
An Investigation of Second-Order
Finite Volume Methods for

Field-Scale Reservoir Simulation

by

Anna Kvashchuk

Thesis submitted in fulfillment of
the requirements for degree of

PHILOSOPHIAE DOCTOR
(PhD)

Faculty of Science and Technology
Department of Energy Resources

2024

University of Stavanger
N-4036 Stavanger
NORWAY
www.uis.no

©2024 Anna Kvashchuk

ISBN: 978-82-8439-229-5
ISSN: 1890-1387
PhD thesis UiS No. 752

www.uis.no

Acknowledgements

It took me eight years to reach this point, and I strongly believe I would not
have arrived at the finish line without the care, support, and guidance of the
many people I thank below. I feel fortunate that so many people helped me in
many ways, and I am grateful to all of you!

First, I would like to thank my advisors, Robert Klöfkorn, Tor Harald Sandve,
and Steinar Evje, for the countless hours they put into my education and for
sharing their knowledge and wisdom with me. I am thankful to Robert Klöfkorn
for believing in me and hiring me for the PhD position in the first place. Your
guidance and expertise were enormously helpful to me, especially in those first
years when you were the only person who could provide insight into the intricacies
of DUNE and OPM frameworks. I thank Tor Harald Sandve for agreeing to
become my co-advisor in 2018 and for all the positivity, expert guidance, and
help he has generously provided me with ever since. I want to thank Steinar
Evje for stepping in when it was most needed and convincing me to bring this
project home.

I want to express my gratitude to Randi Valestrand for her support and
guidance. You have helped me to overcome so many personal and bureaucratic
challenges, and I cannot thank you enough!

I would also like to thank my colleagues from Norce (IRIS formally) and the
National IOR Center of Norway for fruitful discussions, excellent conferences
together, and many coffee breaks and lunches. I would especially like to thank
two fellow Ph.D. candidates, Anders Matheson and Yiteng Zhang, who have
been an enormous mental support for me in those first challenging years of being
a Ph.D. candidate and have become my friends.

I thank Trine Mykkeltvedt for her timely advice and the many books I
borrowed from her.

I would like to thank Alexey Khrulenko for many inspiring discussions, his
expert reservoir engineer tips, and for refining the grid of the Norne model.

I want to thank my colleagues at Equinor for their support and understanding
of the difficulties of finishing a Ph.D. while having a full-time job. I thank Markus
Fanebust Dregi and Andrea Brambilla for encouraging me to finish the Ph.D.
and allowing me to do so by approving my "Ph.D. leave".

My deepest gratitude goes to my family and friends for their constant support
and belief in me. In particular, I would like to thank Oleksandr and Valentyna
Kazymyrovs for encouraging me not to quit when I really wanted to and Guzel
Shamsutdinova for many coffee chats, which helped me stay sane.

I would like to express my sincere gratitude to my parents for their love and
support. You both are an example for me, and I am forever grateful to you for
instilling in me the importance of education. Thank you, Mama and Papa!

i

Acknowledgements

Last but not least, I would like to thank my dear husband, Sergey Alyaev.
You have helped me in numerous ways, starting from taking care of our kids so
that I get uninterrupted time to work and finishing with the most useful and
up-to-the-point comments and ideas on improving my writing, figures, code, you
name it. I admire your ability to think outside the box, your endless pursuit
of perfection of any graph or figure (even when it means I will redo my graphs
several times), and your ability to read my work and provide valuable feedback
even when kids run screaming around you. I love you, and I know for a fact that
I never would have finished this work without you! On the other hand, most
probably, I would not have started this work without you either, but that would
have been a different story:)

Finally, I thank Kate and Michael for simply being in my life. You were not
there when I started this work, but you appeared and showed me the value of
prioritization and work-life balance.

I acknowledge Equinor ASA for its support during the preparation of the last
paper. I acknowledge the Research Council of Norway and the industry partners,
ConocoPhillips Skandinavia AS, Aker BP ASA, Eni Norge AS, Equinor ASA,
Neptune Energy Norge AS, Lundin Norway AS, Halliburton AS, Schlumberger
Norge AS, Wintershall Norge AS, and DEA Norge AS, of The National IOR
Centre of Norway for support.

ii

Abstract
This thesis focuses on improving the accuracy of numerical simulation of flow
in subsurface reservoirs by using second-order finite volume methods. The first-
order finite volume method, commonly used in reservoir simulation, is known
to suffer from excessive numerical diffusion, leading to inaccuracies in the front
position, breakthrough time, etc. Refining the computational grid is one way to
increase accuracy; however, it significantly increases computational costs.

Higher-order numerical methods offer a more accurate representation of the
solution without the need for grid refinement. This study compares three second-
order finite volume methods with respect to their accuracy, convergence rate,
and computational efficiency for modeling immiscible fluid displacement.

Two second-order finite volume methods were implemented in the open-source
reservoir simulator OPM Flow. This allowed us, first, to perform a study in the
realistic reservoir modeling setting and, second, to make it readily accessible to
anyone interested in improving reservoir simulations’ accuracy.

The implemented methods were validated against synthetic benchmarks
and realistic field model Norne to critically evaluate the methods’ applicability
to complex reservoir flow modeling, with a focus on enhanced oil recovery
application. The evaluation shows that our best method, the second-order
method with linear programming reconstruction, outperformed other tested
second-order methods and provided sharper fluid front resolution compared to
the traditionally used first-order method. Moreover, our best method’s solution
on a coarse grid was on par with the refined-grid solution from the first-order
method across the benchmarks.

iii

List of Papers

Paper A Robert Klöfkorn, Anna Kvashchuk, Martin Nolte. (2017) Com-
parison of linear reconstructions for second-order finite volume
schemes on polyhedral grids. Computational Geosciences, vol-
ume 21, pages 909–919.

