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Abstract: This paper considers the problem of controlling a linear system affected by
asymmetrical input saturation. The proposed solution is based on using a linear matrix
inequality (LMI)-based methodology to find the gains of a switching state-feedback controller.
The main difference and contribution when compared to existing approaches is that the
switching rule is chosen based on the closed-loop performance that each of the non-saturating
controller gains can achieve when used with the current value of the state vector. Although the
main focus of the paper is on time-invariant systems, the possible extension to linear parameter-
varying (LPV) systems is discussed. An illustrative example is used to show the main features
of the proposed approach.

Keywords: Linear systems, Saturation, Linear matrix inequalities (LMIs)

1. INTRODUCTION

Actuator saturation is likely one of the most researched
nonlinearities in control theory over the last several
decades, owing to the potential performance degradation
or destabilization induced onto the closed-loop system (see
e.g. Hu (2001); Tarbouriech et al. (2011) and references
therein). In general, existing approaches are classified into
two categories based on how the saturation is handled.
The first approach entails directly addressing the input
constraints in the controller design stage (Hu et al., 2002;
Wu et al., 2007). On the other hand, the second approach
is the anti-windup compensation, which involves pairing a
pre-designed controller with a compensator that handles
the saturation (Wu and Lu, 2004; Tarbouriech and Turner,
2009).

Despite the extensive literature, the majority of pro-
posed approaches deal with symmetric actuator satura-
tions. Nonetheless, asymmetric saturation may often occur
in practical systems. The aforementioned approaches can
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be utilized to manage asymmetric saturation functions
by treating this function as a symmetric saturation with
the most restrictive saturation limits, thus introducing
conservatism. For this reason, several researchers have
recently addressed this topic in an attempt to reduce the
conservatism. For example, Mariano et al. (2020); Braun
et al. (2021) suggested a coordinate transformation in
order to enlarge the estimated region of attraction. In
Benzaouia et al. (2014), a linear matrix inequality (LMI)-
based methodology has been proposed for stabilizing an
asymmetrically saturated system by converting it into a
saturated one with symmetric saturation limits and a
bounded disturbance. Alternatively, a linear system with
asymmetric saturations can be converted into a switched
linear model with symmetric saturations, as demonstrated
by Yuan and Wu (2015); Li and Lin (2018); Groff et al.
(2019), who proposed different LMI-based methodologies
for designing a switching controller.

The present work aims at proposing an LMI-based
methodology for designing a switching state-feedback con-
troller for a linear system subject to asymmetric input
saturations. Although the idea of using a switched model
is based on the idea of partitioning the state space into
multiple regions as proposed by Yuan and Wu (2015), the
main difference and contribution of this paper when com-
pared to existing approaches is that the switching rule is
designed based on the attainable closed-loop performance.
In particular, the design conditions are obtained through
the application of the theory of invariant sets and the use of
a quadratic Lyapunov function (QLF), thus guaranteeing
that the control action remains in the linearity region
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of the actuators. Furthermore, a closed-loop performance
criterion is established by associating distinct decay rate
values to the different possible controller modes, equipping
the control system with the ability to change its closed-
loop performance in the sense of guaranteed convergence
speed.

The rest of this paper is organized as follows. The problem
formulation is provided in Section 2. The main results are
given in Section 3. The extension to the parameter-varying
case is discussed in Section 4. Simulation results are
presented in Section 5. Finally, the main conclusions and
perspectives on future research are outlined in Section 6.

Notation: R and R+ represent the sets of real and
positive real numbers, respectively. The n×m real matrices
are denoted as Rn×m, and Sn corresponds to the set of n×n
symmetric matrices. For M ∈ Sn, M ≻ 0 (M ⪰ 0) and
M ≺ 0 (M ⪯ 0) stand for a positive (semi-)definite matrix
and for a negative (semi-)definite matrix, respectively.
M ∈ Sn+ is used as a shorthand for positive-definite sym-
metric matrices. The symbol ⋆ denotes the block induced
by symmetry in a matrix.M = diag {M1,M2} represents a
block diagonal matrix. The shorthand He {·} = (·)+(·)⊤ is
used in situations with limited space. I[a,b] denotes the set
of integers {a, a+ 1, . . . , b} with a, b ∈ N and a ≤ b. The
subscript [i] represents the ith row of a matrix. For a given
Pólya’s relaxation degree d ∈ N, d ≥ 2 and the number
of vertices nµ, the d−dimensional multi-index k ∈ Nd is
defined as k = (k1, . . . , kd), and the sets I(d,nµ) and I+(d,nµ)

denote:

I(d,nµ) ≜

k ∈ Nd : 1 ≤ km ≤ nµ, ∀m ∈ I[1,d]


,

I+(d,nµ)
≜


k ∈ I(d,nµ) : km ≤ km+1, m ∈ I[1,d−1]


,

whereas P(k) ⊂ I(d,µ) corresponds to the set of permuta-
tions, with possible repeated elements, of the multi-index
k. Finally, the time dependency of variables is dropped to
lighten the notation.

