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A B S T R A C T

Modern cancer diagnostics involves extracting tissue specimens from suspicious areas and conducting histotech-
nical procedures to prepare a digitized glass slide, called Whole Slide Image (WSI), for further examination.
These procedures frequently introduce different types of artifacts in the obtained WSI, and histological artifacts
might influence Computational Pathology (CPATH) systems further down to a diagnostic pipeline if not
excluded or handled. Deep Convolutional Neural Networks (DCNNs) have achieved promising results for the
detection of some WSI artifacts, however, they do not incorporate uncertainty in their predictions. This paper
proposes an uncertainty-aware Deep Kernel Learning (DKL) model to detect blurry areas and folded tissues,
two types of artifacts that can appear in WSIs. The proposed probabilistic model combines a CNN feature
extractor and a sparse Gaussian Processes (GPs) classifier, which improves the performance of current state-of-
the-art artifact detection DCNNs and provides uncertainty estimates. We achieved 0.996 and 0.938 F1 scores
for blur and folded tissue detection on unseen data, respectively. In extensive experiments, we validated the
DKL model on unseen data from external independent cohorts with different staining and tissue types, where
it outperformed DCNNs. Interestingly, the DKL model is more confident in the correct predictions and less in
the wrong ones. The proposed DKL model can be integrated into the preprocessing pipeline of CPATH systems
to provide reliable predictions and possibly serve as a quality control tool.
1. Introduction

Cancer is one of the leading causes of death worldwide, with nearly
0.6 million estimated deaths and 1.9 million new cases diagnosed in
2022 in the United States alone (Siegel et al., 2022). Cancer develops
when normal cells undergo genetic modifications that cause them to
convert into tumor cells. This transition is frequently triggered by
exposure to carcinogens, which are agents (chemical, biological, or
physical) capable of causing cancer (National Cancer Institute, 2015).
Histopathology is a gold standard in cancer diagnosis where pathol-
ogists conduct a microscopic examination of tissue samples mounted
on a glass slide to identify malignancy by evaluating cellular charac-
teristics and tissue morphology and possibly assigning a cancer grade
or stage to the patient (Morales et al., 2021; Tabatabaei et al., 2022).
Such glass slides are acquired through a series of histological laboratory
procedures, including steps like dehydration, fixation, clearing, embed-
ding, sectioning, mounting, and staining. The glass slide is scanned in
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modern digital pathology, forming a Whole Slide Image (WSI). This
entire histotechnical procedure is manual to a large degree. During a
single or combination of these steps, imperfect handling of the tissue
specimen may result in the introduction of artifacts on the obtained
WSI (Rastogi et al., 2013; Taqi et al., 2018; Rolls et al., 2008). Artifacts
are areas with no diagnostic relevance because the tissue is altered or
damaged in its appearance.

Some artifacts may appear on the tissue specimen due to complica-
tions arising in the biopsy procedure of specific organs (such as blood
and damaged tissue in trans-urethral resection of the bladder tumor
or burnt areas due to cauterization). Other artifacts appear during
the preparation of the WSI. These artifacts include folded tissues due
to imperfections in placing the section during the mounting process,
air bubbles (air trapped under the coverslip) from mounting, or blur
introduced in the scanning process. A more comprehensive description
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Fig. 1. A patch-based Computational Pathology (CPATH) system with a preprocessing pipeline to tackle artifacts in Whole Slide Images (WSIs). Artifact detection models
ensure the flow of only histologically relevant patches to the diagnostic algorithm for a reliable prediction.
of these steps and the artifacts they can introduce is provided in Kanwal
et al. (2022b). Pathologists are trained to focus on the diagnostically
relevant parts of a glass slide or WSI and would usually ignore these
areas during manual inspection (Kanwal et al., 2022a; Bindhu et al.,
2013; Kanwal et al., 2023b). Blurry regions and folded tissues are
the most common artifacts in WSIs, prepared from specimens of most
cancer biopsies (Palokangas et al., 2007; Babaie and Tizhoosh, 2019;
Salvi et al., 2021), and we focus only on these two artifacts in this
paper. Blur results from unaligned focus (i.e., scanning profile) during
the scanning of glass slides and may cause a complete loss of visual
features in regions of the WSI (Kanwal et al., 2022b; Janowczyk et al.,
2019). Similarly, folds (i.e., folded tissues) appear due to the placement
of tissue over itself during the mounting stage, undermining cellular vis-
ibility with a thicker appearance, making it irrelevant during diagnostic
inspection (Kanwal et al., 2022b; Bancroft and Gamble, 2008).

A Computational Pathology (CPATH) system is an automated sys-
tem for diagnostics, prognostics, or segmentation and visualization
of WSI, usually built on image processing and artificial intelligence.
Most CPATH tasks lack large enough datasets for training and rely
on manually annotated diagnostically relevant regions (Kanwal et al.,
2023). The performance of CPATH systems deteriorate with the pres-
ence of histological artifacts because they represent noise and clini-
cally irrelevant areas. Thus, removing irrelevant regions from the data
(i.e., noise) can improve prediction quality (Kanwal et al., 2022b,a;
Wright et al., 2020). A stress-testing study (Schömig-Markiefka et al.,
2021) on prostate cancer shows how the presence of artifacts results
in false positive predictions, leading to a substantial loss in diagnostic
accuracy in Deep Learning (DL) models. Therefore, it is beneficial to
automatically detect and exclude artifacts in a preprocessing pipeline
before running a DL-based diagnostic algorithm, as illustrated in Fig. 1.

Deep Convolutional Neural Networks (DCNNs) are popular choices
for biomedical image analysis in CPATH systems (Ho et al., 2021;
Kanwal et al., 2023a; Tomasetti et al., 2020). They have demonstrated
their success in numerous medical imaging challenges (Kanwal et al.,
2022a; Bulten et al., 2022; Del Amor et al., 2023). Although DCNNs
provide high accuracy, they often suffer from over-fitting and over-
confident predictions due to their deterministic nature (Nguyen et al.,
2015; William F et al., 2021). DCNNs provide a single-point estimate
and do not model confidence in their predictions. However, confi-
dence in predictions is advantageous in medical applications where
decision-making involves human life (Abdar et al., 2021). In contrast to
DCNNs, probabilistic classifiers provide a distribution, quantifying the
certainty of the classifier on the predicted distribution. These proba-
bilistic models also work well with reduced datasets (Wu et al., 2021b).
One of the most popular probabilistic models is Gaussian Processes
(GPs) (Williams and Rasmussen, 2006). GPs learn distributions over
functions and provide a confidence measure of their prediction. This
confidence is extracted from its predictive variance. A higher predictive
variance implies a wider distribution and depicts weak confidence
(and vice versa). This fact makes GPs trustworthy, and for this reason,
they are getting increased attention for CPATH tasks (Kandemir, 2015;
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Haußmann et al., 2017; Esteban et al., 2019). However, GPs alone
cannot handle images directly and rely on a prior feature extraction
step (López-Pérez et al., 2022).

Deep probabilistic neural architectures combine the advantages of
DCNNs and probabilistic models. The most extended approach is Monte
Carlo (MC) dropout during the inference, which performs approximate
Bayesian inference on DCNNs (Gal and Ghahramani, 2016). However,
the MC dropout approach is not computationally efficient since it re-
quires multiple runs. Recently, the combination of deep parametric and
non-parametric approaches has attracted increasing attention. Deep
Kernel Learning (DKL) consolidates the feature extraction power of
CNNs with the modeling capacity of GPs to learn a distribution from
the feature space (Wilson et al., 2016a). This combination gives the
DKL model good classification performance and uncertainty modeling,
making it interesting for the medical imaging community (Wu et al.,
2021c).

The topic of artifact detection in WSI has not been given very
much attention in the literature. One reason might be that no publicly
available datasets exist for most histological artifacts. To the best of our
knowledge, an uncertainty-aware artifact detection model has not been
proposed yet in the CPATH literature. Depending on the nature of the
CPATH task, uncertainty estimation gives the option of only removing
what the model is confident is an artifact or only using regions where
the model is confident that it is not an artifact.

