
Journal of Cosmology and
Astroparticle Physics

PAPER • OPEN ACCESS

Fast and robust Bayesian inference using
Gaussian processes with GPry
To cite this article: Jonas El Gammal et al JCAP10(2023)021

View the article online for updates and enhancements.

You may also like
Estimation of Stellar Ages and Masses
Using Gaussian Process Regression
Yude Bu, Yerra Bharat Kumar, Jianhang
Xie et al.

-

Using Gaussian process regression to
simulate the vibrational Raman spectra of
molecular crystals
Nathaniel Raimbault, Andrea Grisafi,
Michele Ceriotti et al.

-

Reducing Ground-based Astrometric
Errors with Gaia and Gaussian Processes
W. F. Fortino, G. M. Bernstein, P. H.
Bernardinelli et al.

-

This content was downloaded from IP address 152.94.67.215 on 17/11/2023 at 12:38

https://doi.org/10.1088/1475-7516/2023/10/021
/article/10.3847/1538-4365/ab8bcd
/article/10.3847/1538-4365/ab8bcd
/article/10.1088/1367-2630/ab4509
/article/10.1088/1367-2630/ab4509
/article/10.1088/1367-2630/ab4509
/article/10.3847/1538-3881/ac0722
/article/10.3847/1538-3881/ac0722

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Fast and robust Bayesian inference
using Gaussian processes with GPry
Jonas El Gammal,a Nils Schöneberg,b Jesús Torradoc,d
and Christian Fidlere
aDepartment of Mathematics and Physics, University of Stavanger,
Kristine Bonnevies vei 22, Stavanger 4021, Norway

bInstitut de Ciències del Cosmos, Universitat de Barcelona,
Martí i Franquès 1, Barcelona E08028, Spain

cDipartimento di Fisica e Astronomia “G. Galilei”, Università degli Studi di Padova,
Via Marzolo 8, Padova I-35131, Italy

dINFN, Sezione di Padova,
Via Marzolo 8, Padova I-35131, Italy

eInstitute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University,
Sommerfeldstraße 16, Aachen 52074, Germany
E-mail: jonas.e.elgammal@uis.no, nils.science@gmail.com,
jesus.torrado@pd.infn.it, fidler@physik.rwth-aachen.de

Received December 20, 2022
Revised June 3, 2023
Accepted July 6, 2023
Published October 6, 2023

Abstract. We present the GPry algorithm for fast Bayesian inference of general (non-
Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-
training, special hardware such as GPUs, and is intended as a drop-in replacement for tradi-
tional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a
Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine
classifier that excludes extreme or non-finite values. An active learning scheme allows us to
reduce the number of required posterior evaluations by two orders of magnitude compared
to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the
posterior at optimal locations, further reducing wall-clock times. We significantly improve
performance using properties of the posterior in our active learning scheme and for the def-
inition of the GP prior. In particular we account for the expected dynamical range of the
posterior in different dimensionalities. We test our model against a number of synthetic and
cosmological examples. GPry outperforms traditional Monte Carlo methods when the evalu-
ation time of the likelihood (or the calculation of theoretical observables) is of the order of
seconds; for evaluation times of over a minute it can perform inference in days that would take
months using traditional methods. GPry is distributed as an open source Python package
(pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.

Keywords: Machine learning, Statistical sampling techniques, Bayesian reasoning
ArXiv ePrint: 2211.02045

c© 2023 The Author(s). Published by IOP Publishing
Ltd on behalf of Sissa Medialab. Original content from

this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must
maintain attribution to the author(s) and the title of the work,
journal citation and DOI.

https://doi.org/10.1088/1475-7516/2023/10/021

mailto:jonas.e.elgammal@uis.no
mailto:nils.science@gmail.com
mailto:jesus.torrado@pd.infn.it
mailto:fidler@physik.rwth-aachen.de
https://github.com/jonaselgammal/GPry
https://arxiv.org/abs/2211.02045
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2023/10/021

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

Contents

1 Introduction 1

2 Basic concepts 3
2.1 Bayesian inference of model parameters 3
2.2 Gaussian processes 4

3 Surrogate model of the posterior 6
3.1 Choice of kernel function 6
3.2 Parameter space transformations 7
3.3 Treatment of infinities and extreme values 8

4 Learning strategy 10
4.1 Acquisition function 10

4.1.1 Choice of the acquisition function 10
4.1.2 Acquisition hyperparameter 11
4.1.3 Optimization of the acquisition function 12

4.2 Parallelization 13
4.3 Convergence criterion 14

5 The full algorithm 16
5.1 Initial training set 16
5.2 Main algorithm 17
5.3 Modelling the marginalized posterior 17

6 Examples 19
6.1 Multivariate Gaussians 20
6.2 Non-Gaussian distributions 21

6.2.1 Log-transformations 21
6.2.2 Curved degeneracies 23
6.2.3 Multi-modal posteriors 24
6.2.4 Performance for non-Gaussian and multi-modal distributions 26

6.3 Cosmology 27

7 Conclusions 30

A Posterior scale in higher dimensions 31

B KL divergence 33

1 Introduction

One of the fundamental tools of science is the comparison of observations with theory. In
many situations, this involves inference on the parameters of a model (or on models them-
selves) given some observed data. This is often realised using Bayesian statistics, where

– 1 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

one synthesises the probability of some data having been acquired into a likelihood func-
tion, assumes some a priori distribution for the model parameters, and samples from the
product of both (proportional to the so-called posterior) using Monte Carlo methods, the
most common ones in Cosmology being based on Markov Chain Monte Carlo [1–4] or Nested
Sampling [5–12].

The new era of cosmological surveys will produce data in rapidly increasing amount and
quality [13, 14]. This will in turn raise the computational costs of traditional Monte Carlo
pipelines: data quality will call for an increase in the precision of theoretical computations
of the observables that are compared against the data (e.g. including physical effects that
could have been so far neglected), and likelihood computations will involve operations on
ever larger data vectors. This can and will eventually result in traditional Bayesian inference
becoming prohibitively slow, further increasing the already damaging carbon footprint of
scientific computations in computer clusters [15, 16]. In order to keep being able to exploit
cosmological data for parameter inference, we need to develop more advanced algorithms that
significantly reduce the computational costs of performing inference, and machine-learning
based methods are one of the most promising tools for that.

So far, a number of different solutions have been proposed. A family of them focus on
substituting the theoretical computation of observables (or intermediate quantities to arrive
at them) by appropriately-trained, usually Neural Network-based, emulators that cheaply
map the theoretical parameters onto the space of vectors of observables. For applications to
Cosmology and Astrophysics, see e.g. [17–40]. These methods are robust in the sense that
they are guaranteed to reproduce the true posterior distribution, as long as the emulator is
properly trained, which is easy to check a posteriori. Unfortunately their utility is limited
by the need to retrain them whenever the theoretical model under investigation is varied.
Additionally, as experiments become ever more precise, in order to achieve sufficient accuracy
a larger number of systematic effects needs to be accounted for, which requires ever more
costly experimental likelihoods, which cannot be easily accelerated by emulators.

Another proposed solution are simulation-based likelihood-free approaches, inspired by
Approximate Bayesian Computation, but accelerated by Neural Networks [41, 42]. There,
Neural Networks are used to learn a mapping between sets of model parameters and their
corresponding simulated data, so that they can automatically extract features, marginalise
over nuisance parameters, learn a likelihood function, or ultimately produce a posterior
distribution of the model parameters when fed real experimental data. Recent development
and applications in Cosmology and Astrophysics can be found in [43–54]. The claimed
advantages are that they may discover or take into account features in the data that are not
captured by summary statistics or observables, and the lack of need to formulate a likelihood,
which can be complex or prohibitively expensive in some cases. On the other hand, they
tend to require expensive training and the reusability of the trained networks is limited when
considering model extensions. The need to accurately account for modelling uncertainty and
possible biases has also been highlighted recently [55, 56].

The solution presented in this work differs from the previous ones in that it retains the
full computation of the observable and data likelihood, but minimises the number of points
in the parameter space where this full pipeline needs to be computed; it uses these points
to create a model of the posterior, and to iteratively predict the next optimal evaluation
locations. For the emulation of the posterior we use Gaussian Processes (GP) [57], which
have a small number of hyperparameters that are easily interpretable in terms of properties
of the posterior, and thus make it easier to incorporate prior information about its functional

– 2 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

form. Furthermore, due to their simplicity, Gaussian Processes generally require smaller
training sets than for example Neural Networks. We combine the GP model of the posterior
with a support vector machine (SVM) [58, 59] to restrict the parameter space to a region of
reasonable posterior values.

Our approach expands on previous work applying Bayesian quadrature and active sam-
pling to statistical inference [60–64], which we improve upon by incorporating the expected
scaling of the log-posterior with dimensionality, the definition of a cheap and consistent con-
vergence criterion and the treatment of extreme log-posterior values with an SVM classifier.
A previous attempt at a similar approach to inference in Cosmology with a GP surrogate of
the posterior can be found in [65], and in the context of emulator-training in [66]. Alternative
emulator-based approaches, relying on Variational Inference, have also been proposed, e.g.
combined with a GP surrogate model to reduce the number of posterior evaluations [67–70],
or targeted towards high dimensionalities but allowing for numbers of evaluations similar to
MCMC [71, 72].

The result of our work is the development of the GPry algorithm. An open source
implementation is available as a Python package (pip install gpry) and at https://github

.com/jonaselgammal/GPry. GPry does not need any pre-training or parameter tuning, so it can
be used as a drop-in replacement for traditional Monte Carlo algorithms for dimensionalities
Nd . 20 (since the computational cost of the algorithm makes it impractical for larger
problems in its current implementation). Unlike neural networks it also does not require
any specialised hardware such as GPUs. As we will show, it allows for accurate and fast
emulation of posteriors for moderate dimensionalities, including non-Gaussian distributions,
by using just a few hundred or thousand evaluations of the posterior distribution. Especially
when individual likelihood evaluations are computationally expensive, this can result in large
speedups of typically two orders of magnitude.

This paper is structured as follows: in section 2 we review the basic concepts and
useful notation. We continue in section 3 presenting the modelling choices involved in the
construction of the GP surrogate model. The learning strategy for acquiring new sampling
locations as well as a criterion for deciding on convergence are discussed in section 4. In
section 5 we put together all the pieces and present the full algorithm, and comment on
its general performance. We discuss the performance of Gpry on different synthetic and
cosmological problems in section 6, and we present our conclusions and discuss possible
future development in section 7. Appendix A is dedicated to discussing the inclusion of prior
information on the dynamical range of the posterior into the surrogate model at different
stages of the algorithm.

2 Basic concepts

In order to establish a consistent notation and a deeper understanding of the underlying
concepts, we quickly summarize some of the theory, which we are going to use in the detailed
description of section 3.

2.1 Bayesian inference of model parameters

A usual Bayesian inference problem is that of estimating the probability distribution
p(M(x)|D) of the parameters x of a modelM given some experimental data D, also known
as posterior. Following Bayes’ theorem, this is proportional to the product of the likelihood

– 3 –

https://github.com/jonaselgammal/GPry
https://github.com/jonaselgammal/GPry

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

p(D|M(x)) (the probability of D having being measured given the model with these param-
eter values), and the prior probability of the parameter values x given the model, p(x|M),
assigned before (or idependently of) the experiment that measured D.1 Fixing the model
M and the data D, we can drop their explicit dependence to simplify notation. With that
Bayes’ theorem reads

p(x) ∝ L(x)π(x) , (2.1)

where p(x) is the posterior, L(x) the likelihood, and π(x) the prior.
In Cosmology, likelihoods are typically provided by experimental collaborations, are

generally non-analytic, or analytic but non-differentiable, and usually also costly to evaluate.
Even when they are well-behaved, they sometimes depend on cosmological quantities whose
computation in terms of the parameters to be inferred has the same undesirable properties.
In these cases, the targeted solution to the inference problem is obtaining a Monte Carlo
sample of the posterior, often using MCMC- or nested-sampling-based methods.

This work focuses on reducing the number of evaluations of the posterior (and thus the
likelihood) needed to solve the inference problem. We do that by creating a surrogate model
of the posterior using a Gaussian Process, and developing an active learning algorithm that
decides sequentially on a small optimal set of parameter values where to evaluate the true
likelihood, so that the surrogate model is accurate enough. One can then e.g. extract the
usual Monte Carlo sample from the resulting surrogate model of the posterior (which, as a
bonus, is differentiable) at a very low computational cost.

If the goal is to obtain 1D/2D posteriors (and their corresponding CLs) from the GP,
one could wonder if there would be alternative efficient methods of computing the required
marginalization integrals. However, generally the integrals involved are not solvable analyt-
ically and due to the high dimensionality of these integrals in most applications, the most
efficient ways of computing them numerically are usually Monte-Carlo methods. We discuss
the computational costs of this choice in section 5.3.

2.2 Gaussian processes

We briefly present the relevant GP notation and formulae that we will need for this work.
For a more thorough review, see [57].

Gaussian Processes are useful to emulate a sufficiently smooth2 function f(x) at an arbi-
trary point x (within a certain domain) given a set of sampling locations X = {x1, . . . ,xNs}
and their corresponding function values yi = f(xi) for i = 1 . . . Ns. This last equation can
be abbreviated to y = f(X) (notice the bold symbol for y and f and the dependence on
X) following the usual notation in GP literature, where the number of samples is treated as
an additional vector space of dimension Ns, with components denoted by a subscript. This
means that X becomes a Ns ×Nd matrix, where Nd is the dimensionality of the parameter
space. This way, we write for a scalar function s(x) evaluated at the Ns different sampling lo-
cations the vector s(X) with components [s(X)]i = s(Xi), and similarly for scalar functions
of two arguments the tensor s(X,X) with components [s(X,X)]ij = s(Xi,Xj).

A Gaussian Process posits that the function f(x) in question is a random draw from a
family of functions, informed by the sampling locations. For a given position x such random

1The missing proportionality constant is the inverse of the evidence p(D|M), which can usually be ignored
in parameter estimation and will hence be omitted in all subsequent calculations. Note though, that the
evidence is important when performing model selection.

2Here, “sufficiently smooth” refers to an underlying function which n-times continuously differentiable
where n ≥ 1. The function may still have some statistical or numerical noise added on top of it.

– 4 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

draw of a function f(x) is assumed to be Gaussian-distributed (hence the name) around a
mean function m(x) with a covariance between the functional value at two different points
given by some function k(x,x′), often called the kernel of the GP.

f̂ ∼ GP(m, k) ⇔ f̂(x) ∼ N (m(x), k(x,x)) , (2.2)

where f̂ denotes a random function draw from the GP and ∼ means “is distributed according
to”. As a multivariate Gaussian distribution, the GP is completely defined by its mean and
kernel functions. Their precise choice only aids in faster and more predictive emulation,
but they do not in general restrict the shape of the functions being modeled, which can be
complete arbitrary as long as the kernel function fulfills a number of weak conditions [73] (that
all kernels considered in this work do). Importantly, while the correlation of the function
value at two points is assumed to be Gaussian, this neither means that the function is itself
assumed to be Gaussian, nor that the mean of the family of functions is presumed to be
Gaussian.