2. BACKGROUND AND PROBLEM STATEMENT

Let us consider the following continuous-time system:

ẋ = Ax+B sat (u, u, u) , (1)

where x ∈ Rnx is the state vector and u ∈ Rnu denotes
the control input vector. A ∈ Rnx×nx and B ∈ Rnx×nu

represent the state and input matrices, respectively, and
sat (u, u, u) : Rnu → Rnu denotes the standard asymmet-
ric saturation function defined as:

sat(ui, ui, ui) ≜




ui, if ui > ui

ui, if ui ∈ [−ui, ui]

−ui, if ui < −ui

, i ∈ I[1,nu],

(2)
with known ui, ui ∈ R+\ {0}. Note that the standard
symmetric saturation function is recovered if ui = ui ∀i ∈
I[1,nu], which will be denoted by the notation sat(ui, ui).

According to Yuan and Wu (2015), the asymmetric sat-
uration (2) can be characterized by a combination of 2nu

symmetric saturations, the limits of which are specified as:

ν(j) = D(j)u+ D̂(j)u, j ∈ I[1,2nu ], (3)

where ν(j) ∈ Rnu
+ \ {0} corresponds to the jth saturation

limit vector, D(j) ∈ Rnu×nu is a diagonal matrix whose

elements take the value 0 or 1 and D̂(j) = Inu
−D(j).

Then, the system (1) can be recast as a switched linear
system subject to symmetric saturation as follows:

ẋ = Ax+B sat(u, ν(j)), ν(j) ∈ V, j ∈ I[1,2nu ], (4)

where the set V ≜

ν(1), . . . , ν(2nu )


contains all the

possible combinations of the saturation limit vectors u, u ∈
Rnu

+ \ {0}.

2.1 Closed-loop performance criterion

To stabilize the system (4), let us define the following
switched state-feedback control law:

u = K(j)x, j ∈ I[1,2nu ], (5)

where K(j) ∈ Rnu×nx corresponds to the jth controller
gain matrix. In this way, the following closed-loop system
is obtained:

ẋ = Ax+B sat(K(j)x, ν(j)), ν(j) ∈ V, j ∈ I[1,2nu ]. (6)

Let us consider the following QLF:

V (x) = x⊤P−1x, (7)

with P ∈ Snx
+ .

Thereupon, the closed-loop performance criterion consid-
ered throughout this work is defined by the following
definition:

Definition 1. The closed-loop response (6) is said to have
a desired guaranteed switching decay rate if:

V̇ (x) ≤ −2 dR(j) V (x), ∀j ∈ I[1,2nu ] (8)

where V (x) is a positive definite function and dR(j) ∈ R+

corresponds to the jth desired decay rate value associated
to the controller gain K(j) in (5).

2.2 Region constraints

Let us define the asymmetric region of linearity of system
(1) such that sat (u, u, u) = u, as follows:

La(u, u, u) ≜

u ∈ Rnu : −ui ≤ ui ≤ ui, i ∈ I[1,nu]


. (9)

Due to the relationship between the input u and the state
x given by the controller law (5), then for the active
controller gain j, the region of linearity (9) is mapped onto
a symmetric region, defined as:

Ls(K(j), ν(j)) ≜

x ∈ Rnx : |K[i](j)x| ≤ νi(j), i ∈ I[1,nu]


.

(10)
Then, with the objective of guaranteeing ∀t ≥ 0 that
x(t) ∈ Ls(K(j), ν(j)) and, as a consequence u(t) ∈
La(u, u, u) ∀t ≥ 0, the following set of inclusions is es-
tablished ∀j ∈ I[1,2nu ]:

XR ⊂ E(P ) ⊂ Ls(K(j), ν(j)), (11)

where XR and E(P ) correspond, respectively, to the given
known region of expected initial conditions described by
the vertices x(1), . . . , x(nv):

XR ≜ Co

x(1), x(2), . . . , x(nv)


, (12)

and the unit Lyapunov level curve set of (7):

E(P ) ≜ {x ∈ Rnx : V (x) ≤ 1} . (13)
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Hence, as long as (11) holds, it can be ensured that if
the initial condition x0 ∈ XR, and hence x0 ∈ E(P ),
x(t) ∈ Ls(K(j), ν(j)) ∀t > 0. Furthermore, it is also
guaranteed that at least one of the 2nu computed controller
gains K(j) will lead to an input signal (5) that lies in
La(u, u, u) defined in (9).

2.3 Problem definition

Based on Definition 1 and the region constraints (11), the
problem under consideration in this work is formalized as
follows:

Problem 1. For the continuous-time system (1) under the
asymmetric saturation function (2), design a switching
state-feedback controller (5) and a switching rule such
that for any initial state x0 ∈ XR the closed-loop system
response ensures the guaranteed switching decay rate (8).

