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Abstract. Computational Pathology (CPATH) systems have the po-
tential to automate diagnostic tasks. However, the artifacts on the digi-
tized histological glass slides, known as Whole Slide Images (WSIs), may
hamper the overall performance of CPATH systems. Deep Learning (DL)
models such as Vision Transformers (ViTs) may detect and exclude arti-
facts before running the diagnostic algorithm. A simple way to develop
robust and generalized ViTs is to train them on massive datasets. Unfor-
tunately, acquiring large medical datasets is expensive and inconvenient,
prompting the need for a generalized artifact detection method for WSIs.
In this paper, we present a student-teacher recipe to improve the clas-
sification performance of ViT for the air bubbles detection task. ViT,
trained under the student-teacher framework, boosts its performance by
distilling existing knowledge from the high-capacity teacher model. Our
best-performing ViT yields 0.961 and 0.911 F1-score and MCC, respec-
tively, observing a 7% gain in MCC against stand-alone training. The
proposed method presents a new perspective of leveraging knowledge
distillation over transfer learning to encourage the use of customized
transformers for efficient preprocessing pipelines in the CPATH systems.

Keywords: Artifact Detection · Computational Pathology · Deep Learn-
ing · Knowledge Distillation · Vision Transformer · Whole Slide Images

1 Introduction

Histological examination of tissue samples is conducted by studying thin slices
from a tumor specimen mounted on a glass slide. During the laboratory pro-
cedures, the preparation of glass slides may introduce artifacts and variations
causing loss of visual [15,27]. Artifacts, such as air bubbles, occur when air is
trapped under the cover slip due to improper mounting procedure [16]. Eventu-
ally, the presence of air bubbles leaves an altered and fainted appearance [16,27].
During the manual assessment, pathologists usually ignore regions containing
artifacts as they are irrelevant for diagnosis.

Computational Pathology (CPATH) systems are automated systems working
with a digitized glass slide, called Whole Slide Image (WSI), as input. CPATH
systems have the potential to automate diagnostic tasks and provide a second
opinion or localize the Regions of Interest (ROIs) [14]. Different types of artifacts,
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like air bubbles, might be present on the WSI [16] and can deteriorate diagnostic
CPATH results if included in the analysis. Therefore it has been proposed to
detect and exclude artifacts as a first step before using more relevant tissue in a
diagnostic or prognostic system [15,16]. The detection and exclusion of artifacts
can be regarded as (a part of) a preprocessing pipeline, which also might include
color normalization and patching [16]. A complete preprocessing pipeline should
detect folded tissue, damaged tissue, blood, and blurred (out of focus) areas, as
well as air bubbles [16]. This might be done by an ensemble of models, one for
each artifact, or by a multiclass model. In this paper, we consider detecting air
bubbles artifact, which is not given much attention in the literature.

Deep Learning (DL) methods have shown promising results in various med-
ical image analysis tasks [4,28], and can be used for detecting artifacts in a
preprocessing pipeline. Supervised learning for generalized DL models requires
a significant amount of data and labels. In CPATH literature, little effort has
been made to annotate artifacts; thus, publicly available datasets for histological
artifacts are unavailable. Transfer Learning (TL) has been widely used for med-
ical images to deal with the lack of labeled training data [6,21]. TL methods use
the existing knowledge, such as ImageNet [2] weights, and fine-tune the model
for a different task. Although TL on ImageNet weights is useful to cope with a
lack of data, ImageNet weights are mostly available for complicated Deep Con-
volutional Neural Networks (DCNN) architectures and carry a strong texture
bias [5]. However, such DCNNs are typically computationally complex, whereas
a preprocessing pipeline, being a first step prior to diagnostic or prognostic mod-
els, should have generalized and efficient DL models with high throughput. This
is especially true with an ensemble of DCNN models for the different artifacts.

After the success in natural language processing tasks, transformers have
been given attention for vision tasks [3,17]. Vision Transformers (ViTs), using a
convolution-free approach, have surpassed DCNNs in accuracy and efficiency on
image classification benchmarks [1,3]. Unlike the convolution layer in DCNNs,
which applies the same filter weights to all inputs, the multi-head attention [30]
in ViTs attends to image-wide structural information [20]. Interestingly, ViTs
are also shown to be more robust and generalized than DCNNs [1,20]; Unfor-
tunately, the robustness and generalizability come from training on extremely
large datasets [1,3,29], which contrasts with the biomedical scenario. These lim-
itations bring us to the question: how can we train generalized ViTs on a small
histopathological dataset?.