From these observations, we propose an uncertainty-aware DKL
model that combines a custom DenseNet (Huang et al., 2017) feature
extractor with a sparse GP classifier to detect histological artifacts, blur
and folds, and provide uncertainty estimates for the predictions. Fig. 2
illustrates the pipeline of the proposed DKL model, which integrates
DenseNet CNN and GP classifier to exploit the full advantage by train-
ing them in an end-to-end fashion. Throughout the paper, we use a
CNN term for feature extractors and DCNN as an umbrella term for
state-of-the-art (SOTA) CNN-based architectures with a fully connected
(FC) classifier at the end. The main contributions of this paper are
summarized below.

1. We propose the DKL model for detecting folded tissue and blurry
areas against artifact-free tissue in WSIs. The prime benefit of
the DKL model is its ability to provide uncertainty estimates
along with the prediction. In short, this combination formulates
a reliable approach that tells how confident the model is in the
detected artifacts.

2. We perform extensive experiments to evaluate the proposed
model against SOTA DCNN and the baseline (a custom variant
of DenseNet CNN with FC classifier) models in terms of perfor-
mance, robustness, and computational complexity. The models
are trained, validated, and tested on a cohort from one lab; In
addition, it is tested on different cohorts from other labs.

This paper is organized as follows: Section 2 provides an overview
of works using DCNN and GP approaches in medical images, along with
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Fig. 2. An introductory overview of our proposed uncertainty-aware artifacts detection method (deep kernel learning model). The Whole Slide Image is split into patches
of a predefined size. A DenseNet feature extractor with three blocks and varying dense layers was used to extract hidden representations. The global average pooling layer converts
the obtained feature map to a vector. The Gaussian Process (GP) layer is applied to the feature vector to estimate a multivariate Gaussian distribution over the training data.
Finally, the GP predicts the presence of artifacts in the patch using Bernoulli likelihood and calculates the predictive variance for the test samples. The sparse GP and the DenseNet
CNN are trained jointly in an end-to-end fashion.
recent ones on artifact detection. Section 3 presents the method for
training and inference of the proposed DKL model. Section 4 details
the datasets, experimental setup, and evaluation metrics. Section 5
discusses the classification and uncertainty quantification results of the
DKL and baseline models. Finally, Section 6 presents the conclusions of
this paper and discusses future directions for preprocessing pipelines in
artifact detection and quality control applications.

2. Related work

Deep learning (DL) approaches have demonstrated the most promis-
ing performance in medical imaging challenges (Bulten et al., 2022).
Specifically, popular DL architectures, such as DenseNet (Huang et al.,
2017), ResNet (He et al., 2016), GoogleNet (Szegedy et al., 2015) or
MobileNet (Howard et al., 2017), DCNNs have been used in CPATH
with SOTA performance (Kanwal et al., 2022a). Previously, several
uncertainty quantification methods for DCNNs have been proposed
(see reviews Abdar et al., 2021; Loftus et al., 2022). Unfortunately,
uncertainty estimates obtained through these approximation methods
may not be meaningful since DCNNs do not incorporate the flexibility
of probabilistic modeling, such as GPs (Wu et al., 2021b).

2.1. Artifact detection

Recent works on WSIs using DL for diagnostic or prognostic predic-
tion tasks have relied mainly on the manual selection of artifact-free
Regions of Interest (ROIs) with diagnostic relevance (Priego-Torres
et al., 2020; Urdal et al., 2017). However, manual selection is labo-
rious and time-consuming. Since artifacts included during training or
inference might deteriorate prediction results (Kanwal et al., 2023b);
it is beneficial to equip CPATH systems with tools to deal with the
presence of artifacts (Kanwal et al., 2023b, 2022b; Wetteland et al.,
2021; Campanella et al., 2018).

Some publications exploited the stain absorption and texture fea-
tures for finding diagnostically relevant regions (Mercan et al., 2014;
Bahlmann et al., 2012). However, they did not take into account the
artifacts appearing within diagnostically relevant regions. Artifact de-
tection can be done before applying color normalization methods; thus,
prior color processing may not be necessary (Kanwal et al., 2022a).
3

Blur is an artifact introduced in the scanning process and may affect
downstream image features (Janowczyk et al., 2019; Wu et al., 2015).
Gao et al. (2010) presented a method for detecting out-of-focus areas by
handcrafting 44 extensive features (i.e., local statistics, wavelets, and
contrast) to train an AdaBoost classifier. Hashimoto et al. (2012) uti-
lized a linear combination of image noise and sharpness information to
locate blur. Their non-reference method applied a regression model to
evaluate the quality of mouse embryo WSIs. Wu et al. (2015) detected
blurry patches in their workflow by training KNN, Naive Bayes, SVM,
and random forest classifiers on the pixel-level distribution of local and
global metrics. They found that selected local metrics outperformed
global metrics for all four classifiers. Recent methods have relied on au-
tomatic feature extraction by CNNs. Campanella et al. (2018) in their
framework evaluated the extent of blur using a random forest model
on ResNet features. In a DCNN-based approach, Albuquerque et al.
(2021) trained seven SOTA architectures on the FocusPath (Hosseini
et al., 2019) dataset for the ordinal blur regression task and compared
outcomes with knowledge-driven methods. DeepFocus (Senaras et al.,
2018) used an analogous approach with CNN to analyze blurry regions
in WSIs with different stains (i.e., CD10, CD21, Ki67, H&E). Other
focus quality assessment frameworks like ConvFocus (Kohlberger et al.,
2019) and FocusLiteNN (Wang et al., 2020) utilized CNN-based models
to quantify and localize blurry areas in WSIs.

Folded tissue artifacts appear darker after staining due to the thick-
ness of the additional tissue layer. The tissue layers on top of each
other make it hard to assess the individual cells and features (Kanwal
et al., 2022b). Previous works for tissue fold detection mostly relied
on image enhancement and thresholding methodologies (Palokangas
et al., 2007; Kothari et al., 2013; Bautista and Yagi, 2009). Palokangas
et al. (2007) used color-space transformation to convert Red, Green,
and Blue (RGB) images to Hue, Saturation, Intensity (HSI) color-space
in their multistage method. First, they obtained the difference between
saturation and intensity channels and then used the K-means clustering
algorithm to separate folded tissue pixels from non-folded ones. In a
similar approach, Bautista and Yagi (2009) used color information with
a fixed threshold at the difference between saturation and luminance
values of each pixel. Pixels with a difference higher than the threshold
were used to apply adaptive RGB shifting to enhance the color structure
in the folded areas. Unfortunately, using a fixed threshold may not
be effective in histological images due to stain variations, especially
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between different cohorts (from different labs). To account for stain
variations, Kothari et al. (2013) proposed a rank-sum method with
neighborhood criterion to find image features and connectivity descrip-
tors in low magnification images. Their method used two adaptive
thresholds based on the differences in saturation and intensity ranges.
Working with a similar observation that folded tissues contain high-
saturation and low-intensity values, Shakhawat et al. (2020) explored
Gray-level Co-occurrence Matrix (GLCM) based features to train a
binary SVM classifier. Unfortunately, folded tissue detection methods
based on colorimetric and texture features may not be reliable due
to variations in staining and tissue type. To overcome this limitation,
Babaie and Tizhoosh (2019) extracted deep features using well-known
CNN architectures and trained SVM, KNN, and decision tree classifiers
for folded tissue detection. Their method was developed and tested on
a private dataset.

All the mentioned artifact detection works provide predictions as
a single-point estimate. In high-risk scenarios, such as medical im-
age analysis, reliable systems that can estimate the uncertainty in the
predictions are highly desirable (Abdar et al., 2021; Olsson et al.,
2022).

