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Abstract—Multi-Access Edge Computing (MEC) and network
slicing are vital for advancing the Fifth Generation (5G) of
cellular systems. MEC provides context awareness and reduces
the latency for communication. Network slicing allows the divi-
sion of a single network into multiple virtual networks so that
different services can be provided. A slice broker is a business
entity that buys the resources from the infrastructure providers
and sells them to the tenants. A tenant sends a request for
resources for different slices. In this work, we formulate the slice
allocation problem to increase the revenue for the slice broker.
We formulate a dynamic demand model based on the set price
changes. We consider the profit maximization of a slice broker
in the presence of Byzantine faults. Moreover, we propose the
Comparative Gradient Elimination (CGE) method in Federated
Learning (FL) for revenue maximization of the slice broker.
Simulation results show that our proposed method outperforms
the reference solution.

Index Terms—Revenue model, Network slicing, Slice broker,
Byzantine faults

I. INTRODUCTION

The Fifth Generation (5G) cellular communication provides
dynamic programming and virtualization by critical enabling
technologies, e.g., Software-Defined Networking (SDN) and
Network Function Virtualization (NFV), which attracted the
academy and industry sectors. Network slicing is the key
enabling technology for 5G, where slices are for particular ap-
plications, and network functions [1]. For making slices based
on the demand of the tenants, there are some Infrastructure
Providers (InPs) from where it is possible to buy the resources
and make the slices. Multi-access Edge Computing (MEC)
provides dynamic resource allocation for slices and reduces
latency by providing distributed cloud service facilities. In the
context of the new supply chain, a business entity named slice
broker buys the resources from InPs and works on creating
and managing the slices. Slice brokers need to consider the
economic aspects for dynamic resource allocation [2].

The economic aspects of a business entity can include cost,
revenue, and profit. Cost is the amount the entity needs to
pay to buy the resources. The revenue is the amount when
the entity receives after selling the resources. Here, the slice
broker sells network slices to the tenants, and they receive an
amount, which is revenue. The profit is the net benefit the
entity receives calculated by revenue minus the cost paid for
buying the resources.

Our paper focuses on maximizing the revenue of a slice
broker by following a revenue model dynamically. We have
a dynamic demand model which varies by the set of prices
of the resources [3]. So, we need to set the prices to max-
imize revenue. We consider an adaptive method based on
multi-agent-based learning in a federated architecture, which
helps to learn the revenue adaptively in a multi-agent-based
environment. Moreover, in this multi-agent communication
system, some agents may provide inaccurate information about
service availability and resource consumption and can make
miscalculations about any decision. The Byzantine fault is one
kind of fault that is the cause for providing this imperfect
information and miscalculation about the resources [4]. We
consider Byzantine faults in the system where some agents
send misinformation to the server and hamper learning.

In recent years, several works have considered resource
allocation based on economic aspects for 5G enabling tech-
nologies. In [5], the authors provide a solution for minimizing
the cost of the slice broker. They propose a heuristic method
for reducing the cost of buying resources from the InPs.
However, their method is not adaptive, does not consider
any dynamic pricing mechanism for demand, and no revenue
model is learning for the brokers. Furthermore, this work
does not assume any faults in the system. In [6], the authors
propose a dynamic method in a distributed way, which helps to
allocate the resources for active information flows that belong
to the different slices of different characteristics. However,
their method does not consider the revenue of the slice broker.
Also, they do not consider any adaptive pricing method, and
finally, they do not consider any faults in the system. In
[6], the authors propose an optimization process for network
slicing where slice customers’ profit and slice providers make
resource efficiency. However, there is no consideration of the
broker’s revenue, adaptive pricing, and no faults consideration
in the system. In [7], the authors consider a framework
for network slicing where slice request admission has been
considered and, simultaneously, investigating the operator’s
profit by varying the traffic. They apply Lyapunov optimization
for this problem. However, the system is not adaptive, and no
faults are considered in this case. In [8], the authors propose
an auction-based method for revenue calculation in slice based
5G cellular communication. However, they do not consider



any adaptive method and also do not consider revenue model
learning with faults, e.g., Byzantine faults.

