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Floating wind turbines structural 
details fatigue life assessment
Oleg Gaidai 1*, Vladimir Yakimov 2, Fang Wang 1, Fuxi Zhang 1 & Rajiv Balakrishna 3

Fatigue damage prediction is essential for safety of contemporary offshore energy industrial projects, 
like offshore wind turbines, that are to be designed for sufficiently long operational period of time, 
with minimal operational disruptions. Offshore structures being designed to withstand environmental 
loadings due to winds and waves. Due to accumulated fatigue damage, offshore wind floating turbines 
may develop material cracks in their critical locations sooner than expected. Dataset needed for an 
accurate assessment of fatigue damage may be produced by either extensive numerical modeling, or 
direct measurements. However, in reality, temporal length of the underlying dataset being typically 
too short to provide an accurate calculation of direct fatigue damage and fatigue life. Hence, the 
objective of this work is to contribute to the development of novel fatigue assessment methods, 
making better use of limited underlying dataset. In this study, in-situ environmental conditions were 
incorporated to assess offshore FWT tower base stresses; then structural cumulative fatigue damage 
has been assessed. Novel deconvolution extrapolation method has been introduced in this study, 
and it was shown to be able to accurately predict long-term fatigue damage. The latter technique was 
validated, using artificially reduced dataset, and resulted in fatigue damage that was shown to be 
close to the damage, calculated from the full original underlying dataset. Recommended method has 
been shown to utilize available dataset much more efficiently, compared to direct fatigue estimation. 
Accurate fatigue assessment of offshore wind turbine structural characteristics is essential for 
structural reliability, design, and operational safety.

With more wind turbines being designed and installed, wind energy is taking the lead in a field of renewable 
energy power generation. Wind energy is cost-free and accessible, having quite attractive energy potential. Instal-
lation of new, larger wind turbines has relocated offshore, due to accessible space, offers greater offshore wind 
potential, helping to achieve net-zero emission targets by 20501. No greenhouse gases, such as CO2, nitrogen 
oxide, sulphur oxide, being emitted during FWT (floating wind turbine) operation. FWT market expands quite 
dynamically, especially for developing countries, with increasing energy demands, onshore wind, and even more 
for offshore wind, boosting national energy sustainability. According to the IRENA (International Renewable 
Energy Agency), offshore wind capacity factors will increase between 40 and 60% worldwide1. Total installed 
capacity of wind energy exceeded 700 GW in 2022, robust increase of 15% over 2019. The Hywind Scotland 
project, being first floating wind farm in the world, has already exceeded 50% capacity factor in its first 2 years 
of successful operation. As more FWTs developed, and put into service, there is rising necessity to design new 
FWTs more economically, while maintaining safety margins, and operational readiness levels. To improve design, 
minimize failures, reduce FWT downtime due to maintenance, accurate load prediction methods being required 
for aerodynamic, control, as well as dynamical modelling of FWT.

Bottom fixed mono-pile wind farms nowadays making up majority of offshore wind farms; however, bottom-
fixed wind turbines cannot be yet made to be profitable1–3. In deep seas, where 80% of FWTs being installed, 
FWTs offer substantial advantages. In the near future 10-MW FWTs will be prioritized, hence, this study aims to 
contribute to reliability aspects of such FWT critical parts. In the past 2 decades, FWT’s size was steadily increas-
ing to save costs; as FWTs capacity increased, new technological developments have been required to develop cru-
cial FWT parts including the motor, blades, controls. Majority of FWTs, however, didn’t survive as long, as they 
were expected to, having negative effect on FWT operational expenses. According to studies on FWT drivetrain 
status monitoring, the gearbox in the drivetrain caused one of the highest downtimes per-failure4, see Fig. 1.

To develop efficient numerical methods for estimating the effects of waves and winds on FWTs, numerous 
researches were carried out. FWT structural details extreme dynamics as well as fatigue damage known to exhibit 
complex nonlinear cross-correlated nature4. FWT drivetrain dynamics of a 750KW spar type FWT has been 
analysed in5–8, for more details on FWT drivetrain design, see9–12. FWT drivetrains typically being subjected to 
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more volatile load uncertainties, compared to those of land-based turbines, due to more complex offshore-envi-
ronmental wind-wave loading nature. Figure 2 presents OO-Star FWT semi-submersible 10-MW design concept.

