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� Increased generalised theta with posterior pre-alpha relative power are reproducible findings in Parkinson’s Disease.
� Functional Data Analysis is a potential tool to overcome potential limitations of epochs averaging in rs-EEG spectral analysis.
� Functional Data Analysis constitutes a reliable method to analyse epoch-to-epoch variability of the rs-EEG.
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Objective: This study aims 1) To analyse differences in resting-state electroencephalogram (rs-EEG) spec-
tral features of Parkinson’s Disease (PD) and healthy subjects (non-PD) using Functional Data Analysis
(FDA) and 2) To explore, in four independent cohorts, the external validity and reproducibility of the find-
ings using both epoch-to-epoch FDA and averaged-epochs approach.
Methods: We included 169 subjects (85 non-PD; 84 PD) from four centres. Rs-EEG signals were prepro-
cessed with a combination of automated pipelines. Sensor-level relative power spectral density (PSD),
dominant frequency (DF), and DF variability (DFV) features were extracted. Differences in each feature
were compared between PD and non-PD on averaged epochs and using FDA to model the epoch-to-
epoch change of each feature.
Results: For averaged epochs, significantly higher theta relative PSD in PD was found across all datasets.
Also, higher pre-alpha relative PSD was observed in three of four datasets in PD patients. For FDA, similar
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findings were achieved in theta, but all datasets showed consistently significant posterior pre-alpha dif-
ferences across multiple epochs.
Conclusions: Increased generalised theta, with posterior pre-alpha relative PSD, was the most repro-
ducible finding in PD.
Significance: Rs-EEG theta and pre-alpha findings are generalisable in PD.
FDA constitutes a reliable and powerful tool to analyse epoch-to-epoch the rs-EEG.

� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Parkinson’s Disease (PD) is one of the most frequent neurode-
generative disorders, with an estimated prevalence in 2019 of 8.5
million people worldwide, an increase of up to 155% compared
to 1990 estimations. Thus, a remarkably growing PD-related bur-
den on the whole society, including patients, family caregivers,
and the healthcare system, has been pointed out (Ou et al.,
2021). Strategies for managing neurodegenerative disorders,
including PD, may benefit from non-expensive, non-invasive
biomarkers that can complement clinical-based diagnosis, provid-
ing valuable insights for timely detection, study inclusion, and
therapeutic success in clinical trials, as well as prognosis (Law
et al., 2020).

In addition to protein aggregation and accumulation, a shared
phenomenon in most types of neurodegenerative disorders is a
continuum of heterogeneous clinical phenotypes that progress to
a dementia syndrome, with either prodromal or concomitant neu-
ropsychiatric symptoms. From a structural and functional perspec-
tive, progressive cholinergic dysfunction is a common feature in
those neurodegenerative diseases that usually lead to dementia,
such as Alzheimer’s Disease (AD), Dementia with Lewy Bodies
(DLB), and PD dementia (PDD) (Amalric et al., 2021; Kehagia
et al., 2012; Schumacher et al., 2020b). Interestingly, a recent
report on neuroimaging showed structural and functional abnor-
malities of cholinergic systems in de-novo PD patients and those
diagnosed with PD mild cognitive impairment (PD-MCI), support-
ing this continuum of neurodegeneration-related changes (van
der Zee et al., 2022).

Considering the lack of availability of expensive neuroimaging
devices, and given the potential portability, non-expensiveness,
non-invasiveness, and high acceptability of electroencephalogram
(EEG) devices, many researchers have explored cholinergic-
related functional abnormalities in neurodegenerative disorders
using EEG recordings during task-free conditions such as keeping
the eyes closed or open in resting-state EEG (rs-EEG). Thus, spectral
analysis of rs-EEG signals represents one of the relatively standard
and well-operationalised approaches in sensor-level analysis.

Recently, rs-EEG correlates of cholinergic dysfunction were
explored in dementia patients. Schumacher et al. reported signifi-
cant associations between spectral features of rs-EEG (i.e. mean
reactivity of alpha power in occipital channels) and the volumes
of the nucleus basalis of Meynert, mainly observed in the PDD
group (Schumacher et al., 2020b). Similarly, in cognitively normal
PD, and PD-MCI patients, the mean relative power in the fast-
theta band (5.5 Hz to 8 Hz), deemed ‘‘pre-alpha” (Bonanni et al.,
2008), seems to be associated with volumes of basal forebrain
cholinergic nuclei independently of cognitive diagnostic status
(Rea et al., 2021). Thus, many authors have used this cholinergic-
dysfunction model to explain PD-related and DLB-related spectral
findings of slowing down in the rhythms of posterior derivations
(Jaramillo-Jimenez et al., 2021; Massa et al., 2020; van der Zande
et al., 2018).

One of the advantages of EEG against functional neuroimaging
techniques is the higher time resolution achieved with EEG. Also,
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most spectral features, such as power spectral density (PSD) band
powers, are usually computed from many epoch PSD vectors and
frequently averaged at the end of feature extraction to get a sum-
mary/mean estimation for each sensor across all epochs. The ratio-
nale behind this is to increase the signal-to-noise ratio by reducing
the epoch-to-epoch variability of the PSD and derivative features
(Rodriguez et al., 1999). However, this approach may obscure
important information since the epoch-to-epoch spectral represen-
tations of the rs-EEG may better describe time stability or variabil-
ity of spectral features in clinical and healthy populations. As a case
in point, Compressed Spectral Arrays (CSA) are epoch-to-epoch
graphical representations of the PSD which have been used in
DLB to show patterns of frequency shifting and variability, as well
as changes in the relative power of specific sub-bands (Bonanni
et al., 2008).

Previous omnibus epochs and channel averaging approaches
may have also been applied due to limitations in traditional multi-
variate statistics. However, several statistical alternatives can
account for temporal-related information by modelling spectral
features as a function of each epoch rather than averaging the
PSD across all the rs-EEG segments. Such functional data analysis
(FDA) has been recently implemented in functional neuroimages
(Tian, 2010) as well as event-related EEG data (Zhang et al.,
2020). Despite the extended use of relative band powers and peak
frequency as often explored features of the rs-EEG spectral analy-
sis, we are unaware of studies using the FDA to model and compare
these features in neurodegenerative disorders such as PD.

With all the above, this study aims 1) To identify differences in
the rs-EEG spectral features of PD and non-PD healthy subjects
using FDA and 2) To explore, in four independent cohorts, the
external validity and reproducibility of the above spectral findings
using both FDA and conventional averaged-epochs methods.

Considering our preliminary findings in one of these cohorts,
where PD subjects exhibited a more pronounced slowing down
(lower alpha/theta ratio) than non-PD control subjects in averaged
epochs, we hypothesise that: 1) FDA will identify a more pro-
nounced slowing down in the PD group than in the controls, repre-
sented by spectral features such as posterior pre-alpha power,
dominant frequency, and alpha/theta ratio; and 2) Specific features
of rs-EEG that reflect PD-related spectral slowing down in
averaged-epochs approach, may yield more generalisable effects
using FDA, hence, more external validity across datasets from dif-
ferent centres.
2. Methods

2.1. Study design and settings

This manuscript presents a secondary analysis of four cross-
sectional studies conducted in three countries (United States of
America, Finland, and Colombia) to examine PD vs non-PD
differences.