2.2. Gaussian processes in medical images

The capacity of GPs to handle and estimate uncertainty has led to
their adoption in various biomedical image applications. Toledo-Cortés
et al. (2020) proposed a hybrid GP with DL for diabetic retinopathy
diagnosis. Their model combined the representational power of DL with
the ability of GPs to learn from small datasets. They indicated that
uncertainty quantification led to a more robust model, which improved
the interpretability of the method. Wu et al. (2021a) combined an
attention CNN with a GP for multiple instance learning in computer-
ized tomography scans to detect intracranial hemorrhages. Their work
demonstrated the improvement provided by adding GPs to the model.
This approach was later extended to Deep Gaussian Processes (DGPs)
in López-Pérez et al. (2022), confirming the promising performance of
deep probabilistic models based on GPs.

GPs have been proposed for some CPATH tasks as well. Hauß-
mann et al. (2017) proposed GPs for multiple instance learning to
localize Barrett’s cancer from tissue microarray histopathology images.
Esteban et al. (2019) applied shallow and DGPs for prostate cancer
detection in CPATH and compared them to VGG19 (Simonyan and
Zisserman, 2015), Xception (Chollet, 2017) and Inception v3 (Szegedy
et al., 2016). They found that incorporating morphological and texture
features into GPs enabled them to achieve performance comparable to
SOTA DCNNs. López-Pérez et al. (2021) proposed GPs to learn from
crowds in histological breast cancer classification, using deep features
from VGG16 (Simonyan and Zisserman, 2015) and labels provided by
medical students. They showed that GPs with crowdsourced labels were
competitive with DL approaches using expert labels. Later, this crowd-
sourcing model was extended to DGPs, highlighting the promising
performance of deep probabilistic models (López-Pérez et al., 2023).
Similarly, Kandemir (2015) proposed a model for asymmetric transfer
learning based on DGPs.

The main drawback of these works is that they performed the
classification in two separate steps: first, they trained the CNN for
feature extraction, and second, they trained the GP with the obtained
features. Hence, they did not take full advantage of both modules in
an end-to-end way. Wu et al. (2021c) recently proposed a hybrid
model using GP trained for a univariate regression task. Their method
achieved better results than the baseline with a linear output layer,
suggesting that end-to-end trained hybrid models can offer improved
performance and uncertainty estimates compared to DCNNs using MC
4

dropout (Gal and Ghahramani, 2016).
3. Method

This section provides an overview of the methodology. Section 3.1
reviews the DenseNet architecture used for feature extraction. Sec-
tion 3.2 provides a brief introduction to GPs. Section 3.3 describes our
proposed DKL model for detecting artifacts.

3.1. Feature extractor: DenseNet

The Densely Connected Convolutional Networks (DenseNet) is a
family of architectures proposed as an extension of the ResNet (He
et al., 2016) architecture for image classification (Huang et al., 2017).
Its architecture contains dense blocks connected by transition layers,
as illustrated in the feature extractor part of Fig. 2. Every dense block
is composed of multiple layers that perform summation operations on
the output of previous layers and forward it to the next layers in the
same block. In other words, every layer receives all the feature maps
from previous layers. Transition layers help to concatenate varying-size
feature maps from every dense block. These operations preserve the
context from earlier layers to improve generalization and overcome the
problem of vanishing gradient. The final feature map obtained from the
last dense block is transformed into a feature vector by applying global
average pooling. This feature vector has low complexity and provides
smoother decision boundaries.

3.2. Probabilistic classifier: Gaussian processes

GPs define a prior probability distribution over functions. This
probability distribution, when combined with a set of observations,
updates its prior knowledge and is capable of providing a posterior
distribution for each (seen or unseen) sample. This posterior can be
used for decision-making and uncertainty quantification in classifi-
cation (our case) and regression problems. Regarding classification
problems, GPs yield intractable inference to compute the posterior
distribution (because the observation model and the Gaussian prior are
not conjugated). To solve this problem, Stochastic Variational inference
for Gaussian Processes (SVGPs) performs approximate inference in
classification problems. See further details of SVGP in Hensman et al.
(2015) and an intuitive review in Lopez-Perez et al. (2021). SVGP
aims to approximate the posterior by solving an optimization problem.
That is, maximizing the Evidence Lower BOund (ELBO). The inference
is performed by Monte Carlo sampling and allows training in mini-
batches, which scales to larger datasets. Finally, the predictions are
computed with the learned approximated posterior distribution.

3.3. The proposed deep kernel learning model

GPs cannot directly handle high-dimensional data, for instance,
images. The proposed approach combines a feature extraction step
using CNNs with the GPs to leverage its advantages. In short, the DKL
model has two consecutive parts: a three-block DenseNet CNN and a
sparse GPs classifier. The modules are trained jointly end-to-end. In this
work, we follow the inference procedure similar to the one proposed
in Wilson et al. (2016b). DenseNet acts as a feature extractor (a.k.a.
the backbone), computing relevant features for artifact detection and
providing low dimensional data to sparse GPs for uncertainty-aware
predictions, as demonstrated in Fig. 2.

Let  = (𝐗, 𝐲) = {(𝐱𝑛, 𝑦𝑛)}𝑛=1,…,𝑁 be our dataset, where each 𝐱𝑛 ∈
𝑊 ×𝐻×𝐶 is a histological patch from a WSI and 𝑊 ,𝐻,𝐶 represents

height, width and channels, respectively. 𝑦𝑛 ∈ {0, 1} is 1 if 𝐱𝑛 contains
rtifacts and 0 otherwise. The feature extractor model 𝑔 consists of
DenseNet network with learnable parameters 𝜱 followed by global

verage pooling converting feature maps to vector embeddings. For a
atch 𝐱𝑛, we define the feature embedding 𝐚𝑛 = {𝑎1, 𝑎2,… ., 𝑎𝑧} as:
𝑔𝜱(𝐱𝑛) = 𝐚𝑛. (1)
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Algorithm 1 : Training Deep Kernel Learning for Artifact Detection
Input: Patches 𝐗, artifact labels 𝐲, and number of epochs 𝐸.
Output: Variational {𝐦𝑗 ,𝐒𝑗}𝑧𝑗=1 and model {𝜱,𝜣, 𝑅} parameters.
for 𝑗 = 1 to 𝑧 do

𝐦𝑗 ← 𝟎;𝐒𝑗 ← 𝐈𝑀
end for
𝜣,𝜱 ← Random Initialization
𝑅 ← 𝟏𝑧 = (1, ..., 1) ∈ R𝑧

for 𝑒 = 1 to 𝐸 do
1. 𝐀 ← 𝑔𝛷(𝐗).
2. Draw 𝑇 samples from the posterior distribution with Eqs. (4) and (5) using 𝜣,𝐀, {𝐦𝑗 ,𝐒𝑗}𝑧𝑗=1.
3. Approximate the likelihood with Eq. (3) using 𝑅 and the 𝑇 samples.
4. Compute the prior term KL(q(𝐮)||p(𝐮)) using 𝜣, {𝐦𝑗 ,𝐒𝑗}𝑧𝑗=1.
5. Calculate the ELBO in Eq. (6) adding the likelihood plus the prior term.
6. Update 𝜱,𝜣, {𝐦𝑗 ,𝐒𝑗}𝑧𝑗=1, 𝑅 using the Adam optimizer.

end for
return Optimal parameters: {𝜱,𝜣, {𝐦𝑗 ,𝐒𝑗}𝑧𝑗=1, 𝑅}.
a
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Fig. 3. Probabilistic graphical model of the proposed Deep Kernel Learning (DKL).
Dark circles stand for observed variables, while light circles stand for latent variables.
We obtain embeddings 𝐀 from our histology patches 𝐗 using the trainable parameters
𝜱 of our DenseNet CNN. Then, we consider a weighted sum of the sparse GPs 𝐟 with
the weights 𝑅 to obtain the class label 𝐲 (if there is an artifact in the patch or not).
For scalability, we define 𝑀 inducing points 𝐮 over the inducing locations 𝐙. 𝜣 stands
or the (trainable) kernel parameters of the GP.

he size of the feature embedding is 𝑧. In the experimental section, we
tudy the influence of this size. We denote the set of all the embeddings
s 𝐀 ∈ R𝑁×𝑧.