To identify structural load reactions, a detailed understanding of the FWT drivetrains’ dynamic behaviour 
is required, in order to decrease fault rate, increase service (fatigue) life, yet save operational costs. Within FWT 
hydrodynamic study, irregular waves and water depth being 2 separate concepts, since FWTs are frequently 
placed in shallow water areas, where waves become more nonlinear, creating significant increase in hydrodynamic 
loads. 2 methods may be used to evaluate extreme FWT loads: 1st strategy is to simulate for example 10,000-
year extreme environmental condition, leading to a single excessive structural load dataset; 2nd strategy, is to 
perform long-term statistical analysis, based on various environmental condition, according to in-situ scatter 
diagram. This study advocates 2nd approach, as being more accurate and representative of in-situ environment.

Figure 1.   Reliability and downtime for FWT sub-assemblies1.

Figure 2.   OO-Star FWT semi-submersible 10 MW concept2.
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Development of novel FWT structural reliability tools will serve future better design of FWT control mecha-
nisms, preventing FWT mechanical damage. Application of multivariate extreme value theory (EVT) being 
important from both practical engineering and design standpoints, since there are non-negligible nonlinear 
correlations between different FWT system components. Methodology, advocated in this study offers practical 
way of using relatively small nonstationary dataset effectively, and then subsequently assess FWT structural 
failure or damage risks. This study promotes MC (Monte Carlo) based statistical methodology, that may natu-
rally incorporate underlying FWT structural nonlinear effects. For comparisons between suggested method 
and those that have been previously benchmarked in various applications, see8–17. Among key advantages of the 
advocated methodology, is that it does not directly rely on asymptotic EVT assumptions, therefore it introduces 
fewer residual inaccuracies in the final failure risks predictions.

While continuing to optimize parametric models and probabilistic techniques, writers conducted a detailed 
uncertainty analysis7. In8 authors sought to simplify and consolidate the many strategies mentioned above. 
Numerous studies on more precise estimations of the structural fatigue damage of FWTs have recently been 
conducted12, where authors used statistical and modeling techniques to quantify the long-term fatigue damage/
life of offshore FWTs. Additional studies are needed to develop novel methods that are able to work with limited, 
non-stationary datasets, with classic methods to be used for cross-validation of new proposed reliability methods. 
The authors of this study have previously proposed four parameter Weibull method, extrapolating probability 
distribution function (PDF) tails (region with high response or load levels)18. The latter technique was used to 
extrapolate PDF tails using modified (four parameter) Weibull PDF and the mean up-crossing rate function, but 
not the tail of fatigue-related VM (von Mises) stress range distribution.

Distinctive advantage of this study, compared to existing fatigue life assessment methods, is that advocated 
methodology makes it possible to assess fatigue life fairly accurately, using even limited underlying dataset, 
taking into account stress cycles PDF tail.

Dynamic system
A 10-MW floating wind turbine (FWT) dynamic system13 has been used in this study, as illustrated in Fig. 3.

In the next Section the reference FWT will be briefly described.

DTU 10‑MW reference FWT
A 10-MW reference wind turbine (RWT) constructed from an NREL 5-MW RWT has been used in this 
investigation. The RWT is a typical three-bladed, clockwise rotating, upwind FWT controlled by collective pitch 
and variable speed. This FWT was created in compliance with the Class 1A wind regime specified by IEC (the 
International Electrotechnical Commission). The DTU (Danish Technical University) 10-MW RWT numerical 
model has been successfully developed and studied in a number of scholarly articles19–22. The brief DTU 10-MW 
RWT summary is presented in Table 1.

Figure 3.   10-MW OO-Star FWT13.
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OO‑Star semi‑submersible FWT
Semi-submersible floating structure typically acts as support for 10-MW RWT. It was first introduced by Olav 
Olsen AS in the LIFES 50 + project13. Three external columns surround a center column in the post-tensioned 
concrete floater; 4 columns are fastened to the bottom of the slab-attached pontoon, which has a star-shaped 
form. Three catenary mooring lines that each have a clumped mass connected that separates them into 2 portions 
keep the FWT floater in place.

More OO-Star Wind Floater structural details being shown in Table 2 and Figs. 4 and 5.
In this study, a fully coupled 10-MW FWT aero-hydro-elastic-servo dynamic analysis has been conducted 

using the open-source FWT simulation program FAST (Fatigue, Aerodynamics, Structures Turbulence), created 
by the NREL (National Renewable Energy Laboratory). FAST code combines the following four computer 
codes: AeroDyn, HydroDyn, ServoDyn24. It is necessary to represent aerodynamic loads on the rotor blades, 
hydrodynamic loads acting on FWT floaters, control dynamics, FWT structural dynamics, and mooring system 
dynamics. Additionally, FAST provides a reading interface for time-varying stochastic winds in time-domain 
simulations. FAST has been successfully used in OC3: Offshore Code Comparison Collaboration and other 
well-known projects25. See also OC4: IEA Task Wind 3026, along with reported the validity of modeling has been 
confirmed using several floating constructions in the Netherlands, EU27. FWT tower bottom fore-aft bending 
moment (TwrBsMyt) was utilized as the case study in this work.