Study settings, locations, and periods of data collection in the
primary studies are listed below for each subset:

http://creativecommons.org/licenses/by/4.0/
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2.1.1. California dataset
This dataset was collected in 2013. PD subjects were recruited

from Scripps Clinic in La Jolla, California, and non-PD healthy con-
trols were recruited from the local community or the patients’
spouses. Written informed consent was provided by all partici-
pants, with the approval of the University of California, San Diego
(George et al., 2013).

2.1.2. Finland dataset
This dataset was collected in 2018. PD patients and 20 non-PD

healthy controls were recruited at the University of Turku, and
Turku University Hospital, Turku, Finland (Railo et al., 2020). The
local committee provided ethical approval for this research project,
following the Declaration of Helsinki principles.

2.1.3. Iowa dataset
The dataset was collected from 2017 to 2019. PD patients and

non-PD healthy controls were recruited at the University of Iowa,
Narayanan Lab (Anjum et al., 2020; Narayanan, 2020). All individ-
uals signed a written informed consent form approved by the
Office of Institutional Review Board prior to inclusion in the pri-
mary study.

2.1.4. Medellin dataset
The dataset was collected in 2016 in Medellin, Colombia. PD

subjects were recruited from the outpatient neurology service of
the Group of Neurosciences of Antioquia and the Group of Neu-
ropsychology and Behavior, School of Medicine – University of
Antioquia. Non-PD healthy subjects were recruited from local com-
munity volunteers and spouses of the patients. The study had the
approval of the Ethical Research Committee of the local University.
All participants signed informed consent before enrolment in the
study. Our group has previously studied this data; see details else-
where (Carmona Arroyave et al., 2019; Jaramillo-Jimenez et al.,
2021).

2.2. Participants

A total sample of 169 subjects (85 non-PD; 84 PD) was included.
Other neuropsychiatric disorders than PD and conditions affect-

ing the rs-EEG were exclusion criteria. Eligibility criteria and the
number of patients in each dataset are stated below:

2.2.1. California dataset
Clinical diagnosis of PD was made by a specialist in movement

disorders at the PD and movement disorders department of the
institution mentioned above (operationalised diagnostic criteria
were not reported) (George et al., 2013; Jackson et al., 2019). PD
patients were described as clinically typical (with mild to moder-
ate severity of the disease) and cognitively normal according to
screening tests for global cognitive performance (see section 2.3.
Clinical assessment) (George et al., 2013). Initially, 32 individuals
(16 non-PD; 16 PD) were matched by age, sex, global cognitive per-
formance, and handedness. However, one patient was excluded
from the primary study due to facial dyskinesia. Thus, our analysis
included available data for 31 individuals (16 non-PD; 15 PD). Both
clinical and rs-EEG assessments were collected during the ON
phase of levodopa treatment for the PD group.

2.2.2. Finland dataset
PD patients were diagnosed either using the United Kingdom

Brain Bank criteria (Gibb and Lees, 1988) or the Movement Disor-
der’s Society (MDS) criteria (Postuma et al., 2015) for the clinical
diagnosis of PD (Railo et al., 2020). Forty subjects were recruited
(20 non-PD; 20 PD), all with spared cognition according to screen-
ing tests for global cognitive performance (see section 2.3. Clinical
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assessment). Age-matching was controlled in the primary study,
but not sex, global cognition, or handedness. 13 PD subjects were
assessed in the OFF phase, and the remaining patients were in
the ON phase. For one PD patient, rs-EEG was not saved due to
technical issues (Railo et al., 2020) and was not included here. Also,
the rs-EEG from one non-PD participant could not be processed
due to the bad quality of the recording (>60% of bad channels for
interpolation). Therefore, we included a sample of 38 subjects
(19 non-PD; 19 PD) in our study.

2.2.3. Iowa dataset
Clinical diagnosis of PD was conducted following the United

Kingdom Brain Bank criteria (Anjum et al., 2020; Gibb and Lees,
1988; Singh et al., 2020), but information about cognitive diagnosis
status was not available. A total sample of 28 individuals was
recruited (14 non-PD; 14 PD) and included in our analysis. All PD
subjects were examined clinically and with rs-EEG during the ON
phase. The non-PD and the PD group were matched for age and
sex and had comparable education, as reported by the authors of
the primary study (Anjum et al., 2020).

2.2.4. Medellin dataset
Two neurologists and a trained physician made the clinical

diagnosis of PD following the MDS criteria (Jaramillo-Jimenez
et al., 2021; Postuma et al., 2015). Non-PD participants were volun-
teers selected from an open call. Seventy-two subjects were
recruited (36 non-PD; 36 PD) and included in our analysis. Among
PD subjects, 14 PD-MCI individuals were included (see section 2.3.
Clinical assessment). Individuals were age, sex, and education
matched. Clinical and electrophysiological assessments for the PD
group were conducted in the ON phase.

2.3. Clinical assessment

In each dataset, we characterised demographics and common
clinical variables such as Levodopa Equivalent Daily Dose (LEDD)
(Tomlinson et al., 2010), motor subscale Unified Parkinson’s Dis-
ease Rating Scale - Part III (UPDRS-III) (Goetz, 2003), and the global
cognitive performance score of either Mini-Mental State Examina-
tion (MMSE) (Folstein et al., 1975) or Montreal Cognitive Assess-
ment (MoCA) (Nasreddine et al., 2005). Although the cognitive
performance was assessed in all centres, most datasets did not pro-
vide information about the cognitive diagnosis of PD or non-PD
individuals. In the Medellin dataset, the PD-MCI subjects were
diagnosed using MDS taskforce level I criteria (Litvan et al., 2012).

2.4. Rs-EEG recordings and signal preprocessing:

Open repositories store the raw rs-EEG data from Iowa (Naraya-
nan Lab) (Anjum et al., 2020; Narayanan, 2020), California (Open-
Neuro) (Rockhill et al., 2021), and Finland (OSF platform) (Railo,
2021). Details on the Medellín dataset (not openly available) can
be found elsewhere (Jaramillo-Jimenez et al., 2021).

Different headsets and amplifiers were used for acquisition as
follows: California dataset (BioSemi ActiveTwo system), Finland
dataset (NeurOne Tesla), Iowa dataset (Brain Vision system), and
Medellin dataset (Neuro Scan Labs - Synamps2).

Signals were recorded with wet electrode caps, placed following
the international system 10–20montage. The number of electrodes
in each dataset ranged from 29 to 64. There were 32 common
channels within the California, Finland, and Medellín dataset, as
follows: AF3, AF4, Fp1, Fp2, F7, F8, F3, Fz, F4, FC1, FC2, FC5, FC6,
C3, Cz, C4, CP1, CP2, CP5, CP6, T7, T8, PO3, PO4, P7, P8, P3, Pz, P4,
O1, Oz, and O2. In the Iowa recordings, some of these electrodes
could not be analysed, resulting in 29 channels for this dataset
(i.e., Pz was used as the reference, and PO3 and PO4 channels were
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unavailable for all subjects). See Supplementary Figure 1. Rs-EEG
signals from California, Finland, and Medellín were recorded dur-
ing the eyes closed condition, while Iowa recordings were under
eyes open.

