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Abstract: This paper proposes a new version of the Kalman filter, referred to as weighted Kalman filter
(WKEF). In the WKF some recent results on the weighted linearization of nonlinear systems are exploited
to incorporate modifications in the equations of the extended Kalman filter (EKF). More specifically,
the computation of the Jacobian matrices at the current mean of the estimated state is replaced by the
multiple integral over the state space of the Jacobian matrix functions multiplied by a weighting function.
Similar modifications are introduced in the equations used to account for the available nonlinear model
and compute the so-called a priori state and output estimates. The weighting function is chosen to be a
multivariable Gaussian function where the generalized variance is selected as proportional to the current
covariance matrix of the state estimate. An illustrative example is used to describe the step-by-step
derivation of the WKF equations and compare its performance against the EKF in terms of convergence

properties and estimation error performance.
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1. INTRODUCTION

State estimation is one of the most relevant engineering prob-
lems, in which a dynamic system known as state observer is
used to fuse some a priori knowledge (the model) with available
real-time data (the measurements) so that an accurate estimate
of the real state of another system is obtained. It is well known
that when the state-space representation of the system under
observation is linear, then the minimum mean squared error es-
timate is obtained when the state observer is designed/selected
as the widely celebrated Kalman filter.

Albeit a loss of optimality and convergence properties, the ex-
tended Kalman filter (EKF) has managed to become the most
widely applied state observer for nonlinear systems, and it is
nowadays considered the de facto standard in many applica-
tions, such as navigation systems and GPS [Huang et al., 2009,
Loron and Laliberte, 1993, Bohler et al., 2021, Narayanan et al.,
2020]. Due to the limitations of the EKF, some research over the
last few decades has focused on providing alternative estimators
that perform better than the EKF in some situations.

For instance, Julier and Uhlmann [1997] proposed the un-
scented Kalman filter (UKF), in which a set of discretely
sampled points is used to parameterize the mean and covari-
ance, which are later transformed using an unscented transform.
Some adaptive Kalman filters have been applied with success to
mitigate the impact of modeling uncertainty [Myers and Tapley,
1976, Huang et al., 2020]. In Chui et al. [1990], a modified
EKF (MEKF) was introduced by improving the linearization
procedure through a parallel computational scheme, whereas
Ahmed and Radaideh [1994] proposed to interconnect the EKF
with a noise-free model of the system. Glielmo et al. [1999]
proposed an algorithm consisting of a bank of interlaced ex-
tended Kalman filters (IEKF), each of which estimates a part
of the state, while considering the remaining parts as known
time-varying parameters whose values are evaluated by other
filters at previous steps. Germani et al. [2005] proposed a poly-

nomial version of the extended Kalman filter (PEKF) which
was a generalization of the traditional EKF. On the other hand,
a new class of Kalman filters based on the Fourier-Hermite
series expansion of the nonlinear functions (FHKF) was pro-
posed in Sarmavuori and Sarkka [2011]. The research aiming
at improving the Kalman filter is far from over, with recent
papers discussing its initialization [Zhao and Huang, 2020], or
equipping it with machine learning abilities [Shen et al., 2020,
Liu and Guo, 2021, Xin and Shi, 2021].

1.1 Theoretical background: weighted linearization

The Taylor-based linearization technique plays a central role
in the EKF, as the main idea behind it is to approximate the
nonlinear state-space representation with a linear model ob-
tained at the current mean of the state estimate. The recent
paper Rotondo [2022] has proposed a weighted generalization
of the linearization technique in which the Jacobian matrices
are multiplied by a weighting function and then this product
is integrated over the entire state and input spaces to obtain
the state-space matrices of the linear representation. Linear
quadratic regulator (LQR) design was used to show the poten-
tial advantages of the weighted linearization when applied to
controller design, such as better performance when the initial
state is far from the point of linearization, or an enlargement
of the region of attraction. The main ideas behind the weighted
linearization are summarized hereafter.

