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Abstract 

The diagnostic pathway of Prostate cancer (PC) has been changed recently, and medical imaging 

has gained a significant role. Especially, Magnetic Resonance Imaging (MRI) has emerged as a pivotal tool 

in advancing cancer diagnosis. However, the interpretation of MRI data is encumbered by the intricate, time-

demanding nature of the task and the inherent variability among readers, particularly radiologists. 

Considerably, achieving precise detection and thorough characterization of prostate tumours assumes 

paramount importance in facilitating subsequent procedures like guided biopsies. Convolutional neural 

networks (CNNs) have gained widespread traction in automating tasks encompassing classification and 

segmentation. Machine learning (ML) models can perform well as compared to deep neural networks, with, 

in some cases, the advantage of being easier to understand and interpret. 

Given the importance of interpretability for clinicians to understand and interpret the features and 

decision-making process of the AI model, we select ML over deep learning (DL) for the early detection of 

prostate cancer from MRI images. The principal intent of this research is to serve as a starting point to the 

development of a computer-aided diagnosis system on ML. We employ prostate features instead of tumour 

features for an early detection of PCa. With this approach, we aim to avoid issues related to the difficulty of 

detecting and segmenting small tumour structures and their subsequent characterization problems. The main 

goal of the proposed model is to achieve a better strategy for detecting prostate cancer and accurately 

selecting the suitable decision for treatment procedures. The proposed model represents a significant leap 

forward in the realm of prostate cancer detection and diagnosis. The current strategies offer enhanced 

accuracy and reliability as compared to deep learning in identifying prostate cancer.  

Our analysis indicates that logistic regression (LR) emerges as the optimal machine learning model 

for our objectives, as evidenced by its superior accuracy (0.88) and ROC-AUC score (0.93). These metrics 

underscore LR's reliability and interpretability, key factors in its effectiveness. This study proposes that our 

machine learning system could significantly improve the detection of prostate cancer, thereby offering 

healthcare professionals critical insights to inform personalized treatment strategies. 
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Chapter 1 

1.1 Research and Motivation 

The research is driven by the motivational development of an automated 

computerized system that employs improved techniques in image processing (currently 

2D and will be for 3D) and analyzing the characteristics of the tumor in the prostate. The 

utilization of the state of art technology and algorithms to extract, analyze, and interpret 

critical information from MRI data, the main research objectives are summarized in the 

following: 

1. Feature Extraction: extract the shape features to capture a wide 

range of quantitative data from the tumor region including texture attributes 

and intensity characteristics. 

2. Classification: Utilize machine learning ML and artificial 

intelligence AI models to extract tumor characteristics and the difference 

between benign and malignant cases. 

3. Gleason Score GL: classified based on the Gleason score which 

plays a crucial role in determining the aggressiveness of prostate cancer. 

4. Tumor Segmentation: This is further work in this project to 

develop ML algorithms for accurate segmentation of tumors in 3D scans, to 

detect the precise delineation of tumor boundaries. 

Many factors motivate the research in Automated Computerized 3D 

Characterization of tumors in Prostate Cancer. Firstly, prostate cancer is 

widespread, and the condition needs automated tumour characterization to raise 

the probability of early detection, correct diagnosis, and improved treatment 

decisions.  Secondly, the 3D nature of MRI data, with rich in tumour details shows 

the complexity that can be addressed through automation to ensure consistent and 

efficient analysis. Thirdly, tumour automation is vulnerable to the custom of 

treatment plans, simply making the treatments fit the tumour condition will 

improve the cancer treatments for each patient. Lastly, the developments in 

artificial intelligence offer pricing in enhancement in tumour characterization. 
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1.2 Objectives: 

The primary objective of this master's thesis, involves three key goals: 

1. Extract Shape features (Pyradiomics Feature) from MRI Images: 

The first objective is to competently extract Pyradiomics features from magnetic 

resonance imaging (MRI) scans of patients, with an instance emphasis on shape-

related features. These Pyradiomics features will act as essential data points for 

subsequent analysis. 

2. Classify Patients: 

The second objective involves leveraging the extracted Pyradiomics features to 

acquire a robust classification model. This model will be instrumental in accurately 

classifying between patients with prostate cancer and those who are healthy. 

Reaching this classification task will contribute significantly to early and specific 

cancer detection. 

3. Generate 3D Mesh Tumour: 

The third objective revolves around the generation of mesh structures indicating 

tumours. This task is imperative not only for the immediate aims of the study but 

also as a valuable foundation for forthcoming projects. The derived Mesh features 

will serve as an integral component in enhancing our understanding of tumour 

characteristics. 

By accomplishing these objectives, this master's thesis aims to advance the field of 

prostate cancer diagnosis by automating the 3D characterization of tumours through 

state-of-the-art Pyradiomics feature extraction, patient classification, and the creation 

of tumour Mesh structures. These outcomes hold promise for improving the efficiency 

and accuracy of cancer diagnosis and may have broader implications for oncological 

research and patient care. 
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1.3 Related work 

The  keys studies are integrated to provide a comprehensive understanding of this field, 

Cuocolo et al. (2019) , highlighted the diagnostics potential of MRI-derived shape features 

which is the same in our objective” in this study, particularly in his work, “Clinically significant 

prostate cancer detection on MRI: A radiomic shape features “study  published at European 

Journal of Radiology, he focused on extracting the surface to the volume ratio(SVAR), in 

identifying significant prostate cancer  with Gleason score values for classification [1]. In 

Cuocolo work achieved highest values for accuracy and sensitivity with 95% confidence 

intervals. 

In our study we adopted methodology like Shanker et al. (2023) for calculating accuracy 

and F1-score. Though, Shanker et al. analyze the morphological features related to lymphoma 

subtypes, specifically nuclear features, our approach diverged by concentrating on extraction 

shape features [2]. The studies in lymphoma classification the subtype with high accuracy more 

than 90%using deep learning during 2 to 4 subtypes included. In our study as comparable the 

model achieved 88% accuracy for Logistic Regression without resampling. 

This aligns with the works of Ning et a., demonstrate the effectiveness of dual-tracer 

PET/CT scans in distinguishing between benign and malignant pulmonary using radiomics 

analysis or improved diagnosis accuracy [3].Extending this concept, Stoyanova et al. (2016) 

explored a radio genomics approach by combining radiomic data from mpMRI with genomic 

data [4], aiming to enhance the precession of prostate cancer treatment.  

A related work in the field of vivo tumor characterization using machine learning has 

been conducted by Krajnc et al. (2022). Their study published in Frontiers in Oncology, 

provides insights into data preparation methods that enhance the accuracy of cancer 

characterization. This approach validated in glicoma, prostate, and diffuse large B-cell 

lymphoma cohort, using SMOTE. The random forest shows 0.79 accuracy, while we achieved 

in our work for same model 0.74. These findings demonstrate improvements in performance 

especially in Random Forest and Support Vector machine schemes [7].  

In this thesis. Build on those findings, employing machine learning techniques with 

MREI-extracted shape features to refine prostate cancer diagnostics, emphasizing the 

importance of fewer, impactful features for clinical efficiency and accuracy. 
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Chapter 2 

2.1 Medical Background 

Cancer of the prostate is the highest rate of cancer among men in Norway. Annually, about 5000 

people get this diagnosis.  Norway, in 2022, prostate cancer was diagnosed in 5,474 men, translating 

to a rate of 183.6 cases for every 100,000 individuals according to the Cancer Register of Norway. 

From 2018 to 2022, early, localized-stage detection accounted for 53.5% of these cases. 

Diagnoses during the regional stage made up 29.5%, and 8.9% of the men had advanced to distant 

metastasis when diagnosed. The stage of diagnosis remained undetermined for 8.1% of the cases.[8]  

Prostate cancer predominantly impacts senior men, with its prevalence rising in tandem with 

the ageing population. This malignancy emerges from the ducts and glands of the prostate gland. 

In its early stages, the disease frequently exhibits no noticeable symptoms. 

From the early 1990s through the mid-2000s, there was a notable surge in diagnosed prostate 

cancer cases across all age demographics, except for those aged 0-54 years. As shown in the figure 

shows a high rate of detection of cancer from 2020 to 2021 and less from 2021 to 2022.  

 

Figure 2.1 shows the cancer detection rates in Norway during the period 2018 until 2022 [8] 

 

The exact origins of prostate cancer remain uncertain. Genetic factors are suspected to influence 

up to 10% of cases. A heightened risk exists for individuals with multiple family members (like 

brothers, fathers, or grandfathers) who have been diagnosed with or have battled the condition, 
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especially if these relatives were diagnosed before the age of 65-70. As the age is important factor 

besides another factors like shape features [9]. 

Figure 2. shows two-line graphs related to prostate cancer in Norway between 2018 and 2022. 

The left graph, with a blue line, represents detection rates with a peak in 2020. The right graph, with a 

red line, shows death rates with a peak in 2021. Both graphs show year-on-year fluctuations in the 

number of cases. Figure 3 shows trends in incidence (dark blue), mortality (light blue) and 5-year 

comparative survival (green) from prostate cancer in the interval 1965-2022. From figure 9.1-O 

in Cancer in Norway 2022. 

 

Figure 2.2 Rate of  Cancer in Norway 2020 [8]  

2.2 The Prostate anatomy 

The prostate is a walnut-sized gland located below the bladder in men and surrounds the urethra. 

It plays a vital role in male reproductive health, mainly responsible for producing seminal fluid that 

nourishes and carries sperm. Regarding cancer detection, the prostate becomes especially significant, 

as it can be the origin of malignant tumors. Clinicians frequently examine the prostate's size, shape, and 

texture when screening for potential cancer. Additionally, blood tests looking for specific prostate 

cancer markers can further enhance detection accuracy. Early identification of any aberrations in the 

prostate can be pivotal for the effective treatment and management of prostate cancer according to 

American Cancer Society, Cancer statistics center [12]. 

The male generative system, the prostate gland is made up of around 40-50 glands that encircle 

the urethra. These glands are classified into inner and outer clusters, parted by fibrous tissue. The main 

task of it is responsibility for creating seminal fluid, and the last is fundamental for nourishing and 

safeguarding sperm. This fluid remains liquid by the glycoprotein called prostate-specific antigen 

(PSA), produced by the prostate's epithelial cells. The higher PSA in the bloodstream may refer to 

https://www.kreftregisteret.no/en/General/Publications/Cancer-in-Norway/cancer-in-norway-2022/
https://www.kreftregisteret.no/en/General/Publications/Cancer-in-Norway/cancer-in-norway-2022/
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conditions such as prostate cancer, enlargement, or infection [12]. The prostate is anatomically 

separated into three distinct zones, each with its distinctive structure originating from the urethra. These 

are the peripheral zone (PZ), central zone (CZ), and transitional zone (TZ). In some contexts, the CZ 

and TZ together are referred to as the central gland as shown in figure 4 below: 

 

 

Figure 2.3 Diagram showing the zonal anatomy of prostate- transition zone (TZ), central zone (CZ), 

peripheral zone (PZ) and the anterior fibromuscular stroma (FMS) with respect to the prostatic urethra 

(PU) and the ejaculatory ducts (ED) [12]. 