All the above datasets were standardised following the Brain
Image Data Structure (BIDS) specification (Pernet et al., 2019) to
operationalise subsequent analysis steps.

For preprocessing of all rs-EEG signals, we used a Python imple-
mentation of an already validated workflow previously published
by our group (Jaramillo-Jimenez et al., 2021; Suarez-Revelo et al.,
2018, 2016). Briefly, we built our fully automated pipeline by
wrapping multiple preprocessing tools. Initially, robust average
re-referencing, adaptative line-noise correction, and bad channel
interpolation were performed using a Python reimplementation
of the MATLAB PREP pipeline (Bigdely-Shamlo et al., 2015) done
by the authors of the PyPREP library (Appelhoff et al., 2022). The
goal of average re-referencing is to get a comparable reference
scheme across datasets. Nevertheless, the average reference can
be affected by noisy channels. Thus, the main goal of the PyPREP
pipeline is to estimate a robust average reference by excluding
these noisy channels from it. After PyPREP, a wavelet-enhanced
Independent component analysis (ICA) artefact smoothing stage
was carried out (Castellanos and Makarov, 2006). Thus, a 1 Hz
high-pass Finite Impulse Response (FIR) filter was conducted to
remove low-frequency drifts that would affect the following ICA
stage. Then the FastICA algorithm, available at the MNE library
(Gramfort et al., 2013), was applied to obtain both artifactual and
brain components from the EEG signal. These components were
then decomposed into wavelets, and wavelet thresholding
smoothed out strong artefacts in the data (such as those originat-
ing from muscular or eye-blink components). Later, the signal
was low-pass filtered at 30 Hz. Afterwards, five seconds-length
epochs (5 s epochs) were segmented from the rs-EEG recordings.
Finally, the automatic rejection of artifactual epochs was con-
ducted as the last step of our pipeline, based on signal parameters
such as extreme amplitude and spectral power values and statisti-
cal features like linear trends, joint probability, and kurtosis.

The number of available epochs in each dataset variated
depending on each centre’s protocols. Thus, the number of avail-
able 5 s epochs for each dataset was defined considering the com-
mon number of epochs across all subjects. For the California
dataset, we included 28 epochs; for Finland, 19 epochs were anal-
ysed. In the Iowa dataset, 17 epochs were available, while the
Medellin dataset had 44 epochs.

2.5. Spectral features extraction

Preprocessed signals were down-sampled at a common sam-
pling rate of 500 Hz. For each of the included 5 s epochs, the PSD
vectors were obtained at the sensor level using the psd_multitaper
function implemented in MNE with adaptive filters, full normalisa-
tion (length and sampling rate), and a low_bias parameter
(Gramfort et al., 2013). Then, for the PSD vectors of each epoch,
the relative PSD in each frequency band was obtained using the
bandpower function from the Yet Another Spindle Algorithm (YASA)
library. This function computes the relative power of a given fre-
quency band (i.e. estimated band power/total power within the1
to 30 Hz bandwidth) by approximating its area under the PSD
curve using the composite Simpson’s rule (i.e. decomposing the
band-indexed area with several parabolas and then sum the area
of these parabolas) (Vallat and Walker, 2021). Relative PSD was
expressed as 0 – 1 values in the delta (1 - < 4 Hz), theta (4 - <
8 Hz), alpha (8 - < 13 Hz), and beta (13 - < 30 Hz) band, as recom-
mended by the International Federation of Clinical Neurophysiol-
ogy guidelines for rs-EEG spectral analysis in clinical research
(Babiloni et al., 2020a). Similarly, we assessed other relative PSD
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features, such as the ratio between alpha and theta relative PSD
(Jaramillo-Jimenez et al., 2021). Also, we explored the potential
effects of the theta sub-bands. Thus, we divided the theta band into
slow-theta (4 - < 5.5 Hz) and fast-theta sub-bands, also defined as
the ‘‘pre-alpha” sub-band (5.5 - < 8 Hz) (Bonanni et al., 2008), and
estimated the relative PSD in each band.

Additionally, we quantified the dominant frequency (DF) as the
frequency with the maximum peak in the vector of PSD (Peraza
et al., 2018; Schumacher et al., 2020a). For DF estimation, we used
the Welch method with 50% overlap and a Hamming window with
a frequency resolution of 0. 5 Hz.

Often, authors average the PSD vectors of all the available
epochs/windows to increase the signal-to-noise ratio and get spec-
tral features representing the whole recording time. These result-
ing PSD vectors represent each channel’s mean (or median). The
averaged-epochs PSD vectors are then used to compute the relative
PSD by frequency band and the DF and DFV (Bonanni et al., 2008;
Rodriguez et al., 1999; Schumacher et al., 2020a). Following this
conventional ‘‘averaged-epochs approach”, all the abovementioned
spectral features were quantified in each channel’s mean/averaged
PSD vector. Consequently, for the traditional averaged-epochs
approach, DFV was defined as the standard deviation of the DF (ob-
tained in the averaged-epochs PSD vector of each channel) (Peraza
et al., 2018; Schumacher et al., 2018). On the other side, we quan-
tified all the above features in the PSD vectors of each available
epoch for the FDA approach. Also, in the FDA, we defined DFV as
the absolute value in Hertz of the epoch-to-epoch difference in
the DF (obtained in the PSD vectors of each epoch).

2.6. Statistical analysis

All statistical analyses were performed in the RStudio environ-
ment, running R version 4.2.1 (R Core Team, 2021). For statistical
significance, a multiple-testing corrected alpha below 0.05 was
considered.

Clinical and demographic group-related differences in the non-
PD and PD groups using independent samples t-tests, Mann-
Whitney U tests, or Chi-square tests according to the variables’ dis-
tribution. Differences in age and clinical variables like UPDRS-III,
disease duration, and LEDD were also assessed between datasets.

2.6.1. Averaged-epochs analysis of spectral features:
The conventional procedures for spectral analysis in fixed fre-

quency bands require a logarithmic transformation of the relative
PSD to achieve normal distributions (Schumacher et al., 2018).
Thus, all the relative PSD values xð Þ were Log xð Þ transformed for
statistical analysis.

To compare the averaged-epochs spectral features between
non-PD and PD, we conducted a two-tailed independent samples
t-test. To correct for multiple hypotheses testing, we used the False
Discovery Ratio (FDR) method with a corrected significance thresh-
old of 0.05 (setting the total number of channels in each dataset as
the total number of comparisons) (Benjamini and Hochberg, 1995).

Given the matched design of most of the primary studies, we
did not conduct any additional subject matching in this secondary
analysis.

2.6.2. Functional data analysis of spectral features
After feature extraction, the relative PSD in each band and the

DF and DFV estimations were modelled epoch-to-epoch using
FDA (Ramsay and Silverman, 2005).