Let us consider the following discrete-time nonlinear system:

{m +1) = f (@), u(k)) ¢))
y(k) = h(z(k), u(k))

where k£ € R stands for the sample, x € R"™ is the state vector,
u € R™ is the input vector, y € RP is the output vector, and
f: R — R™ | : R*™™ — RP are nonlinear functions,
which are assumed to be differentiable w.r.t. their arguments.
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According to Rotondo [2022], given a state trajectory Z(k)
corresponding to input and output signals @ (k) and g(k), and
a weighting function p : R"™™+1 — R+ satisfying:

// p(x,u, k)drdu = 1
Rrtm

we define as linearized system weighted through p the follow-
ing:

VEeEN (2

{Aw<k+1> < AR)AL(R) + BEAUE)
Ay(k) = C(k)Az(k) + D(k)Au(k)

where Ax(k) £ x(k) — 2(k), Au(k) = u(k) — a(k) and
Ay(k) = y(k) — §(k), and the matrices A(k), B(k), C (k)

and D(k) are obtained as follows:

A(k) = // p(x,u,k)D—f(x,u)dxdu “4)
Rnt+m

/ / plx,u, k) Df (;v u)dxdu Q)
R71+m

:// p(x,%k)—(x,u)dxdu 6)
Rrtm Dz
/ / plx,u, k gh (x,u)dxdu  (7)

Based on Rotondo [2022], at each sample & € N the matrices
A(k), B(k), C(k), D(k) minimize the weighted Frobenius
norm of the differences between the Jacobians of f and h
w.rt.  and v and the state-space matrices of the linearized
representation, i.e.:

A(k)—arg min J,{ (®) B(k)=arg min Jgu(q))

ERnXn PERn XM
C(k) = arg mln Jk (®) D(k) =arg min J “(®)
PERPX PERPX™

where the cost function J;, 7*(®) is defined as:

)= [ [ ) ‘gf( -

with ||-|| » denoting the Frobenius norm, and the cost functions
JI(®), J(®) and J}*(®) are obtained from (8) after ap-
propriate replacement of f and/or x with h and/or u.

2

dzdu
F

JI (@

Remark: The practical interpretation of the weighting function
p(+) appearing in (2) is that it describes how to weight different
regions of the state and input spaces when obtaining the values
of the matrices A(k), B(k), C(k), D(k) of the linearized model
(3) that better fit the original nonlinear system (1). For example,
by choosing p(-) as the following multivariable Dirac delta
function:

pla,u,k) = 8(a — &(k),u — a(k)) ©)
the standard linearization is recovered, and only the behavior
of f(-) and A(-) in an infinitesimal neighborhood of the current
values Z(k) and @ (k) is taken into consideration. On the other
hand, by choosing p(-) as a different function taking non-zero
values when = # Z(k) and u # @(k), the behavior of f(-) and
h(-) in other regions of the state and input space is accounted
for.

A class of weighting functions that has showed to be promising
in terms of improved performance is that of multidimensional
Gaussian functions with unit hypervolume and centered around
the current value of state and input:

e —2(k) ||z —2(k)
detZ "~y —a(k)|” |u—a(k)

e

7Tn+m

plz,u, k) = } (10)
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where = is a positive definite (n + m) X (n 4+ m) matrix.

1.2 Contribution

Motivated by the above discussion, the main contribution of
this paper is to propose a new version of the Kalman filter,
which incorporates the weighted linearization, and will be thus
referred to as weighted Kalman filter (WKF). Although the
overall structure of the WKF resembles that of the EKF, they
differ in several aspects:

o rather than calculating the Jacobian matrices at the current
mean of the estimated state, the WKF obtains the lin-
earized model through the multiple integral over the state
space of the product between the Jacobian matrix func-
tions and a weighting function (the weighting function is
chosen to be a multivariable Gaussian function with gen-
eralized variance proportional to the current covariance
matrix of the state estimate);

e similar modifications are made to the equations used to
estimate the a priori state and output estimates based on
the available nonlinear model;

e according to the results obtained in the illustrative exam-
ple, the WKF outperforms the EKF in terms of both the
convergence properties and the estimation error perfor-
mance.