Method
Probability distributions, as well as mean up-crossing rate function tails extrapolation have been successfully used 
for a range of offshore engineering applications in the past17,28. This study, however, enhances extrapolation by 
using deconvolution. Let M(T) = max {σ(t) : 0 ≤ t ≤ T} be the response process’s σ(t) extreme value during 
a long-term time interval of length T , where T is the planned FPSO operational service life, expressed in years. 
Different sea/environmental states certainly impact the stress response process σ(t) . Therefore, ergodicity should 
be assumed in order to draw statistical inferences from measurable data. For the up-crossings of high response 
levels under the assumption of a non-homogenous Poisson process, the long-term extreme value distribution 
of M(T) is given as

(1)Prob(M(T) ≤ σ) ≈ exp (−ν+(σ )T)

Table 1.   DTU 10-MW reference FWT key parameters13.

Parameters Values

Rating 10-MW

Type Upwind/3 blades

Control Collective pitch, variable-speed

Drivetrain Multiple stage gearbox, medium-speed

Cut-in, rated and cut-out wind speed (m/s) 4, 11.4, 25

Minimum and maximum rotor speed (rpm) 6.0, 9.6

Max generator speed (rpm) 480

Rotor diameter (m) 178.3

Hub height (m) 119.0

Rotor mass (tones) 228.2

Nacelle mass (tones) 446.0

Tower mass (tones) 1257.1

Table 2.   10-MW OO-Star FWT’s wind floater main properties.

Parameters Values

Water depth (m) 130.0

Draft (m) 22.0

Tower-base interface, above the mean sea level (m) 11.0

Displacement (tones) 24.2

Overall gravity, including ballast (tones) 21.7

Roll, pitch inertia about center of gravity (tones ∙m2) 1.4 × 107

Yaw inertia about center of gravity (tones ∙m2) 1.6 × 107

Center of gravity height below mean sea level (m) 15.2

Center of buoyancy height, below mean sea level (m) 14.2
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where ν+(σ ) denotes the long-term average up-crossing rate of the stress range σ . Well-known Rice formula for 
the mean up-crossing rate is as follows

with W  indicating a particular stationary sea state encountered by FPSO, and gX,Ẋ being the joint PDF cor-
responding to the marginal PDF f 29–36, with σ being in this case FWT base VM stress, measured in MPa. Let’s 
examine now the distribution tail behaviour of the marginal complementary CDF (cumulative density function) 
F(σ ) . The same Poisson assumption of separate occurrences (namely, stress range exceedances) over a high 
threshold σ ≥ σ0 , specifically in the tail, can be used to rewrite Eq. (1)

The analogous CDF function F(σ ) can be extrapolated directly using novel deconvolution method. Stress 
range distribution in question belongs to a certain tail equivalence class

(2)ν+(σ |W) =
+∞
∫
0

zgσ ,σ̇ (σ , σ̇ |W)dσ̇

(3)Prob(M(T) ≤ σ) ≈ exp
(

−F(σ )
)

, F(σ ) ≡
∞
∫
σ
f (s)ds

(4)ν+(σ ) ∝ F(σ ), σ ≥ σ0

Figure 4.   OO-Star floater 10-MW FWT’s main structural dimensions13.

Figure 5.   Sketch of 10-MW FWT’s mooring system, (left: top view; right: side view)23.
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The complementary CDF function F(σ ) will also be used in this article to extrapolate distribution’s functional 
tail in the stress range σ ≥ σ0 . In the following, deconvolution technique being described for the purpose of PDF 
tail extrapolation, note that the same technique is applicable to the complementary CDF tail. Consider station-
ary stochastic process X(t) , being either measured, or simulated over representative time lapse 0 ≤ t ≤ T and 
let one assume it may be represented as the sum of two separate stationary processes X1(t) and X2(t) , namely

It should be noted that our goal now is to present a general-purpose extrapolation technique that can be used 
to predict extreme values for a variety of dynamic systems. There are 2 alternative techniques to generate the 
marginal PDF pX for the process of interest X(t):

A)	 directly extract pAX from the underlying dataset, i.e., time series X(t),
B)	 applying convolution pBX = conv

(

pX1 , pX2

)

 after individually extracting PDFs from the process components 
X1(t) and X2(t) , respectively pX1 and pX2.