The objective here is to learn 𝑧 independent GPs: {𝐟𝑗}𝑧𝑗=1, one GP
for each feature of 𝐀. Each GP follows a prior multivariate Gaussian
distribution,

𝐟𝑗 ∼  (𝟎, 𝐾𝐀𝐀), ∀𝑗 ∈ {1,… , 𝑧}, (2)

here the covariance matrix 𝐾𝐀𝐀 is defined by a Squared Exponential
SE) kernel function 𝑘𝜣 (⋅, ⋅). We denote the learnable kernel parameters
f the GPs as 𝜣. We omit the kernel parameters in the equations and
heir dependence on 𝑗 for clarity.

Notice that each GP has 𝑛 components (one per each observed
ample), we denote by 𝐟∶,𝑛 ∈ R𝑧 the vector of independent GPs for the
th instance. The likelihood of our model is a Bernoulli distribution
here the parameter is a weighted sum of the GPs using a vector of

earnable weights 𝑅 ∈ R𝑧 to exploit cross-dimensional correlations,

p(𝑦𝑛|𝑅, 𝐟∶,𝑛) =
1

1 + 𝑒−𝑅⊤𝑓∶,𝑛
. (3)

KL uses stochastic variational inference but it assumes some approxi-
ations to lighten the model and make sampling more efficient. First,
5

a set of 𝑀 inducing points 𝐮𝑗 with inducing locations 𝐙 is introduced
per each GP. They follow a prior distribution q(𝐮) =

∏

𝑗  (𝐮𝑗 |𝟎, 𝐾𝐙𝐙)
and an approximated posterior distribution q(𝐮) =

∏

𝑗  (𝐮𝑗 |𝐦𝑗 ,𝐒𝑗 ).
Using local kernel interpolation, the latent function 𝐟 is defined as a
deterministic function of 𝐮. The GP samples are computed directly by
the computation,

𝐟𝑗 = 𝐾𝐀𝐙𝐾
−1
𝐙𝐙𝐮𝑗 . (4)

The inducing points 𝐮𝑗 are also reparametrized using a Cholesky de-
composition. Specifically, 𝐒𝑗 = 𝐋⊤

𝑗 𝐋𝑗 . The sampling procedure is given
by,

𝐮(𝑡)𝑗 = 𝐦𝑗 + 𝐋𝑗𝜖
(𝑡), 𝜖(𝑡) ∼  (𝟎, 𝐈). (5)

The inducing locations are placed on a grid taking advantage of the
Toeplitz and circulant structures. For further details on the model and
sampling procedures, see Wilson et al. (2016b). We approximate the
ELBO by taking 𝑇 samples of 𝐟 ,

(𝑞) ≃ 𝑁
𝑇 × 𝐵

𝑇
∑

𝑡=1

𝐵
∑

𝑛=1
Ep(𝐟∶,𝑛|𝐮)q(𝐮) log p(𝑦𝑛|𝑅, 𝐟

(𝑡)
∶,𝑛) − KL(q(𝐮) ∥ p(𝐮)). (6)

This objective function enables training in mini-batches of size 𝐵,
nd it can be optimized with SGD or Adam. Regarding the first term,
e draw 𝑇 samples to estimate log p(𝑦𝑛|𝑅, 𝐟∶,𝑛). The second term can
e computed in a closed form because it is the Kullback–Leibler (KL)
ivergence between two multivariate Gaussians. Fig. 3 presents the
raphical model and Algorithm 1 summarizes the DKL model training
rocess.

In the inference stage, for a new unseen image 𝐱∗ we obtain the
mbedding vector from 𝑔𝜱(𝐱∗) = 𝐚∗, and draw 𝑇 samples {𝑓 (𝑡)

∗ }𝑇𝑡=1 using
q. (5) for each GP. Then, we approximate the predictive mean �̂�∗ of
∗ with

�̂�∗ = 1
𝑇

𝑇
∑

𝑡=1
p(𝐲∗|𝑅, 𝐟

(𝑡)
∶,∗). (7)

ince the posterior of 𝑦∗ follows a Bernoulli distribution, the predictive
ariance is given by

�̂�2∗ = �̂�∗(1 − �̂�∗). (8)
This variance can be further split into two terms: the aleatoric

ncertainty and the epistemic uncertainty (Kwon et al., 2020),

�̂�2∗ ≈ 1
𝑇

𝑇
∑

𝑡=1

(

p(𝐲∗|𝑅, 𝐟
(𝑡)
∶,∗) − p(𝐲∗|𝑅, 𝐟

(𝑡)
∶,∗)

2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̂�2∗𝑎𝑙=∶ aleatoric uncertainty

+ 1
𝐿

𝑇
∑

𝑡=1
(p(𝐲∗|𝑅, 𝐟

(𝑡)
∶,∗) − �̂�∗)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2

. (9)
�̂�∗𝑒𝑝=∶ epistemic uncertainty
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Algorithm 2 : Inference with Deep Kernel Learning for Artifact Detection
Input: New patch 𝐱∗, optimal variational {𝐦𝑗 ,𝐒𝑗}𝑧𝑗=1 and model parameters {𝜱,𝜣}.
Output: Predictive mean �̂�∗, variance �̂�2∗ and the epistemic uncertainty �̂�2∗𝑒𝑝 .

1. 𝐚∗ ← 𝑔𝜱(𝐱∗).
2. Draw 𝑇 samples from the likelihood term using Eqs. (3), (4), and (5).
3. Compute the predictive mean �̂�∗ with Eq. (7).
4. Compute the predictive variance �̂�2∗ with Eq. (8).
5. Compute the predictive epistemic uncertainty �̂�2∗𝑒𝑝 with Eq. (9).
return �̂�∗, �̂�2∗ , �̂�2∗𝑒𝑝 .
Fig. 4. A depiction of Whole Slide Image (WSI) pyramid with multiple magnification levels. Patches for the blur class are extracted at 40× magnification, and patches for
folded tissues are extracted at 20× magnification for a broader field of view along with the corresponding artifact-free class.
Table 1
A breakdown of the number of WSIs and patches obtained from the EMC dataset for
blur, folded tissue, and artifact-free classes in each subset.

Training Validation Test Total

No. of WSIs 35 10 10 55

Blur 5661 754 1137 7552
Artifact-free (40×) 5249 1441 965 7655
Folded tissue 478 130 138 746
Artifact-free (20×) 513 140 131 784

The aleatoric is irreducible and is inherent to randomness in the data
and the epistemic uncertainty refers to the noise in the model’s param-
eters because of the lack of knowledge (or data). In the experiments,
we will use the predictive variance, which combines these two sources
of uncertainty, and the epistemic uncertainty to further examine the
uncertainty of our model on new samples. High values indicate a high
uncertainty. We summarize the whole inference procedure with the
DKL model in the Algorithm 2.

4. Data and experimental details

This section provides description of the histological data and the
experiments carried out to validate our DKL model. Section 4.1 details
the data and its preparation. Section 4.2 provides the implementation
details, and finally, Section 4.3 explains the metrics used to evaluate
the proposed model.

4.1. Data materials

4.1.1. EMC dataset
We have analyzed 55 glass slides of bladder tumor resections from

the Erasmus Medical Center (EMC), Rotterdam, The Netherlands. The
6

glass slides were fixed with formalin and stained with Hematoxylin
and Eosin (H&E) dyes. The slides were scanned with a Hamamatsu
Nanozoomer 2.0HT at 40× and saved in ndpi format with a pixel size
of 0.227 μm × 0.227 μm. WSIs were anonymized, and all ethical
guidelines were followed before creating the dataset. The dataset was
divided into 35/10/10 for training, validation, and test sets at the
WSI level. A non-pathologist trained for the task manually annotated
the WSIs for blurry areas, folded tissues, and artifact-free tissue areas.
There were at least two areas annotated in each WSI for artifact and
artifact-free regions, but none of the WSIs were densely annotated into
different tissue types.