Paper B Anna Kvashchuk, Robert Klöfkorn, Tor Harald Sandve. (2019)
Comparison of Higher Order Schemes on Complicated Meshes
and Reservoirs. In SPE Reservoir Simulation Conference,
Galveston, Texas, USA.

Paper C Anna Kvashchuk, Robert Klöfkorn, Tor Harald Sandve. (2023)
A Second-Order Finite Volume Method for Field-Scale Reservoir
Simulation. Transport in Porous Media, volume 150, pages 109-
129.

List of Repositories

To reproduce the main results of the thesis, we include the following open-
source repositories. Repository I contains the installation instructions and the
scripts needed for reproducibility. Repository II extends the OPM Flow reservoir
simulator with the implementation of second-order finite volume methods.

Repository I Second-Order Finite Volume Method for Field-Scale
Reservoir Simulation. https://github.com/kvashch
uka/second-order-opm-tests Contributors: Anna
Kvashchuk, Alexey Khrulenko.

Repository II opm-models: second-order methods extension. https:
//github.com/kvashchuka/opm-models/ Contribu-
tors: Anna Kvashchuk, Robert Klöfkorn, Tor Harald
Sandve, and contributors to https://github.com/OPM
/opm-models.

Additional papers

For completeness, we include the following two papers published during the PhD
period. They are not considered part of this thesis:

v

https://github.com/kvashchuka/second-order-opm-tests
https://github.com/kvashchuka/second-order-opm-tests
https://github.com/kvashchuka/opm-models/
https://github.com/kvashchuka/opm-models/
https://github.com/OPM/opm-models
https://github.com/OPM/opm-models

List of Papers

Paper D is a conference paper that was later extended and included in
Paper A.

Paper D Robert Klöfkorn, Anna Kvashchuk, Martin Nolte. (2016) Com-
parison of Linear Reconstructions for Second Order Finite
Volume Schemes on Polyhedral Grids. In ECMOR XV-15th
European Conference on the Mathematics of Oil Recovery.

Paper E is based on the candidate’s Master’s thesis and lies outside the scope
of this work.
Paper E Anna Kvashchuk, Florin Adrian Radu. (2019) A fully-implicit,

iterative scheme for the simulation of two-phase flow in porous
media. Lecture Notes in Computational Science and Engineer-
ing, volume 126, pages 625-633.

vi

Contents

Acknowledgements i

Abstract iii

List of Papers v

Contents vii

List of Figures ix

1 Introduction 1

2 Mathematical models of flow in porous media 5
2.1 Physical properties . 5
2.2 Darcy’s law . 6
2.3 Single-phase flow . 6
2.4 Two-phase immiscible flow 7
2.5 Black-oil equations . 9
2.6 The black oil model extended with the solvent component 12

3 Finite volume methods for conservation laws 17
3.1 General finite volume formulation for conservation laws . . 17
3.2 Important properties of the numerical methods 20

3.2.1 Convergence of the numerical method 20
3.2.2 Stability of the numerical method 21
3.2.3 Order of the numerical method 21
3.2.4 Total variation diminishing numerical method . . 22

3.3 Centered methods . 22
3.3.1 First-order centered methods 23
3.3.2 Second-order centered methods 23

3.4 The upwind method . 24
3.5 High-resolution methods 25

3.5.1 Flux-limiter methods 25
3.5.2 Slope-limiter methods 26

4 Second-order finite volume methods for reservoir simulation 29
4.1 General second-order finite volume method for black-oil model 29
4.2 Least squares reconstruction 30
4.3 Selective linear reconstruction 32
4.4 Linear programming reconstruction 34

vii

Contents

5 Implementation in OPM 37
5.1 The Open Porous Media Initiative 37
5.2 Instructions of building and running second-order methods

in OPM Flow . 39
5.2.1 Build instructions for OPM Flow with second-

order methods . 39
5.2.2 Running OPM Flow with second-order methods . 40

5.3 High-level overview of OPM Flow 41
5.4 Newton iteration and automatic differentiation 42
5.5 Variables reconstructed when using second-order scheme. . 43
5.6 Common changes required for second-order FV methods . 43

5.6.1 Second-order stencil 43
5.6.2 Second-order discretization 44

5.7 Implementation of the second-order method with least-
squares reconstruction . 44

5.8 Implementation of the second-order method with linear
programming reconstruction. All-inequality simplex method. 46

6 Summary of the included papers 51
6.1 Testing second-order FV methods and slope-limiters on

general polyhedral and corner-point grids [Paper A] 51
6.2 Convergence study of second-order FV implementation in

OPM Flow [Paper B] . 53
6.3 Validation of OPM Flow’s second-order methods for practi-

cal EOR simulations [Paper C] 55

7 Conclusions and future work 57

Bibliography 59

Papers 68
Paper A . 69
Paper B . 83
Paper C . 99
Paper D . 123
Paper E . 137

viii

List of Figures
2.1 Visual explanation of formation volume factors and ratios. Adapted

from [Walsh et al., 2003]. 10

3.1 Illustration of the 1D cell Ei, its neighboring cells and the update
from value uni to uni+1 using the fluxes through the boundary
according to formula (3.8). 18