The idea behind FDA is to express these spectral features as a
time series of observations across epochs in the form of functional
means by each channel and each diagnostic subgroup. Thus, in
FDA, the data is a set of smoothed curves constructed from regres-
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sions, optimised by cross-validation, instead of a set of vectors, as
in classical multivariate analysis (Ullah and Finch, 2013).

A B-spline smoothing process was used (a set of k-functions
/kf gk2N), which fits a polynomial of degree m to convert the data
(i.e. spectral features) in a smoothed curve as a function of w (i.e.
epochs). These smoothed curves are hereafter referred to as func-
tional data.

The bases of B-Splines (Eubank, 1999) allow approximation of
all the spectral features, thus facilitating their handling. Its charac-
teristics are based on the following properties:

� Each element of the base /k wð Þwill be a Spline function of order
m and partition s.

� Any linear combination of Splines functions is a Spline function.
� Any Spline function of order m on the partition s can be
expressed as a linear combination of the basis functions.

The functional data then is defined as a basis of k-functions
/kf gk2N such that any function can be represented by a linear com-
bination of it,

x wð Þ ¼
XK

k¼1

ck/k wð Þ

The optimal number of bases (k) to compute functional data
was defined based on generalised cross-validation. In this process,
we estimated the root mean squared error for each number of
bases (k), that is, the squared root of the quadratic mean error cal-
culated as the difference between the observed and the estimated
spectral metric per each point/epoch of the smoothed curve.

Once the functional data has been constructed, concepts from
scalar statistics can be extended to the functional, preserving the
coherence of the concept but adding elements of analysis such as
slopes, and inflexion points, among others. Thus, to characterise
spectral patterns of each subgroup, following preliminary methods
(Ramsay and Silverman, 2005), we computed descriptive functions
defined as:

� Functional mean: x
�

wð Þ ¼ N�1PN
i¼1xi wð Þ

� Functional variance: V x wð Þ½ � ¼ N � 1ð Þ�1PN
i¼1 xi wð Þ � x

�
wð Þ

h i2

To analyse group-related differences in spectral features using
FDA, we conducted a functional pointwise t-test based on the per-
mutation method (Coffey and Hinde, 2011; Ramsay and Silverman,
2005). The differences in the functional mean of spectral features
in PD and non-PD groups were compared for each channel. For
hypothesis testing, the p-values for functional t-tests were esti-
mated based on 200 permutations per timepoint (i.e. at each
epoch) as suggested by Ramsay, J. O. et al. (Ramsay and
Silverman, 2005). Supplementary materials include a detailed
description of the functional t-test estimation method. Supplemen-
tary Figures 2 and 3 show exemplary cases of FDA methods and
FDA estimations across different datasets.

2.6.3. Reproducibility and external validity of the results across
datasets

Pooling signals from multiple primary studies (with different
headsets or research centres) into a single total sample (so-called
‘‘EEG mega-analysis”) might potentially lead to increased Type I
error rates in the group-level analysis due to ‘‘batch” effects
(Bigdely-Shamlo et al., 2020; Li et al., 2022). These effects have
been reported even when using a standard preprocessing pipeline
for all included recordings, as we did in the preprocessing.

To overcome the above limitation and in line with the Strength-
ening the Reporting of Observational studies in Epidemiology
32
(STROBE) statement recommendations for reporting clear results
about the generalizability of the findings (Vandenbroucke et al.,
2007), we examined the external validity and reproducibility of
our results by conducting the PD vs Non-PD comparisons indepen-
dently in each of the datasets (i.e., Iowa, California, Medellin,
Finland).

As we believe in open science philosophy, we freely provide the
codes used for feature extraction and FDA analysis; the codes can

be found on the following GitHub link (https://github.com/al-

berto-jj/functional_data_analysis_rs_eeg/). Also, the raw and
derivative features are available for all studies, except for the
Medellin dataset, due to ethical restrictions that constrain us from
publicly liberating this data.

3. Results

3.1. Clinical and demographic features

Given the matched design of most primary studies, there were
no differences in age or sex of the PD and non-PD subgroups. In
the Finland dataset, where matching was not explicitly reported,
we did not find any significant difference either. As previously
reported in the Medellin dataset (Jaramillo-Jimenez et al., 2021),
there were differences in MoCA scores of PD and non-PD subjects.
See Table 1 for an overview of each dataset’s participant demo-
graphics and clinical variables.

In PD patients from the different datasets, there were no signif-
icant differences in LEDD (p > 0.783) or duration of disease
(p > 0.158). However, we observed significant differences in UPDRS
- III scores between centres, with lower scores in the Iowa dataset
when compared to each of the other centres (California vs Iowa,
FDR < 0.001; Finland vs Iowa, FDR = 0.006; Medellin vs Iowa,
FDR < 0.001), see Table 1 and Supplementary Figure 4.

In PD and non-PD subjects, age was comparable between cen-
tres after correcting p-values for multiple testing (FDR > 0.05).
However, before the multiple testing correction, there were signif-
icant differences between California and Medellin datasets as these
two samples exhibited the lower mean ages among the four
included centres, see Supplementary Figure 4A and Table 1.

The sex proportion variated across datasets; see Table 1. Signif-
icant differences in the sex proportion were observed between
centres after FDR correction, especially when comparing Finland
and Medellin datasets (FDR = 0.036). Similarly, uncorrected p-
values showed significant sex differences, with a higher proportion
of male subjects in Medellin (Medellin vs California, p = 0.041;
Medellin vs Iowa, p = 0.029).

3.2. Rs-EEG spectral features

As expected, due to different headsets, amplifiers, and acquisi-
tion parameters, exploratory analyses showed potential centre-
related differences in the spectral features across some datasets
(i.e. batch effects) despite our standard preprocessing and feature
extraction methods, see Supplementary Figure 5. Thus, we decided
against pooling all the datasets into a single set.

3.2.1. PD vs Non-PD: Averaged-epochs analysis in each dataset
Fig. 1 and Supplementary Figures 6 and 7 summarise the most

relevant findings concerning the sensor level of mean spectral fea-
tures at each centre.

Detailed group-related differences in each dataset are reported
below.

3.2.1.1. California dataset. After correcting for multiple testing, sig-
nificantly greater relative PSD in the theta and pre-alpha frequency

https://github.com/alberto-jj/functional_data_analysis_rs_eeg/
https://github.com/alberto-jj/functional_data_analysis_rs_eeg/


Table 1
Clinical and demographic characteristics of the PD and non-PD groups in each dataset.