1.3 Outline

The remainder of this paper is structured as follows. Section 2
presents the problem statement and describes the prediction and
update equations of the WKF. Section 3 discusses the illustra-
tive example. Finally, Section 4 draws the main conclusions.

2. WEIGHTED KALMAN FILTER
2.1 Problem statement

Let us consider the following discrete-time nonlinear system:

y(k) = h(x(k)) +v(k)
where x € R" is the (unknown) state vector, u € R is the
(known) input vector, y € RP is the (known) output vector, w €
R™ is the (unknown) process noise, v € RP is the (unknown)
measurement noise, and f(-) and A(-) are (known) nonlinear
functions, which are assumed to be differentiable w.r.t. the
state variables. It is also assumed that w(k) and v(k) are zero

mean multivariate Gaussian noises with (known) covariances
Q(k) € R™*™ and R(k) € RP*P.

The problem under consideration is obtaining a state estimate
% (k) using a modified version of the EKEF, referred to as WKF,
that incorporates the ideas behind the weighted linearization
recalled in Section 1.1. In the following, we will discuss the
prediction and update equations of the WKEF, in relationship
with the corresponding equations of the EKF.

2.2 Prediction equations

Let us start our discussion by recalling that in the EKF, the
predicted state estimate Z(k) € R”™ (also known as a priori
estimate) is obtained by using the information about the model
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(i.e., the function f(+)) taking into account the current value of
the a posteriori estimate (k) € R™:

z(k) = f(@(k=1),u(k - 1))

However, the equation (12) does not take into account that
Z(k — 1) is an uncertain variable, for which the informa-
tion about the degree of uncertainty is contained in the corre-
sponding covariance matrix P(k — 1). In order to address this
shortcoming, we propose to use the weighted linearization and
choose the weighted function as in (10) by taking into account
that the best guess for the previous unknown value Z(k — 1) is
Z(k —1) and using a matrix = that is proportional to the inverse
of the covariance matrix P(k — 1), thus leading to:

12)

det (H (k — 1))e—(fc—fc(k’—l))TH(k—l)(z—i(k—l))

pla ) = ;
s
(13)
where:

H(k—1)=4P(k—-1)""! (14)
where 4 is a positive parameter that affects the narrowness of
the weighting function. Then, we use the model function f(-)
to project all the possible values of &(k — 1) € R™, which
are eventually combined together using the weighting function
(13), thus obtaining:

o) = [ [ [ ple)s ot - 1) de

In the EKEF, the prediction phase is completed by projecting the
covariance matrix using the state matrix obtained by computing
the Jacobian of the function f(-) at Z(k — 1):

15)

M(k) = A(R)P(k — DAR)" +Q(k)  (16)

where: 8f
Ak 17
()= oz |, #(k—1)u(k—1) 4

We propose to maintain (16) to propagate the covariance matrix
in time, but using the state matrix A(k) of the linearized system
weighted through 5(z, k) instead:

=[] e

If the state estimate Z(k — 1) is quite uncertain (the eigenvalues
of the covariance matrix P(k — 1) are relatively big), then
the weighting function (13) will be considerably different from
zero in a wider region of the state-space, and the multiple
integrals appearing in Equations (15) and (18) will account for
the general behavior of the function f(-) not only at the current
mean value of the state estimate Z(k — 1), but around this value
as well. In the opposite case, i.e., when a very precise estimate
Z(k — 1) is available (P(k — 1) — 0), then the multivariable
Gaussian function will tend to a multivariable Dirac delta
function, which means that in this particular situation the WKF
would behave exactly as an EKF. It is worth mentioning that the
input signal u(k—1) has been considered to be perfectly known,
which is the reason why the weighting function p in (13) has
been chosen not to depend upon wu, but the ideas described
above can be extended to the case of an unknown input signal
with known probability distribution by tweaking the weighting
function p and integrating with respect to du as well, so that R
gets replaced by R™ x R™. This latter case is not detailed in the
formulation of the WKF presented in this paper, for the sake of
keeping the notational burden limited.