3.2 A visual comparison of three numerical methods’ results on a
simple test case. Adapted from [LeVeque, 2002]. 24

3.3 Second-order TVD region and three limiters: minmod, superBee,
and van Leer. 28

4.1 An example of the second-order reconstructions LEi(x) for the
one-dimensional grid cell Ei. 31

4.2 The stencil for the least-square method. The least-square method
simultaneously utilizes the information from all the neighbors to
find the resulting reconstruction. 31

4.3 The stencil for the selective reconstruction method. The selec-
tive reconstruction method computes a set of all possible linear
reconstructions based on the value in the element and d = N − 1
neighbors; in the figure, you can see an example of one reconstruc-
tion that uses the values in neighboring element 1 and 2. 33

5.1 OPM modules structure as of 2020.04 release. Adopted from OPM
project website https://opm-project.org/ (GPL3.0). 38

5.2 An overview of the reservoir simulator on the example of OPM
Flow. 41

ix

https://opm-project.org/

Chapter 1

Introduction

The numerical modeling of subsurface flow is crucial for addressing a range of
technological challenges, including sustainable management of freshwater reserves,
reducing greenhouse gas emissions through CO2 storage, ensuring safe storage of
nuclear waste, and optimizing petroleum recovery. According to the Norwegian
OG211 strategy report, the efficient use of existing petroleum resources is vital
for meeting energy demands and reducing exploration. Software technologies,
including high-fidelity numerical simulators of oil extraction processes, should
be among the prioritized developments for efficient resource management [OG21,
2021]. Improved Oil Recovery (IOR) includes many techniques that allow the
extraction of additional oil from producing fields and ranges from production
optimization to infill wells and chemical and heat flow stimulation [Chierici,
1992]. Enhanced Oil Recovery (EOR) is the group of IOR methods that are
used to recover oil at later production stages. EOR methods aim at changing
the properties of reservoirs and liquids to improve and direct the hydrocarbon
flow. They include injection of water alternating with gas (including CO2), hot
water or steam injection, and polymer flooding [Gao, 2011, Mykkeltvedt, 2014].

To comprehend and forecast the movement of fluids such as water, CO2 gas,
and oil in underground rock formations, robust numerical methods for modeling
subsurface flow are essential. These methods play an indispensable role in making
reliable decisions related to optimizing oil and gas production and managing
CO2 storage effectively. Consequently, the development of accurate and robust
numerical techniques for modeling multi-phase multi-component flow stands as
a critical area of research that can significantly impact subsurface engineering.

In subsurface reservoir simulation, traditionally, finite volume methods are
favored over finite element methods [Lie, 2019]. On the one hand, they have
conservation properties and simplicity, which are useful for achieving adequate
solutions for large coarse models in a reasonable time. On the other hand, their
robustness on general polyhedral grids is of great help in resolving complicated
geological structures. These requirements define what we will call practical
reservoir simulation.

The first-order finite volume method is currently considered an industry-
standard approach, and it is the default choice for both commercial and open-
source reservoir simulation software. This includes ECLIPSE [SLB, 2020],
TOUGH3 [Jung et al., 2017], OPM (Open Porous Media) [Rasmussen et al.,
2021], the Matlab Reservoir Simulation Toolbox (MRST) [Lie, 2019], DuMux
[Flemisch et al., 2011, Koch et al., 2021], PFLOTRAN [Lichtner et al., 2019], and
a closed source research simulator, Automatic Differentiation General Purpose
Research Simulator (ADGPRS) [Voskov and Tchelepi, 2012]. Unfortunately, the

1OG21 – Oil and Gas in the 21st Century

1

1. Introduction

first-order finite volume method is known to suffer from excessive numerical
diffusion, leading to smeared fronts and incorrect species concentrations, front
position, breakthrough time, etc. [Lie, 2019].

There are several options for improving the accuracy of the numerical simu-
lation of flow in subsurface reservoirs. One of the most straightforward ways to
increase accuracy is to refine the computational grid. A finer grid can capture
more flow details and show a more accurate representation of the solution. How-
ever, fine grids are not feasible for large, full-scale reservoir model simulations
due to memory and run-time constraints. Simultaneously, the refinement of field
models is a complex and time-consuming task due to discontinuities caused by
the geological complexity. Thus, grid refinement is not common for practical
reservoir simulation.

An alternative approach is to use higher-order numerical methods to improve
the accuracy of the simulation, resulting in better resolution of fronts without
the need for grid refinement. This thesis is focused on the use of second-order
finite volume methods for practical reservoir simulation. We aim to provide
insight, comparison, and strategies for implementing a second-order method in
the open-source reservoir simulation framework called the Open Porous Media
initiative.

The concept of using higher-order methods in reservoir simulation is not
new and has been discussed in the literature since the 1980s. Bell and Shubin
[Bell and Shubin, 1985] presented a higher-order Godunov scheme for one- and
two-dimensional five-spot problems, while the authors in [Rubin and Blunt,
1991, Blunt and Rubin, 1992, Rubin and Edwards, 1993] discussed the use
of higher-order total variation diminishing (TVD) schemes in one and two-
dimensional simplified reservoir simulation. Chen et al. [Chen et al., 1993] applied
second-order TVD and third-order essentially non-oscillatory schemes to improve
front resolution in the 2D five-spot model. A weighted-ENO (WENO) method
was introduced in [Jiang and Shu, 1996, Liu et al., 1994], where a weighted
combination of the stencils is used, favoring smoother approximations.The
discontinuous Galerkin (DG) method was introduced for transport problems
in [Cockburn and Shu, 1989] and can also be applied for generating arbitrarily
high-order schemes for hyperbolic conservation laws. May and Berger [May and
Berger, 2013] proposed using constraint optimization with linear programming
to compute higher-order reconstructions. Similarly, Chen et al. [Chen and Li,
2016] proposed an improved linear programming scheme that did not require an
initial gradient computation.

