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It’s easy to think of ourselves as separated from everything, but this
is not true. We are as much the Universe as a neutron star or a
black hole or a nebula. Even better, actually, we are its thinking
and feeling part: the central organs of the universe.
We are truly free in a universe-sized playground, so we might as
well aim to be happy and to build some kind of utopia in the
stars.

Kurzgesagt, Optimistic Nihilism
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PREFACE

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (Ph.D.) at the University of Stavanger, Faculty of Science and
Technology, Norway. The presented research has been carried out at the University of
Stavanger from May 2019 to May 2023. In this document, we are going to investigate
the effects of gravitational wave signals from compact objects on present-stage and fu-
ture detectors. We are going to consider both the case of single resolvable sources and
the stochastic background noise coming from the superposition of all the unresolvable
sources. The thesis is based on 3 papers, of which 2 are published and 1 will appear
in the coming weeks. Further articles, such as [1] and [2], have been published during
my research period. These articles are however omitted from this document as, either
my contribution was minimal, or the topic was not closely related to the main theme
presented in this thesis. The original work carried out in the papers will be presented
in Chapter {3} to Chapter {5}.

We will start the document with some brief introductory chapters, to guide the
reader through some of the main concepts and tools required in the analysis of the
presented papers. In detail, this thesis will be structured as follows:

• In Chapter {1} we are going to introduce some elementary tools coming from
General Relativity, that lead to the definitions of gravitational waves and black
holes. In particular, we will define the Einstein equations and their components
in order to introduce the Schwarzschild and Kerr solutions. The Schwarzschild
solution naturally leads to the concept of Black Hole, while the Kerr metric is, to
date, the best description for the black holes in our Universe. We will also present
the geodesic equation and deviation, to understand the motion of particles in the
General Relativity framework. The aforementioned, in particular, will be needed
to define the gravitational wave’s polarization states and, in general, how the
signal coming from an inspiralling event in our Universe will appear in a physical
detector. To conclude, in the last part of this section, we are going to discuss
two of the main black hole formation channels, i.e. Stellar Origin Binary Black
Holes, which are the main component for black holes of astrophysical origin, and
Primordial Black Holes. The differences between the expected behavior, as a
function of redshift, of these two considered populations is the main reason that
led to the study performed in our third paper.

• In Chapter {2} we introduce the concept of Gravitational Wave, and to this
extent, we define them by perturbing the Einstein equations. Through this pro-
cess, we are going to both present the equations that need to be integrated to
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obtain the numerical waveforms used in the presented papers, as well as intro-
duce some of the key features and assumptions in gravitational wave theory,
such as polarization states, the TT-gauge and the Quadrupole Moment Tensor.
Starting from these general results, we then consider the Newtonian circular-
orbit approximation in order to obtain an analytical solution to the waveform
coming from an inspiralling binary system. This result, although coming from a
rough approximation, has a two-fold relevance for this document: on one hand,
this approximation will always be valid for stellar-mass black holes in the LISA
frequency range, on the other, it is the starting point for all the phenomenolog-
ical waveforms that will be adopted in the presented articles, which generally
only differ from this results for some Post-Newtonian corrections. We conclude
this section by considering the evolution of a binary inspiralling system due to
gravitational wave emission from an energy point of view. This result, in particu-
lar, will become useful when discussing the LISA Stochastic Gravitational Wave
Background in the second and third papers of this thesis.

• In Chapter {3} we present an article published in JCAP 11 (2020) 043, where we
analyze the first four LIGO gravitational wave detections using a Pearson Cross-
Correlation analysis. This work was motivated as a follow-up to some studies
carried out by a group at the Niels-Bohr Institute. In their works, they tried
to reproduce the detections claimed by the LIGO collaboration using matched
filtering, through the use of a more agnostic method such as the Pearson cross-
correlation. This led them to discover that the waveforms used by the LIGO
collaboration in their subtractions were not optimal, as some of the signal re-
mained buried in the detector noise after the subtraction, and led them to raise
some doubts about the LIGO claims. In the paper that we present in this chap-
ter, we used different waveforms obtained through maximum-likelihood, and we
demonstrate that the residual signal found in the noise was just a consequence of
the choice of waveforms. Such signal, buried in the residual detector noise, can
hence be removed by using a more accurate waveform description. Furthermore,
we show that the LIGO results can be reproduced with statistical significance
even by using the Pearson cross-correlation method, even though with this ap-
proach the statistical significance will be slightly lower compared to the results
obtained using matched filtering.

• In Chapter {4} we present an article published in JCAP 08 (2023) 034, where
we analyze the Stochastic Gravitational Wave Background predicted on the LISA
detector. To this extent, we use the results coming from the latest LVK popula-
tion inference paper to produce catalogs representing a Stellar-Origin Black Hole
population in our Universe. The Stochastic Gravitational Wave Background is
then computed by adopting four different methods, that in order of complexity,
range from a simple analytical evaluation to estimating the real detector strain
after synthesizing a black hole population and iteratively subtracting all the re-
solvable sources. We find that, when the assumed SNR threshold is high enough
to keep the number of resolvable sources small (∼ 10 over 4 years of observation),
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all the methods give results well in agreement with each other. This implies that,
when working with LISA data, it is possible to use the fast analytical estimation
for the stochastic noise component with a small loss of precision. On the other
hand, the use of more complex methods like the iterative subtraction of a syn-
thesized population, despite naturally requiring numerical cuts in the population
generation phase due to its computational cost, can present both the value of the
Stochastic Gravitational Wave Background amplitude as well as the resolvable
sources predicted on the LISA strain at the same time. It can hence be useful
when both these quantities need to be taken into account in a particular study.

• In Chapter {5} we present an article where we investigate the prospects of identi-
fying potential Primordial Black Hole Binary populations over the astrophysical
Stellar-Origin Black Hole Binary population of our Universe. To this extent, once
again we assume that our fiducial population follows the latest LVK GWTC-3
inference paper results, and we forecast our analysis on the next generation of
gravitational wave detectors. We consider different possibilities both for the
merger rate and mass function of the studied Primordial Black Hole subpop-
ulations, and we perform our analysis by focusing on the signatures at higher
redshifts than the current LVK detection horizon. We exploit the fact that the
astrophysical black holes of our universe are supposed to follow a distribution as a
function of redshift closely related to the Star Formation Rate, which is supposed
to peak and then slowly die off. At distances beyond the peak of the stellar for-
mation rate, the Stellar-Origin Binary Black Hole contribution will hence become
negligible, whereas Primordial Black Hole models predict many sources and will
dominate. We generally find that Earth-based and space-based detectors work
synergistically, and the value of the Stochastic Gravitational Wave Background
measured by LISA will generally be able to improve constraining the presence of
additional sub-populations compared to the case when only Earth-based detector
observations are considered.

• We summarize the results obtained through the articles, and conclude the docu-
ment in Chapter {6}.
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Chapter 1

Basics of General Relativity and
Black Holes populations

Gravitational Waves (GWs) were first discovered theoretically by perturbing the met-
ric in the Einstein equations of General Relativity [3–6]. It hence makes sense to begin
this document by briefly introducing them and the components that are involved, i.e.
the Ricci tensor and the stress-energy tensor [7, 8]. While discussing these basic quan-
tities of General Relativity (GR), we will naturally incur into the concepts of metrics,
geodesic equations, and geodesic deviation, which are to date still very relevant in
gravitational waves astronomy. The geodesic equation, for example, describes the mo-
tion of a gravitational wave (or any generic particle) from its source to the observer
in an assumed universe, while the geodesic deviation will be used in sec. {2.1.3} to
describe the polarization states of gravitational waves, and is the quantity that is mea-
sured in all interferometer detectors in order to claim a gravitational wave detection
[9–12]. By imposing spherical symmetry on our metric, it is instead possible to obtain
the Schwarzschild solution of the Einstein equations [13, 14], which led through the
properties of its singularities to the concepts of event horizons and Black Holes (BHs).
The derivation of the results will follow the approach presented in [8, 15, 16].

In this text, we are going to use metric signature (−,+,+,+), and we will use
Greek indices for the space-time coordinates (i.e. µ, ν = 0, 1, 2, 3) where 0 represents
the time component, while we will use Latin indices for the purely spatial 3-metric
(i, j = 1, 2, 3). The chapter is organized as follows: In sec. {1.1} we describe the
Einstein equations and its components, this is the starting point to discuss all the
other tools that we will need in order to present the work of our articles. In sec. {1.2}
we discuss the motion of particles in the GR framework by introducing the geodesic
equation and deviation. Even though some alternatives were proposed to the Einstein
standard framework (see e.g. refs. [17–19]) there is still no evidence to prefer a particular
modified theory over the base GR [20–22]. Standard GR is hence to date the main
framework in gravitational wave astronomy, due to its simplicity with respect to the one
derivated from more complicated theories. In sec. {1.3} we introduce the Schwarzschild
and Kerr solutions to the Einstein equations. In particular, we use the Schwarzschild
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solution to analyze the surface properties of its singularities and introduce the concepts
of event horizon and black holes in correspondence of the Schwarzschild radius. This
will be the starting point to discuss black hole populations later on in this chapter, as
well as to introduce the Kerr solution for rotating compact objects, that is to date the
best description for the black holes that we observed in our Universe (see e.g. ref. [23])
and is the model that we assumed in all the papers presented in this document. We
conclude in sec. {1.4} by briefly discussing black hole populations. However, we limit
our discussion to the case of stellar-origin and Primordial Black Holes (PBHs). The
first of the two considered populations is considered to be the main formation channel
for all the black holes observed by the LVK collaboration to date [24, 25], and is the
main target of the study that we performed in the article in sec. {4}. Primordial
black holes are instead interesting since events involving these objects are supposed
to be observed more densely at higher values of redshift, while we know that black
holes coming from stellar origin are supposed to disappear after the peak of the star
formation rate. Possible models describing PBHs are hence the main targets of the
analysis presented in Chapter {5}.

1.1 The Einstein’s equations of gravitation

One of the greatest contributions that A. Einstein gave to the world of physics, is
the modern description of gravitational phenomena through the Theory of General
Relativity [3, 6]. In this framework, gravity can be described in terms of curved space-
times [26], where the amount of curvature is directly proportional to the amount of
mass and energy in the considered space. This relation is described by the Einstein
equations, which read as

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.1.1)

where Gµν is the Einstein tensor, Rµν and R are respectively the Ricci tensor and the
Ricci scalar, and Tµν is the stress-energy tensor. In the next subsections, we are going
to briefly define all the quantities that are involved in (1.1.1).

1.1.1 The metric and Ricci curvature tensor on a space-time

To measure distances in a curved space we need to introduce the metric tensor gµν ,
which given a differential line element ds, is defined such as the relation

ds2 = gµνdx
µdxν : gµν = gνµ, (1.1.2)

holds. The easiest example of a Lorentzian metric tensor [27, 28] is the Minkowski
space-time, which can be considered as a 4d generalization of the Euclidian space. It
reads as

ds2 = −c2dt2 + dx2 + dy2 + dz2, (1.1.3)
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where the first coordinate is a temporal coordinate and the other coordinates are the
standard 3d Euclidean space coordinates. We can write the metric tensor components
in matrix form as

gµν = ηµν =




−c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (1.1.4)

If instead we consider a more complex case, for example, a 4d expanding homogeneous
and isotropic space such as the case of the FLRW cosmology [29], the differential line
element in spherical coordinates is given by

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
, (1.1.5)

with k a constant that describes the curvature of the space manifold. The metric tensor
components for the FLRW cosmology, defined in eq. (1.1.5), may hence be represented
in matrix form as follows:

gµν =




−c2 0 0 0
0 a2(t)/(1− kr2) 0 0
0 0 r2a2(t) 0
0 0 0 r2a2(t) sin2 θ


 . (1.1.6)

Once a metric is defined on our manifold, we can start to introduce metric connec-
tions [27] to compute derivatives and parallel transports in our space. If we introduce
the notation gαβ,ν = dgαβ/dx

ν , we can write the Christoffel symbols [30] as

Γµ
αβ =

gµν

2
(gαν,β + gβν,α − gαβ,ν) . (1.1.7)

These terms will describe how the basis vector α of our space evolves when moved along
the β direction. Using the Christoffel symbols we can define a quantity that measures
the degree to which the geometry of a given metric tensor, differs locally from that of
ordinary Euclidean space. This quantity is called the Ricci curvature tensor [30], and
is the one that builds the left-hand side of the previously defined Einsteins’s equations
(1.1.1). The latter can be expressed in terms of the Christoffel symbols (1.1.7) as
follows:

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

β
µν − Γα

βνΓ
β
µα. (1.1.8)

We can easily demonstrate that this tensor is symmetric, and hence satisfy the
relation Rµν = Rνµ. Analogously, the Ricci curvature scalar can be easily obtained as
the trace of the tensor, i.e

R = gµνRµν = Rµ
µ, (1.1.9)
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with
gµν : gµνgνγ = δµγ . (1.1.10)

We finally have all the terms composing the Einstein tensor Gµν . This term will ac-
count for how the space-time geometry will be curved and shaped by the term in the
right-hand side of the Einsteins’s equations (1.1.1).

1.1.2 The stress-energy tensor

What is missing now is defining the stress-energy tensor. This term will account for
the mass/energy content that is present in our space-time. To give a first general form
for this quantity, let us start by considering a system of n relativistic non-interacting
particles located at ξn(t) and having relativistic momenta given by

pµ = m(cγ, γv⃗) : γ =
dξ0
dτ

=
dct

dτ
, (1.1.11)

where τ is the proper time in the particle reference system [7, 28]. In this situation,
following [8], we can express the Stress-Energy tensor as

gαµgνβTαβ = T µν = c
∑

n

∫
pµn

dξνn
dτn

δ4(ξ⃗ − ξ⃗n(τn))dτn, (1.1.12)

where we can divide its components such as

• the T 00 component describes the energy density in the volume;

• 1
c
T 0i is the density of momentum;

• T ij represent the current of momentum.

Even this tensor, like the Einstein tensor, is symmetric. We can hence write the
condition T µν = T νµ. Furthermore, it can be demonstrated (see refs. [8, 31]) that it
verifies the divergenceless equation

T µν
,ν = 0. (1.1.13)

In practice, depending on the context, there are some well-known models for the Stress-
Energy tensor. For example, in the cosmological case, we can use the approximation
of perfect fluid [32, 33] to write

Tµν = (ρ+
p

c2
)uµuν − pgµν , (1.1.14)

where ρ is the density of the fluid, p is its pressure and uµ, uν is the 4-velocity [8, 28, 33]
of the fluid.
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1.2 Motion of particles and geodesic deviation

We now have to understand how to write the equation of motions for a body in a
gravitational field in GR, to this extent, we can use the principle of general covariance
[3, 8], which states that the form of physical laws is the same as seen by different
observers. This implies that our problem of describing the motion of a particle in a
curved space can be reduced to write the equation of motion in a Locally Inertial Frame
(LIF), which is a spacetime that locally behaves like a flat Minkowski (1.1.4), and then
simply change the equations by doing a coordinate transformation.

If the particle has coordinates ξµ in the locally inertial frame, the inertial condition
can be expressed as

d2ξµ

dτ 2
= 0. (1.2.1)

We can now move into a new coordinate system, where the new coordinates are related
to the old ones as xµ = xµ(ξµ). By defining Λµ

α = dξµ/dxα, we can express distances
in the new reference frame as

ds2 = ηµνΛ
µ
αΛ

ν
βdx

αdxβ = gαβdx
αdxβ, (1.2.2)

where the coordinate system is chosen in such a way that η is given by eq. (1.1.4). It is
clear from eq. (1.2.2) that the new metric tensor is related to the old one through the
transformation law gαβ = ηµνΛ

µ
αΛ

ν
β. In the same way, by replacing the new coordinates

in eq. (1.2.1), we find that the equation on motion in the new frame is given by

d2xα

dτ 2
+

[
∂xα

∂ξλ
∂2ξλ

∂xµ∂xν

] [
dxµ

dτ

dxµ

dτ

]
=

d2xα

dτ 2
+ Γα

µν

[
dxµ

dτ

dxµ

dτ

]
= 0, (1.2.3)

where we introduced again the Christoffel’s symbols in order to simplify the equation.
It can be proved that the Γα

µν defined in (1.2.3) and in (1.1.7) are equivalent. Equation
(1.2.3) is called the geodesic equation, and it describes a freely falling particle in an
arbitrary coordinate frame. We can further observe that the geodesic equation, to-
gether with the gravitational force naturally contains all the apparent forces [34], like
centrifugal, Coriolis, etc. By making an analogy with the Newtonian law of gravitation
[35] we can observe that for a cartesian coordinate system, in the geodesic equation
(1.2.3) the affine connections Γα

µν are the generalization of the Newtonian gravitational
field, while the metric tensor gαβ is the generalization of the Newtonian gravitational
potential.

1.2.1 The covariant derivative of vectors

In order to properly establish the nature of a force, we need to study the relative ac-
celeration between two neighboring geodesics. To this extent, we need to introduce
the concept of geodesic deviation, which is generally used to check for the presence of
tidal gravitational force among geodesics at different points in space-time.
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Let us start by defining with xµ(τ) and xµ(τ)+ δxµ(τ) two neighboring geodesics,
where we introduced δxµ as the coordinate separation among the two close geodesics,
and τ is a generical affine parameter. The tangent vector to the geodesic, in this
situation, is simply given by tµ = dxµ/dτ . We can parameterize this problem as a
2-parameter family of geodesic given by

xµ(τ, p) :

{
δxµ = ∂xµ

∂p
∂tµ

∂p
= ∂δxµ

∂τ

. (1.2.4)

As we are considering different vectors in different points of the manifold, we need
to introduce a derivative that is independent of the coordinate system and is hence
valid for each vector basis. Once we choose a reference system, having basis vectors
e⃗(µ), we can express a vector V⃗ in a coordinate-independent form as

V⃗ = V µe⃗(µ). (1.2.5)

This implies that the coordinate-independent derivative can be found by derivating
eq. (1.2.5):

∂V⃗

∂xν
=
∂V µ

∂xν
e⃗(µ) + V µ ∂e⃗µ

∂xν
. (1.2.6)

The first term on the RHS is a derivative of a vector, and hence we know how to
compute it. The second term instead requires us to subtract basis vectors applied in
different points of the manifold, which is not obvious for curved geometries. In the
case of the Minkowski space-time, we know that e⃗µ(p) = e⃗µ(q) for each point p,q
in the manifold. The condition implies that the derivative of the basis vectors will
be 0 everywhere on the manifold. This is a good starting point, yet we still need to
find the transformation rule for the basis vector under a coordinate change in order to
use it in our favor. To this extent, we can use the invariant condition on eq. (1.2.5)
together with the transformation rule under coordinate change for vectors introduced
in eq. (1.2.2). When moving from a coordinate system µ to a new one α, we obtain

V⃗ = V µe⃗(µ) = V αe⃗(α) = V µΛα
µΛ

µ
αe⃗(µ). (1.2.7)

We hence shown that a basis vector transforms as e⃗(α) = Λµ
αe⃗(µ). If we now use

the condition that Minkowskian basis vectors e⃗M(α) are constants, together with the
transformation rule under coordinate change for basis vector, to find the general form
for the derivative of basis vectors. We get

∂e⃗M(α)

∂xν
= 0 ⇒ ∂e⃗µ

∂xν
=

(
∂

∂xν
Λα

µ

)
e⃗M(α). (1.2.8)
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It can be demonstrated that ∂/∂xν Λα
µ is equal to the Christoffel’s symbol Γα

µν

(1.1.7) (see refs. [8, 27]). Hence by plugging eq. (1.2.8) in (1.2.6) we obtain

∂V⃗

∂xν
=
∂V µ

∂xν
e⃗(µ) + V µΓα

µν e⃗(α). (1.2.9)

Equation (1.2.9) is called covariant derivative of a vector, and describes how a vector
changes on a manifold in any chosen system of reference. In the next sections, we are
going to use the notation V µ

;ν to indicate the covariant derivative of a vector, such as
∂V⃗ /∂xν = V µ

;ν e⃗µ.

1.2.2 The geodesic deviation

The question of how the relative acceleration between two neighboring geodesics be-
haves can now be easily posed through the mean of the covariant derivative (1.2.9).
Recalling the previously introduced family of geodesics (1.2.4), one first question we
may ask ourselves is how the tangent vector to the geodesic evolves by moving along
the direction of the displacement δxµ for τ = constant. We hence have to estimate

δxαtµ;α =
∂xα

∂p

[
∂tµ

∂xα
+ Γµ

αβt
β

]
=
∂tµ

∂p
+ Γµ

αβt
βδxα. (1.2.10)

Analogously, we can be interested in how the separation vector δxµ changes along the
curve with p = const. This is equivalent to say

tαδxµ;α =
∂δxµ

∂τ
+ Γµ

αβδx
βtα. (1.2.11)

By looking at eq. (1.2.4), and recalling the symmetry in the lower indices of Γµ
αβ, it is

easy to demonstrate that
δxαtµ;α = tαδxµ;α. (1.2.12)

These quantities, however, only involve the affine connections Γµ
αβ, and do not

hold consequently any information regarding the gravitational field. We hence have
to compute the second covariant derivative of δxµ along the curve with p = const in
order to study the effects of the latter. By introducing the new notation

Dδxµ

dτ
= tαδxµ;α, (1.2.13)

we can express the second covariant derivative as

D2δxµ

dτ 2
= tβ(tαδxµ;α);β. (1.2.14)

It can be proved (see ref. [8]) that the RHS of eq. (1.2.14) can be rewritten as

D2δxµ

dτ 2
= Rµ

αβγt
αtβδxγ, (1.2.15)
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where Rµ
αβγ is the Riemann curvature tensor [27] and read as

Rµ
αβγ = −

[
Γµ
αβ,γ − Γµ

αγ,β + Γµ
γηΓ

η
αβ − Γµ

βηΓ
η
αγ

]
. (1.2.16)

We can further demonstrate that the Riemann tensor (1.2.16) is closely related
to the Ricci Curvature Tensor (1.1.8), and we can obtain the second from the first by
simply contracting over the indices Rα

µαν = Rµν . Equation (1.2.15) is the equation of
geodesic deviation, that describes the relative acceleration of nearby particles moving
along neighboring geodesics. Since the Riemann tensor is zero if and only if the
gravitational field is either zero or constant and uniform, the equation of the geodesic
deviation can be used to test if any gravitational field is present in our space-time, as
we will see later on in the context of gravitational waves (see sec. {2.1.3}).

1.3 The Schwarzschild and Kerr solutions

We are now going to derive a solution for the Einstein equations (1.1.1) that is spheri-
cally symmetric and static. This type of solution is the generalization of the Newtonian
potential V = −GM/r and can be used to describe the gravitational field exterior to
a non-rotating compact body.

The assumption that this solution will be static implies that the metric will be
independent on time and invariant under time reversal t→ −t (see refs. [7, 8]). Under
this assumption, we can choose the coordinates in such a way that ξ⃗ → (1, 0, 0, 0) and
the line element assumes the simplified form:

ds2 = g00(x
i)(dx0)2 + gkn(x

i)dxkdxn : i, k, n ∈ [1, 3] , g00 = g(ξ⃗, ξ⃗) = ξ⃗ · ξ⃗. (1.3.1)

The spherical symmetry can instead be imposed on the metric by "filling" the
space with concentric spherical surfaces. For example, if we consider the 2−sphere of
radius a in flat space we can write

ds2(2) = g22(dx
2)2 + g33(dx

3)2 = a2
(
dθ2 + sin2 θdϕ2

)
. (1.3.2)

It can be shown that these results will continue to hold even if a = a(x0, x1). In our
case, however, we already know that due to our static assumption, our metric will not
depend on time. We can hence define r = a(x1) and rewrite eq. (1.3.2) as

ds2(2) = r2
(
dθ2 + sin2 θdϕ2

)
. (1.3.3)
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Figure 1.1. A set of concentric spheres with aligned poles. For these objects, it is possible
to represent a point on the surface of each sphere at radius r using the same reference frame.

We have to emphasize that the radial coordinate r introduced in eq. (1.3.3) has
nothing to do with the distance between the center of the sphere and the surface. By
moving in our space to the next sphere at radius r+ dr, we have in principle to define
a new coordinate system for the angular coordinates on the second sphere given by
(θ′, ϕ′). Since we want angular coordinates (θ, ϕ) defined in a unique way on the whole
set of spheres filling the space, we have to assume that the poles of the spheres are
aligned, hence for all the spheres we have





∂⃗
∂r

= e⃗(r)
∂⃗
∂θ

= e⃗(θ)
∂⃗
∂ϕ

= e⃗(ϕ)

orthogonality
========⇒

{
e⃗(r) · e⃗(θ) = grθ = 0

e⃗(r) · e⃗(ϕ) = grϕ = 0
. (1.3.4)

The situation is represented in fig. 1.1. Under these assumptions, we can rewrite the
metric for the 3−space as

ds2(3) = grrdr
2 + r2

(
dθ2 + sin2 θdϕ2

)
, (1.3.5)

while the one for the 4−dimensional space-time becomes:

ds2 = g00(dx
0)2 + grrdr

2 + r2
(
dθ2 + sin2 θdϕ2

)
, (1.3.6)

where we recall that, as by changing to a different angular coordinate system the two
quantities g00 and grr should remain invariant and are not dependant on time, we can
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only have g00 = g00(r) and grr = grr(r). It is convenient to redefine
{
g00(r) = −e2ν(r)
grr(r) = e2λ(r)

. (1.3.7)

We can now express the components of the Einstein tensor defined in (1.1.1), for
the metric defined in (1.3.6),(1.3.7), we obtain the following non-zero components:

G00 =
1

r2
e2ν(r)

d

dr

[
r
(
1− e−2λ(r)

)]
, (1.3.8a)

Grr =− 1

r2
e2λ(r)

[(
1− e−2λ(r)

)]
+

2

r
ν,r(r), (1.3.8b)

Gθθ =r
2e−2λ(r)

[
ν,rr(r) + ν2,r(r) +

ν,r(r)

r
− ν,r(r)λ,r(r)−

λ,r(r)

r

]
, (1.3.8c)

Gϕϕ =sin2 θ Gθθ. (1.3.8d)

When looking for a solution in a vacuum, the Einstein equations becomes

Gµν = 0. (1.3.9)

Equation (1.3.8a) implies

r
(
1− e−2λ

)
= rs ⇒ e2λ =

1

1− rs
r

, (1.3.10)

where rs, for now, is just an integration constant. The second equation (1.3.8b) will
instead reduce to

ν,r(r) =
1

2

rs
r(r − rs)

⇒ ν =
1

2
log
(
1− rs

r

)
+ ν0, (1.3.11)

which implies that
e2ν(r) =

(
1− rs

r

)
e2ν0 . (1.3.12)

The constant ν0 introduced in eq. (1.3.12) can be removed by rescaling the time coor-
dinate to t→ eν0t. We can hence rewrite it as

e2ν(r) =
(
1− rs

r

)
. (1.3.13)

By substituting the terms of eqs. (1.3.13) and (1.3.10) into the metric (1.3.6) we obtain

ds2 = −
(
1− rs

r

)
c2dt2 +

1

1− rs
r

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (1.3.14)
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The last thing that is missing is understanding what the integration constant rs
that we introduced in eq. (1.3.10) is. To this extent, we can use the weak field limit
(see refs. [7, 8]) to impose that the geodesic equations of motion (1.2.3) reduce to the
Newtonian equation of motions as

g00 ≈ −
(
1 +

2Φ

c2

)
= −

(
1− 2GM

c2r

)
, (1.3.15)

where we defined with Φ = −GM/r the Newtonian gravitational potential. By com-
paring with the g00 component defined in the Schwarzschild metric it is easy to demon-
strate that

rs =
2GM

c2
. (1.3.16)

Hence the quantity that we defined with rs is simply the Schwarzschild radius [36],
which as we are going to show in the next subsection, for a Schwarzschild black hole
is located in correspondence of its event horizon.

1.3.1 Singularities of the Schwarzschild solution and Black Holes

The metric defined in eq. (1.3.14) is singular when r = 0 or r = rs, while for r → ∞
the metric reduces to that of a flat spacetime (asymptotically flat). We further observe
that when r → 0 we have g00 → ∞ and grr → 0. Analogously, when r → rs = 2GM/c2

we have g00 → 0 and grr → ±∞ depending on whether r is approaching rs from left
or right respectively.

To check the nature of the previous singularities we have to compute the scalars
of the Riemann tensor (1.2.16) and check if they diverge. By renormalizing the mass
as m =MG/c2, we have

Rt
rtr =− 2

m

r3

(
1− 2m

r

)−1

, (1.3.17a)

Rt
θtθ =

1

sin2 θ
Rt

ϕtϕ =
m

r5
, (1.3.17b)

Rθ
ϕθϕ =2

m

r5
sin2 θ, (1.3.17c)

Rr
θrθ =

1

sin2 θ
Rr

ϕrϕ = −m
r5
. (1.3.17d)

The Kretschmann scalar can be obtained as

KScal = RαβγδR
αβγδ. (1.3.18)

We can demonstrate that the divergencies of this quantity will correspond to proper
curvature singularities, while the others are just singularities induced by the choice of
the coordinates (see ref. [27]). For the Schwarzschild metric we obtain

KSchw
Scal =

12r2s
r6

, (1.3.19)
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which clearly diverges only for r = 0. We can hence conclude that the singularity in
r = 0 is a true singularity for the Schwarzschild metric, in analogy with the one that
we have for the classical Newtonian potential, while the one in r = 2m is merely a
coordinate singularity.

We will now try to describe better the properties of the hypersurface that lies
in the coordinate singularity at r = 2m. Given a generic hypersurface Σ(xµ), we
can define the normal vector n⃗ : nα = Σ,α(x

µ). Analogously, the tangent vector to the
hypersurface can be defined as tα = dxα(λ)/dλ, with xα(λ) a curve on the hypersurface
Σ(xµ). Using the orthogonality of the two quantities we get

tαnα =
dxα

dλ

dΣ

dλ
=

dΣ

dλ
= 0. (1.3.20)

If we now introduce a locally inertial frame at a point in the hypersurface in such a
way that the coordinates of the normal vector n⃗ becomes nα = (n0, n1, 0, 0) : nαn

α =
(n1)2 − (n0)2, eq. (1.3.20) will become

tαnα = −n0t0 + n1t1 = 0 ⇒ t0

t1
=
n1

n0
. (1.3.21)

By looking at eq. (1.3.21), we can observe that the tangent vector t⃗ can be parametrized
as a function of the normal vector n⃗ as

tα = Λ
(
n1, n0, a, b

)
: tαt

α = Λ2
[
−nαn

α + (a2 + b2)
]
, (1.3.22)

with Λ, a, b constant and arbitrary. If we compare the disposition of the light-cones [7]
with respect to the hypersurfaces, we have three possibilities:

• nαn
α < 0 : nα is a timelike vector and the surface Σ(xµ) is spacelike ;

• nαn
α > 0 : nα is a spacelike vector and the surface Σ(xµ) is timelike ;

• nαn
α = 0 : nα is a null vector and the surface Σ(xµ) is null.

Since we know that a massive particle that starts in P has to move inside the light
cone, or on the light cone if the particle is massless, looking at the relative disposition
of the two will give us information about how the world lines will behave when crossing
the hypersurfaces. The situations can be as follows:

1) In the case where nαn
α < 0 and tαt

α > 0 the surface Σ is spacelike, the situa-
tion is shown in fig. 1.2. In this configuration, no tangent vector of Σ lies inside the
light cone generated in P. This implies that a spacelike surface can only be crossed in
one direction;

2) When nαn
α > 0, by looking at eq. (1.3.22) we observe that tαtα can be positive,
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Figure 1.2. The surface Σ is spacelike with respect to the light-cone in P, it can hence be
crossed by a world line Φ only in one direction. In the figure, we indicated with n⃗ the normal
vector to the surface and with t⃗ its tangent vector.

negative, or null depending on the value of a2 + b2. Indeed in this case we will have
tangent vectors that lies inside the light cone, and hence the surface can be crossed
inward and outward several time during the path of a world line Φ. The situation is
represented in fig. 1.3;

3) The last possibility is when nαn
α = 0, in this case tαtα ≥ 0, with tαt

α = 0 ⇐⇒
a = b = 0. In this case, only one tangent vector of Σ (and its multiples) will lie in the
light cone at P, the situation is shown in fig. 1.4. Only massless particles can have a
world line Φ parallel to the surface Σ in this configuration.

In the case of the Schwarzschild singularity at r = 2m we can consider a surface
Σ = r − cost = 0. The normal vector, by using the definition (1.3.20), will hence be
given by

nαn
α = gαβΣ,αΣ,β = grrΣ2

,r =

(
1− 2m

r

)
. (1.3.23)

We observe that for

• r > 2m → nαn
α > 0 → Σ is timelike ;

• r = 2m → nαn
α = 0 → Σ is null ;
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Figure 1.3. The surface Σ is timelike with respect to the light-cone in P, it can hence be
crossed by a world line Φ both inward and outward several time. In the figure, we indicated
with n⃗ the normal vector to the surface and with t⃗ its tangent vector.

• r < 2m → nαn
α < 0 → Σ is spacelike.

If we consider two different hypersurfaces Σint and Σext respectively inside and outside
the horizon at r = 2m, as shown in fig. 1.5. Signals starting at Σext can be sent both
toward the origin and outward, since this surface is timelike. In the case of signals
generated at Σint instead, we observe that these signals must necessarily travel inward
and be trapped in r = 0, as the surface Σint is spacelike. The horizon surface in r = 2m
instead is null, and works as a transition between the spacelike and timelike surfaces.

The Schwarzschild solution represents the gravitational field of a black hole [8, 37],
and the hypersurface at r = rs = 2GM/c2 is called the event horizon. One of the
reasons that led these objects to be called black holes is that if we estimate the escape
velocity [34] for a compact object of mass M and we impose v = c, we obtain

1

2
mc2 =

GmM

r
⇒ rs =

2GM

c2
. (1.3.24)

In correspondence of the event horizon, the escape velocity becomes equivalent to the
speed of light, and for a radius smaller than rs, not even light has enough speed to
counter the gravitational field and escape the object. This implies that no signal can
escape the volume inside an event horizon, and we have no way of knowing what
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Figure 1.4. The surface Σ is null with respect to the light-cone in P, it can hence be parallel
to a world line Φ only if the particle is massless. In the figure, we indicated with n⃗ the normal
vector to the surface and with t⃗ its tangent vector.

happens inside of that. We can hence observe that General Relativity predicts the
existence of singularities hidden behind a horizon.

1.3.2 The Kerr solution for rotating Black Holes

It is possible to find an exact solution of the Einstein equations (1.1.1) even for a spin-
ning massive object, such a solution was first presented by Roy Kerr in [38, 39]. The
Kerr metric is a solution of the Einstein equations in vacuum that describes a rotating,
stationary, axially symmetric black hole. We emphasized that it describes a black hole
because this solution describes the spacetime generated by a curvature singularity con-
cealed by a horizon, and can hence be used only to describe the outside of these objects.

We can write the Kerr metric as

ds2 = −dt2+Σ

(
dr2

∆
+ dθ2

)
+
(
r2 + a2

)
sin2 θdϕ2+

2Mr

Σ

(
a sin2 θdϕ− dt

)2
, (1.3.25)

where we introduced the quantities

∆(r) =r2 − 2Mr + a2, (1.3.26a)
Σ(r, θ) =r2 + a2 cos2 θ. (1.3.26b)
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Figure 1.5. Behaviour of particles around the Schwarzschild event horizon surface. Particles
that start at the surface Σext, or generally outside the event horizon, are allowed to move
both inward and outward. Particles starting at Σint, or inside the horizon are only allowed
to move inward.

The metric described by eq. (1.3.25) assumes this form when using the Boyer-Lindquist
coordinates [39]. The two parameters M and a on which the metric depends are respec-
tively the black hole mass and its spin. We observe that we can express the angular
momentum of the black hole simply as |J⃗ | =Ma.

By further analyzing the line element defined in eq. (1.3.25), we can observe the
following properties:

• It is not static, hence not invariant for time reversal t→ −t, it is however invaiant
if we simulataneously invert t→ −t, ϕ→ −ϕ;

• It is stationary, hence it does not depend explicitly on time;

• It is axisymmetric, as it does not depend explicitly on the coordinate ϕ;

• In the limit r → ∞, it reduces to the Minkowski’s metric (1.1.3) in polar coor-
dinates, hence the Kerr spacetime is asymptotically flat ;
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• In the limit a → 0, if the mass M ̸= 0, by looking at the two terms defined
in eqs. (1.3.26a), (1.3.26b) we can show that the Kerr metric reduces to the
Schwarzschild metric (1.3.14);

• In the limit M → 0, if the spin a ̸= 0, it reduces to

ds2 = −dt2 + r2 + a2 cos2 θ

r2 + a2
dr2 +

(
r2 + a2 cos2 θ

)
dθ2 +

(
r2 + a2

)
sin2 θdϕ2,

(1.3.27)
that is the metric of the flat spacetime in spheroidal coordinates

x =
√
r2 + a2 sin θ cosϕ

y =
√
r2 + a2 sin θ sinϕ

z =r cos θ.

(1.3.28)

For what concerns the singularities of the Kerr metric (1.3.25), we have a singu-
larity in ∆ = 0 and one in Σ = 0, if we further look at the curvature invariants (1.3.18)
we would obtain them regular on ∆ = 0 and singular in Σ = 0. We can hence say that
the singularity in ∆ = 0 is a coordinate singularity while the one in Σ = 0 is a true
singularity of the manifold. If we go to the Schwarzschild limit by imposing a→ 0, we
would see that the two singularities converge to Σ ≈ r2 = 0 and ∆ ≈ r (r − 2M) = 0.
We can hence recover the two singularities of the Schwarzschild metric and, by com-
paring, we see that we have the black hole event horizon in r = 2M . The situation is
indeed different if a ̸= 0, as imposing ∆ = 0 ⇒ r2 − 2Mr+ a2 = 0, which is a second
order equation and hence has two solutions r+, r−. For a detailed description of the
singularities of the Kerr metric, we invite the reader to see refs. [8, 39, 40].

We wish to emphasize that all astrophysical objects, to conserve angular momen-
tum, are supposed to rotate. Hence even though most of the Black Hole observed in
nature to date have a spin that is close to 0, we still expect it to be non-zero (see e.g.
[41]), hence these objects should be described by the Kerr metric. From a theoretical
point of view, we further know that when a black hole forms via gravitational collapse,
gravitational wave emission, and other dissipative processes will dampen its violent os-
cillations and leave the remnant after some time in a stationary state. We have some
remarkable theorems on stationary black holes, derived by S. Hawking, W. Israel, and
B. Carter that prove that:

• A stationary black hole is axially symmetric;

• Any stationary, axially symmetric black hole with no electric charge is described
by the Kerr solution;

• Any stationary, axially symmetric black hole with electric charge can be described
using the Kerr-Newmann solution, which is a generalization of the Kerr solution
characterized by the three parameters M,a and Q.
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From the third point we see that all the other features that a star had before collapsing
disappear once the final black hole is formed, this characteristic has been summarized
with the sentence "A Black Hole has no hair" [42, 43], and for this reason, the theorems
are defined as No-Hair theorems.

1.4 Black Holes formation channels and populations

The direct detection of gravitational waves by the LIGO-Virgo collaboration [44]
opened a new era of scientific exploration, as gravitational-wave astronomy can al-
low us to test models of black hole formation, growth, and evolution [15]. To date, we
now have officially around 90 detections [45], and this allowed us to start analyzing the
population properties of the BHs that populate our Universe [46]. Among the main
goals that we have for the next decades, we plan to understand better the formation
channels [47] that led to the BHs population that we are observing in our Universe.
Furthermore, it would be nice to understand if some of the observed ones come from
a non-astrophysical origin [15, 48], e.g. the case of PBHs [49, 50]. To this extent,
some studies were already performed with the latest LVK results [51, 52] and several
analyses are planned for the next generation of detectors (see e.g. [25, 53–55]).

In the following sections, we are going to briefly describe BHs coming from as-
trophysical origin and PBHs. Rather than discussing in detail all the evolutionary
processes involved that lead to the BHs that we can observe today, we are going to
present how these objects are formed, in order to emphasize the difference that we
expect among them. To begin, astrophysical black holes are more likely to form in
rich environments where stars can form, and hence they can interact with their envi-
ronment and increase their mass through accretion, merger, or both. Furthermore, we
will try to highlight that while astrophysical black holes follow the cosmic history of
our Universe, and as such are supposed to have a distribution in redshift that peaks
around the Star Formation Rate (SFR) (z ∼ 2) [56, 57]. The PBH formation mecha-
nism allows them to form at any redshift in our Universe, and in particular, for these
objects, we expect to have a merger rate that grows as a function of redshift. This
main differentiation makes them an extremely interesting object for next-generation
detectors like A+ LIGO [58], LISA [59] and ET [60], which will be able to observe the
Universe at much higher redshift compared to the present-stage detectors, and led to
the study that we performed in the paper in Chapter {5}.

1.4.1 Stellar Origin Black Holes populations

As the name suggests, Stellar Origin Black Holes (SOBHs) are formed from the grav-
itational collapse of stars. The formation of BHs can both be achieved through the
evolution of massive single stars [61–64], or as the end product of a binary star sys-
tem [62, 65–67] or multiple star system [68–70]. When discussing star evolution, in
particular, we can further differentiate between the evolution in isolated environments
[71–73], or the dynamical evolution in dense stellar clusters [74–76].
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Figure 1.6. The evolution of single stars as a function of their mass. These results are
indicative, as in principle they depend on several additional factors (e.g. chemical composition
or potential accretions phenomena), and they are based on the figure presented in [77].

If we consider the simple case of a single star evolving in an isolated environment,
we can assume that both mass-transfers and accretion phenomena are negligible. Un-
der these circumstances, whether or not a star will create a black hole at the end of
its life mainly depends on the initial mass of the progenitor star [77]. The situation
is described in fig. 1.6, where we can observe that BHs usually form either from weak
supernovae explosions, after some of the material that is initially ejected falls back
and brings the core mass over the threshold. Alternatively, BHs can form without a
supernova explosion at all, with what is called direct collapse [78, 79]. The descrip-
tion of fig. 1.6 is only indicative, as several additional factors need to be taken into
account when properly estimating the evolution of stars. For example, the chemical
composition, and in particular the metallicity [80–82], will influence the evolution of
the considered star. This influence will be two-fold: the first one is direct, as the
chemical composition of a star affects its life and evolution [81–83]. The reason is that
stars balance the gravitational collapse and achieve hydrostatic equilibrium by means
of nuclear reactions in their cores. The abundance of elements that are present in
the stars are hence one of the main driving factors that will determine their life and
evolution. Furthermore, the stellar winds intensity, and hence the mass-loss rates of
stars, among other quantities, are also influenced by the metallicity of the considered
star [84–87]. The second influence of metallicity over star evolution is instead indirect,
and is related to the fact that the star metallicity can be directly linked with the cos-
mic history of our universe [80, 88]. We expect the first metal-free stars (also known
as population III stars [72, 89]) to favor very high masses and appear in primordial
isolated mini halos. As heavy elements are mainly produced throughout star Nucle-
osynthesis [90, 91], we expect these stars to appear at higher redshift (z ≳ 15), where
the heavy elements were still rare. This also implies that these types of stars could,
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in principle, have produced Binary Black Hole (BBH) mergers in the early Universe
(z ∼ 10) [92]. When considering the local Universe instead (z < 2), we mainly observe
metal-rich population I and II stars [67, 93]. These stars are usually smaller compared
to the old population III stars, but live in much richer environments where multiple
star systems are more likely and dynamical evolution effects become relevant.

It’s important to emphasize that the situation of fig. 1.6 deeply changes in the
case of binary or multiple star systems. These systems, are also particularly relevant
as the majority (∼ 70%) of type O and B massive stars (see ref. [94] for details about
this classification), which are the most likely progenitors of Neutron Stars (NSs) and
BHs, are found in close binary systems [15, 95]. The main effects that will change
the evolution of multiple star systems compared to isolated stars are the presence of
tidal forces [96, 97] and mass-transfers [98–100] among the elements. We can further
differentiate the mass-transfer phenomena among the involved stars as stable or un-
stable (also called common-envelope phase). During the common envelope stage, the
BH from the more massive star (that is supposed to collapse first) and the core of
the secondary star orbit inside a common envelope. Their separation will hence be
reduced, while the residual orbital energy is given to the envelope, which is in turn
expelled if said energy is high enough (see refs. [101–103] for further details about this
phase). This phase is particularly relevant in GW astronomy as it will lead to BBHs
with a reduced separation, which are hence more likely to merge in a Hubble time
[104, 105]. Further difference from the single star evolution can also be found on the
properties of the generated BHs, both on the resulting final mass and spin [62, 106, 107].

To conclude, we will briefly discuss the dynamical effects introduced by the en-
vironment in which the stars are born and evolve. As stars are formed from large
clouds of dust and gas, the vast majority of the stars observed are found in clusters,
which can contain from a few to several million of stars [108, 109]. When studying
the evolution of a star system in a dense cluster, we can not neglect the dynamical
effects that the environment will have on its evolution. The system will hence not be
closed anymore, and exchanges of matter and energy with its surroundings will affect
its resulting end-state [75, 110, 111]. Among the most relevant effects to consider when
computing the dynamical evolution of stellar systems in dense environments, we have
stellar encounters and interactions [76, 110, 112, 113], mass segregation [114–116], and
the presence of accretion disks [83, 117, 118].

When taking into account all the second-order effects, observations and numerical
simulations favor the formation of BHs with masses between ∼ [5, 50]M⊙ or masses
above ∼ 135M⊙ [15]. For masses between ∼ [2, 5]M⊙, we have the first mass gap
[119, 120], while for masses in ∼ [50, 135]M⊙ we have the second gap, which is sup-
posed to arise from the occurrence of Pair-Instability Supernovae (PISN) [90, 121]. For
a more detailed discussion on the processes and parameters involved in the evolution of
single stars, we refer the reader to see e.g. refs. [122, 123], while for detailed numerical
evolutionary simulations, we invite the reader to see refs. [63, 66, 124, 125].
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In practice, we expect the merger rate of SOBH to follow (up to time delays
[126, 127]) the Star Formation Rate (SFR) [56, 128]. The latter is phenomenological,
and can be estimated from observations knowing that

LUV ∼ CIMFSFR, (1.4.1)

with LUV representing the luminosity flux in the UV spectrum and CIMF is a constant
depending on the choice of the stellar Initial Mass Function (IMF). Observations sug-
gest that the SFR is supposed to have an initial power-law growth as a function of
redshift until it reaches a peak. After the peak, the SFR will then dampen off with a
different power-law behavior [129]. This result was used in refs. [56, 130] to estimate
the BBH merger rate in our Universe, and will be used in the articles in sec. {4.2.2} and
app. {5.6} to extend the BHs population synthesis at values greater than the volume
of Universe observed by our present-stage detectors.

1.4.2 Primordial Black Holes

Among the most interesting formation channels for black holes we have the Primordial
Black Holes [49, 50]. These compact objects gained over the last years an increasing
relevance in literature as PBHs could explain both some of the signals from binary black
hole mergers observed in gravitational wave detectors (especially the high z component
and the black holes in the predicted stellar mass gaps) [131, 132], and an important
component of the dark matter in the Universe [133, 134]. The idea that black holes
could have formed in the early Universe dates back to the 60s [135, 136], even though
it started to gain importance only later when it started to become the main suspect for
the dark matter component of our Universe (see refs. [137, 138]). This belief reached
its peak around the 90s, when the results of the MACHO surveys were released (see
refs. [139, 140]). However, later studies made by [141–143] imposed much more strin-
gent limits to the PBHs abundancy, making them capable of accounting only for a
small component of the dark matter observed in our Universe. Research in PBHs got
lit up again by the first detection of gravitational waves in our Universe [44], as recent
observations of black holes in the first, second, and third observing runs of LIGO/Virgo
[45, 144] present events that could be of primordial origin. Furthermore, the analysis
of the Stochastic Gravitational Wave Background (SGWB) [145, 146] in the context
of LISA [1] and NANOGrav [147], will shed further light on the mechanisms and con-
straints that generate BHs of primordial origin.