One possible answer lies in Knowledge Distillation (KD) [10], which transfers
knowledge from a usually large teacher model to another, typically smaller, stu-
dent model. Motivated by the KD idea, we present a student-teacher recipe, as
shown in Fig 1. We propose to use KD in combination with TL for detecting air
bubbles on WSIs using a small training set. In short, we let the teacher model be
a complex ImageNet pretrained DCNN, and using KD, we train a small student
model, which is a ViT. In the inference stage, we only need the small ViT, which
is computationally efficient enough for a preprocessing pipeline implementation.
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Whole Slide Images Patches
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Fig. 1. An overview of our proposed air bubbles detection method by knowl-
edge distillation: Predefined size patches for air bubbles and artifact-free classes are
extracted from the WSI. A ViT student model is trained with the help of a DCNN
teacher model by leveraging the transference of knowledge during the training process.
The student-teacher recipe weights the teacher and student’s outputs by the tempera-
ture (T ). The overall training objective is to minimize the final loss, which is a linear
combination of student loss and distillation loss. Finally, the student model is used to
perform predictions for binary air bubbles detection task.

Our contributions in this paper can be summarized as follows:
– We train several state-of-the-art DCNNs and ViTs to compare their per-

formance on a binary air bubbles detection task. Later, we choose suitable ar-
chitectures to test our student-teacher framework.

– We conduct an in-depth comparison by initializing models with and with-
out ImageNet weights and training ViT under a standalone vs. a student-teacher
framework. We also assess the improvements in ViT‘s generalization capability
over ImageNet transfer learning.

– We run extensive experiments to test the student ViT’s performance under
different teacher models and distillation configurations on unseen data.

2 Related Work

Artifact and air bubbles detection: The detection of histopathological ar-
tifacts has largely been overlooked during the development of CPATH systems,
and the literature on air bubbles is scarce. Shakhawat et al. [11], in their quality
evaluation method, detected air bubbles in two steps. First, the non-overlapping
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affected patches were detected using a Support Vector Machine (SVM) classi-
fier. Later, the remaining patches with fainted appearance were separated using
handcrafted Gray-level Co-occurrence Matrix (GLCM) features. This work was
later extended in [24], where a pretrained VGG16 [25] network was used to
compare the handcrafted features against the CNN-based method. Their ex-
periments concluded that handcrafted features provide stable classification, but
their evaluation was based on a relatively smaller dataset. Recently, Raipuria
et al. [22] performed stress testing for common histological artifacts, including
air bubbles, using a vision transformer [29] and a ResNet [9] model. Though,
MobiletNet [12] and VGG16 [25] have been popular DCNN choices for artifact
detection [15]. DCNNs are found to be less robust than ViTs and exhibit strong
texture bias [20,22].

Knowledge Distillation (KD): Originally proposed by Hinton et al. [10]
for model compression, KD sought to extract knowledge from an ensemble of
CNN experts to a smaller two-layer CNN generalist network to make it per-
form equally well. In short, KD aims to train a small student model under the
guidance of a complicated teacher model, where the student model optimizes
its learning by absorbing the hidden knowledge from the teacher. This transfer-
ence of knowledge can be accomplished by minimizing output logits of student
and teacher networks through some distillation methods, such as logit-based,
feature-based, and relationship-based distillation methods [19].

KD helps make computationally friendly deployment algorithms, making it
interesting for many biomedical imaging algorithms. Lingmei et al. [18] proposed
a CNN model for glioma classification. They used the KD approach to compress
the model and make it suitable for deployment on medical equipment. Salehi et
al. [23] used a VGG16 [25] cloner network to calculate multi-level loss from a
source network for detecting anomalies. Their method relied on distilling inter-
mediate knowledge from the ImageNet pretrained source network. In a similar
approach, He et al. [8] used the KD technique to boost the performance of CNN
for ocular disease classification. They used fundus images and clinical informa-
tion to train a ResNet [9] teacher first and used only the fundus images to train
a similar student network later. Guan et al. [7] detected Alzheimer’s disease
by leveraging multi-modal data to train a teacher network. Their distillation
scheme improved the prediction performance of the ResNet [9] student using a
single imaging modality.

However, all these works focused on using only CNN as a student network
and did not explore the effects of different configurations and teacher networks
on the final classification outcome. In addition, the use of KD for histological
artifacts has not been investigated yet.