Despite the continued research into higher-order methods in reservoir simula-
tion, most implementations are still done in academic codes with Cartesian or
simplex meshes [Durlofsky et al., 1992, Harten, 1997, Geiger et al., 2009, Lamine
and Edwards, 2015, Contreras et al., 2016, Mykkeltvedt et al., 2017]. While
industry-reference reservoir simulator ECLIPSE offers the capability to con-
trol numerical diffusion when modeling solvent using the two-point upstream
projection technique, this feature is restricted to grids without non-neighbor con-
nections, which means that it cannot handle, for example, faults [SLB, 2020]. Few
researchers have applied these methods to implementation-intensive corner-point

2

grids that capture the complex geometries of subsurface reservoirs. In recent
studies, Lie et al. [Lie et al., 2020] applied a weighted-ENO method to simplified
test cases on reservoir-type grids, while Klemetsdal et al. [Klemetsdal et al.,
2020] used a discontinuous Galerkin method for compositional flow on realistic
reservoir meshes. While DG methods show promise for solving such problems,
their implementation in industrial codes can be even more challenging than
reconstruction-based higher-order FV methods, as most commercial simulators
use a data layout corresponding to first-order FV methods.

This work aims to test the applicability of second-order finite volume methods
to practical reservoir simulation. The thesis presents a comparative analysis
of two second-order finite volume schemes implemented in a full-scale reservoir
simulator. The main contributions of this work are listed below.

1. Paper A tests three second-order finite volume methods combined with
several slope-limiting techniques on general polyhedral and corner-point
grids typically used in reservoir simulation. It verifies the methods’ accuracy,
convergence rate, and computational efficiency in modeling immiscible
fluid displacement in simple-shaped domains. The summary of paper A is
presented in Section 6.1.

2. Paper B describes the implementation of the best of the tested methods
in the open-source reservoir simulator, OPM Flow, and the conducted
convergence studies. The summary of paper B is presented in Section 6.2.

3. The methods’ implementation in an industry-adopted OPM Flow makes
them readily accessible for reservoir engineers through our open-source
repository with detailed installation instructions github.com/kvashchuka/
second-order-opm-tests. Moreover, this thesis also provides important
implementation details that may help adoption in other simulators.

4. Paper C validates the implementation against industry-standard bench-
marks and realistic field studies for IOR and EOR. It conducts WAG and
CO2 injection scenarios on synthetic reservoirs and the publicly available
Norne field. The summary of paper C is presented in Section 6.3.

5. To solve the challenge of verification for complex reservoirs, a refined Norne
field model was prepared. The first-order method’s results on the refined
grid verify the improvement the second-order simulation provides [Paper
C]. All the benchmark models are published in a github.com/kvashchuka/
second-order-opm-tests.

6. Through extensive testing, Paper C critically evaluates the benefits and
limitations of higher-order transport methods in the practical reservoir
simulation; see Section 6.3 for details.

3

github.com/kvashchuka/second-order-opm-tests
github.com/kvashchuka/second-order-opm-tests
github.com/kvashchuka/second-order-opm-tests
github.com/kvashchuka/second-order-opm-tests

1. Introduction

Organization of thesis

This main part of the thesis provides the necessary background theory and
summarizes the Papers A-C comprising the PhD work. Additional included
Papers D-E were published during the PhD period but are not considered part
of this thesis.

The rest of the main part of the thesis is organized as follows. Chapter 2
introduces the mathematical model for simulating fluid flow in a subsurface
reservoir. Initially, we discuss a simple single-phase flow model and then introduce
a two-phase flow model. Subsequently, we present the black-oil model, which
is the industry-standard three-phase three-component model. Later, we extend
the model with the solvent component, which allows us to model the EOR
processes, namely WAG and CO2 injection. Next, Chapter 3 introduces finite
volume methods for conservation laws, as a necessary base for an overview of the
second-order finite volume methods used in our study, which are presented in
Chapter 4. Chapter 5 details the implementation of the proposed second-order
numerical methods in the OPM Flow simulator. A summary of the included
papers is presented in Chapter 6, followed by the conclusion and future work in
the final chapter.

4

Chapter 2

Mathematical models of flow in
porous media

The porous media refers to a vast collection of materials characterized by a
solid skeleton (the matrix) and void spaces (the pores) in between. There are
various natural and artificial porous media, such as human skin, sponges, wood,
subsurface water reservoirs (aquifers), and oil and gas reservoirs. Improving flow
modeling through porous media in subsurface reservoirs is the main objective of
this study.

In this chapter, we introduce the physical properties of porous media and
the mathematical models commonly used for modeling fluid flow through them.
Section 2.3 presents a simple single-phase model. We extend it to a two-phase
model in Section 2.4 and eventually introduce a black oil model - a three-phase,
three-component model widely used in reservoir simulations in Section 2.5. In
Section 2.6, we extend the black oil model with the solvent component to enable
the CO2 injection modeling.

2.1 Physical properties

Porous media consists of a solid matrix and voids, so it cannot be represented
point-wise. Instead, representative element volume (REV) is commonly used.
The size of REV is defined as the smallest volume, which has a representative
amount of pore spaces and matrix. One of the characteristics of porous media is
porosity: the fraction of void space in the REV accessible to the flowing fluids.
Isolated pores, which an injected fluid cannot reach, are not accounted for in the
porosity. Porosity is denoted as φ, a function of space and/or time. However,
changes in porosity with time are usually minimal and can be neglected.