We can now describe the theory behind the process of formation of primordial
black holes. Generally speaking, they form after cosmological perturbations re-enter
the cosmological horizon. The mechanisms that may generate the initial cosmological
perturbations are several, and will generate highly different results both in terms of
PBH abundancy and mass range. In the following, we are hence going to describe
the general process of formation rather than focus on any particular perturbation
formation mechanism; we leave the reader to more detailed PBH reviews such as
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[16, 50, 132, 134, 148] for details about the latter.

When assuming spherical symmetry on superhorizon scales, we can write the
metric for the local region of the Universe describing such perturbations in the following
asymptotic form:

ds2 = −dt2 + a2(t)

[
dr2

1−K(r)r2
+ r2dΩ2

]
= −dt2 + a2(t)e2ξ(r̂)

[
dr̂2 + r̂2dΩ2

]
, (1.4.2)

where a(t) is the scale factor, whileK(r) and ξ(r̂) are the conserved comoving curvature
perturbations. These perturbations are defined on a super-Hubble scale and converge
to zero at infinity, where we assume the Universe to be unperturbed and spatially flat.
By equating the radial and angular parts of the two forms of the metric presented in
(1.4.2), we obtain {

r = r̂eξ(r̂)

dr√
1−K(r)r2

= eξ(r̂)dr̂
. (1.4.3)

The difference between the two Lagrangian coordinates r and r̂ is hence given by the
parametrization of the comoving coordinate, fixed by a curvature perturbation chosen
in the metric K(r) or ξ(r̂). This can be geometrically interpreted as the coordinate
r̂ considering the perturbed region as a local Lemaitre-Tolman-Bondi (LTB) universe
(see refs. [17, 149] for further details about this metric) with the curvature perturbation
ξ(r̂) modifying the local expansion. The curvature profile K(r) is defined with respect
to the background FLRW solution (given by the condition K = 0) and measures more
directly the spatial geometry of space-time. We can relate the two radial functions on
superhorizon scales, where the curvature profile is time-independent, as

K(r)r2 = −r̂ξ′(r̂) [2 + r̂ξ′(r̂)] . (1.4.4)

In this regime, we can also expand the time-dependent variables (such as energy
density and velocity profiles) as power series of a small parameter ϵ up to the first
non-zero order, where we identify ϵ with the ratio between the Hubble radius and the
length scale of the perturbation. This approximation is called gradient Expansion and
is equivalent to saying that in this regime pressure gradients are negligible, hence the
perturbation evolution grows with the universe expansion in a self-similar way. Further
details on this approach can be found in [150, 151]. Using this approximation, we can
follow [152, 153] to write the energy density profile as

δρ

ρb
=
ρ(r, t)− ρb(t)

ρb(t)
=

1

a2H2

3(1 + w)

5 + 3w

[K(r)r3]′

3r2

= − 1

a2H2

4(1 + w)

5 + 3w
e−5ξ(r̂)/2∇2eξ(r̂)/2, (1.4.5)

where H(t) = ȧ(t)/a(t) is the Hubble parameter, w is the coefficient of the equation of
state p = wρ and ρb is the background density. The latter can be estimated with the
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standard formula for homogeneous and isotropic universes, and scales as ρb ∝ 1/a3.
For ξ(r̂) ≪ 1, we are in the linear regime, and eq. (1.4.5) can be rewritten as

δρ

ρb
= − 1

a2H2

2(1 + w)

5 + 3w
∇2ξ(r̂)

FT≈ − k2

a2H2

2(1 + w)

5 + 3w
ξk. (1.4.6)

In the linear regime, there is hence a simple one-to-one mapping between the
real space, where the perturbations collapse, and the Fourier space where the power
spectrum of cosmological perturbations is defined. If we consider a Gaussian curvature
perturbation ξ, the density contrast given by eq. (1.4.6) has also a Gaussian distribution
within the linear regime. It has however to be emphasized that the treshold amplitude
δc, that defines when a primordial perturbation will collapse into a PBH, has a non-
linear behaviour. The linear regime does not hence give an accurate description of
the statistics of the density contrast. For this reason, in the next subsection, we are
going to define the amplitude of a perturbation δm, so that we can estimate the PBHs
formation as a function of the number of perturbations that surpass the threshold
amplitude δc.

1.4.3 Primordial perturbation amplitude and threshold for PBH forma-
tion

In order to describe the amplitude of primordial cosmological perturbations, it is useful
to define the compaction function [153, 154]:

C(r, t) = 2
δM(r, t)

R(r, t)
, (1.4.7)

where we defined with R(r, t) = a(t)r the areal radius. The term δM(r, t) is in-
stead given by the difference between the Misner-Sharp mass MMS = R(r, t)3Rθϕθϕ/2
[155, 156] within a sphere of radius R(r, t) and the background mass Mb(r, t) =
4πρb(r, t)R

3(r, t)/3 calculated with respect to a spatially flat FLRW metric. In the
superhorizon regime, the compaction function is time-independent and can be rewrit-
ten as

C(r) =
3(1 + w)

5 + 3w
K(r)r2, (1.4.8)

which is directly dependent on the curvature profile K(r) and can be rewritten as
a function of ξ(r̂) using eq. (1.4.4). We can define the comoving length scale of the
perturbation simply by considering the distance at which the compact function reaches
its peak, which will be a maximum for a positive perturbation and vice versa, this value
will be denoted as r = rm : C ′(rm) = 0. The value of rm can hence be easily obtained
from eq. (1.4.8) once the function K(r) or ξ(r̂) are defined, this can be done simply by
imposing {

K(rm) +
rm
2
K ′(rm) = 0

ξ′(r̂m) + r̂mξ
′′(r̂m) = 0

. (1.4.9)

– 35 –



From the definition of the curvature profile, we can also find the parameter ϵ used in
the gradient expansion. In terms of the areal radius scales it reads as

ϵ =
RH(t)

Rb(rm, t)
=

1

a(t)Hrm
=

1

a(t)Hr̂meξ(r̂m)
, (1.4.10)

where we defined with RH(t) = 1/H the cosmological horizon and with Rb(r, t) the
background component of the areal radius. We can observe that for values of ϵ ≪ 1
eq. (1.4.5) is valid.

Finally, we can now give a consistent definition of the perturbation amplitude, this
can be defined as the mass excess of the energy density within the scale rm when ϵ = 1,
or analogously a(t)Hrm = 1. We are hence implicitly defining the horizon crossing time
tH with a linear extrapolation from the superhorizon regime. This assumption is not
very accurate, but it still provides on one hand a well-defined criterion to measure and
compare consistently the amplitude of different perturbations, and on the other hand
to understand how the threshold varies with respect to the initial curvature profiles.
We will hence define the perturbation amplitude measured at time tH , which we are
going to refer as δm = δ(rm, tH), as

δm =
4π

V Rm

∫ Rm

0

δρ

ρb
R2dR =

3

r3m

∫ Rm

0

δρ

ρb
r2dr, (1.4.11)

where we can define the volume at the lenght scale Rm as VRm = 4πR3
m/3, and the

second equality comes from the approximation Rm ≈ a(t)rm.
If we now introduce eq. (1.4.5) into eq. (1.4.11), we can obtain an equation for δm ∼
C(rm). This can be further simplified as shown in ref. [153] to get the fundamental
relation:

δm = 3
δρ

ρb
(rm, tH), (1.4.12)

which shows that at the scale rm the perturbation amplitude is independent of the
location at which it is measured.

What is left is just to define a threshold δc such that PBHs will form when the
perturbation amplitude is δm > δc. We emphasize that the value of the threshold δc
is not constant, as should be dependent on the shape of the energy density profile
and the equation of state. In literature, it is shown by refs. [153, 157] that for a
radiation-dominated universe, where the equation of state read as P = ρ/3, we have the
parameter δc in the range 2/5 ≤ δc ≤ 2/3. We can hence show that in this situation, the
shape of the cosmological perturbation is simply related to one dimensionless parameter
corresponding to the width of the peak of the compaction function. This parameter is
defined as

α = −C
′′(rm)r

2
m

4C(rm)
. (1.4.13)
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The threshold value δc can now be defined as a function of α simply as

δc ≈
4

15
e−1/α α1− 5

2α

Γ
(

5
2α

)
− Γ

(
5
2α
, 1
α

) , (1.4.14)

where the Γ are the special Gamma functions. Analogously, the mass of the generated
PBHs can be described as a function of its perturbation amplitude compared to the
critical threshold as

mPBH = K(δ − δc)
ηMH . (1.4.15)

In the last equation, we defined with η the critical Exponent, which depends only on
the equation of state (e.g. for a radiation-dominated universe we have η ≈ 0.36). We
also introduced the quantity K that, as for δc, depends on the initial configuration of
the energy density profile, and can roughly vary in the range [1, 10].

We finally have all the tools we need to estimate the primordial component of BHs
in our Universe. To this extent, we have to choose from theory a mechanism for the
formation of the initial primordial perturbation and its relative shape for the functions
K(r) and ξ(r̂). It has to be emphasized however that eq. (1.4.15) only describes the
mass with good accuracy in the regime mPBH ≤ MH . Furthermore, the non-linear
relation between the curvature perturbation and the density contrast in eq. (1.4.5)
introduces non-Gaussianity of the density contrast, even when assuming a Gaussian
primordial initial condition (see refs. [153, 158, 159]). To conclude, it is important to
take into account that several phenomena happen in our Universe from the formation of
PBHs to how we observe them today. Rigorous analysis of this BH formation channel
hence requires taking into account for accretion phenomena [51, 160] and potential
clustering effects [161, 162].
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Chapter 2

An introduction to Gravitational
Waves

The Einstein equations (1.1.1) describe the gravitational field generated in a space-time
by its matter-energy content. In stationary conditions, there are no big questions aris-
ing on the behavior of such a field. The situation however gets a bit more complicated
in the real scenario, where massive objects will move around and eventually merge and
change the spatial distribution of masses in the region. Indeed we expect that if one re-
gion of space-time becomes overdense compared to others, the gravitational field close
to that region will become naturally stronger. What is not so straightforward is under-
standing how the information of the new field will be delivered to the affected bodies,
and also, how the gravitational field generally propagates in space. We know that one
of the main pillars on which Einstein’s special relativity is built is the fact that the
speed of light is absolute [28], and is the maximum speed that can be reached by bodies
in a vacuum. This assumption also ensures that in GR the causality [8, 33] of events is
respected. It is only natural hence to expect that variations in the gravitational field
would not be delivered instantly to all the bodies affected by it, but will instead propa-
gate in space at a speed lower or equal to the speed of light through some sort of carrier.

In this chapter, we are hence going to introduce the concept of Gravitational
Wave [5], both to discuss how the gravitational field propagates into space and also
as a means to observe "dark objects" such as Black Holes [15]. The derivation of the
results will follow the approach of [8, 31], while the chapter is organized as follows: In
sec. {2.1} we follow the standard approach of perturbing the Minkowski metric (see
ref. [8] for the full calculation) in order to obtain the Gravitational Waves equations
on a flat space-time. Through this process, we will discuss some useful concepts such
as the TT-gauge and the polarization states of a gravitational wave. The second in
particular, will be implicitly used in all the papers presented in this thesis when the
incoming signal needs to be converted into strain in a particular detector (for fur-
ther details see sec. {5.3.1}). We continue in sec. {2.2} with the gravitational wave
theory by introducing the quadrupole moment tensor and the Transverse-Traceless
(TT) projector. These quantities are extremely important in the context of numerical
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waveforms [163, 164], and will lead at the end of subsection {2.2.1} to the numerical
waveform equation (2.2.8). On one hand, this equation is in principle the most accu-
rate description we have for gravitational wave phenomena, and was used to build the
LIGO Gravitational Waves Template Bank as shown in refs. [165–167]. On the other
hand, integrating the full Einstein equations has a very high computational cost, espe-
cially when they have to be computed for all the possible event parameters that could
happen in our Universe. This drawback led hence to either try to reduce the density of
points in the template bank (e.g. refs. [168–170]) at the cost of loss of representation
quality of incoming signals (see the article in Chapter {3}), or to use approximated
phenomenological waveforms to describe at least the pre-coalescence part of the signal
(see e.g. waves of the class IMRPhenomD [171, 172] or IMRPhenomXHM [173]). In
section {2.2.2} we present the analytical result of eq. (2.2.8) when assuming a circular
orbit approximation. This result in its simplicity, is both relevant as a starting point
to the development of Phenomenological waveforms, and because it is a very good
approximation for nearly monochromatic events that are far away from merging in the
LISA frequency band. To conclude, in sec. {2.3} we discuss the energy emitted from
a system in the form of gravitational waves. We start by introducing the stress-energy
pseudotensor and the gauge-invariant energy density. Through these quantities, after
defining a waveform model we will be able to describe the GW energy emitted as a
function of time (eq. (2.3.17)), surface (eq. (2.3.18)) or frequency (eq. (2.3.19)). The
energy emitted as a function of time will then be used in sec. {2.3.2} to extend the
regime of validity of the analytical result presented in sec. {2.2.2} to the so-called
adiabatic approximation [174], which describes inspiralling objects that slowly evolve
in time through semi-circular orbits. This approximation allows us to introduce sev-
eral of the parameters that will then be used throughout this document to describe
our waveforms, and are a step closer to the real phenomenological waveforms that we
used, which can be obtained from these results through the use of Post-Newtonian
(PN) corrections [175, 176]. The energy emitted through gravitational waves as a
function of frequency will instead be used whenever we need to compute the Stochastic
Gravitational Wave Background in the LISA detector (see for example the papers at
sec. {4.3.1} and app. {5.10}).

2.1 Gravitational Waves theory

The metric tensor defined in eq. (1.1.2) has somehow a twofold nature: we know by
definition that it defines how to measure distance in a space-time, however, due to the
role that it assumes in GR and, in particular, in the Einstein equations, it can also be
linked with the gravitational potential [8]. A consequence of this dual nature of the
metric tensor is that we expect the carrier of the gravitational field, which from now on
will be called Gravitational Wave, to behave as a metric wave, i.e. the propagation of
such an object will affect the geometry and, in particular, the proper distance between
space-time points in time.
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The easiest way to study the properties of gravitational waves is by following a
perturbative approach on a known solution of the Einstein equations. Let us consider
for example a perturbation on the Minkowski metric (1.1.4), such as

gµν = ηµν + hµν : |hµν | ≪ |ηµν |. (2.1.1)

This defines an inverse metric tensor that reads as

gµν = ηµν − hµν +O(h2), (2.1.2)

where the indices of hµν have been raised using the unperturbed metric. In order
to find the equations that describe the behavior of hµν , we will now try to solve the
Einstein equations written in the following analogous form:

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

λ
λ

)
, (2.1.3)

where even our Tµν = T 0
µν + T pert

µν , with the first term of the RHS associated to our
background metric and the second term associated to our perturbation term. By
recalling the definitions of section sec. {1.1}, and by using the fact that the zero-order
term of the Einstein equations is assumed to be a known solution of the latter, i.e.

Rµν(η) =
8πG

c4

(
T 0
µν −

1

2
ηµνT

0

)
, (2.1.4)

we can solve eq. (2.1.3) by keeping only first order terms and get

Γα
µν,α(h)− Γα

µα,ν(h) + Γα
σα(η)Γ

σ
µν(h) + Γα

σα(h)Γ
σ
µν(η)

−Γα
σν(η)Γ

σ
µα(h)− Γα

σν(h)Γ
σ
µα(η) =

8πG

c4

(
T pert
µν − 1

2
gµνT

pert

)
, (2.1.5)

that is linear in hµν . We can observe that this formula is valid for any space-time
metric that has a well-defined solution of the Einstein equations g0µν , as long as we
replace the terms of the background metric ηµν → g0µν . The situation, however, can
easily become very complicated to calculate, and often, no analytical solution will be
available for the chosen metric.

2.1.1 Gravitational Waves on a flat space-time

Choosing the Minkowski spacetime allows us to simplify even further eq. (2.1.5) and
obtain an analytic solution, this is mainly because for a Minkowski metric we have
Γα
µν(η) = 0 as the metric is constant. By imposing this condition the LHS of eq. (2.1.5)

simply reduces to:

Γα
µν,α − Γα

µα,ν +O(h2) =
1

2

{
−□Fhµν +

[
hλν,λµ + hλµ,λν − hλλ,µν

]}
+O(h2), (2.1.6)

where the operator □F is the D’Alembertian in flat spacetime and read as

□F = ηαβ
∂

∂xα
∂

∂xβ
= − ∂2

c2∂t2
+∇2. (2.1.7)
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We can finally rewrite the Einstein equations (2.1.5) for a flat space-time as

{
□Fhµν −

[
hλν,λµ + hλµ,λν − hλλ,µν

]}
= −16πG

c4

(
T pert
µν − 1

2
ηµνT

pert

)
. (2.1.8)

The solutions of eq. (2.1.8) are not uniquely determined, as if we make a coordinate
transformation the transformed metric tensor will still be a solution, describing the
same physical situation as seen from a different frame [8]. Indeed, in order to respect
the weak field assumption, we have to choose a coordinate transformation such that
the new perturbation on the metric tensor h′

µν respect the condition |h′
µν | ≪ 1. The

usual choice is a coordinate system that satisfies the harmonic gauge condition, which
can be expressed as

gµνT λ
µν = 0 ⇒ hµν,µ =

1

2
hµµ,ν . (2.1.9)

By imposing this condition, the terms in square bracket of eq. (2.1.8) vanish, and what
is left of the Einstein equations is a simple wave equation with an additional constrain
term: {

□Fhµν = −16πG
c4

(
T pert
µν − 1

2
ηµνT

pert
)

hµν,µ = 1
2
hµµ,ν

. (2.1.10)

This equation can be simplified even further by defining the new tensor h̄µν = hµν −
1/2ηµνh, and by moving far away from the source (void limit) where we have the
condition Tµν = 0. Under these assumptions, we can write

{
□F h̄µν = 0

h̄µν,µ = 0
. (2.1.11)

From the last equation, it appears clear that a perturbation of a flat space-time prop-
agates as a wave traveling at the speed of light, and that Einstein’s theory of gravity
predicts the existence of gravitational waves. The situation will change a bit in the
case of curved spaces, where the curvature will act as a potential barrier and the final
equation will become a Schrodinger-like equation (see ref. [37] for further details).

2.1.2 Plane Gravitational Waves solution and TT-gauge

The simplest solution to eq. (2.1.11) is a monochromatic plane wave, it can be written
as

h̄µν = R
{
Aµνe

ikαxα}
, (2.1.12)

where we defined with Aµν the polarization tensor, which describes the wave amplitude
along the various directions, and kα is the wave vector. Constraints on both these
variables can be found simply by plugging eq. (2.1.12) into eq. (2.1.11). We then
obtain the following conditions:

{
ηµνkµkν = 0

ηµαAανkµ = 0 ⇒ kµA
µ
ν = 0

. (2.1.13)
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The first constraint of eq. (2.1.13) requires k to be a null vector, and hence the
carrier has to be massless. The second constraint instead expresses orthogonality
between the wave vector kµ and of the polarization tensor Aµν . This is equivalent to
what happens for an electromagnetic wave where the field will be orthogonal to the
direction of propagation of the wave. In analogy with electromagnetism, we can hence
describe the wavefront equation by parameterizing the wave vector as

kµ =
(ω
c
, k⃗
)
. (2.1.14)

The null vector condition will hence imply

−k20 + k2x + k2y + k2z = 0 ⇒ ω = ck0 = c
√
k2x + k2y + k2z . (2.1.15)

What is left is just understanding how many of the 10 components of Aµν have
a proper physical meaning. This is equivalent to studying the polarization modes of a
gravitational wave. To this extent, let us consider the case of a wave propagating in flat
space-time along the x direction in our reference frame. Our h̄µν will be independent
of y and z, and in particular, due to the null vector condition it will only depend on
t ± x/c. By integrating eq. (2.1.11), and after setting to 0 the integration constants
to consider only the time-dependent part, we obtain the following relations among the
components of the perturbation tensor:

h̄tt = h̄xt , h̄ty = h̄xy ,

h̄tx = h̄xx, h̄tz = h̄xz . (2.1.16)

These constraints can be used to set to 0 some of the components of our polarization
tensor by means of a new coordinate transformation. In particular, we can use the 4
functions of the coordinates to set to zero the following quantities:

h̄tx = h̄ty = h̄tz = h̄yy = h̄zz = 0. (2.1.17)

Using eq. (2.1.16), this will naturally imply

h̄xx = h̄xy = h̄xz = h̄tt = 0. (2.1.18)

The remaining non-vanishing components are hence given by h̄zy and h̄yy − h̄zz, we can
observe that under these conditions, we get

h̄µµ = h̄tt + h̄xx + h̄yy + h̄zz = 0. (2.1.19)

This greatly simplifies the form of our wave tensor hµν as

h̄µµ = hµµ − 2hµµ = −hµµ = 0 ⇒ h̄µν = hµν . (2.1.20)
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We hence proved that in this gauge h̄µν and hµν coincide and are traceless. Furthermore,
we observed from eqs. (2.1.16), (2.1.17) and (2.1.18) that a plane wave propagating
along the x direction will only depend on the two functions h̄zy and h̄yy − h̄zz. These
two conditions together name the gauge TT-gauge, where TT stands for Transverse-
Traceless. To conclude, the dependence on barely two functions implies that a grav-
itational wave only has two degrees of freedom which correspond to two polarization
states, and we will see in detail how they behave in the TT-gauge in the next section.

2.1.3 Gravitational Waves polarization states

In order to understand how the 2 polarization states behave, we need to estimate how
a gravitational wave would affect the motion of particles. We can start with the simple
case of a single particle at rest in a flat space-time. If we set an inertial frame for this
particle with x axis coincident with the direction of propagation of the incoming TT-
wave, we can impose the geodesic equation (1.2.3) to check the effect of the incoming
gravitational wave on its motion. The particle equation of motion will be written as

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
=

dUµ

dτ
+ Γµ

αβU
αUβ, (2.1.21)

where Uµ is the particle 4-velocity. At t = 0 the particle is at rest, and hence Uµ =
U0 = 1. The particle acceleration will be given by

(
dUµ

dτ

)

t=0

= −Γµ
00 = −1

2
ηµν [hν0,0 + h0ν,0 − h00,ν ]

TT
= 0. (2.1.22)

Thus, in the TT-gauge, the 4-velocity Uµ remains constant even when an incoming
gravitational wave perturbs the metric. This implies that the study of the motion of a
single particle is not sufficient to detect a gravitational wave.

Additional information can be obtained by studying the relative motion of parti-
cles induced by a gravitational wave. Let us assume to have two neighboring particles
A and B at rest in a certain frame, with their coordinates denoted as xµA and xµB. The
two particles will be reached at t = 0 by a plane-fronted gravitational wave propagating
along the x axis. In the TT-frame, the metric will read as

ds2 = gµνdx
µdxν =

(
ηµν + hTT

µν

)
dxµdxν , (2.1.23)

where we can recall that g00 = η00 = −1. Hence both particles have proper time τ = ct.
As the two particles are at rest, by using eq. (2.1.22) we can prove that they will remain
at a constant coordinate position even when the wave arrives, and the same will be
true for their coordinate separation δxµ = xµB − xµA. Since the metric (2.1.23) changes,
however, the proper distance among them will change, and this can be studied using
the previously introduced concept of geodesic deviation {1.2.2}.

Let us start by moving into a LIF with coordinates xµA centered on the geodesic
of the particle A. We can show that the following relations are true when considering
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the particle A:
dxµA
dτ

∣∣∣∣
A

= (1, 0, 0, 0) : tA =
τ

c
, (2.1.24)

gµν |A = ηµν ⇒ gµν,α|A = 0 (i.e Γα
µν

∣∣
A
= 0), (2.1.25)

where the symbol |A means that the quantity is computed along the geodesic of the
particle A. It is also easy to demonstrate that, in this frame, the components of
the separation vector δxµA satisfy the criterion δxµA = xµA|B, which means that the
separation vector will always be equal to the coordinates of particle B. The geodesic
deviation for the latter will read as

D2δxµA
dτ 2

= Rµ
αβγ

dxαA
dτ

dxβA
dτ

δxγA. (2.1.26)

If we evaluate eq. (2.1.26) along the geodesic of particle A, recalling the condition
(2.1.24), we obtain

d2δxiA
dt2

= Ri
00jδx

j
A, (2.1.27)

where the two index i, j ∈ [1, 3], and hence are purely spatial index. The Riemann
curvature tensor can be obtained using eq. (1.2.16). By keeping a first-order approxi-
mation and using the TT-gauge condition, we get

Ri
00j = ηikRk00j

TT
=

1

2
ηik

∂2hTT
kj

c2∂t2
. (2.1.28)

By plugging in eq. (2.1.28), the equation of geodesic deviation (2.1.27) becomes

d2δxiA
dt2

=
1

2
ηik

∂2hTT
kj

c2∂t2
δxjA. (2.1.29)

We now have to make some considerations on the boundary conditions of the
equation presented in eq. (2.1.29). Indeed we know that before the arrival of the
GW(t < 0), the two particles A and B are at rest, and hence we have δxiA(t < 0) =
δxiA(t = 0) = const. Under these circumstances, the derivative of eq. (2.1.29) will just
result in

d2δxiA(t ≤ 0)

dt2
= 0. (2.1.30)

For t > 0, instead, the hµν will infinitesimally perturb the metric. We can hence
approximate the separation vector at later times as δxiA(t > 0) = δxiA(t = 0)+ δ̃xiA(t >
0), with δ̃xiA a small perturbation with respect to the original position δxiA(t = 0). If
we substitute the last expansion in (2.1.29), the term δxiA(t = 0) = const will become
null on the LHS of eq. (2.1.29), as shown in eq. (2.1.30). By retaining only first-order
terms in h, the perturbation term δ̃xiA will instead evolve with time as

d2δ̃xiA(t > 0)

dt2
=

1

2
ηik

∂2hTT
kj

c2∂t2
δxjA(t = 0). (2.1.31)
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This equation can be integrated, by doing so we will obtain the following general
solution for the coordinates of the separation vector:

δxi(t) = δxi(t = 0) +
1

2
ηikhTT

kj δx
j(t = 0). (2.1.32)

Being in the TT-gauge, we know that the only non-zero components of the perturbation
tensor hµν are h22 = −h33 and h23 = h32. We can hence rewrite eq. (2.1.32) for the
only two components that would not remain constant during the wave propagation.
We get

{
δx2(t) = δx2(t = 0) + 1

2

(
hTT
22 δx

2(t = 0) + hTT
23 δx

3(t = 0)
)

δx3(t) = δx3(t = 0) + 1
2

(
hTT
32 δx

2(t = 0) + hTT
33 δx

3(t = 0)
) . (2.1.33)

We can finally study the two polarization states of gravitational waves. To this
extent, let us assume that the two modes are defined as




hyy = −hzz = 2R

{
A+e

iω(t−x
c )
}

(+ Polarization)

hyz = hzy = 2R
{
A×e

iω(t−x
c )
}

(× Polarization)
. (2.1.34)

It is also convenient to redefine the wave phase as θ(t) = ω
(
t− x

c

)
. The effects of

the GWpolarization modes can be studied by using eq. (2.1.33) on a ring of particles
having unitary radius and centered in the origin in the assumed reference frame. We
can start by looking at the + polarization state simply by assuming A+ = 0.5, A× = 0,
the situation is shown in fig. 2.1. Analogously, the × polarization state can be studied
by imposing A+ = 0, A× = 0.5. The results are shown in fig. 2.2.

2.2 Gravitational Waves from inspiralling compact objects

In order to compute the gravitational wave emitted by a gravitating system evolving
with time, it is convenient to introduce the quadrupole moment tensor formalism (see
refs. [8, 31] for a detailed description). This tensor describes the spatial distribution
of mass/energy in the volume as a function of time, and can be built recalling the
definition of the T 00 component of the stress-energy tensor (1.1.12). We have

qij(t) =
1

c2

∫

V

T 00(t, xk)xixjd3xk : i, j, k ∈ [1, 3], (2.2.1)

while the other components of the stress-energy tensor can be related to eq. (2.2.1)
through the tensor virial theorem (see ref. [8]) as

∫

V

T ij(t, xk)d3xk =
1

2

d2

dt2
qij(t). (2.2.2)
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Figure 2.1. Gravitational wave effects due to the + polarization mode on a unitary ring of
particles. The parameter theta is the phase of the incoming gravitational wave, and is given
by θ(t) = ω

(
t− x

c

)
.

Figure 2.2. Gravitational wave effects due to the × polarization mode on a unitary ring of
particles. The parameter theta is the phase of the incoming gravitational wave, and is given
by θ(t) = ω

(
t− x

c

)
.
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It can be demonstrated that, by assuming polar coordinates centered on the source
of the gravitational waves, eq. (2.1.11) can be rewritten in terms of the quadrupole
moment tensor (2.2.1) as

{
h̄µ0 = 0 : µ ∈ [0, 3]

h̄ij(t, r) = 2G
c4r

[
d2

dt2
qij
(
t− r

c

)] . (2.2.3)

This equation describes the gravitational waves emitted as a function of time by any
gravitating system, regardless of the number of involved masses/energies and their time
evolution. It has to be emphasized that eq. (2.2.3) implies that gravitational waves
have a quadrupole nature, they do not have dipole contributions. For a spherical or
axisymmetric stationary distribution of matter (or energy), the quadrupole moment
will be a constant (even if the body is rotating), implying these bodies do not emit
gravitational waves. Analogously, a star that collapses in a perfectly spherically sym-
metric way has a vanishing derivative of the quadrupole moment and does not emit
gravitational waves. To produce these waves, we hence need a certain degree of asym-
metry, as it occurs for instance in the non-radial pulsations of stars, in a non-spherical
gravitational collapse, in the coalescence of massive bodies, etc...

2.2.1 The Transverse-Traceless projector

Equations (2.2.3) still have to be transformed in the TT-gauge in order to explicitly
manifest the physical degrees of freedom. By writing eqs. (2.2.3) into the TT-gauge,
we are imposing the two following conditions on the perturbation tensor h̄µν :

{
h̄TT
µν n

ν = 0 (transverse wave condition)

h̄TT
µν δ

µν = 0 (vanishing trace)
, (2.2.4)

where nν is the unit vector parallel to the direction of propagation of the wavefront.
We will now describe a procedure to project a gravitational wave in the TT-gauge. In
the following, we will work in the 3-dimensional Euclidean space with metric δij. This
implies that there will be no difference between upper and lower indices. The described
procedure is equivalent to performing a coordinate transformation, and we will hence
start by defining an operator that projects a vector into the plane orthogonal to the
direction of another vector n⃗. This can be defined as

Pij = δij − ninj. (2.2.5)

It is easy to verify that for any vector V j, the projection PijV
j is orthogonal to ni,

hence (PijV
j)ni = 0. Furthermore, we can easily demonstrate that Pij is symmetric,

and verifies the condition P i
jP

j
k = P i

k. The TT-projector can hence be defined as
follows:

Pijkl = PikPjl −
1

2
PijPkl. (2.2.6)
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This projector extracts the TT-part of a
(
0
2

)
tensor, and we can demonstrate from its

definition that the following properties are verified:

• Pijkl = Pklij;

• Pijkl = Pjilk;

• PijmnPmnkl = Pijkl;

• it is transverse on all the indices, i.e. nxPijkl = 0 for x = [i, j, k, l];

• it is traceless on the first and second couple of indices, i.e. δijPijkl = δklPijkl = 0.

We can finally transform our perturbation tensor into the TT-gauge simply by
applying

hTT
ij = Pijmnhmn = Pijmnh̄mn, (2.2.7)

where we used eq. (2.1.20) to impose the last equivalence. The equations (2.2.3) become

{
hTT
µ0 = 0 : µ ∈ [0, 3]

hTT
ij (t, r) = 2G

c4r

[
d2

dt2
QTT

ij

(
t− r

c

)] , (2.2.8)

with
QTT

ij = Pijmnqmn. (2.2.9)

It is sometime useful to define the reduced quadrupole moment Qij:

Qij = qij −
1

3
δijq ⇒ δijQjk = 0, (2.2.10)

which by definition is traceless. This is related to the quadrupole tensor in TT-gauge
as

QTT
ij = Pijmnqmn = PijmnQmn. (2.2.11)

Equation (2.2.8) is to date the best representation we have for gravitational waves
and was used to build the LIGO template bank [165–167]. However, integrating the
full Einstein equations is usually highly computationally expendious. This led to the
development of approximated phenomenological waveforms, by using approximations
such as the one that we are going to introduce in the next subsection.
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Figure 2.3. Scheme of the binary system with the two compact objects inspiralling around
each other in circular orbit .

2.2.2 Gravitational Waves emitted by inspiralling binary compact objects

We will now compute the gravitational wave generated by a binary system of two
compact objects inspiralling in a circular orbit around their center of mass. This will
be a good first approximation to understand how the GW spectrum coming from a
general inspiralling system, will look like. The two compact objects will be assumed as
point-like masses having mass m1 and m2, where, by convention, we usually indicate
with m1 the most massive object. The situation is shown in fig. 2.3. At any time, the
orbital separation among the two objects will be denoted with l(t) = r1+ r2, such that
for a constant circular orbit we will have l(t) = l(t = 0) = l0. It is also useful to define
the total mass of the system M = m1 +m2 and the reduced mass µ = m1m2/M . To
conclude, we will work in a reference frame centered in the center of mass of the system.

By using the previously defined quantities and assumptions, the following relations
will hold: {

r1 =
m2l0
M

r1 =
m1l0
M

. (2.2.12)

The orbital frequency of the system can be found from Kepler’s law [177, 178], and is
given by

Gm1m2

l20
= m1ω

2
k

m2l0
M

= m2ω
2
k

m1l0
M

⇒ ωK =

√
GM

l30
, (2.2.13)
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where the subscript k in ωK is to denote the Keplerian frequency. The coordinates of
the masses in the orbital plane can be written as a function of the latter, and read as

{
xi =

mi

M
l0 cosωKt

yi =
mi

M
l0 sinωKt

, (2.2.14)

with i = 1, 2 an index for the two masses.

Assuming that the orbit of the bodies is on the x− y plane (as shown in fig. 2.3),
the 00 component of the stress-energy tensor (1.1.12) for this system is given by

T 00 = c2
2∑

i=1

miδ(x− xi)δ(y − yi)δ(z). (2.2.15)

This implies that we have the following non-zero components for the quadrupole mo-
ment tensor (2.2.1):

qxx =
2∑

i=1

mi

∫

V

x2δ(x− xi)δ(y − yi)δ(z) =
2∑

i=1

mix
2
i =

=µl20 cos2 ωKt =
µ

2
l20 cos 2ωKt+ c1, (2.2.16)

qyy =
2∑

i=1

mi

∫

V

y2δ(x− xi)δ(y − yi)δ(z) =
2∑

i=1

miy
2
i =

=µl20 sin2 ωKt = −µ
2
l20 cos 2ωKt+ c2, (2.2.17)

qxy =
2∑

i=1

mi

∫

V

xyδ(x− xi)δ(y − yi)δ(z) =
2∑

i=1

mixiyi =

=µl20 cosωKt sinωKt =
µ

2
l20 sin 2ωKt, (2.2.18)

where c1, c2 are constant terms. We can observe that the trace of the quadrupole
moment tensor will be given by

q = ηijqij = qxx + qyy = constant, (2.2.19)

and hence the reduced quadrupole moment (2.2.10) will share the same time evolution
of the quadrupole moment tensor given by eqs. (2.2.16),(2.2.17) and (2.2.18). Such
a time evolution can be represented through the use of a time-dependent matrix Aij

given by

Aij(t) =



cos 2ωKt sin 2ωKt 0
sin 2ωKt − cos 2ωKt 0

0 0 0


 . (2.2.20)
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We can hence write

qij =
µ

2
l20Aij + constant. (2.2.21)

The wave will be emitted along the direction n⃗, and in the TT-gauge, the wave
equations will be given by eqs. (2.2.8) and (2.2.11). For this particular system, we can
recall the definition of (2.2.13) to write

hTT
ij = −2G

rc4
µ

2
l20(2ωK)

2 [PijklAkl] = −4µMG2

rl0c4
[PijklAkl] . (2.2.22)

The wave amplitude can be redefined as

h0 = −4µMG2

rl0c4
, (2.2.23)

and hence eq. (2.2.22) can be rewritten in terms of h0 as

hTT
ij = −h0ATT

ij

(
t− r

c

)
: ATT

ij

(
t− r

c

)
=
[
PijklAkl

(
t− r

c

)]
. (2.2.24)

The calculations shown in this section can be generalized to the case of non-
circular orbits simply by replacing eqs. (2.2.14) with the proper equation of motion
for the two masses. These may depend on the eccentricity of the orbit and the spins
of the two bodies, and can generally complicate eqs. (2.2.22) to the point that no
analytical solution can be found. This approach is what is usually followed when
developing phenomenological waveforms models, like when considering IMRPhenomD
waveforms [171, 172] or IMRPhenomXHM waveforms [173]. Even though eq. (2.2.24)
can seem like a rough approximation, it works very well for events that are far away
from coalescence, and have low eccentricity and approximately equal mass. A first-hand
example that we are going to use in this thesis is the nearly monochromatic sources
that can be found in the LISA frequency range. Furthermore, these results were used
in 1975 to estimate the amplitude of the binary system PSR 1913 + 16 [179]. The
system is composed of two inspiralling neutron stars orbiting at a very short distance
from each other, and the results presented in ref. [179] can be considered one of the
first indirect detection of gravitational waves from an inspiralling binary system.

2.3 Energy carried by Gravitational Waves

When a system emits gravitational waves, a part of its internal energy gets radiated,
and this energy loss will by itself contribute to the evolution, and final configuration
of said system. If we wish to estimate the energy contribution dissipated through
gravitational waves, we need to define a quantity able to describe the energy and mo-
mentum content of a gravitational field. This quantity is supposed to behave like a
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tensor, but we will see in the following that it will not be possible to define a quantity
as such under a generical coordinate transformation. By limiting ourselves to linear
coordinate transformations, we can instead define a quantity that fulfills our needings,
this is referred in literature as the stress-energy pseudotensor of the gravitational field.

Let us start by moving in a LIF. By recalling eq. (1.1.13), we need to find a
quantity Φαβγ that verifies

Tαβ = Φαβγ
,γ. (2.3.1)

If the previous condition is verified, assuming that Φαβγ is antisymmetric on the indices
β, γ automatically implies that the condition (1.1.13) is verified. In order to find an
explicit expression for Φαβγ, we can start by rewriting eq. (1.1.1) as follows:

Tαβ =
c4

8πG

(
Rαβ − 1

2
gαβR

)
. (2.3.2)

Since we are in a LIF, we can set all the first derivatives of the metric tensor to 0. This
implies that all the Γα

µν that appear in the definition of the Ricci tensor (1.1.8), will
vanish, and only the terms composed by second derivatives of the metric tensor will
appear on the right-hand side of equation (2.3.2). After some calculations, we obtain
the following relation for the stress-energy tensor:

Tαβ =

{
c4

16πG

1

(−g)
[
(−g)

(
gαβgγσ − gαγgβσ

)]
,σ

}

,γ

. (2.3.3)

We can observe that the term in parentheses is antisymmetric in the two indices
β, γ. Furthermore, by direct comparison with eq. (2.3.1) it is easy to understand that
we have

Φαβγ
,γ =

c4

16πG

1

(−g)
[
(−g)

(
gαβgγσ − gαγgβσ

)]
,σ
. (2.3.4)

As we are in a LIF, we also know that

∂

∂xσ
1

(−g) = 0, (2.3.5)

and this implies that we can define the new quantity Φ̄αβγ = (−g)Φαβγ, and rewrite
eq. (2.3.3) as

Φ̄αβγ
,γ = (−g)Tαβ. (2.3.6)

It has to be emphasized that eq. (2.3.6) was derived in a LIF, where all first
derivatives of the metric tensor vanish. In any other frame, this will not be true, as
the presence of a gravitational field will account for a curvature on the latter. The
correction due to the gravitational field on the stress-energy tensor will be indicated
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with tαβ. This quantity can be used to rewrite eq. (2.3.6) in a generical reference frame
as:

(−g) tαβ = Φ̄αβγ
,γ − (−g)Tαβ ⇒ (−g)

(
tαβ + Tαβ

)
= Φ̄αβγ

,γ. (2.3.7)

It can be observed that tαβ is symmetric as both Tαβ and Φ̄αβγ
,γ are symmetric in

the two indices α, β. This quantity is called the stress-energy pseudotensor of the
gravitational field. Its expression in an arbitrary reference frame can be found by
substituting eqs. (1.1.8), (2.3.2), (2.3.4) and (2.3.6), into eq. (2.3.7). It can also be
demonstrated (see ref. [31]) that tαβ can be written in compact form as

tαβ =
c4

32πG
⟨hµν,αhµν,β⟩ , (2.3.8)

where we indicated with
〈〉

a spatial averaging for the quantity in the brackets. Indeed
the quantity defined in (2.3.8) depends only on the physical modes hTT

ij , as the energy
flux emitted by a source should be the same for different observers. We can hence
define the gauge-invariant energy density as

t00 =
c4

32πG

〈
hTT
ij,0h

TT
ij,0

〉
=

c4

16πG

〈
h2+,0 + h2×,0

〉
, (2.3.9)

where the Einstein’s notation for sums was omitted in the second term of eq. (2.3.9)
to avoid confusion among indices and superscripts. Thus, from now on we will have
hTT
ij,0h

TT
ij,0 = hTT

ij,0η
inηjmhTT

nm,0.

To conclude, we can observe that by using the Bianchi identity Tαβ
,α = 0 together

with the antisymmetry of Φαβγ in α, γ defined in (2.3.4), we can obtain the following
conservation law out of (2.3.7) simply by differentiating both terms in xα. We get

[
(−g)

(
tαβ + Tαβ

)]
,α
= 0. (2.3.10)

2.3.1 The Gravitational Waves energy flux

Now that we have defined the energy-momentum tensor for the gravitational waves,
we can easily express the corresponding energy flux. We can start by writing explicitly
the conservation law of the energy-momentum tensor (2.3.10) for the stress-energy
pseudotensor tαβ, where the latter can be written as follows:

∫

V

d3x
(
t000 + ti0i

)
= 0, (2.3.11)

with V being the spatial volume bounded by a surface S. Recalling the definition of
the gauge-invariant energy density (2.3.9), we can define the gravitational wave energy
inside a volume V as

EV =

∫

V

d3xt00. (2.3.12)

This implies that we can rewrite eq. (2.3.11) as

1

c

dEV

dt
= −

∫

V

d3xt0ii = −
∫

S

dAn̂it
0i. (2.3.13)
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In the last equation, n̂i is the versor normal to the surface and we used the Stokes
Theorem [180] to transform the volume integral over V into a surface one over S.

Let us now move to spherical coordinates, where dA = r2dΩ and n̂ = r̂. If we
assume that we are at a large distance from the source, we can impose the TT-gauge.
By doing so, we can rewrite eq. (2.3.12) using the definition (2.3.8) as

dEV

dt
= −c

∫

S

dAt0r : t0r =
c4

32πG

〈
hTT
ij,0h

TT
ij,r

〉
. (2.3.14)

Recalling eq. (2.1.34), we know that the gravitational wave equation can be written in
terms of retarded times hTT

ij (t− k⃗/c), where k⃗ is the vector parallel to the direction of
propagation of the wavefront. In spherical coordinates, the wave equation will hence
be a function of hTT

ij = hTT
ij (t − r⃗/c). It is easy to demonstrate (see ref. [31]) that for

these kind of functions we have hTT
ij,r ≈ hTT

ij,0 + O(1/r2). Far away from the source, we
can hence approximate eq. (2.3.14) as

dEV

dt
= −c

∫

S

dAt00. (2.3.15)

The negative sign of eq. (2.3.15) implies that the gravitational waves emitted will carry
energy away from the considered volume. It is sometimes useful to rewrite the wave
energy flux as

dE

dAdt
= ct00 =

c5

32πG

〈
hTT
ij,0h

TT
ij,0

〉
=

c5

16πG

〈
h2+,0 + h2×,0

〉
, (2.3.16)

where we used eq. (2.3.9) to write the last equivalence.

We can finally compute some of the fundamental quantities that are used every
day in GW science. To begin, the energy emitted as a function of time can be obtained
simply by integrating eq. (2.3.16) in dA. When using spherical coordinates, we obtain

dE

dt
=

c5r2

32πG

∫
dΩ
〈
hTT
ij,0h

TT
ij,0

〉
=

c5r2

16πG

∫
dΩ
〈
h2+,0 + h2×,0

〉
. (2.3.17)

The energy density emitted per unit area instead can be obtained by integrating
eq. (2.3.16) in dt:

dE

dA
=

c5

32πG

∫
dt
〈
hTT
ij,0h

TT
ij,0

〉
=

c5

16πG

∫
dt
〈
h2+,0 + h2×,0

〉
, (2.3.18)

while by Fourier expanding eq. (2.3.17) (see refs. [31, 181]), we can also express the
energy emitted per unit of frequency:

dE

df
=
πc3

2G
f 2r2

∫
dΩ

(∣∣∣h̃+(f)
∣∣∣
2

+
∣∣∣h̃×(f)

∣∣∣
2
)
. (2.3.19)
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To conclude, we can recall that using eq. (2.2.8), it is also possible to express
the energy flux of gravitational waves in terms of the quadrupole moment (2.2.9). By
direct substitution into eq. (2.3.16) we obtain

dE

dAdt
=

G

8πr2c5

〈
d3QTT

ij

dt3
d3QTT

ij

dt3

〉
. (2.3.20)

2.3.2 Time evolution of inspiralling binary systems due to GW energy
emission

The energy emitted from a binary inspiralling system due to gravitational waves will
indeed affect the motion of its bodies and, in particular, can be measured by looking
at the evolution over time of its orbital period dP/dt. Emitting energy in the form of
GW, in fact speeds up the process of bringing the two inspiralling bodies closer to their
center of mass, hence decreasing the time required to coalescence of the system. In
this section, we are going to reuse all the results obtained when discussing inspiralling
compact objects in sec. {2.2.2}. In particular, the terms in brackets on the right-hand
side of eq. (2.3.16) can be computed in the circular-orbit approximation using the
quadrupole moment defined in (2.2.21). Using this substitution, we get
〈
d3QTT

ij

dt3
d3QTT

ij

dt3

〉
=

〈
d3QTT

ij

dt3
ηimηjn

d3QTT
mn

dt3

〉
= 32µ2l40ω

6
K =

32µ2M3G3

l50
. (2.3.21)

The energy emitted per unit of time will hence be given by

dEGW

dt
=

32G4µ2M3

5c5l50
. (2.3.22)

Equation (2.3.22) is valid in the regime where the orbital parameters of the in-
spiralling system do not vary significantly when averaged over several periods of the
orbit, such as the case for systems that are several years away from coalescence. This
assumption is called in literature as adiabatic approximation. In the adiabatic regime,
the system has enough time to adjust the orbit to compensate for the energy lost due to
gravitational wave emission. We can hence write down the equation for the evolution
of the orbital energy as

dEOrb

dt
= −dEGW

dt
: EOrb = EK + U, (2.3.23)

where we introduced EOrb to define the orbital energy of the system, and we imposed
that equal to the sum of the kinetic energy EK plus the potential energy U . These
quantities will be given by

EK =
1

2
ω2
K

(
m1r

2
1 +m2r

2
2

)
=

1

2
ω2
Kµl

2
0 =

1

2

GµM

l0
, (2.3.24)
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U = −Gm1m2

l0
= −GµM

l0
. (2.3.25)

We hence obtain

EOrb = −1

2

GµM

l0
⇒ dEOrb

dt
= −EOrb

(
1

l0

dl0
dt

)
. (2.3.26)

Equation (2.2.13) can be used to express the derivative in l0 as a function of ωK ,
and we then get

ω2
K = GMl−3

0 ⇒ 2 ln ωK = ln GM − 3 ln l0 ⇒ 1

ωK

dωK

dt
= −3

2

1

l0

dl0

dt
,

(2.3.27)
implying that eq. (2.3.26) can be rewritten as

dEOrb

dt
=

2

3

EOrb

ωK

dωK

dt
. (2.3.28)

Since ωK = 2π/P , where P is the period of the orbit, we can also find

1

ωK

dωK

dt
= − 1

P

dP

dt
, (2.3.29)

which implies that the period of the orbit will change due to gravitational wave emis-
sion as follows:

dEOrb

dt
= −2

3

EOrb

P

dP

dt
⇒ dP

dt
= −3

2

P

EOrb

dEOrb

dt
. (2.3.30)

The knowledge of the energy dissipated by the system allows us also to estimate
how the orbital separation will evolve as a function of time. To this extent, we can use
eq. (2.3.26) to write down

1

l0

dl0
dt

= − 1

EOrb

dEOrb

dt
= −

(
64G3µM2

5c5

)
1

l40
. (2.3.31)

If we assume that at some initial time t = 0 we have l0(t = 0) = lin0 , we can integrate
eq. (2.3.31) and get

l40(t) = (lin0 )4 − 256G3µM2

5c5
t. (2.3.32)

We can now introduce the time to coalescence tcoal, which describes the residual time
left to reach the coalescence for the binary system, as

tcoal =
5c5(lin0 )4

256G3µM2
, (2.3.33)
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and rewrite eq. (2.3.32) in terms of the latter:

l0(t) = lin0

[
1− t

tcoal

]1/4
. (2.3.34)

It can be observed that when t = tcoal, the orbital separation goes to zero. This
is a consequence of the assumption that the two bodies are point masses. Indeed in
physics, both stars and black holes have finite sizes, and therefore their effective co-
alescence will happen before this estimated value of tcoal. It has to be emphasized,
however, that when the distance between the two objects becomes close enough, both
the slow-motion approximation and weak-field assumption would fail anyway, making
the quadrupole approximation that was used to derive this results not valid. Neverthe-
less, for systems that are far away from coalescence, the quantity defined in eq. (2.3.33)
serves as a very good approximation for the effective time to coalescence.

