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MRI data-driven clustering reveals different subtypes of

Dementia with Lewy bodies
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Dementia with Lewy bodies (DLB) is a neurodegenerative disorder with a wide heterogeneity of symptoms, which suggests the
existence of different subtypes. We used data-driven analysis of magnetic resonance imaging (MRI) data to investigate DLB
subtypes. We included 165 DLB from the Mayo Clinic and 3 centers from the European DLB consortium and performed a
hierarchical cluster analysis to identify subtypes based on gray matter (GM) volumes. To characterize the subtypes, we used
demographic and clinical data, as well as 3-amyloid, tau, and cerebrovascular biomarkers at baseline, and cognitive decline over
three years. We identified 3 subtypes: an older subtype with reduced cortical GM volumes, worse cognition, and faster cognitive
decline (n =49, 30%); a subtype with low GM volumes in fronto-occipital regions (n = 76, 46%); and a subtype of younger patients
with the highest cortical GM volumes, proportionally lower GM volumes in basal ganglia and the highest frequency of cognitive
fluctuations (n = 40, 24%). This study shows the existence of MRI subtypes in DLB, which may have implications for clinical workout,
research, and therapeutic decisions.
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INTRODUCTION

Dementia with Lewy bodies (DLB) is a heterogeneous neurode-
generative disease in which alpha-synuclein is the main
pathological hallmark. However, concomitant Alzheimer’s disease
(AD) and cerebrovascular disease are common in DLB, contribut-
ing to disease heterogeneity’>. Magnetic resonance imaging
(MRI) has recently emerged as a promising technique to
disentangle disease heterogeneity both in DLB* and AD®. Early
DLB studies focused on medial temporal areas as a key driver of
clinical progression in DLB®. Recently, Oppedal & Ferreira et al.
(2019)*, extended this approach to include posterior and frontal
brain areas by classifying probable DLB patients into 4 brain
atrophy subtypes previously described in AD’. However, these
type of studies are still scarce and are all hypothesis-driven, while

identified DLB subtypes based on gray matter (GM) volumetric
patterns and investigated whether these subtypes influence
clinical phenotype, vary in the frequency of concomitant AD
and cerebrovascular disease, and differ in cognitive trajectories
over 3 years.

RESULTS

Cohort characteristics

The cohort included 165 patients with probable DLB, 72% male,
average age 69 years (SD =8.57, range 45-88 years) and mean
disease duration of 5.65 years (SD=4.34). The mean years of
education was 13.63 years (SD=3.88). The mean Mini-Mental
State Examination (MMSE) score was 22.91 (SD =5.22), and the

data-driven studies can reveal important aspects of the hetero-
geneity in neurodegenerative diseases®. For instance, in Parkin-
son’s disease (PD), another alpha-synuclein disease, data-driven
studies have revealed that different brain atrophy subtypes
explain part of the phenotype®'".

The overall goal of this study was to advance our current
understanding of the biological heterogeneity within DLB by
using a data-driven clustering method applied on MRI. We

mean white matter hyperintensity (WMH) burden was 16.12 cm3
(SD = 13.25), which roughly corresponds to a Fazekas score'? of 2
(moderate WMH burden). Regarding the core clinical features,
55% of the patients had visual hallucinations (VH), 83% had
cognitive fluctuations (CF), 87% had parkinsonism, and 78% had
probable REM sleep behavior disorder (RBD). 43% of the patients
were APOE €4 carriers and 11% were classified as having
concomitant AD (cerebrospinal fluid (CSF) subsample, n = 122).
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Fig. 1 Patterns of gray matter atrophy in the cortical and fronto-occipital predominant subtypes. Z-scores adjusted by total ICV, center of
origin and age were calculated using the subcortical predominant subtype as the group of reference. Red color depicts the ROIs in which the
cortical and fronto-occipital predominant subtypes showed significantly reduced GM volumes with z-scores below —0.5, compared to the
subcortical predominant subtype (see Supplementary Table 1 for ANCOVA results). ROI region of interest, ICV intracranial volume.