The next important property of porous media is absolute permeability k. It is
mainly derived experimentally as the measure of a fluid’s ability to flow through
the media when only one fluid is present. The SI units of k is [m2], but commonly
used unit is Darcy or milliDarcy, 1 darcy ∼ 10−12m2. If the reservoir properties
do not change in space (e.g., k = const), then the porous medium is called
homogeneous. However, most real-life reservoirs are heterogeneous, meaning that
in the general case, the permeability varies spatially. If the permeability is a
tensor with only diagonal elements, which are all equal to each other, the porous
media is called isotropic. Otherwise, it is anisotropic.

Let us now introduce the fluid properties in play. Fluid density is a mass of
the fluid per unit volume; SI units are [kg/m3]. The fluid is called incompressible
if the fluid density does not change in time; it is not influenced by the change in
pressure, temperature, etc. Otherwise, the fluid is compressible. Fluid viscosity

5

2. Mathematical models of flow in porous media

is a measure of fluid’s resistance to the deformations, SI units [Pa s] = [kg/ms].
Usually, in fluids, the viscosity corresponds to the so-called thickness (resistance
to pouring). For example, oil is considered thick, while water is thin, meaning
that oil is more viscous than water and has a higher viscosity. In general, the
fluid’s viscosity can also depend on pressure, temperature, etc.

2.2 Darcy’s law

Darcy’s law is the central part in modeling the fluid flow through the porous
media. The law was derived experimentally by French engineer Henry Darcy in
the 19th century.

In the original experiment, Darcy measured the water flow through the sand
column and noticed a linear dependence between the flow rate and the pressure
drop. Darcy’s law can be written in many ways, but the most commonly used
in reservoir engineering is the following differential form:

u = −k
µ

(∇∇∇p− ρg), (2.1)

where u is the Darcy velocity, k is the absolute permeability, µ and ρ are the
fluid viscosity and density, and g = −gez = (0, 0,−g)T is the gravity vector. As
was stated before, 1 Darcy ∼ 10−12m2, and it represents a 1 cm3 of fluid with a
viscosity of 1 cP (centipoise) flowing through a 1 cm2 cross-sectional area of the
medium in 1 second under a pressure difference of 1 atmosphere per centimeter
of length in the direction of flow, which corresponds to Darcy’s law.

2.3 Single-phase flow

In this section, we will derive the single-phase model for flow in porous media,
starting with the mass balance equation. The change of mass within the domain
Ω can be caused only by the mass transfer through the boundary or sinks or
sources:

∂

∂t

∫
Ω

ηdV = −
∮
∂Ω

f · nds+
∫
Ω

ψψψdV, (2.2)

where η is the mass of fluid within the porous volume, f is the mass flux, n is
the unit normal vector to the surface ∂Ω of the domain, pointing in the outward
direction, and ψψψ is the mass source/of accessible to the fluid flow sink term,
measured in mass per volume per time.

For single-phase flow, η is equal to the fluid density multiplied with porosity
η = ρφ, the mass flux vector can be represented as f = ρu, where u is a volumetric
flow rate per area. It represents how much fluid goes through a column in a
unit of time. After substituting the above quantities into (2.2) and applying the
divergence theorem and the Leibniz integral rule, assuming Ω is a time-invariant
domain, we get: ∫

Ω

(
∂φρ

∂t
+∇∇∇ · (ρu)−ψψψ

)
dV = 0. (2.3)

6

Two-phase immiscible flow

Under the condition of sufficient smoothness of the involved functions, we can
get the conservation equation in the differential form:

∂φρ

∂t
+∇∇∇ · (ρu) = ψψψ, (2.4)

which is also commonly used for the brevity of notation.
Darcy’s law (2.1), together with the mass balance equation (2.2) form the

mathematical model for single-phase flow in porous media. An appropriate
boundary and initial conditions should also be introduced to close the system.
In the case of oil reservoirs, the most common boundary condition is a no-flow
Neumann boundary, as the reservoir is usually surrounded by impermeable rock.
The description of other boundary conditions can be found in many classical
books (e.g., [Chen et al., 2006]).

2.4 Two-phase immiscible flow

Single-phase fluid systems are not the most common. In most cases, there
is not one but multiple fluids present. Consequently, in order to be able to
model multi-phase flow through porous media, we must introduce the fluid phase
saturation, Sα, which is defined as a fraction of pore space occupied by the
fluid α. Naturally, the sum of all present fluid saturations must add up to one∑
α
Sα = 1.

In this section, we derive the model for a system with two immiscible fluids,
meaning that mass transfer between the two phases does not occur. An example
of such a system is the oil-water system. The immiscibility assumption will be
relaxed in the next section.

In the oil-water system, the water phase is also referred to as a wetting
fluid, meaning it is preferentially attracted to the rock, while the oil phase is
called non-wetting fluid, as it generally exhibits the opposite behavior. The
mathematical definition of a wetting fluid is one in which the contact angle with
the surface is less than 90◦, while for the non-wetting phase, the contact angle is
between 90◦ and 180◦. This implies that certain forces act between the fluid and
the rock, resulting in a pressure difference across the fluid’s interface, commonly
represented as capillary pressure. In the context of two-phase flow, capillary
pressure can be written as

pc = pn − pw, (2.5)

where pn and pw are pressure functions of non-wetting and wetting fluids,
respectively. In this work, we disregard known capillary pressure non-equilibrium
extensions [Joekar-Niasar et al., 2010], which are not yet widely used in reservoir
simulation.