 

The peripheral zone (PZ), forms up about 70% of the gland and is regularly someplace cancer 

may arise; the transitional zone (TZ), starts as 5-10% of the gland in younger men but can rise with age 

because of benign prostatic hyperplasia (BPH); and the central zone (CZ), creation up to 25% of the 

gland, mostly containing dense tissues and complex glands, and is least prone to diseases [13]. 

2.3 AI and Prostate Cancer 

With recent advances in AI, prostate cancer can be perfectly characterized and more optimally 

managed according to tumor biology, patient preferences, and survivorship goals. Advances in prostate 

cancer detection and management have markedly improved the precision of forecasting outcomes for 

those affected by the condition [13].  

Better methods for categorizing risk, improved imaging technologies, and the strategic use of 

biomarkers have all contributed to a deeper understanding of the disease's likely progression in 

individuals [14][4].In the therapeutic landscape of prostate cancer, a widely recognized strategy 

involves the careful observation of the disease's evolution, with the aim of timely application of local 

treatments. Surgical and radiotherapeutic methods are continuously being enhanced, providing a 

sharper focus on minimizing potential negative side effects from treatments. Additionally, there's been 
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a significant improvement in life expectancy for men with advanced prostate cancer, with median 

survival times now reaching up to five years. This increase is largely due to the early introduction of 

drugs like docetaxel, abiraterone, enzalutamide, and a range of other novel agents [16]. 

2.4 Standard detection and diagnosis of PC 

The diagnosis of PCs can be complicated due to the potential side effects or limitations of the 

test. There is no single dedicated test that conclusively reveals it. As an alternative, a sequence of tests, 

each with characteristics, is employed when symptoms are established. These various techniques 

together lead to the diagnosis shown in Figure 2.4 stages of PC detection. The provided flow in the 

image typically goes from a Digital Rectal Exam (DRE) to a Prostate-Specific Antigen (PSA) test, 

followed by a biopsy, and then Magnetic Resonance Imaging (MRI). However, there can be scenarios 

where the order of a biopsy and MRI might be switched based on specific clinical situations or 

protocols. 

 

Figure 2.4 Different stages of PC detection 

 

2.4.1 Digital rectal exam (DRE) 

In case the patient shows signs of potential prostate cancer, the physician will inquire about 

symptoms and their duration, as well as any risk factors, including family history. A digital rectal exam 

(DRE) can be performed, where the doctor checks the prostate for abnormalities. This exam can indicate 

the cancer's extent. Based on the findings, further tests may be recommended. The results of the DRE 

and PSA tests cannot diagnose prostate cancer. The diagnosis is based on a tissue sample positive for 

cancer cells [9][11].  

2.4.2 Prostate Specific Antigen-test PSA 

The Antigen-test or (PSA) test is the blood examination to measure the level of PSA, a 

protein produced by prostate glands in the blood of the patient. While this test can indicate the 

possibility of PC, it is not definitive in diagnosing PSA in blood can be affected by different 

factors, making the test less than completely reliable for cancer detection. Consequently, there 

is no full consensus among the researchers regarding the efficiency of the PSA test in improving 

the detection of PCs.  Ongoing research aims to refine and enhance the methods for detecting 
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and diagnosing this cancer. Attempting for more accurate and reliable techniques. This 

information is further detailed by the National Cancer Control Program (NCCP) prostate 

pathway Subgroup in their patient information guide, “Deciding about the Prostate Specific 

Antigen (PSA) Test”, provided by the Health Service Executive (HSE) health and social care 

[10][12].  

 

2.4.3 Magnetic Resonance Imaging  

Magnetic Resonance Imaging (MRI) stands as a pivotal non-invasive diagnostic tool, 

especially in the realm of prostate cancer detection. This technique, distinct for its avoidance 

of ionizing radiation, yields detailed cross-sectional images of the human body. For prostate 

cancer, MRI's exceptional ability to provide high-contrast images of soft tissues is invaluable. 

It leverages multiple contrast parameters and can capture images in various orientations, 

offering both 2D and 3D data. This versatility underlines MRI's integral role in diagnosing 

prostate cancer. Since its introduction, MRI has witnessed widespread adoption. By 2008, it 

was estimated that between 20,000 and 24,000 MRI systems were operational worldwide, 

facilitating 60 to 80 million MRI examinations each year. These statistics are elaborated in [17] 

study on MRI methodologies. 

2.4.4 Biopsy 

However, the PSA test can sometimes give misleading results, as high PSA levels can 

also be caused by benign conditions, medical procedures, or infections, not just cancer. It's also 

important to note that many prostate cancers are found through screening, which may progress 

too slowly to pose a significant threat to life, leading to potential overtreatment. The biopsy 

procedure is generally safe but can have side effects. The most common is hematuria, or blood 

in the urine, occurring in about 31% of cases. More serious, but less common, complications 

include infection (0.9%) and, in rare instances, death (0.2%). These insights and statistics are 

detailed in the study “Recommendations on screening for prostate cancer with the prostate-

specific antigen test[18]. To conclude the best treatment methodology and estimate the effect 

for prostate cancer, it's important to evaluate two key factors: 

• Microscopic examination of the tissue sample: This examination implies analyzing a small 

piece of tissue from the suspected area under a microscope. The sample examination classifies 

the cellular characteristics, checks if cancer cells are present, and decides the type and 

aggressiveness of the cancer. 

• Clinical staging of the index tumour and its potential metastases: Assessing the tumor size 

and detecting whether the cancer has been distributed to nearby lymph nodes or other parts of 

the body beyond the origin. This will provide insight into the best treatment approach and 

recommend predictions on patient prognosis [10]. 
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2.5 Gleason score 

The biopsy tissue undergoes microscopic analysis to receive a Gleason score, GS is a 

grading system used to assess the aggressiveness of prostate cancer based on the appearance of 

cancer cells in a prostate tissue sample obtained from a biopsy a prevalent method for 

classifying prostate cancer severity. It was developed by Dr. Donald Gleason in the 1960s and 

is an essential tool for diagnosing and staging prostate cancer[20].  

The Gleason system, depicted in Figure 2.5 categorizes cancer cells based on their 

similarity to normal prostate cells, with grades ranging from 1 to 5. In grades 1 and 2, cancer 

cells are closely akin to normal cells. In contrast, higher grades show significant differences, 

with a higher grade indicating a potentially more aggressive tumor. A pathologist assigns two 

grades to a tumor: a primary grade for the dominant pattern and a secondary for the next 

prevalent one. These two grades are then combined to produce a Gleason score, which helps 

determine the cancer's aggressiveness. 

1. Gleason Grade 1: The cancer cells closely resemble normal prostate tissue and are less 

aggressive. 

2. Gleason Grade 2: The cancer cells still have a relatively well-formed glandular structure and 

are also less aggressive. 

3. Gleason Grade 3: The cancer cells are more disorganized and have a higher chance of being 

aggressive. 

4. Gleason Grade 4: The cancer cells have an even more abnormal appearance and are 

moderately aggressive. 

5. Gleason Grade 5: The cancer cells are highly abnormal and indicate the most aggressive form 

of prostate cancer. 

The pathologist identifies the two most prevalent patterns of cancer cells in the tissue sample, 

and these two Gleason grades are then added together to create the Gleason score. The final 

Gleason score is typically reported on a scale of 6 to 10. For example: If the predominant pattern 

is grade 3 and the secondary pattern is grade 4, the Gleason score is 3 + 4 = 7. If both patterns are 

the same, say grade 4, then the Gleason score is 4 + 4 = 8. 
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Figure 2.5 Gleason grading system depiction [19] 

A lower Gleason score (6 or less) suggests that the cancer is less aggressive and may 

have a better prognosis. Gleason scores of 7 are considered intermediate-grade cancer, and 

Gleason scores of 8 to 10 are considered high-grade cancer, indicating a higher risk of 

aggressiveness and potential for spreading. 

The Gleason score plays a crucial role in determining the stage of prostate cancer and 

helps guide treatment decisions. It provides valuable information to physicians about the 

likelihood of cancer spreading beyond the prostate and helps them formulate a personalized 

treatment plan for each patient. However, treatment decisions are not based solely on the Gleason 

score, and other factors, such as the cancer stage, PSA levels, and the patient's overall health, are 

also considered to create the most appropriate treatment approach [20]. 
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Chapter 3 Technical Background 

3.1 Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging (MRI) is a type of imaging scan, used in medical scanning 

procedures. MRI uses magnetic fields and radio waves to make pictures to take pictures of the body's 

interior. It scans image water, as all tissue contain different amounts of water which make them so 

efficient. This allows high-resolution pictures of different organs and tissues that are invisible to X-

ray imaging [21]. 

The MRI originated from Nuclear Magnetic Resonance (NMR), which investigates the physical 

and chemical characteristics of atoms. In 1970 was first MRI was used on humans. Later it has many 

improvements while it provides low-resolution images. Over time various enhancements improve the 

image resolution and reduce the number of scan times. These improvements in magnet design, radio 

frequency, and applied algorithms. The first MRI was created in 1980 in Nottingham and Aberdeen and 

currently, it is widely used as an efficient tool for diagnosis in the medical field [22][23]. 

The fast growth in medical applications has been supplemented by various technology-related 

enhancements in MR imaging over the years. The noticeable improvement in terms of image clarity 

and diagnosis capabilities is with High field MRI (1.5 and above) in the 1990s. In the early nineteenth 

functional MRI (FMRI) allowed to map from the brain function by detecting changes in blood flow.  

During the 2000s Diffusion Tencer Imaging MRI (DTI) prominent imaging neural pathway, also 

diagnosis of stroke and stages of cancer besides Cardiac MRI aiding in the assessment of cardiac 

diseases [24]. 

During the 2010s, 3T and 7T Tesla(7T) provided more details for research purposes. Further 

changes to achieve better characteristics like Silent MRI in reducing the noise of scanning to achieve 

patient comfort. Despite the developments, there are challenges and limitations, MRI is still high cost 

with less accessibility in specific areas [25]. Throughout this upgrade, MRI has continuously 

progressed, MRI offering increasingly detailed views of the human body without ionizing radiation, 

presenting it as one of the most versatile and powerful diagnostic tools in medicine. 

After this short introduction, MRI quickly emerged as a vital imaging method, and it continues 

to play an important role in health care. Its prominence can be attributed to unique qualities, especially 

with soft tissue contrast derived from various contrast parameters, the capacity to capture images from 

different angles, and the ability to handle both 2D and 3D data. MRI stands for non-invasive diagnostic 

imaging technique that produces detailed cross-sequential images of the human body, all without 

employing ionizing radiation. 
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3.2 Insights into Magnetic Resonance Imaging (MRI)  

MRI machines work principle the same as electromagnets, the electrical current is passed 

through a large coil and generates an electromagnetic and the coil is cooled to an extremely low 

temperature using liquid helium (-273 °C), transitioning it into a superconducting state to eliminate the 

electrical resistance. This will generate the magnetic field used in mainstream MRI machines at 1.5 or 

3.0 Tesla (T), a unit of magnetic field strength. 

The notable drawback is superconducting magnets need bulky equipment and periodic 

replenishment of helium coolant. This will make the patient feel uncomfortable therefore open gantry 

MRI machine style. which placed a permanent magnate this provides more space for patients and more 

comfortable. However, there is a trade-off in magnetic field strength, as permanent magnets are limited 

to generating fields of a round 0.5 Tesla[26]. Magnetic resonance Imaging is non-intrusive, and it can 

provide functional information. In MRI, T1-T1-weighted images highlight fatty tissue by making it 

appear brighter, while T2-weighted images make water-rich areas stand out. those contrasts help to 

distinguish tissues differently and for abnormality detection.  