de  (18)
:v,u(kfl)
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2.3 Update equations

Let us continue our discussion by recalling that in the EKF,
the computation of the Kalman gain K (k), used to update
the state estimate taking into account the so-called innovation,
is performed using an output matrix that is obtained from
evaluating the Jacobian of the function h(-) at Z(k):

-1

K(k) = M(k)C(k)" [C(k)M (k)C(k)" + R, (19)
where:
oh
C(k
(k) = e o (20)

We propose to maintain (19) for computing the Kalman gain,
but we use the weighted linearization to get the matrix C'(k)
by using a weighting function p(x,u, k) as in (10) with z(k)
as the best guess for the current unknown Z (k) and choosing
the matrix = to be proportional to the inverse of the covariance

matrix M (k):
_ Ooh
/.../np(x,k)axxdm 1)
where:
det (W (k - T _
Ala, k) = %g(rﬂ(k)) WmE-ak) (2
with:
W (k) =M (k)™ (23)

where 7 is a positive parameter that, similar to 7 in (14), affects
the narrowness of the weighting function.

The following step in the update phase is to obtain the a
posteriori state estimate & by modifying the a priori estimate
Z, as follows:

#(k) = 2(k) + K (k) [y(k) — g(k)] (24)

However, while in the EKF the estimated output g (k) is ob-
tained only from the current mean value of Z(k):

y(k) = h(z(k)) (25)

we propose to calculate y(k) by weighting the nonlinear func-
tion h(z) through p(zx, k), as follows:

o= [ ] pwbbde

Finally, the last step during the update phase is to compute
the current value of the a posteriori covariance matrix P(k) as
follows:

(26)

P(k) = [I — K(k)C(k)] M(k) @7)
where the difference between the EKF and the proposed WKF

lies in the different interpretation of the matrix C(k) (and,
consequently, a different value of the Kalman gain K (k)).

Note that, as already discussed in Section 2.2 for the prediction
phase, the WKF update equations account for the uncertainty
of the state estimate Z(k) when computing C'(k) and g(k). In
the ideal case of no uncertainty, the weighting function p(z, k)
would become a multivariable Dirac delta function shifted at
Z(k), so that the EKF equations would be recovered.

2.4 Wrapping up
Let us finalize our discussion by summarizing the state estima-

tion procedure referred to as WKEFE, which can be expressed as
Algorithm 1.
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Algorithm 1 The weighted Kalman filter

1: Choose ¥ >0and¥y >0

2: Initialize Z(0) and P(0)

3k« 1

4: while TRUE (system is running) do

5: Compute H(k — 1) using (14) > Prediction phase
6: Compute Z(k) using (15)

7: Compute A(k) using (18)

8: Compute M (k) using (16)

9: Compute W (k) using (23) > Update phase
10: Compute C'(k) using (21)
11 Compute K (k) using (19)
12: Compute g(k) using (26)
13: Compute Z (k) using (24)
14: Compute P (k) using (27)
15: k< k+1
16: end while
3. EXAMPLE

To evaluate the proposed WKEF, we perform several simulations
and compare the obtained performance in terms of convergence
and average estimation error with that obtained by using a
standard EKF. More specifically, let us consider the following
nonlinear system:

xa(k + ) = —mo(k) + 0.122(k)? + u(k) + wa (k)
y(k) = z1(k) + (k)

Given the a posteriori covariance matrix:

_ |pui(k —1) pia(k — 1)
Plk=1)= [Zu(k -1 gzz(k - 1)]

and the noise covariance matrices:

_ |q1(k) q12(k)
aw = |l o]

then Step 5 of Algorithm 1 happens as follows:

[pzz(?k_ 1%)]
hyy(k —1 —P12(F —
[hlggk . 13] _ pn(k - 1)
hoo(k — 1)

p11(k — 1)paa(k — 1) — pra(k — 1)2

During Steps 6-7, Z1(k), Z2(k), and the elements a1 (k) and
as2 (k) of the matrix A(k) are computed as follows (a12(k) = 1
and ag1 (k) = 0 for all k):