3. MAIN RESULTS

Let us define the following theorem for designing a switch-
ing state-feedback controller (5) using the Lyapunov func-
tion candidate (7), Definition 1, and the set of region
inclusions (11). Theorem 1 guarantees that E(P ) is an
invariant and contractive ellipsoidal set with respect to all
trajectories of (6), forcing x to reside within this region
where sat(u, ν(j)) = u and, therefore, u ∈ La(u, u, u).

Theorem 1. Given the regions (10), (12) and (13) with
the known vertices x(l) and the desired switching decay
rate values dR(j) ∈ R+, let there exist decision matrices

P ∈ Snx
+ and Γ(j) ∈ Rnu×nx satisfying ∀j ∈ I[1,2nu ]:

He
{
AP +BΓ(j)

}
+ 2dR(j) P ⪯ 0, (14)[

P x(l)

⋆ 1

]
⪰ 0, l ∈ I[1,nv ], (15)

[
ν2i(j) Γ[i](j)

⋆ P

]
⪰ 0, ν(j) ∈ V, i ∈ I[1,nu]. (16)

Then, the closed-loop system response (6) with the switch-
ing state-feedback controller (5) computed as K(j) =

Γ(j)P
−1 has the guaranteed switching decay rate perfor-

mance expressed by (8). Furthermore, the convergence of
x(t) → 0 when t → ∞ is ensured for any x0 ∈ XR such
that x(t) ∈ Ls(K(j), ν(j)) and, hence, u ∈ La(u, u, u).

Proof. The proof is split in two parts. The first part
demonstrates how the performance criterion (8) is guaran-
teed by the LMI (14). The second one shows that any state
trajectory x(t) starting from an x0 ∈ XR ⊂ E(P ) belongs
to Ls(K(j), ν(j)), j ∈ I[1,2nu ], implying that x(t) → 0 for
t → ∞ with u ∈ La(u, u, u).

Part 1: By assuming that sat(K(j)x, ν(j)) = K(j)x ∀j ∈
I[1,2nu ], the closed-loop system response (6) can be rewrit-
ten as:

ẋ =
(
A+BK(j)

)
x. (17)

Then, the following set of bilinear matrix inequalities
(BMI) can be obtained by considering (8):

He
{
P−1A+ P−1BK(j)

}
+ 2dR(j) P

−1 ⪯ 0. (18)

By pre- and post-multiplying (18) by P , one gets:

He
{
AP +BK(j)P

}
+ 2dR(j) P ⪯ 0, (19)

which can be transformed into the LMI (14) by means
of the change of variable Γ(j) = K(j)P ∀j ∈ I[1,2nu ].
Therefore, the feasibility of the LMI (14) ensures that
the closed-loop response of system (6) has the switching
guaranteed decay rate performance (8).

Part 2: By using Schur’s complement, the LMI (15) is
equivalent to:

x⊤
(l)P

−1x(l) ≤ 1, l ∈ I[1,nv ], (20)

which leads to the inclusion XR ⊂ E(P ) (see Hu (2001),
Chap. 7). Next, the following condition is obtained by pre-
and post-multiplying the LMI (16) by diag

{
1, P−1

}
:[

ν2i(j) K[i](j)

⋆ P−1

]
⪰ 0, ν(j) ∈ V, i ∈ I[1,nu]

j ∈ I[1,2nu ]
, (21)

which by applying Schur’s complement and pre- and post-
multiplying by x⊤ and x, respectively, leads to:

x⊤K⊤
[i](j)K[i](j)

ν2i(j)
x ≤ x⊤P−1x,

which yields E(P ) ⊂ Ls(K(j), ν(j)). Consequently, x ∈
Ls(K(j), ν(j)) is ensured for any trajectory x ∈ E(P ) and,
hence, u ∈ La(u, u, u), thus concluding the proof. ■

3.1 Switching rule criterion

Since x(t) ∈ Ls(K(j), ν(j)) is guaranteed ∀t ≥ 0 by
Theorem 1, the following rule can be defined to select the
active controller gain:

σ = argmax dR(h)

s.t. h ∈
{
j ∈ I[1,2nu ] : K(j)x ∈ La (u, u, u)

} (22)

It should be noted that this rule accounts for which of
the controller gains provides an input signal contained in
the asymmetric region of linearity (9), given the current
value of the state. This is a novelty when compared to
other existing approaches (see e.g., Yuan and Wu (2015)
or Li and Lin (2018)), where the switching rule accounts
for the control input signs instead. Furthermore, the rule
(22) selects, among the non-saturating controller gains,
the one that provides the largest guaranteed decay rate,
therefore adjusting the closed-loop performance according
to the criterion given in Definition 1. On the other hand,
this work does not take into consideration the situation in
which rule (22) is not defined due to saturating controller
gains. The interested reader is referred to Hu (2001) and
Tarbouriech et al. (2011) for a possible extension of the
provided approach considering saturated control inputs.