Data-driven analysis using random forest

The three-cluster solution showed the highest Calinski-Harabasz
index (CH=167.41), compared to the two-cluster solution
(CH =105.14) and the four-cluster solution (CH = 157.46). Com-
bined with visual inspection of the dendrogram (Supplementary
Fig. 1), we selected the three-cluster solution for subsequent
analyses. The Random Forest (RF) proximity assessment showed
robustness and stability of the three-cluster solution (Supple-
mentary Fig. 2).

Morphological characterization of the MRI subtypes
Whole-brain GM patterns were characterized by comparing the
subtypes across the 96 regions of interest (ROIs) entered in the
cluster analysis. ANCOVA results are shown in Supplementary
Table 1, and Fig. 1 summarizes the regional differences between
clusters. Cluster 1 (C1) was the subtype with overall lower GM
volumes in cortical ROIs compared to cluster 2 (C2) and 3 (C3)
(Supplementary Table 1). In consequence, we labeled C1 as the
‘cortical predominant’ subtype. C2 had intermediate GM volumes
and showed prominent occipital and frontal differences particu-
larly in medial and orbital frontal areas, as compared to C3
(Fig. 1). Hence, we labeled C2 as the ‘fronto-occipital predomi-
nant’ subtype. Finally, C3 had the highest cortical GM volumes
but did not differ in the volume of basal ganglia (BG) GM with
the other two clusters. Therefore, C3 was labeled as the
‘subcortical predominant’ subtype. To further investigate BG
volumes in relation to cortical volumes, we computed a ratio by
adding the bilateral volumes of the pallidum, putamen and
caudate, and dividing them by the total sum of all cortical ROIls
(Fig. 2). The ratio was significantly lower in C3 (x=0.031,
SD =0.003) than in C1 (x =0.037, SD = 0.004, 95%CI| 0.004-0.008,
p<0.001), and C2 (x=0.034, SD=0.003, 95%Cl 0.001-0.004,
p < 0.001). The ratio was also significantly lower in C2 than in C1
(95%Cl 0.002-0.005, p<0.001). Altogether, the ratio results
support the finding that C1 is cortical predominant and C3 is
subcortical predominant, with C2 in between.

Figure 3 shows the 10 most important ROIs in discriminating
the 3 clusters (Supplementary Table 2 and Supplementary Fig. 3).
GM volumes in the left middle cingulum and right olfactory cortex
were the most relevant in discriminating the clusters.

Clinical characterization of the MRI subtypes

C3 included the youngest patients and C1 the oldest ones
(Table 1). C1 had higher years of education than both C2 and C3,
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Fig. 2 Ratio of basal ganglia to cortical GM volumes. The plot
illustrates the distribution of the ratio across clusters. Significance
for pair-wise comparisons is indicated with an asterisk (p < 0.05). BG
basal ganglia, C1 cluster 1, C2 cluster 2, C3 cluster 3.

and had significantly worse MMSE scores at baseline compared
with C3. The differences in MMSE remained after accounting for
age and education (F(2, 161) =5.936, p = 0.005).

C1 had a higher WMH burden than the other 2 subtypes
(Table 1), but the differences disappeared after statistically
controlling for age (F(2, 162) = 2.643, p = 0.074). The longitudinal
analysis of MMSE trajectories over 3 years showed that C1 had a
more rapid cognitive decline than C3 (Fig. 4, Supplementary Table
3 and Supplementary Table 4). When adjusting the longitudinal
MMSE analysis for WMH, WMH did not have any significant effect
in the prediction of MMSE trajectories and results remained the
same, with C1 having a more rapid cognitive decline than C3
(please see Supplementary Tables 3 and 4).