We usually restrict the GP so that it agrees with the given set of sampling locations
for all draws, f̂(X) != f(X) = y, sometimes up to some uncorrelated Gaussian noise. This
information modifies the value of the drawn function’s predictions f̂(X∗) away from the
sampled values X. The joint distribution for sampled and non-sampled locations is[

f̂(X)
f̂(X∗)

]
∼ N

([
m(X)
m(X∗)

]
,

[
k(X,X) k(X,X∗)
k(X∗,X) k(X∗,X∗)

])
. (2.3)

This defines the conditional probability for the predictions f̂(X∗) given the observations
(X,y) as

f̂ |f(X)=y ∼ GP(µ,Σ) ⇔ f̂(X∗)|f(X)=y ∼ N (µ(X∗),Σ(X∗)) . (2.4)

with mean vector and covariance matrix

µ(X∗) = m(X∗) + k(X∗,X)k(X,X)−1 [y −m(X)] , (2.5)
Σ(X∗) = k(X∗,X∗)− k(X∗,X)k(X,X)−1k(X,X∗) . (2.6)

This conditioned GP for new sample predictions is then called the posterior GP. Comparing
equations (2.2) and (2.4) we notice that the drawn samples f̂ differ between the unconditioned
and the conditioned GP, because the latter includes the additional information from the
sampling locations. The algorithm described in section 5 will sequentially add new samples
to the GP. These will be incorporated by updating the mean and covariance of this conditioned
GP (µ, Σ) using sequentially enlarged sample sets (X,y).

From here on, we will use the scalar versions of equations (2.5) and (2.6) evaluated at
an arbitrary single location x as µ(x) and Σ(x), as well as σ(x) =

√
Σ(x) as the uncertainty

of the GP at a location x to simplify notation, implicitly assuming it has been conditioned on
the samples X. As is standard in the literature (and as discussed without loss of modeling
power for the GP), we will assume a zero-mean function m(x) = 0 in all cases.

Kernel functions are usually chosen from a particular family of functions (such as squared
exponentials, Matérn kernels, . . .),3 parameterized by some hyperparameters θ. Their value

3The kernel function is typically chosen according to the differentiability and smoothness of the given
target function, see also section 3.1 for more details.

– 5 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

is commonly chosen so that they maximize the likelihood that the GP would have produced
the given sampled values y at the sampled locations X. In practice, one marginalizes the
evidence of the training data given the Gaussian Process [57]:

− log p(y|X, θ) = 1
2y

T (k(X,X) + σ2
nI)−1y + 1

2 log |k(X,X) + σ2
nI| −

Ns

2 log 2π , (2.7)

where I is the identity matrix, and σn is an arbitrary small level of uncorrelated noise
included to make the algorithm more numerically stable (possibly in addition to a noise
term added into the kernel function to model stochasticity of the original function). Using
Bayes’ theorem, the product of this likelihood and some prior can then be sampled or (more
commonly) simply maximized with respect to the hyperparameters θ.

3 Surrogate model of the posterior

Our goal is to interpolate an unknown, possibly multi-dimensional log-posterior distribution
with a GP, using the mean prediction µ(x) of the GP as a best estimate for the distribution’s
value. Furthermore we want to achieve an accurate estimate for the standard deviation σ(x)
in order to compute where to sample next. The nature of the posterior distribution being
an (un-normalized) probability distribution implies certain properties/restrictions, that can
be incorporated into the GP surrogate model in order to increase the performance of the
algorithm and reduce the risk of numerical issues. These will be discussed in the following.

3.1 Choice of kernel function

As discussed in section 2.2, a kernel function with a minimal set of properties will ensure
that the GP converges towards the target function (the log-posterior) given a large enough
set of samples. However, in order the keep the computational costs low, we aim to use as few
samples as possible, and this can be achieved by choosing a kernel function that encapsulates
our prior information on the posterior distribution.

The prior information that we aim to encode is that the log-posterior distribution is
deterministic,4 and smooth over a characteristic correlation length-scale, that possibly differs
between dimensions and is a fraction of the prior size (as we cannot resolve length-scales
much larger than the prior). Our default choice in GPry is an anisotropic quadratic RBF
kernel multiplied by a constant:

k(x,x′) = c2 · exp
(
−

d∑
i=1

|xi − x′i|2

2L2
i

)
, (3.1)

where c is usually called the output-scale, and Li=1,...,Nd
are the length-scales.5 On top of the

choice of the kernel function itself, prior knowledge on the target function is also incorporated
4It would be easy to extend this to stochastic functions by adding a noise component to equation (3.1),

but posterior density functions of physical data are most commonly deterministic.
5If the covariance matrix of the posterior mode that is modelled is approximately known, and that mode

is Gaussian enough, one could transform the parameter space using that covariance matrix so as to normalise
the Gaussian, in which case the target function is isotropic and we can use a single common length scale,
significantly reducing the computational cost of fitting the hyperparameters. In practice, this approach has
its own difficulties: even at late stages of learning, the set of training points is too small to compute the
covariance matrix via simple Monte Carlo (weighting by their posterior value), and one needs to resort to
other approaches, such as fitting a Gaussian to the training, or MC-sampling from the GP (see e.g. [65]), the
cost of which would likely compensate for the time saved by fitting a single isotropic correlation length-scale.

– 6 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

in the priors for the hyperparameters. The fundamental assumption is that the length scales
should be of an order of magnitude close to that of the posterior modes, and that the latter
would be of an order of magnitude not much smaller than that of the prior ranges for the
parameters of the posterior. We express this belief as the length-scales being between 0.01
and 1 in units of the prior length in each direction. The lower bound ensures that the GP
does not overfit during early stages of the learning by fitting each sample individually as a
peak on top of the mean of the GP,6 while the upper bound represents the fact that the size
of the prior box should prevent drawing any conclusions on the characteristic length-scale
far beyond the region that can be sampled. The prior of the output scale c is chosen to be
very broad and allows for values between 0.001 and 10000. The Nd + 1 free hyperparameters
{c, Li} are then chosen such that they maximize equation (2.7).7

3.2 Parameter space transformations

As a un-normalized probability density, the posterior is a positive function (p(x) ≥ 0 ev-
erywhere), and even for a simple one-dimensional Gaussian, it varies over multiple orders
of magnitude. Both enforcing positivity and reducing the dynamic range of function values
can be achieved by modeling the result of a power-reduction operation P (p(x)) on the pos-
terior (e.g. a logarithm [61] or a square root [60]). We use a log-transformation, since in
physics it is very common for likelihoods to belong to the exponential family of probability
distributions [74] and in practice many likelihood codes usually return log-probabilities.

Another advantage of modelling in log-space, that was pointed out in [61], is that the
characteristic length scale of isotropic kernels (e.g. Radial Basis Function (RBF) or Matérn)
tends to be larger, which implies that the GP surrogate better generalizes to distant parts of
the function, making the GP more predictive.

In practice, we construct a surrogate model for log p(x) given some training samples
y = log p(X). In addition, at every iteration of the algorithm, we internally re-scale the
modeled function using the mean and standard deviation of the current samples set as

log p̃(X) = log p(X)− y
sy

, (3.2)

where y and sy are the sample mean and standard deviation respectively. This re-scaling
acts like a non-zero mean function, causing the GP to return to the mean value far away
from sampling locations. This in turn encourages exploration when most samples are close
to the mode and exploitation when most samples have low posterior values. This effect can
be seen in figure 3 where the mean of the GP is pushed to higher values close to the edge of
the prior. The variance reduction through division by sy aids in ensuring numerical stability
by restricting the range of values in the training set.

6This condition assumes that the size of the mode is larger than about 1/100th of the prior width in each
dimension, which we find reasonably permissive. If this is not the case, either the prior dimensions or the
allowed range for the length scales can be re-adjusted.

7In a full hierarchical Bayesian treatment, instead of maximising we would have to generate a family of
GPs with hyperparameters following the likelihood of equation (2.7), each of them giving different predictions
according to equations (2.5) and (2.6). Unfortunately, generating a MCMC sample in order to marginalize over
equation (2.7) as function of θ is intractable. There have been some attempts at approximate methods [61]
however even those introduce some computational overhead which we want to avoid. Luckily, as the number of
training points of the GP increases we expect equation (2.7) to get narrower (for sufficiently tame distributions)
so that the difference becomes negligible.

– 7 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

As for the space of parameters x, we transform the samples such that the prior boundary
becomes a unit-length hypercube. For unbounded priors, such as Gaussian or half-Gaussian,
we choose the prior boundary such that it contains a large fraction of the prior probability
mass (99.95% by default, which is usually sufficient for the usual few-σ CL contours).

This parameter transformation aims at forcing posterior modes to have similar sizes
in all dimensions. This usually leads to comparable correlation length scales of the GP
across dimensions, which increases the effectiveness of the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) constrained optimizer [75], used to optimize both the GP
hyperparameters and the acquisition function.

Henceforth, if not specified otherwise, in the context of the training set we will refer
to X (or x) as the un-transformed values of the sampling locations while y refers to the
un-transformed values of the log-posterior distribution at X.

3.3 Treatment of infinities and extreme values

In realistic inference scenarios the prior is often chosen to be much larger than the posterior
mode, since very little initial information is usually known. In these scenarios the log-
posterior function is bound to return minus infinity for parameter values far away from the
region of interest (the posterior modes): the negative log-posterior can be too large to be
represented as a floating point number, or the physics code used to compute the likelihood
could fail and report a zero-valued likelihood.

This is valuable information but unfortunately we cannot simply add those infinite
values to the GP as equations (2.5) and (2.7) become ill-defined. Hence we are forced to find
some numerically stable way of incorporating this information. Naively one could simply
swap out the infinities with some large negative value. This approach turns out to be rather
problematic as it introduces a discontinuity in the posterior shape or at least one of it
derivatives thus modifying the hyperparameters of the GP’s kernel. If we instead ignore
these points, the learning algorithm will repeatedly try to acquire points in their vicinity,
hence getting stuck.

Our solution to this problem is to simultaneously exclude these infinities from the GP,
and to use them to divide the parameter space into a finite and an infinite region using
a support vector machine (SVM) classifier [58, 59].8 A SVM defines a hyperplane which
maximizes the separation between samples with locations xi belonging to one of two classes
y ∈ {−1, 1}. By defining the distance between points through a kernel function k(x,x′)
the separating hyperplane is drawn in a higher-dimensional space which is connected to
the sample space by a non-linear transformation. This effectively transforms the separating
hyperplane into more complex hypersurfaces which are better suited to the classification
problem at hand.

The categorical predictions ŷ(x) of the SVM are then given by

ŷ(x) = sgn
(
b+

Ns∑
i=1

αik(xi,x)
)

(3.3)

where the hyperparameters b and αi are optimized in the training procedure.
We simply use the prediction of the SVM of whether a point is classified as being

finite (ŷ = +1) or infinite (ŷ = −1) to “correct” the prediction of the GP. Compared to
8A similar “safe exploration space” approach, using different tools, has also been used e.g. [76, 77] in the

context of Bayesian optimization.

– 8 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

−10 −5 0 5 10

x1

−10

−5

0

5

10

x
2

Figure 1. Illustration of the SVM classification. Yellow dots correspond to uniformly sampled
locations where the log-posterior distribution is finite while purple dots correspond to infinite log-
posterior samples. The green lines are the boundary found by the SVM separating the finite and
infinite regions. The blue contours show the 1- and 2-σ contours of the posterior distribution (in
this case a correlated 2-d Gaussian). In our construction this finite region is designed to roughly
correspond to the 10σ volume of the Gaussian distribution.

equations (2.5) and (2.6) we can explicitly write

µGP+SVM(x) = µ(x) ·
{

1 if ŷ(x) = +1
−∞ if ŷ(x) = −1 .

(3.4)

For now, we assert such classification from the SVM with absolute certainty, and set

ΣGP+SVM = Σ(x) ·
{

1 if ŷ(x) = +1
0 if ŷ(x) = −1 .

(3.5)

The precise way of cutting the covariance is irrelevant in our case.9 Figure 1 shows a two-
dimensional toy example of such a classification for a Gaussian distribution in a comparatively
much larger prior region.

Aside from making the acquisition procedure more efficient by ignoring unimportant
regions, this approach also keeps the overhead cost of the algorithm lower than including a
regularized version of the inifinities in the GP. This is because the computational expense of
training a SVM scales as N2

s , which is smaller than the N3
s scaling for the GP.

It is important to recognize that the same arguments can be made for very low pos-
terior values which are far away from the top of the mode, even for well-behaved posterior
distributions in high dimensionality. While the SVM is not strictly needed here, adding these
values to the surrogate GP model is undesirable as they can dramatically change the scale
of the emulation problem even though they do not provide a large amount of additional

9Still, one could imagine using the SVM output before sgn function (the classification step) to more
smoothly suppress both mean and covariance, possibly combined with a sigmoid function.

– 9 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

information. In this sense, the algorithm also benefits from a regularization of forwarding
too small log-posterior values to the SVM.

We accomplish that by treating all values where log p(x) is smaller than some (suffi-
ciently low) threshold as infinities. However, one has to be careful about the un-normalized
nature of the posterior when applying the threshold. In practice, we compare against the
maximum of the posterior in the training sample (corresponding to point xmax) and only
treat values as infinite when log p(x) < log p(xmax) − T . We provide a default value for T
based on the prescription of appendix A, also giving the user the option to set it manually.

Lastly, we stress that the additional modelling presented in this section is only used
in practice if the log-posterior distribution ever returns either negative infinities or values
below the proposed threshold. Otherwise, only the bare GP model described in the previous
sections is used.

4 Learning strategy

In section 3 we have described the process of constructing a Gaussian process to emulate the
log-posterior distribution once a given set of samples are known. As discussed, a sufficiently
large naive set of samples (e.g. prior samples) will in general lead to an accurate model.
Unfortunately the computational cost of the algorithm scales with the number of samples Ns,
both directly as the number of times a possibly-costly true posterior needs to be evaluated,
and indirectly by increasing the computational cost of the Gaussian Process itself (as ∼ N2

s

at evaluation, and ∼ N3
s when fitting). In practice, samples are chosen so that their location

maximises an acquisition function, representing some measure of how valuable they would
be for the emulation when added to the GP. We discuss this approach in section 4.1. A
further reduction in computational costs can be achieved by taking advantage of the number
of machines/CPUs in computing clusters (and of CPU cores in user-level CPUs). Thus, we
discuss the parallelization of the algorithm in section 4.2. Finally, in section 4.3 we discuss
the vital question of when to end the acquisition of further samples automatically. Together,
this allows GPry to tackle the emulation of arbitrary distributions in a highly parallelized
way without relying on the end-user to optimize the number or locations of the samples.

4.1 Acquisition function

As discussed above, in order to find a small, but informative set of sampling locations, we
will look for locations that maximize an acquisition function a(x). This function will be
constructed using a combination of the mean and variance of the GP estimate, in such a way
that it balances exploration of the full parameter space (typically where the uncertainty in
the prediction is high) with exploitation of areas of high posterior values (which should be
more precisely modeled).

4.1.1 Choice of the acquisition function
A simple ansatz for an acquisition function that balances exploration and exploitation could
be the product of the estimated posterior p(x) (which is always positive) and its uncer-
tainty σp(x):10

ap(x) = p(x) · σp(x) . (4.1)
10This is by no means the only ansatz one could make to arrive at a suitable acquisition function. For a

thorough investigation see [78].