4. EXTENSION TO THE LPV CASE

Let us extend the procedure described in Section 3 to the
LPV case by modifying (6) as follows:

ẋ = A(ϑ)x+B(ϑ) sat(K(j)(ϑ)x, ν(j)), (23)

with ν(j) ∈ V and j ∈ I[1,2nu ]. The parameter-dependent

matrices A(ϑ) ∈ Rnx×nx , B(ϑ) ∈ Rnx×nu and K(j)(ϑ) ∈
Rnu×nx can be written as a convex combination of nµ

known vertices:

(
A,B,K(j)

)
(ϑ) =

nµ∑
k=1

µk (ϑ)
(
A(k), B(k),K(j,k)

)
, (24)

where A(k) ∈ Rnx×nx , B(k) ∈ Rnx×nu and K(j,k) ∈
Rnu×nx stand for the given known vertex matrices and

of the actuators. Furthermore, a closed-loop performance
criterion is established by associating distinct decay rate
values to the different possible controller modes, equipping
the control system with the ability to change its closed-
loop performance in the sense of guaranteed convergence
speed.

The rest of this paper is organized as follows. The problem
formulation is provided in Section 2. The main results are
given in Section 3. The extension to the parameter-varying
case is discussed in Section 4. Simulation results are
presented in Section 5. Finally, the main conclusions and
perspectives on future research are outlined in Section 6.

Notation: R and R+ represent the sets of real and
positive real numbers, respectively. The n×m real matrices
are denoted as Rn×m, and Sn corresponds to the set of n×n
symmetric matrices. For M ∈ Sn, M ≻ 0 (M ⪰ 0) and
M ≺ 0 (M ⪯ 0) stand for a positive (semi-)definite matrix
and for a negative (semi-)definite matrix, respectively.
M ∈ Sn+ is used as a shorthand for positive-definite sym-
metric matrices. The symbol ⋆ denotes the block induced
by symmetry in a matrix.M = diag {M1,M2} represents a
block diagonal matrix. The shorthand He {·} = (·)+(·)⊤ is
used in situations with limited space. I[a,b] denotes the set
of integers {a, a+ 1, . . . , b} with a, b ∈ N and a ≤ b. The
subscript [i] represents the ith row of a matrix. For a given
Pólya’s relaxation degree d ∈ N, d ≥ 2 and the number
of vertices nµ, the d−dimensional multi-index k ∈ Nd is
defined as k = (k1, . . . , kd), and the sets I(d,nµ) and I+(d,nµ)

denote:

I(d,nµ) ≜

k ∈ Nd : 1 ≤ km ≤ nµ, ∀m ∈ I[1,d]


,

I+(d,nµ)
≜


k ∈ I(d,nµ) : km ≤ km+1, m ∈ I[1,d−1]


,

whereas P(k) ⊂ I(d,µ) corresponds to the set of permuta-
tions, with possible repeated elements, of the multi-index
k. Finally, the time dependency of variables is dropped to
lighten the notation.

2. BACKGROUND AND PROBLEM STATEMENT

Let us consider the following continuous-time system:

ẋ = Ax+B sat (u, u, u) , (1)

where x ∈ Rnx is the state vector and u ∈ Rnu denotes
the control input vector. A ∈ Rnx×nx and B ∈ Rnx×nu

represent the state and input matrices, respectively, and
sat (u, u, u) : Rnu → Rnu denotes the standard asymmet-
ric saturation function defined as:

sat(ui, ui, ui) ≜




ui, if ui > ui

ui, if ui ∈ [−ui, ui]

−ui, if ui < −ui

, i ∈ I[1,nu],

(2)
with known ui, ui ∈ R+\ {0}. Note that the standard
symmetric saturation function is recovered if ui = ui ∀i ∈
I[1,nu], which will be denoted by the notation sat(ui, ui).

According to Yuan and Wu (2015), the asymmetric sat-
uration (2) can be characterized by a combination of 2nu

symmetric saturations, the limits of which are specified as:

ν(j) = D(j)u+ D̂(j)u, j ∈ I[1,2nu ], (3)

where ν(j) ∈ Rnu
+ \ {0} corresponds to the jth saturation

limit vector, D(j) ∈ Rnu×nu is a diagonal matrix whose

elements take the value 0 or 1 and D̂(j) = Inu
−D(j).

Then, the system (1) can be recast as a switched linear
system subject to symmetric saturation as follows:

ẋ = Ax+B sat(u, ν(j)), ν(j) ∈ V, j ∈ I[1,2nu ], (4)

where the set V ≜

ν(1), . . . , ν(2nu )


contains all the

possible combinations of the saturation limit vectors u, u ∈
Rnu

+ \ {0}.

2.1 Closed-loop performance criterion

To stabilize the system (4), let us define the following
switched state-feedback control law:

u = K(j)x, j ∈ I[1,2nu ], (5)

where K(j) ∈ Rnu×nx corresponds to the jth controller
gain matrix. In this way, the following closed-loop system
is obtained:

ẋ = Ax+B sat(K(j)x, ν(j)), ν(j) ∈ V, j ∈ I[1,2nu ]. (6)

Let us consider the following QLF:

V (x) = x⊤P−1x, (7)

with P ∈ Snx
+ .