Regarding the core clinical features, C3 showed a significantly
higher frequency of CF (95%) compared with C1 (71%) (p = 0.013)
(Table 1). There were no significant differences in the other core
clinical features (Table 1). The frequency of APOE €4 carriers was
statistically comparable across groups. Patients from all four
centers were evenly distributed across the 3 clusters.
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Fig. 3 Visualization of the 10 most relevant regions in discriminating the 3 clusters. The supervised random forest model performed with
the 10 most relevant ROIs showed that (in blue) the left middle cingulum discriminated the cortical predominant (C1) and fronto-occipital (C2)
subtypes from the subcortical predominant (C3) subtype, while the right olfactory cortex discriminated the cortical predominant (C1) subtype

from the fronto-occipital (C2) subtype.

DISCUSSION

In this study, we expanded previous hypothesis-driven MRI
subtyping studies in DLB by conducting a data-driven MRI
subtyping. We included a relatively large multi-center cohort
including countries from Europe and the US. We found 3 subtypes
within DLB: (1) a cortical predominant subtype, which included
older patients with lower GM volumes and worse global cognition;
(2) a fronto-occipital predominant subtype with intermediate GM
volumes; and (3) a subcortical predominant subtype, which
included younger patients with higher GM volumes and a higher
frequency of CF. Differences in GM volumes and global cognition
were independent of age.

The cortical predominant subtype had the lowest GM volumes
across all cortical regions, as well as the worst global cognitive
performance. This subtype resembles the widespread cortical
atrophy subtype with worst cognitive performance previously
reported in PD'". A similar widespread cortical atrophy subtype in
AD has also been described to be the subtype with worst
cognitive performance and fastest cognitive decline’. The fronto-
occipital predominant subtype had intermediate age and inter-
mediate GM volumes across many of the cortical regions, with
particular involvement of frontal and occipital regions. This
pattern resembles the fronto-occipital subtype described in PD°.
The subcortical predominant subtype had the highest GM
volumes, which is reminiscent of the minimal-atrophy subtype
described in Oppedal & Ferreira et al. (2019)*. Similarly, cluster
analyses in PD have repeatedly found a subtype with minimal or
no atrophy at all>'". Despite the prominent differences in cortical
GM volumes, we did not find any significant differences in the
volume of BG GM across subtypes, being the subcortical
predominant subtype the one with proportionally lower volumes
in BG compared to the other 2 subtypes. This finding may indicate
the same level of atrophy in the BG in our three subtypes, as DLB
patients have on average reduced GM volumes in BG compared to
healthy controls (HC)'~">, Reduced GM volumes in BG have been
associated with attentional deficits in DLB, suggesting that BG
may be an early site of neurodegeneration'®.

Altogether, our 3 subtypes showed an overall gradient of
neurodegeneration with low GM volumes in the cortical
predominant subtype, intermediate GM volumes in the fronto-
occipital subtype, and highest GM volumes in the subcortical
predominant subtype. An important question is whether our DLB
subtypes reflect different stages of the disease or distinct
subtypes. The cortical predominant subtype could represent DLB
patients at a more advanced stage while fronto-occipital and
subcortical predominant subtypes could represent less advanced
stages. However, the different morphological patterns and the
lower cognitive performance in cortical predominant remained
after the statistical control for age, which suggests that cortical

Published in partnership with the Parkinson’s Foundation

predominant may represent a subtype with a more aggressive
progression. This interpretation is supported by two findings.
Firstly, cortical predominant showed the most rapid cognitive
decline over 3 years, while subcortical predominant had relatively
stable cognitive performance over time. Secondly, there were no
significant differences in disease duration across subtypes, which
supports the hypothesis that our clusters reflect different subtypes
rather than different disease stages. In fact, the subcortical
predominant subtype had higher GM volumes but had, qualita-
tively, the longest disease duration. Hence, the late-onset form of
DLB seems to confer a more aggressive presentation, while the
early-onset form seems to have a better prognosis, as it has
previously been described in PD'’. In other diseases such as AD,
the cortical predominant subtype is also a more aggressive
presentation and is currently considered as a distinct subtype
rather than a disease stage>'®'°, In addition, the differences in
clinical features described below further support this interpreta-
tion on different subtypes rather than subgroups at different
stages of the disease.