3 Data Materials and Method
Fig. 1 provides an overview of our air bubbles detection method using KD [10] in
a student-teacher recipe. We exploit KD for data-efficient training by leveraging
the transference of knowledge from the teacher model to the student model.
Our proposed method uses a complex DCNN as the pre-trained teacher and a
small ViT as the student when a small histological dataset is available. We are
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doing a logit-based distillation [19] since our teacher and student models are very
different. The steps of our method are further described below.

3.1 Dataset

The air bubbles dataset was prepared from 55 bladder biopsy WSIs, provided
by Erasmus Medical Center (EMC), Rotterdam, The Netherlands. The glass
slides were stained with Hematoxylin and Eosin (H&E) dyes and scanned with
Hamamatsu Nanozoomer at 40× magnification. WSIs are stored in ndpi format
with a pixel size of 0.227 µm × 0.227 µm. These WSIs were manually annotated
for air bubbles and artifact-free tissue by a non-pathologist who has received
training for the task. To prevent data leakage, the dataset was later split into
35/10/10 training, validation, and test WSIs, respectively.

3.2 Foreground Segmentation and Patching
Let I40xWSI(i) correspond to a WSI at magnification level 40x (sometimes referred
to as 400x). I40xWSI are very large gigapixel images, and it is not feasible to pro-
cess the entire WSI at once. As such, all CPATH systems resort to patching
or tiling of the image, or the ROI in the image, before further processing. Let
T : I40xWSI(i)∈R → {xi

j ; j = 1 · · · J} represent the process of patching a ROI de-
noted by R of the image I40xWSI(i) into a set of J patches, where xi

j ∈ RW×H×C and
W , H, C present the width, height, and channels of the image, respectively. In
the patching process, foreground-background segmentation was performed first
by transforming (Red, Green, Blue) RGB images to (Hue, Saturation, Value)
HSV color space. Later, Otsu thresholding was applied to the value channel to
obtain the foreground with tissue. The extracted foreground was later divided
over a non-overlapping square grid, and patches with at least 70% overlap to the
annotation region (R) were extracted.

Let D = (X,y) = {(xn,yn)}Nn=1 denote our prepared dataset of N patches
from a set of WSIs and yn ∈ {0, 1} is the binary ground truth for the n-th
instance, where 1 indicates a patch within a region marked as air bubbles. Fig 1
(step 1) shows the patches xn of 224 × 224 × 3 pixels with air bubbles and
artifact-free classes obtained from a WSI at 40x magnification.

3.3 Selecting Student-Teacher Architectures
Let‘s symbolize the student model ξ with parameters θ providing the prediction
output logits sn = ξθ(xn), and correspondingly, the teacher model φ parame-
terized by ϕ providing the output logits tn = φϕ(xn).

Our student model is a ViT, similar to the pioneering work [3], which lever-
ages multi-head self-attention mechanism [30] to capture content-dependant re-
lations across the input patch. At the image pre-processing layer, the patches
of 224 × 224 pixels are split into the non-overlapping cells of 16 × 16 pixels.
Later, the linear embedding layer flattens these cells, and positional encodings
are added before feeding the embeddings to the pile of transformer blocks, as
illustrated in Fig. 1 (step 2). Since convolutional networks have shown their effi-
cacy in image recognition tasks, transferring knowledge from a DCNN network
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can help the ViT absorb inductive biases. Therefore, we rely on popular state-of-
the-art DCNNs for selecting teacher architecture. Nevertheless, we systemically
discover appropriate student and teacher candidates during the experiments later
to demonstrate the approach’s effectiveness over TL.

3.4 Training Student under Knowledge Distillation

After selecting student and teacher architectures, we begin the process of training
the student ξ. The goal is to train ξ with the assistance of a φ to improve the
ξ‘s generalization performance using additional knowledge beyond the labels.
Our approach is similar to Hinton et al. [10] where model outputs s, and t are
normalized by a temperature T parameter before using the softmax function σ.
The increasing value of T softens the impact of the fluctuations in the output
probability distribution; therefore, more knowledge can be devolved with each
input xn. Instead of using softmax on sn, we take advantage of the log-softmax
function σ∗, which stabilizes the distillation process by penalizing for incorrect
class. σ∗ also adds efficiency by optimizing gradient calculations.