Thereupon, the closed-loop performance criterion consid-
ered throughout this work is defined by the following
definition:

Definition 1. The closed-loop response (6) is said to have
a desired guaranteed switching decay rate if:

V̇ (x) ≤ −2 dR(j) V (x), ∀j ∈ I[1,2nu ] (8)

where V (x) is a positive definite function and dR(j) ∈ R+

corresponds to the jth desired decay rate value associated
to the controller gain K(j) in (5).

2.2 Region constraints

Let us define the asymmetric region of linearity of system
(1) such that sat (u, u, u) = u, as follows:

La(u, u, u) ≜

u ∈ Rnu : −ui ≤ ui ≤ ui, i ∈ I[1,nu]


. (9)

Due to the relationship between the input u and the state
x given by the controller law (5), then for the active
controller gain j, the region of linearity (9) is mapped onto
a symmetric region, defined as:

Ls(K(j), ν(j)) ≜

x ∈ Rnx : |K[i](j)x| ≤ νi(j), i ∈ I[1,nu]


.

(10)
Then, with the objective of guaranteeing ∀t ≥ 0 that
x(t) ∈ Ls(K(j), ν(j)) and, as a consequence u(t) ∈
La(u, u, u) ∀t ≥ 0, the following set of inclusions is es-
tablished ∀j ∈ I[1,2nu ]:

XR ⊂ E(P ) ⊂ Ls(K(j), ν(j)), (11)

where XR and E(P ) correspond, respectively, to the given
known region of expected initial conditions described by
the vertices x(1), . . . , x(nv):

XR ≜ Co

x(1), x(2), . . . , x(nv)


, (12)

and the unit Lyapunov level curve set of (7):

E(P ) ≜ {x ∈ Rnx : V (x) ≤ 1} . (13)



3268 Adrián Ruiz  et al. / IFAC PapersOnLine 56-2 (2023) 3265–3270

ϑ ∈ Pϑ ⊆ Rnϑ represents the scheduling parameter vector
with Pϑ as a known, bounded and closed set. µ(ϑ) ∈ Rnµ

corresponds to the polytopic weight vector belonging to
the unit simplex:

∆nµ ≜

{
nµ∑
k=1

µk (ϑ) = 1, µk (ϑ) ≥ 0, k ∈ I[1,nµ]

}
. (25)

Due to the controller gain being parameter-dependent,
the symmetric region of linearity (10) becomes parameter-
dependent as well ∀j ∈ I[1,2nu ]:

Ls(K(j)(ϑ), ν(j)) ≜{
x ∈ Rnx : |K[i](j)(ϑ)x| ≤ νi(j), i ∈ I[1,nu]

}
,

(26)

so that the set of inclusions (11) is modified as:

XR ⊂ E(P ) ⊂ Ls(K(j)(ϑ), ν(j)), (27)

which leads to the extension of Theorem 1 to the LPV
case.

Theorem 2. Given the regions (12), (13) and (26) with
the known vertices x(l), a chosen Pólya’s relaxation degree
d ∈ N, with d ≥ 2, and the desired switching decay rate
values dR(j) ∈ R+, let there exist the decision matrices

P ∈ Snx
+ and Γ(j,k) ∈ Rnu×nx satisfying the LMI (15) and

the following set of LMIs ∀j ∈ I[1,2nu ] and k ∈ I+(d,nµ)
:

∑
p∈P(k)

(
He

{
A(p1)P +B(p1)Γ(j,p2)

}
+ 2dR(j) P

)
⪯ 0

(28)[
ν2i(j) Γ[i](j,k)

⋆ P

]
⪰ 0, ν(j) ∈ V, i ∈ I[1,nu]

k ∈ I[1,nµ]
. (29)

Then, the guaranteed switching decay rate performance
defined in Definition 1 holds for all parameter-dependent
terms appearing in (23), (26) and (27) with the controller
gain computed as K(j)(ϑ) =

∑nµ

k=1 µk(ϑ)Γ(j,k)(ϑ)P
−1.

Proof. Similarly to the proof of Theorem 1, the following
BMI can be obtained ∀j ∈ I[1,2nu ]:

He
{
A(ϑ)P +B(ϑ)K(j)(ϑ)P

}
+ 2dR(j) P ⪯ 0, (30)

which can be transformed into the following LMI by means
of the change of variable Γ(j)(ϑ) = K(j)(ϑ)P :

He
{
A(ϑ)P +B(ϑ)Γ(j)(ϑ)

}
+ 2dR(j) P ⪯ 0. (31)

By using the polytopic representation (24) of the parameter-
dependent matrices appearing in (31), one gets:

nµ∑
k1=1

nµ∑
k2=1

µk1
(ϑ)µk2

(ϑ)

×
(
He

{
A(k1)P +B(k1)Γ(j,k2)

}
+ 2dR(j) P

)
⪯ 0.

