four terms are nothing but the Euler Lagrange 
equations we obtained in eq. (9), which vanish identically, so that we are left with

δL

δτ
= d

dt

( ∂L
∂ ẋ1

ẋ1 + ∂L
∂ ẋ2

ẋ2

)
= d

dt

(
L[x1, ẋ1] +L[x2, ẋ2]

)
(A.2)

The last equal sign arises from the fact that the Lagrangian itself transforms as a scalar. We thus arrive at the final expression 
for the conserved quantity as

d

dt

(
π1ẋ1 + π2ẋ2 −L[x1, ẋ1] −L[x2, ẋ2]

)
= d

dt

(
H+ + H−

)
= 0 (A.3)

This equation states that the total Hamiltonian, i.e. the total energy of the forward and backward path degrees of freedom is 
conserved in time. Had we instead started with time translations that acted the same on the forward and backward contour 
T ′

τ x1,2(t) = x1,2(t) + τ ẋ1,2(t) +O(τ 2), the corresponding Noether charge would be the difference between the energies on 
the forward and backward path, i.e.

d

dt

(
π1ẋ1 − π2ẋ2 −L[x1, ẋ1] +L[x2, ẋ2]

)
= d

dt

(
H+ − H−

)
= 0 (A.4)

telling us that not only is the total energy preserved but the energy difference between the forward and backward path 
must remain the same over time.

It is interesting to realize that the variational principle of eq. (14), which has been derived here in a fully classical context, 
identically arises as the classical limit of IVPs in quantum field theory. As discussed in detail in ref. [36], formulating initial 
value problems in the language of Feynman’s path integral necessitates the introduction of doubled degrees of freedom. The 
combination of the forward and backward path is referred to as the Schwinger-Keldysh time contour. It turns out that the 
relative path x− is related to the quantum contributions and taking x− → 0 is therefore intimately related to the classical 
limit. The classical limit of taking h̄ → 0 actually enforces x− = 0. Ref. [36] shows that the variation of the joint action with 
respect to x− is the relevant expression that describes how the fluctuating quantum paths collapse onto the deterministic 
classical trajectory, which indeed emerges after taking the limit x− → 0. In the context of Noether’s theorem, as discussed 
in ref. [30], transformations that act equally on forward and backward path are associated with quantum Noether currents, 
which do not have a finite expectation value. On the other hand transformations that couple the forward and backward 
path can be considered as quantum transformations, which lead to classical Noether currents that in turn can have a finite 
expectation value even in the classical limit, as we saw in eq. (A.3).
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