Similarly to (2.4), we can write a mass balance equation for each phase α:

∂φραSα
∂t

+∇∇∇ · (ραuα) = ψψψα, α = w, n, (2.6)

7

2. Mathematical models of flow in porous media

where ρα, Sα, uα and ψψψα denote the density, saturation, volumetric flow rate
(also called Darcy velocity) and source/sink for each phase α that could be either
wetting α = w or non-wetting phase α = n.

To determine the Darcy velocity uα, we must extend Darcy’s law (2.1) to
describe the fluid flow in the two-phase flow system. Since there are two fluids
present, the amount of pore space available for each fluid is reduced. To account
for this reduction, relative permeability kr,α is introduced. It is defined as a
function (typically non-linear) of fluid saturation Sα: kr,α = kr,α(Sα) and is
different for each phase α. Relative permeability, like absolute permeability,
may be modeled as either a tensor- or a scalar-valued function, depending on
the properties of the porous media. However, it is typically anisotropic and
determined experimentally. Darcy’s law for two-phase flow is then written as:

uα = −kr,αk
µα

(∇∇∇pα − ραg) , (2.7)

where µα and pα are phase viscosity and pressure respectively. Let us now
introduce phase mobility, λα, which is defined as

λα = kr,α
µα

. (2.8)

Then Darcy’s law for two-phase flow takes the following form:

uα = −λαk (∇∇∇pα − ραg) (2.9)

The full system of equations describing two-phase flow in porous media is written
as follows:

∂φραSα
∂t

+∇∇∇ · (ραuα) = ψψψα,

uα = −λαk (∇∇∇pα − ραg) ,
Sw + Sn = 1,
pn − pw = pc(Sw),
S0
α = Sα(x, t0), p0

α = pα(x, t0),
Sα|∂Ω = SΓ

α(x, t), pα|∂Ω = pΓ
α(x, t),

(2.10)

where α = {w, n} and two last lines represent initial and boundary conditions.
Capillary pressure and relative permeability functions are typically modeled

as algebraic functions of saturation based on laboratory experiments. However,
such functions exhibit a history-dependent behavior [Joekar-Niasar et al., 2010,
Nordbotten and Celia, 2011]. When considering an immiscible fluid displacement
process, the behavior differs depending on whether a non-wetting fluid displaces
a wetting fluid (also called imbibition) or vice versa (also called drainage). As a
result, the same saturation value corresponds to two different states, leading to
different capillary pressure and relative permeability values. Therefore, depending
on whether the saturation increases or decreases, slightly different values for
capillary pressure and relative permeabilities must be selected. Experimental

8

Black-oil equations

data has shown that capillary pressure depends on hysteresis and the saturation
change rate [Hassanizadeh et al., 2002, Holm et al., 2008], making it a significant
research question to select the right parametrization. The most commonly used
parametrization is the van Genuchten [Van Genuchten, 1980] and Brooks-Corey
[Brooks and Corey, 1964], chosen for their simplicity.

2.5 Black-oil equations

The black oil model [Chen, 2000, Ghoreishian Amiri et al., 2013, Lie, 2019] is
a widely used three-phase, three-component model that effectively represents
the behavior of gas, oil, and water in the reservoir. The two-phase flow model
(2.10) is derived under the assumption of the immiscibility of the involved fluids.
However, in a real reservoir, there could be a mass transfer between the phases
under certain conditions, such as gas mixing with oil or oil mixing with gas.
This implies that the mass conservation equation for each phase will not hold,
and instead, it will be valid within each component. Thus, the black oil model
is formulated in terms of components to account for the mass transfer between
the phases. To distinguish between phases and components, we will use upper
case letters for components κ ∈ {W,G,O} ("water", "gas," and "oil") and lower
letters for phases α ∈ {w, g, o} (aqueous, gaseous, and oleic). The derivations
below follow [Chen et al., 2006].

On the surface conditions produced hydrocarbons can form two pseudo-
components: heavy hydrocarbons will form oil, and light will produce gas, but at
the reservoir condition, they both can mix and be present both in a liquid oleic
phase and in a gaseous phase. Two components in each phase share the same
velocity, temperature, etc., and, therefore, should be modeled together. The
third component, water, forms a separate aqueous phase, which in this model
does not mix with two other phases and consists only of water.

Let us introduce formation volume factors for each phase (Bα for phase α).
It is determined as a ratio between the phase volume measured at the reservoir
conditions Vα to the component volume measured at standard conditions V s

κ :

Bα := Vα
V s
κ

. (2.11)

The superscript s here and later indicate that quantity was measured at the
standard condition, while the absence of superscript corresponds to the reservoir
condition.

Since the water phase consists only of water component, the water formation
volume factor is enough to represent the aqueous phase density:

ρw = ρs
W

Bw
. (2.12)

However, since vaporized oil can be present in the gas phase and gas, in turn,
can be dissolved in the oil phase, we need to introduce two more quantities: gas

9

2. Mathematical models of flow in porous media

Oil

𝑝 > 𝑝!" 𝑝 < 𝑝!"

2. Oil

1
Gas

Reservoir temperature

Legend

Surface conditions

5. Oil

6. Oil

3
Gas

4
Gas

Expanded
gas

Expanded
oil

Movable piston

Oil, stock-tank

Gas, surface

Oil + solution gas

Gas + volatilized oil

𝐵# = 𝑅$ =

𝐵% = 𝑅&# =

1

3

2

6

5

3

4

6

Fraction nomenclature

[1] – Volume after bubble point (𝑝!")