(32)

Since the negative-definiteness of expression (32) involves
multiple polytopic summations, the application of Pólya’s
relaxation theorem (Sala and Arino, 2007) is applied in
order to get the LMI (28).

By multiplying the left-hand side of the LMI (29) by µk(ϑ)
and summing it up to k ∈ I[1,nµ], one gets:[

ν2i(j) Γ[i](j)(ϑ)
⋆ P

]
⪰ 0, ν(j) ∈ V, i ∈ I[1,nu]

j ∈ I[1,2nu ]
. (33)

Then, let us pre- and post-multiply the expression (33) by
diag

{
1, P−1

}
, thus obtaining:[

ν2i(j) K[i](j)(ϑ)

⋆ P−1

]
⪰ 0, ν(j) ∈ V, i ∈ I[1,nu]

j ∈ I[1,2nu ]
. (34)

Finally, the following inequality is obtained by using
Schur’s complement and pre- and post-multiplication by
x⊤ and x:

x⊤K[i](j)(ϑ)
⊤K[i](j)(ϑ)

ν2i(j)
x ≤ x⊤P−1x,

which leads to the parameter-dependent inclusions E(P ) ⊂
Ls(K(j)(ϑ), ν(j)). As a result, x ∈ Ls(K(j)(ϑ), ν(j)) is
guaranteed for any x ∈ E(P ), and so u ∈ La(u, u, u), thus
concluding the proof. ■

Note that the same rule (22) can be applied to the LPV
case, although it will lead to the active controller being
dependent on the varying parameter ϑ:

σ(ϑ) = argmax dR(h)

s.t. h ∈
{
j ∈ I[1,2nu ] : K(j)(ϑ)x ∈ La (u, u, u)

} (35)

5. ILLUSTRATIVE EXAMPLE

Let us consider an example taken from Tarbouriech et al.
(2011), with modified saturation limits:

A =

[
0.1 −0.1
0.1 −3

]
, B =

[
5 0
0 1

]
,
u = [2, 3]

⊤

u = [5, 2]
⊤ . (36)

The characterization of the asymmetric saturation func-
tion (2) is obtained by a combination of 4 symmetric
saturations, thus defining the following matrices:

D1 =

[
0 0
0 0

]
, D2 =

[
0 0
0 1

]
, D3 =

[
1 0
0 0

]
, D4 =

[
1 0
0 1

]
,

D̂1 =

[
1 0
0 1

]
, D̂2 =

[
1 0
0 0

]
, D̂3 =

[
0 0
0 1

]
, D̂4 =

[
0 0
0 0

]
.

(37)
Then, the symmetric saturation limits ν(j) ∈ V of the
switched closed-loop system (6) are obtained for j ∈ I [1, 4]
with V defined as:

V =

{[
2
3

]
,

[
2
2

]
,

[
5
3

]
,

[
5
2

]}
. (38)

5.1 Design specifications

Consider that initial states of system (1) belongs to the
polyhedral set XR defined as:

XR = Co

{[
−1
−1

]
,

[
1

−1

]
,

[
−1
1

]
,

[
1
1

]}
. (39)

Then, for each controller gain K(j) in (5), let us define the
following desired switching decay rate values:

dR(1) = 0, dR(2) = 1.65, dR(3) = 3.30, dR(4) = 4.95, (40)

which will lead to obtain the fastest guaranteed closed-
loop convergence speed for the closed-loop system (6)
associated with the controller gain K(4) and the saturation
limits ν4 ∈ V, whereas, the slowest one is established for
the system with K(1) and ν1 ∈ V. On the other hand, the
decay rates dR(2) and dR(3) are chosen by considering 33%
and 66% of dR(4), respectively.

Remark 1. It should be noted that there exists a trade-off
between the provided values in (40) and the feasibility of
the problem. For example, a larger value of dR(1) implies
lower values in the remaining decay rates in order to
reach a feasible solution. Furthermore, keep in mind that
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these values can be obtained by employing a linear search
technique until Problem 1 becomes unfeasible for a given
pre-determined design criterion.

After determining the design specifications, Problem 1
is solved by implementation of Theorem 1 in MATLAB
environment via the YALMIP toolbox (Löfberg, 2004) and
the use of the SeDuMi solver (Sturm, 1999).

5.2 Simulation results

This section illustrates the results of the designed switch-
ing state-feedback controller under three different initial

conditions: x
(1)
0 ≜ [3.5162, 0.6602]⊤, x

(2)
0 ≜ [2.9,−0.65]⊤

and x
(3)
0 ≜ [−1,−1]⊤, denoted by a solid red line ( ),

a blue dashed line ( ) and a dotted green line ( ),
respectively.

Figs. 1-2 show the closed-loop state responses and the
evolution of the control input over time, respectively. It
is worth noting that regardless of the initial conditions, all
states tend to the origin ensuring closed-loop stabilization.