—+o0
T (k‘) = // /3(331, To, k?) (1]1 + 0.1.’5% + 5(,‘2) dzridzs
—co

—+oo
k) = // play, e, k) (—xg + O.la:%) dx1dxs

“+o00
au(k) = // ﬁ(l’l,$27 k‘) (1 + O.2$1) dridrs
—c0

“+o0
agg(k') = // ﬁ($1,$27 k) (—1 + 0.2.’172) dridrs
-0

where a value 4 = 1 has been chosen for computing the
weighting function p(x1, 2, k), thus obtaining:
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p(x1, 2, k) = exp {fhll(k 1) (a1 — @1 (k— 1))2---
— Zhlg(k — 1) (.131 — .f?l(k‘ — 1)) (33‘2 — i‘g(k‘ - 1)) s
—haa(k = 1) (w3 = da(k = 1))*] /-

(W\/pu — Dpaa(k — 1) — pra(k — 1)2)
Then, the prediction phase is completed by Step 8, i.e.:
mi1(k) = a11(k)*p11(k — 1) + 2a11 (k)p1a(k — 1)
+ p22(k — 1) + qu1 (k)
miz(k) = ai1(k)a(k)pia(k —
+ q12(k)
Moz (k) = aza(k)’paa(k — 1) + qaa(k)
For this specific example, due to the linearity of the output

equation y(k) = z1(k) + v(k) and the fact that the weighting
function p(z, k) in (22) satisfies:

[ [ ] i

then the WKF equations for the update phase (Steps 9-14 of
Algorithm 1) match the corresponding equations of the EKF:

1) + az2(k)paa(k — 1)

k1(k) = ma1(k)/ (mai(k) +r(k))

kao(k) = mia(k)/ (ma1(k) +r(k))

21(k) = Z1(k) + k1(k) (y(k) — 21(K))

Zo(k) = Ta(k) + ka(k) (y(k) — z1(k))
pu1(k) = r(k)m(k)/ (mi1 (k) + r(k))
p12(k) = r(k)mia(k)/ (m1 (k) + r(k))
paa(k) = maa(k) — maa(k)?/ (mar (k) + r(k))

In order to compare the WKF and the EKF, we will consider
32 different scenarios, as resumed in Table 1. For each of these
scenarios, we will run 1000 different simulations, in which we
create wy (k), wa(k), v(k) as realizations of independent zero-
mean white noise sequences with variances R,,, R, and R,,
respectively. which corresponds to Q(k) = diag(R,,, R.) and
R(k) = R, for all k. Also, for each simulation, the initial
condition x( is chosen as a random realization of a Gaussian
variable with covariance given by diag (Var(zg), Var(zo)).
Note that ¢ and the values in Table 1 are used to initialize
the EKF and the WKF (Step 2 in Algorithm 1), as follows:
#(0) =[wo 0" P(0) = diag(R., Var(zo))
Finally, in each simulation the input signal u(k) is computed
so that x;(k) (the state variable that defines, up to the noise
signal v(k), the output y(k)) tracks ! a sinusoidal signal with
amplitude A and frequency w:
z1(k) = y(k) — v(k) = Asin(wk)

For each simulation, we assess how many times the filters
diverge (columns “Both diverge”, “EKF diverges” and “WKF

diverges” in Table 2) and we compare the performance index
(columns “EKF best” and “WKF best” in Table 2):

ks
J= (a(k) = (k)" (a(k) - (k)
k=0

where ky = 50 denotes the total number of samples of
each simulation. Note that for each scenario, the values in the

L Since nonlinear controller design with guaranteed robust tracking perfor-
mance goes beyond the scope of this paper, we compute u(k) by using future
values of the process noise w(k). In spite of this not being an implementable
solution, it serves the purpose of exemplifying the behavior of the WKF versus
that of the EKF under different operating conditions.
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Table 1. Description of the scenarios.