PD Non-PD p Value
California dataset (n = 15) (n = 16)

Age 63.3 (8.2) 63.5 (9.7) 0.943
Sex, Women (%) 8 (53.3 %) 9 (56.2 %) 0.870
Duration of PD, months 53.6 (40.5) - -
UPDRS - III 32.7 (10.4) - -
LEDD, mg/day 632.6 (639.6) - -
MMSE a 28.9 (1) 29.2 (1.1) 0.329

Finland dataset (n = 19) (n = 19)
Age 69.6 (7.7) 67.5 (6.4) 0.379
Sex, Women (%) 11 (57.9 %) 12 (63.2 %) 0.740
Duration of PD, months 80.5 (63) - -
UPDRS III 27.6 (16.9) - -
LEDD, mg/day 613.9 (501) - -
MMSE a 27.9 (1.9) 28.3 (1.5) 0.710

Iowa dataset (n = 14) (n = 14)
Age 70.5 (8.6) 70.5 (8.6) 1
Sex, Women (%) 8 (57.2 %) 8 (57.2 %) 1
Duration of PD, months 66.9 (38.7) - -
UPDRS III 13.4 (6.6) - -
MoCA a 25.9 (2.7) 27.2 (1.7) 0.216

Medellin dataset (n = 36) (n = 36)
Age 63.5 (8) 63.3 (6.2) 0.973
Sex, Women (%) 12 (33 %) 12 (33 %) 1
Duration of PD, months 61.6 (37.4) - -
UPDRS III 30.8 (12) - -
LEDD, mg/day 649.6 (347.4) - -
MoCA a 24.3 (3.1) 26.6 (1.5) 0.001

PD: Parkinson’s Disease; Non-PD: Non-Parkinson’s Disease group; UPDRS-III:
Unified Parkinson Disease Rating Scale part III (motor subscale); LEDD: Levodopa
Equivalent Daily Dose; MMSE: Mini-Mental state examination; MoCA: Montreal
Cognitive Assessment.
Values are presented as mean (Standard Deviation).
P values, comparing PD and Non-PD group using independent samples t-test.
P values < 0.05 are written in bold.

a Marked situations represent p values obtained from Mann Whitney’s U test.
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bands were evident in all the channels for the PD group, see Fig. 1.
The differences in the theta band were mainly due to pre-alpha
contributions since we did not observe significant findings when
comparing PD and non-PD subjects in the slow-theta sub-band,
see Supplementary Figure 8.

Besides a couple of electrodes significant at the uncorrected p-
value < 0.05 in the alpha/theta ratio, DF, and DFV (see Fig. 1), there
were no other consistent significant findings in this dataset.

3.2.1.2. Finland dataset. After FDR correction, PD subjects’ alpha/-
theta ratio was significantly lower in all the channels (except by
P7); see Fig. 1.

The mean relative PSD in the theta band was significantly
higher in PD patients, longitudinally across frontal and posterior
channels, excluding the midline, see Fig. 1. Similar significant dif-
ferences were observed in the slow-theta sub-band; see Supple-
mentary Figure 9. Pre-alpha relative PSD showed differences in
posterior and right hemisphere channels but only at the
uncorrected-p level, see Fig. 1.

For DF, three electrodes of the right frontal, centroparietal, and
left frontocentral cap positions were significantly different at the
uncorrected p-value < 0.05, see Fig. 1. There were no other major
significant findings in the remaining features.

3.2.1.3. Iowa dataset. FDR corrected results showed a significantly
higher pre-alpha relative PSD in PD patients at all analysed chan-
nels. Similarly, in the same sensors (except by F7), a significantly
higher theta PSD was evidenced in PD; see Fig. 1. The analysis of
the slow-theta sub-band did not demonstrate group-related differ-
ences, Supplementary Figure 10.
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The mean relative PSD in the beta band was significantly lower
in PD patients in one left frontal, one right centroparietal, and
seven posterior leads. These results remained significant after cor-
recting for multiple testing, Supplementary Figure 11.

Interestingly, in most of the channels of this eyes-open dataset,
DFV was significantly higher in the non-PD group, see Fig. 1.

PD subjects exhibited lower alpha/theta ratio and lower DF,
consistently seen in posterior and right parietal leads. Although
these results were no longer significant after p-values correction,
see Fig. 1. No other significant findings were observed in this
dataset.

3.2.1.4. Medellin dataset. FDR corrected results pointed out a signif-
icantly higher relative PSD in the theta and pre-alpha frequency
bands in all channels (except F7) of PD patients. The significant dif-
ferences in the theta band had contributions from both slow-theta
(25 channels) and pre-alpha sub-bands (31 channels), with higher
values in the PD group for both sub-bands after the multiple test-
ing correction, see Fig. 1 and Supplementary Figure 12.

Similarly, all channels’ alpha/theta ratio was significantly
higher in PD patients. At the uncorrected level, we found that DF
was significantly lower in PD in two channels (one right frontocen-
tral and one left occipital), see Fig. 1. There were no other signifi-
cant findings in the remaining features.

3.2.2. PD vs Non-PD: FDA of spectral features
After the generalised cross-validation process, the optimal

number of bases (k) for PSD by bands and the alpha/theta
ratio was defined as follows: kCalifornia PSD ¼ 21; kFinland PSD ¼ 10;
kIowa PSD ¼ 12; kMedellin PSD ¼ 21.

Similarly, the specific (k) for DF and DFV was estimated as:
kCalifornia DF ¼ 21; kFinland DF ¼ 10; kIowa DF ¼ 10; kMedellin DF ¼ 20.

Results of the FDA group differences are summarised in
Figs. 2 and 3, as well as in Supplementary Figure 13.

Specific results of the FDA in each dataset are described below.

3.2.2.1. California dataset. In the PD group, significantly higher val-
ues in the functional mean of the theta relative PSD were found for
most epochs. Findings in the theta band were also observed in
most channels. Consistent differences were evidenced from the
first epochs in the posterior region and could be either consecutive
across multiple epochs, or fluctuant. These differences appear sub-
sequently in central leads and later in anterior channels, see Fig. 2.
Comparable findings were seen in the pre-alpha relative PSD, see
Fig. 3. Conversely, exploratory analysis of the slow-theta sub-
band showed scarce significant differences between both sub-
groups with a non-congruent direction of the difference, see Sup-
plementary Figure 13.

Other significant findings were observed in the delta, alpha,
beta, and alpha/theta relative PSD, but these differences were dif-
fuse and not evident for most of the evaluated data. Similarly, DF
and DFV showed significant diffuse findings not detected in most
epochs, see Figs. 2 and 3.

3.2.2.2. Finland dataset. In PD subjects, the most prominent signif-
icant findings included higher values in the functional mean of the
theta relative PSD. These consistent differences were evident in the
first epochs in the posterior and central leads, showing significance
across multiple consecutive epochs, see Fig. 3. Exploratory analysis
of the sub-bands within the theta range showed a greater number
of significant differences in the slow-theta sub-band, with fluctu-
ant differences across epochs evidenced in multiple channels. By
contrast, in the pre-alpha sub-band, significant differences
between PD and non-PD were predominant in consecutive epochs
of posterior leads, see Supplementary Figure 13.