For the case of starting in x
(1)
0 , the computed input signal

has three discontinuities due to the activation of three
different controller gains, as shown in Fig. 3, where the
signal σ(t) is plotted. Conversely, it can be seen that the
input signals do not show any discontinuities in simulation

x
(3)
0 as a result of using the same controller gain for the

entire simulation.

Fig. 4 illustrates the phase plane delimited by the asym-
metric regions of linearity obtained for each designed con-
troller: ■ σ = 1, ■ σ = 2, ■ σ = 3 and ■ σ = 4.
Furthermore, the regions XR and E(P ) are represented
by the shaded black area and the solid violet line ( ),
respectively. Then, it can be seen that all region transitions
produced by the evolution of the state correspond to the
values of the signal σ(t) shown in Fig. 3.

Remark 2. During the controller design stage, a unit Lya-
punov level curve E(P ) has been considered without loss
of generality. It should be emphasized, however, that all
level curves of the QLF (7) completely contained in the
illustrated asymmetrical regions of linearity in Fig. 4, such
as the one bordered by the solid yellow line ( ), satisfy
the stated closed-loop performance requirement.

Fig. 5 shows that the Lyapunov function V (x) is strictly
decreasing in all the simulations. Furthermore, note that
the closed-loop convergence speed of the state trajectory

corresponding to x
(1)
0 rises from the specified value dR(2) to

the value of dR(4) according to current state vector, thus

producing abrupt changes in V̇ (x). Finally, Fig.6 shows
that guaranteed switching decay rate (8), denoted by the
colourful translucid manifold, is ensured for all the possible
non-saturating state trajectories. This demonstrates the
capacity of online adaptation of the closed-loop system.

6. CONCLUSIONS

The design of a control law for a linear system subject to
asymmetric saturations has been studied in this work. The
suggested approach is based on the transformation of an
asymmetrically saturated linear system into an analogous

Fig. 1. Closed-loop state responses.

Fig. 2. Evolution of control inputs.

Fig. 3. Switching control rule signal.

switched system with symmetric saturations, yielding an
LMI-based methodology for designing a switching state-
feedback controller. The results show that the suggested
switching rule criterion satisfies the guaranteed switching
decay rate performance criterion. In this sense, the closed-
loop system response modifies online its performance in
terms of convergence speed based on the current state
vector. Furthermore, it has been shown how to extend the
proposed methodology to the parameter-varying case.

ϑ ∈ Pϑ ⊆ Rnϑ represents the scheduling parameter vector
with Pϑ as a known, bounded and closed set. µ(ϑ) ∈ Rnµ

corresponds to the polytopic weight vector belonging to
the unit simplex:

∆nµ ≜

{
nµ∑
k=1

µk (ϑ) = 1, µk (ϑ) ≥ 0, k ∈ I[1,nµ]

}
. (25)

Due to the controller gain being parameter-dependent,
the symmetric region of linearity (10) becomes parameter-
dependent as well ∀j ∈ I[1,2nu ]:

Ls(K(j)(ϑ), ν(j)) ≜{
x ∈ Rnx : |K[i](j)(ϑ)x| ≤ νi(j), i ∈ I[1,nu]

}
,

(26)

so that the set of inclusions (11) is modified as:

XR ⊂ E(P ) ⊂ Ls(K(j)(ϑ), ν(j)), (27)

which leads to the extension of Theorem 1 to the LPV
case.

Theorem 2. Given the regions (12), (13) and (26) with
the known vertices x(l), a chosen Pólya’s relaxation degree
d ∈ N, with d ≥ 2, and the desired switching decay rate
values dR(j) ∈ R+, let there exist the decision matrices

P ∈ Snx
+ and Γ(j,k) ∈ Rnu×nx satisfying the LMI (15) and

the following set of LMIs ∀j ∈ I[1,2nu ] and k ∈ I+(d,nµ)
:

∑
p∈P(k)

(
He

{
A(p1)P +B(p1)Γ(j,p2)

}
+ 2dR(j) P

)
⪯ 0

(28)[
ν2i(j) Γ[i](j,k)

⋆ P

]
⪰ 0, ν(j) ∈ V, i ∈ I[1,nu]

k ∈ I[1,nµ]
. (29)

Then, the guaranteed switching decay rate performance
defined in Definition 1 holds for all parameter-dependent
terms appearing in (23), (26) and (27) with the controller
gain computed as K(j)(ϑ) =

∑nµ

k=1 µk(ϑ)Γ(j,k)(ϑ)P
−1.