– 10 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

Given that the GP models log p, we have to convert the GP’s mean µ(x) and uncertainty
σ(x) into those of the linear p(x). Since the transformation from log p to p is non-linear, the
corresponding prediction for p from the GP is not a Gaussian distribution and the compu-
tation of its mean and standard deviation is non-trivial. However, in practice these details
are irrelevant since the acquisition function only needs to approximate the most beneficial
sampling location. Then, we can simply write for the mean p(x) ≈ exp[µ(x)] and for the
uncertainty σp ≈ exp[µ(x) + σ(x)] − exp[µ(x)]. With this, the acquisition function above
becomes:

ap(x) ≈ exp[2µ(x)] {exp[σ(x)]− 1} , (4.2)

which is similar to the acquisition functions used in [79, 80]. This approximation can be
further linearized assuming σ(x)� 1 to give alin

p (x) = exp[2µ(x)]σ(x).
As discussed in the next section, we found it beneficial to boost the exploratory be-

haviour of the acquisition function, especially in high dimensions. To achieve that, we include
a relaxation factor ζ ∈ (0, 1] multiplying the mean to discourage exploitation (similar to what
was done in e.g. [65]). This yields the final acquisition function:

ap(x) ≈ exp[2ζµ(x)] {exp[σ(x)− σn]− 1} (4.3)

which can again be linearized as alin
p (x) = exp[2ζµ(x)][σ(x)− σn] . Notice also that from the

σ(x) term we have subtracted a possible uncorrelated noise term proportional to σ2
n in the

kernel function (equivalently, a constant term added to the diagonal of the kernel covariance
matrix). This is because for acquisition purposes we only care about the uncertainty coming
from decorrelation from the sampled locations.

The logarithm of this acquisition function is maximized at every acquisition step which
yields a candidate for the next sampling location. The computational overhead of the acqui-
sition procedure is dominated by the prediction of µ(x) and σ(x) by the GP which scales
as ∼ N2

s .

4.1.2 Acquisition hyperparameter
The effect of ζ in equation (4.3) is that of balancing exploitation and exploration. Values of
ζ that are too high make the algorithm focus too much on the top of a posterior mode, so
that samples in the tails are unlikely to be proposed, and during large numbers of iterations
the GP model is mostly stable (only adding high-posterior but low-information samples).
This leads to unnecessarily high computational costs, and often to false positives in assessing
convergence. These effects are more dramatic in higher dimensions. On the other hand,
values of ζ that are too low would produce more regular but slower convergence, neglecting
information about the expected value of the true function that could have been exploited to
converge faster. In general, a sub-optimal choice of ζ will increase the amount of samples
necessary for convergence, sometimes quite significantly.

To select appropriate values, we have conducted a series of experiments on degenerate
Gaussian posterior distributions in 2, 4, 8 and 16 dimensions (for Nd < 4 the effect of ζ is
small), generated as explained in section 6.1. In order to isolate the effects of ζ, in these tests
we have not used the parallelization scheme described in section 4.2. The results of these
experiments in terms of KL divergence (see appendix B) are shown in figure 2, and have led
us to propose the empirical formula ζ = N−0.85

d as a default value for ζ (users can override
it if prior knowledge of the posterior shape suggests that exploration should be favored over
exploration or vice versa). Preliminary tests in higher dimensions (up to Nd = 27) have

– 11 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

19 29 39 49 59 69

10−2

100

102

D
K

L

Nd = 4

ζ = 0.01

ζ = 0.02

ζ = 0.05

ζ = 0.1

ζ = 0.2

ζ = 0.5

ζ = 1

ζ = 2

ζ = 5

31 63 95 127 159 191 223

10−2

10−1

100

101

102

D
K

L

Nd = 8

178 357 536 715 894 1073 1252

Number of posterior evaluations

10−2

10−1

100

101

102

D
K

L

Nd = 16

Figure 2. Distribution of Kullback-Leibler divergences between the GP prediction and the true
distribution at various learning stages (i.e., Ns samples) for random correlated Gaussian posteriors
with dimensionality Nd = 4, 8, and 16 (150, 50, and 50 realizations, respectively). The boxes represent
inter-quartilic ranges, the black line inside them the median, and the whiskers and dots represent the
tails of the distributions. For each dimensionality there is a visible trend towards an optimal trade-off
between exploration and exploitation in terms of ζ.

shown this formula to produce good results. The fact that a fixed ζ becomes greedier as
dimensionality goes up should not come as a surprise, as discussed in appendix A.

4.1.3 Optimization of the acquisition function

For the maximization of the acquisition function we use the L-BFGS-B optimizer [75] in-
cluded in the scipy Python package. Since this optimization problem is highly non-convex,
with the acquisition function often having many disconnected maxima, the numerical opti-
mization is performed multiple times from different randomly-drawn starting locations. In
high dimensions drawing an initial point with a non-vanishing value of the acquisition func-
tion becomes increasingly unlikely as the prior volume with vanishing posterior increases as
a power of the dimension (curse of dimensionality).

Because of this problem, optimal proposals most likely fall in the vicinity of the current
sampling locations. In order to generate such points we, by default, use a centroid algorithm:
take the average location of Nd + 1 randomly selected samples, and perturb them in each
dimension by the coordinate difference to one the samples multiplied by a draw from an
exponential distribution with parameter 1/λ. Here a lower λ increases the spread of the
proposed locations. A fraction of the locations are drawn from a uniform distribution within
the original prior boundaries, in case a region of high posterior has not yet been captured by
the current samples.

– 12 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

For highly non-Gaussian distributions this method of proposing points tends not to be
exploratory enough. In these cases we resort to drawing proposals uniformly within the prior
volume.

Lastly also provide a method to generate Gaussian-distributed proposals given an esti-
mate of the mean and covariance matrix of the posterior, if such information happens to be
known.

We notice that alternative approaches to maximizing the acquisition function exist.
In [65], the sampling locations with high acquisition function value are picked out of an
MCMC of the mean GP model.

4.2 Parallelization
The naive approach of using the acquisition function presented above is to acquire and eval-
uate sampling locations in sequence, with each acquisition step consisting of the evaluation
of the true posterior distribution (and updating the GP model) in order to obtain the next
candidate for a sampling location. However, as often multiple processing units (either on the
same or across different machines) are available, we can make this algorithm more efficient
by attempting to propose batches of sampling locations, so that the true posterior, which is
expected to be the largest source of computational cost, can be evaluated in parallel.

There have been many different proposals for batch acquisition for GPs in the past which
can broadly divided into two categories: algorithms like [81–84] construct an acquisition
function which can be optimized for several points at once. However, for a d-dimensional
posterior distribution acquiring q points at once involves global optimization in d·q dimensions
which obviously becomes computationally prohibitive even if d and q are not extremely large.

The second category [83–85] works by sequentially acquiring multiple points without
having to sample from the posterior distribution in between and afterwards evaluating the
true posterior at the gathered locations in parallel. We will be using one of these methods
called the Kriging believer method [84].

The Kriging believer method. The fundamental assumption of the Kriging believer
method (similarly to our assumption when constructing the acquisition function) is that the
value of the posterior distribution in any point roughly equals the predicted mean of the GP.
We can therefore acquire a batch of points by sequentially (1) obtaining a maximum of the
acquisition function at x∗, (2) assuming for it a log-posterior evaluation equal to µ(x∗), (3)
adding it to an intermediate augmented GP (thereby producing a different new maximum
of the augmented acquisition function), and repeating until the desired number of locations
has been proposed. This method will be increasingly accurate as more samples are added to
the GP so that µ(x∗) approaches the true log p(x∗). An illustration of the Kriging believer
algorithm sampling on the log of a normal distribution is shown in figure 3.

The obvious advantage of this method, as discussed above, is that the true posterior
can be evaluated in parallel for the acquired locations. This is beneficial as we expect the
true posterior evaluations to dominate the computational cost in most scenarios. In addition,
there is another source of speedup: since adding new mean-valued samples does not change
the optimal hyperparameters of the GP according to equation (2.7), there is no point to
re-fitting them (see section 5.3).11

11On top of that, the necessary step of inverting the kernel matrix after adding new points, in order to
get predictions using equations (2.5) and (2.6), could be accelerated by taking advantage of the fact that
the inverse of the previous kernel matrix is known, using a fast, blockwise matrix inversion formula. To our
knowledge this has not been pointed out in the past. In our case, the amount of possible time savings is small.

– 13 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

−10

−5

0

lo
g
(p

)(
x

)

L L

−5 0 5
x

0

5

a
li

n
p

(x
)

−5 0 5
x

−5 0 5
x

−5 0 5
x

True function µ(x) σ(x) Training points proposals alin
p (x)

Figure 3. Illustration of the Kriging believer method. Three points are acquired sequentially (three
left plots) by using the prediction from the GP instead of evaluating the posterior at each iteration.
After the three samples have been acquired the posterior function can be evaluated at these points
(right). The hyperparameters of the GP regressor only need to be refit at the last step. Obviously
using this approach comes at the expense of requiring more points to converge (e.g. the third point
did not add much information and is unlikely to have been selected after the second one if using
sequential acquisition). This can however be compensated by the computation time that is saved by
both acquiring points faster and evaluating the posterior in parallel. The characteristic length-scale
L of the kernel increases as more samples are added, which aids the better fit in the right panel.

In terms of the precise size of the batch, there is evidently a trade-off between the
speedup gained by not refitting the GP’s hyperparameters at every iteration, and the inac-
curacy of the GP’s mean prediction making the active sampling less efficient as the number
of Kriging believer steps grow. Due to the loss of accuracy in the predictions, more samples
are required to converge to the true distribution, but this is compensated by the speedup
achieved through parallel evaluations of the posterior. Overall this results in a smaller num-
ber of iterations (hence a smaller wall-clock run time) than sequential learning, as long as
the size of the batches is kept reasonable.

We find that a batch size corresponding to at most the number of dimensions of the
inference problemNd works reasonably well. We therefore set the standard number of Kriging
believer steps to the minimum between Nd and the number of parallel processes.

4.3 Convergence criterion

The last component of our algorithm is its convergence criterion, which should terminate it as
soon as (or at least not much later than) the GP has reached sufficient precision at modelling
the log-posterior. Precision could be assessed as the reduction in the variance of a GP-
predicted global posterior quantity such as the evidence

∫
p(x) dx. Analytical computation

of these quantities in terms of the GP are usually not possible, e.g. in our case because of the
modelling of the log-posterior instead of the posterior itself, or because the product of a GP
times arbitrary priors does not have a closed-form integral in general. Numerical approaches
would involve MC samples of the GP-modelled posterior, which come at a reasonably-small
computational cost, but whose use for the convergence criterion would involve obtaining them
at (nearly) every iteration.

A much cheaper convergence criterion would involve computations using the much
smaller set of current and/or proposed GP samples. We propose one such criterion, that
we call CorrectCounter, based on observing the accuracy of the learning process and stop-

– 14 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

ping when the model does not seem to learn any new information. We will show how that
the speedup in this case does not necessarily come at the cost of precision.

The assumption here is that our algorithm stops learning if the GP’s predictions at
newly acquired sampling locations x repeatedly match the value of the true log-posterior
log p(x) distribution to close approximation. We set a threshold using relative and absolute
tolerances εabs, εrel such that

|µGP+SVM(x)− log p(x)|
!
< εabs + |ymax − µGP+SVM(x)| · εrel , (4.4)

where ymax is the largest log-posterior from the current GP sample, and µGP+SVM(x) is the
GP’s prediction at x before the GP has been fit to this point. This criterion can be computed
at virtually no cost, since both µGP+SVM(x) and log p(x) have been computed as part of the
acquisition procedure. If this condition is satisfied a few times in a row we consider the
model converged and stop the algorithm. Convergence in this case means a guarantee that
(on average) new evaluations of the GP will at least approximately comply with the true
posterior at the same location (as opposed to convergence meaning stability of some global
quantity).

Similarly to the discussion in sections 3.3 and 4.1.2, the behaviour of this convergence
criterion is sensitive to the dimensionality Nd of the problem. As explained in appendix A,
since the dynamic range of a log-posterior enclosing a given probability mass grows with
dimensionality, the effect of a constant εabs will become more stringent as dimensionality in-
creases, making the criterion fail to report as converged GP models that already very precisely
characterise the posterior. In appendix A we propose a way to relax εabs in a dimensionally-
consistent way. The relative thresold εrel should not be affected by dimensionality, and it is
fixed to 0.01. In both cases, we also give the user the option to set their own values for the
convergence criterion.

On the other hand, as the number of dimensions Nd increases, correctly mapping the
tails of the distribution becomes increasingly more important (for a detailed discussion see
appendix A), while the surrogate model tends to converge first around the maximum of
true posterior distribution. The tails usually remain underrepresented at first and only get
explored later in the acquisition procedure. A higher dimensionality therefore makes it likelier
to acquire a batch of consecutive correctly-predicted points in a non-converged GP model
around the top of the mode. We account for this by increasing the number of times points
have to be predicted correctly to claim convergence to n = Nd/2 (with the exception of fixing
n = 4 for low dimensionality, Nd < 8). This reduces the risk of neglecting convergence at
the tails.

We tested the CorrectCounter criterion on a set of correlated Gaussians in 2, 4, 8,
12 and 16 dimensions, generated as explained in section 6.1. We target a KL divergence
with respect to the true Gaussian distribution of less than 5%. As shown in figure 4, we
achieve such threshold with the settings described above for the tolerances and the number
of consecutive correct predictions, at least for the range of dimensionality targeted in this
study. Towards higher dimensionality there is a trend to converge before the convergence
curve flattens out entirely, which hints at the need for more sophistication in dealing with
dimensional consistency. We leave this for future work.

We also note that we have written a criterion based on the costlier KL divergence (see
appendix B), which we provide as an alternative option. This alternative criterion is based
on the posterior emulation stabilizing over multiple subsequent steps (defined through the
KL divergence being below some critical threshold). This criterion comes with its own sets of

– 15 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

10−2 100 102 104

DKL

0

20

40

60

80
N

u
m

b
er

Nd=2

Nd=4

Nd=8

Nd=12

Nd=16

DKL = 0.05

101 102 103

Number of posterior evaluations

10−2

100

102

D
K

L

Nd=2

Nd=4

Nd=8

Nd=12

Nd=16

Figure 4. Left: distribution of KL divergences between GP models and their correspoding true
posterior at CorrectCounter-reported convergence, for Nd = 2, 4, 8, 12, 16-dimensional random cor-
related Gaussians (200 draws per dimensionality). Only a small fraction (< 5%) surpass our target
value of Dsym

KL = 0.05. Right: medians (solid lines) and interquartile ranges (shaded bands) of the KL
divergences between GP models and their correspoding true posterior, for the same sets of Gaussians,
as function of their number of accepted (finite) samples. The dashed vertical lines indicate the me-
dian number of accepted steps at which CorrectCounter reports convergence, and the shaded vertical
bands the respective interquartilic ranges. As expected there is a trend towards higher values of Dsym

KL
visible as Nd increases, but it is well under control for the dimensionalities targeted in this study.

challenges, such as incorrectly detecting convergence when non-informative points are added
to the GP or the costly nature of its computation. Nonetheless it can be preferable when the
log-posterior function is extremely expensive to evaluate or when the posterior distribution
exhibits unusual features, as this convergence criterion is not only sensitive to the acquired
samples but also to the hyperparameters of the GP.

5 The full algorithm

In this section we present the full structure of the algorithm, entailing the generation of the
initial set of training samples (section 5.1), the main acquisition loop that sequentially looks
for optimal samples and checks convergence (section 5.2), and the final generation of a Monte
Carlo sample of the trained GP surrogate model of the posterior, which can be used to get
marginalised quantities (section 5.3), together with a comparison of computational costs of
this algorithm against those of classic Monte Carlo.

5.1 Initial training set

In order to start the sequential acquisition of points we need an initial training set containing
samples from our posterior distribution. These do not have to be very informative samples
but need to be finite (according to the definition in section 3.3) and uncorrelated, in order to
generate some very crude but meaningful initial interpolation of the log-posterior distribution.