The desired PDF pX , being hence approximated by both pAX and pBX . Although Method B) would give a more 
precise estimate of the desired PDF pX , Method A) is easier to employ. The fact that convolution allows extrapola-
tion of the empirical PDF pAX that was directly extracted from case B) without assuming any specific extrapolation 
functional class, such as GEV (generalized extreme value distributions), required to extrapolate PDF tail towards 
design low probability levels of interest, is a benefit of using convolution scenario. It should be noted that the 
majority of extrapolation methods now in use, which are widely used in engineering practice, do actually rely 
on assuming specific extrapolation-functional classes. In practice, 2 independent component representations, 
provided by Eq. (5), being rarely available, hence one may search for artificial methods to estimate pX1 and pX2 , 
or in the simplest situation, locate 2 identically distributed random process components X1(t) and X2(t) with 
pX1 = pX2 . The latter option, where processes X1(t) and X2(t) being equally dispersed, will be preferred in the 
following. Hence, the objective now would be to assess component-distribution pX1 such that given directly 
estimated PDF pX as in the option A)

hence limiting our following analysis to the deconvolution example alone. The region, where 2 vectors, u and 
v overlap, defines convolution of 2 vectors. Convolution being hence algebraically comparable to polynomial 
multiplication, whose coefficients being elements of u and v . Suppose m = length(u) and n = length(v) . Conse-
quently, w being the vector with length m+ n− 1 and element k-th being

with summation going over all j-values that result in permissible subscripts for u
(

j
)

 and v
(

k − j + 1
)

 , especially 
j = max(1, k + 1− n) : 1 : min(k,m) , when m = n , as will be the main case in this study, yielding

When the index grows from n+ 1 to 2n− 1 , the reduced sections of the w-components are given by Eq. (14), 
u = v = (u(1), . . . , u(n)) . The latter doubles the initial distribution support domain and extends vector w into the 
support domain. In brief, (2n− 1) ·�x ≈ 2n ·�x = 2XL means that the distribution support length has been 
doubled. The constant length of each discrete distribution bin in this example is �x , and when compared with 
the original distribution support length, n ·�x = XL . �x . Convolution convects distribution features further 
along the PDF tail. w = (w(1), . . . ,w(n)) , where n is the length of the distribution support [0,XL] , represents 
the empirical target distribution pX . To reduce complexity, only one-sided positive random variables, X ≥ 0 , 
being taken into consideration in this study. According to Eq. (8), the distributions for the vectors w and u are 
pX and pX1 , respectively. The supplied w = (w(1), . . . ,w(n)) in Eq. (13) may be used to determine the unknown 
components u = v = (u(1), . . . , u(n)) . It begins with the 1st component u(1) = √

w(1) , moves on to the 2nd 
component u(2) = w(2)

2u(1) , and continues, until n reaches last component u(n) . This technique allows for straight-
forward extrapolation of self-deconvoluted vector (u(1), . . . , u(n)) towards (u(n+ 1), . . . , u(2n− 1)) . In essence, 
the tail of pX1 extrapolates linearly throughout the range (XL, 2XL) . The pX1 is now referred to as a deconvoluted 
distribution, described by projected vector u in its discrete form. The vector w being lengthened and projected 
to double the initial distribution support domain based on Eq. (8). In summary, compared to the initial PDF 
support length n ·�x = XL , the pX PDF support length is twice, (2n− 1) ·�x ≈ 2n ·�x = 2XL . Deconvolu-
tion extrapolation does not require any particular extrapolation functional class, as has been described in the 
Introduction, in order to extrapolate the distribution functional tail. Since it is more crucial to estimate the 

(5)X(t) = X1(t)+ X2(t)

(6)pX = conv
(

pX1 , pX1

)

(7)w(k) =
m
∑

j=1

u
(

j
)

v
(

k − j + 1
)

(8)

w(1) = u(1) · v(1)
w(2) = u(1) · v(2)+ u(2) · v(1)

w(3) = u(1) · v(3)+ u(2) · v(2)+ u(3) · v(1)
· · ·

w(n) = u(1) · v(n)+ u(2) · v(n− 1)+ · · · + u(n) · v(1)
· · ·

w(2n− 1) = u(n) · v(n)
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probability of exceedance, or F = 1 − CDF (where CDF stands for cumulative density function), rather than the 
marginal PDF, in the majority of reliability analysis engineering applications, the probability of exceedance F 
will be further denoted by the notation fX  in this section, whose PDF tail will be extrapolated in the same way 
as the marginal probability density function PDF pX from Eq. (6). The suggested technique, however, could be 
appropriate for any sufficiently regular, monotonically declining concave or convex functional PDF tail.