This in-house dataset was used for training and validating proposed
DKL models. Since CNN cannot process the entire WSI at once, we split
the WSIs further into sub-images (patches) (Kanwal et al., 2022b). In
the first step, binary thresholding with the Otsu method was applied
to the HSV-transformed image to perform the foreground-background
segmentation of the WSIs. Later, the obtained foreground was used to
extract patches of 224 × 224 pixels with at least 70% overlap with the
annotation mask (blur, fold, artifact-free). Tissue folds were patched
at 20× magnification as they need a broader field of view for better
visibility, and blurry regions were patched at 40× magnification. The
number of patches extracted for the artifact-free class was fixed in each
WSI to avoid significant class imbalance. Fig. 4 shows some examples of
extracted patches for both artifact classes with the artifact-free class at
the corresponding magnification. A further breakdown of the number
of patches in each class with both magnification levels is presented in
Table 1.
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Table 2
The configuration and hyper-parameters used for the training of the proposed DKL model (above) and baseline model (below).

Architecture Parameter Value

Input patch size 224 × 224 × 3
Patch magnifications in WSI 20 × (for folded tissue) & 40 × (for blurry areas)
Number of denseblocks in CNN 3
Structure of dense layers [6, 6, 6]; [8, 8, 8]; [10, 10, 10]
Denseblock configuration growth_rate = 12, compression = 0.5, num_init_features = 24
Inducing points for GP {64, 128, 256, 384, 512}
Learning rate 0.001 Initialized for ReduceLROnPlateau scheduler
Batch size 32
Kernel Squared-Exponential
Optimization algorithm Adam with weight decay = 0.0001
Activation function ReLu

DKL model

Objective function Variational ELBO with 𝛽 = 0.5

Configuration of FC layers [512, 128, 2]
Activation function ReLu
Loss function Focal Loss with 𝛾 = 2, 𝛼 = 0.25
Scheduler ReduceLRonPlateau with patience = 5
Dropout regularization 0.2

Baseline model

Early-stopping regularization 10 epochs
o

4.1.2. TCGA focus dataset
The Cancer Genome Atlas (TCGA) Focus1 is a publicly available

ataset with patches processed from 1000 WSIs by the National Cancer
nstitute (NCI), the United States. The dataset contains a wide spectrum
f stain and texture variation due to its preparation from 52 different
rgan types. TCGA Focus comprises 14,371 patches of size 1024 × 1024

pixels with 11,328 in-focus and 3043 out-of-focus labels (Wang et al.,
2020). Due to the availability of binary focus labels for ROI, we have
used this dataset as an external evaluation benchmark for DKL models
on blur detection task.

4.1.3. FocusPath dataset
FocusPath2 is another public dataset that contains 8640 patches of

1024 × 1024 pixels (Hosseini et al., 2019). These patches are extracted
from diverse WSIs, stained with nine different chemical dyes, and
scanned with a 40× magnification lens of a Huron Tissue Scope LE1.2.
at 0.25 μm/pixel resolution. Every patch has a ground truth class for
a focal level (i.e., corresponding to its absolute z-level score). Label
0 corresponds to the lowest extent of blurriness, whereas label 13
indicates the highest degree of blur. We utilize this external dataset
to determine the generalization ability of DKL and baseline models to
detect blur in unseen data.

4.1.4. SUH dataset
We have also used 4 Hematoxylin, Eosin, and Saffron (HES) stained

bladder biopsy WSIs from the University Hospital of Stavanger (SUH)
in Norway. These WSIs were scanned with a Leica SCN400 at 40×
magnification and stored in scn format. A non-pathologist trained for
the task annotated folded tissue regions. Later, patches of 224 × 224
pixels were extracted at 20× magnification in a similar fashion as
described in 4.1.1. We have tested folded tissue detection models on
this external dataset to assess their classification ability on WSIs with
different staining.

4.2. Implementation details

Patch extraction was performed using Histolab (Colling et al., 2019)
Python library. The obtained patches were normalized by re-scaling to
ImageNet (Deng et al., 2009) mean and standard deviation. Augmenta-
tion was done at every training epoch by applying random geometric

1 https://zenodo.org/record/3910757#.YtZ-lnZBwnA.
2 https://zenodo.org/record/3926181#.YtaEAnZBwnA.
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transformations, including rotation, horizontal and vertical flips with
a probability of 0.5. For validation on external cohorts, patches were
center cropped to 224 × 224 pixel size.

We trained distinct models for binary classification of fold and blur,
allowing for comparison to existing works in the literature. Models us-
ing DCNN architectures were implemented using Pytorch (Paszke et al.,
2019). All DCNN architectures were initialized with ImageNet (Deng
et al., 2009) weights to benefit from transfer learning. The fully
connected (FC) layers from these pretrained DCNNs were replaced
with a custom three-layer FC classifier, and initialized with random
weights. Hyper-parameters were explored through a grid search for
improved validation metrics. The final chosen parameters were Adam
ptimizer (Kingma and Ba, 2014) with weight decay of 0.01, ReduceL-
ROnPlateau scheduler with a learning rate of 0.01 and patience of 5,
batch size of 32, dropout of 0.2 and Focal loss (Lin et al., 2017). We
applied an early stopping of 10 epochs on validation loss to avoid over-
fitting. Lastly, we used the best model weights on the validation set to
report evaluation metrics.

The proposed DKL method was implemented using GPytorch (Gard-
ner et al., 2018) library. A three-block DenseNet CNN was used as the
backbone for the DKL models. This customized CNN was initialized
with random weights due to the unavailability of ImageNet weights for
this structure of DenseNet. Later, global average pooling was applied to
obtain a feature vector from the CNN feature map. We used inducing
points in the range [64− 512] and an SE kernel (Rasmussen, 2003). For
DKL training, the ELBO was optimized using Adam.

For a fair comparison, we also developed a baseline model using a
customized three-block DenseNet CNN with the FC classifier. This base-
line model is a smaller version of SOTA DenseNet DCNN to establish an
equitable comparison against the counterpart DKL model (using similar
CNN with GP classifier). All chosen hyper-parameters are summarized
in Table 2. To further assess the stochastic dominance of our proposed
model against the baseline model, we borrowed the Almost Stochastic
Order (ASO) test (Del Barrio et al., 2018; Dror et al., 2019) from the
deep-significance3 Python library. We performed retraining of DKL and
baseline models five times by fixing the hyperparameters and changing
the seed in every round. All experiments were conducted on NVIDIA
GeForce RTX 3090 with 24 GB.