3.3  Clinical Application of Magnetic Resonance Imaging of the Prostate 

Clinical applications of Magnetic Resonance Imaging (MRI) for the prostate are significant 

and diverse [21][23]. MRI plays a crucial role in prostate cancer diagnosis, staging, and treatment 

planning. It is used to: 

1. Prostate Cancer Detection: MRI is highly sensitive in detecting prostate cancer, especially 

in cases of clinically significant tumours. It helps identify suspicious lesions within the 

prostate gland. 

2. Localization: MRI assists in precisely localizing the tumour within the prostate, helping 

guide biopsy procedures for accurate diagnosis. 

3. Staging: MRI provides detailed information about the extent of cancer, including whether it 

has spread beyond the prostate gland (staging), aiding in treatment decisions. 

4. Active Surveillance: For low-risk prostate cancer cases, MRI is used for active surveillance 

to monitor disease progression without immediate intervention. 

5. Treatment Planning: MRI is essential for treatment planning, such as guiding targeted 

radiation therapy and assisting in surgical planning for prostatectomies. 

6. Assessing Treatment Response: After treatment, MRI can assess the response of the tumor 

to therapies, helping to evaluate treatment effectiveness. 

7. Evaluating Recurrence: MRI is valuable in detecting prostate cancer recurrence after initial 

treatment, assisting in early intervention. 



13 
 

8. Assessing Pelvic Anatomy: Beyond cancer, MRI can assess the overall pelvic anatomy, 

helping diagnose and manage other conditions affecting the prostate and surrounding 

structures. 

3.3.1 T2 Weighted Images 

T2 Weighted images is a basic pulse sequence in magnetic resonance (MR) imaging that despite 

the alteration in T2 time relaxation of various tissues. T2-weighted images have the best selection of 

diagnosis diseases because most tissues involved in a pathologic process have higher water content than 

normal and the liquid causes the affected regions to show brighter on T2-weighted images [26]. 

Diffusion-weighted imaging (DWI) is a specialized MRI technique that captures the movement 

of water molecules within tissues. It creates images based on the rate of water diffusion, where restricted 

diffusion appears bright and more free diffusion appears dark. DWI is widely used in medical imaging 

to diagnose and assess various conditions, including stroke, brain tumors, and abdominal abnormalities 

[27].  

The apparent diffusion coefficient (ADC) map derived from DWI quantifies diffusion rates in 

tissues, aiding in the characterization of lesions. Additionally, diffusion tensor imaging (DTI), a more 

advanced form of DWI, offers insights into neural pathways in the brain. Overall, DWI is an essential 

tool in modern medicine, providing crucial information about tissue microstructure and pathology [27]. 

T2-weighted images are a fundamental component of multiparametric resonance imaging(mpMRI) 

because they produce high-resolution images that depict prostate anatomy. These types of images are 

important the reason belong of their ability to create contrast between different soft tissues in the body 

aiding in diagnosis. T2-weighted images highlight tissue variations in T2 relaxation times, with longer 

T2 times appearing bright and shorter T2 times appearing dark. This contrast is valuable for visualizing 

soft tissues and identifying abnormalities like edema, inflammation, tumors, cysts, and lesions. T2-

weighted images are widely used in medical diagnosis across different body regions, including the 

brain, spine, abdomen, pelvis, and extremities. They also help differentiate tissues within the brain and 

are generated using specific MRI pulse sequences with longer echo times (TE). In summary, T2-

weighted images are crucial in MRI for their ability to provide essential contrast information in 

diagnosing a range of medical conditions [29]. 

 

3.4 Radiomics 

Radiomics is a valuable tool for extracting clinical information from radiological imaging. 

There are various studies in medical imaging with radiomics, the basis is to extract from medical images 
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quantitative and recordable data. The images are difficult to recognize or diagnose by human eyes. 

Throughput feature extraction predicates the patient case with a large training cohort to get stable 

information from image characteristics and the disease stage. There are different scenarios for feature 

extraction from metabolic imaging like PET and SPECT [30].  

While radiomics is a powerful tool, its data-centric approaches provide no intuition into the 

underlying biological means of taking the observed correlation [4]. The significant role of the radiomic 

analysis features and parameters in characterizing the tumor response is still not achieved due to the 

limitation of this technique. With current developments in machine learning approaches, this field has 

improved into High-throughput agnostic analysis [31]. 

3.5  Radiomic Feature Types and extraction 

Radiomic features can be summarized into two categories: statistically histogram-based and 

texture-based, as described in [31]. Additionally, our specific interest lies in transformed-based and 

shape-based features. In this study, we aim to focus on the region of interest (ROI) for extracting both 

2D and 3D features to enhance readability, following the approach outlined by [1][3][2]. Statistical 

structures are applied to unmodified or discretized grayscale level intensities. The aggregation of gray 

level and feature values is not minimized to improve robustness and reproducibility, following the 

methodology proposed by [31]. 

• First order statistics 

• Shape-based(3D) 

• Shape-based(2D) 

• Gray Level Co-occurrence Matrix 

• Gray Level Run Length matrix 

• Gray Level run length Matrix 

• Gray Level Size Zone Matrix 

• Neighboring Gray Tone Difference matrix 

• Gray level dependence Matrix 
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Figure 3.1 Extracting Radiomics 

 

The implementation of Radiomics approach pipeline consists of several steps as shown in 

Figure3.1 Generally beginning with Image acquisition, preprocessing-image, defining ROI region of 

interest or as it is known image segmentation, and for further classification applying machine learning 

algorithms for disease classification, feature detection, and variable response prediction [32].  

Step1: Image acquisition: This process of capturing medical images utilizes various modalities such 

as MRI, Magnetic Resonance Imaging), CT (computed tomography, PET (positron emission 

Tomography), or Ultrasound. The primary goal is to create a digital image of patient anatomy or 

pathology [21][32]. 

Step2: Image segmentation: Region of interest ROI for 2D or volume of interest VOI for the 3D 

approaches is a crucial step for images. Various software solutions either commercial or open source 

like the 3D slicer we used for segmentation, MITK, ITK-SNAP, Me ViSLAB, lifEx, or ImageJ.  

Step3: Image processing Image processing in radiomics requires steps to be prepared for feature 

extraction and those steps are crucial to ensure the accuracy and reliability of feature extraction. It 

includes image loading and resampling to ensure all images have voxel spacing (isotropic) to 

standardize the spatial resolution. Noise reduction as in processing such as Gaussian smoothing or 

median filtering to reduce noise in the images. Normalization is to intensities to correct for variations 

in image acquisition parameters and scanners. Common methods include Z-score normalization or min-

max scaling [21][32]. 

Step4: Feature extraction: It defined the process of transforming complex data into simplified and 

meaningful characteristics for analysis and modeling. It involves selecting and generating the relevant 

features from the initial data to enhance model execution and interpretability. Feature extraction 
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facilitates reduced dimensionality, eliminates noise, and highlights valuable information, making it 

simpler for algorithms to learn and make predictions [32]. 

Step5: Feature selection: Specifically, the feature selection is to choose a subset of the most relevant 

features from a larger set of available features in a dataset. The goal is to reduce the number of input 

variables while preserving as much valuable information as possible. Feature selection is crucial in 

machine learning to improve model efficiency, reduce overfitting, and enhance model interpretability. 

It also speeds up training and prediction processes. Various techniques, such as filter and embedded 

methods, can be employed for feature selection [32]. 

First import the feature extractor model which is the only model needed to extract the radionics 

toolbox, second store the location of the image and the segmentation where we want to extract features 

from. Additionally (we are not needed but used with rnnd files, we specify a location for the param file 

We customize the extractor which can be implemented in different ways, the first way is to use the 

default settings contained in the toolbox. The second is to define the parameter with specific classes 

within the dictionary for example set the (binwidth =20), (Sigma=1,2,3), and (verbose= true). Then 

initiate the extractor. The third method is done by passing the location of the parameters which will be 

loaded and used by various parameters. Finally, extract the features by calling the extractor and then 

showing the results. The result contains general information containing information extraction to 

enhance reproducibility, the rest of the results are precalculated features, and every feature name is 

defined by the filter, feature class, and the feature name followed by its value [32]. 

 

Figure 3.2 Structure of Pyradiomics [33] 

The concept of explainability in machine learning (ML), specifically in detecting shape features 

in MRI images, is fundamental for several aspects, explainability ensures that the ML algorithm's 

decisions are apparent and understandable. In the circumstances of medical diagnosis from MRI images, 

healthcare professionals and patients must have accurate and trusted outcomes. The detected feature in 
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our study the shape features in 2 and 3 dimensions are fundamental for answerability. In the medical 

field, explainability specific provides medical experts the ability to understand and validate the results. 

ML can identify the errors or biases in the feature detection process. If an algorithm consistently 

misinterprets certain shapes, medical practitioners can intervene to correct or fine-tune the model. Also, 

it gives insights into the value of different features and whether can they aid the final decision and help 

prioritize certain image acquisition techniques for reliable diagnostic results. Using ML models in a 

clinical setting, medical professionals may need to interact with the model's decisions. The explainable 

system allows one to identify and hypothetically dominate or adjust the model's proposals. To achieve 

explainability in ML for detecting shape features in MRI images, we can employ various techniques: 

1. Feature Visualization: Visualizing the detected features in the MRI images for 

interpretability. This can include highlighting regions of interest (ROI) or overlaying 

distinguished shapes on the initial images. 

2. Feature Importance: Presenting the individual features in the model's decision. Methods 

like feature significance scores or saliency maps can help in this interest. 

3. Model Interpretation Tools: Utilize dedicated model interpretation tools such as 

Pyradiomics to facilitate in-depth analysis and understanding of the model's workings. 

4. Clinical Validation: Collaborate closely with medical experts to validate and interpret the 

identified features within a clinical framework. 

5. Documentation: Provide a lucid and comprehensive explanation of the training procedure, 

model structure, and assessment criteria.  

By improving the explainability in ML for detecting shape features in MRI images we can 

improve the trustworthiness and usability of the system in clinical practice while ensuring that it 

matches with medical expertise and regular requirements [21][32]. 

3.6  Machine learning algorithms  

Machine learning is the field of study within artificial intelligence that empowers computers 

to learn and improve their performance without explicit programming. Arthur Samuel's Definition 

(1959):  

"Machine Learning is the field of study that gives computers the ability to learn without 

being explicitly programmed." 

The key element factor for developing effective ML models [34][44], is to understand the data 

that will be trained as an input to the model: 
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1. Supervised learning: In supervised learning, the algorithm is provided with labels for the 

training data, where each example has input data and target labels. With this type, the algorithm 

learns to make predictions or classifications based on this labelled data. 

2. Unsupervised Learning: It includes a learning algorithm based on unlabelled data, where the 

algorithm tries to detect the patterns, relationships, or clusters within the data without explicit 

guidance. 

3. Semi-Supervised Learning: This type combines elements from supervised and unsupervised 

learning. It uses small amounts of labelled data with a larger amount of unlabelled data to 

improve model performance. 

4. Reinforcement Learning: This is a type of ML agents learn to make decisions based I the 

environment. It receives feedback in the form of rewards or penalties based on its actions and 

according to that feedback, it will improve its decision-making every time [34][44]. 