Proof. Similarly to the proof of Theorem 1, the following
BMI can be obtained ∀j ∈ I[1,2nu ]:

He
{
A(ϑ)P +B(ϑ)K(j)(ϑ)P

}
+ 2dR(j) P ⪯ 0, (30)

which can be transformed into the following LMI by means
of the change of variable Γ(j)(ϑ) = K(j)(ϑ)P :

He
{
A(ϑ)P +B(ϑ)Γ(j)(ϑ)

}
+ 2dR(j) P ⪯ 0. (31)

By using the polytopic representation (24) of the parameter-
dependent matrices appearing in (31), one gets:

nµ∑
k1=1

nµ∑
k2=1

µk1
(ϑ)µk2

(ϑ)

×
(
He

{
A(k1)P +B(k1)Γ(j,k2)

}
+ 2dR(j) P

)
⪯ 0.

(32)

Since the negative-definiteness of expression (32) involves
multiple polytopic summations, the application of Pólya’s
relaxation theorem (Sala and Arino, 2007) is applied in
order to get the LMI (28).

By multiplying the left-hand side of the LMI (29) by µk(ϑ)
and summing it up to k ∈ I[1,nµ], one gets:[

ν2i(j) Γ[i](j)(ϑ)
⋆ P

]
⪰ 0, ν(j) ∈ V, i ∈ I[1,nu]

j ∈ I[1,2nu ]
. (33)

Then, let us pre- and post-multiply the expression (33) by
diag

{
1, P−1

}
, thus obtaining:[

ν2i(j) K[i](j)(ϑ)

⋆ P−1

]
⪰ 0, ν(j) ∈ V, i ∈ I[1,nu]

j ∈ I[1,2nu ]
. (34)

Finally, the following inequality is obtained by using
Schur’s complement and pre- and post-multiplication by
x⊤ and x:

x⊤K[i](j)(ϑ)
⊤K[i](j)(ϑ)

ν2i(j)
x ≤ x⊤P−1x,

which leads to the parameter-dependent inclusions E(P ) ⊂
Ls(K(j)(ϑ), ν(j)). As a result, x ∈ Ls(K(j)(ϑ), ν(j)) is
guaranteed for any x ∈ E(P ), and so u ∈ La(u, u, u), thus
concluding the proof. ■

Note that the same rule (22) can be applied to the LPV
case, although it will lead to the active controller being
dependent on the varying parameter ϑ:

σ(ϑ) = argmax dR(h)

s.t. h ∈
{
j ∈ I[1,2nu ] : K(j)(ϑ)x ∈ La (u, u, u)

} (35)

5. ILLUSTRATIVE EXAMPLE

Let us consider an example taken from Tarbouriech et al.
(2011), with modified saturation limits:

A =

[
0.1 −0.1
0.1 −3

]
, B =

[
5 0
0 1

]
,
u = [2, 3]

⊤

u = [5, 2]
⊤ . (36)

The characterization of the asymmetric saturation func-
tion (2) is obtained by a combination of 4 symmetric
saturations, thus defining the following matrices:

D1 =

[
0 0
0 0

]
, D2 =

[
0 0
0 1

]
, D3 =

[
1 0
0 0

]
, D4 =

[
1 0
0 1

]
,

D̂1 =

[
1 0
0 1

]
, D̂2 =

[
1 0
0 0

]
, D̂3 =

[
0 0
0 1

]
, D̂4 =

[
0 0
0 0

]
.

(37)
Then, the symmetric saturation limits ν(j) ∈ V of the
switched closed-loop system (6) are obtained for j ∈ I [1, 4]
with V defined as:

V =

{[
2
3

]
,

[
2
2

]
,

[
5
3

]
,

[
5
2

]}
. (38)

5.1 Design specifications

Consider that initial states of system (1) belongs to the
polyhedral set XR defined as:

XR = Co

{[
−1
−1

]
,

[
1

−1

]
,

[
−1
1

]
,

[
1
1

]}
. (39)

Then, for each controller gain K(j) in (5), let us define the
following desired switching decay rate values:

dR(1) = 0, dR(2) = 1.65, dR(3) = 3.30, dR(4) = 4.95, (40)

which will lead to obtain the fastest guaranteed closed-
loop convergence speed for the closed-loop system (6)
associated with the controller gain K(4) and the saturation
limits ν4 ∈ V, whereas, the slowest one is established for
the system with K(1) and ν1 ∈ V. On the other hand, the
decay rates dR(2) and dR(3) are chosen by considering 33%
and 66% of dR(4), respectively.

Remark 1. It should be noted that there exists a trade-off
between the provided values in (40) and the feasibility of
the problem. For example, a larger value of dR(1) implies
lower values in the remaining decay rates in order to
reach a feasible solution. Furthermore, keep in mind that
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Fig. 4. Asymmetric regions of linearity.

Fig. 5. Evolution of the Lyapunov function.

Fig. 6. Guaranteed switching decay rate. ( ■■ corresponds

to −V̇ (x) / (2V (x)) and ■ denote dR(σ))

Future research will focus on developing alternative LMI-
based methodologies to deal with the case where the satu-
ration limits are time-varying by considering shifting spec-
ifications as in Ruiz et al. (2021). Furthermore, techniques
that take into consideration the saturated control input
will be explored.
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