The "shorter" version of the original data set has been extrapolated for the purpose of comparison with 
forecasts based on the entire "longer" data set in order to validate the extrapolation approach indicated above. 
Hence, the purpose of this study was to demonstrate that the recommended extrapolation approach is at least 
a few orders of magnitude more efficient. The goal now is to assess deconvoluted PDF fX1 , obtained from the 
empirical PDF fX , being based on sequentially solving Eq. (8). It appears that the final values of the resultant 
vector u , say (u(n− L), . . . , u(n)) for some L < n , may become negative, since the deconvoluted values 
u = (u(1), . . . , u(n)) often follow a monotonously declining pattern (same was anticipated for the empirical 
parent PDF fX ). Due to the fact that PDFs may only be represented by positive numbers, the latter is obviously 
a numerical mistake, and cannot be accepted. The following scaling approach has been devised by authors to 
address that numerical problem. The pivot value is chosen to be the lowest positive value fL of the provided 
PDF tail of fX . Hence, scaling is only a linear adjustment along the distribution’s vertical y-axis on the decimal-
logarithmic scale

having reference level fL being unaltered and gX(x) being a scaled log10 version of the empirical base PDF fX . To 
conveniently prevent the formation of negative components in the resultant fX1 , the scaling coefficient µ  is set to 
be 1/3 worked nicely for both numerical situations, examined in this study. Then, after finding fX1 and perform-
ing back convolution f̃X = conv

(

fX1 , fX1

)

 , fX1 , as in Eq. (6) can be completed, the original scale will be restored 
by performing inverse scaling using µ−1 with f̃X being an extrapolated version of fX . As discussed in13–17,37,38, 
numerous offshore engineering solutions have been extrapolated using novel deconvolution method39,40; this 
method provides the following 4-parametric form for the tail mean up-crossing rate function

with σ being the response level, which is the stress in the case of this paper; a, b, c, q being 4 suitable PDF tail 
constants; σ0 is a suitable tail marker, indicating the start of the fit based on Eq. (10). In the case of q = c = 1 , 
this simply represents the GEV distribution, Gumbel type. Mean up-crossing rate function ν+ is often used in 
combination with the Poisson assumption, namely that extreme events (PDF tail range), crossing high thresholds 
can be approximated as independent.

Thus, it is anticipated that near-to-complete  linear tail behaviour will be achieved by graphing 
ln
{

ln
(

ν+(σ )/q
)}

 versus ln(σ − b) . The mean square error function F with respect to the 4 inputs a, b, c, d is to 
be minimized in order to do the optimization on the decimal log level

where σ1 being a suitable data cut-off value, namely, the largest response value, from which the width of 
the confidence interval can be determined. The definition of the weight function w is given as follows: 
w(σ )=

{

lnC+(σ )− lnC−(σ )
}−2 where 

(

C−(σ ),C+(σ )
)

 with a 95% confidence interval (CI), which was empiri-
cally derived from measured data. In offshore, naval and marine engineering, novel deconvolution extrapolation 
has been proved to be a reliable and effective extrapolation technique for a broad variety of random processes. 
The series of conditional exceedances above a threshold � for any generally ergodic wave height or wind speeds 
and wave heights process may be considered to be a Poisson process, but generally one that isn’t homogenous. 
As a result, the approximate boundaries of a p-% CI (confidence interval) of pk(�) may be determined for levels 
� of approaching 1

f
(

p
)

 was calculated using the inverse normal distribution, with values such as f (90%) = 1.65 , f (95%) = 1.96 . 
N is the overall number of local maxima that were built in the examined vector �R . Engineering reliability tasks 
that require accurate extreme value prediction are frequent and difficult, especially when there is a lack of data. 
Hence, it is important from a practical design standpoint to create new, effective, and precise extrapolation 
approaches. For practical engineering example of the above-discussed issues, see Sect. 4.3, where the VM stress 
range PDF tail along with fatigue damage assessment are presented.

Numerical results
This section discusses the numerical results of the fatigue damage calculation for the taken into account FWT 
tower bottom fore-aft bending moment. We briefly cover the analyzed load scenarios as well as the suitable 
material properties for determining FWT fatigue damage.