In the context of prostate cancer diagnosis using MRI and radiomics features, implementing 

different ML algorithms is crucial for comprehensive analysis. This approach will allow for the 

comparison model implementation, ensuring the selection of the most suitable algorithm for the task.  

3.7  Supervised Machine Learning Algorithms 

1. Random Forest: It is an ensemble learning method. This ML Combines multiple decision trees 

to form a "forest". Each tree is trained on a random subset of the data and features.  Reducing 

overfitting is the main advantage between RF over DT. trained via the bagging (sampling with 

a replacement) or pasting(sampling  without replacement) method The final classification 

depends on the majority vote from all trees. Handles both continuous and categorical data well, 

is less prone to overfitting, good for large datasets. Widely used in classification problems like 

medical diagnoses [35]. 

2. Decision Tree Classifier: Tree-based classifier. However, it is constructed of a tree structure 

where each internal node represents a test on an attribute, each branch represents the outcome 

of the test, and each leaf node represents a class label. Easy to interpret and visualize, can 

manage both numerical and categorical data. This classifier is widely used in customer 

segmentation and business decision-making [35]. 

3. Logistic regression: This classifier is Regression analysis, mostly used to model the probability 

of a certain class or event. It uses a logistic function to model a binary dependent variable. LR 

provides probabilities for outcomes, efficient and easy to implement. Credit scoring, medical 

fields (e.g., likelihood of a disease). In equation 2.3, we have a logistic regression model 

represented in a vectorized form. The logistic function, also known as the sigmoid function 

denoted as 𝜎(·), is used in this context. This sigmoid function is characterized by its S-shaped 

curve and produces output values in the range between 0 and 1. 
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𝑝˙ = ℎ𝜃(𝑥) = 𝜎 (𝜃𝑇 ・ 𝑥)       ……….(1)[36]. 

From equation, 𝜎 represents the sigmoid function, which transforms the linear 

combination of the model's parameter vector 𝜃 (including bias terms) and the instance's feature 

vector 𝑥 into a probability estimate 𝑝˙. This probability estimate indicates the likelihood or 

probability of a binary event or outcome associated with the given input features x [36]. 

4. SVC classifier: Support Vector Machine (SVM) for classification. Find the hyperplane that 

best splits up different classes by extending the margin between them. Effective in high-

dimensional spaces, memory efficient. It is implemented in applications like Image 

classification, and text categorization [35]. 

5. Ridge Classifier: Regularized Linear Regression. Extends linear regression by adding a 

regularization term. This helps to reduce model complexity and prevent overfitting. Reduces 

multicollinearity in regression, a more stable solution than simple linear regression. Situations 

with high multicollinearity, prediction in genetics [35]. 

6. Naive Bayes classification: This classifier is based on Bayes theory and assumes the 

independence of predictors. It's simple and effective, particularly for large datasets. Despite its 

simplicity, Naive Bayes classifiers can outperform more complex models and are widely 

applied in text classification [35]. 

7. K-Nearest Neighbour classification: It is a simple machine learning algorithm for 

classification. It assigns the class label to a new data point based on the majority class among 

its K nearest neighbours in the training dataset. K – represents a user-defined parameter. This 

algorithm is easy to be used but it can be sensitive to K value and the choice of the distance 

metric [37][38]. 

 

3.8 Cross Validation  

Cross-validation is a technique for assessing how machine learning models generalize to an 

independent dataset, used to prevent overfitting. It involves dividing the data set into several 

subsets, repeatedly training the model on some subsets while validating on others and averaging 

the results to get a more accurate measure of model performance. This method is particularly 

useful when dealing with limited data, as it maximizes the use of available data for training and 

validation. Bellow cross-validation works and it’s beneficial: 

1. Partitioning: Split data into k subsets (folds). A common choice is k = 5. 

2. Model Evaluation: For each unique group, the following process occurs, The model is 

trained on k-1 folds. Remaining fold is used as a test set to evaluate the model. 
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3. Iteration: This process is repeated k times; each fold being used once as the test set. 

4. Aggregation: The k results from the folds averaged to produce a single estimation. 

In the model, we implemented cross-validation with 5 folds and 10 folds. Also, we have 

extracted the hyperparameter for comparison. The machine learning model’s performance was 

measured by using a five-folds cross validation strategy. That’s related to assessing the 

generalization of ML model to an independent dataset and mitigating the overfitting. 

 

Figure 3.3 Description of 5-fold cross-validation[39]. 

The final performance of the assessment involved comparison between the model's accuracy on the 

untouched test set against the training confidence intervals like the work in reference [39]. 

3.9  Software  

In this project, the technical framework is based on Python 3.10.7, the dynamic and high-level 

programming language used for its readability and efficiency in software development. 

3.9.1 Numerical Python: NumPy, a fundamental library in Python, is employed for 

advanced scientific computing and data analysis, particularly with numerical 

data and multi-dimensional arrays.  

3.9.2 Scikit-learn: Scikit-learn is a versatile, open-source machine-learning library 

that facilitates both supervised and unsupervised learning. Known for its 

comprehensive collection of built-in algorithms and models, scikit-learn 

enables efficient training with its straightforward ‘fit ‘method. 

3.9.3 Radiomics: Alongside Python, the Radiomics library, with Python version 

3.7.0, plays a pivotal role in this project. Radiomics is a specialized library in 

Python tailored for extracting many advanced quantitative features from 

medical images, particularly in the field of radiomics. This library is crucial for 

processing and analyzing MRI scans. 
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Chapter 4       

Data and Methods 

4.1  Dataset 

This Dataset involves data collected from a cohort of 454 participants through T2-weighted 

measurements. The primary focus of this research is to assess the demographic profiles of individuals 

who underwent biopsy procedures and underwent MRI image characterization. 

T2-weighted (T2w) axial sequences from participants were sourced from the PI-CAI (Prostate 

Imaging: Cancer AI) initiative spanning the years 2012 to 2021. Along with these sequences, 

accompanying whole gland masks of the prostate were also procured. The imaging was executed using 

Siemens or Philips imaging apparatus. The acquired images had an in-plane resolution of 0.5 mm by 

0.5 mm and a slice thickness of 3 mm, facilitated by a surface coil. The inclusion of MRI sequences in 

the research was predicated on biopsies that were confirmed either systematically through MRI 

guidance, or a fusion of both methodologies. These were categorized as csPC (Gleason score ≥ 7) or 

ncsPC (Gleason Score < 7 or =0). Throughout this documentation, ncsPC is regarded to encompass 

both biopsy-verified low-risk PC and negative analysis outcomes. The images were then filtered 

according to the value of the Gleason score from Demographical clinical features into cancer and 

healthy. Applying radiomics extraction features for further study statistical characteristics with ML 

algorithms and comparing the most relevant metrics such as ROC-AUC, confusion matrix, and 

accuracy. 

 

Figure 4.1 Axial T2-Weighted Scans with Cancer Lesion Segmentation for prostate 

 

In In the figure shows 'a' standard MRI, 'b' displays the same region with a highlighted area, 

likely indicating an abnormality or area of interest, and 'c' is a binary mask. 
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Figure 4.2 Approach to patient filtering 

 

4.2  Data Preprocessing and Model Preparation 

Our approach involved adjusting MRI images to a uniform scale with dimensions of 128x128 

and normalizing intensity values to a [0, 1] range. Each image was then paired with its corresponding 

biopsy results to validate the findings. A Gleason score of 7 or above indicates clinically significant 

cancer (cS), while a score below 7 is considered not significant (ncS), as shown in the table below. 

 

 

Table 4.1 Represent distribution of patients. 

The features extracted for patients to assess the implemented machine learning model's 

robustness, we divided the dataset into training and testing subsets at 80/20 ratio. This split was carefully 

executed at the patient level, avoiding data leakage, and preserving the evaluation's integrity. 

Non-Cancerous Significant (ncS) 217 

Cancerous Significant (cS) 237 

Total 454 



23 
 

Consequently, we allocated 363 sequences for training and reserved 91 for testing the algorithm's 

performance. As illustrate in the figure4.3. and table 4.1. The machine learning models were trained to 

predict the diagnosis of the patients from MRI images. 

 

Figure 4.3 Data Partitioning and Validation Flowchart for processed dataset 

 

4.3  Radiomic Feature Extraction and Selection 

We assessed the performance of two scenarios implemented with Radiomic feature. In figure 

4.4, implemented computer aided diagnosis CAD framework based on MRI images used to detect 

Radiomics, the workflow commences with image processing, encompassing pre-processing, 

segmentation, and MRI image registration. Once these steps are completed, the images are utilized in 

CAD. This involves selecting the region of interest (ROI), followed by feature detection using 
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pyradiomics. Subsequently, feature extraction takes place, and the extracted features are classified using 

machine learning (ML) techniques[1][3]. 

 

Figure 4.4 Implemented CAD framework 

The implemented feature extraction is done by an open-source PyRadiomics python package 

for the extraction of Radiomics features from medical images. The extracted features are 131, we 

focused on selecting shape features in 2D and 3D. The elected features for model evaluation from both 

2 and 3 dimensions are (13 features) those features elected based on several medical research [1], as the 

shape features help to distinguish cancerous from normal tissues, as tumors tends to be irregular shapes 

that can refer to presence of PC. Then, we predict and compare with the test for accruing evaluation 

metrics [2].  

4.4  Machine Learning Modules 

In the preceding chapter, Section 3.7 delved into various categories of machine learning techniques. 

The choice of those algorithms is based on their ability to provide robust, interpretable, and crucial 

results for medical decision-making. The training process and subsequent evaluation are guided by the 

following principles: 

• The data has undergone a thorough cleaning and preprocessing to be prepared for ML models. 

• The dataset divided into training and testing sets to ensure a robust evaluation. 

• The training subset is used with the k-fold cross-validation technique to tune the model. 

Following the training process and once the model is tuned in, each model undergoes evaluation 

using the test set. Figure 4.5   illustrates the training and evaluation of the baseline, and sheds light on 



25 
 

the optimization process. Furthermore, after models are established, we processed with creating 

multiple optimized models by leveraging the hyperparameter package in Python. In subsequent 

sections, the evaluation process encompasses a range of metrics, including accuracy, precession, recall, 

F1-score, and receiver operating characteristics- area under curve (ROC-AUC).  

4.5  Radiomic Shape Features 

We implemented feature selection that chooses the top 13features uses them to train the ML Then, 

it evaluates the model's performance using various metrics, including accuracy, ROC-AUC, precision-

recall curves, GINI, and a confusion matrix. The main reason is for detecting the most relevant features 

for our classification task and building a predictive model based on those selected shape features.

 Cuocolo et al. in [1] employed multivariable logistic analysis to extract shape features, which 

were then analyzed to determine their association with clinically significant prostate cancer (csPCa). 

The effectiveness of these diagnostic methods was evaluated by calculating the area under the curve 

(AUC) in the receiver operating characteristic (ROC) analysis. The same we implemented with shape 

features summarized the table below with the importance of the selected features [1]. 

 

Shape Feature Name 
Definition 

Elongation 

Elongation shows the relationship between the two largest principal components in 

the VOI shape. 

LeastAxisLength 

The smallest access length of the shape, which can assess to differentiate between 

normal and abnormal prostate shapes, where abnormal may refer cancer. 