By using eq. (2.3.34) in eq. (2.2.13), we can obtain the time evolution for the
orbital frequency ωK :

ωK(t) =

√
GM

l30(t)
= ωin

K

(
1− t

tcoal

)−3/8

: ωin
K =

√
GM

(lin0 )3
, (2.3.35)

which implies a frequency or the emitted wave given by

νGW (t) =
ωK(t)

π
= νinGW

(
1− t

tcoal

)−3/8

: νinGW =
1

π

√
GM

(lin0 )3
. (2.3.36)

By considering eq. (2.2.23) we can also redefine the time-dependant wave ampli-
tude as

h0(t) =
4µMG2

rl0(t)c4
=

4µMG2

rc4
ω
2/3
K (t)

G1/3M1/3
. (2.3.37)

If we now introduce the chirp mass as

M = µ3/5M2/5 ⇒ M5/3 = µM2/3, (2.3.38)

we can rewrite eq. (2.3.37) as

h0(t) =
4π2/3G5/3M5/3

c4r
ν
2/3
GW (t). (2.3.39)

The reason why M is called chirp mass is that, by looking at both eqs. (2.3.36) and
(2.3.39), we can observe that both the frequency and amplitude for the emitted gravi-
tational wave waveform increase with time, like the chirp of a bird.
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Finally, we can define an approximate waveform for the binary system by slightly
modifying eq. (2.2.24). To this extent, we can use an integrated phase for the term
ATT

ij (t− r/c). The integrated phase will take into account the frequency evolution in
time of the emitted waveform, and can be defined as

Φ(t) =

∫ t

0

2ωK(t)dt =

∫ t

0

2πνGW (t)dt+ Φin : Φin = Φ(t = 0), (2.3.40)

since

νint
3/8
coal = (53/8)

1

8

(
c3

GM

)5/8

⇒ νGW (t) =
1

8π

(
c3

GM

)5/8(
5

tcoal − t

)3/8

, (2.3.41)

and eq. (2.3.40) can be integrated giving

Φ(t) = −2

[
c3(tcoal − t)

5GM

]5/8
+ Φin. (2.3.42)

The signal emitted during the inspiralling can hence be written as

hTT
ij =

4π2/3G5/3M5/3

rc4
ν
2/3
GW (t)

[
PijklAkl

(
t− r

c

)]
, (2.3.43)

with

Aij(t) =



cos Φ(t) sin Φ(t) 0
sin Φ(t) − cos Φ(t) 0

0 0 0


 . (2.3.44)

It has to be emphasized that all the results of this section are valid only as
first approximations, as they are based on several assumptions that are not generally
satisfied by all inspiralling binaries. For example, the adiabatic approximation is only
valid when the orbital evolution of the binary is slow, and by looking at eqs. (2.3.34)
and (2.3.35) it appears clear that this condition is not satisfied when the binary is close
to coalescence and hence its orbital separation is small. Furthermore, the adiabatic
approximation assumes that the binary will evolve through semi-stable circular orbits,
which is a condition that is not fulfilled in any part of the binary evolution if the
eccentricity of the orbit is not neglectable. Nevertheless, these results are widely used
in literature and are particularly useful when considering systems that are far away from
the coalescence, with masses that are approximately comparable and low eccentricity
and spin amplitudes for the involved objects. This is usually the case for SMBBH
in the LISA frequency range [182]. In principle, if we wish to study systems that do
not respect the previously mentioned conditions, the right approach would be to solve
(either analytically or numerically) the wave equations defined in (2.2.8). It is however
possible to find better approximations than the one proposed in this section that are
obtained through the use of additional Post-Newtonian expansion terms [31, 175].
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Abstract. We adopt the Pearson cross-correlation measure to analyze the LIGO
Hanford and LIGO Livingston detector data streams around the events GW150914,
GW151012, GW151226 and GW170104. We find that the Pearson cross-correlation
method is sensitive to these signals, with correlations peaking when the black hole
binaries reconstructed by the LIGO Scientific and Virgo Collaborations, are merging.
We compare the obtained cross-correlations with the statistical correlation fluctua-
tions arising in simulated Gaussian noise data and in LIGO data at times when no
event is claimed. Our results for the significance of the observed cross-correlations
are broadly consistent with those announced by the LIGO Scientific and Virgo Col-
laborations based on matched-filter analysis. In the same data, if we subtract the
maximum likelihood waveforms corresponding to the announced signals, no residual
cross-correlations persist at a statistically significant level.
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3.1 Introduction

The detection of gravitational waves by LIGO was a major milestone in the history
of astronomy [44]. Achieving the necessary strain sensitivity of the instruments was a
memorable technological accomplishment [183], while determining the required wave-
forms was an astonishing success of the physics community [184]. Despite these great
achievements, the detection of the signals remains a challenge: the signals are still at
low signal-to-noise ratios and must be extracted from the data using advanced statis-
tical techniques and signal processing.

The most sensitive gravitational wave data searches rely on matched-filtering tech-
niques [185–187]. These are based on comparing the data with a class of signals de-
termined in a specified theory. Such techniques are robust and very sensitive if the
source waveform is accurately predicted. For signals with uncertain modelling, more
model-independent, although less sensitive, searches are necessary [21, 188–192]. The
coherent wave approach is particularly suitable in these cases. Its flexibility enables it
to identify signals that deviate from model expectations. There are still some intrin-
sic assumptions in the coherent wave method (such as the waves being plane waves
traveling at the speed of light with the polarisation behavior of GR waves), so that
more agnostic techniques are required to rule out or discover (unexpected) signals not
fulfilling these assumptions. Searching for statistically significant correlations in the
data of noise-uncorrelated detectors, with as few as possible biases on the signal struc-
ture, is poorly efficient in terms of reconstruction power and computing resources but
is an option that still deserves some attention. Moreover, the same searches applied to
the data streams where the reconstructed signal is subtracted, are a powerful tool to
quantify the quality of the reconstructions and the possibility of incoherent detector
noise.

Matched-filtering searches typically assume Einstein’s theory of General Relativ-
ity. This theory is the standard paradigm for gravity, having passed all tests in the
Solar System with flying colors. Gravitational wave observations can be used to test
this theory in different systems. Neutron star binary systems have been observed
via gravitational waves and other astronomical messengers. These observations are
already raising questions about our theoretical understanding of neutron star popu-
lations [193, 194]. On the other hand, black hole binaries, triplets, and other “dark”
systems can be currently discovered only by means of gravitational wave observations.
Robust confidence in the analysis of gravitational wave data is thus of key importance
for the exact interpretation of the observations. This requires comprehending many
aspects, for instance how deviations from expected models might manifest themselves
in the data [195], and how to be sensitive to the unexpected.
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Monitoring the correlation in the data collected by independent interferometers
constitutes an interesting method to test the unexpected. Some publications have
explored this direction by analyzing the LIGO data streams with known events [196–
201]. It turns out that several subtleties jeopardize the reliability of such a test [202].
For instance, after supposedly subtracting the GW150914, GW151012, and GW151226
signals from the corresponding data streams, refs. [196, 197, 200] find some anomalies
that could potentially be ascribed to a sizable mismatch between the detected signals
and the general-relativity waveforms that best fit these signals. However, ref. [199] con-
cludes that this mismatch for GW150914 is not statistically significant once one takes
care of subtleties, such as whitening versus notching or discrepancies in the best-fit
waveforms. Still, some debate remains over the exact size of the statistical significance
[200, 201].

The question of whether the anomalies claimed in ref. [197] for GW151226 and
GW170104 are actually caused by similar subtleties, has not been fully addressed yet.
In the present paper, we tackle this question, and for completeness we run our tests
also on GW151012, a black hole merger detected in the first observing run, that was
initially classified as marginal but has now been promoted to a confident detection
by several groups [144, 203, 204].1 We believe that our results help to clarify several
aspects that can guide the community in future implementations of correlation-based
searches for new physics, in the presence and in the lack of a signal model.

This manuscript is organized as follows. Section {3.2} details how we preprocess
the data and apply the Pearson cross-correlation measure. Section {3.3} contains the
results and comments on them. Finally, sec. {3.4} is devoted to our main conclusions
and outlook.

3.2 Methodology

Our methodology follows closely the approach presented in ref. [199] which itself is
designed to scrutinize the claimed anomalous correlations in the GW150914 data from
refs. [196, 197]. The approach in ref. [199] is thus tuned to work on the features of the
GW150914 signal. To extend it beyond GW150914, we need to decide some criteria
aimed at generalizing this procedure to other events.

In brief, the procedure we adopt is the following: we take the GWOSC cali-
brated gravitational wave strain data of LIGO Hanford and LIGO Livingston around
the events GW150914, GW151012, GW151226, and GW170104; we whiten and band-
pass the data of each event and each detector individually; we calculate the Pearson

1We restrict our analysis to the events GW150914, GW151012, GW151226 and GW170104 as their
LIGO data can be easily handled by means of the Gravitational Wave Open Science Centre (GWOSC)
toolbox [205]. The GWOSC webpage indeed provides several numerical tools already tuned for the
analyses of these four events. There is no conceptual obstacle in analyzing other events in the way we
present here.
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cross-correlation between the data streams of the detectors before and after subtract-
ing best-fit GR waveforms; and we check the statistical significance of the obtained
correlations with the statistical fluctuations arising in pure noise. We now describe the
choices of these steps and their reasons.

We choose here to whiten the data, rather than notch them with a list of fre-
quency lines. This simplifies our analysis, providing a unique criterion applicable to
every event without requiring a complete list of individual lines to be notched. Such a
list, varying from event to event, does not exist in general and would need to be gener-
ated by hand with some judgment (we note that ref. [197] also uses whitening for their
analysis of GW151226 and GW170104). This generalization of the analysis leads to a
change in spectrum of both noise and templates. In particular, the whitening reduces
the contribution of low frequencies to the residuals and cross-correlations. Whitening
the data also more closely follows the practice in the wider gravitational wave litera-
ture; e.g. ref. [202]. We refer to ref. [199] for details on the whitening process we employ.

We apply a bandpass to the data filtering frequency ranges that vary for each
event. The chosen ranges loosely follow those considered in the GWOSC webpage
[205] which itself does not necessarily implement the values used in the published
LIGO-Virgo Collaborations (LVC) analyses, but provides a convenient guide for our
investigation. The high-pass frequency adopted in GWOSC is 43Hz but the data at
frequencies 35− 60Hz are usually highly dominated by seismic noise. We then round
the high pass frequency to 50Hz for all events but the first one, for which we keep the
choice adopted in ref. [199] to facilitate the comparison between our findings and those
previously obtained. For the low-pass frequencies, we typically use lower frequencies
than those chosen by GWOSC, which are 300 Hz for GW150914, 400Hz for GW151012
and 800Hz for GW151226 and GW170104.2 We in fact take a low-pass frequency not
smaller than 200− 300Hz for these frequencies in order to be free of seismic and ther-
mal noise, and sufficiently below the violin frequency disturbances at around 500 Hz.3

It is of course essential to not cut out the dominant frequencies associated with
the binary coalescence. Indeed a cross-correlation analysis, as opposed to an extended
matched-filter, appears to be more sensitive to the signals around their peak of strain.
For a binary merger, it is hence weakly impacted by the low-frequency strain at the start
of the inspiral phase whereas it is dominated by the higher-frequency strain around the
coalescence stage. Table [3.1] shows the specific values of the low and high bandpasses
we implement.4 These values are in part determined by the inferred properties of the
signal and thus further investigations with truly blind searches would be required to

2These values correspond to the option ‘fband’ in the JSON files of the GWOSC webpage [205].
3We ran some tests on power spectral density at about the time of the GW151226 event. For a

low pass of 480 Hz or larger, the data at high frequencies are still very noisy due to contamination at
the violin frequencies.

4As a consistency check, for the GW151012 event we ran our analysis with different choices of high-
and low-pass frequencies. For variations of about ±5Hz, the findings do not qualitatively change.
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test the capabilities of the Pearson correlation search method for unknown signals.

To construct the data sets of the residuals, we subtract best-fit GR waveforms. As
shown in ref. [199], for GW150914 the maximum likelihood waveform produces cleaner
residual data than the numerical relativity waveform released on GWOSC. In our anal-
ysis here we subtract maximum likelihood waveforms, specifically the one provided in
ref. [206] for GW170104 and those available in ref. [207] for the other three events.

To measure the cross-correlations between the Hanford and Livingston data sets,
we apply a Pearson cross-correlation measurement. The Pearson cross-correlation is
given by

R(τ, t, ω) =

∫ t+ω

t

H(t′ + τ)

σH

L(t′)

σL
dt′ , (3.2.1)

where H(t) and L(t) are respectively the data in Hanford and Livingston (with or
without the signal subtracted) at the time t set in Hanford, σH and σL are the standard
deviations of the Hanford and Livingston data respectively, and ω is the time window
in which the correlation is measured. The quantity τ is the time lag between the signal
arrival times in Hanford and Livingston (positive if the signal reaches Livingston first).
Unfortunately, in most of the realistic cases, τ comes with an important uncertainty
∆τ that eq. (3.2.1) does not take into account. We thus need to modify the measure
R, and define the (improved) cross-correlation measure

C(τ,∆τ, t, ω) = max
τ̄

R(τ̄ , t, ω) : |τ̄ − τ | ≤ ∆τ . (3.2.2)

Due to computational limitations, we have not performed a complete multivariate
analysis on t and τ . We instead prefer to analyze the t dependence of C along a strip
τp ±∆τp — with τp and ∆τp taken from refs. [197, 208], and identify the time t = tp
at which |C(τp,∆τp, t, ω)| is maximal. This facilitates comparison with existing results
in the literature and makes manifest the impact of some subtleties such as different
bandpasses, whitening, and subtracted waveforms. On the other hand, the data pre-
processing in refs. [197, 199] and in ours differs in several aspects, so that it is not
guaranteed that taking τ = τp is a valid assumption. For this reason, we perform some
consistency checks, and test a posteriori that at t = tp no higher cross-correlations
arise when moving τ outside the strip τp ±∆p.

To identify tp, it is important to evaluate C in a t interval including the merger
time around which the maximal cross-correlation is expected in the data before sub-
tracting the reconstructed signal. In principle the length of this interval should mildly
affect the findings, however, an appropriate interval helps avoid statistical artifacts and
include relevant signal data.

For concreteness, we take t ∈ [tr − 0.1 s, tr + 0.1 s], with tr being the arrival time
(rounded at the first decimal digit) of the maximal signal strain in Hanford as esti-
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Event Bandpass H-L time Reference Window
Name range (Hz) τp ±∆τp (ms) time tr (s) ω (ms)

GW150914 35-350 6.9 ± 0.5 1126259462.4 0.4
GW151012 50-230 -0.6 ± 0.6 1128678900.4 0.4
GW151226 50-460 1.1 ± 0.3 1135136350.6 0.4
GW170104 50-230 -3.0 ± 0.5 1167559936.6 0.4

Table 3.1. The values of the input parameters for the analysis of each event.

mated in the GWOSC analysis [205]. For τ and ∆τ we adopt the values obtained in
refs. [197, 208]), while for ω we consider the time window ω = 40ms which corresponds
to four cycles of a gravitational wave of 100Hz. As a consistency check, we allow τ to
move from −10 to 10ms. Such an analysis is performed for both the data sets with
the signals and those with only the residuals. Table [3.1] summarizes the inputs we
adopt in our analysis.

Lastly, we analyze the cross-correlation among the detectors for pure noise by
estimating the backgrounds, following the procedure described in ref. [199]. However,
our analysis differs from ref. [199] in some technical points. While in ref. [199] the
residual data was used for background times, we preferred to use the original data
strain in a time interval far away from the coalescence, where no event was declared.
In particular, the time interval was chosen to start 12 minutes away from the coales-
cence time.

We generate several pairs of data sets, each pair consists of a set of mock data
of simulated pure Gaussian noise and a set of LIGO data at times away from any
claimed event. These pairs are then treated in exactly the same way as the event data
we consider. We thus whiten and bandpass them, and run the C estimator over them
according to table [3.1]. This tells us how often a given cross-correlation value arises
as a statistical fluctuation in background noise, and furnishes a probability estimate
for the maximal correlations we find in our analysis to occur by chance in pure noise.

The code with the implementation of our analysis is public [209]. We refer the
reader to this for further details on the preprocessing of the data and their analysis.

3.3 Results

In this section, we discuss our main results. We start by presenting the t dependence
of C in the strip τp ±∆τp, and then show the consistency check previously described.
At the end, we quantify the statistical significance of the identified cross-correlations
before and after subtracting the maximum-likelihood waveforms of the reconstructed
signals.
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3.3.1 Cross-correlation: t dependence

We run the cross-correlation measure C over the time series around the GW150910,
GW151012, GW151226 and GW170104 LIGO data, preprocessed as explained in Sec-
tion {3.2}. The resulting t dependence is plotted in the upper panels of figs. 3.1–3.4,
where the time variable is shifted by t0 ≡ tr − 0.1 for clarity. In each figure, each one
dealing with a different event, the blue solid and dashed orange lines represent the
t evolution of C in the data, respectively before and after subtracting the maximum
likelihood waveforms of the reconstructed signals. The red vertical line marks tp, the
maximal (in absolute value) correlation time found in the data before the waveform
subtraction. The green vertical line instead highlights td, the time at which subtract-
ing the waveform signal leads to the maximal difference in the correlation between the
original data and the residuals. The waveform signals that are subtracted are depicted
in the lower panels of the figures. They are shown after being whitened, bandpassed
and, for the waveform measured in Livingston, shifted by the value of τ reported in
table [3.1]. In each of these lower panels, the yellow region highlights the time frame
ω = 40ms for the peak correlation value of C(tp, τp,∆τp, ω) for the considered event. By
construction, such a time frame contains the data that the LIGO Hanford and LIGO
Livingston detectors collect at the times t ∈ [tp, tp + ω] and t ∈ [tp + τp, tp + ω + τp],
respectively.

For a signal that slowly increases in amplitude and then falls away rapidly, such as
a gravitational wave inspiral, the choice of a forward integration will lead to a shift in
time of the location of the maximum of the correlation integral compared to the loca-
tion of the maximum amplitude of the signal. This may appear unusual in figs. 3.1–3.4,
because the maximum correlation is found at a GPS time that is shifted to the left of
the real coalescence time, by a quantity approximately equal to the used integration
window. Both the residual correlation, and the difference between the strain correla-
tion and the residual correlation, fall off before the reference coalescence time tr, since
with a forward integration large parts of the integrated strain beyond that point come
from regions where the signal template is rapidly diminished. In spite of this issue,
we choose here to keep a forward integration for our correlation formula (3.2.1), in
order to enable easy comparison of our results with existing ones from the literature
[196, 197, 199, 200].

With this choice we expect tp to be around tr − ω, i.e. in the data segment pre-
ceding the signal’s maximal strain (during the ringdown the amplitude of the signal
is much weaker than in the late inspiral and merger phase). Our results fulfill this
expectation (c.f. tr and tp in table [3.1] and table [3.2], which quotes the key quantities
calculated in this section).

Figure 3.1 shows the correlation versus detector time around the event GW150914.
The cross-correlation behaviour of this event is widely discussed in the literature
[196, 197, 199, 200, 207]. We present it here for ease of comparison with previous
results. We notice that, after subtracting the reconstructed signal, the correlation in
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the time window [tp, tp + ω] is strongly reduced and the global peak of the correlation
is no longer inside this window. The maximal variation between the cross-correlations
before and after the subtraction is also outside of this time window, i.e. td < tp. This
is not surprising if after the subtraction of the model waveform from the original data,
what remains is a pure noise correlation between the two detectors. The residual cor-
relation, assuming a perfect subtraction of the signal waveform, may vary randomly in
magnitude, as well as in sign, independently from the subtracted signal.

We have to emphasise however, that even though noise correlations and signal
correlations are not linearly additive, they are still additive. Having a really low value
of correlation difference after subtraction at the time t∗, therefore suggests that most
of the correlations at said time were given by statistical fluctuations of the noise, which
are indeed not the ones we are interested in this kind of analysis. We will see in particu-
lar in the case of GW151012, where the low signal-to-noise ratio (SNR) of the incoming
wave allow the noise correlations to be comparable with the ones generated by genuine
gravitational waves effects, that the first peak of maximum correlation found can be
discarded due to the low significance difference of the correlations before after the sub-
traction. We detail the statistical compatibility of the residuals with the instrumental
noise in Section sec. {3.3.3}.

In the top panel of fig. 3.1 after the merging time, there are still some slight dif-
ferences between the original data correlation (in blue) and the residuals correlation
(in orange). Since the model waveform is zero after the ringdown, one might expect
there should be no difference between the correlations of the original data of fig. 3.1
and the residual data. However, the process of whitening applied both to the original
data and the model waveform, introduces a small difference in both of the considered
data (see the variation after the ringdown part of the model waveform in the bottom
panel), that once integrated over the window ω to estimate the correlations will result
in the small mismatching observable among the two. This feature of the analysis, is
present in all of the reported figs. 3.1–3.4.

The analogous plots for the event GW151012 are presented in fig. 3.2. GW151012
is the event with the lowest SNR among the ones we investigate. The figure shows that
we still obtain relatively high values of |C|, although not as high as for GW150914. As
we will see later in this section, the significance of these values is also not as high as
the ones for GW150914. This is qualitatively consistent with the interpretation of a
lower amplitude signal due to a smaller mass system at a greater distance.

At 0.05 s ≲ t − t0 ≲ 0.075 s the data correlation occasionally becomes positive,
even though we expect that the effects of the incoming gravitational waves should result
in an anticorrelation among the detectors. It has to be emphasized though, that the
correlations of residuals and reconstructed waveforms are not linearly additive, hence
this effect arises for this event due to the low amplitude of the gravitational wave sig-
nal in the detectors, compared to the noise, at times away from the coalescence. At
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Figure 3.1. Top panel shows the correlations between Hanford and Livingston detector
strain data for 200ms of data around GW150914. The bottom panel shows the whitened
model waveforms that are subtracted from the data to produce the residuals, where the time
interval highlighted in yellow represents the part of the waveforms that was integrated in the
estimation of the correlation at the time of maximum correlation tp. The Livingston waveform
is shifted in time relative to the Hanford waveform in order to highlight the anti-correlation
between the two strains.

t − t0 ≲ 0.010 s the signal dominates the noise in the detectors. Hence, even though
the correlation of the residuals flips sign, the correlation in the data before the signal
subtraction remains negative until it lines up with the residual strain after the coa-
lescence time. Eventually, after the signal waveform fades out, no sizeable correlation
remains.5

Furthermore, at t − t0 ≲ 0.010 s a first maximum of strain correlation appears,
however, as discussed previously this peak can be neglected because most of its anti-
correlation is given by a statistical fluctuation of the noise. This fact may be further
elucidated by observing the bottom panel of fig. 3.2, which clearly shows that in re-
lation to the first peak we are not even including the merging part of the waveform
in the correlation data. This event is the only one for which the correlations in the
residual data are positive around the time of the signal merger, that is, in one forth of
our events the residual exhibits a positive correlation, which seems statistically unre-
markable to us.

5Our results do not confirm the late-time correlation found in ref. [190]. However our results are
restricted to time lags τ consistent with the main event and are thus blind to correlations at other
time lags, that could be interpreted as originating from other parts of the sky.
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Figure 3.2. As fig. 3.1, but for the GW151012 event.

Figure 3.3. As fig. 3.1, but for the GW151226 event.

Concerning GW151226 and GW170104 (see figs. 3.3 and 3.4), the t dependence
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Figure 3.4. As fig. 3.1, but for the GW170104 event.

of C essentially presents no key qualitative features not already noted above for
GW150914 and GW151012. The signal in GW151226 has a reconstructed total mass
much smaller than the other three. The signal thus exhibits the largest gravitational
wave frequency at the coalescence time, about 447Hz [205], and the smallest relative
strain around the coalescence time. The maximum of C is then the smallest in absolute
value. The amplitude of the signal in GW170104 is instead much higher. Its source
involves two highly massive black holes (of approximately 30 and 20 solar masses) and
is the next to farthest among the four considered sources.

For binaries with masses inferred for GW170104 at the reconstructed luminosity
distance, theory predicts that the gravitational wave signal has a peak strain amplitude
at a frequency around 190Hz, where the noise of the detectors is quite low. Thus the
correlation of the data around this event peaks at a rather high value, almost as high
as the one in GW150914.

The straight comparison between the values of the C peak in different events can
be misleading. For instance, let us consider the case of GW150914 and GW170104.
As just observed, C peaks at similar values in these two events. It is however known
that the matched-filter SNR in GW150914 is almost twice as high as the matched-
filter SNR in GW170104 [144], so it may seem that this observation is not compatible
with the similar values of the correlation peaks. However, correlation values in and
of themselves are not directly comparable without considering the different bandpass
frequency ranges and length of data for which the correlations are calculated. We
further investigate this aspect in sec. {3.3.3}.
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For the four considered binary merger events, if one knows the time lag τ ±∆τ
and has an indicative time data segment where to look in, C(τ,∆τ, ω, t) reaches large
values in the proximity of the time frame where the inferred signal strength becomes
high. In addition, running C on the residuals constitutes a valuable check of the signal
model. In the case of our four events, if one subtracts the signal reconstructed as-
suming the theory of General Relativity, the correlation maximum (in absolute value)
moves away from the time interval where C peaks. This is not yet a complete test of
the model but it is certainly encouraging. We come back to this point after performing
the consistency checks on the values of τ we have just adopted.

3.3.2 Cross-correlation: τ consistency check

We have determined tp by assuming τ = τp and ∆τ = ∆τp, with τp and ∆τp taken
from previous studies [197, 208]. Here we present the consistency checks. We test that
|C(τ, 0, tp, ω)| < |C(τp,∆τp, tp, ω)| for τ ∈ [−10ms, τp −∆τp] ∪ [τp + ∆τp, 10ms], that
is, no higher cross-correlations are found at t = tp for a time lag τ away from the strip
τp ±∆τp.

Figure 3.5 shows C(τ,∆τp, tp, ω) as a function of τ , for ∆τp and ω as in table [3.1].
The time is fixed at the values of tp obtained from the t dependence analysis of C and
reported in table [3.2]. Each panel corresponds to one of the four events we analyse.
The grey band spans the time lag τp ± ∆τp. The figure highlights two remarkable
facts. First of all, had we determined τ and ∆τ independently of the previous results
in the literature, this would have been estimated as the peak of correlations and its
approximate width arising in the strain data before the signal subtraction (blue line).
Such peaks turn out to be within the gray bands, which proves that the values of τ
used in the previous section are consistent with the data treatment of our analysis.
Secondly, the correlation in the residuals (pink line), obtained after the subtraction of
the model waveform from the original data, does not necessarily peak in the grey zone.
(In some cases the global peak for the residuals is close, but not inside, the grey zone.
In some cases the global peak for the residuals is a positive correlation rather than a
negative correlation.) This feature, together with the observation that the data and
residual correlation peaks are well separated in figs. 3.1–3.4, sheds light on the precision
of the subtracted waveform: If there was a sizeable discrepancy between signal and
subtracted waveform during the merging phase, the cross-correlation in the residuals
would have likely peaked within the grey band where the signal strain amplitude is
larger.6 A peaking of the residuals’ correlation within the grey band is however not
sufficient for there to be a problem with the subtracted waveforms. It can also happen
by pure chance.
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Figure 3.5. The cross-correlations as a function of τ at the time t = tp. The gray bands
correspond to the strips τp ±∆τp previously used to determine tp.

3.3.3 Background cross-correlations and statistical interpretation

In order to determine the statistical significance of our computed cross-correlations, we
run the C estimator over the aforementioned data sets of background, and count how
often a given value of |C| arises in pure noise data (preprocessed in the same way we
preprocess the LIGO events that we analyze). From this we estimate the probability,
in terms of a p-value, that a value at least as large as our observed cross-correlation
value, would occur as a statistical fluctuation in pure noise.

Figure 3.6 reports the statistical significance of the cross-correlations arising in
the four LIGO event data sets before and after subtracting the reconstructed signal
waveform (dashed vertical lines in blue and pink, respectively).7 The black and crimson
curves show the p-value deduced from cross-correlations found in the off-source LIGO
data sets and the simulated Gaussian noise data sets, respectively. The usage of these
two different curves is complementary. The simulated Gaussian noise is guaranteed to
be free of truly correlated signals while the off-source detector data more closely fol-
lows the noise distribution of the actual detectors. The close agreement of these curves
however indicates that the true noise of the detectors is statistically indistinguishable
from pure Gaussian noise at the level of this test for all the bandpass frequency ranges

6More details on this reasoning can be found in refs. [197, 199].
7To reduce the computational time, the code evaluates R(τp, t, ω) instead of C(τp,∆τp, t, ω). The

latter reproduces the former in the limit ∆τ → 0 (cf. eqs. (3.2.1) and (3.2.2)). This leads to slightly
overestimate the significance of the cross-correlations C(τp,∆τp, tp, ω) obtained in Section {3.3.1}.
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Figure 3.6. Comparison between the actual correlation values obtained for the events, and
the frequency of occurrence of similar correlation values in the background of detector time
away from events (black lines) and in simulated Gaussian noise (crimson lines). Here the same
background values are used for the events GW151012 and GW170104, as the same frequency
bandpass range was employed for these two events.

used in our analyses.

Although this procedure of estimating significance is different in several respects
from that employed by the LVC, there is still qualitative agreement in the significance
ranking of the four events. From fig. 3.6 the most significant event, in agreement with
the LIGO results, is GW150914, with a p-value of approximately 10−5. Moreover,
the subtraction of the maximum likelihood waveform in the GW150914 data, makes
C(τp,∆τp, t, ω) drop down four orders of magnitude. The GW151226 and GW170104
data before subtraction are the next most significant events of the four analyzed, with a
p-values around 10−3 and 10−4 respectively. This similarity is unsurprising considering
that both these events have a matched-filter SNR around 13 [144]. However, after the
subtraction of the numerical waveform, the p-value of the residuals’ cross-correlation
for GW151226 is approximately 0.2, while for GW170104 it is around 0.08. This feature
is a consequence of the fact that detector noise exists at all frequencies. With a bigger
frequency range considered, a larger amount of noise is included in the data, making
it harder to identify potential signals with a limited bandwidth. On the other hand,
once the background is bandpassed and whitened, the dependence on the frequency
range of the correlations is taken into account, hence the significance obtained for the
various events, can be more easily compared between events. Lastly, in agreement with
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Event Max corr. Max corr. var. C(τp,∆τp, tp, ω) C(τp,∆τp, tp, ω)
Name time tp (s) time td (s) before subtr. in residuals

GW150914 1126259462.39 0.0069 ± 0.0005 -0.97 -0.53
GW151012 1128678900.42 -0.0006 ± 0.0006 -0.84 -0.10
GW151226 1135136350.62 0.0011 ± 0.0003 -0.78 -0.32
GW170104 1167559936.57 -0.003 ± 0.0005 -0.94 -0.70

Table 3.2. Time of maximum correlation and obtained correlation values at that time for
the four analysed events. Correlation values are rounded up to the second decimal value and
denote the maximum magnitude of correlation found in the assumed time-lag intervals, both
for the original data and after subtraction of a maximum likelihood waveform. To check the
full precision results see ref. [209].

LVC results, GW1510128 is the least significant event among the four. The p-value
of its data before and after waveform subtraction is only around 10−2 and 1, show-
ing that the maximum likelihood waveform still efficiently reduces the cross-correlation.

In general, fig. 3.6 shows that the cross-correlation method, combined with the
present statistical interpretation, is a valid tool for complementary searches of signals
and tests of their modelling.

3.4 Conclusions

Sensitivity to the unexpected is one of the main challenges of the modern experiments.
Marvelous sensitivities often come at the expense of intricate data analysis techniques
required to dig out weak signals from data largely contaminated by instrumental noise.
Unfortunately, such techniques tend to rely on hidden or manifest assumptions, with
the risk of overlooking signatures of new physics in the data. It is then worth develop-
ing alternative techniques to analyze data with a range of different assumptions and
generality. In the present paper we have investigated one of these approaches, the so
called Pearson cross-correlation method. Specifically, we have employed (a variation
of) it to analyse the data of the four gravitational wave events GW150914, GW151012,
GW151226 and GW170104, and scrutinize some claims made about them. The study
has led to the following conclusions:

• Although the Pearson cross-correlation method is less sensitive than a matched-
filter analysis, it is still able to recover the events at relatively low p-values,
relative to both off-source detector data and simulated Gaussian noise.

• No significant cross-correlation arises at about 0.1 s after the end of each event if
the Hanford and Livingston detector data are analysed with time lags consistent
with the original events. No evidence of events such as echoes is then found with
this method.

8There was a typo on the name of the event in the original article that is now corrected on this
version.
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• In all of the four events, the cross-correlations in the data after subtracting maxi-
mum likelihood general-relativity waveforms, is consistent with noise fluctuations.
Specifically, such cross-correlations have p-values larger than 0.05. This is con-
sistent with the residual analysis results of the LVC [21], and amply compatible
with GR.

• The maximum peaks in the residual correlations do not typically occur at detec-
tor time lags consistent with the original events. This seems statistically natural
in the case that the subtracted waveforms well fit the signal in the merging stage,
which is the phase at which the binary signal strain is the largest and the Pearson
cross-correlation method consequently reaches its highest sensitivity.

Several aspects however remain to be explored in more depth. With more com-
putational resources dedicated to the study, it would be interesting to systematically
investigate the performances of the Pearson cross-correlation method in the whole cat-
alogue of LIGO events, and excise these data with a multivariational approach of the
Pearson cross-correlation estimator (here we have run it by varying either the GPS
detector time or the time lag). This is especially true of much lower mass systems
such as the binary neutron star merger GW170817. While analysis of this event is
beyond the scope of the present work, we see no fundamental reasons why the current
techniques could not be applied there. The same method could also be adopted to test
the quality of the multi-source fitting necessary to solve the “enchilada” problem in
LISA data [210]. We plan to deal with some of these aspects in future investigations.
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3.6 Appendix A : Maximum likelihood IMR waveform param-
eters

In this appendix, we report the values of the General Relativity model templates that
we subtract from the detectors data for the four analyzed events. These values corre-
spond to the maximum likelihood values reported in ref. [207]. They are constructed us-
ing the phenomenological inspiral-merger-ringdown waveform family IMRPhenomPv2
[211] which is freely available as part of LALSuite [212].
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Parameter Description GW150914 GW151012 GW151226 GW170104
m1 Mass of the larger black hole (M⊙) 39 23 19 39
m2 Mass of the smaller black hole (M⊙) 32 19 7 21
a1 Dimensionless spin of the larger BH 0.977 0.299 0.607 0.550
θa1 Azth. angle of the larger BH spin (rad) 3.6 1.0 2.5 3.49
θp1 Polar angle of the larger BH spin (rad) 1.6 2.30 1.2 2.39
a2 Dimensionless spin of the smaller BH 0.189 0.067 0.938 0.553
θa2 Azth. angle of the smaller BH spin (rad) 3.44 5.48 5.32 0.06
θp2 Polar angle of the smaller BH spin (rad) 2.49 0.40 1.05 0.59
dL Luminosity distance (MPc) 480 750 380 530
α Right ascension (rad) 1.57 0.65 1.85 0.89
δ Declination (rad) −1.27 0.07 0.99 −0.80
ψ Polarization (rad) 5.99 5.64 2.76 5.69
f0 Starting frequency of the waveform (Hz) 10 10 10 10
fref Reference frequency (Hz) 20 20 20 20
i Inclination of the binary at fref (rad) 2.91 2.32 0.66 1.09
ϕc Reference phase at fref 0.69 4.44 ∅ ∅
∆ϕ Waveform’s phase with respect to ϕc −0.92 −0.91 −0.10 −1.80

Table 3.3. Table of the maximum likelihood parameters for the waveforms of the four
events considered here. Values are rounded up to an arbitrary precision. The value of ϕc

for GW151226 and GW170104 is not reported as it is not part of the maximum likelihood
parameters reported by [207]. For the full precision results see ref. [209].
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Abstract. We use the latest constraints on the population of stellar origin binary
black holes (SOBBH) from LIGO/Virgo/KAGRA (LVK) observations, to estimate
the stochastic gravitational wave background (SGWB) they generate in the frequency
band of LISA. In order to account for the faint and distant binaries, which contribute
the most to the SGWB, we extend the merger rate at high redshift assuming that it
tracks the star formation rate. We adopt different methods to compute the SGWB
signal: we perform an analytical evaluation, we use Monte Carlo sums over the SOBBH
population realisations, and we account for the role of the detector by simulating
LISA data and iteratively removing the resolvable signals until only the confusion
noise is left. The last method allows the extraction of both the expected SGWB and
the number of resolvable SOBBHs. Since the latter are few for signal-to-noise ratio
thresholds larger than five, we confirm that the spectral shape of the SGWB in the
LISA band agrees with the analytical prediction of a single power law. We infer the
probability distribution of the SGWB amplitude from the LVK GWTC-3 posterior
of the binary population model: at the reference frequency of 0.003 Hz it has an
interquartile range of h2ΩGW(f = 3×10−3Hz) ∈ [5.65, 11.5]×10−13, in agreement with
most previous estimates. We then perform a MC analysis to assess LISA’s capability
to detect and characterise this signal. Accounting for both the instrumental noise
and the galactic binaries foreground, with four years of data, LISA will be able to
detect the SOBBH SGWB with percent accuracy, narrowing down the uncertainty
on the amplitude by one order of magnitude with respect to the range of possible
amplitudes inferred from the population model. A measurement of this signal by LISA
will help to break the degeneracy among some of the population parameters, and
provide interesting constraints, in particular on the redshift evolution of the SOBBH
merger rate.
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4.1 Introduction

Stellar-origin binary black holes (SOBBHs) are among the targets of the Laser Inter-
ferometer Space Antenna (LISA) [213]. The emission of gravitational waves from these
binaries crosses the mHz frequency band, probed by LISA, while they are still far from
coalescence. Given the recent constraints from the LIGO/Virgo/KAGRA (LVK) col-
laboration after three observation runs, we expect a large population of such systems
contributing to the LISA data stream [45]. At least a few of these binaries will be indi-
vidually detected [214–219], while the bulk of them will form a Stochastic Gravitational
Wave Background, as they are too faint/distant and/or because they produce long-lived
overlapping time-domain signals. The characterization of both resolved and unresolved
SOBBH sources is compelling since they are a source of confusion for other detectable
sources in the LISA band. For example, the SOBBH SGWB contribution will act as
a foreground for the detection of a possible signal of cosmological origin [220], see
e.g. refs. [221–224] for prospects about the detectability of a cosmological SGWB in
the presence of an SGWB of astrophysical origin.

Previous papers have estimated the expected level of the SOBBH background.
This can be achieved via direct extrapolation of the LVK observed merger rate, sup-
plemented by a simple modelling of the black-hole (BH) population and of the time
delay between the binary formation and the merger taken from refs. [225–227], as done
e.g. in refs. [214, 221, 228, 229]. In particular, refs. [221, 229] use the LVK observed
event rate from the Gravitational Wave Transient Catalog 2 (GWTC-2) [230]. Al-
ternatively, one can input more refined scenarios of BH formation from the evolution
of different populations of stars, accounting for the cosmic chemical evolution, opti-
cal depth to reionisation, and metallicity of the interstellar medium, to evaluate the
mass distribution of merging SOBBH and in turn the expected SGWB, as done e.g. in
refs. [57, 231–235]. An estimate of the number of resolvable SOBBH in LISA using the
GWTC-2 rate has been done e.g. in ref. [217].

In this paper, we employ several methods to estimate the SGWB in the LISA
band, using the most recent population constraints from the Gravitational Wave Tran-
sient Catalog 3 (GWTC-3) [45]. We evaluate the impact, on the SGWB amplitude, of
the observational uncertainty on the population parameters, taken from the posterior
parameter sample of GWTC-3: we find that the SGWB amplitude can vary by as much
as a factor of five. When considered independently, we show that the parameter whose
marginalised 2σ error influences the most the SGWB level is the power-law index of
the redshift dependence of the merger rate. We also assess LISA’s capability to de-
tect and characterise the predicted SOBBH SGWB via a Monte Carlo (MC) analysis of
simulated data, including the SGWB, the galactic binary (GB) foreground component,
and the instrumental noise. The maximal marginalised error on the SGWB amplitude
by LISA is ∼ 5%, i.e. much smaller than the variation due to the present (GWTC-3)
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observational uncertainty on the population parameters: this hints to the conclusion
that LISA will have a role to play in constraining SOBBH population parameters via
the SGWB measurement. Though future Earth-based GW detectors observations will
improve on the GWTC-3 constraints by the time LISA flies, we expect that LISA will
maintain an impactful constraining power, since the SGWB amplitude in the LISA
band is influenced by the high-redshift behaviour of the merger rate, complementary
to what will be accessible to ground-based detectors in the near future.

The paper is organised as follows. In sec. {4.2} we describe the population model
that we use, and the assumptions we consider, to construct the SOBBH catalogues.
In particular, we disregard eccentricity in the waveform, as well as any redshift de-
pendence of the population parameters, and we adopt a uniform distribution for the
time-to-coalescence in the detector frame (see sec. {4.2.1}). Faint and distant SOBBH
contribute to the SGWB signal: we, therefore, need to complete the GWTC-3 merger
rate, limited to low redshift, with a model for the star formation and evolution at higher
redshift. As explained in sec. {4.2.2}, we assume that the merger rate tracks the cosmic
star formation rate up to high redshift [130]. We evaluate the impact of a time-delay
between the binary star formation and the BBH merger on the SGWB amplitude in
sec. {4.4.2}. In sec. {4.2.3} we describe the other population parameters: for the mass
distribution we adopt the Power Law+Peak model, and for the spin amplitudes
a positive-exponents Beta distribution [230]; as for the remaining parameters, some of
them are randomly generated (i.e. time-to-coalescence, initial phase, position in the
sky, inclination, and polarization), whereas others are derived analytically (e.g. the
initial frequency of the generated events, their distance...). We have also produced
ten SOBBH catalogues at a benchmark fixed point in the population parameter space,
that we use for consistency studies; their characteristics are presented in sec. {4.2.4}.

In sec. {4.3} we present the four methods we have used to compute the expected
SOBBH background signal. In order of sophistication: (i) the first procedure is based
on an analytic evaluation of the characteristic strain as an integral over the number
density of inspirals, as first proposed by ref. [236] (sec. {4.3.1}); (ii) we then substitute
the integral over the number density by an MC sum over a realisation of a population,
(iia) first as a time-to-coalescence-averaged sum, (iib) and then taking into account
the time-to-coalescence of individual events and binning them according to their corre-
sponding emission frequencies (see sec. {4.3.2}); (iii) finally, in order to account for the
actual detection process of the SOBBHs by LISA, we apply the iterative-subtraction
method developed in ref. [237], for which at each step we compare the signal-to-noise
ratio (SNR) of each source i (ρi) to an SNR threshold (ρ0), and if ρi > ρ0, the source
is classified as resolvable and is subtracted from the data. The iterative subtraction
is performed on realistic LISA data-streams produced by injecting the time domain,
spinning wave-form signals of the events, one by one. The latter procedure, despite
being computationally expensive, yields a very accurate representation of the LISA
data and allows for the evaluation of both the residual SGWB level and the subtracted
sources (which we analyse in a companion paper [238]).
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In sec. {4.4} we present our results. We first check that the four methods give
comparable SGWB levels (see sec. {4.4.1}): since the number of subtracted sources is
small [233, 238], there is overall very good agreement. Method (i), i.e. the analytic
integration of the background, while not capturing some detailed features of the signal,
can safely be used to estimate the expected SGWB in the LISA band, for all points
in the posterior parameter sample of the fiducial FidLVK model: the results are
given in sec. {4.4.2}. In sec. {4.4.3} we present the results of the MC analysis of
simulated LISA data including the SOBBH SGWB, the galactic binary foreground,
and the instrumental noise. We show that, also in presence of the GB foreground,
with four years of data, LISA will be able to detect the SOBBH signal and reconstruct
its amplitude and spectral index. Then, accounting for the estimated SOBBH signal
and the GB foreground as extra noise contributions, in sec. {4.4.4} we build the LISA
power-law sensitivity (PLS) [221, 239–241]. Finally, in sec. {4.4.5}, we analyse how
the precise measurement of the SOBBH SGWB by LISA would impact the inference
on population parameters, as put forward in refs. [242, 243]. We find that the effect is
most promising for the merger rate parameters, i.e. amplitude, and power-law index.
We conclude in sec. {4.5}.