Of course we want to choose this sample such that the ratio of finite to infinite log-
posteriors is reasonably high, in order not to waste too many posterior evaluations on the
initial point generation. In low dimensions and with small priors compared to the size
of the mode, any random generator (such as draws from the prior itself, or from a uniform
distribution within the prior bounds) would produce initial samples satisfying the requirement
above. As the ratio of the prior to posterior volume grows with the number of dimensions,

– 16 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

randomly drawing a finite point from the prior becomes increasingly unlikely. In this case,
prior knowledge of the posterior can be incorporated, usually in the form of a “reference”
distribution which is a rough guess of where the mode might be (the same that is commonly
used to generate initial points for MCMC). In general any guess for reasonable parameter
values that lead to a finite posterior can be used, which can be obtained from physical
considerations of the underlying model.

5.2 Main algorithm
In algorithm 1 we show the main algorithm used within the GPry tool in pseudo-code, con-
sisting mostly of the optimization and acquisition loops (the latter based on the Kriging
believer approach). This pseudo-code mostly summarizes the ideas which are explained in
the corresponding sections 3 and 4.

Note that the nr,GP starting locations for the optimization of the hyperparameters in
line 4 are sampled logarithmically in the hypervolume. The step of line 4 is currently the
most expensive step, scaling as N3

s due to the required repeated matrix inversion required
for computing log p(θ|X,y). This is why we only perform this step every nopt-th time,
and otherwise we optimize the hyperparameters starting only from the previous best fit.
The next most expensive step is the acquisition function optimization in line 12, and scales
approximately as N2

s due to the repeated evaluation of the acquisition function requiring the
evaluation of a(x), which itself requires matrix multiplications.

5.3 Modelling the marginalized posterior
As mentioned above, to compute marginalized 1D/2D posteriors, we have to compute a high-
dimensional integral of our emulated posterior (see section 2.1). This can be achieved by
integrating the GP numerically through the creation a Monte Carlo sample, either based on
nested sampling, Metropolis Hastings sampling, or (using the backward differentiable nature
of the GP) even Hamiltonian sampling. As GPry is interfaced with the Cobaya package [86],
its standard samplers can also be used to generate the final MCMC sample. Currently, this
sampling is performed using the GP’s mean prediction according to equation (3.4) as the
posterior distribution to sample.12

One important question that such an approach poses, however, is whether the emulation
of the posterior with the GP with subsequent sampling of the surrogate posterior will be
computationally more efficient than the direct sampling of the true posterior. For this, let
us use a simple back-of-the-envelope computation. Consider the time to run a full sampling
of the true posterior as Nttt, where tt is the approximate time for a single evaluation and
Nt the total number of samples required. Instead, the time to run a sampling of the GP
posterior can be estimated as Ngtg, where tg is the average time for a single GP evaluation
and Ng the total number of required GP samples. Additionally, and crucially, there is the
additional overhead of constructing the GP in the first place, which we will denote simply as
To for now (we will discuss this in more detail later). In that case, the construction of a GP
is advantageous if

To +Ngtg < Nttt . (5.1)
Typically it can be assumed that tg � tt except for very simple toy models. Furthermore,
typically Ng ' Nt if one uses MCMC/nested sampling methods to sample the GP, or even

12Technically, the information that is available through the covariance of the GP could be used to obtain
an estimate of the uncertainty of emulation on our final posterior sample. As the acquisition procedure only
stops if the posterior mode is mapped accurately enough, this assures that at convergence this variance is
sufficiently small to safely be neglected.

– 17 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

Input: X (initial samples), y (initial log-posterior values)
[1] for n < Nmax do
[2] fit SVM with X, y
[3] every nopt −−− th time
[4] find θMAP = argmax[log p(θ|X,y)] from nr,GP starting locations

equation (2.7)
[5] otherwise
[6] find θMAP = argmax[log p(θ|X,y)] from last best-fit equation (2.7)
[7] end
[8] GP_fit(X, y)
[9] Xnew = []

[10] X lie = X and ylie = y
[11] repeat M times
[12] find xadd = argmax[a(x)] starting from nr,acq starting locations
[13] X lie append xadd and Xnew append xadd
[14] ylie append µ(xadd) Kriging believer
[15] GP_fit(X lie, ylie)
[16] end
[17] ytrue = logL(Xnew) + log π(Xnew) parallelizable
[18] X append Xnew
[19] y append ytrue
[20] if is_converged (e.g. equation (4.4)) then break
[21] end
[22] Sample µ(x) with MC sampler
[23] return MC sample

[24] Function GP_fit(X, y)
[25] Compute K−1 = k(X,X|θMAP)−1 matrix inversion
[26] µ(x) = µGP+SVM(x) equations (2.5) and (3.4)
[27] σ(x) =

√
ΣGP+SVM(x) equations (2.6) and (3.5)

[28] a(x) = exp[2ζµ(x)]{exp[σ(x)− σn]− 1} equation (4.3)
[29] end

Algorithm 1. The GPry algorithm in a condensed format, omitting the internal transformations that
are made to the data. M is the number of Kriging believer steps made in each iteration. The overhead
of the algorithm is dominated by the computations performed in lines 12 and 4.

Ng � Nt if one can use Hamiltonian MC methods on the GP but not on the true posterior.
Thus, as long as To remains reasonably lower than Nttt (the total runtime of the MCMC), the
use of a GP would always be advantageous. It is thus crucial to obtain a precise estimate for
the overhead time To. This overhead depends strongly on the dimensionality of the problem,
the non-Gaussianity of the posterior, and the underlying machine executing the code.

Looking at the timing information from the multivariate Gaussian cases of section 6.1,
the overhead was dominated by the numerical optimization of the acquisition function (line 12
of algorithm 1), taking very roughly 100s · (Ns/100)2.4 (to give an order-of-magnitude esti-
mate). The next most important factor, the optimization of hyperparameters (line 4 of al-

– 18 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

gorithm 1) only takes around 3s · (Ns/100)3.2 (order of magnitude) in total. It has a smaller
pre-factor since it is only performed every nopt-th iteration, while the acquisition optimiza-
tion is performed M · nr,acq times per iteration, see algorithm 1. It is thus comparatively
irrelevant for Ns � 104, which is almost always the case for the range of dimensionalities
considered in this study.

In figure 5 we report the approximate expected total runtime of GPry compared to the
Cobaya implementation of the MCMC sampler CosmoMC [1, 2, 86] and the nested sampler
PolyChord [9, 10] (via its Cobaya interface). For each dimensionality, these estimates were
generated by drawing a large set of random multivariate Gaussians, and computing the dis-
trubution of total evaluations needed for convergence (according to their respective default
criteria) for MCMC, PolyChord and GPry. We multiply these numbers of posterior evalua-
tions with the posterior evaluation times on the x-axis and add the overhead of each algorithm
to get the total runtimes on the y-axis. For GPry, the computational overhead is caused by
the optimization of the acquisition function and the fitting of the GP hyperparameters, and
it is constant with respect to the posterior evaluation time, producing the particular shape
of the curve. We neglect the overhead of MCMC and PolyChord as it is tiny compared to
the overhead of GPry [86].

For example, in the case of a Nd = 12 multivariate Gaussian, GPry would outperform
the MCMC (which requires ≈ 1.5 ·105 evaluations) for posterior evaluation times larger than
∼ 0.1 seconds. Comparing to the average runtime of a cosmological code such as CLASS, on
average we find a significant speedup all the way up to 16 dimensions.

Note that in figure 5 we show single-core performance with as many Kriging believer
steps as dimensions (while still evaluating the posterior sequentially). The curves shown for
MCMC and especially for PolyChord would drop almost proportionally to the number of
cores available, while GPry does not scale quite as well. However, for a similar amount of
computational resources, up to a number of processes similar to the dimensionality of the
problem, these results are expected to hold in order of magnitude. While the runtime of
MCMC and PolyChord is dominated by the posterior evaluations, the overhead of GPry is
considerable and might scale differently depending on the underlying architecture. Further
improvements in runtime could be made by optimizing the underlying GP implementation.

6 Examples

After having discussed the design of the GPry code in sections 3 to 5, we now demonstrate
the performance of the code using a variety of examples, both Gaussian and non-Gaussian
distributions considered in the literature, as well as examples from cosmological applications.

For each of the examples in this section, we will analyze the performance of GPry in
terms of convergence by producing a number of runs with identical GPry settings (same
choices of kernel functions, acquisition function and other training settings) but different
random seeds, so that they start from different initial training samples (uniformly drawn
from the prior) and find generally different optima for the acquisition function and the GP
hyperparameters (maximizations are started from random starting positions). On top of
the intrinsic variability between runs, the covariance matrices and means of the Gaussian
examples in section 6.1 and the log-Gaussian ones in section 6.2.1 are drawn randomly for
every run to make the tests more robust, whereas for the rest of non-Gaussian and multimodal
examples, as well as the cosmological ones, the posteriors are fixed.

– 19 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

10−2 10−1 100 101 102 103

Posterior evaluation time [s]

101

103

105

107

T
ot

al
ru

n
ti

m
e

[s
]

1 minute

1 hour

1 day

1 month

1 year

1
se

co
n

d

1
m

in
u

te

Nd=4

GPry

MCMC

PolyChord

10−2 10−1 100 101 102 103

Posterior evaluation time [s]

101

103

105

107

T
ot

al
ru

n
ti

m
e

[s
]

1 minute

1 hour

1 day

1 month

1 year

1
se

co
n

d

1
m

in
u

te

Nd=8

GPry

MCMC

PolyChord

10−2 10−1 100 101 102 103

Posterior evaluation time [s]

101

103

105

107

T
ot

al
ru

n
ti

m
e

[s
]

1 minute

1 hour

1 day

1 month

1 year

1
se

co
n

d

1
m

in
u

te

Nd=12

GPry

MCMC

PolyChord

10−2 10−1 100 101 102 103

Posterior evaluation time [s]

101

103

105

107

T
ot

al
ru

n
ti

m
e

[s
]

1 minute

1 hour

1 day

1 month

1 year

1
se

co
n

d

1
m

in
u

te

Nd=16

GPry

MCMC

PolyChord

Figure 5. Order of magnitude estimate of total runtime comparison of GPry with the MCMC sampler
CosmoMC/Cobaya and the nested sampler PolyChord (via its Cobaya interface). The comparison is
done for multivariate Gaussians of various dimensionalities, and shows the median as a line and the
25% and 75% quantiles as a shaded area. The comparison is run with only a single CPU, but the
orders of magnitude hold for similar computational resources for all three methods. The light blue
band gives an approximate range of computation times of standard cosmological codes (like camb or
CLASS) which depend strongly on the considered model and observables. Note that while MCMC
and PolyChord are dominated by the posterior evaluation time everywhere, GPry is dominated by
overhead for small posterior evaluation times.

6.1 Multivariate Gaussians
The example of a multivariate Gaussian distribution is enlightening as a benchmark for
the average performance of the GP, as it can quite trivially be scaled with dimensionality
and many likelihood functions can — at least around their maximum — be reasonably well
approximated by Gaussian distributions. We can thus use it as a benchmark for performance
and accuracy as a function of dimensionality, as well as to model critical scalings such as that
of the ζ parameter from section 4.1, the factors involved in equation (4.4), and the timings
relevant for section 5.3 (see appendix A).

We generate correlated multidimensional Gaussians with log-likelihood function

logL(x0, . . . , xn) = −(x−m)TC−1(x−m) + log((2π)n|C|)
2 (6.1)

by drawing a random covariance matrix that satisfies
Ci,j = σiσjcorri,j (6.2)

– 20 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

where corri,j is a randomly drawn correlation matrix with uniformly drawn eigenvalues,13

and the standard deviations are uniformly drawn as σi ∈ [0, 1]. The mean vector m is set to 0
and the prior fixed to 5σi in each direction. This ensures that the mode is centered within the
prior. The case in which parts of the mode are cut off by the prior is discussed in section 6.2.
We then conducted tests in {2, 4, 8, 12, 16} dimensions recording the Gaussian KL divergence
of equation (B.3), the number of posterior evaluations, and the overall overhead. The final
results were already shown in figures 2, 4 and 5.

6.2 Non-Gaussian distributions
One of the main goals of our algorithm is to be robust with regards to the functional shape of
the posterior distribution. We therefore tested the code also on non-Gaussian distributions
with varying degrees of pathological features. All adopted priors are flat in the respective
parameters.

6.2.1 Log-transformations
Our first example of a non-Gaussian feature is motivated by a common occurrence in Physics.
In many applications, there are free scales in the problem which are not known across one
or more dimensions in the parameter space. For these parameter one usually samples their
logarithm with a flat prior (which is equivalent to imposing a logarithmic prior), distributing
the prior probability density evenly across multiple orders of magnitude. If the likelihood
is Gaussian in the (linear) parameter, this typically leads to a log-Gaussian distribution of
the form

10x ∼ N (µ, σ) (6.3)

across some dimensions.
To test whether our algorithm is robust with respect to these kind of likelihoods we

drew randomly correlated 4-dimensional Gaussians according to equation (6.1) where the
first two dimensions {x0, x1} are sampled in log-space. The performance of the algorithm in
this case is shown in figure 6. We recover the correct posterior shape and manage to sample
the posterior accurately with only around 200 samples. An additional benefit of this test is
that it shows that our algorithm is robust with respect to cases where the mode has a hard
prior cutoff (|xi| < 2 in this example).

In order to explore the limits of our algorithm, we perform the same test in 8 dimen-
sions, with 4 of them being sampled in log-space. We set a budget of at most 2000 posterior
evaluations. Figures 7 and 8 show the distribution of Dsym

KL as a function of the number of
posterior samples and at convergence for the default settings of CorrectCounter proposed
in appendix A (εabs = 0.01[∆χ2](1), εrel = 0.01) and for five times more accurate settings
(εabs = 0.002[∆χ2](1), εrel = 0.002). With default settings convergence tends to be declared
prematurely while the more accurate settings mitigate this problem. Figure 9 shows corner
plots of two example runs at declared convergence by CorrectCounter with default settings,
one where convergence is declared prematurely while the mode is still being explored, and
one where the mode has been characterized correctly (our target Dsym

KL of 0.05 has not been
reached in either case). This higher-dimensional example highlights two limitations of our al-
gorithm. On one hand, the overhead of the GP regressor after such a large number of samples

13They are uniformly drawn between 0 and 1, then multiplied by a normalization constant such that their
sum equals the number of dimensions, in order to avoid cases where many of the eigenvalues are close to zero
simultaneously.

– 21 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

−1 0

x0

−0.05

0.00

0.05

x
3

−0.05

0.00

0.05

x
2

−1

0

x
1

−1.0−0.2

x1

−0.05 0.03

x2

−0.06 0.04

x3

MCMC

GPry

50 100 150 200 250 300
Number of posterior evaluations

10−3

10−2

10−1

100

101

D
sy

m
K

L
Figure 6. 2d and 1d posterior distributions of a typical four-dimensional log-gaussian distribution
(left) at convergence (180 posterior evaluations), and convergence with respect to the true model
against number of accepted steps for 200 realizations, where the blue band shows the {25, 50, 75}%-
quantiles for the KL-divergence, and the grey band does the same for convergence as defined by
the CorrectCounter criterion. (Right) The posterior distribution is cut off in x0 and x1, which is
correctly captured by GPry.

10−3 10−2 10−1 100

Dsym
KL

0

2

4

6

8

10

N
u

m
b

er

500 1000 1500 2000
Number of posterior evaluations

10−2

10−1

100

101

D
sy

m
K

L

Figure 7. Left: distribution of KL divergences at convergence, according to CorrectCounter with
default settings, of the 8-dimensional log-gaussian draws. Right: convergence against number of
accepted steps, where the blue and grey bands are defined as in figure 6. Even though most of the runs
converge within an acceptable accuracy, our convergence criterion declares convergence prematurely.
83 of the 84 runs we performed were declared as converged. Figure 9 shows the contour plots for a
two examples of a prematurely and a correctly reported convergence with these default settings of
CorrectCounter.