Fig. 1. Differences between non-PD and PD in spectral features using averaged epoch analysis. Topomaps represent the differences between the control (non-PD) and
the Parkinson’s Disease (PD) groups. Each row includes the most consistent PD-related differences in the conventional averaged-epochs analysis. Each of the plotted
spectral features is placed in a column. The colour bars represent t-test values, where blueish colours show a higher value of a given feature in the PD group, and yellowish
colours indicate lower values of a spectral feature in the PD group. Channels showing significant differences are plotted. Channels in red dots were significant at the False
Discovery Ratio-corrected level, while channels marked as a white dot were only significant at the uncorrected p-value. Rel. PSD: relative Power Spectral Density.
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Besides, the relative PSD in the alpha band was significantly
lower in some central and anterior channels. Similarly, the alpha/-
theta ratio was lower in PD patients, showing a similar topographic
distribution of the significantly different electrodes.

Among other significant findings, we observed a lower DF in PD
patients, but these findings were not observed for most of the eval-
uated epochs, see Fig. 3.
3.2.2.3. Iowa dataset. There were prominent differences across
most epochs in the theta band for most channels. PD patients
showed significantly higher values in the theta relative PSD, see
Fig. 2. Exploratory analysis of the theta band showed negligible
contributions from the slow-theta sub-band. Most of the differ-
ences observed in theta were reproduced when comparing the
pre-alpha sub-band in PD and non-PD groups, see Supplementary
Figure 13. Besides, the central-anterior delta relative PSD and the
central-posterior beta relative PSD were significantly higher in
PD patients, see Fig. 2. The alpha/theta ratio was significantly lower
in PD patients. Still, the proportion of significant values across
34
epochs was smaller than the observed for relative PSD in theta or
pre-alpha bands.

The DF also showed the most consistent significant differences
in the posterior leads, where PD patients presented lower values.
Of note, we found multiple channels and epochs with a signifi-
cantly reduced DFV in the PD group, Fig. 3.
3.2.2.4. Medellin dataset. In all channels of PD patients, we observed
significantly lower values of the theta relative PSD, see Fig. 2. The
greatest size of the difference was observed in the posterior leads.
Exploratory analyses of the theta band showed similar results for
the pre-alpha sub-band. Thus, pre-alpha relative PSD was lower
across epochs and channels in PD subjects. By contrast, differences
in the slow-theta sub-band had smaller difference sizes and were
less consistent across channels and epochs, see Supplementary Fig-
ure 13. We also found a significantly lower alpha relative PSD in PD
patients, particularly in posterior and frontal leads, showing the
most sustained differences in posterior leads. Significant differ-



Fig. 2. Differences between PD and non-PD in the relative PSD at each frequency band using FDA. Heatmaps show the differences between PD and non-PD subjects in
relative PSD features. Each of the major grids shows the heatmaps for each studied dataset. Each column represents each spectral feature. The relative Power Spectral
Density (PSD) in the delta, theta, alpha, and beta bands are depicted from the left to right columns. The colour bar represents the t-values of the differences. Yellowish colours
indicate positive t-values (i.e. higher values of a given feature in the control group (non-PD) compared to Parkinson’s Disease (PD subjects). In comparison, blueish colours
represent negative t-values (i.e. higher values of a given feature in the PD group compared to the non-PD group). Greyish colours indicate lower t-values, closer to 0. Within
each heatmap, channels are plotted on the Y-axis and are segmented into three regions (anterior, central, posterior) separated by a white line. In each heatmap, epochs are
plotted on the X-axis and variate from dataset to dataset depending on the minimal length of recordings at each centre. The epochs significantly different in the functional
permutation t-test are marked with an asterisk (*). Consistent findings across all datasets are represented inside a red square.
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ences in the alpha/theta ratio were remarkably observed in all
channels, see Fig. 3.

Findings in the delta and beta bands were considered negligible
as they were not observed in most of the analysed data, see Fig. 2.

The DF in most posterior and some central channels was signif-
icantly lower in PD subjects across most of the analysed epochs;
there were other widespread fluctuant differences in DF observed
across the analysed data, see Fig. 3.
3.3. Summary of findings using conventional averaged epochs and FDA

In PD subjects, multiple testing corrected spectral analysis with
averaged epochs showed a significantly higher relative PSD in the
theta band evident in all the datasets. Theta band differences were
reproducible using the pre-alpha relative PSD in three out of four
cases, except in the Finland dataset, where pre-alpha differences
(evidenced in similar channels of theta differences) were no longer
significant after FDR correction.

In line with the findings using averaged epochs, the FDA
approach showed statistically significant higher theta relative
PSD in PD patients, at most channels during most of the evaluated
epochs. Conversely to conventional averaged-epochs methods, FDA
showed pre-alpha differences (particularly in posterior channels)
in four datasets, accounting partly for the observed PD-related dif-
ferences in the full theta band. PD-related differences in the slow-
35
theta sub-band were found in two of four datasets (Finland and
Medellin).

Using conventional averaged epochs: The alpha/theta ratio dif-
ferences were reproduced in two out of four datasets (Finland and
Medellin), and some findings were significant at the uncorrected p-
value in a third dataset (Iowa). Conversely, FDA did not show sig-
nificant differences in the alpha/theta FDA across many consecu-
tive epochs. The latter happened in the Finland dataset (most
leads significant in averaged-epochs analysis and scarcely signifi-
cant across epochs in FDA), and Iowa (central and posterior region
significant in conventional analysis at the uncorrected level), and
not significant across multiple consecutive epochs nor many chan-
nels as in the averaged-epochs approach.

None of the datasets showed significant differences in the delta
or alpha bands using averaging epochs. On the other hand, FDA
showed lower alpha relative PSD in the posterior (Medellin) and
anterior (Finland) channels, but this was not reproduced in other
datasets.

In the Iowa dataset of rs-EEG with eyes open, we found a signif-
icantly lower DFV in the PD group. This was significantly consistent
in both the averaged-epochs approach and FDA. Finally, in PD sub-
jects from the same dataset, we found a significantly lower beta
relative PSD in posterior and central leads (consistently in aver-
aged epochs and FDA) and a lower delta in some epochs of central
channels (only with FDA).



Fig. 3. Differences between PD and non-PD in the other studied spectral features of rs-EEG using FDA. Heatmaps show the differences between PD and non-PD
subjects in other studied features. Each of the major grids shows the heatmaps for each analysed dataset. Each column represents each spectral feature. The alpha/theta
relative Power Spectral Density (PSD) ratio, the pre-alpha relative PSD, the dominant frequency (DF), and its variability (DFV) are depicted from left to right. The colour bar
represents the t-values of the differences. Yellowish colours indicate positive t-values (i.e. higher values of a given feature in the control group (non-PD) compared to
Parkinson’s Disease (PD subjects). In comparison, blueish colours represent negative t-values (i.e. higher values of a given feature in the PD group compared to the non-PD
group). Greyish colours indicate lower t-values, closer to 0. Within each heatmap, channels are plotted on the Y-axis and are segmented into three regions (anterior, central,
posterior) separated by a white line. In each heatmap, epochs are plotted on the X-axis and variate from dataset to dataset depending on the minimal length of recordings at
each centre. The epochs significantly different in the functional permutation t-test are marked with an asterisk (*). Consistent findings across all datasets are represented
inside a red square.
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Additional exploratory analysis of the findings in relative theta
and pre-alpha PSD showed that those patients in the Finland data-
set with an MMSE score below the median of the PD group had a
significantly higher theta and pre-alpha relative PSD in the O1,
Oz, P7, P8, and T8 channels. Consistently, those in the Iowa dataset
with a MoCA score below the median of the PD group showed a
significantly higher Theta power in the O2, Oz, and P8 channels;
for pre-alpha, we observed similar trends. For PD groups in the
Medellin and California datasets, the hypothesis tests were non-
statistically significant but had a common direction of the effect
in most of the posterior leads (i.e. the higher the theta and pre-
alpha power, the lower the cognitive performance); see Supple-
mentary Figures 14–17. There were no statistically significant dif-
ferences in theta or pre-alpha values based on LEDD, UPDRS - III
scores, or disease duration staging.