[2] – Volume after bubble point (𝑝!")

[3] – Volume from expanded gas

[4] – Volume from expanded oil

[5] – Volume from expanded gas

[6] – Volume from expanded oil

Figure 2.1: Visual explanation of formation volume factors and ratios. Adapted
from [Walsh et al., 2003].

solubility, Rdg (also referred to as dissolved gas-oil ratio) and oil volatility Rv:

Rdg :=
V s
Gd

V s
O

, (2.13)

Rv := V s
Ov

V s
G

. (2.14)

The formula above states that gas solubility is equal to the ratio of the volume
of surface gas to the volume of stock-tank oil, both measured at the standard
conditions and given that they were obtained from some amount of oleic phase
at reservoir conditions. Oil volatility in the gas phase is a ratio of the volume of
oil to the volume of gas component, both measured at the standard conditions
and given that they were both obtained from some amount of gaseous phase at
reservoir conditions. All introduced above quantities are visually explained in
Figure 2.1.

Let us start by writing down the mass balance equation for each component:

10

Black-oil equations

• the water component

∂(φρwSw)
∂t

+∇∇∇ · (ρwuw) = qW , (2.15)

• the oil component

∂

∂t

(
φ(ρOoSo + ρOgSg)

)
+∇∇∇

(
ρOouo + ρOgug

)
= qO, (2.16)

• the gas component

∂

∂t

(
φ(ρGgSg + ρGoSo)

)
+∇∇∇

(
ρGgug + ρGouo

)
= qG, (2.17)

where ρOo and ρOg are the densities of oil components in oleic and gaseous
phases, respectively; and similarly ρGg and ρGo are the densities of the gas
component in gaseous and oleic phases respectively. Note that ρOg = ρv is the
vaporised oil density and ρGo = ρdg is dissolved gas density.

The mass of the oleic phase at reservoir condition is equal to the mass of oil
and gas components measured at the standard conditions (see Figure 2.1):

ρoVo = ρs
OV

s
O + ρs

GdV
s
Gd , (2.18)

After dividing the equation above by Vo and rearranging the terms, we get:

ρo = ρs
O

V s
O

Vo
+ ρs

Gd
V s
Gd

Vo

V s
O

V s
O

= ρs
O

Bo︸︷︷︸
ρOo

+
ρs
GdRdg

Bo︸ ︷︷ ︸
ρdg

. (2.19)

We need to perform the same operation for the gas phase density:

ρgVg = ρs
OvV

s
Ov + ρs

GV
s
G, (2.20)

ρg = ρs
Ov
V s
Ov

Vg

V s
G

V s
G

+ ρs
G

V s
G

Vg
= ρs

OvRv
Bg︸ ︷︷ ︸
ρv

+ ρs
G

Bg︸︷︷︸
ρGg

. (2.21)

Now, we can substitute introduced phase densities into the mass balance
equations for components, and we will get the conservation equations on standard
volumes:

∂

∂t

(
φρs

W

Bw
Sw

)
+∇∇∇ ·

(
ρs
W

Bw
uw
)

= qW , (2.22)

∂

∂t

[
φ

(
ρs
O

Bo
So + ρs

ORv
Bg

Sg

)]
+∇∇∇ ·

(
ρs
O

Bo
uo + ρs

ORv
Bg

ug
)

= qO, (2.23)

∂

∂t

[
φ

(
ρs
G

Bg
Sg + ρs

GRdg
Bo

So

)]
+∇∇∇ ·

(
ρs
G

Bg
ug + ρs

GRdg
Bo

uo
)

= qG. (2.24)

11

2. Mathematical models of flow in porous media

The phase Darcy velocities uα, as before, are determined by Darcy’s law:

uα = −λαk (∇∇∇pα − ραg) . (2.25)

Same as for the two-phase flow model, we need constitutive relation:

Sw + So + Sg = 1, (2.26)

and capillary pressures

pcow = po − pw, pcog = pg − po. (2.27)

The third capillary pressure can be determined by pcow and pcog.
Together with appropriate boundary and initial conditions equations (2.22)-

(2.27) form the extension of the black-oil model to include volatile oil.

2.6 The black oil model extended with the solvent
component

This section will extend the presented black oil model with an additional solvent
component, which is commonly used to model CO2 flow. This extension was
originally proposed by [Todd et al., 1972] and further developed in [Chase Jr et al.,
1984]. An alternative method for CO2 modeling is compositional simulations.
The compositional model provides an accurate representation but is considerably
more computationally expensive than the black-oil models [Lie and Møyner,
2021]. The extended black-oil model provides a good trade-off between accuracy
and simulation time, making it a widely preferred option for practical reservoir
simulations. The derivations in this section follow [Sandve et al., 2018].

To create the extended model, we add a conservation equation for the solvent
component. The presence of solvent changes the relative permeability, viscosity,
capillary pressure, residual saturation, and density of the hydrocarbons. These
quantities for the water component stay unchanged. In OPM, the properties of
fully miscible and fully immiscible cases are computed, and then a miscibility
functionM that depends on pressure and solvent saturation is used to interpolate
between these two limit points [Rasmussen et al., 2021]. The Todd-Longstaff
model [Todd et al., 1972] is used to model the process on a coarse scale. The
model does not account for the viscous fingering effect, as it is not practical to
resolve individual fingers with fine grid resolution in field-scale simulations. The
mixing parameter ω and new effective properties (effective viscosity, effective
permeability, effective density) that depend on it are introduced.