Clinically, the 3 subtypes only differed significantly in the
presence of CF. Even though subcortical predominant was the
subtype with highest cortical GM volumes, it was also the
subtype with the highest frequency of patients with CF. CF have
been related to altered functional connectivity of subcortical
regions such as the pallidum and the putamen with the fronto-
parietal network?’. This finding could explain the higher
frequency of CF in subcortical predominant, a subtype that
has proportionally lower GM volumes in the BG. The dynamic
nature of CF could be related to disconnection between cortical
and subcortical GM structures in the subcortical predominant
subtype. Brain disconnection has been suggested as one of the
explanations for the minimal atrophy subtype of AD?’, a subtype
that has the highest cortical GM volumes, like our subcortical
predominant subtype. It is also worth noting that the subcortical
predominant subtype had the highest global cognitive perfor-
mance at baseline and over time. The different atrophy patterns,
together with the different cognitive trajectories, suggest that
characterizing neuropsychological profiles, in these subtypes,
could help to further elucidate their distinct nature by revealing
different cognitive signatures as previously done in PD°'" and
AD>. In AD, for example, the hippocampal sparing subtype is
known to have less memory impairment but more visual deficits
than the other subtypes®.

Concerning VH, despite no statistically significant differences
between subtypes, visual inspection suggested that the cortical
predominant subtype had the highest frequency (66%) of VH,
especially when compared with the subcortical predominant
subtype (48%). Previous studies reported that patients with
probable DLB and VH had reduced GM volumes in inferior frontal
regions???®> and cuneus®, when compared with patients with

npj Parkinson’s Disease (2023) 5
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Table 1.

Demographic, clinical, and biomarker characteristics of the DLB clusters.

C1 (N =49) Cortical
predominant

C2 (N =76) Fronto-
occipital
predominant

C3 (N=40)
Subcortical
predominant

statistic
(p-value)

post-hoc  Number of subjects
with available data

Age, mean (SD) 73.43 (8.02) 69.05(7.52)
Years of education, mean (SD) 15.02(3.61) 13.24(3.90)
MMSE, mean (SD) 21.57(5.49) 22.93(5.27)

Sex, male/female (male %) 35/14 (71%) 60/16 (79%)

Disease duration (years),
mean (SD)

5.11 (3.63) 5.09 (3.46)

Visual hallucinations 31/16 (66%) 39/36 (52%)

(presence/absence)

Cognitive fluctuations 32/13 (71%) 63/11 (85%)

(presence/absence)

Probable RBD (presence/ 35/10 (78%) 57/13 (81%)

absence)

Parkinsonism (presence/ 43/4 (94%) 68/8 (90%)

absence)

APOE genotype, €4 carriers 18/31 (37%) 38/34 (53%)

(presence/absence)

AD co-pathology (presence) 7% 15%

White matter hyperintensities, 21.37 (15.41)
mean (SD)

14.55 (13.13)

Center of origin (Mayo Clinic/ 28/14/4/3
Prague/ Strasbourg/
Amsterdam)

26/12/15/23

63.68(8.23) 17.048 (<0.001) C1>C2
c1>C3

c2>C3

c1>Q2
c1>QC3

C1:49
C2:76
C3:40

C1:49
C2:76
C3:40

C1:49
C2:75
C3:40

C1:49
C2:76
C3:40

C1:32
C2:59
C3:32

C1:47
C2:75
C3:40

C1:45
C2:74
C3:38

C1:45
C2:70
C3:35

C1:47
C2:76
C3:40

C1:49
C2:72
C3:38

C1:29
C2:60
C3:33

C1:49
C2:76
C3:40

C1vs C3 C1:49
C1vs C2 C2:76
C3:40

12.60 (3.80) 5.117 (0.007)

24.50(4.38) 3.579 (0.030) a>Cl

24/16 (60%) 4.696 (0.096)
7.25 (6.00) 2.961 (0.056)
19/21 (48%) 3.461 (0.177)