4.2 SOBBH population model and use of GWTC-3 results

4.2.1 SOBBH population model

LISA is sensitive to the GW emission by SOBBHs in the inspiral phase. Within the
timescale of the mission, which we assume of 4 years (i.e. 4.5 years with 89% duty cy-
cle), the GW frequency emitted by most SOBBHs will slowly increase within the LISA
frequency band, f ∈ [10−4, 0.1]Hz. A minority of SOBBHs will chirp (i.e. their GW
emission will rapidly increase in frequency) and move throughout the band. Among
the chirping SOBBHs, a fraction will be close to coalescence, so that the frequency of
their GW emission will exit the LISA band and, shortly after, enter the ground-based
detectors band, where they will merge. This opens up the possibility of multi-band
observations and/or of archival analyses (e.g. refs. [214, 244–246]). On the other hand,
no SOBBH entering the LISA band during the lifetime of the mission is statistically
expected, as SOBBH with frequencies of the order of 10−4 Hz are practically monochro-
matic during the lifetime of the experiment.1

We aim at estimating the SGWB due to unresolved SOBBHs in LISA, account-
ing for the most recent population constraints from GWTC-3 [45]. For this aim, we
generate catalogues of SOBBHs emitting in the LISA band, making some simplifying

1To give an example, by integrating the Newtonian relation dfGW/dt = 96/5π8/3(GM/c3)5/3f
11/3
GW

one obtains that it takes about 108 years to shift the GW emission of an SOBBH with chirp mass
M = 50M⊙ from 2 · 10−5 Hz to 10−4 Hz, where it will still be about 106 years away from the merger;
while the same binary will shift from 0.1 Hz to 1 Hz (where it will be about 16 minutes away from
the merger) in about 5 days.
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assumptions.

First of all, for simplicity, we neglect eccentricity in our analysis. LVK measure-
ments poorly constrain the SOBBH eccentricities, but the eccentricity in the LISA
band could be significant depending on the binary formation [247, 248]. In addition,
we neglect a possible dependence on redshift of the population parameters, since there
are no strong constraints on how the SOBBH parameter distributions should vary with
redshift, and state-of-the-art studies based on observations have not found conclusive
evidence on the presence of any redshift dependence [46, 243, 249] (this possibility has
been explored e.g. in ref. [250]). Our methodology can incorporate a redshift depen-
dence into the catalogue generation (albeit at a higher computational cost), if this will
be constrained by future data.

Furthermore, we assume that the residual time to coalescence τc (i.e. the amount
of time that an observer in the source frame must wait in order to see the binary merge)
is statistically uniformly distributed across the SOBBH population. This amounts to
assuming that the formation, and therefore the coalescence rates, are in a steady state.
Indeed, any change in the demographics of the binaries happens on a cosmic time-scale
of O(109) yrs, i.e. much longer than the LISA observation time, which is the typical
time over which our catalogues are representative. Furthermore, the maximal τc that
we consider in this analysis (c.f. sec. {4.2.3}) is τ (det)c,max ∼ O(104) yrs in the detector
frame, also much smaller than the timescale over which the cosmic coalescence rate
varies. We also neglect the possibility that the SOBBHs form on such a tight orbit that
their GW emission at formation is already within the LISA band; this would indeed
also break the uniform distribution hypothesis for τc.

The above assumptions allow us to model the SOBBH population as follows.
We consider the binaries emitting in the LISA band and observed by the detector
at a given instant t, i.e. the time at which LISA switches on. Note that for the
sake of the argument, we take this time in the source frame. Among the intrinsic
parameters (masses, spins, phase, polarisation. . . ) and extrinsic ones (sky position,
inclination. . . ) of each SOBBH, we single out the time-to-coalescence τc = tc − t
in the source frame (where tc denotes the time of coalescence of a given SOBBH)
and the redshift of the source z, while ξ⃗ represents the remaining parameters. The
population model parameterized in terms of some hyper-parameters θ⃗ provides the
statistical distributions p(ξ⃗|θ⃗) of ξ⃗ (for simplicity we omit the vector symbol on ξ and
θ from now on). The number of SOBBHs with given z, τc, ξ, whose signals reach the
interferometer at time t, is

d3N(z, τc, ξ, θ)

dξdzdτc
= R(z, τc)

[
dVc
dz

(z)

]
p(ξ|θ) , (4.2.1)
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where Vc is the universe’s comoving volume,2 and

R(z, τc) ≡
d2N

dVc dτc
. (4.2.2)

Within our assumptions, all values of τc are equiprobable at any z: the rate density
satisfies therefore R(z, τc) = R(z, τc = 0), i.e. the one of merging SOBBHs. More-
over, in our population, the number of SOBBHs with given z and ξ that are received
by the interferometer at the times t and t + dt, are precisely N(z, τc = 0, ξ) and
N(z, τc = 0+dt, ξ), so one can equivalently interchange dτc ↔ dt in eq. (4.2.2). All to-
gether, it follows R(z, τc) = d2N(z, τc = 0, ξ, θ)/(dVc dt), which is precisely the merger
rate density in the form that LVK is constraining [46]. Hereafter, we drop the τc
dependence in R(z, τc) as irrelevant.

Given our assumption that the merger rate R(z) is in a steady state, we can
readily apply LVK findings to it. In the next section, we explain how we use eq. (4.2.1)
to generate SOBBH catalogues compatible with the latest population constraints from
LVK GWTC-3. However, the merger-events-based LVK constraints on R(z) are limited
to small redshift, while we need to model sources also at high redshift, since they have
a significant contribution to the SGWB. In order to simulate the high-redshift part
of the SOBBH population, we therefore need to incorporate knowledge of the star
formation and evolution at high redshift, as we will see below.

4.2.2 Implementing GWTC-3 posterior for the SOBBH population pa-
rameters

The SOBBH population model is determined by the merger rate R(z) and the dis-
tribution function p(ξ|θ) in eq. (4.2.1). In ref. [46], the LVK collaboration has anal-
ysed a series of population models and produced inference on their parameters, find-
ing that the most promising one to explain the SOBBH events gathered in GWTC-3
[45] is characterised by (a) a power-law dependence of the merger rate with redshift,
R(z) = R(0)(1 + z)κ; (b) a population mass model, known as Power Law+Peak
mass model, combining an inverse power-law dependence on the largest BH mass, with
a Gaussian peak at approximately 30–40 M⊙, and a power-law distribution for the
mass ratio of the binary; (c) a population spin model in which the amplitudes are
independent and follow positive-exponent Beta distributions favouring intermediate-
valued spins, and whose tilt distribution is a mixture of an isotropic distribution and
a truncated Gaussian. The distributions for masses and spins are explained in more
detail in app. {4.6.2}.

For the sake of convenience, we will call this combination FidLVK, and we will
use it as the fiducial model in our analysis. We provide population-averaged predic-
tions of the SGWB, based on the publicly-available population parameter posterior

2The redshift derivative of the comoving volume in eq. (4.2.1) accounts for the fact that spherical
shells further from us enclose increasing amounts of volume and thus larger numbers of events for a
given R(z).
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distribution [251] for the FidLVK model conditioned to the SOBBH of GWTC-3 [46]
(excluding low-mass-secondary GW190814 and likely-NSBHB GW190917, as per the
fiducial approach by LVK). The parameters θ of the mass and spin distribution p(ξ|θ)
are imported directly from the LVK results. On the other hand, the parameters of
the merger rate R(z) require a different treatment. Because of the interferometers
frequency band, LVK probe the SOBBH population only at relatively low redshift, so
the redshift dependence of the merger rate in LVK analyses is modelled as a power-
law. Indeed, the GWTC-3 inferred merger rate posterior constrains the pivot rate
R(0) and the power-law exponent κ only for z ≲ 0.5 [46]. In order to produce, from
this posterior, SOBBH SGWB estimates valid in the LISA band, we need to extend
the merger rate model towards higher redshift, since high redshift SOBBHs contribute
significantly to the background.

For this purpose, we adopt a phenomenological approach and assume that the
merger rate tracks the Madau-Fragos SFR [130], neglecting the presence of a time
delay between the binary formation and merger. While in sec. {4.4.2} we discuss the
impact on the SGWB amplitude of including time delays, in the rest of the paper we
parameterize the merger rate as

R(z) = R0C
(1 + z)κ

1 + κ
r

(
1+z

1+zpeak

)κ+r , (4.2.3)

where C ensures R0 ≡ R(z = 0). The analysis of ref. [130] finds the following best fit
values for the SFR parameters: κ = 2.6, r = 3.6 and zpeak = 2.04 (note the difference
in the definition of zpeak with respect to ref. [243]). At redshift z ≲ 1, this behaves
similarly to the R(z) = R0(1 + z)κ power law constrained by LVK, which finds a best
fit κ ≈ 2.7. Motivated by this agreement, we incorporate the LVK GWTC-3 poste-
rior into eq. (4.6.1) by matching R0 and κ for each point in the population parameter
sample with the fixed fiducial values r = 3.6 and zpeak = 2.04 from ref. [130]. The
resulting posterior for the merger rate is by construction fully compatible with that
of the low-redshift merger rate of LVK (see app. {4.6.1} for further discussion and in
particular fig. 4.14).3

Finally, in order to keep consistency with LVK [46], we adopt the ΛCDM cosmo-
logical model with parameters fixed accordingly to the “Planck 2015 + external” data
combination [252].4 These correspond to H0 = h × 100 km/(sMpc), with h = 0.678

3In ref. [243], the LVK Collaboration also considers a similar high-redshift extension and finds mild
constraints on r and zpeak (using a different definition of the latter, see app. {4.6.1}) by combining
the population parameters inferred from GWTC-2 resolved mergers with the upper limits imposed
by the non-detection of the SGWB. We verify a posteriori the compatibility of our results with the
upper limits on the SGWB amplitude presented in ref. [243].

4Note that the ΛCDM parameter values used in ref. [46] correspond to the incomplete Planck
2015 data combination plikHM_TE (high-ℓ T×E spectrum data only) instead of the fiducial
plikHM_TTTEEE+lowTEB, which includes temperature-only and polarized data for the whole
Planck multipole range. The difference is anyway negligible for the purposes of this paper.
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being its dimensionless value, for the local Hubble rate, and Ωm ≈ 0.3 and ΩΛ ≈ 0.7 for
the matter and cosmological-constant energy densities. The cosmological model enters
in the differential comoving volume per unit redshift, dVc(z)/dz, of eq. (4.2.1), and in
the computation of the cosmological distances needed for the integration in sec. {4.3}.

4.2.3 SOBBH population synthesis

In sec. {4.3} we propose four different methods to compute the SGWB due to unre-
solved SOBBHs. The first method consists of an integration of the number density in
eq. (4.2.1) [236]. The other three are based on the superposition of the GW signals
from SOBBHs populations, with different levels of sophistication. The latter methods
provide a more refined evaluation of the SGWB and of its spectral shape and are also
important to assess the size of statistical effects (e.g. the uncertainty due to the pop-
ulation realisation) and the consequences of other choices inherent to the catalogue
simulation, such as the value of the maximal time-to-coalescence τ (det)c,max, see below.

We thus need fast and reliable SOBBH population synthesis. We have writ-
ten two independent population synthesis codes, which can be found in the following
repositories: [253] and [254]. These have been also compared with ref. [25]. In these
implementations, the masses and spins are drawn from the LVK GWTC-3 distribu-
tions, briefly revised in app. {4.6.2}.

The redshift of the binaries is generated independently as an inhomogeneous
Poisson point process, according to the z-dependent terms in eq. (4.2.1), between
zmin = 10−5 (≈ 45 kpc of comoving distance, in order to exclude binaries within the
Milky Way), and zmax = 5, which is sufficient for an accurate SGWB computation, as
we demonstrate in sec. {4.3.1}. Note that we will limit zmax = 1 in the analyses based
on catalogues whenever using a larger zmax would prove too costly from the computa-
tional point of view, c.f. sec. {4.3.3}.

The rest of the individual SOBBH parameters are generated from the priors pre-
sented in table [4.1], based on physical considerations: isotropy for the sky position,
inclination, and polarization; and uniform time-to-coalescence in the detector frame,
as discussed in sec. {4.2.1}. From the randomly-sampled parameters, we compute the
derived quantities necessary for the problem at hand, such as the frequency at the start
of the LISA runtime, the LISA in-band time, cosmological distances, and so on.

The upper limit for the population synthesis time-to-coalescence τ (det)c,max needs to
be high enough to give a faithful representation of the SOBBH SGWB signal in the
LISA band (at least where it is the dominant contribution to the astrophysical-origin
SGWBs), and at the same time it is conditioned by computational limitations. As
discussed in app. {4.6.3}, τ (det)c,max = 104 yrs provides a good balance between these
requirements.
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Parameter Prior

Time-to-coalescence (source frame) U [0, τ
(det)
c,max/(1 + z)] yrs

Ecliptic Longitude U [0, 2π] rad
Ecliptic Latitude arcsin (U [−1, 1]) rad

Inclination arccos (U [−1, 1]) rad
Polarization U [0, 2π] rad
Initial Phase U [0, 2π] rad

Table 4.1. Priors for the parameters of individual SOBBHs. The uniform prior for the
time-to-coalescence, which is source-dependent, is justified in sec. {4.2.1}. The priors on
the ecliptic coordinates and the inclination impose statistical isotropy in the positions and
orientation of the binaries.

4.2.4 Benchmark fixed-point catalogues for consistency studies

In addition to probabilistic GWTC-3-posterior forecasts, we also single out a fixed
point in the population parameter space, which we use as a benchmark to compare
different SGWB computation methods and assess the size of statistical and numerical
effects. For this fixed point, we use values close to the median of the GWTC-3 FidLVK
model posterior, indicated in table [4.2], with an important modification.

Rate of events R(z) Mass distribution Spin distribution

R0.2 = 28.1Gpc−3yrs−1

κ = 2.7
zpeak = 2.04
r = 3.6

[mmin,mmax] ∈ [2.5, 100]M⊙
δmin = 7.8M⊙
α = 3.4
λpeak = 0.039
µm = 34M⊙
σm = 5.1M⊙
βq = 1.1

E[a] = 0.25
Var[a] = 0.03
ζ = 0.66
σt = 1.5

Table 4.2. Population parameter values for the benchmark fixed-point. The other parameters
in the population are set to their GWTC-3 posterior median values, given in apps. {4.6.1}
and {4.6.2}. The mass range and mass smoothing parameter δmin have been modified to
accommodate for the possibility of more extreme events in future data.

The determination of the mass range population parameters mmin and mmax in
the LVK study [46] is sensitive to whether certain events from GWTC-3 (the extreme
mass ratio binary GW190814 and the likely-NSBHB binary GW190917) are considered
as outliers and excluded from the analysis. The inclusion of GW190814 suffices to push
the lower mass bound down to mmin ≈ 2.5M⊙.

Motivated by the possibility that such outliers may appear in future data, we
enlarge the mass range for the benchmark fixed-point catalogues to [2.5, 100]M⊙, also
raising the upper bound up to the original prior boundary of the mmax population pa-
rameter, previous to GTWC-3 constraints. The modification in particular of the lower
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mass boundary necessitates a further increase in the width of the low-mass smoothing
function (see app. {4.6.2}), in order not to deviate strongly from the mean GWTC-3
mass probability density at masses m ≫ mmin. This is achieved by increasing the
value of the δmin population parameter (nevertheless, we have found that the SGWB
calculation is not very sensitive to this choice).

Though this fixed point in the population parameter space does not pertain to
the GWTC-3 posterior, due to the modifications to the mass distribution, it leads to
an SGWB in the LISA band which is compatible with our posterior-based evaluations.
It is therefore useful as a benchmark to gauge the sensitivity of the SGWB predictions
to different assumptions on the population model.

We have generated a sample of 10 catalogues with parameters set to this bench-
mark fixed-point. Since they will be used only to compare and validate population-
based SGWB computation methods, we have limited their redshift range to zmax = 1,
to reduce computational cost. As stated before, we limit the time-to-coalescence in
these catalogues to τ (det)c,max = 104 yrs. For the purposes of testing the sensitivity to dif-
ferent τ (det)c,max values (see sec. {4.3.3}), we have generated one catalogue with τ

(det)
c,max =

1.5× 104 yrs, and from it we have produced two sub-catalogues with τ (det)c,max = 1.0× 104

and 5 × 103 yrs. Setting τ
(det)
c,max = 104 yrs produces approximately 60 million binaries

with inspiralling frequency within the LISA band. The number of events scales linearly
with τ (det)c,max.

4.3 Computation of the SOBBH signal in the LISA band

We adopt four different methods to evaluate the SOBBH SGWB which allow us, by
their different nature, to capture different features of the signal. In the following
sections, we describe them.

4.3.1 Method (i): analytical evaluation

In this section we provide a brief description of the formalism employed for the analytic
evaluation of the SOBBH SGWB, following ref. [236]. The normalised SGWB energy
density spectrum per logarithmic unit of frequency ΩGW(f) can be defined from the
total GW energy density present in the Universe and emitted by the whole SOBBH
population, expressed in the detector frame. Recalling eq. (4.2.1) this reads

ρ
(tot)
GW

ρc
=

∫ ∞

0

df

f
ΩGW(f) =

∫
dξ

∫
dVc

∫
dτc

d3N(z, τc, ξ, θ)

dξdVcdτc

ρ
(event)
GW

ρc
, (4.3.1)

where ρc = 3H2
0c

2/(8πG) is the Universe’s critical energy density and ρ
(event)
GW = t00

denotes the energy density associated to a single SOBBH event, at the detector. Using
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ref. [31], one can derive

ρ
(event)
GW

ρc
=

c2

16πGρc

⟨ḣ2+ + ḣ2×⟩
(1 + z)4

= (4.3.2)

=
c2

16πGρc(1 + z)4
32π2

a2r2

(π
c

)4/3(GM
c2

)10/3
fs(τc)

10/3
[(1 + cos2 ι

2

)2
+ cos2 ι

]
,

where all quantities are at the source: M is the SOBBH chirp mass, a·r its physical
distance in the local wave zone, ι its orientation with respect to the detector, and
ωs = πfs its orbital frequency. The second equality in eq. (4.3.2) has been obtained
under the approximation of quasi circular motion for the binary ḟs ≪ f 2

s , and we have
averaged over the waveform phase. Substituting eq. (4.3.2) in eq. (4.3.1), expressing
the differential comoving volume as dVc = c d2M/H(z)dΩ̂dz where dM = a0r is the
proper distance, H(z) = H0

√
Ωm(1 + z)3 + ΩΛ, and Ω̂ is the solid angle [255], and

noting that a2r2 = d2M/(1 + z)2, one gets, after integration over the solid angle (giving
a factor 16π/5),

ρ
(tot)
GW

ρc
=

32

5
π10/3 c

5/3

Gρc

∫
dξ

∫
dz

∫
dτc

(GM
c2

)10/3 R(z)p(ξ|θ)
H(z)(1 + z)2

fs(τc)
10/3 , (4.3.3)

where we have also used definition eq. (4.2.1). One can change the integration variable
from τc to fs using the relation dfs/dτc = 96/5 π8/3(GM/c3)5/3f

11/3
s , valid for quasi-

circular binaries in the Newtonian approximation, then change to the frequency at the
detector f = fs/(1+ z), and equate the integrands in eq. (4.3.1), to obtain the SGWB
energy density power spectrum:

ΩGW(f) =
8

9
π5/3f 2/3

∫
dξ

∫
dz

(GM)5/3

c2H2
0

R(z)p(ξ|θ)
H(z)(1 + z)4/3

. (4.3.4)

Among the set of binary parameters ξ, only the chirp mass is relevant within the
Newtonian approximation. One can therefore express the SOBBH SGWB today as

h2ΩGW(f) = h2ΩGW(f∗)

(
f

f∗

)2/3

, (4.3.5)

with f∗ an arbitrary pivot frequency, and

h2ΩGW(f∗) =
(GM⊙)

5/3

c2

∫
dm1dm2 p (m1,m2) (M(m1,m2)[M⊙])

5/3

×
∫ zmax

0

dz
R (z)

(1 + z)4/3H(z)

f
2/3
∗

(1.32413× 10−18Hz)2
,

(4.3.6)

where we have used (H0/h)/
√
8π5/3/9 = 1.32413×10−18 Hz. For the numerical evalua-

tion of eq. (4.3.6), we have set GM⊙ = 1.327×1020 m3/s2 and c = 2.9979246×108 m/s.
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Figure 4.1. Amplitude h2ΩGW(f∗) of the SOBBH SGWB at the pivot frequency f∗ =
fLISA ≡ 0.003 Hz, varying each parameter of the FidLVK population model within the 5–95
percentile range of the GWTC-3 posterior, while maintaining all other parameters fixed to
their central values. Dotted (dashed) lines represent the value of h2ΩGW(f∗) evaluated at
the 5 (95) percentile for a given parameter, whereas the horizontal solid line represents the
amplitude of the signal when all parameters are fixed to the values in table [4.2]. The red
arrow in κ indicates that the amplitude of the signal for κmax (h2ΩGW(f∗) ≃ 2.8× 10−12) is
beyond the range of the plot. The signal amplitude grows with decreasing mmin, contrary to
all other parameters.

In fig. 4.1 we plot the amplitude of the expected background at the reference
frequency f∗ = 0.003Hz, close to LISA’s peak sensitivity [256], evaluated from the
integral in eq. (4.3.6). For the merger rate R(z), we adopt the phenomenological pa-
rameterization described in sec. {4.2.2}. While in fig. 4.1 we consider zmax = 30, as we
do not expect active sources at higher redshifts, in fig. 4.2, in contrast, we analyse the
relative difference of considering smaller values for zmax. The only other population pa-
rameters that enter the analytic evaluation are the masses m1,m2 of the two compact
objects, expressed in terms of the chirp mass: as previously stated, for their proba-
bility distribution p (m1,m2), we adopt the Power Law+Peak model. Naturally,
the amplitude of the background depends on the choice of the parameters in R(z) and
p(m1,m2): respectively, (R02 ≡ R(z = 0.2), κ), and (α, δmin,mmin,mmax, λpeak, µ, σ, β),
defined in apps. {4.6.1} and {4.6.2}. Following sec. {4.2.4}, we plot as a horizontal
solid line the SGWB amplitude for the values indicated in table [4.2] for each of the
population parameters ; we also show the range of SGWB amplitudes (grey bars)
obtained when each of the parameters is varied within its 5–95 percentile range ac-
cording to the GWTC-3 posterior (see apps. {4.6.1} and {4.6.2}), while the rest of
the parameters stay fixed to their values of table [4.2]. This shows how the differ-
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ent parameters in the model influence the SGWB amplitude when varied individually.
Larger ranges for the SGWB amplitude translate into stronger constraining power from
the measurement of the individual parameter; however, since this approach neglects
degeneracies, large ranges for multiple parameters do not mean that these can be simul-
taneously constrained (the issue of SGWB-derived population parameter constraints
will be further discussed in sec. {4.4.5}). Note that the signal amplitude grows with
decreasing mmin, contrary to its response to all other parameters. The population pa-
rameter with the largest impact on the SGWB amplitude is the power-law index of the
merger rate κ, since its value controls the merger rate growth at intermediate redshift
1 < z < zpeak, which strongly influences the outcome of the redshift integration in
eq. (4.3.6). The red arrow in fig. 4.1 indicates that the SGWB amplitude obtained for
κmax, h2ΩGW(f∗) ≃ 2.8× 10−12, is beyond the range of the plot.

In fig. 4.2 we plot the relative percentage change of the SGWB amplitude when
varying zmax in eq. (4.3.6). Since the merger rate in eq. (4.6.1) decays at high red-
shift, the SGWB grows asymptotically towards a constant amplitude as we integrate
over larger and larger redshift ranges. Taking zmax = 30 as a reference, we plot
∆ΩGW[%] ≡ 100 × (1− ΩGW(f∗)|zmax/ΩGW(f∗)|zmax=30) for different values of zmax.
The figure indicates that integrating up to zmax = 5 already allows to obtain ∼ 1%
accuracy in the calculation of the SGWB amplitude. This is sufficient for the scope
of this paper given that, as presented in sec. {4.4.3}, the typical error on the SGWB
measurement by LISA is larger than that. The SGWB amplitude in fig. 4.2 has been
evaluated adopting the parameter values corresponding to the benchmark fixed-point
described in sec. {4.2.4}; the convergence trend is very similar when using the mini-
mum or maximum values of a given parameter, keeping the others fixed to their central
values.

4.3.2 Methods (iia) and (iib): Monte Carlo sum

An alternative method to compute the SGWB is to sum the GW signals, emitted by
individual SOBBHs, over a realisation of the population drawn from the distribution
represented by the number density. The simplest implementation consists in factoring
out from eq. (4.3.4) the population number density of eq. (4.2.1), averaged over time-
to-coalescence and sky-position, to obtain

ΩGW(f) ≈ 2π2/3

9

G5/3

c3H2
0

1

τ
(det)
c,max

(∑

i∈pop

M5/3
i

d2M,i(1 + zi)1/3

)
f 2/3 , (4.3.7)

where f is the observed frequency, and Mi, zi and dM,i are the chirp mass in the
source frame, redshift and proper distance of the individual GW sources. The fac-
tor 1/τc,max = (1 + z)/τ

(det)
c,max comes from the time-averaging of the number density of

eq. (4.2.1).

The SGWB amplitude resulting from the sum over a realisation of the SOBBH
population is obviously realisation-dependent. We can assess its concordance, within
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Figure 4.2. Relative percentage change of the signal amplitude ΩGW(f∗) evaluated at f∗ =
0.003Hz with respect to ΩGW(f∗)|zmax=30, when varying zmax in eq. (4.3.6).

the variance due to the population draws, with the analytical computation of eq. (4.3.6)
by evaluating eq. (4.3.7) for a large number of realisations. The result is shown in
fig. 4.3, assuming population parameters fixed to the benchmark values described in
sec. {4.2.4}, and setting zmax = 5. The population variance in terms of the ratio of the
interquartile range to the mean of the realisations’ amplitudes amounts to 0.2% only.5
The difference between the SGWB amplitude obtained by averaging the realisations,
and the one obtained by the numerical integration of eq. (4.3.6), is much smaller than
the population variance, highlighting the equivalence between the two methods. Fur-
thermore, the population variance uncertainty is much smaller than both the expected
integration error due to fixing zmax = 5, and the forecasted precision of the LISA mea-
surement (see sec. {4.4.3}).

A more refined approach to evaluating the SGWB can be obtained by summing
the contribution of each SOBBH in the population, accounting for the actual frequency
of emission of each source (while in eq. (4.3.7) only the chirp mass and the distance -
equivalently redshift - pertain to the individual events). In order to do this, we rewrite
the SGWB energy density starting from eq. (4.3.1), but re-expressing the number
density as the number of events per unit of emission frequency fs using the relation
dfs/dτc for quasi-circular Newtonian binaries, then changing the integration variable
to the observed frequency, and equating the integrands in eq. (4.3.1) to single out the

5If one naively computes the realisation variance as that of the underlying Poisson point process
(i.e. equal to the mean of the process, here the expected number of events), one would overestimate
the realisation uncertainty by a very large factor since not all events contribute equally to the SGWB.
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Figure 4.3. Comparison between the distribution of MC sums of eq. (4.3.7) over 1000
realisations sharing the same population parameters (see sec. {4.2.4}), and the numerical
integration of eq. (4.3.6). The two methods are equivalent within the range of the population
variance (∼ 0.2%), which is in turn much smaller than the integration error due to the
zmax = 5 cut (∼ 1%, see fig. 4.2). Such small effects will not be observable by LISA (see
sec. {4.4.3}).

SGWB power spectrum:

ΩGW(f) =

∫
dξ

∫
dz

d3N(z, ξ, θ)

dξdz df
f
1

4π

∫
dΩ

ρ
(event)
GW

ρc
. (4.3.8)

We can now express the integral in the above equation as an MC sum, as done previ-
ously in eq. (4.3.7), but this time computing the sum of the GW energy density emitted
by every SOBBH per (detector-frame) frequency bin, where the latter is defined using
some frequency sampling δf as [(j − 1)δf , jδf ], Nj being the subset of a population
with emission frequencies (in detector frame) in bin j

ΩGW(f) ≈ 1

δf

∑

i∈Nj

fi
1

4π

∫
dΩ

ρ
(event)
GW (zi,Mi, fi)

ρc

≈ 64π10/3

15

G10/3

c8H2
0

1

δf

∑

i∈Nj

(1 + zi)
4/3

d2M,i

M10/3
i f

13/3
i ,

(4.3.9)

where the different powers of the per-source quantities with respect to eq. (4.3.7) can
be explained by the frequency dependence of the number of sources in each bin.
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This assumes monochromatic sources, ignoring frequency drifting during the life of
the mission.6 The largest contribution to the background is produced by sources with
f ∈ (10−3, 10−2), whose frequency drifting is small; we can therefore choose e.g. the
frequency with which they enter the LISA band (see sec. {4.6.3}). We will show the
result of both MC integrations, eqs. (4.3.7) and (4.3.9), in sec. {4.4.1}.

4.3.3 Method (iii): iterative subtraction

The methods presented above are based on summing the signals of the SOBBH in
the population, without accounting for the actual detection process, apart from re-
stricting the maximal time-to-coalescence τ (det)c,max to a computationally manageable and
detector-compatible value (for methods (iia) and (iib) of sec. {4.3.2}). However, we
are ultimately interested in the SGWB signal in LISA, and the detector sensitivity
can influence the SGWB spectral shape/amplitude. In order to consider such aspects,
we also evaluate the SGWB following the methodology developed in ref. [237], using
ideas first presented in refs. [258–260]. The procedure is based on generating LISA
data-streams, by computing the waveform signals of all the events within the simu-
lated population. Depending on the adopted waveform model, this can yield a very
accurate representation of the LISA data, as far as SOBBHs are concerned. However,
simulating millions of sources is computationally expensive, thus one has to allocate a
considerable amount of computational resources to this task.

The procedure begins by fixing the mission duration Tobs, here set to 4 years, and
generating the signal to be measured by LISA. We compute the h+ and h× waveforms
for each source of the simulated catalogue, and then we project them onto the LISA
arms. We use the IMRPhenomHM model [261], which describes spinning, non-precessing
binaries. It is based on the IMRPhenomD [262, 263] model, but it includes higher order
modes. We use the lisabeta software [264, 265] for our computations. When gen-
erating each waveform, we also compute its SNR in isolation, ρisoi , with respect to the
instrumental noise only, which will be used to reduce the computational requirements
of the procedure, as explained below.

Next, we estimate the total power spectral density (PSD), Sn, k, summing all the
GW sources plus the instrumental noise. The index k refers to the iterative step. Since
this PSD is very noisy, we compute its running median to produce a smoother version
of it. We then evaluate the SNR ρi of each source i using the smoothed Sn, k as the
total “noise” PSD. Note that, to speed up the computation, this is performed only on
the subset of sources with sizable pre-computed SNR in isolation ρisoi (see ref. [237]).
The SNR ρi are then compared to a threshold SNR ρ0: if ρi > ρ0, the source is clas-
sified as resolvable, and is subtracted from the data. The smoothed residual PSD
Sn, k+1 is then re-evaluated after re-iterating through the catalogue of sources and sub-
tracting the loud ones, and the procedure is repeated until the algorithm converges.
Convergence is reached when all the sources are subtracted given the ρ0 threshold, or

6We could easily extend this formula to account for drifting by summing each event over different
bins with some weight proportional to the time spent emitting at the frequency of the bin [257].
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Figure 4.4. Left : Tests of the iterative-subtraction method: the SOBBH SGWB is shown in
comparison with the analytical evaluation obtained integrating eq. (4.3.6) (red dashed line)
for the benchmark population parameters described in sec. {4.2.4}, simulated, and integrated,
up to zmax = 1: the 10 realisations of the simulated population with equal parameters, set
to the benchmark described in sec. {4.2.4}, yield the same level of stochastic signal; Right :
the effect of different choices for the SNR threshold ρ0 on the resulting stochastic signal: the
smaller ρ0, the more sources are classified as resolvable, generating a “dip” in the stochastic
signal at high frequencies. The shape of this dip depends on both the astrophysical catalogue,
and on the shape of the instrumental noise PSD.

if Sn, k+1 and Sn, k are practically identical at all frequencies considered. At the end
of the procedure, we compute the final SNR of the recovered sources, with respect to
the final estimate of Sn, kfinal . Thus, as final products, we get both the SGWB due to
the sources signal confusion, as well as the properties of the recovered sources (their
number, waveform parameters, and final SNR).

Different realisations of the same population (with the same number density pa-
rameters) should yield different, though statistically compatible, sets of subtracted
events, but a similar SGWB after smoothing. We have verified this statement by eval-
uating the SGWB from the 10 benchmark catalogues presented in sec. {4.2.4}; the
result is shown in fig. 4.4.

The crucial parameter of the iterative method is ρ0, the minimum SNR above
which events are considered resolvable and thus subtracted from the total signal. We
consider ρ0 = 8 an appropriate choice [266, 267], assuming that stochastic methods
to sample the sources parameter space, more efficient than grid-based methods [268],
can be used to analyse the LISA data streams. Archival searches will allow to further
reduce the SNR threshold down to ρ0 = 5 [246, 267]. As can be appreciated from
fig. 4.4, as long as ρ0 ≳ 5, the number of detectable sources is too small to alter the
shape and amplitude of the residual SGWB spectrum [214, 233] (see also ref. [238]).
Our prediction for the SGWB level is therefore robust with respect to our choice of
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setting ρ0 = 8. On the other hand, if values of ρ0 ≲ 4 will be justified in the context
of future improvements in data analysis methods, or of archival searches using future
ground-based detector data [269], the residual SGWB spectral shape must be adapted:
as can be seen in fig. 4.4, it no longer follows the analytical estimation of sec. {4.3.1},
which does not account the presence of the detector, but a dip on its amplitude appears
at high frequencies.

Note that we have assumed uninterrupted measurement over the time frame Tobs,
and the instrumental noise, taken from ref. [256, 270], is assumed to be ideal, i.e. Gaus-
sian and stationary. We also subtract each resolvable source from the data at its injec-
tion parameters, meaning that we generate “perfect residuals”, or in other words, we
neglect the uncertainty on the source parameters, which inevitably arises within the
parameter estimation procedure. We, therefore, simulate an optimal case of the global
fit scheme for the LISA SOBBHs. The above assumptions, while not totally realistic,
allow us to simplify the analysis.

4.4 Results

4.4.1 Comparison between SGWB computation methods in the LISA band

In this section we show the effect of fixing a maximal time-to-coalescence for the sim-
ulated populations on the SGWB spectral shape, and compare the SGWB signals
resulting from the four methods described in Sections sec. {4.3.1} to sec. {4.3.3}. As
a benchmark, we use one of the fixed-point catalogues presented in sec. {4.2.4}. The
redshift range is limited to z ∈ [0, 1] (comoving distance up to ≈ 3 GPc) to guarantee
the computational feasibility of the iterative-subtraction method. The amplitude of
the SGWB signals shown in this section is therefore reduced (cf. sec. {4.4.2}), but this
plays no role in the purpose of the tests performed here.

As discussed in Sections sec. {4.2.3} and sec. {4.2.4}, in order to limit computa-
tional costs, synthetic populations are generated including events up to a maximum
time-to-coalescence, that we fix to τ (det)c,max = 104 yrs in the detector frame. In order to
investigate the effect of this assumption, one of the catalogues among the benchmark
ones has been generated with τ

(det)
c,max = 1.5 × 104 yrs, and from it we have produced

two sub-catalogues with τ (det)c,max = 1.0× 104 and 5× 103 yrs. The SGWBs inferred from
these catalogues via the iterative-subtraction method are shown in fig. 4.5: excluding
all sources beyond a given τ (det)c,max (appropriately redshifted in the source frame), results
in a non-physical bending of the SGWB at low frequencies, depending on the maximal
time-to-coalescence (in agreement with ref. [237], see also app. {4.6.3}). It is there-
fore important to pick a value for τ (det)c,max ensuring a minimal loss of information while
keeping the computational cost of generating the SGWB manageable: as discussed in
app. {4.6.3}, we consider τ (det)cmax = 104 to be a good compromise.

In fig. 4.6 we show the SGWBs computed using the three methods based on pop-
ulation synthesis, presented in Sections sec. {4.3.2} and sec. {4.3.3}. The results are in
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Figure 4.5. The effect of adopting different τ
(det)
c,max values on the resulting stochastic signal,

computed using the iterative subtraction (method (iii)). The red dashed line represents the
analytical result (method (i)). Imposing a maximum time-to-coalescence in generating the
synthetic populations suppresses early-phase inspirals, producing a cutoff in the SGWB at
low frequencies. This is not a physical effect, but a limitation of the population synthesis:
the spectrum tends towards the expected power law as the upper limit in time-to-coalescence
grows.

very good agreement, for both the SGWB amplitude and spectral shape. In particular,
those of the frequency-binned MC sum (method (iib)) and of the iterative subtraction
(method (iii)) also follow the single power-law behaviour f 2/3 predicted by the analyt-
ical evaluation (eq. (4.3.4)), and taken over by the averaged power-law-like MC sum
(eq. (4.3.7)). As far as the frequency-binned MC sum is concerned, this shows that
our population catalogues are complete. As far as the iterative-subtraction method is
concerned, instead, this is a consequence of the simulated detection process: the in-
strument sensitivity is such that the number of resolvable sources is too small, even at
high frequencies, to alter the SGWB spectral shape, as already pointed out in ref. [233]
(see also ref. [238]).

The signals from the frequency-binned MC sum and from the iterative subtraction
share some features, especially at low frequencies, despite the fact that the former uses
simplified waveform and does not account for frequency drifts. Both approaches also
follow closely the averaged power-law-like MC sum, which is distributed around the
analytical calculation of the background, from eq. (4.3.6) (see fig. 4.3).
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Figure 4.6. Comparison between the population synthesis-based methods presented in Sec-
tions sec. {4.3.2} and sec. {4.3.3}. The dark orange line shows the SGWB evaluated with
the averaged MC sum (iia), and the light orange one the frequency-binned sum (iib). The
blue curves show the SGWB evaluated with the iterative subtraction (iii), as explained in
sec. {4.3.3}, for two different data smoothing methods: in s1 (light blue) we have performed
a running median over the PSD data using a rolling window of 1000 points, whereas in s2
(dark blue) we apply an additional Gaussian filter. The signals from the frequency-binned
MC sum and from the iterative subtraction share some features, especially at low frequencies,
where the differences due to neglecting the drifting and using simplified waveforms are less
important. Both follow closely the SGWB of the averaged, power-law-like MC sum.

4.4.2 Expected SOBBH signal in the LISA band from GWTC-3

Having established the consistency of the four methods, we turn to the actual com-
putation of the expected SGWB in the LISA band, based on the present knowledge
about the SOBBH population. To this purpose, we rely on eq. (4.3.5) and evaluate
the SGWB amplitude by integrating eq. (4.3.6) for all points in the LVK posterior
parameter sample that is publicly available [251] for the FidLVK model [46], fol-
lowing the prescriptions described in sec. {4.2.2}. The distribution of the SGWB
amplitude at the reference frequency f = 3 × 10−3Hz is shown in fig. 4.7 (blue solid
line). On a logarithmic scale, it follows a lightly-right-skewed distribution with me-
dian h2ΩGW(f = 3 × 10−3Hz) = 7.87 × 10−13, and has an interquartile range of
h2ΩGW(f = 3× 10−3Hz) ∈ [5.65, 11.5]× 10−13.

The computation of the SGWB amplitude has been performed under the assump-
tion that the merger rate inherits the functional redshift dependence of the SFR, as in
eq. (4.6.1). As discussed in sec. {4.2.1} and app. {4.6.1}, the agreement between the
values of the merger rate parameters inferred from GW observations [46] with those of
the SFR inferred from electromagnetic observations [130] supports this assumption at
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Figure 4.7. Posterior distribution of the SOBBH SGWB log-amplitude in the LISA band,
from GWTC-3 (blue solid line). The coloured lines represent the percentiles 5, 25, 50, 75,
and 95 (left to right) of the posterior, and their surrounding vertical bands represent the 68%
(dark shading) and 95% (light shading) uncertainties on the corresponding SGWB amplitudes,
forecasted from a LISA measurement (the uncertainties quoted in the legend correspond to
the 68% error): as derived in sec. {4.4.3}, LISA will measure the SOBBH SGWB with an
uncertainty on the amplitude one order of magnitude smaller than the present GWTC-3
prediction.

low redshift z ≲ 1.5. However, the merger rate remains untested at higher redshifts,
and it is therefore important to investigate how much this assumption influences the
final SGWB result. We do so by analysing one example of a more refined model for
the merger rate, introducing a time delay td between the formation of star binaries and
their evolution into BBH systems. The merger rate is then given by the convolution
of the SFR with the probability distribution of the time delay [126, 127, 231, 271]:

R(z) =

∫ td,max

td,min

RSFR (t(z) + td) p(td) dtd , (4.4.1)

where RSFR now denotes the rate of eq. (4.6.1) (with parameter values specified below
that equation), and the probability distribution of the time delay is usually modelled
as p(td) ∝ 1/td. As a consequence, the minimum expected delay td,min plays the main
role in determining the merger rate dependence on redshift. This parameter is ex-
pected to lay in the range 50Myr–1Gyr [231]: we therefore pick four values in this
range, and compute the corresponding merger rates from eq. (4.4.1), further imposing
that at z = 0.2 they are equal to the median value of the GWTC-3 constrain for the
FidLVK model, R0.2 = 28.3Gpc−3yrs−1 (see fig. 4.8) [46]. Looking at eq. (4.3.6), we
see that (for redshift-independent mass models) the redshift-dependent contribution
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Figure 4.8. Blue: probability distribution (median, 25–75 and 5–95 percentile ranges) of
the merger rate under the low-z power-law approximation R(z) ∝ (1 + z)κ, according to
the probability density obtained in ref. [230] for the FidLVK model. Orange: its extension
to high-z according to eq. (4.6.1), with fiducial values zpeak = 2.04, r = 3.6. Gray lines:
the SOBBH merger rate obtained by convolving the SFR with a time delay, for different
values of the minimum time delay (see eq. (4.4.1)). For each case in the legend, f represents
the fraction of the corresponding SGWB amplitude with respect to the median fiducial case
(obtained using eq. (4.6.1) rather than eq. (4.4.1)).

to the background amplitude can be factored out. We can thus easily compute, for a
given mass model, the ratio f between a time delayed model and our fiducial SRF case.
For td,min = 50 to 500Myr, we find that they agree within 40%: accounting for the time
delay, therefore, provides SGWB amplitudes close to the P5 percentile of the median
fiducial (SFR-extended) case (see fig. 4.7). The level of agreement drops to 36% for
td,min = 1 Gyr; however, from fig. 4.8, we can appreciate that the corresponding merger
rate is rather in tension with LVK constraints.

Our results, in terms of translating the GWTC-3 population constraints into a
forecast for the SOBBH SGWB in the LISA band, appear to be robust within one
order of magnitude: the highest contribution to the background comes in fact from the
SOBBH population at z ≲ 1.5, for which the merger rate is well constrained by LVK
GWTC-3. Note that all derived SGWB amplitudes fall well within LISA’s detection
capabilities (see sec. {4.4.3}). A more thorough study of the dependency of the SGWB
amplitude on physically-motivated models for the merger rate and mass distribution
can be found in ref. [272].

Our results are also compatible with the latest constraints on the SGWB am-
plitude by LVK [243]. The upper bound on a power-law SGWB with spectral index
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Figure 4.9. Comparison between the SGWB amplitude posterior from this work (blue
shaded area, also shown in fig. 4.7), with the median SGWB value evaluated accounting for
time-delays (blue crosses, left-to-right in decreasing value of td,min, cf. fig. 4.8), and with
other recent results from the literature (black lines and crosses). The grey band to the right
represents the LVK upper bound, derived in ref. [243] for a power-law SGWB with index
α = 2/3.

2/3 at f = 25Hz is, at 95% credible level, 3.4 × 10−9(1.2 × 10−8), when using a log-
uniform (uniform) prior, which becomes in the LISA band h2ΩGW(f = 3× 10−3Hz) <
3.8×10−12 (1.3×10−11). This upper bound applies to the total background, which con-
tains other contributions together with the SOBBH confusion signal (for example the
one from neutron star binaries). The actual limit on the SOBBH SGWB is therefore
expected to be smaller. Nevertheless, the SGWB amplitude that we forecast remains
compatible, being smaller than the LVK upper limit at 99% probability, with median
amplitude being smaller by a factor of five (see fig. 4.7).

We also compare our results to a few other predictions for the SOBBH SGWB
in the LISA band given in the literature, see fig. 4.9. In ref. [273], taking into ac-
count early LVK constraints (from the first 6 events) for the merger rate, a time delay
distribution p(td) ∝ 1/td with td,min = 50Myr, and a different fiducial model for the
mass distribution from the one used here, it was found that h2ΩGW(f = 3×10−3Hz) =
1.25+1.3

−0.7×10−12 (90% credible level), which lies in the upper-half of our distribution (see
fig. 4.7). In ref. [234], the authors compute both the isotropic SOBBH SGWB compo-
nent and its anisotropy, and find a lower prediction than in our analysis: h2ΩGW(f =
3 × 10−3Hz) ∈ [1.0, 1.9] × 10−13, for a number of astrophysics-motivated models for
the merger rate, adjusted to LVK GWTC-1 constraints. The latest LVK forecast
[243], using the merger rate and the mass distribution inferred from GWTC-2, and
the usual time-delay distribution, results in h2ΩGW(f = 3× 10−3Hz) = 5.6+1.9

−1.6× 10−13

(90% credible level), which is consistent with our results both when including and
not including time delays. The analysis of ref. [221], also based on the LVK GWTC-
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2 population model, uses power-law mass functions and the conventional time-delay
distribution, and obtains h2ΩGW(f = 3 × 10−3Hz) = 2.9+1.7

−1.4 × 10−13 (approx 95%
credible level): this prediction is compatible with our results, but towards the low
side of the distribution in fig. 4.7. In ref. [233], the authors use the population code
Star-Track to model the binary formation, treating separately the contributions from
population I/II and population III stars. The SGWB amplitude from SOBBHs formed
by population I/II star is h2ΩGW(f = 3 × 10−3Hz) = 1.2 × 10−12, which lays in
the upper part of our probability distribution. Population III stars contribute an
additional 2%, h2ΩGW(f = 3 × 10−3Hz) = 2.25 × 10−13: since this is significantly
larger than the expected uncertainty in LISA’s measurement of the background (see
sec. {4.4.3}), the presence of population III stars could be discriminated, provided
that the population is known with sufficient certainty. Finally, in ref. [274] it is found
that the contribution of SOBBH to the SGWB is even lower than what found in
ref. [234], and subdominant in the LISA band with respect to the one from PBHs:
h2ΩGW(f = 3× 10−3Hz) ≃ 4.5× 10−14.

4.4.3 SGWB Parameter Estimation

In this section we assess LISA’s capability to detect and characterise the SOBBH
SGWB. We perform an MC analysis of simulated data containing the instrumental
noise, the stochastic foreground from binaries in the Galaxy, and different levels of the
SOBBH SGWB, corresponding to the percentiles presented in fig. 4.7. The SOBBH
SGWB is modelled following eq. (4.3.5), but both the amplitude and the spectral tilt
are left as free parameters in the analysis:

h2ΩGW(f) = 10log10(h
2ΩGW)(f∗)

(
f

f∗

)α

. (4.4.2)

We apply a pre-processing procedure similar to the one employed in refs. [241, 275],
which we briefly summarize here: assuming a mission duration of 4 years, we chunk the
data stream intoNc segments of 11.5 days each (corresponding to a frequency resolution
∆f ≃ 10−6 Hz); we generate data in the frequency domain for each segment, including
the instrumental noise, the GB foreground, and the SOBBH SGWB, and we average
over these segments to get the simulated measured spectrum. Using the noise as an
estimate for the variance, we define a likelihood consisting of a sum of Gaussian and log-
normal components (the latter accounting for the skewness of the exact likelihood),
as discussed in ref. [241]. For the sake of speed and without loss of precision, this
likelihood is applied to a coarse-grained version of the spectrum obtained by inverse
variance weighting, the final data in frequency space being defined as

Dth
ij

(
fk
ij

)
= h2ΩGW(fk

ij, θ⃗s) + h2Ωn(f
k
ij, θ⃗n) , (4.4.3)

where fk
ij and Dk

ij are respectively the coarse-grained frequency corresponding to bin k,
and the data at that bin, for the combination of TDI channels i and j. ΩGW represents
both the SOBBH component, with spectral shape defined by eq. (4.4.2), and the GB
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foreground component, based on the model from ref. [237]. θ⃗s is the vector of param-
eters of the signal: amplitude and spectral tilt of the SOBBH SGWB, while we recon-
struct only the amplitude h2ΩGal of the GB foreground. Ωn is the instrumental noise
in omega units. We adopt a two-parameter noise model as typically done for LISA: the
noise is characterized at low frequency by the acceleration component, parameterised
by A, and at high frequency by displacements in the interferometry metrology system P
[275]. The two noise parameters form the vector θ⃗n, and vary freely in our analysis. We
sample over the joint (θ⃗s, θ⃗n) = (log10[h

2ΩGW(f = 3× 10−3Hz)], α, log10[h
2ΩGal], A, P )

parameter space using the Nested Sampler Polychord [276, 277] via its interface with
Cobaya [278].