MajorAxisLength 
This feature yields the largest axis length of the VOI-enclosing ellipsoid 

Maximum2DDiameterColumn 

The largest diameter across the shape in a given 2D slice. Significant changes can 

reflect growth within the prostate. 

Maximum2DDiameterRow 

The largest diameter within shape in the row orientation of the 2D slice. Significant 

changes can reflect growths within the prostate. 

Maximum2DDiameterSlice 

The largest diameter on any 2D slice of the shape. This can help in detecting 

tumours that may be not informally shaped. 

Maximum3DDiameter 

Maximum 3D diameter is defined as largest pairwise Euclidean distance between 
tumor surface mesh vertices 

MeshVolume 

The total volume within the surface mesh of the shape. It can indicate enlargement 
or irregular growth within the prostate. 

MinorAxisLength 

The length of the smallest axis of the shape. The difference in shape can refer to 

abnormalities in the prostate. 

Sphericity 

Measure of the spherical or roundness of the shape of the tumor region relative to a 

sphere. The tumors cause to prostate lose its roundness shape. 

SurfaceArea 

The total sum of the area of each triangle in the mesh. An increase can indicate 

enlarge prostate or surface irregularities because of tumors. 

SurfaceVolumeRatio 

The ratio of surface area to volume can indicate changes in shape and texture 
indicative of cancer. 

VoxelVolume 

The volume was measured in voxels with MRI. Abnormal volumes can refer 
possibility of cancerous growth. 

 

Table 4.2 Py-Radiomics Shape features [1]. 
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 The features in Table 4.2 that were used in the implementation of this study are important in 

detecting the PC and may reveal changes in the size, shape and texture of the prostate that are 

characteristics of the presence of tumors [1]. We evaluate extra features like Elongation, Sphericity and 

the rest listed in Table 4.1 to determine whether those features reflect the presence of PC.   

 Modern radiomics, which these features are part of, allows more quantitative analysis of 

imaging data and can lead to more accurate diagnosis of the PC. In our work we extracted 

(MeshVolume, SurfaceVolumeRatio, VoxelVolume) as it is affected by the presence of tumors in the 

prostate while Cucolo extracted the same shape features with one volume for the prostate.  Radiomic 

shape features extracted from MRI can significantly enhance the detection of clinically significant 

prostate cancer.  

4.6  Experiment Setup 

The data extracted from the MRI T2weight classified according to Gleason score from 

demographical clinical features, the number of patients 454 with 217 healthy (GS <7) and 237 cancer 

patients with (GS>=7) the extracted features is 131, in this project, we aim to analyze the shape features. 

Thus, we extracted the Py-Radiomc features in 2D, and 3D. Two scenarios were used with the extracted 

dataset, the first implementation with scenario 1, used the unaltered extracted data, which exhibits 

symptoms of underfitting. I intend to employ this raw dataset as a baseline for comparison against an 

alternative scenario. In the second scenario, various data resampling techniques were employed, 

including random under sampling, Near Miss, and SVMSMOTE, to address the underfitting issue and 

assess their impact on the dataset's performance. 

 

Figure 4.5 Representation of data analysis pipeline 
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The features extracted are shape features, histogram-based features, and texture features. Besides, 

texture features covered, grey level cooccurrence matrix (GLCM), run length matrix (GLRLM), and 

size zone matrix (neighborhood grey-tone difference matrix (NGTDM) features. For more information 

about of the features, see Appendix C. ML models were executed using default hyperparameters as in 

figure 4.5, relying on the given feature set without any additional feature engineering or customization.  

ML implementation as we can see figure 4.5, with different steps beginning from the data 

collection from e MRI images using features extraction Py-Radiomics, then cleaning data, this involves 

correcting inaccuracies, handling missing values, and other data quality issues. In Feature 

normalization, the features are scaled or distributed, which is important for models that are sensitive to 

the scale of data. The normalized data is then split into train and test 80%, and 20%. In Cross-validation 

the training data is further divided into subsets (folds) to validate the models during training. Five folds 

and ten folds, which are to estimate the performance of the model on unseen data and repeated three 

times. Five-fold cross-validation balances descriptive power and computational efficiency for our 

dataset, reducing the risk of overfitting and performance overestimation that we observed with ten-fold 

cross-validation on our fixed size dataset [40][41]. 

Comparison Metrics: Accuracy, F1-score, ROC-AUC, Loss, Precision, and Recall. 

ML Algorithms: Several algorithms are applied, including Decision Tree, Random Forest, Logistic 

Regression, Support Vector Classifier (SVC), K-Nearest Neighbours (KNN), Ridge Regression, and 

Gaussian Naive Bayes. 

Feature Selection: Minimum of 5 and a maximum of 13 features. The selection is based on the 

comparison metrics mentioned above. 

5.6.1 Scenario 1 (Implemented without resampling) 

Methods: In this scenario, implemented ML on extracted features without augmentation 

techniques like resampling, and evaluate models with cross -validation. We aim to assess the 

performance of the model or analysis based on the raw, unaltered dataset. This can serve as a 

baseline to understand how well the model performs without any intervention to address class 

imbalance or other potential dataset issues. This model was implemented with extracted shape 

features and classified with seven machine learning models, RF, DT, LR, SVC, KNN Gaussian 

Naive Bayes and Regression and evaluated with cross-validation. The features extracted and 

evaluated with different metrics. In scenario 1, we avoid under-sampling and prevent 

discarding some data (missing filled with nan). The reduced dataset may not fully represent the 

original distribution of patients in the real world. However, this trade-off is acceptable when 

analysis or visualization requires class balance. This will be tested with the next scenario. 
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5.6.2 Scenario 2: Enhanced Features with Data Augmentation and 

Visualization 

This scenario is implemented with resampling techniques to handle imbalanced 

datasets by using SVMSMOTE (Synthetic Minority Over-Sampling Technique) for data 

augmentation [7], by synthetically creating new samples in the dataset. I also implemented 

Multi-dimensional Visualization using T-SNE (t-distributed Stochastic Neighbor 

Embedding) to visualize the high-dimensional data in a lower-dimensional space. The 

implementation of Multi-Dimensional Visualization using (T-SNE), to reduce the 

complexity of the data into simpler 2D, and 3D visualization for better understanding the 

pattern, understanding the relationships between the data and cluster identification with 

anomaly detection [40]. 

The dataset obtained from extracting radiomic features of MRI T2W images presents 

class imbalance, comprising two classes: "Cancer" (1) as the majority class and "Healthy" 

(0) as the minority class. To address imbalance, we employed resampling techniques, 

namely "Random Under-sampling" and "Near Miss Under-sampling," along with an 

resampling technique known as "SVMSMOTE" [7][40][41].Then we select the best 

techniques according to highest accuracy for models. 

• Random Under-sampling: Removal of examples from the majority class in the 

training dataset to achieve a more balanced class distribution. 

• Near Miss Under-sampling: selects majority class examples based on their 

proximity to minority class examples, ensuring better balance. 

• SVMSMOTE: This oversampling method utilizes an SVM classifier to identify 

support vectors and generate synthetic samples, considering these support vectors. 

➢ Baseline: 

• Exploring the Data (Visualization, Statistics, Distribution for Cancer & Healthy). 

• Apply machine learning classifier for the imbalanced dataset before sampling and 

check the results evaluate through cross validation. 

• After applying Sampling, fit the data on ML models and evaluate. 

• Apply cross_val _score for three Machine learning classifiers. (LogisticRegression, 

Decision Tree Classifier, KNeighborsClassifier). We used 5 folds which repeated 3 

times and the ROC_AUC as a scoring metric.  

➢ Splitting Data and scaling: Split the data with an 85:15 ratio that’s mean 85% for 

training set and 15% of the dataset for testing set. Scaling for both Volume and 

Diameter columns. 

➢ Handling Imbalanced data: 

we use techniques like Random Under sampling and Near miss, SVMSMOTE. 
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4.7  Comparison and Analysis: 

By comparing the results from both scenarios to evaluate the impact of data 

augmentation and advanced visualization techniques. We also assess the visual differences 

in class separation and clustering through t-SNE visualization [40]. 

Five-fold cross-validation provides a good trade-off between bias and variance when 

estimating model performance. Using fewer folds may lead to high variance in performance 

estimates, more folds may introduce bias due to smaller training sets. Ten-fold cross-

validation was also implemented, however, the data set is small, this may yield seemingly 

elevated accuracy metrics due to the limited amount of data allocated to each fold. 

Therefore, we assess it with 5 folds. In our analysis risk factors are considered for the 

importance of model selection. In table 5.1 Type II errors, recognizing the critical impact 

of failing to identify true risks. Following, Type I errors hold a level of importance, as 

incorrectly identifying a non-risk can still have significant consequences [5]. The accuracy 

of the model ensures that the overall proportion of correct predictions is achieved. Finally, 

the ROC-AUC score is considered, which reflects the model's ability to discriminate 

between the classes across various thresholds. Also, we evaluated the confusion matrix as 

we examined the false positive and false negative. Multiple metrics allow for a wide view 

evaluating models [41][42].  
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Chapter 5  

Results and Evaluation  

 

           In this chapter, we focused on a critical analysis and evaluation of the results from two 

implemented scenarios applied to datasets extracted from MRI images. 

 Positive (1) Negative (0) 

Predicated value  

Positive/Negative 

Positive (1)  True positive (TP) Type I Error (FP) 

Negative (0) Type II Error (FN) True Negative (TN) 

Table 5.1 Confusion matrix [44] 

5.1 Scenario 1 evaluation: 

In scenario 1 7ML are implemented, for analysing the model performance we extracted several 

parameters such as accuracies, loss, precession recall, F1 score, and ROC-AUC. From Figure 5.2 the 

confusion matrixes reveal Naive Bayes minimizes Type II errors, while Logistic Regression, Ridge, 

and KNN exhibit higher values. 

 

Figure 5.1 Scenario1 confusion matrix comparison 

The value of mean for both train and test sets for the extracted shape features, showing 

consistency across most features, indicating a well-balanced dataset. However, The standard deviation 

values for Sphericity (0.023, 0.024) in train and test and test respectively are low, higher SD in ‘Mesh 

volume’ and ‘Voxel volume’ especially in testing sets. For detailed results available in Appendix B. 
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Figure 5.2 The ROC-AUC values for the highest value of implemented ML in Scenario1 

 

The ROC curve Figure 5.2 highlights LR superior ability to distinguish between classes with 

highest ROC-AUC (0.93).  LR shows consistent high performance across several metrics, with 

notable stability in model predications reflected by standard deviation above 0.06. 

 

Metric LR SVC Ridge DT RF K-NNN Naive 

Bayes 

Accuracy: 0.88 0.63 0.59 0.73 0.73 0.62 0.59 

Precision 0.71 0.60 0.57 0.71 0.71 0.60 0.56 

Recall 0.78 0.82 0.73 0.78 0.78 0.73 0.84 

F1 Score 0.86 0.697 0.64 0.74 0.74 0.66 0.67 

Log Loss 0.37 0.66 0.66 0.52 0.52 13.64 1.043 

Gini 

Coefficient 

0.86 0.30 0.24 0.17 0.62 0.25 1.18 

ROC-AUC 

area 

0.93 0.65 0.62 0.81 0.81 0.68 0.61 

Table 5.2 ML implementation Scenario1 

We can notice from the Table 5.2, ML implementation results the LR excel in accuracy (0.88) and F1 

score (0.86), referring to effective case classification and strong balance between precession and recall. 