3 https://deep-significance.readthedocs.io/en/latest/.

https://zenodo.org/record/3910757#.YtZ-lnZBwnA
https://zenodo.org/record/3926181#.YtaEAnZBwnA
https://deep-significance.readthedocs.io/en/latest/
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Table 3
DCNN models on the validation and test set of the EMC cohort 4.1.1. Four SOTA DCNN architectures are trained on the EMC cohort. All architecture backbones were initialized
with ImageNet weights. The number of training parameters and the output feature size are reported to show the computational complexity of each model. For blur detection,
we report results from the paper of (*) Albuquerque et al. (2021) and results from (†) Babaie and Tizhoosh (2019) are reported for tissue fold detection. Note that these models
re trained on different data and under different experimental setup. We provide validation results from literature with identical blur and fold detection works for referential
omparison only. The best results are highlighted in bold. Dash (–) indicates results not reported in the published works.
CPATH task Architecture Trainable parameters Feature size (𝑧) Validation/Test results Acc. (%) from previous works

Accuracy (%) F1 AUC-ROC MCC

ResNet 60.19 M 2048 97.6/99.1 0.964/0.992 0.969/0.991 0.947/0.983 88.7*
DenseNet 28.68 M 2208 97.9/92.1 0.980/0.993 0.981/0.992 0.962/0.982 –
GoogleNet 13 M 1024 97.2/99.3 0.958/0.993 0.967/0.992 0.937/0.985 92.4*

Blur
detection

MobileNet 0.54 M 960 98.2/99.5 0.974/0.995 0.980/0.994 0.960/0.989 94.4*

ResNet 60.19 M 2048 97.4/91.8 0.972/0.921 0.971/0.91 0.95/0.85 94.6†
DenseNet 28.68 M 2208 96.3/92.2 0.962/0.929 0.961/0.919 0.923/0.853 96.7†
GoogleNet 13 M 1024 98.5/92.5 0.985/0.932 0.985/0.923 0.971/0.861 93.7†

Fold
detection

MobileNet 0.54 M 960 97.8/92.9 0.977/0.935 0.978/0.927 0.955/0.864 -
4.3. Evaluation metrics

We evaluated the performance of each model using four different
metrics; Accuracy, F1-score, Area Under the Receiver Operating Char-
acteristic (AUC-ROC), and Mathew Correlation Coefficient (MCC). Let
FP, FN, TP, and TN represent false positive, false negative, true positive,
and true negative in the confusion matrix (CM), respectively. The ratio
of correctly classified patches to the total patches can be defined as
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +𝑇𝑁)∕(𝑇𝑃 +𝑇𝑁+𝐹𝑃 +𝐹𝑁). The F1 score can be more
nformative than accuracy when FN and FP are crucial. It is defined as:
1 = 2 ⋅ (precision ⋅ recall)(precision + recall) where recall = sensitivity
𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁) and precision = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ).
AUC-ROC measures the capability to distinguish between classes

egardless of the decision threshold. A higher AUC score indicates a
etter classifier for the task. Finally, MCC is an informative measure in
inary classification over an imbalanced dataset (Chicco and Jurman,
020). MCC, as defined in Eq. (10), achieves a high score in [−1, 1]

when the model correctly classifies positive and negative instances from
the dataset.

𝑀𝐶𝐶 = 𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 ) ⋅ (𝑇𝑃 + 𝐹𝑁) ⋅ (𝑇𝑁 + 𝐹𝑃 ) ⋅ (𝑇𝑁 + 𝐹𝑁)
. (10)

To evaluate the statistical significance of our results, we utilized the
ASO (Del Barrio et al., 2018; Dror et al., 2019) test in five random runs
of both the baseline and the proposed DKL models. We used the test
on the MCC metric with a significance level of 𝛼 = 0.95. ASO returns
a value showing the amount of violation in stochastic order, where a
value less than 0.5 shows the DKL model is statistically better than the
baseline model. Finally, we calculate trainable parameters, feature size,
and inference time per patch to highlight the computational complexity
of the models.

5. Results and discussion

This section presents and discusses the experimental results on vali-
dation, test, and external datasets for two different binary classification
problems; blur and fold detection. First, we study well-known SOTA
DCNN architectures (Section 5.1). Then, we present the proposed DKL
models, asses their generalization capability and compare them with
counterpart baselines and literature works (mentioned in Section 5.2).
Furthermore, we compare the performance of the best-performing DKL
model and baseline on external datasets to evaluate their robustness
(Section 5.3). Finally, we study their confidence and compare the
uncertainty estimates of the DKL model and the baseline using MC
8

dropout (Section 5.4).
5.1. State-of-the-art DCNNs on the EMC cohort

The purpose of this experiment is to evaluate the performance of
four SOTA DCNN architectures, namely, ResNet152 (He et al., 2016),
GoogleNet (Szegedy et al., 2015), MobileNetv3 (Howard et al., 2019),
and DenseNet161 (Huang et al., 2017), on blur and fold detection
problems. These popular architectures are used in the existing publi-
cations (Babaie and Tizhoosh, 2019; Albuquerque et al., 2021) with
similar classification tasks. Table 3 displays validation and test results
on the EMC dataset, allowing us to assess both the performance and
generalization capability. The DCNN models tend to perform relatively
well on the blur detection task compared to fold detection, proba-
bly because there is a greater availability of blur data. Our DCNN
models, with carefully chosen hyper-parameters, outperform previously
reported methods in the literature (Babaie and Tizhoosh, 2019; Albu-
querque et al., 2021) in terms of reported accuracy for both detection
tasks. Note, these results cannot be compared directly as the models
were trained and tested on different data. However, they correspond
to identical artifact detection tasks and are therefore reported for
comparative reference.

Comparing the architectures, we can observe that MobileNet, de-
spite having fewer parameters, produces acceptable classification re-
sults. Heavier architectures such as DenseNet and GoogleNet achieve
the highest F1, AUC-ROC, and MCC scores for blur and fold detection
on the validation set. Additionally, Table 3 suggests that DCNNs with a
large number of parameters, like ResNet, require more data even with
the knowledge from ImageNet initialization. The results also reveal
that in the case of fold detection, every DCNN architecture generalizes
poorly, with metrics significantly dropping from validation to test.
This is due to the overfitting tendencies of DCNN models on relatively
small datasets. Surprisingly, DenseNet exhibits the most pronounced
overfitting compared to other architectures in both classification tasks.

In the following experiment, we will test if the DKL model has better
generalizing capabilities compared to SOTA DCNNs. Therefore we want
to proceed with DenseNet CNN as the backbone, as we observed that
DenseNet has more improvement potential in the generalization.

5.2. Evaluation of DKL model on the EMC cohort

In this experiment, we present the results of the proposed DKL
model, in terms of performance, generalizability, and computational
complexity. Traditional DCNN architectures have a large number of
trainable parameters and relatively large feature vectors/embedding
that work as the input for a classifier of fully connected layers. For
example, DenseNet161 (Huang et al., 2017) contains four dense blocks,
and the resulting feature embedding has a large size (𝑧 = 2208) (see
Table 3). Such a large feature vector size, 𝑧, is not convenient for
the DKL model. Consequently, we have chosen to utilize a smaller,

customized version of DenseNet with three dense blocks to explore
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Table 4
DKL models on the validation and test set of the EMC Cohort 4.1.1. Our proposed DKL models (with GP classifiers) and
baseline models (with FC classifiers) are tested with three variants of Densenet feature extractors (used as a backbone). The
best results for each task are highlighted in bold.
CPATH task Subset Architectures Accuracy (%) F1 AUC-ROC MCC

DenseNet(6,6,6) + FC 96.53 0.948 0.956 0.922
DenseNet(6,6,6) + GP 97.79 0.968 0.975 0.951

DenseNet(8,8,8) + FC 96.54 0.949 0.96 0.923
DenseNet(8,8,8) + GP 97.70 0.968 0.974 0.951

DenseNet(10,10,10) + FC 94.61 0.926 0.955 0.888

Validation

DenseNet(10,10,10) + GP 98.13 0.972 0.981 0.958

DenseNet(10,10,10) + FC 97.33 0.975 0.971 0.947

Blur detection

Test DenseNet(10,10,10) + GP 99.52 0.996 0.995 0.990

DenseNet(6,6,6) + FC 97.77 0.977 0.956 0.978
DenseNet(6,6,6) + GP 99.25 0.992 0.992 0.985

DenseNet(8,8,8) + FC 98.88 0.988 0.989 0.978
DenseNet(8,8,8) + GP 99.63 0.988 0.988 0.977

DenseNet(10,10,10) + FC 97.40 0.973 0.974 0.948

Validation

DenseNet(10,10,10) + GP 98.88 0.984 0.989 0.970

DenseNet(6,6,6) + FC 91.41 0.923 0.911 0.839

Fold detection

Test DenseNet(6,6,6) + GP 93.28 0.938 0.930 0.873
Table 5
Computational complexity of DKL and baseline models. For top-performing DKL and baseline models on blur and fold
detection tasks, trainable parameters, output feature size, inference time per patch, and the outcomes of Almost Stochastic
Order (ASO) test on both classification tasks are presented.