In fig. 4.10 we show the MC contours (2-σ contours) on the SOBBH signal pa-
rameters (log10(h

2ΩGW(f∗)), α), together with the parameters of the GB foreground
and the noise (log10(h

2ΩGal), A, P ), obtained by injecting each of the SOBBH SGWB
posterior percentiles shown in fig. 4.7. For all the injected SGWB amplitudes, the
reconstruction of both the signals and the noise is accurate, with all parameters con-
sistent with the injected values at 2-σ. In particular, the simultaneous reconstruction
of the GB and SOBBH SGWB is achievable even when the amplitude of the latter is
small, due to their different spectral shapes.

The uncertainty on the SOBBH SGWB amplitude from the LISA measurement
is practically constant: ∆h2ΩGW(f = 3× 10−3Hz) ≈ 4× 10−14 (68% CI), with relative
uncertainties ranging from 5% for P5, to 1% for P95. Consequently, the < 1% compu-
tation error on the SGWB prediction due to limiting zmax = 5 is acceptable for this
study (cf. fig. 4.2). Moreover, LISA is insensitive to the ≈ 0.2% population sample
variance on the amplitude (cf. fig. 4.3).

Rather than sampling over the tilt α, as we did in the present background-
detection study, in a realistic data analysis pipeline searching for the SOBBH SGWB,
the tilt would be fixed to α = 2/3. Thus, LISA’s determination of the background
amplitude could reveal more accurate, with respect to the tilt-marginalised errors pre-
sented here. On the other hand, realistic data would contain the contribution from all
the other GW sources in the LISA band, which need to be extracted simultaneously
to the SGWBs signals, possibly affecting the error on the SGWB amplitude compared
to the simple MC evaluation performed here (e.g. ref. [279]).

As a sanity check, for the lowest value of the background amplitude, we have
also performed a Fisher parameter estimation. In fig. 4.11 we present the comparison
between the Fisher analysis and the corresponding MC result, showing that the two
procedures are consistent in the reconstruction accuracy of the signal and noise pa-
rameters.

The results of this section show that LISA will be able to narrow down by one or-
der of magnitude the current uncertainty on the SGWB amplitude due to the SOBBH
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Figure 4.10. 2-σ MC contours on the SOBBH SGWB parameters (h2ΩGW(f = 3 ×
10−3Hz), α), GB parameter h2ΩGal, and instrumental noise parameters (A,P ) for the five
percentile levels of the SOBBH SGWB plotted in fig. 4.7.

population uncertainty inferred from GWTC-3 (see fig. 4.7). Moreover, we demon-
strated that a clear detection of the SGWB is guaranteed, if the true signal falls
within this uncertainty range. On the other hand, the lack of detection, or the detec-
tion of an SGWB outside the posterior prediction (likely lower), would indicate either
that the population model needs to be changed, for example modifying the merger
rate behaviour at high redshift, as discussed in sec. {4.4.2}, or possibly introducing a
redshift-dependence in the mass probability density function; or, it could indicate that
the nature of the SOBBHs is different from what assumed in this work, for example,
they could have highly eccentric orbits. By the time LISA will perform the SGWB
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Figure 4.11. 1 and 2-σ contours from the Fisher analysis, compared with the MC ones,
assuming the lowest value of the SGWB amplitude among the five percentile levels plotted
in fig. 4.7.

measurement (or constraint), the SGWB amplitude posterior predicted from ground-
based observations will probably have narrowed, if not a detection be made by either
2G or (more likely) 3G detectors. Nevertheless, the LISA measurement will provide
further insight into the population of inspiralling SOBBH, by probing the population
properties at high redshift and with low masses, and by testing the SGWB signal in a
different frequency window.
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Figure 4.12. Effective, i.e., averaged over all TDI channels, LISA PLS for 4 years of obser-
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GBs and SOBBHs SGWB components. The black line shows the sensitivity of the AA TDI
channel, and the dashed grey line shows the amplitude of the SGWB due to unresolved GBs.
The median value for the SOBBH SGWB estimated in this work from GWTC-3 constraints
on the SOBBH population (with 25-75 and 5-95 uncertainty ranges) is shown in blue.

4.4.4 Impact on the Power-Law Sensitivity

The PLS represents the standard tool to estimate the observability of a given power-
law SGWB. The PLS is normally defined assuming that the only stochastic component
affecting the SGWB measurement is the instrumental noise [239–241]. In fig. 4.12 we
present an improved version of the LISA PLS including the confusion noises generated
by GBs and by SOBBHs. For the GBs we adopt the analytical template of ref. [237]
with all the parameters taken at their reference value; the SOBBH amplitude on the
other hand is fixed to the median value evaluated in this analysis, see sec. {4.4.2}, and
the tilt to 2/3.

The GB contribution mainly affects the low-frequency range, while the SOBBH
contribution is relevant at higher frequencies: this effect is reflected in the PLS. The
inclusion of the GB confusion noise slightly modifies the PLS at low frequencies, while
the impact of the SOBBHs is nearly negligible. Note that fig. 4.12 corresponds to figure
2 of ref. [221], while figure 3 in the same reference is relative to a different treatment,
meant to account for the effect of the SGWB amplitude uncertainty, evaluated from
the GWTC-2 uncertainty on the merger rate at z = 0.
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Figure 4.13. Impact, on the population parameters posterior inferred from GWTC-3, of the
measurement by LISA of a SGWB with amplitude corresponding to the median value P50 of
the amplitude distribution given in 4.7. The points coloured from blue to yellow represent the
GWTC-3 posterior, and the color scale represents the corresponding SGWB amplitude. The
points highlighted in yellow (red) represent the parameter values providing SGWB amplitudes
within the 1-σ (2-σ) confidence region of the LISA measurement. Left panel: the initial merger
rate R0 versus its tilt κ. Right panel: the tilts (α, β) of the power-law distributions of m1 and
q = m2/m1 respectively. A measurement of the SOBBH SGWB would break the degeneracy
coming from constraints based on individual mergers, and the credible intervals would shrink
correspondingly, especially for the merger rate parameters. Had we not fixed the high-redshift
behaviour of the merger rate, but treated it probabilistically, the improvement with respect
to the GWTC-3 constraints would be smaller, but still significant.

4.4.5 SGWB detection and the SOBBH population parameters

Intuitively, one might expect the constraining power of a measurement of the SGWB
on the SOBBH population model to be very limited, regardless of its precision, since
it would reduce the dimensionality of the population parameter space at most by one,
leading to a highly-degenerate posterior. On the other hand, this can still have an
important impact if the degeneracy associated with the SGWB measurement does not
align with the correlations in the population parameter posterior associated with the
detection of individual events, the misalignment being due to the fact that the popula-
tion parameters influence the SGWB amplitude differently from how they influence the
characteristics of the population of individually resolvable events. Indeed, it has been
demonstrated that a SGWB measurement (or even upper limit) by LVK, in combina-
tion with resolved merger events, can constrain the redshift evolution of their merger
rate [242, 243] and possibly their mass distribution [280].

The high precision with which LISA is expected to measure the SOBBH back-
ground, as shown in sec. {4.4.3}, should render LISA especially suited to this task. In
order to illustrate its potential constraining power, in fig. 4.13 we plot the GWTC-3
population parameters posterior sample as a scatter plot, highlighting the points com-
patible with a SGWB amplitude within the LISA 1- and 2-σ credible intervals, relative
to a detection by LISA of a SGWB with amplitude corresponding to the median pre-
dicted SGWB level P50 (see fig. 4.10). One can appreciate that the two-dimensional
posterior shrinks significantly, depending on the combination of population parameters.

– 108 –



In the left panel of fig. 4.13 we show the local merger rate R0 versus its low-redshift
tilt κ: the GWTC-3 posterior (points coloured in blue to yellow (for increasing SOBBH
SGWB amplitude) presents a degeneracy due to the merger rate being best determined
around z ≈ 0.2. Since the value of the low-redshift tilt κ has a strong impact on the
SGWB amplitude, the latter varies considerably along this degeneracy (colour scale
from blue to yellow). Thus, a precise SGWB measurement, as performed by LISA,
would break this degeneracy by leading to a posterior, in the (R0, κ) parameter plane,
almost perpendicular to the one inferred from the detection of individual SOBBH
merger events by ground-based observatories.

The posterior distribution of the mass tilts (α, β), shown in the right panel, would
also be significantly reduced.7 Note that this could be further exploited by a measure-
ment of the anisotropic component of the SOBBH background [281], since the relative
amplitude of the anisotropic to the isotropic components appears to be correlated with
the tilt of the mass distribution and with the maximal allowed mass [280].

The above results are valid within the assumptions of our analysis, in particular,
that the merger rate at high redshift is fixed to the SFR as given in eq. (4.6.1), and
that the LISA uncertainty on the SGWB amplitude is inferred from the MC analysis
of a simulated data set containing exclusively the SOBBH SGWB, the GBs, and the
instrumental noise. Allowing for variations in the high-redshift model of the merger
rate, and/or performing a more realistic data analysis procedure accounting for the
overlap of several categories of LISA sources, would likely reduce the potential of the
SGWB measurement to shrink the population parameter posterior. However, these
effects are not expected to alter the misalignment of the correlations in the poste-
rior parameter space inferred from the measurements of individual events and from
the measurement of the SGWB. Consequently, the latter will anyway retain, to some
degree, its constraining power.

4.5 Conclusions

We have evaluated the SGWB expected in the LISA frequency band from SOBBHs,
incorporating the most recent information on their mass function, spin distribution,
and merger rate coming from LVK observations, in particular from the GWTC-3 pos-
terior on the population parameters of the FidLVK model.

7Figure 4.1 seemed to indicate that the effect on the SGWB amplitude of the parameters of the
peak in the Power Law+Peak m1 distribution, (λ, σ), was larger than the effect of the tilts of
the power laws in m1 and q = m2/m1, i.e. (α, β). In this section we observe instead (see the right
panel of fig. 4.13) that the latter would be more strongly constrained by a background amplitude
measurement than the former, leading to an apparent contradiction. However one should notice that
the analysis in sec. {4.3.1}, illustrated by fig. 4.1, does not take into account parameter degeneracies
in the GTWC-3 posterior, overestimating the importance of some individual parameters, in particular
(λ, σ).
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The LVK observations only probe the SOBBH population at low redshift, while
faint and distant SOBBHs contribute the most to the background signal. In order
to properly evaluate the SGWB, we have therefore extended the GWTC-3 power-law
merger rate by assuming that it follows the SFR [130], since the low-redshift expansion
of the latter is coherent with the GWTC-3 constraints. With the aim of assessing the
impact that this assumption has on the SGWB amplitude, we have also added a time
delay in the SOBBHs formation and found that (under a simple model for the time
delay distribution, and reasonable values for the minimal time delay) this reduces the
SGWB amplitude by at most 40%, remaining within the uncertainty inherent to the
GWTC-3 posterior. Though the current precision of the model is not sufficient, future
ground-based observations of individual merger events, together with a detection of
the SGWB by LISA, will allow to constrain the merger rate and possibly time delays
in the future.

We have used four methods to estimate the SGWB. The first method is based on
analytic considerations and consists of the integration, over the number density of bi-
naries, of their GW emission in the quasi-circular Newtonian approximation, resulting
in a power-law SGWB with slope f 2/3 [236]. The analytical approach has been used
to evaluate the impact of each population parameter on the amplitude of the SOBBH
background, accounting for its marginalized 95% confidence levels from the GWTC-3
posterior. The power-law index κ of the low-redshift expansion of the merger rate is
the parameter influencing the most the SGWB amplitude. We have then calculated the
relative percentage change induced in the latter by varying the redshift upper cutoff:
we found that integrating up to zmax = 5 is sufficient to obtain ∼ 1% accuracy in the
evaluation of the background amplitude, also well within the uncertainty induced by
the GWTC-3 posterior.

The other three methods employed for the SGWB estimation, gradually increasing
in complexity and accuracy, rely on synthetic SOBBH populations, which we have con-
structed following the GWTC-3 FidLVK posterior distribution. The second method
consists in replacing the integration of the analytical method with a MC sum over the
masses and redshift of the SOBBHs in the synthetic population realisation, averaging
over the time-to-coalescence and the sky-position; while in the third method, the MC
sum is performed accounting for the time-to-coalescence of individual events and bin-
ning them according to their corresponding emission frequency. These methods allow
establishing that the impact of the population variance over the SGWB amplitude is of
the order of 0.2%, negligible with respect to the effect of the maximal redshift choice,
which is in turn smaller than the uncertainty due to the GWTC-3 posterior.

The fourth method incorporates the actual LISA detection process and consists
in simulating LISA data-streams containing the waveforms of all the SOBBHs within
the simulated population, and iteratively subtracting the loudest ones until only the
confusion noise remains [237]. The threshold SNR used to single out the resolvable
GW sources is set to ρ0 = 8, but we find that the saturation threshold, above which the
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SOBBH signal is less sensitive to the choice of the threshold itself, is situated at ρ0 ≈ 5.

We have checked that the four methods provide consistent results for the SGWB
amplitude: this is indeed the case at frequencies higher than about 2 mHz, this thresh-
old being exclusively due to the computational limitation of our synthetic populations.
The SNR threshold choice results in fact in a limited number of resolvable events, so
that the SGWB in the LISA frequency band does not deviate from the analytical power
law prediction, which is reproduced also by the three methods based on population
synthesis. However, if sources with SNR lower than five will be resolvable in the fu-
ture, thanks to improvements in data analysis techniques, or to archival searches using
future ground-based detector observations, it will be necessary to take into account
that the shape of the SGWB in the LISA band deviates from the power law behaviour.
This clearly stresses the importance of a precise identification of the resolved sources
and of their subtraction, which we present in a follow-up paper [238].

The distribution of the SGWB amplitude at the reference frequency of 3 mHz is
evaluated using the analytical method, for all points in the GWTC-3 posterior param-
eter sample. The interquartile range of the distribution is h2ΩGW(f = 3× 10−3Hz) ∈
[5.65, 11.5] × 10−13. Our findings are in broad agreement with previous evaluations
of the SOBBH stochastic signal and appear therefore to be robust with respect to
assumptions such as the high-redshift behaviour of the merger rate and the mass dis-
tribution.

We have then performed a MC analysis of simulated LISA data to infer the pa-
rameters (i.e., amplitude and spectral tilt) of the SOBBH SGWB in the presence of
instrumental noise and of the stochastic signal from GBs. We have found that, with
four years of data, the template-based reconstruction of the parameters of both signals
and of the noise is accurate to the percent level, with all parameters consistent with
their injected values at 2-σ. In this simplified setting where no other GW source is
present, and the GB background is static, the SOBBH SGWB can therefore be dis-
tinguished from the GB one, despite their overlap at low frequency. We have also
compared the MC analysis with a Fisher Information Matrix analysis, finding good
agreement, and derived the PLS accounting for the SOBBH and GB backgrounds.

The precision with which LISA will measure the amplitude of the SOBBH SGWB
goes from at best 1% (at 1-σ), for the amplitude value corresponding to the 95th per-
centile of its posterior distribution, up to 5% for the fifth percentile. LISA will therefore
reduce by one order of magnitude the current uncertainty on the SGWB amplitude
predicted from the GWTC-3 population model. The accuracy of this measurement
opens interesting perspectives. We have shown that LISA has the potential to break
the degeneracy between some population parameters, since the correlations in the pos-
terior parameter space inferred from the measurements of individual events and of the
SGWB, are almost orthogonal. In particular, we forecast an important impact on the
merger rate parameters, since the SGWB detection by LISA probes the population
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of inspiralling SOBBHs at high redshift, fully complementary to actual ground-based
observations of low-redshift mergers.

Several extensions of our work are possible, tackling some of its underlying as-
sumptions. First of all, including eccentricity and precession in the waveforms might
have an important effect on the SGWB [282, 283]. While we have shown the effect of
introducing a time delay between the star formation and the BHs mergers, the impact
of the metallicity on the BH mass function has been neglected, see e.g. refs. [126, 127,
231, 271] for recent studies. A further layer of complexity can be added including the
possibility of a redshift dependence of the mass function [46]. The LISA error on the
SGWB parameters should be forecasted including other types of sources in the data
stream, both resolved and of stochastic nature. Extra-galactic neutron star binaries,
for example, generate a collective signal that, although lower in amplitude, is similar to
the background from SOBBHs, and likely not negligible. Extreme mass ratio inspirals
[284] also produce a background at mHz frequencies, although its amplitude is currently
poorly constrained and its frequency dependence might not follow a simple power-law
in the LISA band [257]. Finally, the effect of the SGWB measurement by LISA on the
SOBBH population parameters demonstrated in this work should be properly evalu-
ated via a joint analysis of simulated data from LISA and ground-based observatories,
possibly 3G detectors which might be operative by the time LISA flies [285]. Such a
joint analysis may also reveal deviations from the expected SOBBH SGWB spectrum,
which could point towards a different origin for the BBHs (see e.g. ref. [286]).
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4.6 Appendix A : Further information on the SOBBH popula-
tion model

In this Appendix, we provide more detail on the SOBBH population model: we describe
the characteristics of the probability distributions inferred from GWTC-3 observations
[46], and justify some of our choices for the catalogues generation, in particular regard-
ing the merger rate behaviour with redshift and the maximal time-to-coalescence.

4.6.1 Appendix A.1 : Redshift-dependent SOBBH rate

As discussed in sec. {4.2.2}, the GWTC-3 constraints on the SOBBH merger rate
variation with redshift, assumed to be a power law R(z) = R(0)(1 + z)κ, are weak at
z ≳ 0.5. Therefore, in order to produce accurate SGWB estimates, we need an Ansatz
that extends the power law assumption towards higher redshift. We require R(z) to
follow the redshift profile of the Madau-Fragos SFR [130]:

R(z) = R0C
(1 + z)κ

1 + κ
r

(
1+z

1+zpeak

)κ+r , (4.6.1)

with r, κ > 0 and R0 ≡ R(z = 0), implying C = 1 + (κ/r) (1 + zpeak)
−(κ+r). Thus,

along the evolution of the Universe, from high to low redshift, the SOBBH merger
rate initially rises as z−r as more stars are available, and eventually decreases as zκ
after the peak of stellar formation. Different from previous studies, e.g. ref. [243], we
introduce the extra factor κ/r in the denominator of eq. (4.6.1) to guarantee that the
function peaks precisely at redshift zpeak; otherwise, the actual peak of the function
would deviate from the value of the nominal zpeak parameter whenever κ/r ̸= 1. Fol-
lowing this notation, the updated best fit values found in ref. [130] are κ = 2.6, r = 3.6,
and zpeak = 2.04.

In order for the merger rateR(z) of eq. (4.6.1) to work as a reasonable high-redshift
extension of the GWTC-3 low-redshift constraints, we require it to reproduce the profile
that LVK obtains for the FidLVK fiducial model fitting the GWTC-3 data [46]. In
that study, inference is performed on a low-redshift power law R(z) ∝ (1+z)κ, resulting
in8 κ = 2.7+1.8

−1.9 and a pivot rate of R0 = 17.3+10.3
−6.7 Gpc−3yrs−1 at z = 0, or alternatively

R0.2 = 28.3+12.9
−9.0 Gpc−3yrs−1 at z = 0.2. These constraints are represented by the blue-

shaded region in fig. 4.14. At low redshift, the median value for the spectral index κ
coincides with that of the SFR [130]: in order to extend R(z) at high redshift, we can
therefore match the LVK posterior values for R0, κ with some values for r, zpeak. The
latter could e.g. be drawn from some prior distribution; for the purposes of this paper
(comparing LISA’s sensitivity to SOBBH SGWB amplitudes approximately compatible
with the GWTC-3 population inference), it is enough to fix r, zpeak to the SFR best
fit values mentioned above [130]. The resulting, GWTC-3-compatible, high-redshift
merger rate is displayed in fig. 4.14 in orange shading.

8All parameter ranges are given as median ± its respective differences with the percentiles 5 and
95, taken from the public population posterior sample of GTWC-3 for the fiducial FidLVK model.
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range probed by LVK, i.e. z ≲ 0.5. The crosses (gray) represent a sample of positions of the
ill-defined peak of R(z), had we ignored the κ/r factor in eq. (4.6.1).

4.6.2 Appendix A.2 : Masses and spins density distributions

The probability distribution p(ξ|θ) of eq. (4.2.1) is taken from refs. [230, 287]. In the
fiducial FidLVK model, p(ξ|θ) is a separable probability density function, which can be
split into a joint density function for the masses mi=1,2 of the binary, and independent
density functions for the spin amplitudes ai and tilts ti:

p(ξ|θ) = p(m1,m2|mmin,mmax, δmin, α, λpeak, µm, σm, βq)

× p(a1|αa, βa)× p(a2|αa, βa)× p(cos(t1), cos(t2)|σt, ζ) .
(4.6.2)

The separability of this distribution facilitates population synthesis since the param-
eters in the different components can be simulated independently (e.g. using inverse
transform sampling in the single-parameter cases).9

The mass density function is usually given in terms of the mass of the heaviest

9The data in GWTC-3 suggest some correlations that would break this separability, such as that
between high spin and mass asymmetry. For the level of the analysis in this paper, it is safe to ignore
this finding.
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binary, by convention m1, and the mass ratio q = m2/m1 ≤ 1:

p(m1,m2) = π1(m1|mmin,mmax, δmin, α, λpeak, µm, σm)× π2(q|m1,mmin, δmin, βq) ,
(4.6.3)

where π1 is a mixture density function, times a low-mass smoothing:

π1(m1|mmin,mmax, δmin, α, λpeak, µm, σm)

= C1

[
(1− λpeak)P[mmin,mmax](m1| − α,mmin,mmax) + λpeakG[mmin,mmax](m1|µm, σm)

]

× S(m1|mmin, δmin) .

(4.6.4)

Here P[mmin,mmax] is a truncated power-law distribution with negative spectral index
−α, normalized within the [mmin,mmax] range, G[mmin,mmax] is a similarly-truncated
Gaussian density function representing a possible mass pile-up of BBHs before the SN
pair-instability gap [288], C1 is an overall normalization factor (made necessary by the
presence of the smoothing function), and S is a smooth cutoff for low masses that
interpolates between 0 and 1 in the interval [mmin,mmin + δmin] as

S(m|mmin, δmin) =





0 if m < mmin

[f(m−mmin, δmin) + 1]−1 if m ∈ [mmin,mmin + δmin] ,

1 if m > mmin + δmin

(4.6.5)

with
f(m−mmin, δmin) = exp

(
δmin

m−mmin

+
δmin

m−mmin − δmin

)
. (4.6.6)

The probability density function π2 for the mass ratio q in eq. (5.6.3) is

π2(q|m1,mmin, δmin, βq) = Cqq
βqS(qm1|mmin, δmin) , (4.6.7)

where Cq(m1,mmin, δmin, βq) is a normalization factor. The fact that Cq depends on m1,
in particular, makes the distribution in eq. (5.6.3) non-separable. It can be computed
as

C−1
q (m1) =

1

m1

∫ m1

mmin

dm2 q
βq S(qm1|mmin, δmin) . (4.6.8)

The LVK analysis with the latest GWTC-3 data constrains the boundaries of the mass
range as mmin = 5.1+0.9

−1.5M⊙, mmax = 86.9+11.4
−9.4 M⊙. The parameters of the larger-

mass distribution are inferred as α = 3.40+0.58
−0.49, λpeak = 0.039+0.058

−0.026, µm = 33.7+2.3
−3.8M⊙,

σm = 3.6+4.6
−2.1M⊙, the spectral index of the mass ratio as βq = 1.1+1.8

−1.3, and the single
parameter of the smoothing function as δmin = 4.8+3.3

−3.2M⊙.

The probability distribution of each of the spin amplitudes ai in eq. (4.6.2) is a
concave Beta distribution function in the amplitude interval (in natural units) [0, 1],
with parameters (αa, βa) [289]:

p(ai|αa, βa) = Beta(ai|αa, βa) . (4.6.9)
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As in the LVK analysis, the subscript a stands for “amplitude” and αa should not be
confused with the parameter α of the mass distribution p(m1,m2). The arguments
αa > 1 and βa > 1 of the Beta distribution are linked to the expected value and
variance of the inferred amplitudes (i.e. all the inferred a1 and a2 joined into a single
data set) via the relationships

E[a] = αa

αa+βa
, Var[a] = αaβa

(αa+βa)2(αa+βa+1) , (4.6.10)

which the LVK analysis estimates to be E[a] = 0.25+0.09
−0.07 and Var[a] = 0.03+0.02

−0.01.

Lastly, the distribution for the spin tilts ti are given by independent mixtures
of an isotropic component and a truncated Gaussian component centered at perfect
alignment [288]:

p (cos(t1), cos(t2)|σt, ζ) = (1− ζ)

(
1

2

)2

+ ζ G[−1,1](cos(t1)|1, σt)G[−1,1](cos(t2)|1, σt) .
(4.6.11)

For the values of this distribution, GWTC-3 infers ζ = 0.66+0.31
−0.52 and σt = 1.5+2.0

−0.8.

4.6.3 Appendix A.3 : Time-to-coalescence and frequency of emission

Here we discuss the role of the residual time to coalescence for the population synthesis
and the SGWB computation.

A correct prediction of the SOBBH SGWB in the LISA band implies catalogs
that are complete enough to adequately simulate the signal. On the other hand, the
only observational knowledge we have on these sources comes from LVK observations,
which probe the population of merging SOBBHs. In sec. {4.2.1} we have shown that,
under the hypothesis that the binaries formation, and therefore their coalescence rates,
is in a steady state, the binary rate R(z, τc) in eq. (4.2.1) is indeed equivalent to the one
of the merging binaries, constrained by LVK observations. This allows us to construct
the catalogs and consequently, the SGWB estimation based on the LVK GWTC-3 pos-
terior.

The hypothesis that the binary formation is in a steady state implies that we
sample the time-to-coalescence of the binaries in the catalogs uniformly in the range
τ
(det)
c ∈ [0, τ

(det)
c,max]. We have imposed τ

(det)
c,max = 104 yrs, much smaller than the typical

time over which the SOBBH population is expected to change, O(109) yrs. However, is
this good enough to account for all the binaries emitting in the LISA band for the entire
mission duration? In other words, are the simulated catalogs representative enough of
the SOBBH population relevant for LISA? In what follows we demonstrate that, while
not complete, our catalogs do indeed provide all the information necessary for a good
characterization of the SOBBH SGWB, as far as our choices on the time-to-coalescence
are concerned.
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Figure 4.15. Left panel: Evolution of the frequency during the inspiral phase as a function
of the time-to-coalescence for light, mid, and large mass SOBBHs. Pink and green bands
represent the LISA and LIGO frequency bands. Right panel: The frequency distribution
emerging in one of the benchmark catalogs, constructed with a flat τc prior.

The time interval over which we need to integrate the merger rate in order to
obtain the appropriate number of observed events is

Ttot = Tobs + TmaxBand, (4.6.12)

where Tobs denotes the total detector observation time, while TmaxBand is the maximum,
over all the binaries in the Universe, of the portion of each binary’s lifetime (i.e. of τc)
which is spent in the detector frequency range. While in the case of LVK TmaxBand is less
than seconds, so that Ttot ≃ Tobs, LISA probes the SOBBH population at a different
stage when they are still far from merging. Inserting the minimal LISA frequency
2 · 10−5 Hz and the minimal mass in the catalogs mmin = 2.5 M⊙ (see sec. {4.2.4}) in
the Newtonian relation for circular orbits (here expressed at the detector, so that Mz

is the redshifted chirp mass) [265]

f =
1

8π

[
1

5

(
GMz

c3

)5/3

τ (det)c

]−3/8

, (4.6.13)

one obtains the maximal time-to-coalescence τ (det)c ≃ 2 · 1010 yrs in the worst case
scenario of an equal mass binary at the minimal catalog redshift zmin = 10−5 (see
sec. {4.2.3}). Therefore, in the case of LISA, Ttot ≃ TmaxBand, and setting τ (det)c,max = 104

yrs appears inappropriate by as much as 6 orders of magnitude.
In reality, τ (det)c,max = 104 yrs is a suitable choice that, while preserving computational

feasibility, still provides all the relevant information for the SGWB evaluation. By
cutting the time-to-coalescence sampling at τ (det)c,max = 5(10)[15]× 103 yrs, given the cat-
alogues mass range 2.5M⊙ < m2 < m1 < 100M⊙ (see sec. {4.2.4}) and their redshift
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range 10−5 < z < 5 (see sec. {4.2.3}), according to eq. (4.6.13) one is disregarding some
binaries with f ≲ 5.9(4.5)[3.9]mHz and all binaries with f ≲ 0.19(0.15)[0.13]mHz, as
illustrated in fig. 4.15. Figure 4.5 shows the aggregated effect of this suppression in the
SGWB (note that this figure is produced setting zmax = 1, as explained in sec. {4.2.4}):
it is clear from this figure that the relevant spectral property of the SGWB signal, i.e.
the power-law behavior in frequency, is still well captured by the signal produced via
the simulated catalogs. The bending at low frequency is nonphysical and therefore
irrelevant: the SGWB is expected to simply continue with the same power-law behav-
ior at low frequencies for synthetic populations with much higher τc,max. Furthermore,
in fig. 4.12, we can see that the GB foreground overcomes the SOBBH SGWB below
2–3mHz. It is thus unlikely that an increase beyond τc,max = 104 yrs would produce
a noticeable effect in any realistic study. Given the growing computational cost of
generating (and computing the SGWB of) synthetic populations with larger τc,max, we
conclude that τ (det)c,max = 104 yrs is a good compromise for the purposes of this study.
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Chapter 5

Article: Probing primordial black
holes at high redshift with future
gravitational wave detectors
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Abstract. We analyze the detection prospects for potential Primordial Black Hole
Binary (PBHB) populations buried in the Stellar-Origin Black Hole Binary (SOBHB)
population inferred by the LVK collaboration. We consider different PBHB population
scenarios and several future Gravitational Wave (GW) detectors. To separate the
PBHB component from the SOBHB one, we exploit the prediction that the PBHB
merger rate does not decline as fast as the SOBHB one at high redshift. However, only
a tiny fraction of PBHB events may be resolved individually, and the sub-threshold
events may yield an undetectable Stochastic GW Background (SGWB). For this reason,
we determine the statistical significance of the PBHB contributions in the number of
resolvable events seen in future Earth-based detectors and the SGWB measured at
LISA. We find that the synergy between these probes will consistently help assess
whether or not a sizeable PBHB population is present.
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5.1 Introduction

LIGO’s first Gravitational Wave detection labeled GW150914 [44, 290] opened the
gates to the world of GW astronomy. Since that detection, the sensitivity of LIGO de-
tectors has increased considerably, and the Virgo [291] and KAGRA [292] experiments
have also joined the network. At present, the LVK network has identified over ninety
GW events involving Black Holes and Neutron Stars [45] and has started constraining
the statistical properties of the Stellar Mass Black Hole Binaries (SMBHB) popula-
tion, although some bounds remain loose. Primarily, these limitations arise from the
current detector sensitivity, which only leads to a low number of events measured with
high precision. The determination of the merger rate distribution at high redshift
(z ≳ 1) is a striking example of these limitations. As a matter of fact, the properties
of the population at z ≳ 1 are, currently, only guessed by using phenomenological
models following the Star Formation Rate [56, 57, 130], leaving open space for the
presence of both long time delays in the Black Hole Binary (BHB) formation [293] and
a variety of subpopulations with different redshift behaviours [52, 294, 295] (see also
refs. [182, 235, 243, 296, 297]). While this might be a reasonable assumption if all the
events observed by current detectors are BHBs of Stellar Origin (SOBHBs), at least
in principle, different scenarios are possible, leading to different high redshift behaviors.

An intriguing alternative for BH formation is the possibility for BHs to form
due to some cosmological processes occurring in the early Universe. These objects
are typically dubbed Primordial Black Holes to differentiate from BHs produced in
some late-time astrophysical processes. PBHs might form when strong scalar pertur-
bations, e.g., generated by some inflationary model violating slow-roll, re-enter the
Universe horizon, leading to the collapse of some regions of space [136, 137, 298, 299].
Such a mechanism would make PBHs, and in particular PBH Binaries (PBHBs), com-
pletely independent of star formation processes. Different inflationary mechanisms and
early-Universe histories can result, e.g., in vastly different PBH abundances and mass
distributions (see, e.g., [16, 49, 132, 134, 300, 301] for reviews of PBH formation and
constraints). Interestingly, depending on the formation scenario, PBHs can account for
a substantial portion of the observed Dark Matter (DM) abundance [16, 133, 148, 301].
Furthermore, at least one of the two BHs in some SMBHBs might be of primordial ori-
gin, and, more in general, a PBHB population might contribute1 to the events currently
observed by LVK detector [302, 304–307]. In such a case, some statistical properties
and observable signatures might radically differ from those arising when all SMBHBs
are SOBHBs.

Despite their radically different origin and phenomenology, PBHs are elusive at
current GW detectors. The challenge is partly rooted in the lack of unquestionable,

1Notice, however, that LVK observations put tight constraints on the fraction of DM in PBHs for
BHs in the stellar mass range [52, 302, 303].
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discriminating predictions at low redshift (see ref. [308] for a systematic procedure to
assess the origin of BBHs). The predictions on PBHs and SOBHBs at low redshift are
indeed loose due to the plethora of viable inflationary mechanisms and the numerous
unknowns on the stellar-origin formation channels. On the contrary, a robust model-
independent discrimination criterion exists at high redshift: at distances larger than
the SFR peak (z ≃ 2), the SOBHB merger rate must fast decline, whereas the PBHB
merger rate can keep growing [274, 294, 302, 306, 309, 310]. Remarkably, while the
SFR peak is beyond the reach of the present LVK interferometers, it will be in the
range2 of future Earth-based detectors [55, 58, 285, 312–317]. In addition, the Laser
Interferometer Space Antenna (LISA) [59], might look for imprints of PBHs in the
milliHertz band from individual events [16, 318, 319] and the Stochastic Gravitational
Wave Bacground [16, 146, 320–322]. Moreover, LISA will be sensitive to the SGWB
due to the incoherent superposition of the weak signals from the SMBHB population,
which, including the contribution of binaries at high-redshift, brings information on
the behavior of the population above the SFR peak [182, 221, 233, 235, 273, 274].

In the present paper, we discuss the detection prospects for the PBHB population
using its high-redshift behavior [316, 317, 323, 324]. Specifically, we study how future
detectors might be able to identify PBHB populations beyond a certain Fiducial Pop-
ulation of SOBHB (based on ref. [182]), which is broadly compatible with the current
LVK observations [45, 296]. For this purpose, we consider some well-established PBHB
population models [274, 309] and we show how different detectors will complementar-
ily probe their parameter spaces. In general, we expect our qualitative results to be
independent of our fiducial population and PBHB models. However, the quantitative
outcomes are contingent upon our population selections, so it will be worth repeating
our analysis when the statistical properties of the SMBHB subpopulations become less
uncertain than they are today.

The paper is structured as follows: In sec. {5.2}, we describe the PBHB subpop-
ulation models, and in sec. {5.3}, we describe the methodology that we adopt. Our
results are presented in sec. {5.4}, where we show how different PBHB subpopulations
will be detectable with future Earth- and space-borne GW detectors. In particular,
we demonstrate that the SGWB detection will give important complementary infor-
mation on the presence of deviations from the fiducial model. We devote sec. {5.5} to
our final remarks and conclusions, while we describe some technicalities of our analysis
in apps. {5.6}, {5.7}, {5.8}, {5.9} and {5.10}.

5.2 Population models

In this section, we present the population models that we analyze in this work. Follow-
ing refs. [182, 296], for a given population the number of expected sources in a given

2It is worth stressing, however, that while detecting high-redshift events will be possible with future
detectors, accurately inferring their distances will not be trivial [311].
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interval of redshift and parameter space is given by

d2N(z, θ, ξ)

dθdz
= R(z)

[
dVc
dz

(z)

]
TObs

1 + z
p(θ|ξ) , (5.2.1)

where TObs is the detector observation time, dVc/dz(z) is the differential comoving
volume, R(z) is the merger rate, and p(θ|ξ) is the Probability Distribution Function
(PDF) for the source to have some specific values for the binary parameters (collectively
denoted with θ) given some population hyperparameters (collectively denoted with
ξ)3. Notice that since p(θ|ξ) is normalized, the number of events in a redshift interval
[zm, zM ] is given by

∆Nzm,zM =

∫ zM

zm

dN(z)

dz
dz = TObs

∫ zM

zm

R(z)

1 + z

[
dVc
dz

(z)

]
. (5.2.2)

More in detail, the PDF term p(θ|ξ) can be expressed as

p(ξ|θ) = p(m1,m2|ξMass)× p(θAngles|ξAngles)× p(θSpins|ξSpins) , (5.2.3)

where m1 and m2 are the two masses, p(m1,m2|ξMass) is the mass function depending
on some hyperparameters ξMass, p(θAngles|ξAngles) is the angle PDF, and p(θSpins|ξSpins)
is the spin PDF. The sources are assumed to be isotropic in the sky, with inclination
and polarization uniformly distributed in their considered prior. Eccentricity in the
orbit is neglected throughout this work. The spin PDF is further expanded as

p(θSpins|ξSpins) = p(a1, a2|ξSpinAmplitude)× p(cos(t1), cos(t2)|ξSpinTilt) , (5.2.4)

where p(a1, a2|ξSpinAmplitude) and p(cos(t1), cos(t2)|ξSpinTilt) are the spin amplitude and
spin tilt PDFs, with ai and ti (with i = 1, 2) denoting the normalized spin amplitude
and the angle between the binary angular momentum and the spin of the body i, re-
spectively.

In our analysis, the SMBHB population consists of the sum of the SOBHB and
PBHB subpopulations. We model each subpopulation using the framework outlined
in eq. (5.2.1) and neglect binaries with mixed origins. For the SOBHB population, we
consider a fiducial population model, utilizing Probability Density Functions (PDFs)
derived from the most recent LVK studies. We set their hyperparameters to the best-fit
values as determined by these studies [296]. We remind that the LVK data, which we
refer to as GWTC-3, provide no direct constraint at z ≳ 1. To extend our analysis to
the redshift range 1 ≲ z ≲ 10, we assume that the SOBHB merger rate RSOBHB tracks
the SFR and that the PDFs remain redshift-independent. Specifically, we employ a
phenomenological merger rate that closely follows the Madau-Dickinson SFR [56] with
negligible time delay (see [225, 227, 325]). Appendix {5.6} provides further details

3Consistently with the most recent LVK analyses [230, 296], we are assuming the PDF to be
separable. In particular, we assume all other parameters not to depend on the redshift.
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about our approach.

Due to their early-universe origin, PBHBs have different statistical properties than
SOBHBs, and, in particular, the PBHB merger rate is not expected to track the SFR.
While several possibilities exist in the literature (see,e.g., ref. [309]), for the PBHB
merger rate we adopt [306, 310]

RPBHB(z) = εR0

[
t(z)

t(z = 0)

]−34/37

(5.2.5)

which corresponds to a power law in cosmic time t(z) [274, 294], normalized so that in
z = 0 it is ε-times smaller than the fiducial SOBBH merger rate R0 at the same redshift.
Figure 5.1 shows the fiducial SOBHB merger rate and the PBHB merger rate for some
values of ε. As far as ε ≪ 1, within the LVK horizon (z ≲ 1) the PBHB population
is subdominant and (up to a few outliers) the whole SMBHB population of GWTC-
3 exhibits the SOBHB properties. On the other hand, most PBHB subpopulations
become relevant after the peak of the SFR. This is particularly evident from the dashed
lines in the right panel of fig. 5.1, which shows N̂Pop

z number of events redshift z
predicted by population Pop, which is given by

N̂Pop
z ≡ ∆NPop

zm,zM

∆z
, (5.2.6)

where ∆NPop
zm,zM

is defined in eq. (5.2.2) with the additional superscript specifying the
considered population. By normalizing with ∆z = zM − zm, we ensure that, for suf-
ficiently small bin sizes, N̂Pop

z is independent of the specific binning scheme used in
the analysis. The total PBH energy density normalized to the critical density ΩPBH is
typically rescaled by the DM energy density parameter, ΩDM, to get the fraction of DM
in PBHs, fPBH ≡ ΩPBH/ΩDM. For techniques to relate the merger rate in eq. (5.2.5)
to fPBH see app. {5.7}.

For the PBHB mass distribution, we assume each of the two masses in the binary
to be drawn from the same PDF4, i.e., P (m1) = P (m2), which we set to be a Log-
Normal (LN)

ΦLN(m) =
1√

2πm2σ2
LN

exp

[
− ln2(m/µLN)

2σ2
LN

]
, (5.2.7)

where µLN and σLN are the hyperparameters setting the position and width of the
peak.

Finally, we comment on the choices for the PDFs of the other variables. Since
the PBHB spin PDF is still an argument of debate [327–329], we assume the PBHB

4This simplifying assumption doesn’t include the effect of suppression terms in the mass func-
tion [55, 303, 306, 310, 326]. In the formalism of this paper, these effects are hidden in the definition
of ε. For details see app. {5.7}.
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Figure 5.1. Left panel: Merger rate as a function of redshift for different populations (solid
curves). The dashed, vertical lines mark the maximal horizon distances of LVK (dotted blue
line) and LIGO A+ (dash-dotted green line). Right panel: number of events per year within
a redshift volume (solid lines) and number of events per year per redshift bin normalized by
the bin width (dashed lines) as functions of redshift for different populations. In both panels,
the quantities of the fiducial SOBHB population are marked in black, and those of the PBH
population with varying ε are marked in red (dark to light for decreasing ε).

spin distribution to be the same as the SOBHB one (see app. {5.6} and, in particular,
table [5.4]). Similarly, we assume all the angular variables (including the phase of the
binary) to follow the same distribution of SOBHBs.

5.3 Methodology

This section describes our methodology to identify a PBHB population component on
top of the fiducial population consistent with GWTC-3. Our analysis studies the de-
tectability of individual sources and SGWB with future GW detectors. Specifically, we
consider LIGO A+ and ET, with either 1 or 10 years of observations, for the measure-
ment of individual sources, and LISA, assuming either 4 or 10 years of observations,
for the SGWB detection and characterization. While our analysis concerns the PBHB
population models presented in sec. {5.2}, a similar methodology could be applied to
other PBH scenarios and GW detectors. For details on the detector characteristics
and our numerical codes, see app. {5.9} and the repository [330], respectively.

5.3.1 Resolvable sources analysis

Our analysis of individually resolvable sources relies on measurements performed with
Earth-based detectors. In particular, we check whether the presence of the PBHB
subpopulation increases the expected number of detectable sources by more than 3σ
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beyond the number predicted by the fiducial population. For this purpose, hereafter
we define an event as “detectable” when its Signal-to-Noise Ratio (SNR) (see definition
in eq. (5.3.3)) is larger than some threshold value SNRThr, which we set to 8.

Let us start by briefly reviewing the methods to evaluate the SNR associated with
a GW signal. The signal, h, measured by any GW detector is expressed as

h = F+
ij h

+
ij + F×

ij h
×
ij , (5.3.1)

where h+ij and h×ij denote the two GW polarization modes, while F+
ij and F×

ij are the
detector pattern functions (for details, see e.g., ref. [331]). The two GW modes can
be further expanded as a combination of polarization tensors e+ij, e×ij, and a waveform
depending on the source parameters. In our study, we employ the IMRPhenomXHM
waveform [173], a phenomenological waveform from the IMRPhenom family [171, 172,
332–334], offering a good compromise between quality and computation speed. With
this choice, the signal depends on the parameters

m1,m2, dL, ϕ0, τc, θ, ϕ, ι, ψ, χ1, χ2 , (5.3.2)

where m1 and m2 are the masses of the two BHs in the detector frame, dL is the
luminosity distance, ϕ0 is the binary’s initial phase, τc is the coalescence time, θ and
ϕ are the binary’s latitude and longitude, ι is the angle between the binary’s angular
momentum and the line of sight, ψ is the orientation, and χ1 and χ2 are the two
(dimensionless) spin amplitudes projected on the orbital plane. Finally, the SNR for
a given source and a given detector is defined as [335]

SNR2 = 4

∫ fM

fm

Re[h∗h]
Sn(f)

df , (5.3.3)

where Sn(f) is the detector strain sensitivity (see sec. {5.9}), while fm and fM are the
minimal and maximal detector frequencies. Notice that in this equation, h depends
on all the parameters listed in eq. (5.3.2) but, for a large sample of sources, only their
average values matter in our analyses, at least at the leading order. This is why in
several evaluations, e.g., the analytical estimates, we can average over both the spins
(χ1, χ2) and angular (θ, ϕ, ι, ψ) variables; we dub this approximated SNR as SNRavg.
However, as a check of robustness, in a few cases, we test our averaged-based results
with those obtained without the average approximation, and we indicate the result of
this precise evaluation simply as SNR (i.e., without any subscript).

As a first step, to fast probe the PBHB detectability in a broad part of their
parameter space, we perform a semi-analytical analysis. For this purpose, we modify
eq. (5.2.6) by including a selection effect. Specifically, we define the expected number
of resolvable sources at redshift z for the population Pop as

N̂Res,Pop
z ≡ ∆NRes,Pop

zm,zM

∆z
=
TObs

∆z

∫ zM

zm

RPop(z)

1 + z

[
dVc
dz

(z)

] ∫
pPop(ξ|θ) θSNRavg(ξ) dξ dz ,

(5.3.4)
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where, for any given detector, the selection function θSNRavg(ξ) is a Heaviside Θ function
filtering the sources with SNRavg larger than SNRThr = 8. The integrals in eq. (5.3.4)
are carried out numerically. Notice that due to the presence of the selection function,
the integration over the ξ variables has to be computed explicitly.

We use eq. (5.3.4) to set our (analytic) criterion for the identification of the
PBHB component via resolvable sources at Earth-based detectors. We define the PBH
contribution to be visible if, in a given bin in z, it satisfies the condition

N̂Res,PBHB
z > 3∆Res,Fid

z ≡ 3

√
N̂Res,Fid

z . (5.3.5)

In other words, the PBHB component can be separated from the fiducial SOBBH
component if there exists a bin in z, in which the number of resolvable sources,
N̂Res,PBHB

z , exceeds the number of resolvable SOBHB sources, N̂Res,SOBHB
z , by 3σ. In

our case, the error comes from a Poissonian distribution, and this is why we have
∆Res,Fid

z =
√
N̂Res,Fid

z .