RF and DT lead in precession (0.71), minimizing the FP. Naïve Bayes achieves the highest recall (0.84), 

suggesting it effectively minimize the FN but may overclassify positives. LR also shows the lowest loss 

log (0.37), reflecting reliable probability predications. However, Naïve Bayes high Gini Coefficient 

signals potential overfitting concerns. The ROC-AUC scores corroborate LR discriminative ability 

making it the most robust model among those evaluated. 

5.2 Cross validation: 

The cross-validation results show the model with consistent and high performance, indicating 

by mean scores above 0.88 in accuracy, precession, recall, and F1 score, and above 0.94 in ROC-AUC. 

Results as shown in the Table 5.3. The ROC-AUC suggesting excellent ability to distinguish between 
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classes. Log loss at 0.31, reflecting good confidence in classification tasks. The ROC-AUC suggesting 

excellent ability to distinguish between classes. Log loss at 0.31, reflecting good confidence in 

classification tasks. Fold 2 showed the best values regarding all metrics with lowest value for loss. 

 Accuracy Log Loss Precision Recall ROC AUC F1 Score Gini 

Fold1 0.87 0.32 0.87 0.83 0.92 0.87 0.85 

Fold2 0.92 0.23 0.92 0.86 0.96 0.919 0.93 

Fold3 0.90 0.32 0.90 0.96 0.93 0.90 0.86 

Fold4 0.875 0.30 0.85 0.86 0.94 0.87 0.89 

Fold5 0.88 0.26 0.92 0.95 0.96 0.87 0.92 

Mean 0.88 0.31 0.89 0.89 0.94 0.88 0.89 

Table 5.3 Cross validation scenario1 

 

5.3 Evaluating Scenario 2: 

The dataset presents a variety of shape-related attributes, including elongation, axis length, and 

diameters, each with specific means and standard deviation that suggest a wide range of shape 

characteristics. The dataset has imbalanced in healthy 217 and the cancer 237. In this scenario we handle 

imbalance by using Random under sampling, Near Miss and SMOTE [7], then implementing ML. The 

sphericity attribute average range is around 0.76, hinting at general trends towards spherical shapes 

within data.  

 

Figure 5.4 Scenario2 confusion matrix 

In reviewing Confusion matrix figure 5.4. Random Forest stands for the low value for type I 

error (FP), and only (15) misclassification as compared to SVC with highest value (24), and Type II 

error (7) for Random Forest. When considering both Type I and Type II error the RF is best results 

indicating effective classification with strong ability to distinguish between classes while minimizing 

miss classification. 
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Figure 5.5 Evaluation ROC-AUC for the ML models 

 

For the ROC-AUC graph representation give comprehensive overview of how classifier 

performance of the scenario2 across all possible thresholds. The ROC in figure 5.5 indicates that the 

Random Forest (RF) algorithm exhibits strong performance with a high AUC across different sampling 

methods, underscoring its robustness. Logistic Regression (LR) and (SVM) demonstrate moderate 

efficiency, with their curves and AUC values suggesting average discriminative capabilities. For more 

detailed graphs are available for all ML in Appendix A.  

 

 Model Accuracy_Score Precision_Score Recall_Score F1_Score 

1 RF 0.747253 0.711864 0.875 0.74171 

3 SVM 0.736264 0.7 0.875 0.729532 

2 DT 0.736264 0.693548 0.895833 0.727406 

5 GBT 0.714286 0.677419 0.875 0.70469 

0 LR 0.637363 0.653061 0.666667 0.637099 

4 KNN 0.604396 0.607143 0.708333 0.599324 
Table 5.4 ML implementation Scenario2 

 

The table 5.4 RF classifier leads with highest acc 0.74, it has strong balance between pression 

and recall indicating lower rate in both Type I and Type II errors. LR and K-NN fall behand with lower 

acc and higher Type I and II errors indicating low recall and pression. The distribution Transformer 

automates feature transformation to align closer with a normal distribution, optimizing each feature 

individually. The results for Macro are nearly the same as micro with little difference, so we just depend 

on evaluating the models with macro calculations. 
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5.4  Best Feature extraction  

In evaluating the performance of the algorithms, we note that the features selected as the best 

predictors, based on their contribution to the highest ROC-AUC and accuracy scores, are as follows 

(Maximum 2D Diameter Row, Mesh Volume, Minor Axis Length, Surface Volume Ratio, Voxel 

Volume). In assessment, RF and SVC models has the good performance in balancing the accuracy and 

the errors rates, with RF has slight edge in discriminative power as indicated by ROC AUC. Naive 

Bayes stand out minimizing Type I errors which is crucial when false alarm is a significant concern in 

our case of study. The lower AUC for LR, Ridge and KNN suggests those models are less capable in 

terms of overall classification performance for this dataset. 
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Chapter 6 

Conclusion and Future Work  

6.1  Discussion  

Based on the results from the previous chapter in scenario1 provided by the confusion matrix, 

ROC curves, and tabulated performance metrics, LR shows the highest values in accuracy, precession, 

recall, and F1 score, referring to its best performance overall in this dataset. RF and DT classifiers show 

similar performance proposing better class separation ability. However, their accuracy is low with 

precession as compared to LR indicating some limitations. The SVC exhibits good performance in the 

recall, meaning it is good at identifying positive cases but has low precision and accuracy. 

We have noticed in Feature ‘Mesh Volume’ the Standard deviation values for train and test, 

have differences as compared to other shape features. Higher SD in ‘Mesh volume’ and ‘Voxel volume’ 

especially in testing sets. However, The SD values for Sphericity in train and test and test are low. 

Variability in features like ‘Mesh Volume’ suggests significant differences in prostate size among 

individuals. The value of mean for both train and test sets for the extracted shape features, showing 

consistency across most features.  

Overall, the mean values indicate well balanced dataset and crucial for reliability, the varying 

SD highlight the importance of considering feature variability in model training and validation. The 

observed difference may require model adjustment or normalization. For detailed results available in 

Appendix B. 

Our analysis inspired by Shanker work[2], focusing on key performance metrics such as 

accuracy, F1-score, and ROC-AUC. Notably, our Logistic regression model, without resampling, 

achieved acc of 88%. This to be high accuracy rate of over 90% reported by Stainbus et al [6], in their 

lymphoma classification study using deep learning. These results from scenario1 are encouraging, 

suggesting that our model is a current high performing model and is well aligned with our objective in 

developing an explainable model. 

For scenario2, Logistic Regression achieved an accuracy of 63.7%, which slightly lower than 

74.7% accuracy by Random Forest model, it is notably close to the 59.7% reported by Shanker [7], who 

initiate nuclear features to be more predictive than texture features. Despite the superior accuracy of 

RF, the model LR relatively accepted accuracy coupled with simplicity and interpretability, LR provides 

clarity of how predication is made, thus encouraging the case for employing LR in clinical settings 
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where interpretability is key. Krajnc, D. et al. implemented in their work [7] with SMOTE technique, 

applied RF, SVM, XGBoost and NN model, and achieved the best results with RF and NN methods the 

acc across the cohort are nearly (0.66%) the accuracy for RF. To uncover the complexities and innate 

groupings within this high-dimensional space, t-SNE merges as a valuable technique. It excels in 

condensing the data into 2D or 3D visual representations, maintaining the integrity of the original 

relationships between data points and revealing clusters that are less discernible in full-dimensional 

space.  

The implementation of the random under-sampling, Near Miss Sampling, and SVMSMOTE 

sampling techniques suggests differential impacts on model performance. Random under sampling 

shows consist of metrics across the models. Near Miss Sampling generally lowers precision and F1 

scores, hinting at a propensity for models incorrectly predicate the positive classes. SVMSMOTE 

Sampling seems to improve the recall without compromising other metrics, suggesting it may be 

superior for balancing class representation. Therefore, SVMSMOTE Sampling stands out as potentially 

the most active technique for maintaining performance equilibrium across accuracy, precision, recall 

and F1 score in the tested algorithms, for more detailed results the figures in Appendix A. In the figure 

‘Comparison Metrics for Resampling ‘results clearly comparing the implemented ML algorithms on a 

dataset with Resampling Techniques implemented. Gradient Boosting Tree (GBT) appears as the top, 

excelling in all metrics, indicating its effectiveness in handling imbalanced datasets. Decision Tree (DT) 

and Random Forest (RF)show close results, with strong performance but slightly lower than GBT, this 

is due to overfitting or due to data complexity. SVM, LR, and KNN lag, this suggests that they might 

not be well-suited for this dataset characteristics or for problems with non-linear decision boundaries 

and imbalance. 

The heatmap comparison for the first scenario displays correlation matrix with most positive 

correlation among featured, dark is in diagonal confirms perfect self-correlation. The scenaro2 heatmap 

shows similar trends with same trends with positive correlations, however the strength of these 

correlation might be less as compared to the first scenario, with alittle difference pre-and post under 

sampling highlights the impact of this techniques on features relationships. Heatmaps available in 

Appendix B. 

6.2 Improvements:  

For lower-performing classifiers like SVM and KNN, hyperparameter optimization and feature 

selection could improve results. For high-performing models like Random Forest, ensuring the model 

isn't overfitting with techniques such as cross-validation is important. 



37 
 

• Ensemble methods: This method like Easy Ensemble or Balance Bagging Classifier, it 

combines many classifiers to handle imbalance effectively. 

• Cost-Sensitive Learning: modify the algorithms to consider class imbalance by assigning 

different misclassification costs to different classes. 

• Anomaly detection: Treat the minority as an anomaly detection problem that can be more robust 

to class imbalance. 

• Collect more data: gather more data for minority classes in our project (Healthy) to balance the 

dataset, but it is not possible in our case to ask a patient who is diagnosed as a healthy person 

to undergo a biopsy. 

• Adjust decision threshold: Adjust the decision threshold of our model to increase sensitivity or 

specificity, depending on the specific problem and its consequences. 

The dataset we generated from extraction features can lead to potential issues including module 

bias towards the majority class (cancer patients) and poor performance on the minority class (healthy)t. 

The solution in this case is either to collect more data (biopsy)from healthy patients which is not 

reasonable, or we must consider the following strategies: 

• Resampling: Oversampling the minority classes by generating synthetic samples for the 

minority in our case is the healthy diagnosis, or by replicating existing samples to better balance 

the class distribution. 

• Synthetic class distribution: use techniques such as Minority oversampling Techniques 

SMOTE, as we implemented in scenario 2 to create synthetic samples for the minority class. 

• Different algorithms: choose ML algorithms that are less sensitive to class imbalance. 

 

6.3 Best features extraction  

Five features are considered as best shape features according to comparison metrics accuracy 

and ROC-AUC (Maximum2DDiameterRow, Mesh Volume, Minor Axis Length, Surface Volume 

Ratio, Voxel Volume). In (my opinion) a small number of features is better to influence the 

diagnosis. These features span various aspects of prostate geometry, suggesting that both the 

external and internal shape are critical in predicting the outcomes of interest. The prominence of 

those features in the models with the highest ROC-AUC and accuracy. The use of those features 

likely enhances the model, leading to better performance metrics and more confident decision-

making in a clinical setting achieving our objectives. Results for feature extraction in detail in 

appendix B.  
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6.4  Conclusion  

 

The results obtained from classification models indicate satisfactory in performance to detect 

patients, while some  models are relatively poorer performance. Several factors may contribute to this 

outcome. The dataset size does not provide enough information for model to learn complex patterns, or 

some shape features might not have linear relationship with outcome.  