4. Discussion

In this study, we identified the differences in the rs-EEG spectral
features of PD and non-PD subjects using FDA and conventional
averaged-epochs approaches. Besides, we aimed to explore the
external validity of the above findings in four independent PD
cohorts. Overall, in PD patients, we found a greater theta relative
PSD. This was the most reproducible finding across all four datasets
using both FDA and averaged epochs. However, when subdividing
36
the theta sub-bands (slow-theta and pre-alpha), FDA revealed sig-
nificantly increased pre-alpha relative PSD in posterior leads of PD
patients. Pre-alpha findings were replicated in all datasets with
FDA. By contrast, conventional averaged epochs only showed sig-
nificant pre-alpha differences in three out of four datasets.

The direction of the differences mentioned above was consis-
tent across the analysed rs-EEG data from different research cen-
tres. Therefore, in rs-EEG at the sensor level, a higher generalised
theta with prominent posterior pre-alpha relative PSD was the
most reproducible PD-related spectral pattern.

Quantitative analysis of PSD at the sensor level has been a
widely adopted procedure for rs-EEG clinical research (Babiloni
et al., 2020a). Spectral features of the rs-EEG have also been recog-
nised as promising markers for many neurodegenerative diseases
that can lead to dementia, such as PD (Shaban and Amara, 2022).
Thus, there is a shared rs-EEG pattern between many heteroge-
neous and overlapped entities like PD, AD, and DLB: an increase
in the power of slow frequency bands like delta and theta, whilst
faster frequencies like beta and gamma tend to reduce their power.
In addition to these PSD variations, left-side frequency shifting
might be present in certain cases (Babiloni et al., 2020b).

Most neurodegenerative disorders are prone to variations in the
intrinsic oscillatory properties of the brain (Lopes da Silva, 1991).
Some hypotheses suggest that this particular signature in rs-EEG
rhythms could fit the so-called thalamocortical dysrhythmia
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model. From tinnitus and depression research, the thalamocortical
dysrhythmia model has been proposed as an integrative frame-
work that might encompass the main findings in neurodegenera-
tive disorders. Slowing down in thalamocortical loops could
result in a constant cross-frequency coupling between lower fre-
quencies (like theta and alpha) and higher frequencies such as beta
and gamma. This cross-frequency coupling could then impair
information processing in specific cortical columns (mediated by
high frequencies), perpetuating the cycle of alpha power reduction
and alpha peak frequency shifting to the left (increasing power in
the theta and, subsequently, delta bands) (Franciotti et al., 2020;
Llinás et al., 1999; Vanneste et al., 2018). Nevertheless, many other
mechanisms, such as the integrity of the cholinergic systems,
might play a crucial role in the underlying process behind rs-EEG
power changes in neurodegenerative disorders (Rea et al., 2021;
Schumacher et al., 2020b).

Given preliminary evidence supporting consistent rs-EEG find-
ings in multicenter studies on other neurodegenerative diseases
(Bonanni et al., 2016), as well as recent findings in the pre-alpha
sub-band in a small cohort of non-demented PD subjects (Rea
et al., 2021), we included the pre-alpha relative PSD in our analy-
ses. In line with these findings, we observed an increased theta rel-
ative PSD in all datasets for most channels. However, in the fast-
theta (i.e. pre-alpha) sub-band, the differences observed in poste-
rior leads exhibited greater effect sizes, see Supplementary Fig-
ure 18. The posterior dominant rhythm (generally with peak
highest power within the alpha band) is generated by the interac-
tion of multiple cortical components, including occipitotemporal
and occipitoparietal, as well as other cortico-cortical and thalamo-
cortical sources integration (Barzegaran et al., 2017; Garcés et al.,
2013). Slowing down of the posterior dominant rhythm is usually
reported in chronic encephalopathy, sedation, delirium, and neu-
rodegeneration (Carrarini et al., 2023; Kimchi et al., 2019; Smith
and Smith, 2005). Increased clinical severity is generally associated
with greater power in lower frequencies such as theta and delta.
Thus, we hypothesise that our theta and pre-alpha findings in pos-
terior leads might potentially reflect the initial indirect effects of
mild encephalopathy due to neurodegeneration over brain dynam-
ics that generate the posterior dominant rhythms. Also, pre-alpha
differences were more prominent using FDA than conventional
averaged epochs, which reflected constantly significant epoch-to-
epoch differences in posterior electrodes that might disappear in
a traditional averaging process. The latter was observed in the Fin-
land dataset, where conventional epochs-averaging only showed
significant results in the pre-alpha sub-band at the uncorrected
p-values. Of note, pre-alpha differences were not confined to the
eyes closed rs-EEG condition, as higher pre-alpha was robustly
observed in PD during the open eyes condition (Iowa dataset),
emphasising the important contribution of theta rhythms rather
than an exclusive effect of alpha slowing (as alpha activity is not
prominent in the eyes-open condition) (Mari-Acevedo et al.,
2019). Therefore, this might reflect the initial stages of cross-
frequency coupling phenomena related to neurodegeneration (i.e.
increase in power of lower frequency bands). The latter might be
supported as we also found lower alpha relative PSD in FDA in
the Medellin dataset (which included 14 PD-MCI subjects), poten-
tially reflecting a more advanced stage of cross-frequency coupling
(i.e. increase in theta and pre-alpha power, plus DF shifting to the
left resulting in a reduction of alpha power) (Vanneste et al., 2018).

Exploratory analysis of our findings in theta and pre-alpha was
not concluding about the capability of these features to stage
patients based on clinical variables. In two datasets (Finland and
Iowa), we found that those PD subjects with a global cognitive per-
formance below the group’s median exhibited significantly higher
relative theta PSD values. Nevertheless, these results were not
observed in all datasets and should be confirmed in subsequent
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analyses. Thus, more comprehensive statistical modelling methods
that account for data pooling, control of sensor topography (and
ideally for volume conduction), and include clinical outcomes
and confounders may increase the applicability of these spectral
features in the clinical praxis.