The output logits for input patch xn can be written as;

sn = ξθ(xn) and tn = φϕ(xn) (1)

Let the log-softmax and softmax on logits, σ∗(s/T ) and σ(t/T ), for each
element can be defined as (see Eq. (2));

σ∗(si/T ) = log

(
exp (si/T )∑c
j=1 exp (sj/T )

)
and σ(ti/T ) =

exp (ti/T )∑c
j=1 exp (tj/T )

(2)

where c is the total number of classes and T is the temperature. The class
probabilities at the output of the ξ and φ model can thus be written as;

pξ = σ∗(s/T ) = σ∗(ξθ(x)) and pφ = σ(t/T ) = σ(φϕ(x)) (3)

The student loss Lstudent (Eq. (4)) provides hard targets and is obtained by
applying cross entropy LCE on ground truth y, and s when T is set to 1;

Lstudent = LCE(y, s) = −
c∑

i=1

yi · log(σ∗(si)) (4)

Distillation loss Ldistillation provides the soft targets and is computed from the
pξ and pφ by applying Kullback-Leibler divergence KLD. Since the outputs from
ξ and φ were normalized by T , we multiply the loss with T 2 to maintain their
relative contribution;

Ldistillation = T 2 ×KLD(pξ∥pφ) = T 2 ·
c∑

i=1

pξi log
pξi

pφi

(5)

The final loss function, as shown in Eq. (6), is a weighted average of student and
distillation losses where α ∈ [0, 1);

LFinal = α× Lstudent + β × Ldistillation · : β = 1− α (6)
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High entropy in soft targets offers significantly more information per training
patch than hard targets [10], allowing the student ViT to train with fewer data
and a higher learning rate. Therefore, using a smaller alpha can be beneficial if
the ξ is trained from scratch. Our standalone training setup for baseline compar-
ison can be obtained by putting α and T equal to one and replacing log softmax
with softmax function.

3.5 Prediction

Once the final loss is minimized based on the experimental setup (defined in
Sec. 4), we find predictions from the student ξ by setting T equal to one. For an
unseen test patch x∗, output can be defined as (7);

ŷs = argmax(σ(s∗)) = argmax(σ(ξθ(x∗))) ∈ {0, 1} (7)

4 Experimental Setup
Implementation Details: The patch extraction was accomplished using the
HistoLab library. Extracted patches were normalized to ImageNet [2] mean and
standard deviation. We augmented data at every training epoch using random
geometric transformations, such as rotations, horizontal and vertical flips. ViTs
were borrowed from Timm Library, and the experimental setup was built on
the Pytorch. We used four variants of ViTs with different parametric depths
from [3,29], where the classifier was replaced by a fully connected (FC) layer.
We used four state-of-the-art DCNNs with varying parametric complexity. All
DCNN backbones were initialized with ImageNet [2] weights, and classifiers were
replaced with three-layer FC classifiers. All classifiers were initialized with ran-
dom weights. After hyper-parameter exploration, the final parameters were set
to a batch size of 64, SGD optimizer, ReduceLROnPlateau scheduler with a
learning rate of 0.001, dropout of 0.2, cross-entropy loss, and early stopping
with the patience of 20 epochs on validation loss to prevent over-fitting. For KD
parameters, values of T ∈ {2, 5, 10, 20, 40} and α ∈ {0.3, 0.5, 0.7} were explored.
The best model weights are used to report the results. The NVIDIA GeForce
A100 SXM 40GB GPU was utilized for training all models.

Evaluation Metrics: We evaluate the presented method using accuracy,
F1-score, and Mathew Correlation Coefficient (MCC). Let TP, FN, FP, and TN
describe true positive, false negative, false positive, and false negative predic-
tions. The accuracy, termed as (TP + TN)/(TP + FN + FP + TN), is the
ratio of correct predictions by the model. F1 is the harmonic mean, defined as
2 ·(precision ·recall)/(precision+recall) where Recall = TP/(TP+FN) and Pre-
cision = TP/(TP+FP ). MCC is an informative measure in binary classification
over imbalanced datasets and is defined as Eq. (8).

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
∈ [−1, 1] (8)
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Table 1. Results from Exp. 1: Four variants of Deep Convolutional Neural Networks
(DCNNs) and Vision Transformers (ViTs), with increasing parametric complexity, are
trained for the air bubbles detection task. The best outcomes in every section are
bolded. ViT-tiny and MobileNet architectures provide the best results on the test set.