(∼ 2000) reduces the advantage of our algorithm with respect to traditional MC samplers.
On the other hand, the prematurely reported convergence seems to be a consequence of the
combination of long tails and higher-dimensionality: the sequential optimization algorithm
fails to propose points at the tails, which occupy a small fraction of the hypervolume in
higher dimensionality. An active sampling scheme that explores the parameter space more
thoroughly may mitigate this problem [87].

– 22 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

10−3 10−2 10−1 100

Dsym
KL

0

1

2

3

4

5

6
N

u
m

b
er

500 1000 1500 2000
Number of posterior evaluations

10−2

10−1

100

101

D
sy

m
K

L

Figure 8. Same as figure 7, with the required accuracy of the CorrectCounter convergence criterion
increased by a factor of 5 (εabs = 0.002[∆χ2](1), εrel = 0.002). The KL-divergence of the converged
runs is much better than in figure 7. However, only 58 of 84 runs are declared as converged by the
convergence criterion when the evaluation budget has been exhausted.

0.3

x1

0x
8

0x
7

0x
6

0x
5

−1x
4

0

x
3

−0.35x
2

−0.34

x2

−1

x3

−1

x4

0

x5

0

x6

0

x7

0.1

x8

MCMC

GPry

−0.5

x1

0x
8

0x
7

0x
6

0x
5

−0.5x
4

−1x
3

−1x
2

−1

x2

−1

x3

−0.5

x4

0

x5

0

x6

0

x7

0

x8

MCMC

GPry

Figure 9. Triangle plots of the 8-dimensional log-Gaussian example at convergence according to
CorrectCounter with default settings. Left: premature convergence (928 posterior evaluations,
Dsym

KL = 1.49). The mode has been found but not been explored completely. Right: correct clas-
sification as converged (736 posterior evaluations, Dsym

KL = 0.08). Even though our target Dsym
KL of

0.05 has not been reached the contours are still recovered correctly.

6.2.2 Curved degeneracies

We also investigated whether more general curved degeneracies with different length-scales
in the different parameter dimensions could be modeled correctly. We use three examples.

1. Example one is a “banana”-shaped curved degeneracy, a slightly modified version of
a benchmark found in [88], which is based upon an eight-order polynomial in the
exponent and exhibits a long tail in the x1 ≈ 4x4

0 direction. The log-likelihood of this

– 23 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

distribution is

logL(x0, x1) = −(10 · (0.45− x0))2/4− (20 · (x1/4− x4
0))2 . (6.4)

Figure 10(a) shows how GPry performs at sampling this distribution. The posterior
shape is correctly recovered (at around ∼ 40 posterior evaluations) and shows good
match with MCMC.

2. Example two has a fourth-order polynomial in the exponent, but in this case the param-
eters are tuned in order to exhibit an extremely sharp cutoff away from the degeneracy
direction and an extremely long tail along the degeneracy. This particularly patholog-
ical case is the Rosenbrock function, commonly used to test minimization algorithms.
It is described by

logL(x0, x1) = −1
2
[
(a− x0)2 + b(x1 − x2

0)2
]
, (6.5)

where we set the parameters to their typical values of a = 1 and b = 100. It has a
long, narrow, parabolic “ridge” along which the maximum lies. Since the parabolic
degeneracy direction changes throughout, this is a good test for the robustness of GPry
for distributions which do not show a clear axis of correlation or symmetry. We impose
a uniform prior between [−4, 4] for both x0 and x1. The results for this posterior are
displayed in figure 10(b), which shows that even such a pathological posterior function
can be accurately described by the GPry code, while still requiring a reasonably small
number of posterior evaluations (∼ 60).

3. The third example is a sharp ring-like posterior. The log-likelihood of this distribution
is given by

logL(x0, x1) = −1
2

(√

x2
0 + x2

1 − µ
)2

σ
+ log(2πσ2)

 , (6.6)

with µ = 1 and σ = 0.05. This produces a ring-shaped posterior distribution with the
two very different scales µ (the location of the ring) and σ (the width of the ring).
Furthermore the maximum of this function is the ridge of the ring, making it especially
hard to capture the full mode and sample the distribution correctly. Nevertheless our
algorithm efficiently captures this mode within ∼ 75 posterior evaluations and agrees
well with MCMC.

We note that for all of these non-Gaussian examples more posterior evaluations are
required for convergence compared to the multivariate Gaussian examples with the same
dimensionalities. This is because the surrogate model requires more training samples to
correctly capture the non-trivial shape and the extended tails.

6.2.3 Multi-modal posteriors
We also want to check the robustness of the GPry tool against mild multi-modality. For this,
we make use of a modified Himmelblau function (which is commonly used in minimization
studies). The log-posterior is defined as

logL(x0, x1) = −1
2
[
a · (x2

0 − x1 − 11)2 + (x0 + x2
1 − 7)2

]
(6.7)

– 24 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

0.0 0.4 0.8

x0

0.0

0.5

1.0

1.5

x
1

0.0 0.5 1.0 1.5

x1

MCMC

GPry

25 50 75 100 125 150
Number of posterior evaluations

10−3

10−2

10−1

100

101

D
sy

m
K

L

(a) “Banana”-shaped degeneracy.

−2 −1 0 1 2

x0

0

1

2

3

x
1

0 1 2 3

x1

MCMC

GPry

25 50 75 100 125 150
Number of posterior evaluations

10−3

10−1

101

D
sy

m
K

L

(b) Rosenbrock likelihood.

−1 0 1

x0

−1

0

1

x
1

−1 0 1

x1

MCMC

GPry

25 50 75 100 125 150
Number of posterior evaluations

10−4

10−3

10−2

10−1

100

101

D
sy

m
K

L

(c) Gaussian ring.

Figure 10. Performance tests for the non-Gaussian likelihoods with curved degeneracies presented
in section 6.2.2. For each case left: 2d and 1d posterior distributions for typical converged runs (40,
62 and 68 posterior evaluations, respectively); right: convergence against number of accepted steps,
where the blue and grey bands are defined as in figure 6. Even though these distributions display
very non-Gaussian behaviours, their shape is correctly recovered without needing a large number of
samples.

– 25 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

where the term in the brackets corresponds to the Himmelblau function for a = 1. We
include this scaling factor a in the first term in order to create a “mild” multi-modal pos-
terior (a = 0.1) with relatively connected modes which we compare to the full Himmelblau
function (a = 1).

We show the results of sampling this distribution in figures 11 to 13. We observe that
many runs do not correctly capture the modes. In general, we can distinguish three modes
of failure of the GPry algorithm, nicely demonstrated in these examples.

1. The algorithm can find and sample all modes, but not weigh them correctly in relation
to each other. This is clearly visible in figure 11, where all modes are reliably sampled,
but the 1D posterior reveals the incorrect weighting.

2. The CorrectCounter criterion may falsely claim convergence and stop the sampling
when some of the modes have been well explored, while further sampling might have re-
vealed modes that have not been mapped. This is shown in figure 12, where we compare
the convergence to the true distribution (through the Dsym

KL) when the CorrectCounter
criterion has claimed convergence, with that of the runs at a larger number of samples
(150 in this case). We observe that if the sampling had continued further, they would
have been able to better map the underlying modes. See also figure 13 for two examples
of these first two failure modes for the a = 1 case.

3. The SVM could characterize a whole region as irrelevant due to a very deep intermediate
valley even though a mode is present there. In that case, no amount of additional
sampling would reveal the hidden mode. This failure mode does not occur for the
a = 0.1 or a = 1 cases as the valleys are not deep enough there to be characterized as
irrelevant.

As such, we would like to stress that this package was designed with a focus on uni-modal
distributions and that there is no guarantee that in general all modes are captured or weighed
correctly by the algorithm. Deeper investigations into multi-modal GP algorithms are left
for future work. Note that for this distribution we used the PolyChord nested sampler [9, 10]
for generating our reference contours and MC samples of the GP surrogate as it — unlike
MCMC — reliably finds and explores all modes.

6.2.4 Performance for non-Gaussian and multi-modal distributions

In section 6.2 we have demonstrated that non-Gaussian distributions need a larger number
of training samples in order to converge when compared to Gaussian distributions with equal
dimensionality (in the particular examples presented in this section, the ratio of required
samples seems to be approximately 5). This need for a larger number of posterior evaluations
for convergence is also true for traditional algorithms. We could perform a similar analysis to
the one presented in figure 5 to check whether the comparison with MCMC and PolyChord
generalizes to non-Gaussian cases. Due to the wide variety of possible non-Gaussian shapes,
the required number of samples and the corresponding overhead will depend dramatically
on the distribution at hand. We therefore refrain from performing such an analysis at this
point, and leave it for future work, where a range of more realistic non-Gaussian distributions
would be tested, instead of the particularly pathological cases discussed here.

– 26 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

−2 0 2

x0

−2

0

2

x
1

−2 0 2

x1

PolyChord

GPry

25 50 75 100 125 150
Number of posterior evaluations

10−4

10−3

10−2

10−1

100

101

D
sy

m
K

L

Figure 11. 2d and 1d posterior distributions of a typical, converged runs of the “mild” Himmelblau
function (left) at convergence (58 posterior evaluations) and convergence against number of accepted
steps (right), where the blue and grey bands are defined as in figure 6. The function has four modes
which are all sampled but not weighed correctly by GPry. GPry on average needs few (. 75) samples
to claim convergence.

10−3 10−1 101

Dsym
KL

0

5

10

15

20

N
u

m
b

er

10−4 10−2 100

Dsym
KL

0

5

10

15

20

25

30

N
u

m
b

er

Figure 12. Left: distribution of KL divergences at convergence according to CorrectCounter of
the standard Himmelblau function. In many cases convergence is declared while not all of the four
modes of the function have been explored, leading to large values of Dsym

KL . Right: distribution of KL
divergences for the same Himmelblau function at a budgeted, large number of samples (in this case
150). The distribution shows that sampling beyond reported convergence of the CorrectCounter
criterion would aid in improving the interpolation. Nonetheless, there still remain two modes: one at
low values of Dsym

KL (around Dsym
KL = 10−3) where all modes have been found and one at high values

(around Dsym
KL = 1) where some of the modes were not explored. Examples of this behaviour are

shown in figure 13.

6.3 Cosmology

We also test the GPry tool in the context of cosmological applications, such as the inference
of the posterior for Planck CMB anisotropy measurements (using the nuisance-marginalised
Planck Lite likelihood of [89, 90] in the context of the 6-dimensional ΛCDM model). We
performed 75 separate runs of the GPry tool, converging on average within only around 500
evaluations of the underlying theory code.14 The convergence history as well as the final

14Here we happen to be using CLASS [91], but since the GPry tool is fully interfaced with Cobaya [86], other
theory codes can be used as well.

– 27 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

−2 0 2

x0

−2

0

2

x
1

−2 0 2

x1

PolyChord

GPry

−2 0 2

x0

−2

0

2

x
1

−2 0 2

x1

PolyChord

GPry

Figure 13. Exemplary 2d and 1d posterior distributions of the full Himmelblau function (a = 1). Left:
contours of the algorithm finding all modes and converging at 102 posterior evaluations (although the
1D posteriors are not weighed correctly). Right: example of the algorithm missing a mode completely
and falsely claiming convergence. This problem arises when the posterior distribution to map has
several disconnected modes. If one of the modes is missed completely early in the sampling procedure
the GP surrogate and hence the acquisition procedure may deem this region irrelevant and not sample
there. This behaviour is especially severe when the SVM classifies the region which contains the
additional mode(s) as infinite.

KL-divergence upon termination through the convergence criterion are shown in figure 14.
An exemplary case (close to the median in terms of required number of samples) is also
shown in figure 14, where we can see that the constraints are very well aligned with those of
the true posterior.

We note that the full Planck likelihood (including nuisance parameters) can also be
modeled with GPry, but in this case the high dimensionality of the parameter space (27
dimensions in our case) makes the proposal of new points to start the acquisition optimization
from (see line 12 of algorithm 1) rather difficult. If one uses the bestfit and covariance matrix
of the Planck chains to propose these points instead, the acquisition function can be well
optimized and the run does correctly map the posterior. We leave investigations of reaching
convergence for the full Planck likelihood without any kind of a priori information (such as
covariance matrix or bestfit) for future work.

Another illustrative example is that of the combined Big Bang Nucleosynthesis (BBN)
and Baryon Acoustic Oscillatons (BAO) measurements. We combine low redshift BAO from
6dFGS galaxies, the DR7 main galaxy sample, DR12 luminous red galaxies (together low-
z), as well as high redshift BAO from DR16 quasars, DR16 Lyman-α based BAO, and their
cross-correlations (together high-z), in order to constrain the Hubble constant and the matter
composition of the Universe. The BBN likelihood we adopt is the same as in [92]. For this
case we vary the number of effective neutrinos Neff , corresponding to the addition of dark
radiation to the ΛCDM model. This results in three possible data likelihood combinations,
depending on whether we combine with the BBN data the low redshift galaxy based BAO
likelihoods (“low-z”), with the higher redshift Lyman-α and quasar BAO likelihoods (“high-
z”), or we use both redshift samples (“combined”). For every combination, we sample the
four-dimensional posterior using both MCMC and GPry. In figure 15 we show the resulting
triangle plot which is in excellent agreement, demonstrating again the flexibility of GPry even

– 28 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

10−2 10−1

DKL

0

2

4

6

8

10

12

N
u

m
b

er

0 200 400 600 800 1000
Number of posterior evaluations

10−2

10−1

100

101

102

D
K

L

3.04 3.08

log(1010As)

0.04

0.06

τ r
e
io

0.116

0.120

0.124

Ω
c
h

2

0.0220

0.0224

0.0228

Ω
b
h

2

66

67

68

69

H
0

0.96

0.97

n
s

0.96 0.97

ns

66 67 68 69

H0

0.022

Ωbh2

0.118 0.122

Ωch2

0.04 0.06

τreio

MCMC

GPry

Figure 14. Constraints and convergence statistics in a ΛCDM model from Planck 2018 (TT, TE,
EE, lensing) using the nuisance-marginalised Planck Lite likelihood. The given constraints could be
obtained sampling only around ∼ 500 (in this case 420) evaluations of the underlying theory code and
likelihood. Top Left: distribution of KL divergences at convergence according to CorrectCounter with
default settings. Top Right: KL divergences against number of accepted steps, as defined in figure 6.
For both top plots, these distributions refer to 75 independent runs with identical training settings.
Bottom: 1D posteriors and (68.3%, 95.4%) contours of the 2D posteriors for one representative run
at convergence. The dots show the training samples in the order in which they were acquired, where
darker samples were added early and yellow ones late.

when the underlying model or the used data sets are varied. The contours can be recovered
with only around ∼ 100 posterior evaluations (as opposed to the ∼ 104 points used for the
MCMC chains).

– 29 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

0.2 0.3 0.4 0.5

Ωm

0.021

0.022

0.023

0.024

0.025

Ω
b
h

2

1.5

2.0

2.5

3.0

N
u
r

60

70

80

H
0

60 70 80

H0

1.5 2.0 2.5

Nur

0.022 0.024

Ωbh
2

High-z

Low-z

Combined

Figure 15. Triangle plot showing the marginalised constraints of the four-dimensional likelihood of
BBN+BAO measurements for high-z, low-z and combined likelihoods. GPry is able to recover all
contours correctly with only very few (124, 108, 80) posterior evaluations. The contours that we
recover are in excellent agreement with the constraints from MCMC.