The semi-analytic analysis is fast but disregards two effects: the populations’ re-
alization dependence and the impact of the angular and spin variables on the SNR. We
quantify these effects by running a more sophisticated analysis on some PBHB popu-
lation benchmarks. Specifically, we use the code in ref. [253] to sample over the PDF
in eq. (5.2.1) and generate nr = 100 catalogs of the SOBBH fiducial population and
one catalog per PBHB benchmark population. Then, for every merger event predicted
in the catalogs, we compute SNRavg and the exact SNR. We define as ∆N̂Res,Pop

zm,zM
the

number of events with SNRavg > SNRThr in a given redshift interval zm ≤ z ≤ zM for
the catalogue i of the population Pop. Similarly, we define as ∆NRes,Pop

zm,zM,i
the analogous

quantity obtained with the detectability condition SNR > SNRThr. For convenience,
we also introduce

N̂Res,Pop
z,i ≡ ∆N̂Res,Pop

zm,zM,i /∆z , NRes,Pop

z,i ≡ ∆NRes,Pop

zm,zM,i/∆z . (5.3.6)

The mismatches between N̂Res,Pop
z,i and N̂Res,Pop

z highlight the effect of the real-
ization dependence that our semi-analytic results neglect. However, we expect the
mismatch to be statistically within the Poisson deviation from the mean, i.e.,

∣∣∣N̂Res,Pop
z,i − µRes,Pop

z

∣∣∣ < 3σPop,Res
z at 95% C.L. , (5.3.7)

where

µ̂Res,Pop
z ≡ ∆µ̂Res,Pop

zm,zM

∆z
≡ 1

n

n∑

i=1

∆N̂Res,Pop
zm,zM,i

∆z
, (5.3.8)

σ̂Pop,Res
z =

√√√√√ 1

∆z

n∑

i=1

[
∆N̂Res,Pop

zm,zM,i −∆µ̂Res,Pop
zm,zM

]2

n− 1
. (5.3.9)
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Here the index i runs over n, the number of realizations of each population sce-
nario. Since we produce multiple realizations only of our fiducial population (namely
n = nr = 100), we focus on the realizations of this population to test eq. (5.3.7). This
allows us to prove σRes,Pop

z ≃ ∆Res,Pop
z and, in turn, to use ∆Res,Pop

z as a proxy of the
realization dependences in our PBHB benchmarks.

The quantities NRes,Pop

zm,zM,i are useful to investigate the impact of the approximation
SNRavg, in which the SNR is computed by averaging over the angles and spin. For
this purpose, we calculate the quantities µRes,Pop

z and σPop,Res
z , given as in eqs. (5.3.8)

and (5.3.9) but with the hat symbol replaced by the bar one. In the parameter regions
where the approximation is satisfactory, µ̂Res,Pop

z and µRes,Pop
z are expected to be prac-

tically equal5.

All these quantities can be computed for different values of TObs and several
detector sensitivities. For concreteness, we consider LIGO A+ and ET, assuming
TObs = 1, 10 yr of data. Moreover, to simplify the notation, hereafter we drop all
the z subscripts in all these quantities and refer to the quantity, say q, as qRes,Pop.

Let us comment on the assumptions of our analysis. The most relevant assump-
tion resides in the procedure to evaluate the right-hand side of eq. (5.3.5). In particular,
while a consistent analysis should account for both the realization error and the un-
certainty in the model parameters, we evaluate eq. (5.3.5) using the central values for
all the fiducial population parameters without including their uncertainties. There are
three main reasons behind this choice:

1. The main message of this work is to stress the synergy between Earth-based and
space-based GW detectors for what concerns assessing the presence of popula-
tions of high-redshift SMBBHs beyond our fiducial population. Thus, including
further uncertainties in the analysis will quantitatively affect our results, but it
will not change the message of the present work.

2. Current GW detections have only probed the Universe at z ≲ 1 so that the
peak in the SOBHB population directly descends from imposing the population
to follow the SFR at high redshift. Moreover, we have no information on the
possible presence of time delays, which might shift the SOBHB peak position.
All these uncertainties should also be included to perform a consistent analysis.

3. With more measurements to come in the next few years (with improved sensi-
tivity and possibly with more detectors joining the existing network), the de-
termination of the model parameters will improve significantly. Currently, we

5In principle, it is possible to replace the whole semi-analytic approach with the much more time-
consuming method based on realizations and precise SNR evaluation. In this case, the detection
criterion for a PBH population realization would be NRes,Benchmark

z > 3σFid,Res
z instead of eq. (5.3.5).
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have no reliable information on the errors in the measured values of the fiducial
population parameters at the end of the next LVK runs6.

For these reasons, we restrict ourselves to the case where the main uncertainty on
N̂Res,Pop comes from the Poissonian error and postpone the more accurate, though
more involved analyses, to future studies.

5.3.2 SGWB analysis

The SGWB from to the fiducial population, and its variation due to the PBHB sub-
populations, is evaluated using the analytical approach introduced in ref. [236] (for
details, see app. {5.10}). In this framework, the SGWB due to each population is
parametrized as a simple power-law:

h2ΩPop
GW(f) = 10αPop

(
f

f∗

)β

, (5.3.10)

where β is the tilt of the GW power spectrum and αPop is the (log10 of) the amplitude
at a reference (irrelevant) pivot frequency f∗. This parameterization assumes each fre-
quency bin to be highly populated by the GW signals due to binaries in circular orbits,
with negligible environmental effects, and emitting GWs only. If all these assumptions
are satisfied, the template in eq. (5.3.10) can be further simplified by imposing β = 2/3
[235, 238, 274, 297]. Dropping any of these assumptions might induce modifications
in this behavior7. Since in the following, we are interested in evaluating the SGWB at
LISA scales, with frequencies in the range f ∈ {3× 10−5 , 0.5}Hz, we set f∗ = 0.01Hz.
To compute the amplitude of the SOBHB component, we integrate the SOBHB popu-
lation up to z ≈ 10, which provides an estimate that is accurate to within 1% error in
the SGWB amplitude [182]. With these assumptions, we have αSOBHB = −12.0246 at
f∗ = 0.01Hz. We follow the same procedure to compute αPBH predicted by a PBH pop-
ulation with a given set of hyperparameter values. However, the (unresolved) PBHB
signals do not die off as fast as the SOBHB ones. For this contribution, we set the
cut-off at z = 100 corresponding to a ∼ 10% accuracy in the SGWB evaluation8.

To assess the significance of the PBHB subpopulation in the SMBHB SGWB
signal at LISA, we perform an analysis based on the Fisher Information Matrix (FIM)
formalism. Given some data d̃(f), containing signal s̃(f) and noise ñ(f), which we

6Data for the O4 run, which has both longer acquisition time and better sensitivity compared
to O3, will be released in the next couple of years [336, 337], leading to significant improvement in
the determination of all the population parameters. The parameter determination will improve even
further with O5.

7Also the eccentricity of the orbit, astrophysical uncertainties, or individual source subtraction
might affect the shape of the SGWB generated by a population of compact objects [182, 237, 282,
283, 338–342].

8To achieve the 1% accuracy level in the computation of αPBH, one would have to integrate
much higher values of z. Given the theoretical uncertainties on the distribution of PBHB at such
high redshifts, we choose a cut-off that reasonably compromises between numerical and theoretical
uncertainties [16].
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assume to be Gaussian, with zero means, and characterized only by their variances9,
the (log-)likelihood can be written as

− logL(d̃|θ⃗) ∝ T

∫ fmax

fmin

{
ln
[
D(f, θ⃗)

]
+
d̃(f)d̃∗(f)

D(f, θ⃗)

}
df , (5.3.11)

where fmin and fmax are the minimal and maximal frequencies measured by the detec-
tor, T is the total observation time, and D(f, θ⃗) is the model for the variance of the
data, depending on some (signal and noise) parameters θ⃗. The best-fit parameters θ⃗0
are defined to maximize logL:

∂ logL
∂θα

∣∣∣∣
θ⃗=θ⃗0

∝ T

∫ fmax

fmin

∂ lnD(f, θ⃗)

∂θα

[
1− d̃(f)d̃∗(f)

D(f, θ⃗)

]
= 0 , (5.3.12)

which is clearly solved by D(f, θ⃗0) = d̃(f)d̃∗(f). Then, the FIM Fαβ is given by

Fαβ ≡ − ∂2 logL
∂θα∂θβ

∣∣∣∣
θ⃗=θ⃗0

= T

∫ fmax

fmin

∂ logD(f, θ⃗)

∂θα
∂ logD(f, θ⃗)

∂θβ
df . (5.3.13)

By definition, the FIM Fαβ is the inverse of the covariance matrix Cαβ. As a conse-
quence, estimates of the errors on the model parameters θ⃗ are obtained by computing√

diag(Cαβ) =
√

diag(F−1
αβ ).

Notice that these forecasts match the real measurement errors only in the limit
where the (log-)likelihood is sufficiently Gaussian around the best fit. When this
condition is violated, the errors estimated with the FIM formalism might deviate sig-
nificantly from the real errors. As a final comment on the procedure to compute our
forecast, we stress that LISA will measure three data streams. Under some simplifying
assumptions, these data streams can assumed to be independent in the AET TDI basis
(see app. {5.9}), and the total Fisher matrix is given by

FTot
αβ ≡ FAA

αβ + FEE
αβ + FTT

αβ = 2FAA
αβ + FTT

αβ . (5.3.14)

For what concerns the observation time we assume 100% efficiency and impose T LISA
Obs =

4yrs, and for reference, we show how results improve if the mission lifetime is extended
to 10yrs.

Let us assume that the data are expressed in Ω units, and we have factored the
detector response out (for details, see app. {5.9}), then, the variance D(f, θ⃗) can be
expanded as

D(f, θ⃗) = h2ΩGW(f, θ⃗s) + h2Ωn(f, θ⃗n) , (5.3.15)

9In reality, the resolution ∆f is finite and given by 1/T . As long as this frequency is much smaller
than fmin, we can effectively replace the discrete sums with integrals.
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where ΩGW(f, θ⃗s) is the model for the signal, as a function of the frequency and some
signal parameters θ⃗s, and Ωn(f, θ⃗n) is the noise model, depending on the noise pa-
rameters θ⃗n. For what concerns the noise, we use the analytical two-parameter model
commonly used in the literature (for details, see app. {5.9}). On the other hand, for
the signal, we assume the model to consist of the sum of two contributions, one for
the Fiducial population, and one for the PBHB subpopulation, each described by the
template in eq. (5.3.10). Given the complete degeneracy between these two compo-
nents, we will not attempt to measure them independently, but, rather, we will only
forecast the precision on the determination of the overall amplitude, which in the pivot
frequency is simply given by αTot = log10(10

αFid + 10αPBH). To assess the significance
of the PBHB contribution, for each PBHB subpopulation, we will check whether the
value of αFid, with its error band, is not compatible at some σ-level (from 1 to 3) with
αTot, i.e.:

αTot − nσα,Tot > αFid + nσα,Fid , (5.3.16)

where σα,Tot, σα,Fid are the FIM errors on αTot, αFid, respectively and n ∈ {1, 2, 3}.
For reference, we report that for αFid = αSOBHB = −12.0246 at f∗ = 0.01Hz, we have
σ4yr
α,Fid ≃ 8.44×10−3 and σ10yr

α,Fid ≃ 5.34×10−3 at 68% confidence level after marginalizing
over the error on β.

As in the previous section, we conclude by discussing the limitations of our anal-
ysis. Analogously to Earth-based detectors and following similar lines of reasoning,
we did not include the uncertainties in the population parameters in our analyses10.
Beyond that, the main assumption in our analyses is that the FIM formalism gives
accurate estimates for the uncertainties in determining the model parameters. This
approximation holds in the limit where the log-likelihood for the model parameters is
sufficiently Gaussian around θ⃗0, which should be quite accurate for the specific injec-
tions considered in this work [182].

5.4 Results and discussion

Parameter Range
R0 fraction ε ∈ [10−3, 1]

Mass PDF central parameter µLN ∈ [0, 100]
Mass PDF standard deviation σLN = [0.1, 0.5, 1, 2.5]

Integrated mass range m ∈ [0, 150]
Earth-based integrated redshift range z ∈ [0, 10]

SGWB integrated redshift range z ∈ [0, 102]

Table 5.1. The range of parameter values used for the LN PDF in the semi-analytic analysis.

10A detailed study on how these uncertainties would affect the SGWB signal at LISA, can be found
in ref. [182].
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In this section, we present the results obtained by applying the methodology presented
in sec. {5.3}. We start by discussing, in sec. {5.4.1}, the results we obtain with the
LIGO A+ detector. In particular, we will show results for 1 and 10 years of continuous
observations compared with the constraints obtained with 4 and 10 years of measure-
ments with LISA. The range of values considered both for the merger rate and LN
mass function are summarized in table [5.1]. The same analysis for the ET detector
is presented in sec. {5.4.2}. Given these results, we choose a set of benchmark points
to assess the robustness of the analysis upon the inclusion of spin and sky localization
parameters. Moreover, by explicitly generating some realizations of the populations,
we test the impact of low statistics on the results of secs. {5.4.1} and {5.4.2}. This
analysis is presented in sec. {5.4.3}.

5.4.1 Detectability of PBHB subpopulations using LISA and LIGO A+

Let us discuss the results obtained with the LIGO A+ detector, which are shown in
fig. 5.2 when assuming either TObs = 1, 10 yrs of data (top and bottom subfigure, re-
spectively). Each panel of these subfigures corresponds to a different value for σLN
introduced in eq. (5.2.7). On the other hand, the x axes of these plots span different
values for µLN, and the y axes correspond to different values of ε defined in eq. (5.2.5).
For each point in the parameter space, we compute the integral in eq. (5.3.4) and look
for the smallest value of z, say z̄, such that the condition in eq. (5.3.5) is satisfied.
The value of z̄ sets the color in all these plots. Colorless areas correspond to injections
that do not satisfy the condition in eq. (5.3.5) for any value of z. The magenta and
light brown lines are defined by evaluation of the condition in eq. (5.3.16), for different
values of TObs and n ∈ {1, 2, 3}. The gray area, typically appearing in the top right
corner of some of these plots, represents the upper bound on the SGWB amplitude
set by LVK detectors [243]. Finally, the numbered points are benchmarks that will be
considered for the analysis in sec. {5.4.3}.

First of all, by analyzing the results in fig. 5.2, we observe that LIGO A+ will
only be able to observe events from the PBHB subpopulations up z ≲ 2. This is both
a consequence of the averaging over the spin and angular variables and the detector’s
sensitivity (which only allows for detecting events up to z ≲ 3, see the horizon dis-
tance plots in fig. 5.13). Thus, LIGO A+ will not be able to resolve events in the range
where the PBHB subpopulation naturally dominates over the fiducial population, i.e.,
at redshift higher than the peak of the SFR. As a consequence, either the fraction ε
of the PBHB subpopulation is relatively high at low redshift, or LIGO A+ will not
be able to detect its presence. The additional information provided by the SGWB
amplitude measured by LISA SGWB might provide an invaluable tool to break the
degeneracy among different population models. In particular, the SGWB proves to be
quite effective for probing models predicting very narrow peaks at low masses or very
broad peaks with small values of ε.
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Figure 5.2. Analysis of the parameter spaces of PBHB subpopulations with LN mass func-
tion using either 1 (top subfigure) or 10 (bottom subfigure) years of LIGO A+ observations.
Each sub-plot corresponds to a different value of σLN, and it spans over values of ε and µLN.
The black lines correspond to different values of fPBH. For all the points in the region above
the magenta (light brown) dotted (dash-dotted/solid) line, the variation in the SGWB am-
plitude w.r.t the fiducial model as measured by LISA with 4 (10) years of observations would
be detectable at 1(2/3) σ level. The color map is set by the minimal value of z such that
the condition in eq. (5.3.5) is satisfied. Crosses indicate the benchmark points used in the
following subsections.
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We also notice that, in general, for sufficiently large values of µLN, subpopulations
with narrow mass distributions are more easily detectable with Earth-based detectors.
The motivation is that the SNR decreases for increasing mass ratio (q = m1/m2). For
narrow mass distributions, the two PBHs are more likely to have similar masses, which,
on average, increases the typical event SNR. Notice that subpopulations with extremely
narrow mass distributions, located at either too small or too large masses, will not be
detectable since they generate too feeble signals (the GW amplitude grows with the
mass of the binary) or signals outside the detector’s frequency band (higher masses
generally coalesce at lower frequencies). Examples of these effects are visible, e.g., in
the two top panels in the top subfigure in fig. 5.2. Indeed, the presence of a minimum
at µLN ≃ 70M⊙ in the colorful area in the top left panel of said figure originates from
the interplay between these two effects. Notice also that the structure in the colored
region before such minimum tracks the behavior of the fiducial mass function, which,
as discussed in app. {5.6}, is assumed to be a power-law + peak model [296]. All these
effects get smoothed out by increasing the spread of the PBH mass function. We notice
also that for peaked PBH mass functions, centered around masses that maximize the
SNR, values of ε of the order of 10−3 are within reach of LIGO A+. While this quickly
degrades as the PBH mass function broadens, we stress that this behavior is not as
marked for the prospect of SGWB detection with LISA. As a consequence, parts of
the parameter space that might be hardly probed with Earth-based detectors might
still be accessed with LISA.

We conclude this section by comparing the results obtained when TObs = 1 year
(top subfigure) with the results obtained with TObs = 10 years (bottom subfigure),
which are shown in fig. 5.2. Firstly, we notice that, for Earth-based detectors and LISA,
increasing the effective observation time will generally move the detectable regions at
smaller values of ε but will not significantly affect the qualitative behavior of the results.
Indeed, for Earth-based detectors, increasing the observation time does not affect the
detections of the single events, but rather, it only increases their number, improving
the overall statistic. Similarly, for LISA, increasing the observation time will not affect
the overall SGWB amplitude11, but rather, the accuracy of its measurement.

5.4.2 Detectability of PBHB subpopulations using LISA and ET

We proceed by discussing the results using the ET detector. As in sec. {5.4.1}, we
assume either TObs = 1yr or TObs = 10 yrs. The results for the LN mass distributions
are presented in the top and bottom subfigure in fig. 5.3, respectively. For reference,
in fig. 5.3 we also show the benchmark points identified in the previous section to
highlight their detectability with ET.

ET will resolve events up to z ≳ 10, i.e., well beyond the SFR peak, where the
SOBHB population quickly drops. As a consequence, ET has way better prospects

11As already mentioned in the footnote 7, this might not be true, as by increasing the observation
time, and with archival searches, the individual source subtraction will improve, leading to changes
both in the amplitude and shape of the SGWB.
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Figure 5.3. Analysis of the parameter spaces of PBHB subpopulations with LN mass distri-
bution using either 1 (top subfigure) or 10 (bottom subfigure) years of ET observations. Plot
structure as in fig. 5.2.

of identifying PBHB subpopulations beyond the LVK fiducial model. Moreover, by
looking at fig. 5.3, we notice less dependency, compared to LIGO A+, of the results
on the position of the mass peak. This effect originates from the improved sensitivity,
which, for the mass and redshift ranges considered in the present work, leads to less
pronounced selection effects in ET compared to LIGO A+. Indeed, all figures in this
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LN Point N. 1 2 3 4
µLN [M⊙] 95.0 95.0 25.0 50.0
σLN 1.0 1.0 1.0 2.5
ε 0.01 0.05 0.05 0.04

LIGO A+ (1 yr) N.D. z ∼ 1 N.D. N.D.
ET (1 yr) z ∼ 6 z ∼ 2 z ∼ 2 z ∼ 3

LISA (4 yrs) ∼ 1σ >> 3σ ≲ 2σ ≳ 1σ

Table 5.2. Description of the benchmark LN PBHB subpopulations. The acronym N.D.
stands for non-detectable for a particular benchmark/detector combination.

subsection show that selection effects due to the mass of the binary only affect the
very low end of the mass range. We can thus conclude that, as long as the PBHB
subpopulation will produce a sufficiently large number of events (i.e., larger than the
Poissonian 3σ expected for the fiducial population) at high redshift, ET will measure a
significant excess in the number of events. Despite the great increase in the detection
ability of ET compared to LIGO A+, the SGWB measured by LISA will still bring
additional information. The main motivation for this claim is that events with very
large masses (which are cut in our plots) would merge at too low frequencies to be
detected with ET, but would still contribute to the SGWB amplitude. However, a
similar argument could also hold for different redshift distributions predicting a few
events at low redshift and many more events at very high redshift. Hence, we stress,
once again, the synergy between individual events and SGWB for constraining popu-
lation models.

While, beyond the improvements discussed in the previous paragraphs, most of
the discussion of the previous section remains valid for ET, we remark that following
the methodology introduced in sec. {5.3.1}, there are some regions where the PBHB
subpopulation might be detectable with smaller values of ε in LIGO A+ compared to
ET, which might seem counter-intuitive, given that ET has better sensitivity. Indeed,
this is an artifact of our choice for the detectability criterion, introduced in eq. (5.3.5)
and of the selection function for the different GW detectors. With our approach, if the
fiducial population produces fewer resolvable events at a given redshift, fewer events
are required from the PBHB subpopulation to satisfy eq. (5.3.5). In particular, since
LIGO A+ selects very few events from the fiducial population, it might be easier for
a PBHB subpopulation with suitable properties (i.e., with a narrow mass function
centered at the right value to optimize the SNR at LIGO A+) to satisfy eq. (5.3.5).
However, a proper population analysis, similar to ref. [52], keeping track of both the
redshift and mass distribution would reveal this feature.

5.4.3 Analysis of the subpopulation benchmark points

In this section, we perform a more accurate analysis of the resolvable sources with
LIGO A+ and ET using the benchmark points shown in figs. 5.2 and 5.3. Part of this
analysis will include all the waveform parameters we have averaged over in the previous
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sections. Let us start by commenting on the choice of our benchmark points. While
details are summarized in table [5.2], qualitatively these points are chosen such that:

• Given Point 2, Points 1 and 3 have the same ε but smaller µLN, and the same
µLN but smaller ε, respectively. While Point 2 leads to signatures in LISA, LIGO
A+, and ET, Points 1 and 3, being marginally detectable with LISA and LIGO
A+, are testable with ET only.

• Given the large value of σLN, Point 4 is almost a flat mass function in the range
of interest. This point is visible for ET, barely visible for LISA, but not visible
by LIGO A+.

The results obtained on these benchmark points using LIGO A+ and ET are shown
in fig. 5.4. The left columns of these figures analyze benchmark points for the LN
subpopulations on the LIGO A+ detector, while the right columns refer to the results
on the ET detector. The three rows correspond to three different techniques (with
increasing levels of accuracy) for the evaluation of the (expected) number of resolvable
sources for a given population. The lines in the top row are computed using the
method described in sec. {5.3}, and, in particular, by evaluating eq. (5.2.6). The error
bands are estimated from these numbers assuming Poisson distribution. Since this
procedure matches the one used to generate the maps in fig. 5.2 (and the predicted
PBHB distributions of fig. 5.5), the results agree perfectly. For reference, in fig. 5.5, we
show the analytical predictions (and the corresponding Poissonian uncertainties) for the
distribution of resolvable sources at the LIGO A+ and ET detectors for the 4 benchmark
points compared with ∆Res,Fid

z (at 1 and 3 σ-level) for the fiducial population. The
central row uses the generated catalogs, but the SNR for each source is evaluated
using the sky and spin-averaged expression. This is the same prescription we use to
get the top-row results, by comparing the top and middle-row figures we can assess
the impact of realization dependence on our results. As expected, we find consistency
in regions with a large number of resolvable sources (small z) and deviations in the
low-statistics regime (large z). Finally, the bottom row shows the results obtained
using the catalogs and the complete expression for the SNR, consistently including all
waveform variables. Deviations between top and bottom-row results manifest at higher
redshift. This behavior is expected since small differences in the source parameters can
move borderline sources inside or outside the detection threshold. Thus, including all
parameters in the SNR evaluation makes results more dependent on the realization
effects in the low-statistics regime. The figures show clearly that this effect is more
pronounced for LIGO A+, which has less resolvable sources, than for ET. Despite this
effect, generically, we observe good agreement between numerical and semi-analytical
results.

We conclude this section by showing, in fig. 5.6, the relative differences between
the semi-analytical estimates of the number of resolvable sources N̂Res,Fid (and its
standard deviation

√
N̂Res,Fid) and its value estimated using the generated catalogs
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Figure 5.4. Comparison between the analytical predictions of sec. {5.3} (top row) and SNR
evaluations on the generated catalog with (middle row) and without (bottom row) sky and
spin-averaging. Each panel shows the number of events in the fiducial population (red line),
with 1 (orange band) and 3σ (yellow band) compared with the number of events for the
fiducial population plus one of the subpopulations (fixed by the benchmark points). All the
results shown in this plot are obtained assuming 1 year of either LIGO A+ (left panels) or
ET (right panels) measurements.

µRes,Fid and (and its standard deviation σRes,Fid) defined as

ρµ,z =
|µRes,Fid

z − N̂Res,Fid
z |

µRes,Fid
z

, ρσ,z =
|σFid,Res

z −
√
N̂Fid,Res

z |
σFid,Res
z

. (5.4.1)
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Figure 5.5. Analytical predictions for the benchmark points of sec. {5.3} compared with
the analytical estimate for the Poissonian error on the fiducial population. The dashed lines
delimit the 3∆Res,Point i

z region for the i-th benchmark point. The LIGO A+ (ET) results for
1yr of observations are shown in the left (right) panel.

Figure 5.6. Plots of ρµ (solid lines) and ρσ (dashed lines) as defined in eq. (5.4.1), for LIGO
A+ (left panel) and ET (right panel). The blue (red) curves use the sky and spin-averaged
(full) expression for the SNR.

The blue curves in fig. 5.6 use the value of µ̂Res,Fid and σ̂Res,Fid computed assuming
the sky and spin-averaged version of the SNR. We see that before reaching the low-
statistics regime these curves are always smaller than 10% for both LIGO A+ and
ET. This proves a quite good agreement between the semi-analytical approach and the
generated catalogs. On the other hand, the red curves use the value of µRes,Fid and
σRes,Fid evaluated using the full expression for the SNR. While we notice some level of
degradation with respect to the blue curves (the relative difference is up to ≃ 30/40%),
we still find quite good agreement between the results.

– 138 –



5.5 Conclusions

In this paper, we have discussed the prospects of detecting potential PBHB subpop-
ulations with future GW detectors. For this purpose, we have assumed a fiducial
population in agreement with the GWTC-3 results and added PBHB subpopulations
with different merger rates and mass distributions to test whether these would lead to
observable signatures in LIGO A+, ET, or LISA. Using Earth-based detectors, we have
checked how the number of resolvable events changes in the presence of PBHB subpop-
ulations. In particular, we have evaluated this analytically and tested our results by
simulating event catalogs to assess the impact of low statistics on the analytic results.
We have generally found good agreement between our semi-analytical and numerical
results. Beyond that, we have evaluated the increase in the amplitude of the SGWB
arising from the PBH contribution and tested its detectability with LISA using a FIM
approach. We found that the information LISA will bring might be significant to test
whether the SGWB is due to SOBHBs only.

For all models considered in this work, we have found sizable regions of the pa-
rameter spaces where the PBHB subpopulations will lead to significant variations in
the number of detectable events in LIGO A+ and ET (with ET performing better in
most cases) with respect to SOBHB expectations. However, it is worth stressing that
detecting events at high redshift does not imply that it will always be possible to infer
their redshift accurately [311]. Moreover, we have found that for all models considered
in this work, there are sizable parts of the parameter spaces leading to an increase
in the SGWB amplitude that would be detectable with LISA. Interestingly, since the
SGWB integrates over all masses, the SGWB measurement can also test subpopu-
lations with very low and very large masses, generating signals beyond the reach of
future Earth-based detectors. Indeed, different GW detectors probe complementarily
distinct parts of the parameter space. In particular, our results highlight three different
regimes:

• Signatures in Earth-based detectors and LISA: This can happen if the
PBH population becomes abundant (but still statistically marginal in present
LVK observations) around (or after) the SFR peak so that the number of indi-
vidual events does not decline at z ≃ 2. Simultaneously, the SGWB at LISA
exceeds the SOBHB prediction.

• Signatures in Earth-based detectors only: The PBH population grows very
slowly with z and becomes sizable only at high redshifts. In this case, the signals
from unresolved sources are faint, and their contribution to the SGWB at LISA
is not sufficiently strong to modify the SOBHB prediction significantly. While
deviations in the merger rate might be appreciated, their statistical significance
might not be sufficient to pin down the presence of a secondary population unless
some additional features are found in, e.g., the mass distribution of the observed
population.
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• Signatures in LISA only: The PBH population has very small or very large
masses, and the signals are not detectable with Earth-based detectors. LISA
observes an SGWB amplitude incompatible with the value predicted using the
SOBHB population measured by Earth-based detectors.

Overall, we conclude that the considered measurements from Earth-based detec-
tors and LISA will generally be complementary, and our understanding of the BH
population that we observe in our Universe will improve if we use their synergy. This
conclusion comes with no surprise, knowing the underlying differences between the
properties of the signals these detectors will probe. Furthermore, we generally observe
that the dependency of the LISA SGWB on the subpopulation parameters scales differ-
ently than the distribution of resolvable sources that Earth-based interferometers will
detect. This fact implies that, in general, SGWB measurements will help Earth-based
detectors improve the constraints on the BH population parameters that we observe
in our Universe.

As discussed in sec. {5.3}, our analysis does not include errors on the fiducial pop-
ulation parameter, which are currently quite broad on some of the most influencing
parameters and would impact our results significantly if extrapolated to the volume
that LIGO A+ and ET detector will probe. However, the open codes presented in
our GitHub repository [330] can be readily updated when the new results of future
inference papers, e.g., by the LVK collaboration, come out. With improvements in the
LVK network, we expect more (and more accurate) detections, which will reduce the
uncertainties on the population parameters, making the analysis much more reliable.

The present study assumes that the two populations do not interact with one
another, i.e., mergers only involve BHs drawn from the same population. This as-
sumption impacts both the number of mergers and their properties. By dropping this
assumption and assuming the two populations to have sufficiently different mass ranges,
it would be possible to enhance the number of Extreme Mass Ratio Inspirals (EMRIs)
12 in the LISA band significantly [343, 348–350]. Thus, determining the abundance
of these objects can also be used to further constrain the eventual presence of PBHB
subpopulations on GW detectors with LISA-like frequency range. Moreover, keep-
ing track of the number of resolvable sources in different frequency bands (e.g., BHs
with masses higher than the ones considered in the present work would merge in the
LISA frequency band) could also provide a possible tracer for the presence of PBHB
subpopulation. Finally, even the analysis of the SGWB on the Earth-based detectors
frequency range can further improve the results presented in this study. On one hand,
detecting the SGWB at different frequency bands will decrease the uncertainties on
its amplitude, hence improving our chance to detect variations in the expected value.
On the other hand, if the PBH mass distribution is narrow, and peaked in the stellar-
mass BH range, it could result in deviations of the SGWB shape from the standard
power-law behavior in the LVK/ET frequency range, which could be used as a further

12For SGWB predictions and cosmological constraints with EMRIs, see, e.g., [343–347].

– 140 –



constraint on the PBH sub-population properties [54, 273, 274, 351].

We conclude by commenting on alternative methods to assess the detectability of
PBHB subpopulations beyond the ones considered in this work for both Earth-based
and Space-based detectors. It would be possible, in principle, to adopt other criteria,
similar to the one we have introduced. For example, since we expect PBHBs to become
relevant at high redshift, variations on the cumulative number of resolvable sources
predicted after a given redshift could provide a viable alternative. While maintaining
less information on the source distribution, this approach would be less sensitive to the
error in the inference of the source distance [311]. Finally, a fully consistent population
analysis based on hierarchical Bayesian modeling would provide a robust and more
accurate alternative to the criteria discussed here. Thus, we deem it worth exploring
these (and possibly other) methodologies in future works.
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5.6 Appendix A : The SOBHB fiducial population

In this appendix, we detail the fiducial SOBHB population model we adopt through-
out the analysis. In most aspects, we follow the approach of ref. [182] and rely on the
master equation in eq. (5.2.1). We proceed by clarifying the functional forms of the
quantities appearing in such an equation.

As already discussed in the main text, the current LVK data put tight bounds on
the SMBHB population properties up to z ∼ 0.5 [45]. Few events have been detected
at redshift 0.5 ≲ z ≲ 1, but they are too rare and/or poorly reconstructed to impose
strong constraints [352, 353]. Despite these caveats, current data are compatible with
a population of SOBHBs with a merger rate behaving as

R(z) = R0(1 + z)κ (5.6.1)

for z ≲ 0.5, with R(z = 0.2) = 28.3+13.9
−9.1 Gpc−3yr−1 and κ = 2.9+1.7

−1.8 [45, 354]. At
higher redshift, R(z) has to keep track of the stellar-formation origin of the binaries
and, to some degree, resemble the SFR. Thus, consistently with [182], we choose the
Madau-Dickinson phenomenological profile [56, 57] with a negligible time delay13. Such

13Other choices [225, 227, 231, 293, 325, 355, 356] are possible and might qualitatively change the
results, but not the rationale, of our analysis.
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a choice leads to
RSOBHB(z) = R0

(1 + z)κ

1 + ((1 + z)/2.9)κ+2.9
, (5.6.2)

where R0 is set so that R(z = 0.2) matches the measured value.

For what concerns the mass distribution, we adopt the power law + peak sce-
nario [45, 354]

p(m1,m2|mm,mM , α, βq, µm, σm, δm, λpeak) =

Cmass π1(m1|α, µm, σm,mm,mM , δm, λpeak) π2(q|βq,m1,mm, δm) ,
(5.6.3)

with Cmass being a normalization constant and q being the mass ratio q = m2/m1. The
functions π1 and π2 read as

π1(m1|α, µm, σm,mm,mM , δm, λpeak) =

[(1− λpeak)P(m1| − α,mM) +λpeakG(m1|µm, σm)]S(m1|mm, δm)
(5.6.4)

and

π2(q|βq,m1,mm, δm) = Cq(m1) q
βq S(m2|mm, δm) , (5.6.5)

where Cq(m1) is a normalization function, S is a smoothing function for the low mass
cutoff, and P and G are respectively a normalized power law and a normalized Gaussian
distribution

P = CPLm
−α , (5.6.6)

G =
Cm√
2πσ2

m

exp

[
−1

2

(
m− µm

σm

)2
]
, (5.6.7)

with α being the spectral index of the power law, µm and σm being the mean and width
of the Gaussian, and CPL and Cm being normalization. The smoothing function S
imposes a smooth cutoff for low masses, rising from 0 to 1 in the interval [mm,mm+δm]

S =





0, if m < mm

[f(m−mm, δm) + 1]−1, if m ∈ [mm,mm + δm]

1, if m > mm + δm

, (5.6.8)

with

f(m′, δm) = exp

(
δm
m′ +

δm
m′ − δm

)
, (5.6.9)

so that, by construction, we have m ≥ mm. The high end of the mass range doesn’t
have an explicit cutoff but large masses are statistically suppressed. In practice, we set
mM = 100M⊙, which is slightly higher than the values used in the LVK analysis [296],
to take into account possible higher mass events of astrophysical origin14. All the
hyperparameters entering the mass distribution eq. (5.6.3) are fixed at the central
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mm [M⊙] mM [M⊙] δm [M⊙] λpeak α βq µm σm
5.0+0.86

−1.7 100 4.9+3.4
−3.2 0.038+0.058

−0.026 3.5+0.6
−0.56 1.1+1.7

−1.3 34+2.6
−4.0 5.69+4.28

−4.34

Table 5.3. Fiducial values (with 1σ C.L.) for the mass function hyperparameters [296].

Coefficients aM E[a] Var[a] ζ σ1 σ2
Value 1 0.26+0.09

−0.07 0.02+0.02
−0.01 0.76+0.22

−0.45 0.87+1.08
−0.45 0.87+1.08

−0.45

Table 5.4. Fiducial values (with 1σ C.L.) for the spin amplitude and spin tilt hyperparam-
eters [296].

values of the LVK analysis outcome reported in table [5.3].

The spin distribution is a product of two different PDFs, one for the spin ampli-
tudes and one for the spin tilts. The former reads as [45, 354]:

p(ai|αa, βa) =
aαa−1
i (1− aβa−1

i )

B(αa, βa)
, (5.6.10)

where B(αa, βa) is a Beta function that guarantees the appropriate normalization of
the PDF. The αa and βa are positive constants defined through

E[a] = αa

αa+βa

Var[a] = αaβa

(αa+βa)2(αa+βa+1)

, (5.6.11)

where E[a] and V ar[a] are set in table [5.4]. We stress that the spin amplitudes of the
two black holes are independent of one another. On the other hand, the PDF spin tilt
distribution reads

p(cos(t1), cos(t2)|σ1, σ2, ζ) =
1− ζ

4
+

2ζ

π

∏

i∈1,2

exp
{
− [1− cos(ti)]

2 /(2σ2
i )
}

σi erf(
√
2/σi)

, (5.6.12)

which is a mixture between an isotropic and a truncated Gaussian distribution cen-
tered in cos(ti) ≈ 1. The σi, and ζ parameters are specified in table [5.4].

Finally, for cosmology we assume the ΛCDM model where the Hubble parameter is
H0 = h× 100 km/(sMpc), with h = 0.678 being its dimensionless value, and Ωm = 0.3
and ΩΛ = 0.7.

5.7 Appendix B : PBH contribution to the Dark Matter relic
abundance

While PBHs behave as cold DM and could, at least in principle constitute a sizable
amount of the presently observed DM, their abundance in the stellar mass range is

14We test that other choices would not practically change our results. For e.g., mM = 150M⊙, no
masses above 100 M⊙ appear in our catalog realizations due to the PDF suppression.
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tightly constrained [133, 134, 141–143, 302, 357, 358]. We define fPBH ≡ ΩPBH/ΩDM,
the ratio between today’s PBH and DM energy densities in the Universe. For a given
PBH population model, the parameters ε and fPBH can be explicitly related. We
obtain their relationship in the case that our PBH population, which we derive from
phenomenological models, is dominated by binaries that gravitationally decoupled from
the Hubble flow before the matter–radiation equality [16, 55, 294].

In eq. (5.2.5), we modulate the PBHB merger rate RPBHB(z) through the param-
eter ε. An alternative way to write RPBHB(z) is [55, 294]

RPBHB(z) =
1.6× 106

Gpc3 yr
f
53/37
PBH

[
t(z)

t(z = 0)

]− 34
37
∫

dm1

∫
dm2

[(
m1 +m2

M⊙

)− 32
37

η−
34
37S
]
,

(5.7.1)

where η = m1m2/(m1+m2)
2 and S = ΦLN(m1) ΦLN(m2)S. The function ΦLN is given in

eq. (5.2.7). The function S is a suppression factor accounting for environmental effects
that slow down the binary formation or favor their disruption. It can be approximated
as15

S1 ≈ 1.42

(
⟨m2⟩ / ⟨m⟩2

N̄(m1,m2, fPBH) + C
+

σ2
M

f 2
PBH

)
e−T̄ , (5.7.2)

with

T̄ =
m1 +m2

⟨m⟩

(
fPBH

fPBH + σM

)
, (5.7.3)

C =
⟨m2⟩

σ2
M ⟨m⟩2

f 2
PBH[

Γ(29/37)√
π

U
(

21
74
, 1
2
,
5f2

PBH

6σ2
M

)]−74/21

− 1

. (5.7.4)

Here σM ≈ 0.004 represents the rescaled variance of matter density perturbations at
the time the binaries form, Γ denotes the Euler gamma function, U(a, b, z) is the con-
fluent hypergeometric function, while ⟨m⟩ and ⟨m2⟩ are the first and second momenta
of the PBH mass PDF.

The comparison of eq. (5.2.5) to eq. (5.7.1) yields

ε =
1.6× 106

R0

f
53/37
PBH

∫
dm1

∫
dm2

[(
m1 +m2

M⊙

)− 32
37

η−
34
37S
]
. (5.7.5)

Figure 5.7 shows the values of fPBH that arise in the parameter regions of the PBH
models considered in our analysis.
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Figure 5.7. Conversion maps from ε to fPBH of the parameter spaces of PBHB subpopula-
tions with LN mass function. Each sub-plot corresponds to a different value of σLN, and it
spans over values of ε and µLN. Crosses indicate the benchmark points used in the following
subsections.

Parameter Range
R0 fraction ε ∈ [10−3, 1]

Mass PDF central parameter µG ∈ [0, 100]
Mass PDF standard deviation σG = [1, 5, 10, 15]

Integrated mass range m ∈ [0, 150]
Earth-based integrated redshift range z ∈ [0, 10]

SGWB integrated redshift range z ∈ [0, 102]

Table 5.5. The range of parameter values used for the Gaussian PDF in the semi-analytic
analysis.
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5.8 Appendix C : Results for a Gaussian mass distribution

To further analyze the qualitative results presented in sec. {5.4}, we perform the same
analysis when considering a Gaussian Mass Distribution function as in [359]:

ΦG(m) =
1√
2πσ2

G

exp

[
−1

2

(
m− µG

σG

)2
]
, (5.8.1)

with µG and σG the hyperparameters setting the position and width of the peak. Even
for this study, we will adopt a merger rate in the form of eq. (5.2.5). The range of
parameters considered, for both the merger rate and Gaussian mass function, are sum-
marized in table [5.5].

Following the procedure described in app. {5.7} (where we replace the mass dis-
tribution and momenta with the Gaussian ones), we start by presenting the conversion
maps from ε to fPBH for the considered Gaussian parameter space in fig. 5.8. The
detectability of the considered Gaussian PBHB subpopulations on the LIGO A+ and
ET detector is then described in figs. 5.9 and 5.10 respectively. In the aforementioned
figures, we present the results when assuming either TObs = 1yr (top subfigure) or
TObs = 10 yrs (bottom subfigure) of data. Each panel of these subfigures corresponds
to a different value for σG. On the other hand, the x axes of these plots span different
values for µG, and the y axes correspond to different values of ε defined in eq. (5.2.5).
We generally observe that all the discussion of sec. {5.4} holds up even when con-
sidering a Gaussian PDF. In particular, the selection features that appear for narrow
mass functions on the LIGO A+ detector discussed in sec. {5.4.1} are even further
highlighted on the top panels of fig. 5.9, thanks to the choice of σG.

As done in sec. {5.4.3}, we then proceed by performing a more accurate analysis
of the resolvable sources with LIGO A+ and ET using the benchmark points shown
in figs. 5.9 and 5.10. While details are summarized in table [5.6], qualitatively these
points are chosen such that:

• Point 5 is chosen to be detectable with LIGO A+, but not detectable with
LISA/ET, according to the methodology assumed in this work.

• Points 6, 7, and 8 are chosen analogously to Points 1, 2, and 3 but with the
Gaussian mass function instead of the LN distribution.

The analytical predictions (together with their Poissonian uncertainties) for the distri-
bution of resolvable sources of the Gaussian benchmark points on the LIGO A+ (left
panel) and ET (right panel) detectors are presented in fig. 5.11. In said figure, for
comparison we also report the expected analytical ∆Res,Fid

z at 1σ and 3σ level for the
fiducial population. We then synthesize some populations for both the fiducial and

15In general, in S contains an extra suppression factor, which introduces redshift dependence at
small z. Such a term is negligible for fPBHB ≃ 10−3 [55, 294], which is the region of parameter space
relevant parts for most models considered in this work. As a consequence, we neglect this factor.
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Figure 5.8. Conversion maps from ε to fPBH of the parameter spaces of PBHB subpopula-
tions with Gaussian mass function. Each sub-plot corresponds to a different value of σG, and
it spans over values of ε and µG. Crosses indicate the benchmark points chosen for further
analysis.

Gaussian Point N. 5 6 7 8
µG [M⊙] 72.0 10.0 75.0 75.0
σG 1.0M⊙ 10.0M⊙ 10.0M⊙ 10.0M⊙
ε 0.002 0.05 0.05 0.004

LIGO A+ (1 yr) z ∼ 2 N.D. z ∼ 1 z ∼ 2
ET (1 yr) N.D. z ∼ 2 z ∼ 2 z ∼ 10

LISA (4 yrs) N.D. N.D. >> 3σ N.D.

Table 5.6. Description of the benchmark Gaussian PBHB subpopulations. The acronym
N.D. stands for non-detectable for a particular benchmark/detector combination.

PBHB benchmarks, and analyze the numerical results using different levels of com-
plexity, as done in sec. {5.4.3}. Despite the variations arising due to low statistics and
underlying differences among the three different approaches, in general, we observe
good agreement between numerical and semi-analytical results. The only exceptions
we find in this case are for Point 5 and Point 8 which, due to the low value of ε ≈ 10−3,
generate very few sources (≲ 100/yr by comparing with fig. 5.1) and are hence more
likely to not reach the necessary realization statistic.
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Figure 5.9. Analysis of the parameter spaces of PBHB subpopulations with Gaussian mass
function using either 1 (top subfigure) or 10 (bottom subfigure) years of LIGO A+ observa-
tions. Plot structure as in fig. 5.2

.

5.9 Appendix D : Detector characteristics

In this study, we consider LIGO A+ and ET as representatives of upcoming and fu-
ture Earth-based interferometers and LISA as a reference for the first generation of
space-based GW detectors. The precise timeline and operational durations of these
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Figure 5.10. Analysis of the parameter spaces of PBHB subpopulations with Gaussian
mass distribution using using either 1 (top subfigure) or 10 (bottom subfigure) years of ET
observations. Plot structure as in fig. 5.9

.

instruments are uncertain. Nevertheless, it is reasonable to anticipate that LIGO A+

will operate for several years before the early/mid-2030s when ET and LISA are ex-
pected to commence to acquire data. In the lack of a well-defined progress plan, we
consider a couple of somewhat extreme timeline scenarios, believing that the actual
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Figure 5.11. Analytical predictions for the benchmark points resolvable source distribution
of sec. {5.3} w.r.t. the expected Poissonian error predicted for the analytical fiducial pop-
ulation. The dashed lines delimit the 3∆Res,Point i

z region for the i-th benchmark point. We
present the results predicted for benchmarks on the LIGO A+(ET) on the left (right) panels
of the figure. To conclude, all the results shown in this plot are obtained assuming 1 year of
either LIGO A+ or ET measurements.

future will likely fall somewhere in between. Concretely, we analyze 1 and 10 years of
data for LIGO A+ and ET, and 4 and 10 for LISA. We leave it to the knowledge of
the future reader to estimate which scenario the future will tend to and in which order
each detector and its measurements will arrive.

Earth-based interferomenters The location of the two LIGO A+ detectors are set
to be in the Livingston (N 30◦330′, W 90◦460′) and Hanford (N 46◦270′, W 119◦240′)
sites. Regarding the sensitivity, we use the curve described in ref. [360], with frequency
range [5, 5000]Hz. For ET, we assume the location proposed in the Sos Enattos mine
in the Lula area (N 40◦260′, E 9◦260′) with the ET-D-sum sensitivity in the frequency
range [0.1, 104]Hz [361, 362]. However, our resolvable event analysis is nearly inde-
pendent of the precise detector sites. The expected horizon distance for these detector
configurations, w.r.t the BHB populations considered in this paper, is presented in
fig. 5.13.

LISA LISA will be the first interferometer in space. The detector will consist of three
satellites orbiting around the Lagrange point L5. For our analysis, we assume mission
adoption sensitivity in the frequency range [3×10−5, 0.5]Hz [363]. In the following, we
describe the 2-parameters instrument noise model [59, 364] based on the results of the
LISA Pathfinder mission, as well as the latest laboratory test. In particular, we report
the LISA sensitivity in the Time Delay Interferometry (TDI) channels A and T16. For

16TDI is a technique designed for LISA to suppress the otherwise dominant (and several orders
of magnitude larger than the required noise levels) primary noises. TDI consists of combining inter-
ferometric measurements performed at different times. It can be shown that for a fully symmetric
LISA configuration, it is possible to introduce an orthogonal (i.e., noise in the different channels is
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Figure 5.12. Comparison between the analytical predictions of sec. {5.3} (top row) and
SNR evaluations on the generated catalog with (middle row) and without (bottom row) sky
and spin-averaging. Each panel shows the number of events in the fiducial population (red
line), with 1 (orange band) and 3σ (yellow band) compared with the number of events for
the fiducial population plus one of the subpopulations (fixed by the benchmark points). All
the results shown in this plot are obtained assuming 1 year of either LIGO A+ (left panels)
or ET (right panels) measurements.

more details on the noise model and the TDI construction, see e.g., ref. [241, 372].

uncorrelated) TDI basis, typically dubbed AET. See, e.g., refs. [365–371] for details.
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Figure 5.13. Horizon distance for the LIGO A+ (blue) and ET (red) detectors as a function
of the total mass that we consider for the populations of this analysis. The black dashed line
corresponds to the value of the peak of the SFR (when no time delays are not considered)
that we obtain for the fiducial SOBHB population that we assumed in this paper.