36/2 (95%) 8.614(0.013) a>C1

25/10 (71%) 1.362 (0.506)
31/9 (78%) 4.473(0.107)
13/25 (34%) 4.770(0.092)

6% 2.352 (0.309)

c1>Q2
c1>QC3

12.43(7.96) 6.230 (0.002)

14/3/15/8 27.800

(p < 0.001)

AD Alzheimer’s disease, C Cluster, C/ Confidence Interval, DLB Dementia with Lewy bodies, MMSE Mini Mental State Examination, RBD Rapid-eye movement
behavior disorder, SD Standard deviation, One-way ANOVA was used for continuous variables, and the chi-squared test for categorical variables.

probable DLB without VH. In our study, the cortical predominant
subtype had lower GM volumes in inferior frontal regions and
cuneus when compared with both fronto-occipital and subcortical
predominant subtypes.

Regarding parkinsonism, the groups did not differ in this clinical
feature, which could be explained by comparable absolute GM
volumes in BG across subtypes. Dysfunction of the BG is a well-
known hallmark of DLB?* and is often related with motor
impairment. For example, aberrant functional connectivity of the
BG has been described in diseases with motor impairment such as
PD?® and is independent of cognitive status in PD?’. Another
example is the association between motor impairment and
alterations in a BG network both in PD?® and DLB?°. However,
we acknowledge that medications may influence motor symp-
toms3°, as well as functional connectivity in the brain. Hence,
future studies looking at structural MRI and functional connectivity
of BG in relation to medications and parkinsonism across DLB
subtypes are of interest, and may contribute to advance our
understanding of the heterogeneity within DLB.

npj Parkinson’s Disease (2023) 5

In addition, comorbid brain pathologies could be one of the
factors contributing to MRI subtypes in DLB. We found a higher
WMH burden (proxy for cerebrovascular disease) in cortical
predominant compared to the other two subtypes, which seemed
to be primarily explained by the older age of this subtype.
Nonetheless, a recent study using the same sample than in our
current study demonstrated that the WMH findings go beyond the
mere effect of increasing age in DLB2. In addition, WMH burden
influenced clinical phenotype as reflected in the association of a
higher WMH burden with a higher frequency of visual hallucina-
tions and lower MMSE scores?. Additionally, in that previous study,
WMHs were associated with GM degeneration in several cortical
areas characteristic of the cortical predominant subtype, particu-
larly, the olfactory cortex®. Hence, despite that we observed that
the WMH differences across subtypes disappeared when control-
ling for age, we cannot completely exclude that WMH burden may
contribute somehow to our subtypes. We investigated global
WMH, but regional WMH or other markers of cerebrovascular
disease could help confirming this hypothesis. In contrast to WMH

Published in partnership with the Parkinson’s Foundation
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Fig. 4 Cognitive decline over 3 years of follow-up as measured
with the MMSE. Dots represent raw data in the background, the
darker dots involve several individuals with the same score. Lines in
the foreground represent estimated marginal means and error bars
based on the standard error obtained from the linear mixed model.
The cortical predominant subtype (C1) had significantly lower MMSE
scores than the subcortical predominant subtype (C3) at baseline
(p = 0.042), with increasing magnitude of the differences over time
as reflected by the lower MMSE scores at 12-month follow-up
(p<0.001) the 24-month follow-up (p <0.001) and the 36-month
follow-up (p <0.001). The fronto-occipital (C2) subtype had lower
MMSE scores than the subcortical predominant (C3) subtype at the
36-month follow-up (p = 0.007). The cortical predominant (C1) and
fronto-occipital (C2) subtypes did not differ in MMSE scores over
time. At baseline, MMSE scores were available for 49 (C1), 75 (C2),
and 40 (C3) DLB patients; at the 12-month follow-up, MMSE scores
were available for 30 (C1), 38 (C2), and 29 (C3) DLB patients; at the
24-month follow-up, MMSE scores were available for 22(C1), 29 (C2),
and 25 (C3) DLB patients; and at the 36-month follow-up MMSE
scores were available for 7 (C1), 12 (C2), and 11 (C3) DLB patients. C1
Cluster 1 (cortical predominant subtype), C2 Cluster 2 (fronto-
occipital predominant subtype), C3 Cluster 3 (subcortical predomi-
nant subtype), MMSE Mini-Mental State Examination.