7 Conclusions

In this paper we presented the GPry algorithm and Python package implementation. As
shown with both synthetic and cosmological likelihoods our algorithm requires vastly less
posterior evaluations for generating a fair Monte Carlo sample for Bayesian Inference than
current state-of-the-art MCMC and nested samplers. We report up to multiple orders of
magnitude improvements in the number of posterior evaluations required, as well as in wall-
clock computation time savings, making this algorithm very promising for slow likelihood
codes. This not only speeds up inference significantly but also reduces its carbon footprint.
Furthermore, we open a new window of possibilities by enabling inference from extremely
slow likelihoods (& minutes per evaluation), which otherwise would be impossible to sample,
since traditional samplers might take months to converge. In addition, since our algorithm
does not rely on specialized hardware (such as GPUs) or any kind of pre-training, it can be
used as a drop-in replacement for traditional Monte Carlo samplers. Particularly in the case
of cosmological applications it benefits from an interface with Cobaya.

Despite the algorithm’s impressive performance, there is still ample room for improve-
ment both in terms of speed and robustness. In a future series of papers we plan to explore

– 30 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

four main avenue: (i) the overhead of constructing the GP surrogate model and the acqui-
sition procedure could be further minimized by using clever numerical techniques, allowing
GPry to outcompete traditional MC samplers even for fast likelihoods. (ii) As discussed in
section 6.2.3 GPry currently is optimized for unimodal posterior distributions; it would be
desirable to increase the robustness towards strongly multi-modal posteriors by generating
the starting points for the acquisition optimization in a special way, and using clustering
algorithms to track different modes separately. (iii) For likelihood distributions with signif-
icant stochastic or numerical noise, it would be beneficial to automatically adapt the noise
term in equation (2.3) without requiring prior knowledge. (iv) For high dimensionalities the
current methods of proposing additional points for restarting hyperparameter optimization
and sample acquisition are still relatively naive. Similarly, the overhead of the underlying
operations performed on the GP increases strongly with the number of acquired samples.
Both of these hurdles can be overcome with novel approaches, potentially unlocking even the
regime of high-dimensional likelihoods for further optimization with GPry.

The GPry algorithm and python package presented in this work enables parameter
inference in cosmology without high computational and environmental costs. This opens
up new possibilities for Bayesian inference on costly likelihood functions which have been
computationally unfeasible before. With many avenues of optimization of the code-base and
algorithm still left to explore, GPry will only continue to improve in efficiency and accuracy.

Acknowledgments

We thank Julien Lesgourgues, Antony Lewis, Andrew Liddle and Marcos Pellejero Ibáñez
for useful discussions. This project was initiated when all authors were working at the TTK
institute of RWTH Aachen University. We also acknowledge the use of the JARA comput-
ing cluster of the RWTH Aachen University under project jara0184. N.S. acknowledges
support from the Maria de Maetzu fellowship grant: CEX2019-000918-M, financiado por
MCIN/AEI/10.13039/501100011033. J.E. acknowledges support by the ROMFORSK grant
project no. 302640. The authors thank the referee for the many helpful comments and sug-
gestions that helped improve the quality of this manuscript. J.T. acknowledges support from
the STARS@UNIPD2021 project GWCross.

A Posterior scale in higher dimensions

When considering a problem with a larger number of dimensions, there are a few aspects
of the problem that require special care. It is a well-known fact that for a 1-dimensional
Gaussian the region defined by one standard deviation around the mean contains ≈ 68%
of the total probability mass. The generalisation to higher dimensionality is non-trivial:
for multivariate Gaussians, considering distances defined in units of the covariance matrix
(Mahalanobis distance), the region defined by a unit away from the mean contains a smaller
and smaller fraction of the total probability mass as dimensionality goes up. This is, of
course, nothing more than the curse of dimensionality, and it will be present in most of the
inference problems that we target in this study.15

In our context of modelling a probability density function, this is reflected in the dy-
namic range of log-probability that needs to be carefully modelled, meaning that given some

15It affects distributions with significant tails, and most well-behaved distributions show tails, including
those in the exponential family (which includes multivariate Gaussians).

– 31 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

confidence limit (CL) up to which we want our model to be especially precise, the differ-
ence between the log-posterior corresponding to that CL and the maximum log-posterior
will depend on dimensionality. This dynamic range will show up at three different steps
of the algorithm, explicitly in the treatment of infinities and extreme values in section 3.3
and the convergence criterion in section 4.3, and implicitly in the choice of the acquisition
hyperparameter in section 4.1.2. Taking into account this dimensionality scaling in the ways
explained below has proven to dramatically improve the performance of our algorithm.

In order to give a rough order-of-magnitude estimate for this log-posterior scaling, we
can turn towards a multivariate Gaussian distribution of the same dimensionality. Treated
as a random variable itself, a multivariate Gaussian log-probability is proportional to the
sum of Nd independent standard 1-dimensional Gaussian random variables (up to a linear
covariance-diagonalizing transformation). Thus the value of the Gaussian log-posterior when
multiplied by −2 follows a χ2 distribution with Nd degrees of freedom. Defining ∆χ2 =
2[max(log p)− log p] we find ∆χ2 ∼ χ2

Nd
.

We can use this to compute the posterior range corresponding to different CLs defined
by the posterior mass ε that they leave out, using the χ2 cumulative distribution function
FNd

(where Nd is the number of degrees of freedom):

1− ε = FNd
(∆χ2) . (A.1)

When referring to CLs in higher dimensions, we can alternatively name them as their 1D
equivalent normal Gaussian extent (1−ε = 0.683 for 1-σ, 1−ε = 0.954 for 2-σ, etc.). As such,
in the following when we refer to a n–σ contour in an arbitrary dimensionality within this
paper, we explicitly refer to the CL corresponding to that number of standard deviations in a
1D Gaussian. Explicitly, since F1(x) = erf(

√
x/2), and given that the value of a χ2

1 random
variable represents the squared number of standard deviations away from the mean in the
corresponding Gaussian, we can simply write 1− ε = erf(n/

√
2) for a given n-σ CL.

With this, we can get the expected scaling in Nd dimensions corresponding to a n-σ
probability mass as

[∆χ2](n) = F−1
Nd

[
erf(n/

√
2)
]
. (A.2)

As an example, the 2-σ (1− ε = 0.954) contour corresponds to a range [∆χ2](2) = 9.72 in 4
dimensions and [∆χ2](2) = 15.79 in 8 dimensions.

In section 3.3 we have used this result to derive the threshold value T for the SVM
(the criterion for deciding if a sample has a sufficient log-posterior to be added to the GP)
by imposing T = [∆χ2](nT)/2 which is the scaling of the log-posterior for nT = 20 (ε ≈
5.5 · 10−89), and has been found to work well for most practical applications (including all
examples in this work). This prescription ensures dimensional consistency: choices of T as
absolute values do not work well across different dimensions, causing the SVM to be too
permissive in low dimensions (does not capture extreme values efficiently) and too stringent
in high dimensions (points with significant log-posterior are excluded).

We have also used this result to scale the tolerance of the convergence criterion in
section 4.3. In particular, since the absolute threshold εabs is compared against differences
in absolute values of log p, we are scaling it as these differences do for a fixed difference in
credibility, in particular that of the first σ credible (hyper)volume: εabs = 0.01[∆χ2](1).

Regarding the dimensionality scaling of the learning hyperparameter, it is not trivial to
find an analytic prescription to write ζ as a function of [∆χ2](n). As discussed in section 4.1.2
we have derived an experimental scaling ζ = N−0.85

d , which corresponds to the value of ζ

– 32 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

d = 2 , ζ = 0.05

68.27

95.45

99.73

99.99

d = 4 , ζ = 0.05

68.27

95.45

99.73

99.99

d = 8 , ζ = 0.05

68.27

95.45

99.73

99.99

d = 16 , ζ = 0.05

68.27

95.45

99.73

99.99

d = 2 , ζ = 0.1 d = 4 , ζ = 0.1 d = 8 , ζ = 0.1 d = 16 , ζ = 0.1

d = 2 , ζ = 0.2 d = 4 , ζ = 0.2 d = 8 , ζ = 0.2 d = 16 , ζ = 0.2

d = 2 , ζ = 0.5 d = 4 , ζ = 0.5 d = 8 , ζ = 0.5 d = 16 , ζ = 0.5

0 2 4 6 8

Number of standard deviations

d = 2 , ζ = 1

0 2 4 6 8 10

Number of standard deviations

d = 4 , ζ = 1

0 2 4 6 8 10 12

Number of standard deviations

d = 8 , ζ = 1

0 5 10 15

Number of standard deviations

d = 16 , ζ = 1

Figure 16. Histograms of aggregated Mahalanobis distances of the points in the training sets of
the realizations used in figure 2, for different dimensionalities (columns) and values of ζ (rows). The
optimal ζ’s from the experimental relation ζ = N−0.85

d are highlighted in orange/clear (for d = 4,
the two closest values are both highlighted). A remarkable result is that efficiency at converging (the
criterion imposed to get the optimal ζ’s) is maximised when the distribution of training points are
centered around the same CL (68%) in all dimensionalities, likely imposed indirectly by using the
dimensionally-consistent KL divergence to assess convergence when selecting optimal ζ’s.

that leads to convergence in the smallest number of posterior evaluations, as demonstrated
in figure 2. We can check a posteriori how these optimal dimensional-dependent ζ’s relate to
the CL’s at these dimensionalities. To do that, we compute the Mahalanobis distances of all
points in the training sets of all the realizations used for figure 2, and create histograms of
these distances for each dimensionality and ζ in figure 16. In this figure, we highlight the cases
that converged most efficiently in orange/clear, as assessed by the dimensionally-consistent
Kullback-Leibler divergence. We observe that convergence is achieved more efficiently when
ζ is such that the distribution of training points is centered around the same CL (68%)
in all dimensionalities. This underlines the idea that the dimensionally-dependent CL’s
should set the relevant scales in the surrogate model for optimal efficiency, and is possibly in
fact a consequence of having used a dimensionally-consistent method (the Kullback-Leibler
divergence) to assess convergence.

B KL divergence

A natural way of assessing how well a given distribution can approximate another reference
distribution is the Kullback-Leibler (KL) divergence. The KL divergence of the continu-
ous probability distribution P from the distribution Q, with respective probability density
functions p(x) and q(x), is defined as [93]

DKL(P ||Q) =
∫
p(x) log

(
p(x)
q(x)

)
dx . (B.1)

The KL divergence as defined above more strongly weighs disagreements between the two
probability distributions where p(x) is large. Since we want the approximation to be equally

– 33 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

accurate in all regions where either distribution is large, we use a symmetrized version of the
divergence (often called Jeffreys divergence). It is defined as

Dsym
KL (P,Q) = 1

2 (DKL(P ||Q) +DKL(Q||P)) . (B.2)

A smaller value means that the two posteriors are in better agreement, and one typically
wants Dsym

KL (P ||Q) � 1 for good agreement. The dimensionality consistency of the KL
divergence guarantees that a given value for the divergence characterizes similar differences
across dimensionalities.

To compute the KL divergence explicitly, one can use the fact that the points in a Monte
Carlo sample of P are distributed as p(x)dx. One can thus approximate the integral as a
sum of the quantity log p(xi)− log q(xi) over all points in the MC sample (multiplied by their
respective weights/multiplicities).

We can use the KL divergence to assess the convergence towards the true distribution of
a GP surrogate model, if a sample from the true distribution can be obtained with the usual
MC methods (e.g. in the test cases presented in section 6). In that case, log p(xi) would
be the true log-posterior at point i in the MC sample, and log q(xi) would be the emulated
log-posterior from GPry at that same point. In practical applications where an MC sample
of the true posterior is not possible to obtain, the KL divergence can be used in a similar
fashion to define a convergence criterion by comparing GP surrogate models at consecutive
iterations of the GPry algorithm, summing over an MC sample of the GP surrogate model at
a particular step (see section 4.3).

In order to save a significant amount of memory, when using the KL divergence for the
purpose of a convergence criterion, instead of integrating a full MCMC, we only store the
information from the mean and the covariance matrix. This is equivalent to approximating
the underlying distributions as multivariate Gaussian distributions (with mean m and co-
variance C). While this is a bad description for the distribution itself, it is often the case
that when the multivariate Gaussian approximation of a distribution agrees to a high level
of precision with that of another distribution, so do the underlying distributions. Under this
approximation the KL divergence is simply given by

DKL(P ||Q) ≈ 1
2

(
tr
(
C−1

Q CP

)
− d+ (mQ −mP)TC−1

Q (mQ −mP) + log
(detCQ

detCP

))
. (B.3)

Whether using the MC-summed or the Gaussian approximation for the KL divergence,
using it to naively define a convergence criterion, can be problematic, since running a full
Monte Carlo sample at every acquired point, or at every iteration, would dominate the
overhead of the algorithm. To reduce this computational cost, we take a number of decisions:
before deciding whether to re-run the Monte Carlo sample, we reweigh the previous one
and compute the KL divergence between it and the previous estimate. We then re-use the
reweighed one if the KL divergence between original and reweighed is small enough. We also
relax the convergence criterion of the Monte Carlo algorithm early in the sampling procedure
as convergence there is rather unlikely, so we do not need a high-quality estimation of the
mean and covariance at that point.

Convergence is then determined by defining a threshold c value such that the algorithm
stops when Dsym

KL < c during n iterations, suggesting that the interpolation of the posterior
distribution has stabilised. We set n = 2 as the default.

– 34 –

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

Even with these improvements this method still produces considerable computational
overhead, mainly due to the fact that running a Monte Carlo chain needs a large number of
samples from the GP, especially as the number of dimensions increases.

References

[1] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo
approach, Phys. Rev. D 66 (2002) 103511 [astro-ph/0205436] [INSPIRE].

[2] A. Lewis, Efficient sampling of fast and slow cosmological parameters, Phys. Rev. D 87 (2013)
103529 [arXiv:1304.4473] [INSPIRE].

[3] D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman, emcee: The MCMC Hammer,
Publ. Astron. Soc. Pac. 125 (2013) 306 [arXiv:1202.3665] [INSPIRE].

[4] J. Akeret, S. Seehars, A. Amara, A. Refregier and A. Csillaghy, CosmoHammer: Cosmological
parameter estimation with the MCMC Hammer, Astron. Comput. 2 (2013) 27.

[5] J. Skilling, Nested Sampling, AIP Conf. Proc. 735 (2004) 395.
[6] F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to

MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449
[arXiv:0704.3704] [INSPIRE].

[7] F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference
tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601
[arXiv:0809.3437] [INSPIRE].

[8] F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance Nested Sampling and the
MultiNest Algorithm, Open J. Astrophys. 2 (2019) 10 [arXiv:1306.2144] [INSPIRE].

[9] W.J. Handley, M.P. Hobson and A.N. Lasenby, PolyChord: nested sampling for cosmology,
Mon. Not. Roy. Astron. Soc. 450 (2015) L61 [arXiv:1502.01856] [INSPIRE].

[10] W.J. Handley, M.P. Hobson and A.N. Lasenby, polychord: next-generation nested sampling,
Mon. Not. Roy. Astron. Soc. 453 (2015) 4385 [arXiv:1506.00171] [INSPIRE].

[11] E. Higson, W. Handley, M. Hobson and A. Lasenby, Dynamic nested sampling: an improved
algorithm for parameter estimation and evidence calculation, Stat. Comput. 29 (2018) 891.

[12] J.S. Speagle, dynesty: a dynamic nested sampling package for estimating Bayesian posteriors
and evidences, Mon. Not. Roy. Astron. Soc. 493 (2020) 3132 [arXiv:1904.02180] [INSPIRE].