(9)gX = µ
(

log10
(

fX
)

− log10
(

fL
))

+ log10
(

fL
)

(10)ν+(σ ) ≈ q · exp
(

−a(σ − b)c
)

, σ ≥ σ0

(11)F(a, b, c, d)=
σ1∫
σ0

w(σ )
{

ln
(

ν+(σ )
)

− ln q+ a(σ − b)c
}2

dσ

(12)CI±(�) = pk(�)

(

1± f
(

p
)

√

(N − k + 1)pk(�)

)
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Load cases along with environmental conditions
In this study, the winds and waves statistics were built using hindcast data that was obtained from the North 
Sea between years 2001 and 2010. The long-term combined wind and wave distribution was made up of the 1-h 
mean wind speed, which was located 10 m above sea level (U10), the wave spectral peak period (Tp) along with 
the significant wave height (Hs)41. The long-term joint wind-wave PDF was

where the marginal distribution of U10 may be described by fU10(u), fHs |U10 (h|u ) and fTp|U10,Hs
(t|u, h ) , the 

conditional PDF of Hs for a given U10 and conditional distribution of Tp for a given U10 and Hs.
For the purpose of simulating the FWT typical operating in-situ conditions, 3 representative load cases have 

been selected, see Table 3. Using in-situ the joint PDF, wave heights and spectra peak periods for each wind 
speed have been calculated following Eq. (13). The wind speed profile was modelled using conventional wind 
power-law formulation

with Uw(z) being mean wind speed, measured at elevation z above the still water level, uhub being mean wind speed 
w.r.t hub elevation, zhub being hub elevation w.r.t the still water level (119 m for selected 10-MW FWT). α (power-
law exponent) being equal to 0.14, according to recommendations IEC 61,400–3-242. The 3-D wind turbulent 
fields were generated using TurbSim, being derived from Kaimal’s turbulence model43. The JONSWAP (Joint 
North Sea Wave Project) spectrum allowed proper modelling of time-varying irregular waves, having specific Hs 
and Tp values. 4000 s have been spent on each simulation; the first 400 s of these simulations were disregarded 
in order to account for the transient impact that is commonly present during a turbine’s beginning. To assess 
the extreme value, only remaining 3600 s (1 h) were used. Therefore, each environmental factor contained 20 
random wave and wind condition samples in addition to the various sea conditions.

S–N curve
According to DNV GL class recommendations, the fatigue design S–N curves from the fatigue testing reported 
in this section were selected44–47. The mean-minus-two-standard-deviation curves serve as the foundation for 
the S–N curves employed in this design, which have a 97.6% survival probability44–48

with t = 75 mm, tref = 25 mm, k = 0.2 and S–N curve parameters given in Table 4.
The hot spot D curve has been used in combination with the stress measurements, to model welded details. 

An additional stress concentration and thickness effects may be relevant, to more accurately represent realistic 
butt welds, and deck outfitting details.

Figure 6 presents a straight line spectrum, with yielding fatigue damage of 1.0, based on S–N curve D/FAT 90 
on the left; damage PDF for a linear line spectrum was based on S–N curve D/FAT 90 on Fig. 6 right46,47. When 
the power parameter m in Eq. (15) being large, fatigue contribution will come from a PDF tail at exceedance 
probability levels, below 10−2, meaning that accurate PDF tail extrapolation being essential for accurate fatigue 
assessment49–59.

Fatigue damage distribution tail importance
According to the Palmgren–Miner’s rule, the S–N fatigue approach was used to calculate the fatigue damage 
brought on by changing loads under the premise of linear cumulative damage46. The total fatigue damage, experi-
enced by FWT structure has been modeled as the accumulation of each load cycle’s damage at various VM stress 

(13)fU10,Hs,Tp(u, h, t) = fU10(u) · fHs |U10 (h|u ) · fTp|U10,Hs
(t|u, h )

(14)Uw(z) = Uhub

(

Z

Zhub

)α

(15)logN = loga−m · log
(

�σ

(

t

tref

)k
)

Table 3.   Numerical MC simulation load cases.

Load cases Uw (m/s) TI Hs (m) Tp (s) MC samples MC sample simulation length (hours)

LC1 8 0.1740 1.9 9.7 20 1

LC2 12 0.1460 2.5 10.1 20 1

LC3 16 0.1320 3.2 10.7 20 1

Table 4.   D (FAT 90) material S–N parameters.