Validation Set Test Set
Architecture Param.

(#) Acc.(%) F1 MCC(⇑) Acc.(%) F1 MCC(⇑)

Deep Convolutional Neural Networks (DCNNs)

MobileNetv3 [12] 3.52M 98.28 0.983 0.965 93.88 0.945 0.876
EfficientNet [26] 20.89M 96.52 0.966 0.931 92.54 0.935 0.851
DenseNet161 [13] 27.66M 98.12 0.982 0.962 91.32 0.925 0.828
VGG16 [25] 136.42M 98.34 0.984 0.966 92.31 0.932 0.846

Vision Transformers (ViTs)

ViT-tiny [29] 5.52M 98.67 0.987 0.973 92.35 0.933 0.847
ViT-small [29] 21.66M 97.01 0.971 0.941 91.16 0.922 0.822
ViT-large [3] 303.30M 98.12 0.982 0.962 92.08 0.928 0.839
ViT-huge [3] 630.76M 95.85 0.962 0.918 91.43 0.925 0.829

Results from Literature (Validation Accuracy (%))

DeiT-S in [22] 91.5-92 ResNet-50 in [22] 88-89 VGG16 in [24] 87.33

5 Results and Discussion

5.1 Exp. 1 : Baseline Experiments for Architecture Decision
In this experiment, we only apply TL to a set of architectures. We evaluate state-
of-the-art DCNNs, namely MobileNetv3 [12], EfficientNet [26], DenseNet161 [13]
and VGG16 [25] architectures and a family of four ViTs [3,29], with increasing ar-
chitecture size. Exp 1 provides a baseline as well as helps to choose architectures
for the KD setup in later experiments. Table 1 reports the results of the vali-
dation and test set. DCNNs largely exceed the performance of ViTs, where top-
performing ViT lags the generalization performance of top-performing DCNNs
by 3% in MCC. Moreover, architectures with sizeable parameters like VGG16
and ViT-tiny and MobileNet, despite being architectures with fewer parameters,
emerge as appropriate student and teacher candidates, respectively, based on the
test results and outperform the results from the literature.

5.2 Exp. 2 : How Important is Teacher‘s Knowledge?
This experiment evaluates the impact of existing teacher knowledge in the KD
process to assess the real-life analogy where good teachers make good students.
Therefore, we initialize MobileNet teachers with no knowledge (scratch), knowl-
edge from a general domain (ImageNet), knowledge from another WSI artifact
(damaged tissue [15]), and finally, domain-relevant knowledge (air bubbles) from
the previous experiment. In addition, we also select VGG16 with air bubble
knowledge as a teacher to assess the effect of highly parametric DCNN in the
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Table 2. Results from Exp. 2: Knowledge Distillation (KD) outcome for selected
teacher and student candidates from Exp.1. The values of α, T are fixed at 0.5 and 10,
respectively. The best results in every part are marked in bold, and the second best is
underlined. ViT-tiny, with two scratch and ImageNet initialization, is used for baseline
comparisons. Two teachers (MobileNet and VGG16) with air bubbles knowledge are
used. While MobileNet is also initialized with knowledge of other domains to evaluate
the importance of teachers’ knowledge.

Validation Set Test Set
Architecture (Initial.)

Acc.(%) F1 MCC(⇑) Acc.(%) F1 MCC(⇑)

Baseline (Initial.) - Standalone training
ViT-tiny (Scratch) 96.13 0.963 0.922 91.51 0.925 0.829
ViT-tiny (ImageNet [2]) 98.67 0.987 0.973 92.35 0.933 0.847

Teacher (Initial.) - Student [ViT-tiny (Scratch)]
MobileNet (Scratch) 96.13 0.962 0.924 87.92 0.889 0.756
MobileNet (ImageNet [2]) 95.58 0.957 0.914 92.31 0.927 0.848
MobileNet (Damaged [15]) 76.8 0.785 0.533 49.23 0.608 -0.075
MobileNet (Air bubbles) 98.01 0.981 0.960 95.25 0.957 0.904
VGG16 (Air bubbles) 97.18 0.973 0.944 93.42 0.940 0.867

Teacher (Initial.) - Student [ViT-tiny (ImageNet)]
MobileNet (Scratch) 98.73 0.983 0.971 93.38 0.941 0.866
MobileNet (ImageNet [2]) 98.62 0.987 0.972 93.40 0.942 0.867
MobileNet (Damaged [15]) 50.08 0.211 0.09 35.51 0.116 -0.294
MobileNet (Air bubbles) 98.61 0.987 0.973 95.60 0.961 0.911
VGG16 (Air bubbles) 98.67 0.986 0.972 94.19 0.948 0.882

KD process. For this experiment, the values of α, T are fixed at 0.5 and 10,
respectively. The student is a ViT-tiny architecture initialized with random and
ImageNet weights separately.