In the first scenario, Logistic Regression (LR) yielded the most favorable outcomes, a result 

that can be attributed to the algorithm's inherent simplicity and interpretability. However, in the second 

scenario, which involved resampling, LR demonstrated reduced accuracy and ROC-AUC scores. This 

decline in performance can be ascribed to the limited size of the dataset. Given the minor discrepancy 

in the number of healthy versus cancer instances, the issue of underfitting was not significant, and thus 

the data did not necessitate sampling. Consequently, the results from the first scenario are deemed more 

rational and in alignment with the objectives of the study, suggesting that for small datasets with 

minimal class imbalance, the application of sampling techniques may not be beneficial and could lead 

to a degradation in model performance. 

For datasets of substantial size, the second scenario, which incorporates sampling techniques, 

is often the preferred approach. Sampling methods can significantly enhance model performance by 

addressing class imbalance, a common issue in large-scale datasets. They ensure that the learning 

algorithm receives a balanced representation of each class, thereby improving the generalizability and 

robustness of the model. 

Conversely, in the context of smaller datasets, such as in the present study, the application of 

sampling techniques may not yield the same benefits. Here, the first scenario, which operates without 

the intervention of sampling, is advantageous. The modest difference in the class distribution between 

healthy and cancer cases does not warrant the complexities introduced by sampling. In such instances, 

the detrimental effects of over-sampling or under-sampling can outweigh the benefits, as these 

techniques can introduce noise or lead to the loss of critical information, respectively. Hence, for 

datasets with minimal class imbalances, preserving the original data distribution—as in scenario one—

tends to be more effective and produces outcomes that more accurately reflect the underlying data 

structure. This approach aligns closely with the objectives of ensuring model interpretability and 

maintaining data integrity. 
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6.5  Future work  

Our goal is to advance the field of medical imaging through the development and evaluation of machine-

learning techniques. In this study, we explored 2D and 3D reconstruction for prostate cancer analysis, 

aiming to discover distinctive characteristics of prostate cancer and identify the most relevant 

predictors. While we have successfully extracted the Mesh  (available in GitHub link [43]) we can see 

prostate Mesh in the figure below.  Also, I extracted. sample of mesh of the prostate and the tumor 

mesh, the future work will focus on the extraction of mesh features, enhancing our computer-based 

characterization, particularly in the realm of shape perspectives. Also, we can analyze different 

Radiomic features like Histogram features and reimplement the scenarios with LR as further work.  

 

 

 

Figure 6.1 Mesh generated for the prostate. 
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List of abbreviations: 

AI: Artificial Intelligence 

CM: Confusion Matrix 

CT: Computed Tomography 

DRE: Digital Rectal Examination 

GNB: Gaussian Naïve Bayes 

GS: Gleason Score 

LR: Logistic Regression 

ML: Machine Learning 

MRI: Magnetic Resonance Imaging 

ncsPC: Non-Clinically Significant Prostate Cancer 

PC: Prostate Cancer 

PSA: Prostate Specific Antigen 

RF: Random Forest 

ROC: Receiver Operating Characteristics 

ROI: Region of Interest 

SVM: Support Vector Machine 

SVC: Support Vector Classifier 

T: Tesla 

T2w: T2-weighted 

csPC: Clinically Significant Prostate Cancer 

DT: Decision Tree 

RF: Random Forest 

KNN: K-Nearest Neighbor 

FP: False Positive 

FN: False Negative 

tpr : True Positive Rate  

fpr: False Positive Rate 

CAD: Computer Aided Diagnosis 
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Appendix A: 

List of Figures  

 

ROC-AUC Scenario1 

 

Resampling techniques secnario2  
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Scenario1 Heatmap 

 

 

Scenario 2 Heatmap 
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Comparison Metrics for Resampling 
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Appendix B  

List of Tables 

 

Index Training Set Standard Deviation Mean 

1 original_shape_Elongation 0.076468 0.868593 

2 original_shape_LeastAxisLength 5.751311 35.47726 

3 original_shape_MajorAxisLength 7.24494 49.03069 

4 original_shape_Maximum2DDiameterColumn 6.955341 54.82579 

5 original_shape_Maximum2DDiameterRow 9.896288 54.43178 

6 original_shape_Maximum2DDiameterSlice 7.349865 54.34074 

7 original_shape_Maximum3DDiameter 8.822754 58.06406 

8 original_shape_MeshVolume 25631.29 54991.46 

9 original_shape_MinorAxisLength 6.634372 42.47243 

10 original_shape_Sphericity 0.023259 0.763358 

11 original_shape_SurfaceArea 2705.671 8969.099 

12 original_shape_SurfaceVolumeRatio 0.025583 0.174057 

13 original_shape_VoxelVolume 25638.83 55041.53 

Table 1. Mean and Standard deviation of the Scenario1 for Train 

 

Index 

Testing Set 
Standard 

Deviation Mean 

1 original_shape_Elongation 0.064593 0.879708 

2 original_shape_LeastAxisLength 6.287612 35.29461 

3 original_shape_MajorAxisLength 7.6387 48.10328 

4 original_shape_Maximum2DDiameterColumn 7.744284 54.07042 

5 original_shape_Maximum2DDiameterRow 10.15792 53.77554 

6 original_shape_Maximum2DDiameterSlice 7.594802 53.43384 

7 original_shape_Maximum3DDiameter 9.493782 56.72693 

8 original_shape_MeshVolume 29598.11 54408.17 

9 original_shape_MinorAxisLength 6.98272 42.24738 

10 original_shape_Sphericity 0.024431 0.769559 

11 original_shape_SurfaceArea 2989.333 8791.075 

12 original_shape_SurfaceVolumeRatio 0.026163 0.174527 

13 original_shape_VoxelVolume 29608.17 54459.34 

Table 2. Mean and Standard deviation of the Scenario1 for Test 

 

 Accuracy Log Loss Precision Recall ROC AUC F1 Score 

Fold1 0.87 0.32 0.87 0.83 0.92 0.87 

Fold2 0.92 0.23 0.92 0.86 0.96 0.919 

Fold3 0.90 0.32 0.90 0.96 0.93 0.90 

Fold4 0.875 0.30 0.85 0.86 0.94 0.87 

Fold5 0.88 0.26 0.92 0.95 0.96 0.87 

Mean 0.88 0.31 0.89 0.89 0.94 0.88 

 Accuracy Log Loss Precision Recall ROC AUC F1 Score 

Table 3 Cross validation 5 folds scenario1 
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 Accuracy F1 ROC_AUC Precision Recall LOG_loss GINI 

1 0.86 0.85 0.94 0.89 0.82 0.31 0.88 

2 0.89 0.89 0.95 0.90 0.88 0.29 0.90 

3 0.91 0.91 0.97 0.90 0.92 0.22 0.95 

4 0.93 0.93 0.96 0.96 0.90 0.23 0.93 

5 0.92 0.92 0.96 0.92 0.92 0.28 0.91 

6 0.85 0.85 0.92 0.87 0.82 0.35 0.84 

7 0.86 0.87 0.95 0.83 0.90 0.30 0.91 

8 0.91 0.91 0.96 0.90 0.92 0.26 0.92 

9 0.94 0.94 0.98 0.96 0.92 0.22 0.96 

10 0.85 0.84 0.94 0.91 0.78 0.33 0.87 

Table 4 Cross-validation 10folds scenario1 

 

Number of 

features (RF) Accuracy Log Loss F1 Score ROC-AUC Precision Recall 
5 0.703297 0.556757 0.737864 0.802174 1 1.0 
6 0.725275 0.517424 0.747475 0.821739 1 1.0 
7 0.692308 0.505045 0.702128 0.825362 1 1.0 
8 0.714286 0.493321 0.723404 0.824638 1 1.0 
9 0.692308 0.503271 0.695652 0.821014 1 1.0 
10 0.659341 0.528402 0.680412 0.786957 1 1.0 
11 0.725275 0.520485 0.731183 0.802899 1 1.0 
12 0.725275 0.517917 0.736842 0.811836 1 1.0 
13 0.725275 0.515573 0.742268 0.811836 1 1.0 

6(best according 

to accuracy) 0.725275 0.517424 0.747475 0.821739 1 1.0 

Number of Features for Best ROC-AUC: 7 

Best Features: ['original_shape_LeastAxisLength', 'original_shape_Maximum2DDiameterRow',  'original_shape_MeshVolume', 

'original_shape_MinorAxisLength',   'original_shape_Sphericity', 'original_shape_SurfaceVolumeRatio',  

'original_shape_VoxelVolume'] 

Table 5 Best features extraction RF 

Number of 

features(KNN) Accuracy Log Loss F1 Score ROC-AUC Precision Recall 
5 0.593407 0.929102 0.678261 0.654589 1 1.0 
6 0.593407 0.929100 0.678261 0.654589 1 1.0 
7 0.593407 1.009614 0.678261 0.652657 1 1.0 
8 0.593407 1.114774 0.678261 0.655556 1 1.0 
9 0.593407 1.231673 0.678261 0.642029 1 1.0 
10 0.593407 1.231730 0.678261 0.641546 1 1.0 
11 0.593407 1.311586 0.678261 0.630435 1 1.0 
12 0.593407 1.397160 0.678261 0.616908 1 1.0 
13 0.593407 1.435119 0.678261 0.614976 1 1.0 

5(best according to 

accuracy) 0.593407 0.929102 0.678261 0.654589 1 1.0 

Number of Features for Best ROC-AUC: 5 

Best Features:['original_shape_Maximum2DDiameterRow', 'original_shape_MeshVolume', 'original_shape_MinorAxisLength',  

'original_shape_SurfaceVolumeRatio',   'original_shape_VoxelVolume'], 

Table 5 Best features extraction KNN 
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Index Training Set  Mean Standard Deviation 

1 original_shape_Elongation 0.869154 0.074195 

2 original_shape_LeastAxisLength 35.57895 5.816301 

3 original_shape_MajorAxisLength 48.97369 7.160993 

4 original_shape_Maximum2DDiameterColumn 54.7593 6.953782 

5 original_shape_Maximum2DDiameterRow 54.47052 9.90691 

6 original_shape_Maximum2DDiameterSlice 54.25526 7.304402 

7 original_shape_Maximum3DDiameter 57.9414 8.835151 

8 original_shape_MeshVolume 55172.9 25939.81 

9 original_shape_MinorAxisLength 42.48721 6.729291 

10 original_shape_Sphericity 0.764589 0.024109 

11 original_shape_SurfaceArea 8973.453 2729.259 

12 original_shape_SurfaceVolumeRatio 0.173649 0.025444 

13 original_shape_VoxelVolume 55223.36 25947.82 

Scenario2 Mean and Standard deviation for Train Set 

 