Architectures Trainable parameters Feature size (𝑧) Inference time (ms)[†] ASO for Blur/Fold

DenseNet(6,6,6) + FC 0.308 M 132 136.6
DenseNet(6,6,6) + GP 2.354 M 3.648 0.453/0.224

DenseNet(10,10,10) + FC 0.543 M 216 266.6
DenseNet(10,10,10) + GP 3.933 M 6.501 0.339/0.051

† Time is estimated by a hundred runs of MC dropout for the (CNN+FC) baseline model and drawing a hundred samples for
the DKL model.
M

Table 6
Testing robustness of DKL models on external datasets. This table presents the
results of DKL and corresponding baseline models using the best-performing DenseNet
backbones on blur and fold detection tasks. The evaluation is performed on the unseen
data from external datasets (TCGA Focus 4.1.2 & SUH 4.1.4). The best results for every
cohort are marked in bold.

Dataset (Artifact) Architecture Accuracy (%) F1 MCC

DenseNet(10,10,10) + FC 67.19 0.286 0.09TCGAFocus (Blur) DenseNet(10,10,10) + GP 69.66 0.443 0.301

DenseNet(6,6,6) + FC 89.9 0.904 0.814SUH (Fold) DenseNet(6,6,6) + GP 87.9 0.887 0.780

the discrimination power of GPs with reasonable-sized feature vectors.
Each block has 𝑥 layers, where we let 𝑥 ∈ {6, 8, 10}, and denote the
model architecture as DenseNet(𝑥,𝑥,𝑥). In other words, the DKL model
comprised of DenseNet(𝑥,𝑥,𝑥) with GP classifier, and the baseline model
contains DenseNet(𝑥,𝑥,𝑥) with FC classifier. The baseline model used in
this experiment is a smaller variant of the SOTA DenseNet161 (Huang
et al., 2017).

Table 4 shows the results of the DKL and baseline models on the
validation set. DKL models demonstrate better performance for both
blur and fold detection tasks across all DenseNet configurations and
consistently outperform the baselines. The best-performing architecture
for DKL models for blur and fold detection are DenseNet(10,10,10) and

enseNet(6,6,6), respectively. Compared to the SOTA results in Table 3,
he proposed DKL model demonstrates competitive performance, even
9

ith the smaller DenseNet CNN. T
To be able to assess the generalization capabilities, Table 4 also
shows the results on the test set of the EMC cohort with the best-
performing DenseNet backbones over the validation set. DKL shows
very good generalization and significant improvements compared to
deterministic SOTA DCNN and the baselines when the training data
is limited. Moreover, the results of the ASO for both tasks (in Ta-
ble 5) highlight the stochastic dominance of DKL models over baseline
models. Especially on smaller datasets (like our fold dataset), the
classification performance of the DKL model holds notable statistical
superiority. Overall, the DKL models outperformed on unseen data
from the same distribution (same cohort), providing a similar or better
metric compared to SOTA DCNN architectures (recall Table 3) and
baseline models for both artifact detection tasks.

5.2.1. Computational cost and scalability
Table 5 presents the computational complexity of the best-

performing DKL models which underscores their advantage over SOTA
DCNNs. The table highlights that more dense layers result in more
trainable parameters and larger feature vectors (𝑧). Top-performing
DKL model for blur detection has nearly eight times fewer parameters
compared to its counterpart SOTA DCNN in Table 3 and obtains the
same AUC score (see Table 4). Similarly, the top-performing DKL model
for fold detection, with roughly seventeen times smaller feature vector
size (𝑧) relative to SOTA DenseNet DCNN in Table 3, yields a higher

CC score than both the baseline (see Table 4) and DenseNet DCNN in

able 3. Moreover, Table 5 also exhibits that applying MC dropout to
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Fig. 5. DKL models trained on fold dataset using different configurations to assess
the scalability. To the top, the running time for training is plotted against the increase
in the size of the CNN network/ feature vector. Bottom: validation scores of different
metrics are plotted as a function of the number of inducing points. The four subplots
are for different depths of DenseNet CNN used with the GP classifier.

the baselines (or DCNNs) is computationally expensive and has a clear
disadvantage with significantly higher inference time.

To further explore the scalability cost of the sparse GP classifier, we
analyze DKL models using DenseNet(𝑥,𝑥,𝑥) with 𝑥 ∈ {6, 8, 10, 12}, result-
ing in feature vector sizes 𝑧 ∈ {132, 174, 216, 258} and different number
of inducing points (defined in Section 3.3), 𝑀 ∈ {64, 128, 256, 384, 512}.
Fig. 5 illustrates that an increasing number of dense layers, i.e., size
of feature vector/number of estimated GPs, or inducing points result
in higher computational requirements for training the DKL model.
However, this increase does not inflict a significant improvement in
classification performance, which shows an exciting side of the proba-
bilistic classifier to perform well with fewer features. In general, a high
number of the inducing points, which is often considered necessary
for a better approximation of the GP classifier, does not reflect better
results in our small datasets. Overall, the end-to-end training of the
DKL model is found to be more computationally expensive compared
to training the baseline or DCNN.
10
In summary, introducing DKL, which can give us uncertainty mea-
sures in addition to predictions, does not cost us anything in terms of
performance, and it generalizes equally well or better than SOTA DCNN
and corresponding baseline models.

5.3. Validation on external data

Since DCNNs often underperform when they experience data from
different sources, it would be interesting to evaluate our DKL and
baseline models on external datasets. In this experiment, we choose
the best DKL and baseline models from Table 4 to investigate their
robustness on patches with different tissue types and staining compared
to the training data, i.e., different cohorts from other labs and other
diseases. Table 6 shows inference results for the TCGA Focus dataset
(blur detection) and the SUH dataset (fold detection). In the case of the
TCGA focus dataset, which carries a more vast texture deviation than
the EMC cohort, both baseline and DKL models suffer from a decline
in their classification ability. However, the DKL model performs better
than the baseline. On the contrary, DKL models for the fold detection
task on the SUH dataset lag behind the baseline model by a slight
margin.

Fig. 6 displays t-SNE plots for features extracted using DenseNet
feature extractors trained using EMC data and illustrates how feature
extractors find relevant features on the external datasets. In the blur
detection task, we notice that the feature extractor from the baseline
model provides significantly overlapped features, which is also the case
for the DKL feature extractor, but a bit less so. For fold detection,
both feature extractors separate the classes well, but the baseline model
seems slightly better, consistent with the results in Table 6.

The FocusPath dataset provides ordinal regression labels for dif-
ferent levels of blur. Therefore, we evaluate how many patches are
classified as blurry for each ordinal blur label, as demonstrated in
Fig. 7. The baseline model (with DenseNet(10,10,10)) assigns more blur
labels to patches with lower ordinal labels (less blurry ones). This fact
may be due to the overconfident predictions of the baseline on external
unseen data. Although there is a massive variation in the staining, the
DKL model performs reasonably well and starts detecting blur in more
than half of the samples after the sixth ordinal label. We also notice
that patches with the greatest extent of a blur (in labels 12 & 13) are
detected perfectly by both baseline and DKL models. This experiment
asserts the higher robustness of the DKL model on new unseen data
with a high degree of stain variations.

5.4. Uncertainty quantification for blur detection on the EMC cohort

In order to quantify and assess the uncertainty in the predictions
over the EMC cohort, we selected our best blur detection DKL model
(with DenseNet(10,10,10) from Table 4) for this section. For the DKL
model, we take a hundred samples from the posterior distribution to
estimate the predictive mean 𝑝∗ (given by Eq. (7)) and the epistemic un-
certainty �̂�2∗𝑒𝑝 (given by Eq. (9)). To compare with MC dropout method
applied to DCNNs, we performed a hundred forward passes (inference)
over the baseline model to approximate uncertainty estimates.