The noise in LISA is a combination of two main components: Test Mass (TM)
acceleration noise and Optical Metrology System (OMS) noise. The power spectra
PTM, POMS, for these two components are

PTM(f, A) = A2 fm2
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[
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,

(5.9.1)
where c is the light speed and the two noise parameters A and P control the amplitudes
of the TM and OMS components, respectively. The total noise spectral densities in
the TDI A and T channels read

NAA(f, A, P ) = 8 sin2
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with L = 2.5 × 109m is the LISA armlength.

Given the noise power spectra, the strain sensitivity (for a generical channel ij)
is defined as

Sn,ij(f, A, P ) =
Nij(f, A, P )

Rij(f)
=

Nij(f, A, P )

16 sin2
(
2πfL

c

) (
2πfL

c

)2
R̃ij(f)

, (5.9.4)

where Rij(f) is the (quadratic) response function, mapping incoming GW signals onto
the TDI data stream. The response can be further expanded as a purely geomet-
rical factor, R̃ij(f), times TDI-dependent terms. While R̃ij(f) should be evaluated,
approximate expressions for the A and T channels read

R̃AA(f) =
9

20

1

1 + 0.7
(
2πfL

c

)2 , R̃TT(f) =
9

20

(
2πfL

c

)6

1.8× 103 + 0.7
(
2πfL

c

)8 . (5.9.5)

Since R̃TT is strongly suppressed at low frequencies with respect to R̃AA, the T channel
is typically assumed to be signal insensitive. It is customary to express the noise in Ω
units using

h2Ω̃n,ij(f, A, P ) =
4π2f 3

3(H0/h)2
Sn,ij(f, A, P ) . (5.9.6)

In the analyses presented in this work, we assume the face values for the noise param-
eters to be A = 3, P = 15 with 20% Gaussian priors.

5.10 Appendix E : Analytical derivation of the SGWB from a
population of merging objects

In this last appendix, we are going to present briefly the analytical derivation of the
SGWB. Further details on said derivations, can be found on refs. [236, 373]. The result
presented will be computed in the framework of the LISA detector, for which we know
that the circular orbit approximation works well and the number of resolvable sources
is small enough (∼ 10 for SNRtresh = 8) to prevent dampenings in the high-frequency
region of the SGWB signal (see ref. [182] for further details).

Following the approach of refs. [236, 374] the characteristic spectral strain of the
SGWB is hence defined as

h2c(f) =
4G

πc2f 2

∫ ∞

0

dz
dn
dz

1

1 + z
fr

dEGW

dfr

∣∣∣∣
fr=f(1+z)

, (5.10.1)

where dn/dz is the comoving number density and the dEGW/dfr represents the (red-
shifted) energy each event produced per log frequency interval. By assuming a wave-
form, which in the case of LISA can be approximated using the circular-orbit assump-
tion, we can write the redshifted energy emitted per frequency interval as follows:

dEGW

dfr
=

π

3G

(GM)5/3

(πfr)1/3

∣∣∣∣
fr=f(1+z)

, (5.10.2)
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with M the Chirp Mass for the considered event.

If we now wish to compute the SGWB for a generical population model, the
comoving number density as a function of the chosen population may be rewritten as

dn
dz

=

∫ ∞

0

dM d2n

dzdM =

∫ ∞

0

dMR(z)P (M(m1,m2))
dtr
dz

. (5.10.3)

In the last equation, we defined with R(z) the model merger rate for the considered
BH population, P (M(m1,m2)) is the probability of having a Chirp Mass M(m1,m2)
given the mass PDF of the population for m1,m2, and dtr/dz is a drift term defined
as

dtr
dz

=
1

H0(1 + z)
√
Ωm(1 + z)3 + ΩΛ

. (5.10.4)

We can finally define the analytical SGWB for a given BH population in Ω units as
follows:

ΩGW(f) =
2(πfhc(f))

2

3H2
0

, (5.10.5)

where hc(f) is given by

h2c(f) =
4G5/3

3c2π1/3f 4/3

∫ ∞

0

dz
∫ mM

mm
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.
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Chapter 6

Summary of the results and
conclusions

In this document, we have investigated the signal generated by gravitational waves
on present-stage, and next-generation detectors. We started by analyzing the real
detector strain of the first four events observed by the LIGO collaboration, and we
tested the detection claims using a different approach compared to the matched filter-
ing used by LIGO. Even though it is well-known in the literature that matched filtering
is the optimal approach to detect gravitational waves if the noise is Gaussian [185–
187], this method relies on comparing the detector data with a template bank that
contains a class of signals determined in a specified theory. This technique is hence
robust and very sensitive only when the noise can be well approximated with Gaussian
noise, the template bank is complete enough to describe the expected signals on the
detector, and the source waveform is accurately predicted from theory. The discovery
of residual signal on the LIGO detector strain after the subtraction of the waveform
model by refs. [196, 197, 200] consequently raised questions about the reliability and
significance of the LIGO detections claims. These questions were partially answered
in ref. [199], which found that the residual signal in the detector strain was due to
discrepancies in the best-fit waveforms that were used by the LIGO collaboration. The
exact size of the statistical significance, however, was still left unanswered and led to
further debate [200, 201]. We hence followed the approach of refs. [199, 200] and used
maximum-likelihood waveforms inferred by refs. [206, 207], to perform a blind search
with a Pearson cross-correlation analysis in correspondence of the first four LIGO
detection claims. In the paper, we demonstrated that even though this approach is
less-sensitive compared to the matched filtering adopted by LIGO, all the detection
claims are able to be reproduced with statistical significance comparable to the latter
even when adopting this highly agnostic approach. We further showed that by using
waveforms obtained through maximum likelihood, the residual noise in the detector
strain after the subtraction of the signal goes back to values that are not statistically
significant. This proved that the residual noise found in the detector strain after the
subtraction was only caused by a non-optimal choice of the waveforms, and is not a
problem caused by the theory in itself. One point of remark of this article is that
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the Pearson cross-correlation, despite not being as sensitive as the matched filtering
when looking for gravitational wave signals, can still be used to easily test non-trivial
theories on detection claims. In particular, the information that is left by the residual
after the subtraction can in principle be used to evaluate the description quality of a
theory over another. The last claim, however, still has to be properly tested and is left
as an open question for further research works.

For our second paper, we moved from single events on real data to multiple events
on simulated data. This was a necessary choice in order to analyze the SGWB on the
LISA detector. We hence used the latest results from the LVK inference paper [46] to
generate a BBH population in our universe, some modifications to these results were
however needed in order to account for intrinsic differences among the two detectors
and analysis. First of all, as the main objective was to study the SGWB on LISA,
we needed to describe clearly also the population of non-resolvable sources that nat-
urally extends to higher values of redshift compared to the LVK observable volume
of universe. We hence adopted a phenomenological merger rate that follows the Star
Formation Rate as done in refs. [56, 130]. This allowed us to extend the validity range
of the LIGO inferred merger rate after the currently detected farthest away events
(z ≲ 1). Another difference that needed to be taken into account when computing
populations for the LISA detector, is the difference in the sensitive frequency range
among the two detectors. This difference implies that while SOBHB on the LIGO
detector frequency range only spend a few milliseconds before coalescing, on the LISA
frequency range they can in principle keep inspiraling for several millions of years.
Compared to the LIGO detector, the strain on the LISA detector will hence be com-
posed mainly of sources that are already inspiralling once the LISA detector will be
turned on, with only a few sources drifting in and out of its frequency range during
the mission time. In order to account for this factor, we hence replaced the detector
observation time in the equation describing the differential number of BBH events (see
eq. (4.2.1)) with a cutoff value for the maximum observed residual time to coalescence
by the LISA detector. The previously mentioned equation will then move from asking
"How many events can I observe drifting on my detector in x years of observation" to
"How many events that are closer than x years away from coalescence will be in my
detector frequency range". Events that will drift outside the LISA frequency range
during the mission time will be described by a residual time to coalescence smaller
than the assumed mission time. The events that will drift inside the LISA frequency
range during the assumed mission time, instead, can be ignored as long as the max-
imum value for the residual time to coalescence is high enough to take into account
all the events relevant for the observables we are interested in. After choosing cut-
off values for the maximum redshift and residual time to coalescence that were both
computationally efficient and exhaustive for the analysis, we computed the SGWB in
LISA using four different methods with increasing levels of complexity. We started
with a simple analytical evaluation, this method is indeed the fastest but doesn’t take
into account potential effects arising from the population realization errors or signal
processing on the detector strain. We then performed a semi-analytic calculation of
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the SGWB by replacing the integrals of the analytical evaluation with a summation
over the events coming from a synthesized population. Lastly, we analyzed the real
strain on the LISA detector generated by a synthesized population, and estimated the
SGWB by iteratively subtracting the resolvable sources. This method is indeed com-
putationally expensive, but allow us to both obtain the resolvable sources on LISA,
and analyze the effects on the SGWB shape due to event subtraction as a function of
the SNR threshold. We found that for SNR thresholds bigger than 8, all the methods
are well in agreement with each other. When not considering the possible effects of
archival searches on the detector strain (see refs. [246, 267]), we can hence use the ana-
lytical approximation to quickly estimate the SGWB without a large loss of precision.
The results obtained for the resolvable sources achieved by using the iterative subtrac-
tion method will also be used for a future companion paper that is going to appear
in the next months (see ref. [238]). By analyzing the detectability of the predicted
SGWB level, we also hinted that due to the high level of precision that we will achieve
on its amplitude reconstruction, we can use this measure to break the degeneracy on
the Earth-based population parameters estimation. In particular, this result was then
used in the third paper presented in this document (see Chapter {5}) to study the BH
population outside the ground-based detectors observable range, and search for the
potential presence of PBH populations outside the detectors observed volume.

To conclude, in the third paper presented, we considered the possibility of differ-
ent BH formation channels [52, 294, 295, 315] on the detector strain. In particular,
we studied the case of a subpopulation coming from a primordial origin over a fiducial
astrophysical SOBBH population. This configuration was already deeply explored in
literature, e.g. ref. [323] searched for single detections outside the region where we
expect astrophysical events to be, refs. [52, 294] analyzed this assumption by looking
at features in the mass spectrum of the LVK fiducial model, ref. [274] instead used
the SGWB to assess for a PBH component in the high-redshift non-resolvable vol-
ume of our universe. Further analysis can also be found in refs. [134, 359] (see also
refs. [16, 308] for a detailed procedure on how to identify PBHB). The main motivation
that led us to perform this study, instead, resides in the difference in the high redshift
behavior between populations of astrophysical and primordial origin [316, 317, 324].
While we know that astrophysical BHs are supposed to follow the cosmic history of
our universe, and hence have a merger rate that closely follows the SFR (up to some
potential time delays) [56, 57, 130], the PBH merger rate is expected to grow as a
function of redshift [16, 274, 294]. Due to this main difference among the two forma-
tion channels, we expect the SOBHB population to slowly die at redshift higher than
the peak of the SFR, while the PBHB population is supposed to dominate in the high
redshift regime. We hence decided to study the potential impact of PBHB subpopula-
tions over the astrophysical SOBHB population in said high redshift regime. To this
extent, again we assumed a fiducial population that follows the LVK GWTC-3 results
[46], and we extended its regime of validity by means of a phenomenological merger
rate in the form of refs. [56, 130, 182]. We then studied the impact of the PBHB sub-
populations by considering both the distribution of resolvable sources as a function of
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redshift, and the amplitude variation on the LISA SGWB. As we are mainly interested
in the high-redshift distribution of resolvable sources, which is hardly accessible by
our present-stage GW detectors, we forecasted our results in the next generation of
ground-based GW detectors [312, 315]. In particular, we computed our results both
for the A+ LIGO [58] and ET [55, 361] detectors. The value of the SGWB on the LISA
detector was instead computed by following the analytical approach described in Chap-
ter {4}. We then presented our results for several different combinations of the PBH
merger rate and mass PDF, and we concluded that the three considered detectors work
synergistically when this type of study is performed. The amplitude of the SGWB, in
particular, always proved to be a useful complementary tool to the information that
may be obtained with the resolvable sources on ground-based detectors. This is well
expected knowing that by definition, the SGWB is the confusion noise generated by
the superposition of the signal of all the non-resolvable sources on the detector strain.
It has to be emphasized, however, that in order to compute our results we neglected
potential merger among BHs of the two considered channels, as well as the impact of
the current uncertainties on the GWTC-3 inferred parameters. The second assump-
tion, in particular, is motivated by the fact that the current uncertainties are so large
(∼ 50%) that they would dominate our results when forecasted on the next generation
of GWs detectors, for which we expect these uncertainties to become much smaller
in the next years. While without taking care of the aforementioned assumptions our
results are merely indicative, the codes that we presented in our GitHub repository
[330] can easily be adapted to future LVK inference results. This study, which in the
presented paper can be taken as a proof of concept, can hence be easily performed
with the tools provided when the quality of our observations, and hence the errors on
the inference, will improve. We expect that the presented analysis, together with the
others discussed at the beginning of this paragraph, will improve our constraints on
the PBH component of our universe deeply when the next generation of detectors will
be running.

– 158 –



Bibliography

[1] E. Barausse et al., “Prospects for Fundamental Physics with LISA,” Gen. Rel. Grav.,
vol. 52, no. 8, p. 81, 2020.

[2] P. A. Seoane et al., “The effect of mission duration on LISA science objectives,” Gen.
Rel. Grav., vol. 54, no. 1, p. 3, 2022.

[3] A. Einstein, “Zur Allgemeinen Relativitätstheorie,” Sitzungsber. Preuss. Akad. Wiss.
Berlin (Math. Phys. ), vol. 1915, pp. 778–786, 1915. [Addendum:
Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1915, 799–801 (1915)].

[4] A. Einstein, “Näherungsweise Integration der Feldgleichungen der Gravitation,”
Sitzungsberichte der K&ouml;niglich Preussischen Akademie der Wissenschaften,
pp. 688–696, Jan. 1916.

[5] A. Einstein, “Über Gravitationswellen,” Sitzungsber. Preuss. Akad. Wiss. Berlin
(Math. Phys. ), vol. 1918, pp. 154–167, 1918.

[6] A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, pp. 81–124.
Wiesbaden: Vieweg+Teubner Verlag, 1923.

[7] B. Schutz, A First Course in General Relativity. Cambridge University Press, 2 ed.,
2009.

[8] V. Ferrari, L. Gualtieri, and P. Pani, General Relativity and its Applications. CRC
Press, Taylor & Francis Group, 2020.

[9] H. Grote and D. H. Reitze, “First-Generation Interferometric Gravitational-Wave
Detectors,” in 46th Rencontres de Moriond on Gravitational Waves and Experimental
Gravity, (Paris, France), pp. 5–18, Moriond, 2011.

[10] M. Pitkin, S. Reid, S. Rowan, and J. Hough, “Gravitational Wave Detection by
Interferometry (Ground and Space),” Living Rev. Rel., vol. 14, p. 5, 2011.

[11] S. Kroker and R. Nawrodt, “The Einstein telescope,” IEEE Instrum. Measur. Mag.,
vol. 18, no. 3, pp. 4–8, 2015.

[12] J. Baker et al., “The Laser Interferometer Space Antenna: Unveiling the Millihertz
Gravitational Wave Sky,” 7 2019.

[13] K. Schwarzschild, “On the gravitational field of a mass point according to Einstein’s
theory,” Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ), vol. 1916,
pp. 189–196, 1916.

[14] K. Schwarzschild, “On the gravitational field of a sphere of incompressible fluid

– 159 –



according to Einstein’s theory,” Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.
), vol. 1916, pp. 424–434, 1916.

[15] L. Barack et al., “Black holes, gravitational waves and fundamental physics: a
roadmap,” Class. Quant. Grav., vol. 36, no. 14, p. 143001, 2019.

[16] E. Bagui et al., “Primordial black holes and their gravitational-wave signatures,” 10
2023.

[17] P. Marcoccia and G. Montani, “Weakly Inhomogeneous models for the Low-Redshift
Universe,” 8 2018.

[18] R. C. Nunes, “Structure formation in f(T ) gravity and a solution for H0 tension,”
JCAP, vol. 05, p. 052, 2018.

[19] S. Banerjee, M. Petronikolou, and E. N. Saridakis, “Alleviating H0 Tension with New
Gravitational Scalar Tensor Theories,” 9 2022.

[20] C. M. Will, “The Confrontation between General Relativity and Experiment,” Living
Rev. Rel., vol. 17, p. 4, 2014.

[21] B. Abbott et al., “Tests of General Relativity with the Binary Black Hole Signals from
the LIGO-Virgo Catalog GWTC-1,” Phys. Rev. D, vol. 100, no. 10, p. 104036, 2019.

[22] A. A. Shoom, P. K. Gupta, B. Krishnan, A. B. Nielsen, and C. D. Capano, “Testing
GR with the Gravitational Wave Inspiral Signal GW170817,” 5 2021.

[23] C. D. Capano, J. Abedi, S. Kastha, A. H. Nitz, J. Westerweck, Y.-F. Wang,
M. Cabero, A. B. Nielsen, and B. Krishnan, “Statistical validation of the detection of
a sub-dominant quasi-normal mode in GW190521,” 9 2022.

[24] P. R. Capelo, Astrophysical black holes. 2019.

[25] M. Pieroni, A. Ricciardone, and E. Barausse, “Detectability and parameter estimation
of stellar origin black hole binaries with next generation gravitational wave detectors,”
Sci. Rep., vol. 12, no. 1, p. 17940, 2022.

[26] E. Poisson, “The Motion of point particles in curved space-time,” Living Rev. Rel.,
vol. 7, p. 6, 2004.

[27] L. Tu, An Introduction to Manifolds. Universitext, Springer New York, 2010.

[28] J. Smith, Introduction to Special Relativity. Dover Books on Physics, Dover
Publications, 2016.

[29] A. Friedmann, “Über die Krümmung des Raumes,” Zeitschrift fur Physik, vol. 10,
pp. 377–386, Jan. 1922.

[30] B. F. Schutz, A FIRST COURSE IN GENERAL RELATIVITY. Cambridge, UK:
Cambridge Univ. Pr., 1985.

[31] M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments. Oxford Master
Series in Physics, Oxford University Press, 2007.

[32] P. J. E. Peebles, Principles of physical cosmology. 1994.

[33] G. Montani, M. V. Battisti, R. Benini, and G. Imponente, Primordial cosmology.
Singapore: World Scientific, 2009.

– 160 –



[34] L. D. Landau and E. M. Lifshitz, Mechanics, Third Edition: Volume 1 (Course of
Theoretical Physics). Butterworth-Heinemann, 3 ed., Jan. 1976.

[35] I. Newton, Philosophiæ Naturalis Principia Mathematica. 1687.

[36] R. Casadio, “What is the Schwarzschild radius of a quantum mechanical particle?,”
Springer Proc. Phys., vol. 170, pp. 225–231, 2016.

[37] S. Chandrasekhar, The mathematical theory of black holes. 1985.

[38] R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically
special metrics,” Phys. Rev. Lett., vol. 11, pp. 237–238, Sep 1963.

[39] M. Visser, “The Kerr spacetime: A Brief introduction,” in Kerr Fest: Black Holes in
Astrophysics, General Relativity and Quantum Gravity, 6 2007.

[40] D. L. Wiltshire, M. Visser, and S. M. Scott, The Kerr spacetime: Rotating black holes
in general relativity. Cambridge University Press, 1 2009.

[41] T. A. Callister, S. J. Miller, K. Chatziioannou, and W. M. Farr, “No Evidence that
the Majority of Black Holes in Binaries Have Zero Spin,” Astrophys. J. Lett., vol. 937,
no. 1, p. L13, 2022.

[42] N. Gürlebeck, “No-hair theorem for Black Holes in Astrophysical Environments,”
Phys. Rev. Lett., vol. 114, no. 15, p. 151102, 2015.

[43] V. Cardoso and L. Gualtieri, “Testing the black hole ‘no-hair’ hypothesis,” Class.
Quant. Grav., vol. 33, no. 17, p. 174001, 2016.

[44] B. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole
Merger,” Phys. Rev. Lett., vol. 116, no. 6, p. 061102, 2016.

[45] R. Abbott et al., “GWTC-3: Compact Binary Coalescences Observed by LIGO and
Virgo During the Second Part of the Third Observing Run,” 11 2021.

[46] R. Abbott et al., “The population of merging compact binaries inferred using
gravitational waves through GWTC-3,” 11 2021.

[47] M. Mapelli, Formation Channels of Single and Binary Stellar-Mass Black Holes. 2021.

[48] A. C. Fabian and A. N. Lasenby, “Astrophysical Black Holes,” 11 2019.

[49] M. Y. Khlopov, “Primordial Black Holes,” Res. Astron. Astrophys., vol. 10,
pp. 495–528, 2010.

[50] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “Constraints on primordial black
holes,” Reports on Progress in Physics, vol. 84, p. 116902, 11 2021.

[51] V. De Luca, G. Franciolini, P. Pani, and A. Riotto, “Primordial Black Holes Confront
LIGO/Virgo data: Current situation,” JCAP, vol. 06, p. 044, 2020.

[52] G. Franciolini, V. Baibhav, V. De Luca, K. K. Y. Ng, K. W. K. Wong, E. Berti,
P. Pani, A. Riotto, and S. Vitale, “Searching for a subpopulation of primordial black
holes in LIGO-Virgo gravitational-wave data,” Phys. Rev. D, vol. 105, no. 8,
p. 083526, 2022.

[53] K. Breivik, C. L. Rodriguez, S. L. Larson, V. Kalogera, and F. A. Rasio,
“Distinguishing Between Formation Channels for Binary Black Holes with LISA,”
Astrophys. J. Lett., vol. 830, no. 1, p. L18, 2016.

– 161 –



[54] G. Franciolini and P. Pani, “Stochastic gravitational-wave background at 3G detectors
as a smoking gun for microscopic dark matter relics,” 4 2023.

[55] G. Franciolini, F. Iacovelli, M. Mancarella, M. Maggiore, P. Pani, and A. Riotto,
“Searching for Primordial Black Holes with the Einstein Telescope: impact of design
and systematics,” 4 2023.

[56] P. Madau and M. Dickinson, “Cosmic Star Formation History,” Ann. Rev. Astron.
Astrophys., vol. 52, pp. 415–486, 2014.

[57] A. Mangiagli, M. Bonetti, A. Sesana, and M. Colpi, “Merger rate of stellar black hole
binaries above the pair instability mass gap,” Astrophys. J. Lett., vol. 883, no. 1,
p. L27, 2019.

[58] M. L. Barsotti, L. McCuller and P. Fritschel, “The a+ design curve,” 2018.

[59] P. Amaro-Seoane et al., “Laser Interferometer Space Antenna,” 2 2017.

[60] S. Hild and A. Freise, “Et sensitivities,” 2009.

[61] F. LeBlanc, An Introduction to Stellar Astrophysics. 2010.

[62] N. Langer, “Presupernova evolution of massive single and binary stars,” Annual
Review of Astronomy and Astrophysics, vol. 50, no. 1, pp. 107–164, 2012.

[63] S. Ekström, C. Georgy, P. Eggenberger, G. Meynet, N. Mowlavi, A. Wyttenbach,
A. Granada, T. Decressin, R. Hirschi, U. Frischknecht, C. Charbonnel, and
A. Maeder, “Grids of stellar models with rotation. I. Models from 0.8 to 120 M⊙ at
solar metallicity (Z = 0.014),” , vol. 537, p. A146, Jan. 2012.

[64] A. Heger, B. Müller, and I. Mandel, “Chapter 3: Black Holes as the End State of
Stellar Evolution: Theory and Simulations,” pp. 61–111, 2023.

[65] S.-C. Yoon, S. E. Woosley, and N. Langer, “Type ib/c supernovae in binary systems.
i. evolution and properties of the progenitor stars,” The Astrophysical Journal,
vol. 725, p. 940, nov 2010.

[66] B. Paxton et al., “Modules for Experiments in Stellar Astrophysics (MESA): Binaries,
Pulsations, and Explosions,” Astrophys. J. Suppl., vol. 220, no. 1, p. 15, 2015.

[67] K. Belczynski, T. Ryu, R. Perna, E. Berti, T. L. Tanaka, and T. Bulik, “On the
likelihood of detecting gravitational waves from Population III compact object
binaries,” Mon. Not. Roy. Astron. Soc., vol. 471, no. 4, pp. 4702–4721, 2017.

[68] A. Vigna-Gómez, S. Toonen, E. Ramirez-Ruiz, N. W. C. Leigh, J. Riley, and C.-J.
Haster, “Massive Stellar Triples Leading to Sequential Binary Black-Hole Mergers in
the Field,” Astrophys. J. Lett., vol. 907, no. 1, p. L19, 2021.

[69] F. Antonini, S. Toonen, and A. S. Hamers, “Binary black hole mergers from field
triples: properties, rates and the impact of stellar evolution,” Astrophys. J., vol. 841,
no. 2, p. 77, 2017.

[70] T. Ryu, S. de Mink, R. Farmer, R. Pakmor, R. Perna, and V. Springel, “Close
Encounters of Star - Black Hole Binaries with Single Stars,” 7 2023.

[71] K. Omukai, T. Tsuribe, R. Schneider, and A. Ferrara, “Thermal and fragmentation
properties of star-forming clouds in low-metallicity environments,” Astrophys. J.,
vol. 626, pp. 627–643, 2005.

– 162 –



[72] M. L. Norman, “Population III Star Formation and IMF,” AIP Conf. Proc., vol. 990,
no. 1, pp. 3–15, 2008.

[73] A. Tanikawa, T. Yoshida, T. Kinugawa, A. A. Trani, T. Hosokawa, H. Susa, and
K. Omukai, “Merger Rate Density of Binary Black Holes through Isolated Population
I, II, III and Extremely Metal-poor Binary Star Evolution,” Astrophys. J., vol. 926,
no. 1, p. 83, 2022.

[74] T. Kaczmarek, C. Olczak, and S. Pfalzner, “Evolution of the binary population in
young dense star clusters,” Astronomy & Astrophysics, vol. 528, p. A144, 2011.

[75] G. D. Quinlan and S. L. Shapiro, “The Dynamical Evolution of Dense Star Clusters
in Galactic Nuclei,” , vol. 356, p. 483, June 1990.

[76] N. Leigh, N. Stone, J. Webb, and W. Lyra, “The thermodynamics of stellar
multiplicity: dynamical evolution of binary star populations in dense stellar
environments,” arXiv preprint arXiv:2205.15351, 2022.

[77] J. Kaler, “Stellar evolution,” McGraw-Hill Encyclopedia of Science and Technology,
eleventh ed., McGraw-Hill, 2012.
https://www.accessscience.com/content/article/a654000.

[78] D. J. Whalen, M. Surace, C. Bernhardt, E. Zackrisson, F. Pacucci, B. L. Ziegler, and
M. Hirschmann, “Finding Direct-Collapse Black Holes at Birth,” Astrophys. J. Lett.,
vol. 897, no. 1, p. L16, 2020.

[79] M. A. Latif, S. Khochfar, and D. Whalen, “The Birth of Binary Direct-Collapse Black
Holes,” Astrophys. J. Lett., vol. 892, no. 1, p. L4, 2020.

[80] M. Chruslinska and G. Nelemans, “Metallicity of stars formed throughout the cosmic
history based on the observational properties of star-forming galaxies,” , vol. 488,
pp. 5300–5326, Oct. 2019.

[81] L. Amard and S. P. Matt, “The Impact of Metallicity on the Evolution of the
Rotation and Magnetic Activity of Sun-like Stars,” , vol. 889, p. 108, Feb. 2020.

[82] M. Mapelli and A. Bressan, “Impact of metallicity on the evolution of young star
clusters,” Monthly Notices of the Royal Astronomical Society, vol. 430, no. 4,
pp. 3120–3127, 2013.

[83] L. Gehrig, T. Steindl, E. I. Vorobyov, R. Guadarrama, and K. Zwintz, “The influence
of metallicity on a combined stellar and disk evolution,” , vol. 669, p. A84, Jan. 2023.

[84] J. S. Vink and A. de Koter, “On the metallicity dependence of Wolf-Rayet winds,”
Astron. Astrophys., vol. 442, p. 587, 2005.

[85] A. A. Trani, M. Mapelli, and A. Bressan, “The impact of metallicity-dependent
mass-loss versus dynamical heating on the early evolution of star clusters,” Monthly
Notices of the Royal Astronomical Society, vol. 445, no. 2, pp. 1967–1976, 2014.

[86] J. S. Vink, “Very Massive Stars: a metallicity-dependent upper-mass limit, slow
winds, and the self-enrichment of Globular Clusters,” Astron. Astrophys., vol. 615,
p. A119, 2018.

[87] J. S. Vink and A. A. C. Sander, “Metallicity-dependent wind parameter predictions
for OB stars,” Mon. Not. Roy. Astron. Soc., vol. 504, no. 2, pp. 2051–2061, 2021.

– 163 –

https://www.accessscience.com/content/article/a654000


[88] A. Gallazzi, S. Charlot, J. Brinchmann, S. D. M. White, and C. A. Tremonti, “The
Ages and metallicities of galaxies in the local Universe,” Mon. Not. Roy. Astron. Soc.,
vol. 362, pp. 41–58, 2005.

[89] M. M. Larkin, R. Gerasimov, and A. J. Burgasser, “Characterization of Population III
Stars with Stellar Atmosphere and Evolutionary Modeling and Predictions of their
Observability with the JWST,” , vol. 165, p. 2, Jan. 2023.

[90] A. Heger and S. E. Woosley, “The nucleosynthetic signature of population III,”
Astrophys. J., vol. 567, pp. 532–543, 2002.

[91] T. Chantavat, S. Chongchitnan, and J. Silk, “The most massive Population III stars,”
Mon. Not. Roy. Astron. Soc., vol. 522, no. 3, pp. 3256–3262, 2023.

[92] F. Santoliquido, M. Mapelli, G. Iorio, G. Costa, S. C. O. Glover, T. Hartwig, R. S.
Klessen, and L. Merli, “Binary black hole mergers from Population III stars:
uncertainties from star formation and binary star properties,” 3 2023.

[93] U. Maio, B. Ciardi, K. Dolag, L. Tornatore, and S. Khochfar, “The transition from
population III to population II-I star formation,” , vol. 407, pp. 1003–1015, Sept. 2010.

[94] T. J. Dupuy and A. L. Kraus, “Distances, Luminosities, and Temperatures of the
Coldest Known Substellar Objects,” Science, vol. 341, pp. 1492–1495, Sept. 2013.

[95] H. Sana, S. E. de Mink, A. de Koter, N. Langer, C. J. Evans, M. Gieles, E. Gosset,
R. G. Izzard, J. B. Le Bouquin, and F. R. N. Schneider, “Binary Interaction
Dominates the Evolution of Massive Stars,” Science, vol. 337, p. 444, July 2012.

[96] S. Rao, C. Pezzotti, G. Meynet, P. Eggenberger, G. Buldgen, C. Mordasini,
V. Bourrier, S. Ekström, and C. Georgy, “Star-planet interactions. VI. Tides, stellar
activity, and planetary evaporation,” , vol. 651, p. A50, July 2021.

[97] D. Kushnir, M. Zaldarriaga, J. A. Kollmeier, and R. Waldman, “GW150914:
spin-based constraints on the merger time of the progenitor system,” Monthly Notices
of the Royal Astronomical Society, vol. 462, pp. 844–849, 07 2016.

[98] H. M. Boffin, “Mass transfer by stellar wind,” in Ecology of Blue Straggler Stars,
pp. 153–178, Springer, 2014.

[99] J. Ziółkowski and A. A. Zdziarski, “Non-conservative mass transfer in stellar
evolution and the case of V404 Cyg/GS 2023+338,” Mon. Not. Roy. Astron. Soc.,
vol. 480, no. 2, pp. 1580–1586, 2018.

[100] T. L. S. Wong and L. Bildsten, “Mass Transfer and Stellar Evolution of the White
Dwarfs in AM CVn Binaries,” Astrophys. J., vol. 923, no. 1, p. 125, 2021.

[101] N. Ivanova, S. Justham, X. Chen, O. De Marco, C. L. Fryer, E. Gaburov, H. Ge,
E. Glebbeek, Z. Han, X. D. Li, G. Lu, T. Marsh, P. Podsiadlowski, A. Potter,
N. Soker, R. Taam, T. M. Tauris, E. P. J. van den Heuvel, and R. F. Webbink,
“Common envelope evolution: where we stand and how we can move forward,” ,
vol. 21, p. 59, Feb. 2013.

[102] D. Jones, “Observational Constraints on the Common Envelope Phase,” in Reviews in
Frontiers of Modern Astrophysics; From Space Debris to Cosmology, pp. 123–153,
2020.

– 164 –



[103] R. Hirai and I. Mandel, “A Two-stage Formalism for Common-envelope Phases of
Massive Stars,” Astrophys. J. Lett., vol. 937, no. 2, p. L42, 2022.

[104] M. Mapelli, “Binary Black Hole Mergers: Formation and Populations,” Front. Astron.
Space Sci., vol. 7, p. 38, 2020.

[105] P. Marchant, K. M. W. Pappas, M. Gallegos-Garcia, C. P. L. Berry, R. E. Taam,
V. Kalogera, and P. Podsiadlowski, “The role of mass transfer and common envelope
evolution in the formation of merging binary black holes,” Astron. Astrophys.,
vol. 650, p. A107, 2021.

[106] P. Podsiadlowski, P. C. Joss, and J. J. L. Hsu, “Presupernova Evolution in Massive
Interacting Binaries,” , vol. 391, p. 246, May 1992.

[107] S. Wellstein and N. Langer, “Implications of massive close binaries for black hole
formation and supernovae,” Astron. Astrophys., vol. 350, p. 148, 1999.

[108] M. R. Krumholz, C. F. McKee, and J. Bland-Hawthorn, “Star clusters across cosmic
time,” Annual Review of Astronomy and Astrophysics, vol. 57, pp. 227–303, 2019.

[109] A. P. Milone and A. F. Marino, “Multiple populations in star clusters,” Universe,
vol. 8, no. 7, p. 359, 2022.

[110] C. Olczak, S. Pfalzner, and A. Eckart, “Stellar interactions in dense and sparse star
clusters,” Astronomy & Astrophysics, vol. 509, p. A63, 2010.

[111] S. Khoperskov, A. Mastrobuono-Battisti, P. Di Matteo, and M. Haywood, “Mergers,
tidal interactions, and mass exchange in a population of disc globular clusters,”
Astron. Astrophys., vol. 620, p. A154, 2018.

[112] A. Bahramian, C. O. Heinke, G. R. Sivakoff, and J. C. Gladstone, “Stellar Encounter
Rate in Galactic Globular Clusters,” Astrophys. J., vol. 766, p. 136, 2013.

[113] A. M. Geller and N. W. Leigh, “Interrupted stellar encounters in star clusters,” The
Astrophysical Journal Letters, vol. 808, no. 1, p. L25, 2015.

[114] S. Dib, S. Schmeja, and R. J. Parker, “Structure and mass segregation in galactic
stellar clusters,” Monthly Notices of the Royal Astronomical Society, vol. 473, no. 1,
pp. 849–859, 2018.

[115] R. De Grijs, C. Li, and A. M. Geller, “The dynamical importance of binary systems in
young massive star clusters,” Proceedings of the International Astronomical Union,
vol. 12, no. S316, pp. 222–227, 2015.

[116] S. Torniamenti, A. Ballone, M. Mapelli, N. Gaspari, U. N. Di Carlo, S. Rastello,
N. Giacobbo, and M. Pasquato, “The impact of binaries on the evolution of star
clusters from turbulent molecular clouds,” Monthly Notices of the Royal Astronomical
Society, vol. 507, no. 2, pp. 2253–2266, 2021.

[117] A. J. Dittmann, M. Cantiello, and A. S. Jermyn, “Accretion onto Stars in the Disks of
Active Galactic Nuclei,” Astrophys. J., vol. 916, no. 1, p. 48, 2021.

[118] M. Cantiello, A. S. Jermyn, and D. N. C. Lin, “Stellar Evolution in AGN Disks,” ,
vol. 910, p. 94, Apr. 2021.

[119] F. Özel, D. Psaltis, R. Narayan, and J. E. McClintock, “The Black Hole Mass
Distribution in the Galaxy,” , vol. 725, pp. 1918–1927, Dec. 2010.

– 165 –



[120] W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D. Bailyn, I. Mandel, and
V. Kalogera, “The Mass Distribution of Stellar-mass Black Holes,” , vol. 741, p. 103,
Nov. 2011.

[121] S. E. Woosley, “The Progenitor of Gw150914,” Astrophys. J. Lett., vol. 824, no. 1,
p. L10, 2016.

[122] V. CASTELLANI, “L’astrofisica stellare,” Nuncius, vol. 17, no. 2, pp. 423 – 446, 2002.

[123] H. J. Lamers and E. M. Levesque, Understanding Stellar Evolution. 2514-3433, IOP
Publishing, 2017.

[124] S. C. Yoon, S. E. Woosley, and N. Langer, “Type Ib/c Supernovae in Binary Systems.
I. Evolution and Properties of the Progenitor Stars,” , vol. 725, pp. 940–954, Dec.
2010.

[125] J. H. Groh, S. Ekström, C. Georgy, G. Meynet, A. Choplin, P. Eggenberger,
R. Hirschi, A. Maeder, L. J. Murphy, I. Boian, and E. J. Farrell, “Grids of stellar
models with rotation. IV. Models from 1.7 to 120 M⊙ at a metallicity Z = 0.0004,” ,
vol. 627, p. A24, July 2019.

[126] M. Fishbach and V. Kalogera, “The time delay distribution and formation metallicity
of LIGO-virgo’s binary black holes,” The Astrophysical Journal Letters, vol. 914,
p. L30, jun 2021.

[127] L. A. C. van Son, S. E. de Mink, T. Callister, S. Justham, M. Renzo, T. Wagg, F. S.
Broekgaarden, F. Kummer, R. Pakmor, and I. Mandel, “The redshift evolution of the
binary black hole merger rate: A weighty matter,” The Astrophysical Journal,
vol. 931, p. 17, may 2022.

[128] P. Madau, L. Pozzetti, and M. Dickinson, “The Star formation history of field
galaxies,” Astrophys. J., vol. 498, p. 106, 1998.

[129] L. Hernquist and V. Springel, “An analytical model for the history of cosmic star
formation,” Monthly Notices of the Royal Astronomical Society, vol. 341,
pp. 1253–1267, 06 2003.

[130] P. Madau and T. Fragos, “Radiation Backgrounds at Cosmic Dawn: X-Rays from
Compact Binaries,” Astrophys. J., vol. 840, no. 1, p. 39, 2017.

[131] J. Garcia-Bellido, S. Clesse, and P. Fleury, “Primordial black holes survive SN lensing
constraints,” Phys. Dark Univ., vol. 20, pp. 95–100, 2018.

[132] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, “Primordial black
holes—perspectives in gravitational wave astronomy,” Class. Quant. Grav., vol. 35,
no. 6, p. 063001, 2018.

[133] P. Villanueva-Domingo, O. Mena, and S. Palomares-Ruiz, “A brief review on
primordial black holes as dark matter,” Front. Astron. Space Sci., vol. 8, p. 87, 2021.

[134] J. García-Bellido, “Massive primordial black holes as dark matter and their detection
with gravitational waves,” Journal of Physics: Conference Series, vol. 840, p. 012032,
may 2017.

[135] Y. B. Zel’dovich and I. D. Novikov, “The Hypothesis of Cores Retarded during
Expansion and the Hot Cosmological Model,” Soviet Astron. AJ (Engl. Transl. ),,
vol. 10, p. 602, 1967.

– 166 –



[136] S. Hawking, “Gravitationally collapsed objects of very low mass,” Mon. Not. Roy.
Astron. Soc., vol. 152, p. 75, 1971.

[137] B. J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy.
Astron. Soc., vol. 168, pp. 399–415, 1974.

[138] G. F. Chapline, “Cosmological effects of primordial black holes,” Nature, vol. 253,
no. 5489, pp. 251–252, 1975.

[139] E. Aubourg et al., “Evidence for gravitational microlensing by dark objects in the
galactic halo,” Nature, vol. 365, pp. 623–625, 1993.

[140] C. Alcock et al., “The MACHO project LMC microlensing results from the first two
years and the nature of the galactic dark halo,” Astrophys. J., vol. 486, pp. 697–726,
1997.

[141] P. Tisserand et al., “Limits on the Macho Content of the Galactic Halo from the
EROS-2 Survey of the Magellanic Clouds,” Astron. Astrophys., vol. 469, pp. 387–404,
2007.

[142] L. Wyrzykowski, J. Skowron, S. Kozłowski, A. Udalski, M. K. Szymań ski,
M. Kubiak, G. Pietrzyński, I. Soszyński, O. Szewczyk, K. Ulaczyk, R. Poleski, and
P. Tisserand, “The OGLE view of microlensing towards the magellanic clouds - IV.
OGLE-III SMC data and final conclusions on MACHOs72,” Monthly Notices of the
Royal Astronomical Society, vol. 416, pp. 2949–2961, aug 2011.

[143] M. Ricotti, J. P. Ostriker, and K. J. Mack, “Effect of primordial black holes on the
cosmic microwave background and cosmological parameter estimates,” The
Astrophysical Journal, vol. 680, p. 829, jun 2008.

[144] B. Abbott et al., “GWTC-1: A Gravitational-Wave Transient Catalog of Compact
Binary Mergers Observed by LIGO and Virgo during the First and Second Observing
Runs,” Phys. Rev. X, vol. 9, no. 3, p. 031040, 2019.

[145] K. Ando, K. Inomata, M. Kawasaki, K. Mukaida, and T. T. Yanagida, “Primordial
black holes for the LIGO events in the axionlike curvaton model,” Phys. Rev. D,
vol. 97, no. 12, p. 123512, 2018.

[146] J. Garcia-Bellido, M. Peloso, and C. Unal, “Gravitational Wave signatures of
inflationary models from Primordial Black Hole Dark Matter,” JCAP, vol. 09, p. 013,
2017.

[147] Z. Arzoumanian et al., “The NANOGrav 12.5 yr Data Set: Search for an Isotropic
Stochastic Gravitational-wave Background,” Astrophys. J. Lett., vol. 905, no. 2,
p. L34, 2020.

[148] B. Carr and F. Kuhnel, “Primordial Black Holes as Dark Matter: Recent
Developments,” Ann. Rev. Nucl. Part. Sci., vol. 70, pp. 355–394, 2020.

[149] K. Enqvist, “Lemaitre-Tolman-Bondi model and accelerating expansion,” Gen. Rel.
Grav., vol. 40, pp. 451–466, 2008.

[150] A. G. Polnarev and I. Musco, “Curvature profiles as initial conditions for primordial
black hole formation,” Class. Quant. Grav., vol. 24, pp. 1405–1432, 2007.

[151] D. S. Salopek and J. R. Bond, “Nonlinear evolution of long wavelength metric
fluctuations in inflationary models,” Phys. Rev. D, vol. 42, pp. 3936–3962, 1990.

– 167 –



[152] C.-M. Yoo, T. Harada, J. Garriga, and K. Kohri, “Primordial black hole abundance
from random Gaussian curvature perturbations and a local density threshold,” PTEP,
vol. 2018, no. 12, p. 123E01, 2018.

[153] I. Musco, “Threshold for primordial black holes: Dependence on the shape of the
cosmological perturbations,” Phys. Rev. D, vol. 100, no. 12, p. 123524, 2019.

[154] M. Shibata and M. Sasaki, “Black hole formation in the friedmann universe:
Formulation and computation in numerical relativity,” Phys. Rev. D, vol. 60,
p. 084002, Sep 1999.

[155] C. W. Misner and D. H. Sharp, “Relativistic equations for adiabatic, spherically
symmetric gravitational collapse,” Phys. Rev., vol. 136, pp. B571–B576, Oct 1964.

[156] A. B. Nielsen and D.-h. Yeom, “Spherically symmetric trapping horizons, the
Misner-Sharp mass and black hole evaporation,” Int. J. Mod. Phys. A, vol. 24,
pp. 5261–5285, 2009.

[157] A. Escrivà, C. Germani, and R. K. Sheth, “Universal threshold for primordial black
hole formation,” Phys. Rev. D, vol. 101, p. 044022, Feb 2020.

[158] V. De Luca, G. Franciolini, A. Kehagias, M. Peloso, A. Riotto, and C. Ünal, “The
Ineludible non-Gaussianity of the Primordial Black Hole Abundance,” JCAP, vol. 07,
p. 048, 2019.

[159] S. Young, I. Musco, and C. T. Byrnes, “Primordial black hole formation and
abundance: contribution from the non-linear relation between the density and
curvature perturbation,” JCAP, vol. 11, p. 012, 2019.

[160] V. D. Luca, G. Franciolini, P. Pani, and A. Riotto, “The evolution of primordial black
holes and their final observable spins,” Journal of Cosmology and Astroparticle
Physics, vol. 2020, p. 052, apr 2020.

[161] V. Desjacques and A. Riotto, “Spatial clustering of primordial black holes,” Phys.
Rev. D, vol. 98, no. 12, p. 123533, 2018.

[162] V. De Luca, V. Desjacques, G. Franciolini, and A. Riotto, “The clustering evolution
of primordial black holes,” JCAP, vol. 11, p. 028, 2020.

[163] K. S. Thorne, “Multipole expansions of gravitational radiation,” Rev. Mod. Phys.,
vol. 52, pp. 299–339, Apr 1980.

[164] L. Collaboration, “Calculating gravitational waveforms: examples,” 1 2021.
https://dcc.ligo.org/public/0097/T1200476/002/GW_examples.pdf.

[165] B. J. Owen and B. S. Sathyaprakash, “Matched filtering of gravitational waves from
inspiraling compact binaries: Computational cost and template placement,” Phys.
Rev. D, vol. 60, p. 022002, 1999.

[166] S. Babak, R. Balasubramanian, D. Churches, T. Cokelaer, and B. S. Sathyaprakash,
“A Template bank to search for gravitational waves from inspiralling compact
binaries. I. Physical models,” Class. Quant. Grav., vol. 23, pp. 5477–5504, 2006.

[167] S. Babak, “Building a stochastic template bank for detecting massive black hole
binaries,” Class. Quant. Grav., vol. 25, p. 195011, 2008.

– 168 –

https://dcc.ligo.org/public/0097/T1200476/002/GW_examples.pdf


[168] N. Indik, K. Haris, T. Dal Canton, H. Fehrmann, B. Krishnan, A. Lundgren, A. B.
Nielsen, and A. Pai, “Stochastic template bank for gravitational wave searches for
precessing neutron-star–black-hole coalescence events,” Phys. Rev. D, vol. 95, no. 6,
p. 064056, 2017.

[169] N. Indik, H. Fehrmann, F. Harke, B. Krishnan, and A. B. Nielsen, “Reducing the
number of templates for aligned-spin compact binary coalescence gravitational wave
searches using metric-agnostic template nudging,” Phys. Rev. D, vol. 97, no. 12,
p. 124008, 2018.

[170] T. Dal Canton and I. W. Harry, “Designing a template bank to observe compact
binary coalescences in Advanced LIGO’s second observing run,” 5 2017.