H Scenario H Ryw Ry, Var(zo) A w

1 0.1 0.1 0.1 0.1 0.1
2 0.1 0.1 0.1 0.1 1
3 0.1 0.1 0.1 1 0.1
4 0.1 0.1 0.1 1 1
5 0.1 0.1 10 0.1 0.1
6 0.1 0.1 10 0.1 1
7 0.1 0.1 10 1 0.1
8 0.1 0.1 10 1 1
9 0.1 10 0.1 0.1 0.1
10 0.1 10 0.1 0.1 1
11 0.1 10 0.1 1 0.1
12 0.1 10 0.1 1 1
13 0.1 10 10 0.1 0.1
14 0.1 10 10 0.1 1
15 0.1 10 10 1 0.1
16 0.1 10 10 1 1
17 10 0.1 0.1 0.1 0.1
18 10 0.1 0.1 0.1 1
19 10 0.1 0.1 1 0.1
20 10 0.1 0.1 1 1
21 10 0.1 10 0.1 0.1
22 10 0.1 10 0.1 1
23 10 0.1 10 1 0.1
24 10 0.1 10 1 1
25 10 10 0.1 0.1 0.1
26 10 10 0.1 0.1 1
27 10 10 0.1 1 0.1
28 10 10 0.1 1 1
29 10 10 10 0.1 0.1
30 10 10 10 0.1 1
31 10 10 10 1 0.1
32 10 10 10 1 1

columns “Both diverge”, “EKF best” and “WKF best” sum
the total number of simulations, i.e., 1000. For illustrative pur-
poses, the best performing filter according to either conver-
gence properties or attaining the least value of the performance
index (fewer average error) is highlighted. It can be seen that
in the vast majority of scenarios, the proposed WKF performs
better than the EKF. It is worth noting that the only scenarios
where the EKF performs slightly better than the WKF are Sce-
narios 9, 10 and 12, which are all characterized by low process
noise, precise initialization of the filter (low variance of xzg),
and high measurement noise. The results suggest that under a
combination of these three factors, the WKF would not lead to
any relevant performance improvement when compared to the
EKF. It is also worth mentioning that the WKF involves multi-
ple integrals that lead to an increased computational complexity
when compared to the Taylor-based linearization used by the
traditional EKF.

4. CONCLUSIONS

A new version of the Kalman filter that exploits recent re-
sults on the weighted linearization has been presented. In the
proposed filter, instead of calculating the Jacobian matrices at
the current mean of the estimated state, the linearized model
is obtained by integrating over the state space the product of
the Jacobian matrix function by a weighting function. Similar
adjustments are applied to the equations used to determine the
a priori state and output estimates. The illustrative example has
shown that the proposed weighted Kalman filter exhibits better
convergence properties and average estimation error than the
extended Kalman filter. From a theoretical perspective, further
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Table 2. Simulation results.

Scenario Both EKF WKF EKF WKF

diverge  diverges  diverges  best best

1 0 0 0 178 822
2 0 0 0 184 816
3 0 0 0 186 814
4 0 0 0 222 778
5 177 1 0 297 526
6 149 2 0 309 542
7 169 0 0 325 506
8 192 0 0 285 523
9 0 0 0 524 476
10 0 0 0 525 475
11 0 0 0 301 699
12 0 0 0 544 456
13 177 23 8 304 519
14 196 22 3 294 510
15 178 15 8 205 617
16 220 25 2 309 471
17 241 320 8 107 652
18 244 321 11 91 665
19 224 316 11 91 685
20 225 311 8 112 663
21 469 236 11 63 468
22 438 250 10 85 477
23 445 229 10 73 482
24 446 235 8 75 479
25 538 223 67 117 345
26 545 201 85 136 319
27 561 234 69 109 330
28 526 234 71 125 349
29 701 139 46 85 214
30 688 163 54 80 232
31 708 147 48 80 212
32 705 145 55 83 212

investigation about the WKF will aim at investigating how the
proposed method performs when handling unknown inputs.
Furthermore, the practical applicability of the proposed filter
to problems of industrial interest, such as for example fault
diagnosis of nonlinear systems, will be researched.
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