One of the important aspects of resource allocation in net-
work slicing is the presence of Byzantine faults [9]. There are
some recent works based on resource allocation considering
Byzantine faults. In [10], the authors propose a coordinated
method for resource allocation in a multi-agent distributed net-
work. They propose Coordinate-wise Trimmed Mean (CTM)
method for aggregating the messages from the neighbors and
then filtering the malicious messages by comparing them with
some criteria. However, their method is not adaptive, and also,
there are no specific Byzantine faults considered. In [11], the
authors propose a Byzantine fault-tolerant mechanism based
on comparative gradient elimination in a multi-agent environ-
ment. Their proposed method outperforms the gradient descent
algorithm. However, their proposed method only focuses on
some specific applications. They do not consider resource
allocation in their proposal. In [3], the authors propose a
cooperative reinforcement learning method for revenue model
learning for a slice broker in the 5G-MEC system in the
presence of adversaries. However, they only consider the
security issues that arose from the attacker/intruder in the
system. They do not consider any faults in the system that
can mislead the broker about service or resource unavailability.
We consider the same problem to solve, i.e., to maximize the
broker’s profit. We consider the Byzantine faults in the system
and propose a comparative gradient elimination-based method
in a federated architecture, which provides privacy and can
also help to be fault tolerant against Byzantine faults.

To our best knowledge, our work is the first one which
considers the revenue model learning for 5G-MEC in the
presence of Byzantine faults.

In summary, the contributions of our paper are the follow-
ing:

• We address a problem considering dynamic de-
mand/request, which is adjusted based on set price
changes. We learn the revenue model in the presence of
Byzantine faults.

• We propose a solution based on comparative gradient
elimination in a federated architecture. To consider this
method in a 5G-MEC system is the main contribution.

• We compare our method with the reference solution. We
evaluate revenues by Byzantine fault learning and without
learning.

The paper is structured as follows. Section II describes
the problem of maximizing the revenue in the presence of
Byzantine faults. Section III introduces the proposed method
to solve the presented problem. Section IV presents the results
of the comparison of the proposed method with reference
methods. Finally, Section V concludes the paper.

II. PROBLEM DESCRIPTION

In our system, we consider three business entities, i.e., InPs,
a slice broker, and a slice tenant. We also consider that each
InP has one MEC system consisting of one Multi-Access Edge
Orchestrator (MEO) and several MEC Hosts (MEHs). The

slice broker instead manages a MEC federation composed of
the various MEC systems.

We consider one tenant in our scenario. However, the
problem can be generalized for multiple tenants. The tenant
sends dynamic requests of resources for the slices to the slice
broker. The slice broker buys the computational resources from
the InPs and sells them to multiple slice tenants. Here, we
assume that the slice broker has already bought resources.

We assume each MEH has one chunk of computational
resources. The set of chunks is denoted as M. The tenant
dynamically requests to the broker for an amount of compu-
tational resources that we define as slice demand and denote
as dt. Here, t represents the time interval.

At each time interval t, the system decides the amount of
chunks to be provided and the prices to sell to the tenant. The
portion of the chunk to be allocated to the tenant is denoted as
subchunk. The amount of computational resources taken from
the chunk m ∈ M at time interval t is denoted as δtm. The
subchunk price (in C/vCPU), set by the system, is represented
as ctm.

The MEO of an InP can coordinate the MEHs belonging
to that particular InP. MEHs have chunks of resources that
provide a subchunk for the requested resources for the slices.
The whole system works as a federated architecture of feder-
ated learning. MEOs work as distributed agents, sending the
gradients of losses to the server, which belong to the slice
broker. Gradients of losses are calculated by the weights and
calculated revenue at each time interval. Then, the server sends
the updated weights to the MEOs. MEHs inform the number of
subchunks to MEOs, and MEOs set the prices for that amount.
MEOs calculate the revenues and gradients. MEOs send the
gradients to the server.