In addition to the power changes discussed above, evidence
indicates that DF at posterior leads is present in DLB and PDD even
at predementia stages such as MCI (Bonanni et al., 2015, 2008;
Schumacher et al., 2020a). We did not observe major significant
findings in DF, except for the FDA results in the Medellin dataset,
which included a subsample of PD-MCI patients. Of note, when
using the averaged-epochs approach, differences in DF were scarce
in the Medellin dataset. Still, these differences were robustly sig-
nificant across the majority of epochs when using FDA. DF in the
Iowa dataset also showed some significant findings in posterior
epochs using FDA; this dataset had two subjects with pronounced
lower MoCA test scoring (19 and 22) but lacked information con-
firming a PD-MCI diagnosis in the primary study. Left-side shifting
of the DF can be either fluctuant or stable across epochs (DFV), but
differences in the DFV in the eyes closed condition are still not con-
clusory and might show different directions (Bonanni et al., 2008;
Stylianou et al., 2018).

Interestingly, a recent publication showed that healthy controls
had a greater DFV change in the eyes closed/eyes open ratio com-
pared to subjects with multiple types of dementia (Jennings et al.,
2022). Unfortunately, we did not have available closed-eyes data
for Iowa, but we observed a greater DFV in non-PD subjects only
in this eyes-open dataset. Indeed, studying the open eyes condition
might contribute to the studies of rs-EEG as one can consider
dynamic features such as reactivity to the eyes opening, closely
related to cholinergic integrity in both cognitively spared and
impaired patients with neurodegeneration (Rea et al., 2021;
Schumacher et al., 2020b). Also, as opposed to cortico-cortical rel-
ative PSD values, the brain generators of DF and posterior alpha
peak frequency are thought to be thalamic, facilitating the integra-
tion of this feature within the thalamocortical dysrhythmia model
(Arnaldi et al., 2017; Law et al., 2020). In line with the above, recent
systematic reviews found high consistency regarding DF reduction
with increased pre-alpha power as prevalent findings in diseases
with associated Lewy Body pathology (i.e. DLB and PD with or
without dementia) compared to the marked alpha power reduction
observed in AD patients (Law et al., 2020). Our results support the
above observations, particularly when using the FDA to detect PD-
related differences in DF and pre-alpha power, as conventional
averaging might cause a spectral masking effect in subtle changes
of peak frequency and potentially less precise effect size estima-
tions due to outlier contamination. Thus, for DF, FDA showed more
significant differences than averaging across epochs, particularly in
the Medellin dataset, and slightly significant results in Iowa on a
couple of posterior channels across multiple epochs.

We have previously reported a generalised lower alpha/theta
ratio in PD patients from the Medellin dataset (Jaramillo-Jimenez
et al., 2021). Unfortunately, these prior findings were not general-
isable across the four datasets with either conventional epochs-
averaging or FDA methods. However, FDA resulted in a much more
informative method as we realised that most of the potential sig-
nificant findings we obtained in other datasets (i.e., multiple signif-
icant findings across all regions in the Finland dataset) were not
evidenced in FDA across all the epochs and might be highly influ-
enced by extreme values as showed in some high t-test values that
were not constant in consecutive epochs. Nevertheless, further
examination of our current results, including the modelling of con-
founding factors, should be conducted for better estimations
regarding the alpha/theta ratio.

In addition, FDA in clinical neurophysiology might be a valuable
complement to the analysis of Compressed Spectral Arrays (CSA),
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i.e., epoch-to-epoch representations of the power spectrum. The
CSA has been a helpful tool for neurodegenerative diseases involv-
ing Lewy Bodies such as DLB, given their differences in the DF and
the reported DFV in many studies. Therefore, FDA can model and
compare epoch-wise the potential differences potentially related
to the diagnosis. The latter can contribute to the interpretation of
CSA and overcome the loss of epoch-to-epoch information when
collapsing the time dimension into a single average.

FDA can reflect the proportion of significant differences in a
specific feature, and provide detailed estimations of the size of
these differences, facilitating the examination of potential spurious
results due to outliers by showing the magnitude and direction of
the differences at each time point. This is also important for feature
selection in ML models, particularly those used for event-related
recordings. These models usually take each epoch (or trial) as an
input value for training, validation, or testing sets (Shaban and
Amara, 2022). Therefore, researchers might consider a priori
selecting meaningful features from the EEG that show robust find-
ings across all trials and potentially get a better classification
performance.

By examining the results of this paper, the reader could con-
sider FDA as a potential tool to overcome potential limitations of
epochs averaging for spectral analysis. Also, the multicentric
approach provides a broader panorama, allowing the reader to
examine which findings can be reproduced across subsets of data
from different populations. Also, as external validity is one of the
flags of this paper, this study uses standard and automatic prepro-
cessing and feature extraction workflows to control for differences
in analytic procedures, subjective inclusion/exclusion of rs-EEG
data, and other potential confounders to the interpretation of the
results.

Despite our efforts, this study has some limitations that must be
considered when examining our results. First, the study’s retro-
spective nature did not allow us to control the experimental condi-
tions of the recording and data collection nor determine causal
relationships. Also, due to the heterogeneity of the rs-EEG data, it
was not possible to pool all the datasets into a single set after con-
ducting standardised automatic preprocessing and feature extrac-
tion pipelines. The latter could affect the significance of
comparisons between PD and non-PD subjects, as the low sample
size in some datasets reduces the statistical power. Still, the consis-
tency of results from different centres using various recording
devices indicates the reliability of the rs-EEG sensor-level spectral
markers to differentiate subjects with PD from healthy controls.
Despite a generalisable direction of the effect in multiple indepen-
dent cohorts, external validity in clinical scenarios must include
the differentiation among potential differential diagnoses. Unfor-
tunately, we could not include another age-matched group with
a different disease as all datasets were already collected in primary
studies previously conducted. Future efforts by our group aim to
include cohorts encompassing other neurodegenerative and neu-
ropsychiatric disorders from international collaborators, as well
as to implement potential harmonisation alternatives, such as
ComBat, and longitudinal ComBat, based on Generalised Additive
Linear Mixed-effects Models for statistical control of some of the
confounders and determinants of the centre/headset-related vari-
ability (Beer et al., 2020). However, harmonisation methods for
EEG signals are still underdeveloped and scarcely applied as a stan-
dard procedure in multicentric studies on rs-EEG and neurodegen-
eration (Li et al., 2022). In addition, we find particularly important
the need for parametrising aperiodic components obtained in the
rs-EEG spectra (Donoghue et al., 2020) and assessing features with
different conceptual natures (such as complexity/regularity or con-
nectivity) to complement the information provided by spectral fea-
tures (Al-Qazzaz et al., 2014). With all this in mind, we encourage
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the scientific community to continue with the joint effort toward
more valid and reproducible research on rs-EEG.

4.1. Conclusions

In conclusion, with FDA, the most reproducible findings in the
PD groups were an increased generalised theta and posterior pre-
alpha. Besides, we found a lower alpha/theta ratio and DF in PD
subjects, but this was not generalisable across all datasets. Also,
DFV was significantly higher in non-PD only in the eyes-open data-
set. Further studies should validate these findings in cohorts
involving multiple neurodegenerative and neuropsychiatric
diagnoses.

Finally, for spectral analysis of rs-EEG, FDA may constitute a
reliable alternative to the conventional averaged-epochs methods.
We propose that FDA can contribute to expanding the scope of rs-
EEG research and feature engineering.
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