burden, the frequency of AD co-pathology (positive B-amyloid and
tau biomarkers) did not reflect the age differences found in our
subtypes, despite AD co-pathology increases with age in DLB3'.
Rather, visual inspection suggests that the fronto-occipital
predominant subtype had the highest frequency of AD co-
pathology, which is supported by the tendency to include a higher
frequency (53%) of APOE €4 carriers than the cortical (37%) and
subcortical (34%) predominant subtypes, since APOE €4 is the
strongest genetic risk factor for AD32. Further, the pattern of
amyloid PET binding in DLB with AD co-pathology>? includes very
similar cortical areas to those describing our fronto-occipital
predominant subtype.

Hippocampal volume has traditionally been regarded as a proxy
of AD pathology, and explains part of the heterogeneity in the
clinical phenotype of DLB®3%3>, Contrarily, in our study, by using a
data-driven method to identify MRI subtypes of DLB, we found
that hippocampal volume was not among the regions that best
reflected the heterogeneity in GM patterns. A possible explanation
is that hippocampal volume is usually spared in DLB?%; in
consequence, hippocampal volume may only acquire a relevant
role at advanced stages of DLB, where AD co-pathology is higher’,
as in the cohorts often included in postmortem studies. Contrarily,
at less advanced stages of the disease, the presence of AD co-
pathology is lower®!, as reflected by the low proportion of DLB
patients with positive AD biomarkers in our study.

The current study has some limitations. Firstly, we did not
have a HC group. However, previous studies from the centers
included in our current study show that our DLB patients do
have brain atrophy when compared with a HC group'>3637,
Although our main goal was to identify and characterize MRI
subtypes in DLB, having a HC group could help to further
describe some aspects of our subtypes. Secondly, we had some
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missing data for $-amyloid and tau biomarkers, giving a smaller
subsample for statistical analysis. Still, we reported the propor-
tion of biomarker-positive DLB patients along with group sizes
due to the clinical interest of those data. Thirdly, clustering in
the current study is cross-sectional, like virtually all current MRI
subtyping studies>®. The advent of new longitudinal clustering
methods>® will open the door for future longitudinal subtyping
studies in DLB, helping to better characterize disease progres-
sion of our current DLB subtypes.

In conclusion, by using a data-driven approach on a relatively
large cohort of probable DLB patients, we found 3 MRI subtypes
characterized by different patterns of GM volumes and clinical
profiles. Our approach has been demonstrated to be useful in DLB,
and we hope it can inspire future works to help establish distinct
neurodegeneration subtypes, as well as their links with close
disorders such as PD and AD. The ultimate goal would be to
leverage this knowledge to realize personalized medicine
approaches, in which biomarkers and subtypes would guide
therapeutic decisions in neurodegenerative diseases.

METHODS

Participants

The data of this multicenter study were a combination of the
European DLB consortium (E-DLB) (n = 97)3°, including 29 patients
from Prague, 34 from Strasbourg, and 34 from Vumc Amsterdam,
and the Mayo Clinic DLB cohort from Rochester, MN, United States
(n=68), making a total of 165 DLB patients. Diagnosis and core
clinical features (parkinsonism, VH, CF and RBD) were based on the
2005 International Consensus Criteria for probable DLB*. Core
clinical features were assessed with well-established instruments
(please see https://www.e-dIb.com/psychosometric-and-clinical-
measurements/), but due to the multi-center nature of this study,
outcomes were dichotomized as presence/absence of features for
harmonization and statistical analyses in the current study. As a
measure of global cognition, we used the MMSE assessed annually
over 3 years. Exclusion criteria were: (i) presence of acute delirium,
(i) terminal illness, (iii) previous stroke, (iv) psychotic or bipolar
disorder, (v) craniocerebral trauma, and (vi) recent diagnosis of a
major somatic illness. Local ethics committee at each E-DLB center
and the Mayo Clinic Institutional Review Board approved the study.
Written consent on participation was obtained from all patients or
appropriate surrogates according to the Declaration of Helsinki.