Fig. 1. 5G-MEC federation under investigation

Figure 1 represents the 5G-MEC system to be considered.
The introduction of Byzantine faults will be discussed later in
this paper.

We consider a practical demand model dt, where the de-
mand changes over time based on the price changes. Our



demand varies so that if the price increases, the demand
decreases. On the other hand, when the price decreases, the
demand increases. A shocking function also influences the
demand function in a way that sometimes does not follow
the mentioned pattern.

We calculate the demand at every time interval, t based on
the weighted average price and can be computed as follows:

pt =
1

dt

∑
m∈M

δtm · ctm (1)

Based on the price-demand function in [12], we compute the
slice demand for next time interval t+ 1 as follows.

dt+1 = d0−k·pt−a·s((pt−pt−1)+)+b·s((pt−pt−1)−), (2)

where

(pt − pt−1)+ =

{
pt − pt−1, if pt > pt−1

0, otherwise
,

(pt − pt−1)− =

{
pt − pt−1, if pt < pt−1

0, otherwise
,

and where pt is the price at time interval t and pt−1 is the
price at the previous time interval. The first two terms of the
Equation (2) denote the linear demand model intercepting d0

and slope k. The second two terms model the response to a
price change between two intervals. Two coefficients a and b
denote the sensitivity to positive and negative price changes,
respectively, and s is a shock function that can be used to
specify a non-linear dependency between the price change and
demand. We assume s(·) =

√
·.

The problem of maximizing the revenue of the slice brokers
to serve the slice demand at the time interval t can be
formulated based on the Bertnard model [13]:

P : maxΦt = max
∑

m∈M
ctm · δtm, (3)

subject to

C1 : δtm ≤ ηm ∀m ∈ M,

C2 :
∑

m∈M
δtm ≤ dt (4)

where Φt is the defined revenue function and the objective
function of the problem, C1 is the constraint that limits the
size of the subchunk to the size of the related chunk, and C2 is
the constraint that limits the cumulative size of all subchunks
to the slice demand.

A. Environment

We propose a method based on Comparative Gradient
Elimination (CGE) in Federated Leaning (FL). Traditional
outlier removal techniques are based on either supervised
or unsupervised learning, which is not adaptive. MEOs are
the distributed agents that provide the local information, e.g.,
calculated gradients, to the server of the slice broker. The

server updates the weights using the gradients. MEOs calculate
the revenue and consider it their local data set Dm. The
revenue is calculated as follows for subchunk m at the time
interval t:

ztm = ctm · δtm (5)

The possible values of ztm are the data points that MEOs use
to calculate the gradients of the loss together with the weight
calculated by the server in the slice broker.

We define expected loss function as follows:

Q(wm) = Em
zm∼Dm

l(wm, zm) ∀m ∈ M (6)

The goal of our proposed method is to learn the optimal
learning parameter wm ∈ R that minimizes the Q(wm) in the
presence of Byzantine faults.

B. Presence of Byzantine Faults
For each agent in MEO, for allocation of subchunk m, there

is a collection of data points:

Dt
m = {ztm1, . . . , z

t
mK}, (7)

where K is the possible data points. For each agent, at each
time interval, the actual collection of data points is as follows:

Dt
m =

{
ztm agent is non-faulty
f t
m agent is faulty

, (8)

where f t
m is a collection of faulty data points.

We consider two types of Byzantine faults as follows.
However, the other types of Byzantine faults, e.g., delayed
information, unresponsive nodes can also be considered for
our proposed method.

1) Gradient reverse fault: Gradient reverse faults provide
a significant impact on resource allocation as it causes the
misallocation of resources. A gradient reverse fault acts as
a Byzantine fault where nodes in the network behave in an
unpredictable manner [14]. Here, the gradient reverse faulty
agent sends the server a vector directly opposite to its correct
stochastic gradients. If gtm is the calculated correct stochastic
gradients, then for the faulty agents the vector will be opposite
as f t

m = -gtm. This fault will provide the impression of service
unavailability, although the system has enough resources to
offer. This fault can also mislead the system by selling
resources at a lower price than the expected price.