[13] E.D. Feigelson, R.S. de Souza, E.E.O. Ishida and G.J. Babu, 21st Century Statistical and
Computational Challenges in Astrophysics, Ann. Rev. Stat. App. 8 (2021) 493
[arXiv:2005.13025] [INSPIRE].

[14] R. Alves Batista et al., EuCAPT White Paper: Opportunities and Challenges for Theoretical
Astroparticle Physics in the Next Decade, arXiv:2110.10074 [INSPIRE].

[15] A.R.H. Stevens, S. Bellstedt, P.J. Elahi and M.T. Murphy, The imperative to reduce carbon
emissions in astronomy, Nature Astron. 4 (2020) 843 [arXiv:1912.05834] [INSPIRE].

[16] S. Portegies Zwart, The Ecological Impact of High-performance Computing in Astrophysics,
Nature Astron. 4 (2020) 819 [arXiv:2009.11295] [INSPIRE].

[17] M. Kaplinghat, L. Knox and C. Skordis, Rapid calculation of theoretical CMB angular power
spectra, Astrophys. J. 578 (2002) 665 [astro-ph/0203413] [INSPIRE].

[18] R. Jimenez, L. Verde, H. Peiris and A. Kosowsky, Fast cosmological parameter estimation from
microwave background temperature and polarization power spectra, Phys. Rev. D 70 (2004)
023005 [astro-ph/0404237] [INSPIRE].

[19] T. Auld, M. Bridges, M.P. Hobson and S.F. Gull, Fast cosmological parameter estimation using
neural networks, Mon. Not. Roy. Astron. Soc. 376 (2007) L11 [astro-ph/0608174] [INSPIRE].

– 35 –

https://doi.org/10.1103/PhysRevD.66.103511
https://arxiv.org/abs/astro-ph/0205436
https://inspirehep.net/literature/590144
https://doi.org/10.1103/PhysRevD.87.103529
https://doi.org/10.1103/PhysRevD.87.103529
https://arxiv.org/abs/1304.4473
https://inspirehep.net/literature/1228481
https://doi.org/10.1086/670067
https://arxiv.org/abs/1202.3665
https://inspirehep.net/literature/1089369
https://doi.org/10.1016/j.ascom.2013.06.003
https://doi.org/10.1063/1.1835238
https://doi.org/10.1111/j.1365-2966.2007.12353.x
https://arxiv.org/abs/0704.3704
https://inspirehep.net/literature/749517
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://arxiv.org/abs/0809.3437
https://inspirehep.net/literature/797103
https://doi.org/10.21105/astro.1306.2144
https://arxiv.org/abs/1306.2144
https://inspirehep.net/literature/1237867
https://doi.org/10.1093/mnrasl/slv047
https://arxiv.org/abs/1502.01856
https://inspirehep.net/literature/1343295
https://doi.org/10.1093/mnras/stv1911
https://arxiv.org/abs/1506.00171
https://inspirehep.net/literature/1818639
https://doi.org/10.1007/s11222-018-9844-0
https://doi.org/10.1093/mnras/staa278
https://arxiv.org/abs/1904.02180
https://inspirehep.net/literature/1844643
https://doi.org/10.1146/annurev-statistics-042720-112045
https://arxiv.org/abs/2005.13025
https://inspirehep.net/literature/1798111
https://arxiv.org/abs/2110.10074
https://inspirehep.net/literature/1947430
https://doi.org/10.1038/s41550-020-1169-1
https://arxiv.org/abs/1912.05834
https://inspirehep.net/literature/1770502
https://doi.org/10.1038/s41550-020-1208-y
https://arxiv.org/abs/2009.11295
https://inspirehep.net/literature/1818893
https://doi.org/10.1086/342656
https://arxiv.org/abs/astro-ph/0203413
https://inspirehep.net/literature/591803
https://doi.org/10.1103/PhysRevD.70.023005
https://doi.org/10.1103/PhysRevD.70.023005
https://arxiv.org/abs/astro-ph/0404237
https://inspirehep.net/literature/647995
https://doi.org/10.1111/j.1745-3933.2006.00276.x
https://arxiv.org/abs/astro-ph/0608174
https://inspirehep.net/literature/723410

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

[20] T. Auld, M. Bridges and M.P. Hobson, CosmoNet: Fast cosmological parameter estimation in
non-flat models using neural networks, Mon. Not. Roy. Astron. Soc. 387 (2008) 1575
[astro-ph/0703445] [INSPIRE].

[21] J. Albers, C. Fidler, J. Lesgourgues, N. Schöneberg and J. Torrado, CosmicNet. Part I.
Physics-driven implementation of neural networks within Einstein-Boltzmann Solvers, JCAP
09 (2019) 028 [arXiv:1907.05764] [INSPIRE].

[22] A. Manrique-Yus and E. Sellentin, Euclid-era cosmology for everyone: neural net assisted
MCMC sampling for the joint 3× 2 likelihood, Mon. Not. Roy. Astron. Soc. 491 (2020) 2655
[arXiv:1907.05881] [INSPIRE].

[23] A. Mootoovaloo, A.F. Heavens, A.H. Jaffe and F. Leclercq, Parameter Inference for Weak
Lensing using Gaussian Processes and MOPED, Mon. Not. Roy. Astron. Soc. 497 (2020) 2213
[arXiv:2005.06551] [INSPIRE].

[24] A. Nygaard, E.B. Holm, S. Hannestad and T. Tram, CONNECT: a neural network based
framework for emulating cosmological observables and cosmological parameter inference, JCAP
05 (2023) 025 [arXiv:2205.15726] [INSPIRE].

[25] J. Donald-McCann, F. Beutler, K. Koyama and M. Karamanis, matryoshka: halo model
emulator for the galaxy power spectrum, Mon. Not. Roy. Astron. Soc. 511 (2022) 3768
[arXiv:2109.15236] [INSPIRE].

[26] J. Donald-McCann, K. Koyama and F. Beutler, matryoshka II: accelerating effective field
theory analyses of the galaxy power spectrum, Mon. Not. Roy. Astron. Soc. 518 (2022) 3106
[arXiv:2202.07557] [INSPIRE].

[27] M. Bonici, L. Biggio, C. Carbone and L. Guzzo, Fast emulation of two-point angular statistics
for photometric galaxy surveys, arXiv:2206.14208 [INSPIRE].

[28] A. Mootoovaloo, A.H. Jaffe, A.F. Heavens and F. Leclercq, Kernel-based emulator for the 3D
matter power spectrum from CLASS, Astron. Comput. 38 (2022) 100508 [arXiv:2105.02256]
[INSPIRE].

[29] S. Günther et al., CosmicNet II: emulating extended cosmologies with efficient and accurate
neural networks, JCAP 11 (2022) 035 [arXiv:2207.05707] [INSPIRE].

[30] A. Spurio-Mancini, D. Piras, J. Alsing, B. Joachimi and M.P. Hobson, CosmoPower: emulating
cosmological power spectra for accelerated Bayesian inference from next-generation surveys,
Mon. Not. Roy. Astron. Soc. 511 (2022) 1771 [arXiv:2106.03846] [INSPIRE].

[31] C.-H. To, E. Rozo, E. Krause, H.-Y. Wu, R.H. Wechsler and A.N. Salcedo, LINNA: Likelihood
Inference Neural Network Accelerator, JCAP 01 (2023) 016 [arXiv:2203.05583] [INSPIRE].

[32] S. Khan and R. Green, Gravitational-wave surrogate models powered by artificial neural
networks, Phys. Rev. D 103 (2021) 064015 [arXiv:2008.12932] [INSPIRE].

[33] M. Chianese, A. Coogan, P. Hofma, S. Otten and C. Weniger, Differentiable Strong Lensing:
Uniting Gravity and Neural Nets through Differentiable Probabilistic Programming, Mon. Not.
Roy. Astron. Soc. 496 (2020) 381 [arXiv:1910.06157] [INSPIRE].

[34] F. Lanusse, R. Mandelbaum, S. Ravanbakhsh, C.-L. Li, P. Freeman and B. Póczos, Deep
generative models for galaxy image simulations, Mon. Not. Roy. Astron. Soc. 504 (2021) 5543.

[35] K.K. Rogers, H.V. Peiris, A. Pontzen, S. Bird, L. Verde and A. Font-Ribera, Bayesian
emulator optimisation for cosmology: application to the Lyman-α forest, JCAP 02 (2019) 031
[arXiv:1812.04631] [INSPIRE].

[36] T. McClintock et al., The Aemulus Project. Part II. Emulating the Halo Mass Function,
Astrophys. J. 872 (2019) 53 [arXiv:1804.05866] [INSPIRE].

[37] M.-F. Ho, S. Bird and C.R. Shelton, Multifidelity emulation for the matter power spectrum
using Gaussian processes, Mon. Not. Roy. Astron. Soc. 509 (2021) 2551 [arXiv:2105.01081]
[INSPIRE].

– 36 –

https://doi.org/10.1111/j.1365-2966.2008.13279.x
https://arxiv.org/abs/astro-ph/0703445
https://inspirehep.net/literature/746624
https://doi.org/10.1088/1475-7516/2019/09/028
https://doi.org/10.1088/1475-7516/2019/09/028
https://arxiv.org/abs/1907.05764
https://inspirehep.net/literature/1744164
https://doi.org/10.1093/mnras/stz3059
https://arxiv.org/abs/1907.05881
https://inspirehep.net/literature/1744193
https://doi.org/10.1093/mnras/staa2102
https://arxiv.org/abs/2005.06551
https://inspirehep.net/literature/1796434
https://doi.org/10.1088/1475-7516/2023/05/025
https://doi.org/10.1088/1475-7516/2023/05/025
https://arxiv.org/abs/2205.15726
https://inspirehep.net/literature/2089888
https://doi.org/10.1093/mnras/stac239
https://arxiv.org/abs/2109.15236
https://inspirehep.net/literature/1935991
https://doi.org/10.1093/mnras/stac3326
https://arxiv.org/abs/2202.07557
https://inspirehep.net/literature/2032937
https://arxiv.org/abs/2206.14208
https://inspirehep.net/literature/2103565
https://doi.org/10.1016/j.ascom.2021.100508
https://arxiv.org/abs/2105.02256
https://inspirehep.net/literature/1862366
https://doi.org/10.1088/1475-7516/2022/11/035
https://arxiv.org/abs/2207.05707
https://inspirehep.net/literature/2111072
https://doi.org/10.1093/mnras/stac064
https://arxiv.org/abs/2106.03846
https://inspirehep.net/literature/1867528
https://doi.org/10.1088/1475-7516/2023/01/016
https://arxiv.org/abs/2203.05583
https://inspirehep.net/literature/2050140
https://doi.org/10.1103/PhysRevD.103.064015
https://arxiv.org/abs/2008.12932
https://inspirehep.net/literature/1814050
https://doi.org/10.1093/mnras/staa1477
https://doi.org/10.1093/mnras/staa1477
https://arxiv.org/abs/1910.06157
https://inspirehep.net/literature/1758734
https://doi.org/10.1093/mnras/stab1214
https://doi.org/10.1088/1475-7516/2019/02/031
https://arxiv.org/abs/1812.04631
https://inspirehep.net/literature/1708771
https://doi.org/10.3847/1538-4357/aaf568
https://arxiv.org/abs/1804.05866
https://inspirehep.net/literature/1668173
https://doi.org/10.1093/mnras/stab3114
https://arxiv.org/abs/2105.01081
https://inspirehep.net/literature/1861894

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

[38] C.J. Moore and J.R. Gair, Novel Method for Incorporating Model Uncertainties into
Gravitational Wave Parameter Estimates, Phys. Rev. Lett. 113 (2014) 251101
[arXiv:1412.3657] [INSPIRE].

[39] C. Chen, Y. Li, F. Villaescusa-Navarro, S. Ho and A. Pullen, Learning the Evolution of the
Universe in N-body Simulations, in proceedings of the 34th Conference on Neural Information
Processing Systems, online conference, Canada, 6–12 December 2020, arXiv:2012.05472
[INSPIRE].

[40] S. Bird, K.K. Rogers, H.V. Peiris, L. Verde, A. Font-Ribera and A. Pontzen, An Emulator for
the Lyman-α Forest, JCAP 02 (2019) 050 [arXiv:1812.04654] [INSPIRE].

[41] K. Cranmer, J. Brehmer and G. Louppe, The frontier of simulation-based inference, Proc. Nat.
Acad. Sci. 117 (2020) 30055 [arXiv:1911.01429] [INSPIRE].

[42] J.-M. Lueckmann, J. Boelts, D.S. Greenberg, P.J. Gonçalves and J.H. Macke, Benchmarking
Simulation-Based Inference, arXiv:2101.04653.

[43] A. Delaunoy et al., Lightning-Fast Gravitational Wave Parameter Inference through Neural
Amortization, arXiv:2010.12931 [INSPIRE].

[44] J. Alsing, T. Charnock, S. Feeney and B. Wandelt, Fast likelihood-free cosmology with neural
density estimators and active learning, Mon. Not. Roy. Astron. Soc. 488 (2019) 4440
[arXiv:1903.00007] [INSPIRE].

[45] B.K. Miller, A. Cole, G. Louppe and C. Weniger, Simulation-efficient marginal posterior
estimation with swyft: stop wasting your precious time, arXiv:2011.13951 [INSPIRE].

[46] J. Hermans, N. Banik, C. Weniger, G. Bertone and G. Louppe, Towards constraining warm
dark matter with stellar streams through neural simulation-based inference, Mon. Not. Roy.
Astron. Soc. 507 (2021) 1999 [arXiv:2011.14923] [INSPIRE].

[47] F. Gerardi, S.M. Feeney and J. Alsing, Unbiased likelihood-free inference of the Hubble constant
from light standard sirens, Phys. Rev. D 104 (2021) 083531 [arXiv:2104.02728] [INSPIRE].

[48] D. Huppenkothen and M. Bachetti, Accurate X-ray timing in the presence of systematic biases
with simulation-based inference, Mon. Not. Roy. Astron. Soc. 511 (2022) 5689
[arXiv:2104.03278] [INSPIRE].

[49] A. Rouhiainen, U. Giri and M. Münchmeyer, Normalizing flows for random fields in cosmology,
arXiv:2105.12024 [INSPIRE].

[50] K. Zhang, J.S. Bloom, B.S. Gaudi, F. Lanusse, C. Lam and J.R. Lu, Real-time Likelihood-free
Inference of Roman Binary Microlensing Events with Amortized Neural Posterior Estimation,
Astron. J. 161 (2021) 262.

[51] C.-H. Hahn et al., SIMBIG: A Forward Modeling Approach To Analyzing Galaxy Clustering,
arXiv:2211.00723 [INSPIRE].

[52] M. Reza, Y. Zhang, B. Nord, J. Poh, A. Ciprijanovic and L. Strigari, Estimating Cosmological
Constraints from Galaxy Cluster Abundance using Simulation-Based Inference, in proceedings
of the 39th International Conference on Machine Learning Conference, Baltimore, MD, U.S.A.,
17–23 July 2022, arXiv:2208.00134 [INSPIRE].

[53] S.S. Boruah, T. Eifler, V. Miranda and P.M. Sai Krishanth, Accelerating cosmological inference
with Gaussian processes and neural networks — an application to LSST Y1 weak lensing and
galaxy clustering, Mon. Not. Roy. Astron. Soc. 518 (2022) 4818 [arXiv:2203.06124] [INSPIRE].