S–N curve Material N ≤ 107 N ≥ 107

loga m loga m

D (FAT 90) Welded joint 12.164 3.0 15.606 5.0
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levels, regardless of the sequence in which the VM stress cycles occur. When a VM stress histogram comprised 
of many useful blocks of constant amplitude is used to illustrate the long-term VM stress range distribution, �σi 
each with VM stress consequent repetitions ni

with D accumulated fatigue damage, a,m S–N fatigue parameters, k number of VM stress blocks, ni number of 
VM stress cycles within block/bin i , Ni number of cycles to failure given constant VM stress range �σi.

F(σ ) ≡ 1− F(σ ) complemantary rainflow VM stress range cumulative density function (CDF). See Section 
"Method" for details regarding the integrand F(σ ) in Eq. (3), f (σ ) = F ′(σ ) . In Eq. (16) linear fatigue accumu-
lation assumption was used, and that on itself being a simplification. Note that in this study the underlying 
response distribution F  was the major focus, rather than fatigue accumulation method itself. To assess how the 
PDF tail impacts the overall fatigue damage60–72, one can assess separately fatigue damage tail damage part Dtail

based on the assumption that only ranges of cyclic VM stresses need to be taken into account44–47. In this section, 
fatigue damage for VM stress range distribution was estimated by the rainflow counting. In order to estimate 
the relevance of the distribution tail for measuring fatigue damage, one has to at least approximately define the 
distribution tail region, specifically the tail cut-on VM stress value, σ0 and cut-off value σ1 . To evaluate how 
significant the PDF tail is, for assessing fatigue damage, one may:

A.	 approximately identify probability distribution tail region, i.e., tail cut-on stress value σ0;
B.	 observe fatigue damage variation with reduction of the distribution tail, i.e., introducing tail cut-off value σ1;
C.	 validate method by using reduced data record (for example by taking only 100th data point) with a shorter 

distribution tail that can be confidently cut off at the response threshold σ1 , with subsequent use of tail 
extrapolation and fatigue damage correction

with PDF (or complementary CDF = F  ) functional tail cut-on, and cut-off stress values σ0 and σ1 being 
dependent on a particular underlying dataset. An equidistant selection from the whole dataset was utilized to 
produce the smaller dataset with the same statistics. Remember that the total simulated time T Both full dataset 
and the reduced dataset (obtained from the full dataset by taking only each 100th data point), resulting in a 60-h 
numerical simulation, accounting for in-situ wind speeds scatter diagram. Hence, advocated method has been 
validated, by using complete and reduced datasets, and then comparing corresponding full and extrapolated 
fatigue damage.

Figure 7 presents raw MC simulated data for stress ranges σ , obtained by rainflow counting.
Figure 8 presents decimal logarithmic tail of the rainflow VM stress range exceedance F = 1-CDF for FWT 

tower-base VM stress. VM stress range values σ0 and σ1 may be interpreted as PDF/CDF tail markers. After 
assessing.

A.	 full damage D per simulation, according to Eq. (10)
B.	 reduced damage Dreduced based on same distribution F(σ ) as the total damage D , but with a cut tail, i.e., 

F(σ ) = 0, σ > σ1.

(16)D =
k

∑

i=1

ni

Ni
= 1

a

k
∑

i=1

ni(�σi)
m ∝ −

+∞
∫
0

σmdF(σ ) = m
+∞
∫
σ0

σm−1F(σ )dσ =
+∞
∫
0

σmf (σ )dσ

(17)Dtail = m
+∞
∫
σ0

σm−1F(σ )dσ

Figure 6.   Left: Straight line marks spectrum yields damage of 1.0 was based on S–N curve D (FAT 90). Right: 
Damage distribution from straight line spectrum was based on S–N curve D (FAT 90)47.
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the resulting conclusion is Dreduced > 5D . Hence, while projecting cumulative fatigue damage, it is necessary 
to properly estimate the tail of the distribution. In other words, reduced underlying dataset substantially over-
estimated fatigue damage, suggesting that proper tail extrapolation is essential for reliable fatigue estimations.

Fatigue damage assessment using exceedance probability tail extrapolation
This section calibrates the recommended extrapolation method using partially observed data. Predictions are 
then made using the calibrated extrapolation model. The remaining observable data are then used to assess 
how well the forecasts performed. As was mentioned before Section "Method", PDF tail may include significant 
fatigue damage weight Dtail/D from Eqs. (16), (17). Thus, accurate PDF tail extrapolation according to Eq. (10), 
enabling accurate estimation of both fatigue damage, as well as FWT fatigue life.