2) Label-flipping fault: A label-flipping fault is a kind
of fault where nodes in the network intentionally flip the
training data’s label, creating incorrect model predictions [15].
A label-flipping fault serves as a Byzantine fault where par-
ticipating nodes manipulate the machine learning system for
their benefit. In label-flipping faults, the agents send erroneous
calculations for the stochastic gradients. This also provides
wrong information in the system about the allocation of
resources. The system also can have less revenue for allocating
resources, whereas, in the normal situation, that could be sold
at much higher prices. So, it creates a loss for the broker. Here,
we calculate the label-flipping fault by f t

m = 8 - gtm [11].



III. PROPOSED METHOD

To solve the problem presented in the previous section, our
proposed method is based on CGE. CGE is applied in an FL
architecture, where there is a collaboration between MEOs and
the server in a slice broker. Each MEO selects data from data
set Dm. Here, these data sets consist of gradients.

Stochastic gradients are calculated by K data points of
weights and calculated revenues. It can be stated as follows:

gtm =
1

K

K∑
j=1

∇l(wt
m, ztmj) ∀m ∈ M (9)

MEHs send the information, e.g., amount of resources and
capacity, to the MEO. MEOs also communicate with the server
in the slice broker. The server calculates the weight and sends
the updated weights to the MEOs. MEOs calculate the revenue
and the gradients by weights and the revenues.

For each calculated weight wm, data set, calculated revenue,
zm faces a loss, which is a loss function denoted as a real
value, lm : (wm, zm) 7→ R. The expected loss function is
defined in Equation 6.

Back propagation is used to train the neural network in
the learning algorithm for making it more efficient. So, the
selection of amount of resources, the calculated revenues,
gradients will be in a way that the proper weight will be
adjusted and the loss will be minimized [16].

In the proposed method, the server in slice broker eliminates
e number of gradients from n gradients at each time interval
t. The estimation of weights are updated by using the average
of n−e stochastic gradients. The elimination of gradients hap-
pens by calculating Euclidian norms and there is an adaptive
threshold for removing the e largest norms.

The server sorts the received gradients as follows:

||gtm1|| ≤ . . . ≤ ||gtmn−e|| ≤ ||gtmn−e+1|| ≤ . . . ≤ ||gtmn||
(10)

The server updates the weight with the n− e gradients:

wt+1
m = wt

m − θt

n−e∑
j=1

gtmj (11)

Where θt denotes the learning rate at time interval t.
Algorithm 1 shows the step-by-step procedure about how

the system works and how the training has been done. The
algorithm is run for every epoch.

IV. RESULTS AND DISCUSSIONS

We simulate the scenario with three MEOs, where each
MEO can coordinate with the three MEHs.

Table I shows all the simulation parameters. The values for
these parameters are set based on empirical studies.

We consider 150 nodes with three hidden layers, each layer
consists of 50 nodes for the neural network.

Figure 2 shows the evaluation of loss over epochs where
no Byzantine faults and with Byzantine faults are compared.

Algorithm 1 Proposed Method
for Each time interval, t do

Step S1: MEOs calculate the stochatic gradients with K
data points with the initial estimate of the weight wt

m.

gtm =
1

K

K∑
j=1

∇l(wt
m, ztmj) ∀m ∈ M

Step S2: MEOs send the calculated gradients to the server
of the slice broker.
Step S3: The server sort out the received gradients for
eliminating the largest e Euclidian norms.

||gti1|| ≤ . . . ≤ ||gtin−e|| ≤ ||gtin−e+1|| ≤ . . . ≤ ||gtin||

Step S4: The server update the weight with the n − e
gradients.

wt+1
m = wt

m − θt

n−e∑
j=1

gtmj

Step S5: The server of the slice broker broadcasts the
estimate of weight wt+1

m to all MEOs. Each non-faulty
agent i sends to the server a stochastic gradient of the
global expected loss function Qm(w).

end for

TABLE I
SIMULATION PARAMETERS AND THEIR VALUES.