[171] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. Jiménez Forteza, and
A. Bohé, “Frequency-domain gravitational waves from nonprecessing black-hole
binaries. II. A phenomenological model for the advanced detector era,” Phys. Rev. D,
vol. 93, no. 4, p. 044007, 2016.

[172] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. Jiménez Forteza, and
A. Bohé, “Frequency-domain gravitational waves from nonprecessing black-hole
binaries. I. New numerical waveforms and anatomy of the signal,” Phys. Rev. D,
vol. 93, no. 4, p. 044006, 2016.

[173] G. Pratten et al., “Computationally efficient models for the dominant and
subdominant harmonic modes of precessing binary black holes,” Phys. Rev. D,
vol. 103, no. 10, p. 104056, 2021.

[174] A. Maselli, L. Gualtieri, V. Ferrari, and F. Pannarale, “On the validity of the
adiabatic approximation in compact binary inspirals,” in 13th Marcel Grossmann
Meeting on Recent Developments in Theoretical and Experimental General Relativity,
Astrophysics, and Relativistic Field Theories, pp. 951–953, 2015.

[175] J. M. Antelis, J. M. Hernández, and C. Moreno, “Post-newtonian approximation of
gravitational waves from the inspiral phase,” Journal of Physics: Conference Series,
vol. 1030, p. 012005, may 2018.

[176] X.-J. Zhu, E. Howell, T. Regimbau, D. Blair, and Z.-H. Zhu, “Stochastic
Gravitational Wave Background from Coalescing Binary Black Holes,” Astrophys. J.,
vol. 739, p. 86, 2011.

[177] A. Celletti, Stability and Chaos in Celestial Mechanics. 01 2010.

[178] R. Fitzpatrick, Bibliography. Cambridge University Press, 2012.

[179] R. A. Hulse and J. H. Taylor, “Discovery of a pulsar in a binary system,” Astrophys.
J. Lett., vol. 195, pp. L51–L53, 1975.

[180] M. Bramanti, C. D. Pagani, and S. Salsa, “Analisi matematica 2,” 2009.

[181] V. Serov, “Fourier series, fourier transform and their applications to mathematical
physics,” 2017.

[182] S. Babak, C. Caprini, D. G. Figueroa, N. Karnesis, P. Marcoccia, G. Nardini,
M. Pieroni, A. Ricciardone, A. Sesana, and J. Torrado, “Stochastic gravitational wave
background from stellar origin binary black holes in LISA,” 4 2023.

– 169 –



[183] B. Abbott et al., “GW150914: The Advanced LIGO Detectors in the Era of First
Discoveries,” Phys. Rev. Lett., vol. 116, no. 13, p. 131103, 2016.

[184] B. Brügmann, “Fundamentals of numerical relativity for gravitational wave sources,”
Science, vol. 361, no. 6400, pp. 366–371, 2018.

[185] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. Creighton,
“FINDCHIRP: An Algorithm for detection of gravitational waves from inspiraling
compact binaries,” Phys. Rev. D, vol. 85, p. 122006, 2012.

[186] S. A. Usman et al., “The PyCBC search for gravitational waves from compact binary
coalescence,” Class. Quant. Grav., vol. 33, no. 21, p. 215004, 2016.

[187] S. Sachdev et al., “The GstLAL Search Analysis Methods for Compact Binary
Mergers in Advanced LIGO’s Second and Advanced Virgo’s First Observing Runs,” 1
2019.

[188] S. Klimenko et al., “Method for detection and reconstruction of gravitational wave
transients with networks of advanced detectors,” Phys. Rev. D, vol. 93, no. 4,
p. 042004, 2016.

[189] R. Lynch, S. Vitale, R. Essick, E. Katsavounidis, and F. Robinet,
“Information-theoretic approach to the gravitational-wave burst detection problem,”
Phys. Rev. D, vol. 95, no. 10, p. 104046, 2017.

[190] F. Salemi, E. Milotti, G. Prodi, G. Vedovato, C. Lazzaro, S. Tiwari, S. Vinciguerra,
M. Drago, and S. Klimenko, “Wider look at the gravitational-wave transients from
GWTC-1 using an unmodeled reconstruction method,” Phys. Rev. D, vol. 100, no. 4,
p. 042003, 2019.

[191] K. W. Tsang, A. Ghosh, A. Samajdar, K. Chatziioannou, S. Mastrogiovanni,
M. Agathos, and C. Van Den Broeck, “A morphology-independent search for
gravitational wave echoes in data from the first and second observing runs of
Advanced LIGO and Advanced Virgo,” Phys. Rev. D, vol. 101, no. 6, p. 064012, 2020.

[192] B. Edelman et al., “Constraining Unmodeled Physics with Compact Binary Mergers
from GWTC-1,” arXiv:2008.06436.

[193] B. Abbott et al., “Gravitational Waves and Gamma-rays from a Binary Neutron Star
Merger: GW170817 and GRB 170817A,” Astrophys. J. Lett., vol. 848, no. 2, p. L13,
2017.

[194] B. Abbott et al., “GW190425: Observation of a Compact Binary Coalescence with
Total Mass ∼ 3.4M⊙,” Astrophys. J. Lett., vol. 892, no. 1, p. L3, 2020.

[195] E. Barausse, V. Cardoso, and P. Pani, “Can environmental effects spoil precision
gravitational-wave astrophysics?,” Phys. Rev. D, vol. 89, no. 10, p. 104059, 2014.

[196] H. Liu and A. D. Jackson, “Possible associated signal with GW150914 in the LIGO
data,” JCAP, vol. 1610, no. 10, p. 014, 2016.

[197] J. Creswell, S. von Hausegger, A. D. Jackson, H. Liu, and P. Naselsky, “On the time
lags of the LIGO signals,” JCAP, vol. 08, p. 013, 2017.

[198] H. Liu, J. Creswell, S. von Hausegger, A. D. Jackson, and P. Naselsky, “A blind search
for a common signal in gravitational wave detectors,” JCAP, vol. 02, p. 013, 2018.

– 170 –



[199] A. B. Nielsen, A. H. Nitz, C. D. Capano, and D. A. Brown, “Investigating the noise
residuals around the gravitational wave event GW150914,” JCAP, vol. 02, p. 019,
2019.

[200] A. D. Jackson, H. Liu, and P. Naselsky, “Noise residuals for GW150914 using
maximum likelihood and numerical relativity templates,” JCAP, vol. 1905, p. 014,
2019.

[201] R. Maroju, S. R. Dyuthi, A. Sukrutha, and S. Desai, “Looking for ancillary signals
around GW150914,” JCAP, vol. 04, p. 007, 2019.

[202] B. P. Abbott et al., “A guide to LIGO–Virgo detector noise and extraction of transient
gravitational-wave signals,” Class. Quant. Grav., vol. 37, no. 5, p. 055002, 2020.

[203] A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White, D. A. Brown, and
B. Krishnan, “1-OGC: The first open gravitational-wave catalog of binary mergers
from analysis of public Advanced LIGO data,” Astrophys. J., vol. 872, no. 2, p. 195,
2019.

[204] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M. Zaldarriaga, “New search
pipeline for compact binary mergers: Results for binary black holes in the first
observing run of Advanced LIGO,” Phys. Rev. D, vol. 100, no. 2, p. 023011, 2019.

[205] M. Vallisneri, J. Kanner, R. Williams, A. Weinstein, and B. Stephens, “The LIGO
Open Science Center,” J. Phys. Conf. Ser., vol. 610, no. 1, p. 012021, 2015.

[206] S. De, C. M. Biwer, C. D. Capano, A. H. Nitz, and D. A. Brown, “Posterior samples
of the parameters of binary black holes from Advanced LIGO, Virgo’s second
observing run,” 11 2018.

[207] C. Biwer, C. D. Capano, S. De, M. Cabero, D. A. Brown, A. H. Nitz, and
V. Raymond, “PyCBC Inference: A Python-based parameter estimation toolkit for
compact binary coalescence signals,” Publ. Astron. Soc. Pac., vol. 131, no. 996,
p. 024503, 2019.

[208] B. Abbott et al., “Binary Black Hole Mergers in the first Advanced LIGO Observing
Run,” Phys. Rev. X, vol. 6, no. 4, p. 041015, 2016. [Erratum: Phys.Rev.X 8, 039903
(2018)].

[209] P. Marcoccia. https://github.com/GravWaves-IMF/Correlation-Method-first-2019.

[210] S. Babak, ““Enchilada” is back on the menu,” J. Phys. Conf. Ser., vol. 840, no. 1,
p. 012026, 2017.

[211] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and
M. Pürrer, “Simple Model of Complete Precessing Black-Hole-Binary Gravitational
Waveforms,” Phys. Rev. Lett., vol. 113, no. 15, p. 151101, 2014.

[212] R. A. Mercer et al., “Ligo algorithm library v6.49.,” 2018.
https://git.ligo.org/lscsoft/lalsuite.

[213] P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E. Barausse, P. Bender, E. Berti,
P. Binetruy, M. Born, D. Bortoluzzi, et al., “Laser interferometer space antenna,”
arXiv preprint arXiv:1702.00786, 2017.

[214] A. Sesana, “Prospects for Multiband Gravitational-Wave Astronomy after
GW150914,” Phys. Rev. Lett., vol. 116, no. 23, p. 231102, 2016.

– 171 –



[215] K. Kyutoku and N. Seto, “Concise estimate of the expected number of detections for
stellar-mass binary black holes by eLISA,” Mon. Not. Roy. Astron. Soc., vol. 462,
no. 2, pp. 2177–2183, 2016.

[216] D. Gerosa, S. Ma, K. W. K. Wong, E. Berti, R. O’Shaughnessy, Y. Chen, and
K. Belczynski, “Multiband gravitational-wave event rates and stellar physics,” Phys.
Rev. D, vol. 99, no. 10, p. 103004, 2019.

[217] N. Seto and K. Kyutoku, “How many extragalactic stellar mass binary black holes
will be detected by space gravitational-wave interferometers?,” Mon. Not. Roy.
Astron. Soc., vol. 514, no. 4, pp. 4669–4675, 2022.

[218] K. Kremer et al., “Post-Newtonian Dynamics in Dense Star Clusters: Binary Black
Holes in the LISA Band,” Phys. Rev. D, vol. 99, no. 6, p. 063003, 2019.

[219] A. Sesana, A. Lamberts, and A. Petiteau, “Finding binary black holes in the Milky
Way with LISA,” Mon. Not. Roy. Astron. Soc., vol. 494, no. 1, pp. L75–L80, 2020.

[220] C. Caprini and D. G. Figueroa, “Cosmological Backgrounds of Gravitational Waves,”
Class. Quant. Grav., vol. 35, no. 16, p. 163001, 2018.

[221] M. Lewicki and V. Vaskonen, “Impact of LIGO-Virgo black hole binaries on
gravitational wave background searches,” Eur. Phys. J. C, vol. 83, no. 2, p. 168, 2023.

[222] G. Boileau, N. Christensen, R. Meyer, and N. Cornish, “Spectral separation of the
stochastic gravitational-wave background for lisa: Observing both cosmological and
astrophysical backgrounds,” Physical Review D, vol. 103, 05 2021.

[223] G. Boileau, A. Lamberts, N. Christensen, N. J. Cornish, and R. Meyer, “Spectral
separation of the stochastic gravitational-wave background for LISA: galactic,
cosmological and astrophysical backgrounds,” in 55th Rencontres de Moriond on QCD
and High Energy Interactions, 5 2021.

[224] M. Pieroni and E. Barausse, “Foreground cleaning and template-free stochastic
background extraction for LISA,” JCAP, vol. 07, p. 021, 2020. [Erratum: JCAP 09,
E01 (2020)].

[225] M. Dominik, K. Belczynski, C. Fryer, D. Holz, E. Berti, T. Bulik, I. Mandel, and
R. O’Shaughnessy, “Double Compact Objects I: The Significance of the Common
Envelope on Merger Rates,” Astrophys. J., vol. 759, p. 52, 2012.

[226] C. J. Neijssel, A. Vigna-Gómez, S. Stevenson, J. W. Barrett, S. M. Gaebel, F. S.
Broekgaarden, S. E. de Mink, D. Szécsi, S. Vinciguerra, and I. Mandel, “The effect of
the metallicity-specific star formation history on double compact object mergers,”
Monthly Notices of the Royal Astronomical Society, vol. 490, no. 3, pp. 3740–3759,
2019.

[227] M. Mapelli, N. Giacobbo, E. Ripamonti, and M. Spera, “The cosmic merger rate of
stellar black hole binaries from the Illustris simulation,” Mon. Not. Roy. Astron. Soc.,
vol. 472, no. 2, pp. 2422–2435, 2017.

[228] A. C. Jenkins, M. Sakellariadou, T. Regimbau, and E. Slezak, “Anisotropies in the
astrophysical gravitational-wave background: Predictions for the detection of compact
binaries by LIGO and Virgo,” Phys. Rev. D, vol. 98, no. 6, p. 063501, 2018.

– 172 –



[229] S. Mukherjee and J. Silk, “Can we distinguish astrophysical from primordial black
holes via the stochastic gravitational wave background?,” Mon. Not. Roy. Astron.
Soc., vol. 506, no. 3, pp. 3977–3985, 2021.

[230] R. Abbott et al., “Population Properties of Compact Objects from the Second
LIGO-Virgo Gravitational-Wave Transient Catalog,” Astrophys. J. Lett., vol. 913,
no. 1, p. L7, 2021.

[231] I. Dvorkin, E. Vangioni, J. Silk, J.-P. Uzan, and K. A. Olive, “Metallicity-constrained
merger rates of binary black holes and the stochastic gravitational wave background,”
Mon. Not. Roy. Astron. Soc., vol. 461, no. 4, pp. 3877–3885, 2016.

[232] K. Nakazato, Y. Niino, and N. Sago, “Gravitational-Wave Background from Binary
Mergers and Metallicity Evolution of Galaxies,” Astrophys. J., vol. 832, no. 2, p. 146,
2016.

[233] C. Périgois, C. Belczynski, T. Bulik, and T. Regimbau, “StarTrack predictions of the
stochastic gravitational-wave background from compact binary mergers,” Phys. Rev.
D, vol. 103, no. 4, p. 043002, 2021.

[234] G. Cusin, I. Dvorkin, C. Pitrou, and J.-P. Uzan, “Properties of the stochastic
astrophysical gravitational wave background: astrophysical sources dependencies,”
Phys. Rev. D, vol. 100, no. 6, p. 063004, 2019.

[235] G. Cusin, I. Dvorkin, C. Pitrou, and J.-P. Uzan, “Stochastic gravitational wave
background anisotropies in the mHz band: astrophysical dependencies,” Mon. Not.
Roy. Astron. Soc., vol. 493, no. 1, pp. L1–L5, 2020.

[236] E. S. Phinney, “A Practical theorem on gravitational wave backgrounds,” 7 2001.

[237] N. Karnesis, S. Babak, M. Pieroni, N. Cornish, and T. Littenberg, “Characterization
of the stochastic signal originating from compact binary populations as measured by
LISA,” Phys. Rev. D, vol. 104, no. 4, p. 043019, 2021.

[238] S. Babak et al., “To appear.,”

[239] E. Thrane and J. D. Romano, “Sensitivity curves for searches for gravitational-wave
backgrounds,” Phys. Rev. D, vol. 88, no. 12, p. 124032, 2013.

[240] C. Caprini et al., “Detecting gravitational waves from cosmological phase transitions
with LISA: an update,” JCAP, vol. 03, p. 024, 2020.

[241] R. Flauger, N. Karnesis, G. Nardini, M. Pieroni, A. Ricciardone, and J. Torrado,
“Improved reconstruction of a stochastic gravitational wave background with LISA,”
JCAP, vol. 01, p. 059, 2021.

[242] T. Callister, M. Fishbach, D. Holz, and W. Farr, “Shouts and Murmurs: Combining
Individual Gravitational-Wave Sources with the Stochastic Background to Measure
the History of Binary Black Hole Mergers,” Astrophys. J. Lett., vol. 896, no. 2, p. L32,
2020.

[243] R. Abbott et al., “Upper limits on the isotropic gravitational-wave background from
Advanced LIGO and Advanced Virgo’s third observing run,” Phys. Rev. D, vol. 104,
no. 2, p. 022004, 2021.

[244] C. Cutler et al., “What we can learn from multi-band observations of black hole
binaries,” 3 2019.

– 173 –



[245] B. Ewing, S. Sachdev, S. Borhanian, and B. S. Sathyaprakash, “Archival searches for
stellar-mass binary black holes in LISA data,” Phys. Rev. D, vol. 103, no. 2,
p. 023025, 2021.

[246] K. W. K. Wong, E. D. Kovetz, C. Cutler, and E. Berti, “Expanding the LISA Horizon
from the Ground,” Phys. Rev. Lett., vol. 121, no. 25, p. 251102, 2018.

[247] A. Nishizawa, A. Sesana, E. Berti, and A. Klein, “Constraining stellar binary black
hole formation scenarios with eLISA eccentricity measurements,” Mon. Not. Roy.
Astron. Soc., vol. 465, no. 4, pp. 4375–4380, 2017.

[248] J. Samsing and D. J. D’Orazio, “Black Hole Mergers From Globular Clusters
Observable by LISA I: Eccentric Sources Originating From Relativistic N -body
Dynamics,” Mon. Not. Roy. Astron. Soc., vol. 481, no. 4, pp. 5445–5450, 2018.

[249] M. Mapelli, N. Giacobbo, F. Santoliquido, and M. C. Artale, “The properties of
merging black holes and neutron stars across cosmic time,” Monthly Notices of the
Royal Astronomical Society, vol. 487, pp. 2–13, 04 2019.

[250] C. Karathanasis, S. Mukherjee, and S. Mastrogiovanni, “Binary black holes
population and cosmology in new lights: Signature of PISN mass and formation
channel in GWTC-3,” 4 2022.

[251] V. C. L.S. Collaboration, V.C.S. Collaboration and K. Collaboration, “The
population of merging compact binaries inferred using gravitational waves through
GWTC-3 - Data release,” 11 2021.

[252] P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron.
Astrophys., vol. 594, p. A13, 2016.

[253] P. Marcoccia, “Generating a bh merging catalogue,” 2023.
https://github.com/KuZa91/Generating-a-BH-Merging-Catalogue.

[254] J. Torrado, “extrapops: fast simulation and analysis of extra-galactic binary gw
sources,” 2023. https://github.com/JesusTorrado/extrapops.

[255] D. W. Hogg, “Distance measures in cosmology,” 5 1999.

[256] S. Babak, A. Petiteau, and M. Hewitson, “LISA Sensitivity and SNR Calculations,” 8
2021.

[257] M. Bonetti and A. Sesana, “Gravitational wave background from extreme mass ratio
inspirals,” Phys. Rev. D, vol. 102, no. 10, p. 103023, 2020.

[258] S. E. Timpano, L. J. Rubbo, and N. J. Cornish, “Characterizing the galactic
gravitational wave background with lisa,” Phys. Rev. D, vol. 73, p. 122001, Jun 2006.

[259] J. Crowder and N. J. Cornish, “Solution to the galactic foreground problem for lisa,”
Phys. Rev. D, vol. 75, p. 043008, Feb 2007.

[260] S. Nissanke, M. Vallisneri, G. Nelemans, and T. A. Prince, “Gravitational-wave
emission from compact Galactic binaries,” , vol. 758, p. 131, 2012.

[261] L. London, S. Khan, E. Fauchon-Jones, C. García, M. Hannam, S. Husa,
X. Jiménez-Forteza, C. Kalaghatgi, F. Ohme, and F. Pannarale, “First
higher-multipole model of gravitational waves from spinning and coalescing black-hole
binaries,” Phys. Rev. Lett., vol. 120, no. 16, p. 161102, 2018.

– 174 –

https://github.com/KuZa91/Generating-a-BH-Merging-Catalogue
https://github.com/JesusTorrado/extrapops


[262] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J. Forteza, and A. Bohé,
“Frequency-domain gravitational waves from nonprecessing black-hole binaries. I.
New numerical waveforms and anatomy of the signal,” , vol. 93, p. 044006, Feb. 2016.

[263] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J. Forteza, and A. Bohé,
“Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A
phenomenological model for the advanced detector era,” , vol. 93, p. 044007, Feb.
2016.

[264] J. S. Marsat, “ lisabeta,” 2020.

[265] S. Marsat and J. G. Baker, “Fourier-domain modulations and delays of
gravitational-wave signals,” 6 2018.

[266] R. Buscicchio, A. Klein, E. Roebber, C. J. Moore, D. Gerosa, E. Finch, and
A. Vecchio, “Bayesian parameter estimation of stellar-mass black-hole binaries with
LISA,” Phys. Rev. D, vol. 104, no. 4, p. 044065, 2021.

[267] A. Toubiana, S. Babak, S. Marsat, and S. Ossokine, “Detectability and parameter
estimation of GWTC-3 events with LISA,” Phys. Rev. D, vol. 106, no. 10, p. 104034,
2022.

[268] C. J. Moore, D. Gerosa, and A. Klein, “Are stellar-mass black-hole binaries too quiet
for LISA?,” Mon. Not. Roy. Astron. Soc., vol. 488, no. 1, pp. L94–L98, 2019.

[269] T. Regimbau, M. Evans, N. Christensen, E. Katsavounidis, B. Sathyaprakash, and
S. Vitale, “Digging deeper: Observing primordial gravitational waves below the
binary black hole produced stochastic background,” Phys. Rev. Lett., vol. 118, no. 15,
p. 151105, 2017.

[270] LISA Science Study Team, “LISA Science Requirements Document,
ESA-L3-EST-SCI-RS-001,” Tech. Rep. 1.0, ESA, May 2018.
https://www.cosmos.esa.int/web/lisa/lisa-documents/.

[271] F. Santoliquido, M. Mapelli, Y. Bouffanais, N. Giacobbo, U. N. D. Carlo, S. Rastello,
M. C. Artale, and A. Ballone, “The cosmic merger rate density evolution of compact
binaries formed in young star clusters and in isolated binaries,” The Astrophysical
Journal, vol. 898, p. 152, aug 2020.

[272] L. Lehoucq and I. Dvorkin, “To appear.,”

[273] Z.-C. Chen, F. Huang, and Q.-G. Huang, “Stochastic Gravitational-wave Background
from Binary Black Holes and Binary Neutron Stars and Implications for LISA,”
Astrophys. J., vol. 871, no. 1, p. 97, 2019.

[274] S. S. Bavera, G. Franciolini, G. Cusin, A. Riotto, M. Zevin, and T. Fragos, “Stochastic
gravitational-wave background as a tool for investigating multi-channel astrophysical
and primordial black-hole mergers,” Astron. Astrophys., vol. 660, p. A26, 2022.

[275] C. Caprini, D. G. Figueroa, R. Flauger, G. Nardini, M. Peloso, M. Pieroni,
A. Ricciardone, and G. Tasinato, “Reconstructing the spectral shape of a stochastic
gravitational wave background with LISA,” JCAP, vol. 11, p. 017, 2019.

[276] W. J. Handley, M. P. Hobson, and A. N. Lasenby, “PolyChord: nested sampling for
cosmology,” Mon. Not. Roy. Astron. Soc., vol. 450, no. 1, pp. L61–L65, 2015.

– 175 –

https://www.cosmos.esa.int/web/lisa/lisa-documents/


[277] W. Handley, M. Hobson, and A. Lasenby, “Polychord: next-generation nested
sampling,” Monthly Notices of the Royal Astronomical Society, vol. 453, no. 4,
pp. 4384–4398, 2015.

[278] J. Torrado and A. Lewis, “Cobaya: Code for Bayesian Analysis of hierarchical
physical models,” JCAP, vol. 05, p. 057, 2021.

[279] T. B. Littenberg and N. J. Cornish, “Prototype global analysis of LISA data with
multiple source types,” Phys. Rev. D, vol. 107, no. 6, p. 063004, 2023.

[280] A. C. Jenkins, R. O’Shaughnessy, M. Sakellariadou, and D. Wysocki, “Anisotropies in
the astrophysical gravitational-wave background: The impact of black hole
distributions,” Phys. Rev. Lett., vol. 122, no. 11, p. 111101, 2019.

[281] N. Bartolo et al., “Probing anisotropies of the Stochastic Gravitational Wave
Background with LISA,” JCAP, vol. 11, p. 009, 2022.

[282] D. J. D’Orazio and J. Samsing, “Black Hole Mergers From Globular Clusters
Observable by LISA II: Resolved Eccentric Sources and the Gravitational Wave
Background,” Mon. Not. Roy. Astron. Soc., vol. 481, no. 4, pp. 4775–4785, 2018.

[283] Y. Zhao and Y. Lu, “Stochastic Gravitational Wave Background and Eccentric Stellar
Compact Binaries,” Mon. Not. Roy. Astron. Soc., vol. 500, no. 1, pp. 1421–1436, 2020.

[284] P. Amaro-Seoane, J. R. Gair, M. Freitag, M. Coleman Miller, I. Mandel, C. J. Cutler,
and S. Babak, “Astrophysics, detection and science applications of intermediate- and
extreme mass-ratio inspirals,” Class. Quant. Grav., vol. 24, pp. R113–R169, 2007.

[285] M. Branchesi et al., “Science with the Einstein Telescope: a comparison of different
designs,” 3 2023.

[286] M. Braglia, J. Garcia-Bellido, and S. Kuroyanagi, “Testing Primordial Black Holes
with multi-band observations of the stochastic gravitational wave background,”
JCAP, vol. 12, no. 12, p. 012, 2021.

[287] B. Abbott et al., “Binary Black Hole Population Properties Inferred from the First
and Second Observing Runs of Advanced LIGO and Advanced Virgo,” Astrophys. J.
Lett., vol. 882, no. 2, p. L24, 2019.

[288] C. Talbot and E. Thrane, “Determining the population properties of spinning black
holes,” Phys. Rev. D, vol. 96, no. 2, p. 023012, 2017.

[289] D. Wysocki, J. Lange, and R. O’Shaughnessy, “Reconstructing phenomenological
distributions of compact binaries via gravitational wave observations,” Phys. Rev. D,
vol. 100, no. 4, p. 043012, 2019.

[290] B. P. Abbott et al., “GW150914: The Advanced LIGO Detectors in the Era of First
Discoveries,” Phys. Rev. Lett., vol. 116, no. 13, p. 131103, 2016.

[291] F. Acernese et al., “Virgo Detector Characterization and Data Quality during the O3
run,” 5 2022.

[292] T. Akutsu et al., “Overview of KAGRA : KAGRA science,” 8 2020.

[293] M. Fishbach and V. Kalogera, “The Time Delay Distribution and Formation
Metallicity of LIGO-Virgo’s Binary Black Holes,” Astrophys. J. Lett., vol. 914, no. 2,
p. L30, 2021.

– 176 –



[294] G. Hütsi, M. Raidal, V. Vaskonen, and H. Veermäe, “Two populations of LIGO-Virgo
black holes,” JCAP, vol. 03, p. 068, 2021.

[295] A. Antonelli, K. Kritos, K. K. Y. Ng, R. Cotesta, and E. Berti, “Classifying the
generation and formation channels of individual LIGO-Virgo-KAGRA observations
from dynamically formed binaries,” 6 2023.

[296] R. Abbott et al., “Population of Merging Compact Binaries Inferred Using
Gravitational Waves through GWTC-3,” Phys. Rev. X, vol. 13, no. 1, p. 011048, 2023.

[297] C. Périgois, C. Belczynski, T. Bulik, and T. Regimbau, “startrack predictions of the
stochastic gravitational-wave background from compact binary mergers,” Phys. Rev.
D, vol. 103, p. 043002, Feb 2021.

[298] Y. B. Zel’dovich and I. D. Novikov, “The Hypothesis of Cores Retarded during
Expansion and the Hot Cosmological Model,” Soviet Astronomy, vol. 10, p. 602, Feb.
1967.

[299] B. J. Carr, “The Primordial black hole mass spectrum,” Astrophys. J., vol. 201,
pp. 1–19, 1975.

[300] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “New cosmological constraints
on primordial black holes,” Phys. Rev. D, vol. 81, p. 104019, 2010.

[301] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “Constraints on primordial black
holes,” Rept. Prog. Phys., vol. 84, no. 11, p. 116902, 2021.

[302] Y. Ali-Haïmoud, E. D. Kovetz, and M. Kamionkowski, “Merger rate of primordial
black-hole binaries,” Phys. Rev. D, vol. 96, no. 12, p. 123523, 2017.

[303] G. Franciolini, I. Musco, P. Pani, and A. Urbano, “From inflation to black hole
mergers and back again: Gravitational-wave data-driven constraints on inflationary
scenarios with a first-principle model of primordial black holes across the QCD
epoch,” Phys. Rev. D, vol. 106, no. 12, p. 123526, 2022.

[304] S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E. D. Kovetz,
A. Raccanelli, and A. G. Riess, “Did LIGO detect dark matter?,” Phys. Rev. Lett.,
vol. 116, no. 20, p. 201301, 2016.

[305] S. Clesse and J. García-Bellido, “The clustering of massive Primordial Black Holes as
Dark Matter: measuring their mass distribution with Advanced LIGO,” Phys. Dark
Univ., vol. 15, pp. 142–147, 2017.

[306] M. Raidal, C. Spethmann, V. Vaskonen, and H. Veermäe, “Formation and Evolution
of Primordial Black Hole Binaries in the Early Universe,” JCAP, vol. 02, p. 018, 2019.

[307] A. Hall, A. D. Gow, and C. T. Byrnes, “Bayesian analysis of LIGO-Virgo mergers:
Primordial vs. astrophysical black hole populations,” Phys. Rev. D, vol. 102,
p. 123524, 2020.

[308] G. Franciolini, R. Cotesta, N. Loutrel, E. Berti, P. Pani, and A. Riotto, “How to assess
the primordial origin of single gravitational-wave events with mass, spin, eccentricity,
and deformability measurements,” Phys. Rev. D, vol. 105, no. 6, p. 063510, 2022.

[309] V. Atal, J. J. Blanco-Pillado, A. Sanglas, and N. Triantafyllou, “Constraining changes
in the merger history of (P)BH binaries with the stochastic gravitational wave
background,” 1 2022.

– 177 –



[310] S. Young and C. T. Byrnes, “Initial clustering and the primordial black hole merger
rate,” JCAP, vol. 03, p. 004, 2020.

[311] M. Mancarella, F. Iacovelli, and D. Gerosa, “Inferring, not just detecting: Metrics for
high-redshift sources observed with third-generation gravitational-wave detectors,”
Phys. Rev. D, vol. 107, no. 10, p. L101302, 2023.

[312] S. M. Koushiappas and A. Loeb, “Maximum redshift of gravitational wave merger
events,” Phys. Rev. Lett., vol. 119, no. 22, p. 221104, 2017.

[313] V. De Luca, G. Franciolini, P. Pani, and A. Riotto, “The minimum testable
abundance of primordial black holes at future gravitational-wave detectors,” JCAP,
vol. 11, p. 039, 2021.

[314] M. Maggiore et al., “Science Case for the Einstein Telescope,” JCAP, vol. 03, p. 050,
2020.

[315] K. K. Y. Ng, S. Vitale, W. M. Farr, and C. L. Rodriguez, “Probing multiple
populations of compact binaries with third-generation gravitational-wave detectors,”
Astrophys. J. Lett., vol. 913, no. 1, p. L5, 2021.

[316] K. K. Y. Ng et al., “Measuring properties of primordial black hole mergers at
cosmological distances: Effect of higher order modes in gravitational waves,” Phys.
Rev. D, vol. 107, no. 2, p. 024041, 2023.

[317] M. Martinelli, F. Scarcella, N. B. Hogg, B. J. Kavanagh, D. Gaggero, and P. Fleury,
“Dancing in the dark: detecting a population of distant primordial black holes,”
JCAP, vol. 08, no. 08, p. 006, 2022.

[318] H.-K. Guo, J. Shu, and Y. Zhao, “Using LISA-like Gravitational Wave Detectors to
Search for Primordial Black Holes,” Phys. Rev. D, vol. 99, no. 2, p. 023001, 2019.

[319] P. Auclair et al., “Cosmology with the Laser Interferometer Space Antenna,” Living
Rev. Rel., vol. 26, no. 1, p. 5, 2023.

[320] R.-g. Cai, S. Pi, and M. Sasaki, “Gravitational Waves Induced by non-Gaussian
Scalar Perturbations,” Phys. Rev. Lett., vol. 122, no. 20, p. 201101, 2019.

[321] N. Bartolo, V. De Luca, G. Franciolini, A. Lewis, M. Peloso, and A. Riotto,
“Primordial Black Hole Dark Matter: LISA Serendipity,” Phys. Rev. Lett., vol. 122,
no. 21, p. 211301, 2019.

[322] C. Unal, “Imprints of Primordial Non-Gaussianity on Gravitational Wave Spectrum,”
Phys. Rev. D, vol. 99, no. 4, p. 041301, 2019.

[323] K. K. Y. Ng, S. Chen, B. Goncharov, U. Dupletsa, S. Borhanian, M. Branchesi,
J. Harms, M. Maggiore, B. S. Sathyaprakash, and S. Vitale, “On the
Single-event-based Identification of Primordial Black Hole Mergers at Cosmological
Distances,” Astrophys. J. Lett., vol. 931, no. 1, p. L12, 2022.

[324] K. K. Y. Ng, G. Franciolini, E. Berti, P. Pani, A. Riotto, and S. Vitale, “Constraining
High-redshift Stellar-mass Primordial Black Holes with Next-generation Ground-based
Gravitational-wave Detectors,” Astrophys. J. Lett., vol. 933, no. 2, p. L41, 2022.

[325] C. J. Neijssel, A. Vigna-Gómez, S. Stevenson, J. W. Barrett, S. M. Gaebel, F. S.
Broekgaarden, S. E. de Mink, D. Szécsi, S. Vinciguerra, and I. Mandel, “The effect of
the metallicity-specific star formation history on double compact object mergers,”

– 178 –



Monthly Notices of the Royal Astronomical Society, vol. 490, no. 3, pp. 3740–3759,
2019.

[326] V. Vaskonen and H. Veermäe, “Lower bound on the primordial black hole merger
rate,” Phys. Rev. D, vol. 101, no. 4, p. 043015, 2020.

[327] V. De Luca, V. Desjacques, G. Franciolini, A. Malhotra, and A. Riotto, “The initial
spin probability distribution of primordial black holes,” JCAP, vol. 05, p. 018, 2019.

[328] M. M. Flores and A. Kusenko, “Spins of primordial black holes formed in different
cosmological scenarios,” Phys. Rev. D, vol. 104, p. 063008, Sep 2021.

[329] D. Saito, T. Harada, Y. Koga, and C.-M. Yoo, “Spins of primordial black holes
formed with a soft equation of state,” JCAP, vol. 07, p. 030, 2023.

[330] P. Marcoccia, “PBH sub-populations effects analysis.”
https://github.com/KuZa91/PBH_subpopulations_effects_analysis, 2023.

[331] M. Maggiore, “Gravitational wave experiments and early universe cosmology,” Phys.
Rept., vol. 331, pp. 283–367, 2000.

[332] P. Ajith et al., “A Template bank for gravitational waveforms from coalescing binary
black holes. I. Non-spinning binaries,” Phys. Rev. D, vol. 77, p. 104017, 2008.
[Erratum: Phys.Rev.D 79, 129901 (2009)].

[333] P. Ajith et al., “Phenomenological template family for black-hole coalescence
waveforms,” Class. Quant. Grav., vol. 24, pp. S689–S700, 2007.

[334] L. Santamaria et al., “Matching post-Newtonian and numerical relativity waveforms:
systematic errors and a new phenomenological model for non-precessing black hole
binaries,” Phys. Rev. D, vol. 82, p. 064016, 2010.

[335] C. Cutler and E. E. Flanagan, “Gravitational waves from merging compact binaries:
How accurately can one extract the binary’s parameters from the inspiral wave
form?,” Phys. Rev. D, vol. 49, pp. 2658–2697, 1994.

[336] C. Cahillane and G. Mansell, “Review of the Advanced LIGO Gravitational Wave
Observatories Leading to Observing Run Four,” Galaxies, vol. 10, no. 1, p. 36, 2022.

[337] R. W. Kiendrebeogo et al., “Updated observing scenarios and multi-messenger
implications for the International Gravitational-wave Network’s O4 and O5,” 6 2023.

[338] M. Rajagopal and R. W. Romani, “Ultralow frequency gravitational radiation from
massive black hole binaries,” Astrophys. J., vol. 446, pp. 543–549, 1995.

[339] A. H. Jaffe and D. C. Backer, “Gravitational waves probe the coalescence rate of
massive black hole binaries,” Astrophys. J., vol. 583, pp. 616–631, 2003.

[340] J. S. B. Wyithe and A. Loeb, “Low-frequency gravitational waves from massive black
hole binaries: Predictions for lisa and pulsar timing arrays,” The Astrophysical
Journal, vol. 590, p. 691, jun 2003.

[341] N. Cornish and T. Robson, “Galactic binary science with the new LISA design,” J.
Phys. Conf. Ser., vol. 840, no. 1, p. 012024, 2017.

[342] L. Lehoucq, I. Dvorkin, R. Srinivasan, C. Pellouin, and A. Lamberts, “Astrophysical
uncertainties in the gravitational-wave background from stellar-mass compact binary
mergers,” Mon. Not. Roy. Astron. Soc., vol. 526, no. 3, pp. 4378–4387, 2023.

– 179 –

https://github.com/KuZa91/PBH_subpopulations_effects_analysis


[343] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta, C. P. L. Berry, E. Berti,
P. Amaro-Seoane, A. Petiteau, and A. Klein, “Science with the space-based
interferometer LISA. V: Extreme mass-ratio inspirals,” Phys. Rev. D, vol. 95, no. 10,
p. 103012, 2017.

[344] X. Chen, Y. Qiu, S. Li, and F. K. Liu, “Milli-Hertz Gravitational-wave Background
Produced by Quasiperiodic Eruptions,” Astrophys. J., vol. 930, no. 2, p. 122, 2022.

[345] D. Laghi, N. Tamanini, W. Del Pozzo, A. Sesana, J. Gair, S. Babak, and
D. Izquierdo-Villalba, “Gravitational-wave cosmology with extreme mass-ratio
inspirals,” Mon. Not. Roy. Astron. Soc., vol. 508, no. 3, pp. 4512–4531, 2021.

[346] F. Pozzoli, S. Babak, A. Sesana, M. Bonetti, and N. Karnesis, “Computation of
stochastic background from extreme mass ratio inspiral populations for LISA,” 2 2023.

[347] C. Liu, D. Laghi, and N. Tamanini, “Probing modified gravitational-wave propagation
with extreme mass-ratio inspirals,” 10 2023.

[348] J. R. Gair, S. Babak, A. Sesana, P. Amaro-Seoane, E. Barausse, C. P. L. Berry,
E. Berti, and C. Sopuerta, “Prospects for observing extreme-mass-ratio inspirals with
LISA,” J. Phys. Conf. Ser., vol. 840, no. 1, p. 012021, 2017.

[349] H.-K. Guo and A. Miller, “Searching for Mini Extreme Mass Ratio Inspirals with
Gravitational-Wave Detectors,” 5 2022.

[350] G. Mazzolari, M. Bonetti, A. Sesana, R. M. Colombo, M. Dotti, G. Lodato, and
D. Izquierdo-Villalba, “Extreme mass ratio inspirals triggered by massive black hole
binaries: from relativistic dynamics to cosmological rates,” Mon. Not. Roy. Astron.
Soc., vol. 516, no. 2, pp. 1959–1976, 2022.

[351] S. J. Kapadia, K. L. Pandey, T. Suyama, and P. Ajith, “Prospects for probing
ultralight primordial black holes using the stochastic gravitational-wave background
induced by primordial curvature perturbations,” Phys. Rev. D, vol. 101, no. 12,
p. 123535, 2020.

[352] R. Abbott et al., “GW190521: A Binary Black Hole Merger with a Total Mass of
150M⊙,” Phys. Rev. Lett., vol. 125, no. 10, p. 101102, 2020.

[353] B. O’Brien, M. Szczepanczyk, V. Gayathri, I. Bartos, G. Vedovato, G. Prodi,
G. Mitselmakher, and S. Klimenko, “Detection of LIGO-Virgo binary black holes in
the pair-instability mass gap,” Phys. Rev. D, vol. 104, no. 8, p. 082003, 2021.

[354] R. Abbott et al., “Population Properties of Compact Objects from the Second
LIGO-Virgo Gravitational-Wave Transient Catalog,” 10 2020.

[355] F. Santoliquido, M. Mapelli, Y. Bouffanais, N. Giacobbo, U. N. Di Carlo, S. Rastello,
M. C. Artale, and A. Ballone, “The cosmic merger rate density evolution of compact
binaries formed in young star clusters and in isolated binaries,” Astrophys. J.,
vol. 898, no. 2, p. 152, 2020.

[356] L. A. C. van Son, S. E. de Mink, T. Callister, S. Justham, M. Renzo, T. Wagg, F. S.
Broekgaarden, F. Kummer, R. Pakmor, and I. Mandel, “The redshift evolution of the
binary black hole merger rate: a weighty matter,” 10 2021.

[357] T. Nakamura, M. Sasaki, T. Tanaka, and K. S. Thorne, “Gravitational waves from

– 180 –



coalescing black hole MACHO binaries,” Astrophys. J. Lett., vol. 487, pp. L139–L142,
1997.

[358] K. Ioka, T. Chiba, T. Tanaka, and T. Nakamura, “Black hole binary formation in the
expanding universe: Three body problem approximation,” Phys. Rev. D, vol. 58,
p. 063003, 1998.

[359] U. Mukhopadhyay, D. Majumdar, and A. Halder, “Constraining pbh mass
distributions from 21cm brightness temperature results and an analytical mapping
between probability distribution of 21cm signal and pbh masses,” Journal of
Cosmology and Astroparticle Physics, vol. 2022, p. 099, oct 2022.

[360] L. I. G. O. Collaboration, “The a+ design sensitivity curve.”
https://dcc.ligo.org/public/0149/T1800042/005/AplusDesign.txt, 2018.

[361] S. Hild et al., “Sensitivity studies for third-generation gravitational wave
observatories,” Classical and Quantum Gravity, vol. 28, p. 094013, apr 2011.

[362] E. T. Collaboration, “Et design sensitivity curve.”
https://apps.et-gw.eu/tds/?content=3&r=14065, 2018.

[363] ESA, “LISA Science Requirements Document.”
https://www.cosmos.esa.int/documents/678316/1700384/SciRD.pdf, 2018.

[364] S. Babak, A. Petiteau, and M. Hewitson, “LISA Sensitivity and SNR Calculations,” 8
2021.

[365] J. W. Armstrong, F. B. Estabrook, and M. Tinto, “Time-delay interferometry for
space-based gravitational wave searches,” The Astrophysical Journal, vol. 527,
pp. 814–826, dec 1999.

[366] M. Tinto and J. W. Armstrong, “Cancellation of laser noise in an unequal-arm
interferometer detector of gravitational radiation,” Phys. Rev. D, vol. 59, p. 102003,
1999.

[367] F. B. Estabrook, M. Tinto, and J. W. Armstrong, “Time delay analysis of LISA
gravitational wave data: Elimination of spacecraft motion effects,” Phys. Rev. D,
vol. 62, p. 042002, 2000.

[368] M. Tinto and S. V. Dhurandhar, “Time-delay interferometry,” Living Rev. Rel.,
vol. 24, no. 1, p. 1, 2021.

[369] T. A. Prince, M. Tinto, S. L. Larson, and J. W. Armstrong, “The LISA optimal
sensitivity,” Phys. Rev. D, vol. 66, p. 122002, 2002.

[370] D. A. Shaddock, M. Tinto, F. B. Estabrook, and J. W. Armstrong, “Data
combinations accounting for LISA spacecraft motion,” Phys. Rev. D, vol. 68,
p. 061303, 2003.

[371] M. Tinto, F. B. Estabrook, and J. W. Armstrong, “Time delay interferometry with
moving spacecraft arrays,” Phys. Rev. D, vol. 69, p. 082001, 2004.

[372] O. Hartwig, M. Lilley, M. Muratore, and M. Pieroni, “Stochastic gravitational wave
background reconstruction for a nonequilateral and unequal-noise LISA
constellation,” Phys. Rev. D, vol. 107, no. 12, p. 123531, 2023.

– 181 –

https://dcc.ligo.org/public/0149/T1800042/005/AplusDesign.txt
https://apps.et-gw.eu/tds/?content=3&r=14065
https://www.cosmos.esa.int/documents/678316/1700384/SciRD.pdf


[373] A. Sesana, A. Vecchio, and C. N. Colacino, “The stochastic gravitational-wave
background from massive black hole binary systems: implications for observations
with Pulsar Timing Arrays,” Mon. Not. Roy. Astron. Soc., vol. 390, p. 192, 2008.

[374] S. W. Hawking and W. Israel, Three Hundred Years of Gravitation. 1989.

– 182 –


	Basics of General Relativity and Black Holes populations
	The Einstein's equations of gravitation
	The metric and Ricci curvature tensor on a space-time
	The stress-energy tensor

	Motion of particles and geodesic deviation
	The covariant derivative of vectors
	The geodesic deviation

	The Schwarzschild and Kerr solutions
	Singularities of the Schwarzschild solution and Black Holes
	The Kerr solution for rotating Black Holes

	Black Holes formation channels and populations
	Stellar Origin Black Holes populations
	Primordial Black Holes
	Primordial perturbation amplitude and threshold for PBH formation


	An introduction to Gravitational Waves
	Gravitational Waves theory
	Gravitational Waves on a flat space-time
	Plane Gravitational Waves solution and TT-gauge
	Gravitational Waves polarization states

	Gravitational Waves from inspiralling compact objects
	The Transverse-Traceless projector
	Gravitational Waves emitted by inspiralling binary compact objects

	Energy carried by Gravitational Waves
	The Gravitational Waves energy flux
	Time evolution of inspiralling binary systems due to GW energy emission


	Article: Pearson cross-correlation in the first four black hole binary mergers
	Introduction
	Methodology
	Results
	Cross-correlation: t dependence
	Cross-correlation:  consistency check
	Background cross-correlations and statistical interpretation

	Conclusions
	Aknowledgment
	Appendix A : Maximum likelihood IMR waveform parameters

	Article: Stochastic Gravitational Wave Background from Stellar Origin Binary Black Holes in LISA
	Introduction
	SOBBH population model and use of GWTC-3 results
	SOBBH population model
	Implementing GWTC-3 posterior for the SOBBH population parameters
	SOBBH population synthesis
	Benchmark fixed-point catalogues for consistency studies

	Computation of the SOBBH signal in the LISA band 
	Method (i): analytical evaluation
	Methods (iia) and (iib): Monte Carlo sum
	Method (iii): iterative subtraction

	Results
	Comparison between SGWB computation methods in the LISA band
	Expected SOBBH signal in the LISA band from GWTC-3
	SGWB Parameter Estimation
	Impact on the Power-Law Sensitivity
	SGWB detection and the SOBBH population parameters

	Conclusions
	Appendix A : Further information on the SOBBH population model
	Appendix A.1 : Redshift-dependent SOBBH rate
	Appendix A.2 : Masses and spins density distributions
	Appendix A.3 : Time-to-coalescence and frequency of emission


	Article: Probing primordial black holes at high redshift with future gravitational wave detectors
	Introduction
	Population models
	Methodology
	Resolvable sources analysis
	SGWB analysis

	Results and discussion
	Detectability of PBHB subpopulations using LISA and LIGO A+
	Detectability of PBHB subpopulations using LISA and ET
	Analysis of the subpopulation benchmark points

	Conclusions
	Appendix A : The SOBHB fiducial population
	Appendix B : PBH contribution to the Dark Matter relic abundance
	Appendix C : Results for a Gaussian mass distribution
	Appendix D : Detector characteristics
	Appendix E : Analytical derivation of the SGWB from a population of merging objects

	Summary of the results and conclusions