[54] K.H. Scheutwinkel, W. Handley and E. de Lera Acedo, Bayesian evidence-driven likelihood
selection for sky-averaged 21 cm signal extraction, Publ. Astron. Soc. Austral. 40 (2023) e016
[arXiv:2204.04491] [INSPIRE].

[55] D. Grandón and E. Sellentin, Bayesian error propagation for neural-net based parameter
inference, Open J. Astrophys. 5 (2022) 12 [arXiv:2205.11587] [INSPIRE].

– 37 –

https://doi.org/10.1103/PhysRevLett.113.251101
https://arxiv.org/abs/1412.3657
https://inspirehep.net/literature/1333841
https://arxiv.org/abs/2012.05472
https://inspirehep.net/literature/1835787
https://doi.org/10.1088/1475-7516/2019/02/050
https://arxiv.org/abs/1812.04654
https://inspirehep.net/literature/1708778
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1073/pnas.1912789117
https://arxiv.org/abs/1911.01429
https://inspirehep.net/literature/1763198
https://arxiv.org/abs/2101.04653
https://arxiv.org/abs/2010.12931
https://inspirehep.net/literature/1826237
https://doi.org/10.1093/mnras/stz1960
https://arxiv.org/abs/1903.00007
https://inspirehep.net/literature/1722894
https://arxiv.org/abs/2011.13951
https://inspirehep.net/literature/1834018
https://doi.org/10.1093/mnras/stab2181
https://doi.org/10.1093/mnras/stab2181
https://arxiv.org/abs/2011.14923
https://inspirehep.net/literature/1834104
https://doi.org/10.1103/physrevd.104.083531
https://arxiv.org/abs/2104.02728
https://inspirehep.net/literature/1856610
https://doi.org/10.1093/mnras/stab3437
https://arxiv.org/abs/2104.03278
https://inspirehep.net/literature/1856615
https://arxiv.org/abs/2105.12024
https://inspirehep.net/literature/1865040
https://doi.org/10.3847/1538-3881/abf42e
https://arxiv.org/abs/2211.00723
https://inspirehep.net/literature/2175628
https://arxiv.org/abs/2208.00134
https://inspirehep.net/literature/2129606
https://doi.org/10.1093/mnras/stac3417
https://arxiv.org/abs/2203.06124
https://inspirehep.net/literature/2050406
https://doi.org/10.1017/pasa.2023.16
https://arxiv.org/abs/2204.04491
https://inspirehep.net/literature/2065449
https://doi.org/10.21105/astro.2205.11587
https://arxiv.org/abs/2205.11587
https://inspirehep.net/literature/2087230

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

[56] P. Lemos et al., Robust simulation-based inference in cosmology with Bayesian neural networks,
Mach. Learn. Sci. Tech. 4 (2023) 01LT01 [arXiv:2207.08435] [INSPIRE].

[57] C.E. Rasmussen and C.K.I. Williams, Gaussian processes for machine learning, in Adaptive
Computation and Machine Learning, MIT Press, Cambridge, MA, U.S.A. (2006).

[58] K.P. Murphy, Machine Learning — A Probabilistic Perspective, MIT Press, Cambridge, MA,
U.S.A. (2012).

[59] C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995) 273.
[60] T. Gunter, M. Osborne, R. Garnett, P. Hennig and S. Roberts, Sampling for Inference in

Probabilistic Models with Fast Bayesian Quadrature, in proceedings of the 27th International
Conference on Neural Information Processing Systems (NIPS’14), Montréal, QC, Canada, 8–13
December 2014, Curran Associates, Inc. (2014), pp. 2789–2797 http://papers.nips.cc/paper/5
483-sampling-for-inference-in-probabilistic-models-with-fast-bayesian-quadrature.pdf.

[61] M. Osborne, R. Garnett, Z. Ghahramani, D.K. Duvenaud, S.J. Roberts and C. Rasmussen,
Active Learning of Model Evidence Using Bayesian Quadrature, in proceedings of the 25th
International Conference on Neural Information Processing Systems (NIPS’12), Lake Tahoe,
Nevada, U.S.A., 3–6 December 2012, Advances in Neural Information Processing Systems 25,
F. Pereira, C.J.C. Burges, L. Bottou and K.Q. Weinberger eds., Curran Associates, Inc. (2012),
pp. 46–54 https://proceedings.neurips.cc/paper/2012/file/6364d3f0f495b6ab9dcf8d3b5c6e0b0
1-Paper.pdf.

[62] K. Kandasamy, J. Schneider and B. Póczos, Bayesian active learning for posterior estimation,
in proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15),
Buenos Aires, Argentina, 25–31 July 2015, pp. 3605–3611.

[63] H. Wang and J. Li, Adaptive Gaussian Process Approximation for Bayesian Inference with
Expensive Likelihood Functions, Neural Comput. 30 (2018) 3072 [arXiv:1703.09930].

[64] H. Chai and R. Garnett, Improving Quadrature for Constrained Integrands, arXiv:1802.04782.
[65] M. Pellejero-Ibañez, R.E. Angulo, G. Aricó, M. Zennaro, S. Contreras and J. Stücker,

Cosmological parameter estimation via iterative emulation of likelihoods, Mon. Not. Roy.
Astron. Soc. 499 (2020) 5257 [arXiv:1912.08806] [INSPIRE].

[66] K.K. Rogers, H. Peiris, A. Pontzen, S. Bird, L. Verde and A. Font-Ribera, Bayesian emulator
optimisation for cosmology: application to the Lyman-α forest, JCAP 02 (2019) 031
[arXiv:1812.04631] [INSPIRE].

[67] L. Acerbi, Variational Bayesian Monte Carlo, in proceedings of the 32nd International
Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December
2018, Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett eds., Curran Associates, Inc.
(2018), pp. 8223–8233 https://proceedings.neurips.cc/paper_files/paper/2018/file/747c1bc
ceb6109a4ef936bc70cfe67de-Paper.pdf.

[68] L. Acerbi, Variational Bayesian Monte Carlo with Noisy Likelihoods, in proceedings of the 34th
International Conference on Neural Information Processing Systems (NIPS’20), Vancouver,
BC, Canada, 6–12 December 2020, Advances in Neural Information Processing Systems 33,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and H. Lin eds., Curran Associates, Inc.
(2020), pp. 8211–8222 [arXiv:2006.08655].

[69] B. Huggins, C. Li, M. Tobaben, M.J. Aarnos and L. Acerbi, PyVBMC: Efficient Bayesian
inference in Python, arXiv:2303.09519 [DOI:10.21105/joss.05428].

[70] C. Li, G. Clarté and L. Acerbi, Fast post-process Bayesian inference with Sparse Variational
Bayesian Monte Carlo, arXiv:2303.05263.

[71] A. Saha, K. Bharath and S. Kurtek, A Geometric Variational Approach to Bayesian Inference,
arXiv:1707.09714.

– 38 –

https://doi.org/10.1088/2632-2153/acbb53
https://arxiv.org/abs/2207.08435
https://inspirehep.net/literature/2116310
https://doi.org/10.1007/bf00994018
http://papers.nips.cc/paper/5483-sampling-for-inference-in-probabilistic-models-with-fast-bayesian-quadrature.pdf
http://papers.nips.cc/paper/5483-sampling-for-inference-in-probabilistic-models-with-fast-bayesian-quadrature.pdf
https://proceedings.neurips.cc/paper/2012/file/6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper.pdf
https://doi.org/10.1162/neco_a_01127
https://arxiv.org/abs/1703.09930
https://arxiv.org/abs/1802.04782
https://doi.org/10.1093/mnras/staa3075
https://doi.org/10.1093/mnras/staa3075
https://arxiv.org/abs/1912.08806
https://inspirehep.net/literature/1771605
https://doi.org/10.1088/1475-7516/2019/02/031
https://arxiv.org/abs/1812.04631
https://inspirehep.net/literature/1708771
https://proceedings.neurips.cc/paper_files/paper/2018/file/747c1bcceb6109a4ef936bc70cfe67de-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/747c1bcceb6109a4ef936bc70cfe67de-Paper.pdf
https://arxiv.org/abs/2006.08655
https://arxiv.org/abs/2303.09519
https://doi.org/10.21105/joss.05428
https://arxiv.org/abs/2303.05263
https://arxiv.org/abs/1707.09714

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

[72] P. Frank, R. Leike and T.A. Enßlin, Geometric variational inference, arXiv:2105.10470
[DOI:10.3390/e23070853].

[73] C.A. Micchelli, Y. Xu and H. Zhang, Universal Kernels, J. Mach. Learn. Res. 7 (2006) 2651.
[74] M. Kupperman, Probabilities of Hypotheses and Information-Statistics in Sampling from

Exponential-Class Populations, Ann. Math. Stat. 29 (1958) 571.
[75] C. Zhu, R.H. Byrd, P. Lu and J. Nocedal, Algorithm 778: L-BFGS-B, ACM Trans. Math.

Software 23 (1997) 550.
[76] Y. Sui, V. Zhuang, J. Burdick and Y. Yue, Stagewise Safe Bayesian Optimization with

Gaussian Processes, in proceedings of the 35th International Conference on Machine Learning,
Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018, Proceedings of Machine Learning
Research 80, J. Dy and A. Krause eds., PMLR (2018), pp. 4781–4789
http://proceedings.mlr.press/v80/sui18a.html.

[77] F. Berkenkamp, A. Krause and A.P. Schoellig, Bayesian Optimization with Safety Constraints:
Safe and Automatic Parameter Tuning in Robotics, arXiv:1602.04450.

[78] L. Acerbi, An Exploration of Acquisition and Mean Functions in Variational Bayesian Monte
Carlo, in proceedings of the 1st Symposium on Advances in Approximate Bayesian Inference,
Montréal, QC, Canada, 2 December 2018, F. Ruiz, C. Zhang, D. Liang and T. Bui eds.,
Proceedings of Machine Learning Research 96, PMLR (2019), pp. 1–1
https://proceedings.mlr.press/v96/acerbi19a.html.

[79] F.L. Fernández, L. Martino, V. Elvira, D. Delgado and J. López-Santiago, Adaptive Quadrature
Schemes for Bayesian Inference via Active Learning, IEEE Access 8 (2020) 208462.

[80] K. Kandasamy, J. Schneider and B. Póczos, Bayesian active learning for posterior estimation,
in proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15),
Buenos Aires, Argentina, 25–31 July 2015, pp. 3605–3611.

[81] T. Desautels, A. Krause and J.W. Burdick, Parallelizing Exploration-Exploitation Tradeoffs in
Gaussian Process Bandit Optimization, J. Mach. Learn. Res. 15 (2014) 4053.

[82] C. Chevalier and D. Ginsbourger, Fast Computation of the Multi-Points Expected Improvement
with Applications in Batch Selection, in Learning and Intelligent Optimization, proceedings of
the 7th International Conference (LION 7), Catania, Italy, 7–11 January 2013, Lecture Notes
in Computer Science 7997, Springer (2013), pp. 59–69 [DOI:10.1007/978-3-642-44973-4_7].

[83] D. Ginsbourger, R. Le Riche and L. Carraro, A Multi-points Criterion for Deterministic
Parallel Global Optimization based on Gaussian Processes, hal-00260579 (2008).

[84] D. Ginsbourger, R.L. Riche and L. Carraro, Kriging Is Well-Suited to Parallelize Optimization,
in Computational Intelligence in Expensive Optimization Problems, Springer (2010),
pp. 131–162 [DOI:10.1007/978-3-642-10701-6_6].

[85] J. González, Z. Dai, P. Hennig and N. Lawrence, Batch Bayesian Optimization via Local
Penalization, in proceedings of the 19th International Conference on Artificial Intelligence and
Statistics (AISTATS), Cadiz, Spain, 7–11 May 2016, Proceedings of Machine Learning Research
51, PMLR (2016), pp. 648–657 https://proceedings.mlr.press/v51/gonzalez16a.html.

[86] J. Torrado and A. Lewis, Cobaya: Code for Bayesian Analysis of hierarchical physical models,
JCAP 05 (2021) 057 [arXiv:2005.05290] [INSPIRE].

[87] J. Torrado, N. Schöneberg and J.E. Gammal, Parallelized Acquisition for Active Learning using
Monte Carlo Sampling, arXiv:2305.19267 [INSPIRE].

[88] E. Cameron and A. Pettitt, Recursive Pathways to Marginal Likelihood Estimation with
Prior-Sensitivity Analysis, Statist. Sci. 29 (2014) 397.

[89] Planck collaboration, Planck 2018 results. Part V. CMB power spectra and likelihoods,
Astron. Astrophys. 641 (2020) A5 [arXiv:1907.12875] [INSPIRE].

– 39 –

https://arxiv.org/abs/2105.10470
https://doi.org/10.3390/e23070853
https://doi.org/10.1214/aoms/1177706633
https://doi.org/10.1145/279232.279236
https://doi.org/10.1145/279232.279236
http://proceedings.mlr.press/v80/sui18a.html
https://arxiv.org/abs/1602.04450
https://proceedings.mlr.press/v96/acerbi19a.html
https://doi.org/10.1109/access.2020.3038333
https://doi.org/10.1007/978-3-642-44973-4_7
https://hal.archives-ouvertes.fr/hal-00260579
https://doi.org/10.1007/978-3-642-10701-6_6
https://proceedings.mlr.press/v51/gonzalez16a.html
https://doi.org/10.1088/1475-7516/2021/05/057
https://arxiv.org/abs/2005.05290
https://inspirehep.net/literature/1795170
https://arxiv.org/abs/2305.19267
https://inspirehep.net/literature/2663892
https://doi.org/10.1051/0004-6361/201936386
https://arxiv.org/abs/1907.12875
https://inspirehep.net/literature/1747094

J
C
A
P
1
0
(
2
0
2
3
)
0
2
1

[90] Planck collaboration, Planck 2018 results. Part VIII. Gravitational lensing, Astron.
Astrophys. 641 (2020) A8 [arXiv:1807.06210] [INSPIRE].

[91] D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS).
Part II. Approximation schemes, JCAP 07 (2011) 034 [arXiv:1104.2933] [INSPIRE].

[92] N. Schöneberg, J. Lesgourgues and D.C. Hooper, The BAO+BBN take on the Hubble tension,
JCAP 10 (2019) 029 [arXiv:1907.11594] [INSPIRE].

[93] S. Kullback and R.A. Leibler, On Information and Sufficiency, Ann. Math. Stat. 22 (1951) 79
[INSPIRE].

– 40 –

https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1051/0004-6361/201833886
https://arxiv.org/abs/1807.06210
https://inspirehep.net/literature/1682895
https://doi.org/10.1088/1475-7516/2011/07/034
https://arxiv.org/abs/1104.2933
https://inspirehep.net/literature/896300
https://doi.org/10.1088/1475-7516/2019/10/029
https://arxiv.org/abs/1907.11594
https://inspirehep.net/literature/1746459
https://doi.org/10.1214/aoms/1177729694
https://inspirehep.net/literature/1844865

	Introduction
	Basic concepts
	Bayesian inference of model parameters
	Gaussian processes

	Surrogate model of the posterior
	Choice of kernel function
	Parameter space transformations
	Treatment of infinities and extreme values

	Learning strategy
	Acquisition function
	Choice of the acquisition function
	Acquisition hyperparameter
	Optimization of the acquisition function

	Parallelization
	Convergence criterion

	The full algorithm
	Initial training set
	Main algorithm
	Modelling the marginalized posterior

	Examples
	Multivariate Gaussians
	Non-Gaussian distributions
	Log-transformations
	Curved degeneracies
	Multi-modal posteriors
	Performance for non-Gaussian and multi-modal distributions

	Cosmology

	Conclusions
	Posterior scale in higher dimensions
	KL divergence