Parameter Symbol Value

Available chunks |M| 9
Number of agents |N | 3
Learning rate θt 0.5
Time interval T 1000
Epoch E 20
Size of the chunks ηm 5000 vCPU
Intercept d0 5000 vCPU
Slope k 20 vCPU/C
Response coefficient for price increase a 300 vCPU/C1/2

Response coefficient for price decrease b 100 vCPU/C1/2

Fig. 2. Evaluation of loss with no faults and with faults



We can observe that with no Byzantine faults, the amount
of loss is significantly less. But on the other hand, the loss
also increases with the increase of Byzantine faults. Here, we
can see that with only one Byzantine fault, loss started with
a higher value and then decreases over the following epochs.
Finally, the learning algorithm is converged.

Fig. 3. Evaluation of revenues with no faults and with faults

Figure 3 shows the revenue over the epochs for no faults and
with Byzantine faults. We perform a simulation considering
the presence of one Byzantine node and then two Byzantine
nodes. We can observe that the revenue is increased over
the epochs with no Byzantine faults. It starts initially with
a mediocre value and then increases. This is because, over the
epochs, learning becomes more efficient. Our proposed method
helps to maximize revenue by eliminating the gradients in
federated learning. With one Byzantine faulty node, we can
observe that the initial revenue is lower than without any
faults. Then we can see an increment over the epochs and
after that a sharp decrement for the faults and finally over
the period, the method becomes Byzantine fault tolerant. The
same trend can be observed for the two Byzantine faults but
with lower revenue at every epoch. We can observe that we
can get the lowest revenue for the 2 Byzantine faulty agents.
For the Byzantine fault-tolerant property, we can observe that
even with faulty nodes, it overcomes the loss and come to a
considerable profit level.

Fig. 4. Evaluation of revenues without CGE and with our proposed method

Figure 4 portrays the evaluation of revenues without CGE
and with our proposed method. We consider here two Byzan-
tine faulty nodes among three nodes. Without CGE, there

is no gradient elimination in the system. Without gradient
elimination, the revenue goes down over the epoch. We can
observe that there is a slight decrease over the epoch and got
converged. This is because if we consider all the gradients,
then with two Byzantine faulty nodes, the gradients mislead
the system about the resources, which is the cause for the lower
revenue. On the other hand, if we eliminate the gradients based
on our proposed method, it gradually becomes Byzantine fault-
tolerant, and the revenue rises slowly over the epoch for
learning.

Fig. 5. Evaluation of revenues for distributed learning and our proposed
method

Figure 5 compares revenues based on distributed learning
and our proposed method. Here, distributed learning is clas-
sical Deep Q Learning (DQL). We consider two nodes faulty
here for both cases. By applying distributed learning over
the epoch, we can observe that there are increases and few
decreases. It is for the exploration and exploitation of learning
algorithms. We can see that in the initial epochs distributed
one outperforms the proposed method in terms of revenue.
However, due to the lack of a fault tracking system in the
distributed one, after 15 epochs, it starts to go down comparing
with the proposed method. Whereas, in our proposed method,
for two faulty Byzantine nodes, initially the revenue was not
good enough, but when over the epoch, the algorithm becomes
Byzantine fault tolerant, the revenue starts rising, and finally
we can observe that at the last few epochs, our proposed
method started outperforming the distributed one.

V. CONCLUSIONS

In a slice allocation problem, the business entity slice broker
focuses on revenue maximization by adaptively allocating the
resources based on the demand. We consider the demand
that changes dynamically based on set price changes. We
propose a CGE-based FL method for slice allocation. Our
simulation results show that our proposed method outperforms
in the case of the presence of Byzantine faults. Our proposed
method minimizes the loss and maximizes the revenue. We
also compared our proposed method with the method without
CGE, where our method outperforms in terms of revenue.
We also compared our method with distributed reinforcement
learning, where we can observe that our method outperforms
revenue.
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