Figure 9 presents decimal logarithmic VM stress range PDF tail: namely ( · ) full dataset; (*) reduced data-
set; (–) F ≡ 1-CDF tail extrapolated according to Eq. (10), optimized as in Eq. (11), and described in Section 
"Method". Longitudinal VM stress range being plotted in MPa on the horizontal axis, PDF decimal logarithm 
values being presented on the vertical axis. Figure 9, compared to Fig. 6 shows that the set VM stress range 
level at 10−3 according to comparison of the whole dataset and the reduced extrapolated one, the exceedance 
probability level is correctly assessed. The latter indicates that fatigue damage, which was first overestimated by 
reduced dataset analysis, has been "restored" by proper extrapolation approach. Dtail/D , from Eqs. (16), (17), see 
Section "Method" has been reduced from 5 down to 1.4, showing that advocated methodology is effective. The 
latter aspect being crucial for engineering structural design, seen from practical standpoint.

Figure 7.   Stress ranges, obtained by rainflow counting.

Figure 8.   Decimal logarithmic CDF tail of the rainflow VM stress range’s complementary CDF: full dataset (–); 
reduced dataset (*). Arrows indicate cut-on, cut-off tail stress markers σ0 , σ1(about 1, and 4 MPa respectively). 
Star marks VM stress range full dataset at 10−3 exceedance probability level.
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Rainflow counting was done on VM stresses (positive), hence differences in tensile and compressive stress 
cycles, as well as mean stress correction have been ignored. Note, however, that this study was focused on intro-
ducing fatigue distribution extrapolation technique, and not on the fatigue rainflow counting model itself, since 
any preferred fatigue rainflow counting model can be coupled to the advocated fatigue distribution extrapolation 
method. This study presented generic fatigue damage/life assessment method, hence both rainflow counting 
model and fatigue spot location were chosen purely exemplary, to provide advocated method illustration.

Conclusions
Due to the importance of FWTs in modern renewable energy industry, safety and reliability are concerns that are 
regularly faced in practice and need for accurate and reliable design and monitoring procedures. In this study, the 
methodology for estimating the fatigue damage to the 10 MW DTU WT-OO-Star under real operating conditions 
is described. The approach described here may be used to generate FWT settings that would minimize potential 
fatigue damages during the primary FWT design phase. If the latter metrics are available, it is imperative to 
compare analytical and numerical engineering techniques to observable data.

The FWT tower base VM stress being the underlying dataset, employed in this study to assess accuracy of 
advocated fatigue damage calculation method. Apart from stress range distribution inaccuracy itself, fatigue 
estimations’ uncertainty has other important uncertainties, for example using specific fatigue accumulation 
damage method bears its own simplifications. Typically, stress range distribution tail plays secondary role. This 
study shows, however, that the stress range distribution tail may have significant influence on the overall fatigue 
damage. Therefore, in FWT reliability analysis, lowering the uncertainty, linked to the extreme tail of the fatigue 
estimate is of practical importance. In other words, having underlying dataset, being too short, may result in 
non-conservative estimates of fatigue life and underestimating of fatigue damage.

This study has shown that probability distribution functional tail may still contain considerable fatigue 
damage, which might contribute for more than half of the total fatigue damage. The latter is obviously important 
for engineering since it can prevent a significant underestimation of fatigue damage by addressing a data 
scarcity with relation to fatigue evaluation. Engineers must carefully consider these aspects since it is manifestly 
unconservative to underestimate fatigue damage or overestimate fatigue life.

The recommended extrapolation technique correctly recovered fatigue damage from data that was 500-times 
shorter than the total dataset. The latter emphasizes the precision and applicability of the offered method. It 
should be highlighted that because some crucial factors have been ignored, the linear accumulation assumption 
alone is a highly illogical approach to estimate fatigue damage. It is crucial to remember that, despite the linear 
accumulation assumption being the basis for the recommended fatigue calculation results, the study’s main 
focus has been on the underlying response/load distribution rather than how to measure the subsequent 
fatigue damage. In other words, the more accurate underlying response/load probability distributions, such the 
rainflow VM stress range probability distribution in the analyzed case, would nevertheless be beneficial, given 
any alternative, more precise non-linear fatigue accumulation assumption.

Finally, it is important to mention that generic fatigue assessment method, presented here, by no means 
limited to a particular offshore wind turbine structure, studied here.

Data availability
The raw/analyzed data from this study is available on request from Dr. Oleg Gaidai, o_gaidai@just.edu.cn.

Figure 9.   Decimal logarithmic tail of rainflow VM stress range 1-CDF reduced dataset (*); extrapolated 1-CDF 
tail (–). Star marks predicted value.
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