The first experiment compares the predictive mean and uncertainty
estimates of the baseline and DKL models. Fig. 8 shows the predictive
mean, and the shadow region represents the confidence interval 𝑝∗ ±
2�̂�∗𝑒𝑝 plotted for fifteen random patches from the EMC test set. It can
be observed that the DKL model produces tight confidence boundaries
and high probabilities in the correctly classified patches. Also, in less
confident samples, the interval is consistently wider. The baseline
model has lower confidence for most of the samples in both classes, and
its confidence estimates lack consistency compared to our DKL model.
In the true negative subplot in Fig. 8 (bottom), we can see that the
baseline misclassifies sample nr. 3, which has an artifact-free label.
Furthermore, the baseline model is quite confident in this incorrect
prediction. This experiment indicates that the uncertainty estimates of
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Fig. 6. A t-SNE demonstration of features from inference using baseline and DKL models. DenseNet CNN feature extractors from best-performing models in the previous
experiment (DenseNet(10,10,10) for blur and DenseNet(6,6,6) for fold) are used to extract features from external datasets. Orange refers to the patches with artifacts, and blue for
artifact-free patches. Plots (a) & (b) compare features for the blur detection task on the TCGA Focus dataset, and plots (c) & (d) compare features for the fold detection task on
the SUH dataset.
Fig. 7. DKL and baseline models tested on publicly available FocusPath dataset 4.1.3. The dataset is labeled in an ordinal fashion where label 0 corresponds to the lowest
degree of blur and label 13 corresponds to the highest degree of blur. Red bars indicate the total number of samples for each label. The green and blue bars show samples
predicted to be blurred by baseline and DKL models, respectively.
Table 7
Uncertainty estimate of best-performing blur DKL model on artifact class. Predictive epistemic
uncertainty is calculated over only artifact class from the test set of the EMC cohort 4.1.1, and mean
and the standard deviation is reported. Accuracy and F1-score are calculated over the entire test set.
Testset class Accuracy (%) F1 Uncertainty mean (×10−6) Uncertaintystd. (×10−9)

Blur 99.52 0.995 7.96 2.26
Fold 98.63 0.944 60.41 77.43
11
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Fig. 8. A comparison of uncertainty estimates of fifteen random patches and their prediction by the DKL and baseline models. The figure was created using best-performing
blur models on the test set from the EMC cohort 4.1.1. The red and black lines show the probability of blur class from the baseline and DKL models, respectively. The first row
shows the predictions by the baseline and DKL models on the patches with blur labels. The second row shows predictions on patches with artifact-free labels. The predictive
epistemic uncertainty of both models is shown across their predictive mean.
DKL models are more meaningful than the ones obtained by applying
MC dropout to the baseline models or DCNNs.

To further visualize the uncertainty quantification, we plot the
prediction of the DKL model over four random patches from each
category of the Confusion Matrix (CM). Fig. 9 depicts the predictive
mean over each example along with the predictive variance given by
Eq. (8). Regarding the predictive mean and the variance, the DKL model
is able to accurately classify True Positive (TP) and True Negative
(TN) samples with significant confidence, as indicated by the predicted
probabilities being close to 1 and 0, respectively, and lower variance
for these predictions. Besides, a False Positive (FP) sample is predicted
closer to the decision boundary, and the confidence interval around this
prediction is wider, indicating lower confidence in false classifications.
Interestingly, the number of False Negatives (FN) is zero, which shows
that the DKL model did not miss any artifact patch. In conclusion, the
DKL model is able to identify cases where it is certain of the correct
classification and less certain when it makes mistakes.

The last experiment on uncertainty shows the behavior of our blur
detector when it finds folded artifacts in practice. That is, the model
12
trained on blur artifacts is used to classify patches with folded tissue
artifacts on unseen data from the same cohort. We calculate the pre-
dictive epistemic uncertainty of each sample. Then, we report the mean
and standard deviation of variance across all the samples in the artifact
class as shown in Table 7. The accuracy and F1 scores were calculated
over the entire EMC test set. We observe that our blur detector is able
to identify the fold patches as artifacts. This is probably due to learning
well the morphology of the artifact-free patches. Besides, many folded
tissue patches contain blur due to unaligned lens focus. On average,
the predictive epistemic uncertainty is nearly eight times higher on the
fold test set with a bigger standard deviation across samples. The top
part of Fig. 10 illustrates the t-SNE plots for the feature extractor of
the blur DKL model used on the test set. We see that the discriminative
capability is very good for both blur and fold. At the bottom of Fig. 10
the prediction for fifteen random samples of blur and fold are plotted.
We see that the DKL model has higher uncertainty in predicting the
folded tissue class as an artifact compared to the learned distribution,
i.e. the blur class, as can be expected.
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Fig. 9. Predictive mean and variance for samples from the EMC Cohort. (Top)
shows DKL predictions of blurry patches on the test set of the EMC cohort. Confusion
Matrix (CM) shows the total classified patches in each category along with an example
patch. (Bottom) The predictive variance plot shows an example patch CM (shown on
the top) with predictive variance.

Fig. 11 shows the values of predictive mean and epistemic uncer-
tainty for all the patches in the EMC test set, again using the DKL
model trained for classifying blur vs. artifact-free. The figure shows
that patches predicted with strong probability, i.e., close to 0 or 1 (far
from the decision boundary), have lower variance (i.e., less predictive
epistemic uncertainty). On the contrary, patches near the decision
boundary (0.4 < �̂�∗ < 0.6) have a higher predictive uncertainty, which
agrees with the predictive variance decomposition given by Eq. (9). A
larger proportion of fold patches are situated near the decision bound-
ary compared to blurred ones, indicating that the model’s confidence
in detecting new artifacts is lower, as anticipated.

6. Conclusion & future work

This paper proposes an uncertainty-aware method for artifact de-
tection in histopathological WSIs. The proposed DKL model combines
the feature extraction power of DenseNet CNN and the probabilistic
modeling of GPs. We trained several models in an end-to-end fashion
with a varying depth of the DenseNet feature extractor for blur and
folded tissue detection tasks.

We analyzed the DKL model against state-of-the-art DCNNs and
baselines (DenseNet-based custom feature extractors with fully con-
nected classifiers). We discovered that the DKL model outperforms
DCNNs and baseline models, generalizes well to unseen data, and is
13
Fig. 10. Best-performing blur DKL model used for folded tissue (unseen artifacts)
prediction on the EMC Cohort. (Top) t-SNE scatter plots showing how the DenseNet
feature extractor from the DKL model is able to distinguish blur (subplot (a)) and
folded tissue (subplot (b)) class from artifacts-free images. (Bottom) predictive mean
and epistemic uncertainty for fifteen random patches from blur and folded tissue class
of the EMC test set.

Fig. 11. Predictive mean and epistemic uncertainty over unseen (blur) and
unseen (fold) data from the EMC test set. We see that more unseen fold patches
are closer to the decision boundary and have higher uncertainty than blurred ones.

robust to new data with different stains and tissue types. The pro-
posed DKL model is computationally efficient in providing meaningful
confidence in their predictions compared to applying the Monte Carlo
dropout to DCNNs. Interestingly, the DKL model, trained on one artifact
class, is able to correctly detect other artifacts, maintaining higher
uncertainty in dubious cases or wrong predictions. This fact implies that
the proposed DKL model is reliable and can measure how sure it is in
its predictions.

In future work, we will combine these artifact detection models in
the preprocessing pipeline of CPATH systems to run diagnostic algo-
rithms reliably. Moreover, artifact detection methods may also benefit
existing quality control approaches (Janowczyk et al., 2019; Shrestha
et al., 2016) that overlook the presence of artifacts and only incorporate
sharpness, contrast, noise, metadata, and color properties for evaluating
the usability of WSIs for developing CPATH systems.

Data and code availability

The code and data is publicly available on Github.

https://github.com/NeelKanwal/DeepKernelLearning
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