Index 
Testing Set Mean 

Standard 

Deviation 

1 original_shape_Elongation 0.877469 0.074791 

2 original_shape_LeastAxisLength 34.88897 6.012684 

3 original_shape_MajorAxisLength 48.33067 7.973396 

4 original_shape_Maximum2DDiameterColumn 54.33564 7.770286 

5 original_shape_Maximum2DDiameterRow 53.62102 10.10456 

6 original_shape_Maximum2DDiameterSlice 53.77485 7.799939 

7 original_shape_Maximum3DDiameter 57.21623 9.501142 

8 original_shape_MeshVolume 53684.39 28469.89 

9 original_shape_MinorAxisLength 42.18842 6.604931 

10 original_shape_Sphericity 0.76465 0.021585 

11 original_shape_SurfaceArea 8773.71 2900.659 

12 original_shape_SurfaceVolumeRatio 0.176152 0.026612 

13 original_shape_VoxelVolume 53734.02 28478.28 

Scenario2 Mean and Standard deviation for Test Set 

 

 Model Accuracy_Score Precision_Score Recall_Score F1_Score 

5 GBT 0.758242 0.732143 0.854167 0.755142 

1 RF 0.736264 0.714286 0.833333 0.732883 

2 DT 0.725275 0.709091 0.812500 0.722439 

3 SVM 0.725275 0.694915 0.854167 0.719250 

0 LR 0.703297 0.666667 0.875000 0.692002 

Table MODEL COMPARISON for *Random undersampling*  
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Metric 

 

LR 

 

SVM 

 

Naive Bayes 

classification 

 

DT 

 

RF 

 

K-NN 

Accuracy: 0.549 0.494 0.582 0.901 0.890 0.626 

Precision 0.573 0.534 0.596 0.872 0.916 0.642 

Recall 0.75 0.62 0.74 0.96 0.88 0.72 

F1 Score 0.630 0.574 0.660 0.914 0.897 0.679 

Log Loss 16.239 0.697 1.250 3.564 -1 13.466 

Gini 

Coefficient 

0.0658 0.038 0.130 0.789 0.782 0.232 

ROC area 0.58 0.56 0.66 0.89 0.96 0.63 

Figure 25 Model comparison SVMSMOTE Sampling 

 

 

Cross 

validation 

Accuracy Log Loss Precision Recall ROC AUC F1 Score Gini 

Fold1 0.89 0.30 0.95 0.83 0.95 0.88 0.91 

Fold2 0.79 0.37 0.78 0.86 0.93 0.82 0.85 

Fold3 0.88 0.30 0.83 0.96 0.96 0.89 0.92 

Fold4 0.89 0.30 0.94 0.86 0.95 0.90 0.91 

Fold5 0.94 0.29 0.93 0.95 0.97 0.94 0.95 

Average 0.88 0.31 0.89 0.89 0.95 0.89 0.91 

Table Cross validation Scenario2 
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Appendix C: 

List of the extracted Py-Radiomics Features 

diagnostics_Versions_PyRadiomics: v3.1.0 

diagnostics_Versions_Numpy: 1.21.6 

diagnostics_Versions_SimpleITK: 2.2.1 

diagnostics_Versions_PyWavelet: 1.3.0 

diagnostics_Versions_Python: 3.7.0 

diagnostics_Configuration_Settings: {'minimumROIDimensions': 2, 'minimumROISize': 

None, 'normalize': False, 'normalizeScale': 1, 'removeOutliers': None, 'resampledPixelSpacing': None, 

'interpolator': 'sitkBSpline', 'preCrop': False, 'padDistance': 5, 'distances': [1], 'force2D': False, 

'force2Ddimension': 0, 'resegmentRange': None, 'label': 1, 'additionalInfo': True, 'binWidth': 25, 

'enableCExtensions': True} 

diagnostics_Configuration_EnabledImageTypes: {'Original': {}} 

diagnostics_Image-original_Hash: fdc517a332c4cb8b007f8401819250277fa36945 

diagnostics_Image-original_Dimensionality: 3D 

diagnostics_Image-original_Spacing: (0.30000001192092896, 0.30000001192092896, 

3.5999999046325684) 

diagnostics_Image-original_Size: (640, 640, 19) 

diagnostics_Image-original_Mean: 0.014705489309210526 

diagnostics_Image-original_Minimum: 0.0 

diagnostics_Image-original_Maximum: 1.0 

diagnostics_Mask-original_Hash: a4b1ab8b103a6f80c85641bea7ef997f11cfd3cc 

diagnostics_Mask-original_Spacing: (0.30000001192093, 0.30000001192093, 

3.5999999046325684) 

diagnostics_Mask-original_Size: (640, 640, 19) 

diagnostics_Mask-original_BoundingBox: (1, 1, 0, 638, 637, 19) 

diagnostics_Mask-original_VoxelNum: 1777 

diagnostics_Mask-original_VolumeNum: 1330 

diagnostics_Mask-original_CenterOfMassIndex: (290.1789532920653, 324.2104670793472, 

8.489026449071469) 

diagnostics_Mask-original_CenterOfMass: (0.8694700859947062, 0.27552186732745554, -

3.0028008771197037) 

original_shape_Elongation: 0.7041086387017377 

original_shape_Flatness: 0.29880724143804394 

original_shape_LeastAxisLength: 75.73969212717414 
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original_shape_MajorAxisLength: 253.4734157133148 

original_shape_Maximum2DDiameterColumn: 198.66525257438073 

original_shape_Maximum2DDiameterRow: 149.74328626121215 

original_shape_Maximum2DDiameterSlice: 230.71249257506915 

original_shape_Maximum3DDiameter: 243.32830572916362 

original_shape_MeshVolume: 76.9095040741324 

original_shape_MinorAxisLength: 178.47282168498174 

original_shape_Sphericity: 0.029925404132764715 

original_shape_SurfaceArea: 2922.56452018285 

original_shape_SurfaceVolumeRatio: 38.000043757476526 

original_shape_VoxelVolume: 575.7480305042263 

original_firstorder_10Percentile: 0.0 

original_firstorder_90Percentile: 0.0 

original_firstorder_Energy: 0.0 

original_firstorder_Entropy: -3.203426503814917e-16 

original_firstorder_InterquartileRange: 0.0 

original_firstorder_Kurtosis: 0.0 

original_firstorder_Maximum: 0.0 

original_firstorder_MeanAbsoluteDeviation: 0.0 

original_firstorder_Mean: 0.0 

original_firstorder_Median: 0.0 

original_firstorder_Minimum: 0.0 

original_firstorder_Range: 0.0 

original_firstorder_RobustMeanAbsoluteDeviation: 0.0 

original_firstorder_RootMeanSquared: 0.0 

original_firstorder_Skewness: 0.0 

original_firstorder_TotalEnergy: 0.0 

original_firstorder_Uniformity: 1.0 

original_firstorder_Variance: 0.0 

original_glcm_Autocorrelation: 1.0 

original_glcm_ClusterProminence: 0.0 

original_glcm_ClusterShade: 0.0 
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original_glcm_ClusterTendency: 0.0 

original_glcm_Contrast: 0.0 

original_glcm_Correlation: 1.0 

original_glcm_DifferenceAverage: 0.0 

original_glcm_DifferenceEntropy: -3.2034265038149176e-16 

original_glcm_DifferenceVariance: 0.0 

original_glcm_Id: 1.0 

original_glcm_Idm: 1.0 

original_glcm_Idmn: 1.0 

original_glcm_Idn: 1.0 

original_glcm_Imc1: 0.0 

original_glcm_Imc2: 0.0 

original_glcm_InverseVariance: 0.0 

original_glcm_JointAverage: 1.0 

original_glcm_JointEnergy: 1.0 

original_glcm_JointEntropy: -3.2034265038149176e-16 

original_glcm_MCC: 1 

original_glcm_MaximumProbability: 1.0 

original_glcm_SumAverage: 2.0 

original_glcm_SumEntropy: -3.2034265038149176e-16 

original_glcm_SumSquares: 0.0 

original_gldm_DependenceEntropy: 1.5392329562896137 

original_gldm_DependenceNonUniformity: 774.1660101294316 

original_gldm_DependenceNonUniformityNormalized: 0.4356589815022125 

original_gldm_DependenceVariance: 0.8730451536531475 

original_gldm_GrayLevelNonUniformity: 1777.0 

original_gldm_GrayLevelVariance: 0.0 

original_gldm_HighGrayLevelEmphasis: 1.0 

original_gldm_LargeDependenceEmphasis: 3.4760832864378166 

original_gldm_LargeDependenceHighGrayLevelEmphasis: 3.4760832864378166 

original_gldm_LargeDependenceLowGrayLevelEmphasis: 3.4760832864378166 

original_gldm_LowGrayLevelEmphasis: 1.0 
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original_gldm_SmallDependenceEmphasis: 0.6757155330712289 

original_gldm_SmallDependenceHighGrayLevelEmphasis: 0.6757155330712289 

original_gldm_SmallDependenceLowGrayLevelEmphasis: 0.6757155330712289 

original_glrlm_GrayLevelNonUniformity: 1735.076923076923 

original_glrlm_GrayLevelNonUniformityNormalized: 1.0 

original_glrlm_GrayLevelVariance: 0.0 

original_glrlm_HighGrayLevelRunEmphasis: 1.0 

original_glrlm_LongRunEmphasis: 1.0815274161898776 

original_glrlm_LongRunHighGrayLevelEmphasis: 1.0815274161898776 

original_glrlm_LongRunLowGrayLevelEmphasis: 1.0815274161898776 

original_glrlm_LowGrayLevelRunEmphasis: 1.0 

original_glrlm_RunEntropy: 0.14890194020807546 

original_glrlm_RunLengthNonUniformity: 1663.0140642551316 

original_glrlm_RunLengthNonUniformityNormalized: 0.957345562614263 

original_glrlm_RunPercentage: 0.9764079477078915 

original_glrlm_RunVariance: 0.03044355559584275 

original_glrlm_ShortRunEmphasis: 0.9829923851148284 

original_glrlm_ShortRunHighGrayLevelEmphasis: 0.9829923851148284 

original_glrlm_ShortRunLowGrayLevelEmphasis: 0.9829923851148284 

original_glszm_GrayLevelNonUniformity: 1330.0 

original_glszm_GrayLevelNonUniformityNormalized: 1.0 

original_glszm_GrayLevelVariance: 0.0 

original_glszm_HighGrayLevelZoneEmphasis: 1.0 

original_glszm_LargeAreaEmphasis: 2.7225563909774437 

original_glszm_LargeAreaHighGrayLevelEmphasis: 2.7225563909774437 

original_glszm_LargeAreaLowGrayLevelEmphasis: 2.7225563909774437 

original_glszm_LowGrayLevelZoneEmphasis: 1.0 

original_glszm_SizeZoneNonUniformity: 873.3127819548872 

original_glszm_SizeZoneNonUniformityNormalized: 0.6566261518457799 

original_glszm_SmallAreaEmphasis: 0.8373074353732025 

original_glszm_SmallAreaHighGrayLevelEmphasis: 0.8373074353732025 

original_glszm_SmallAreaLowGrayLevelEmphasis: 0.8373074353732025 
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original_glszm_ZoneEntropy: 1.0301077546727355 

original_glszm_ZonePercentage: 0.7484524479459763 

original_glszm_ZoneVariance: 0.9374193001300242 

original_ngtdm_Busyness: 0.0 

original_ngtdm_Coarseness: 1000000.0 

original_ngtdm_Complexity: 0.0 

original_ngtdm_Contrast: 0.0 

original_ngtdm_Strength: 0.0 
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