Table 2 exhibits that KD remarkably improves ViT‘s classification ability.
Even without ImageNet knowledge, ViT-tiny, under the KD framework, sur-
passes all metrics under both MobileNet and VGG16 teachers. However, the
best results are obtained using the MobileNet teacher, ascertaining that hid-
den knowledge can be easily distilled from a simpler architecture. Interestingly,
teachers with knowledge other than the relevant domain (air bubbles) produce
poorly performing student. Although the student with ImageNet knowledge does
not indicate gain on the validation results relative to the baseline, it achieves 3%
and 7% improvement in F1 and MCC scores on the test set, respectively.

Overall, the test results demonstrate that the KD is promising to train gen-
eralized ViT-tiny with little data, even without pretrained weights. ViT sig-
nificantly enhances its generalization against the baseline when trained in a
standalone setting. Especially when the teacher is enriched with the knowledge
related to the task. KD, on top of ImageNet TL, provides a marginal gain in the
performance of ViT-tiny, overcoming the reliance on pretrained weights.
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5.3 Exp. 3 : Influence of KD Parameters
Since the initialization of teachers with air bubbles knowledge has been shown
to improve the learning process, it would be interesting to assess the influence
of DCNN teachers under the different KD parameters (T and α). In this ex-
periment, we chose T ∈ {2, 5, 10, 20, 40} and α ∈ {0.3, 0.5, 0.7} to estimate the
influence of teacher‘s output on ViT student, trained from scratch. The baseline
experiment corresponds to α and T = 1 and uses sigmoid on ViT outputs. Fig. 2
(a) and (b) show MCC values as the effect of temperature on simple DCNN
like MobileNet and complex DCNN like VGG16. Though the ViT-tiny student
trained under the VGG16 teacher scores better on the validation set when T is
high, the MobileNet teacher reveals better transference of hidden knowledge on
all T values on the test set. Fig. 2 (c) depicts the effect of α on ViT’s generaliza-
tion results. All α values give better results than the baseline, concluding that
including distillation loss improves training compared to only student loss.

To sum up, the teacher‘s outcome strongly influences the student‘s general-
izability in the KD process. Most of the T and α values deliver a noticeable gain
over the standalone training in our case. However, intermediate T values and
assigning equal weight to student and distillation loss is the most advantageous.

(a) (b) (c)

Fig. 2. Results from Exp. 3: Knowledge Distillation (KD) improves the perfor-
mance of the Vision Transformer (ViT-tiny) under the supervision of both MobileNet
and VGG16 teachers. (a) and (b) shows an improved performance from the baseline
(standalone training from scratch), under all temperature (T ) values, on validation and
test set. (c) depicts the influence of giving higher/lower weightage to distillation loss
from the teacher network (see Sec. 3). The MobileNet teacher, despite being simpler
architecture, enriches ViT-tiny‘s generalization capability on all chosen α and T values.

6 Conclusion and Future Work
This paper presents the Knowledge Distillation (KD) to boost the generalization
performance of small Vision Transformers (ViTs) on a small histopathological
dataset. The main motivation is to create a well-performing and efficient prepro-
cessing pipeline that requires a generalized and computationally-friendly model.
We evaluated various pretrained DCNNs and ViTs for the air bubbles artifact
detection task. ViTs, trained in a standalone setting, underperform DCNNs on
unseen data. Our approach exploits the KD, in the absence of pretrained weights,
to enhance the performance of ViT by training under the guidance of a DCNN
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teacher. Our analysis found that KD provides significant gain under most dis-
tillation settings when the teacher holds the knowledge of the same task. In
conclusion, the ViT, when trained under KD, outperforms its state-of-the-art
DCNN teacher and its counterpart in standalone training.

In future work, the method can be developed and tested on larger cohorts
of histological data with stain variations and to detect multiple artifacts. More-
over, artifact detection by ViT trained under the student-teacher recipe can be
combined as a preprocessing step with a diagnostic or prognostic algorithm in
the computational pathology system.
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