B-amyloid and tau biomarkers

B-amyloid and tau pathologies were assessed for a total of 122
DLB patients with CSF B-amyloid 1-42 and phosphorylated tau
biomarkers in the E-DLB cohort, and with positron emission
tomography (PET) Pittsburgh compound B (PiB) and Flortaucipir
(AV-1451) tracers in the Mayo Clinic. Biomarker levels were
classified as normal or abnormal based on center-specific
established cut points, as explained in previous studies3'#!. AD
co-pathology was defined as positivity in both B-amyloid and
tau biomarkers.

Neuroimaging data

A high-resolution 3D T1-weigthed magnetization prepared rapid
gradient echo (MPRAGE) sequence and a FLAIR sequence were
acquired in 3T (The Day Hospital of Geriatrics, Memory Resource
and Research Center, CMRR, Strasbourg, France; the VU University
Medical Center, Vumc, Amsterdam, the Netherlands; and the Mayo
Clinic, Rochester, US) and 1.5T (Motol University Hospital, Prague,
Czech Republic) scanners.

Images from the E-DLB consortium were managed through the
hive database system (theHiveDB)*2. All the data was prepro-
cessed at the Mayo Clinic. GM volumes from 82 cortical ROlIs,
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12 subcortical ROIs, and 2 brainstem ROIs (Supplementary Table 5)
were obtained using the Mayo Clinic Adult Lifespan Template
(MCALT) (https://www.nitrc.org/projects/mcalt/) atlas. Analyses
were carried out with the residuals obtained from a multiple
linear regression model where each ROl was adjusted for center
and ICV. Cerebrovascular disease was assessed through WMH
burden on FLAIR, using a semi-quantitative method described in
previous publications?.

Subtypes of DLB based on data-driven analysis

We performed a cluster analysis with the RF method applied on
the residuals of the 96 volumetric ROIs*3. The RF method provided
a similarity matrix that was then used as the input for the
agglomerative hierarchical clustering using the average linkage
method**. The Calinski-Harabasz index was used to evaluate the
optimal number of clusters, where 2 to 10 clusters were
considered. The mean decrease in the Gini index was used to
identify the ROIs with the highest contribution to the cluster
analysis. The 10 most relevant ROIs were then used for a
supervised RF model, in which the ROIs were the predictor
variables and the cluster number the dependent variable. This
supervised model was performed to identify the ROIs that best
discriminated between the clusters.

To carefully test the robustness and stability of our cluster
analysis, we carried out a RF proximity matrix assessment: we
repeated the RF 100 times and computed the difference between
the similarity matrix used in the main analysis and each of the
100 simulated similarity matrices*.

Statistical analyses

Differences in demographics, clinical measures, and biomar-
kers were assessed with one-way ANOVA for continuous
variables and the Pearson’s chi-squared test for categorical
variables. Differences between clusters in GM across ROIs were
assessed with ANCOVA adjusting by age. These analyses were
performed using IBM SPSS Statistics 27.0 (IBM Corp., Armonk,
New York). The results from ANCOVA were corrected for
multiple comparisons using the false-discovery rate (FDR)
adjustment across the 96 ROIs, with the significance level set
at p < 0.05. Tests were 2-sided. R was used to implement RF and
clustering analyses, as well as to assess cognitive trajectories
over 3 years (MMSE scores) with a linear mixed model (LMM)
(see Supplementary Methods 1).

Reporting Summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY

All data used for this study is available through the E-DLB consortium (https://www.e-
dlb.com) and the Mayo Clinic (https://www.mayo.edu/research/labs/aging-dementia-
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