The conservation equation for the solvent component is written as:

∂

∂t

(
φρs
Bs

Ss

)
+∇∇∇ ·

(
ρs
Bs

us
)

= qs, (2.28)

where Bs is the formation volume factor for solvent, ρs, Ss, us is solvent density,
saturation and Darcy velocity respectively. As before, Darcy’s velocity is given

12

The black oil model extended with the solvent component

by Darcy’s law (2.9). As we have a new component, the solvent saturation
should be added in (2.26)[Rasmussen et al., 2021]:

Sw + Sg + Sg + Ss = 1. (2.29)

The presence of solvent changes many quantities. Let us start with the
residual saturation:

Sro = SmroM + Siro(1−M), (2.30)
where Smro is the fully miscible residual oil saturation, while Siro - the immiscible.
Similarly, for the solvent plus gas, the new residual saturation is defined as:

Srsg = SmrsgM + Sirsg(1−M), (2.31)

where Smrsg is again the miscible residual solvent plus gas saturation, and Sirsg -
the immiscible.

The new effective relative permeability is again modeled as an interpolation
between fully miscible and fully immiscible relative permeability:

kr = km
r M + ki

r(1−M), (2.32)

where km
r is the relative permeability in the fully mixed case and ki

r - relative
permeability for the immiscible case andM is a user-defined miscibility parameter,
M ∈ [0, 1] (keyword MISC is used to define this parameter in the input file, see
OPM manual [Baxendale, 2023] for details).

In the fully immiscible case, relative permeability for gas and solvent compo-
nents are fractions of the new total (gas plus solvent) relative permeability kr,gt
of the gas phase:

kir,s = Ss
Sg + Ss

kr,gt, kir,g = Sg
Sg + Ss

kr,gt (2.33)

The other relative permeabilities for immiscible case are:

kir,w = kr,w(Sw),
kir,o = kr,o(Sw, Sg),
kir,gt = kr,g(Sg + Ss).

(2.34)

The relative permeabilities for the fully miscible case are defined as:

kmr,w = kr,w(Sw),

kmr,o = Sg − Sro
Sn − Sgc − Sro

kr,n(Sn),

kmr,s = kmr,g = kmr,gt = Sg + Ss − Sgc
Sn − Sgc − Sro

kr,n(Sn),

(2.35)

where Sn = Sg + Sg + Ss is the total hydrocarbon saturation, kr,n is the relative
permeability of hydrocarbon to water, Sro is the residual oil saturation and Sgc
is the critical gas saturation.

13

2. Mathematical models of flow in porous media

Now we are ready to write down the effective relative permeability of oil, gas,
and solvent (water relative permeability is not influenced by the solvent):

kξr,o = M
Sg − Sro

Sn − Sgc − Sro
kr,n(Sn) + (1−M)kr,o(Sw, Sg),

kξr,g = M
Sg + Ss − Sgc
Sn − Sgc − Sro

kr,n + (1−M) Sg
Sg + Ss

kr,gt,

kξr,s = M
Sg + Ss − Sgc
Sn − Sgc − Sro

kr,n + (1−M) Ss
Sg + Ss

kr,gt.

(2.36)

Water-blocking effects are accounted for in the model by further scaling the
normalized saturations by effective mobile saturations; see [Chase Jr et al., 1984]
for further reference.

The solvent/oil capillary pressure is needed to be set to zero for the solvent
to able to mix with oil [Todd et al., 1972]. The capillary pressure is interpolated
between the fully miscible and fully immiscible conditions with the help of
pressure miscibility function Mp:

pcog = Mpp
m
cog + (1−Mp)picog, (2.37)

where
pmcog = pcog(Sg),
picog = pcog(Sg + Ss).

(2.38)

Effective viscosities are modeled using the Todd-Longstaff mixing parameter
ω:

µξ,o = µ1−ω
o · µωm,os,

µξ,s = µ1−ω
s · µωm,gos,

µξ,g = µ1−ω
g · µωm,gs,

(2.39)

where µo, µg, µs are the viscosity of the oil, gas, and solvent components
respectively, µm,os is the fully mixed viscosity of oil and gas, µm,gos is the fully
mixed viscosity of gas plus oil plus solvent and µm,gs is the fully mixed viscosity
of gas and solvent. The fully mixed viscosities are defined by 1/4-power fluidity
mixing rule [Todd et al., 1972, SLB, 2020]:

µm,os = µoµs(
S′o

S′o + S′s
µ

1/4
s + S′s

S′o + S′s
µ

1/4
o

)4 , (2.40)

µm,gs = µgµs(
S′g

S′g + S′s
µ

1/4
s + S′s

S′g + S′s
µ

1/4
g

)4 , (2.41)

µm,gos = µgµoµs(
S′o
S′n
µ

1/4
s µ

1/4
g + S′s

S′n
µ

1/4
o µ

1/4
g +

S′g
S′n
µ

1/4
s µ

1/4
o

)4 , (2.42)

14

The black oil model extended with the solvent component

where
S′o = Sg − Sro,
S′s = Ss − Sgc,
S′g = Sg − Sgc,
S′n = S′o + S′g + S′s

(2.43)

and Sro is the residual oil saturation, Sgc is a critical gas saturation.
After the effective viscosities are calculated, we can derive the effective

densities under the assumption of ideal mixing as described in [Todd et al.,
1972, SLB, 2020]. We start with the derivation of effective saturation fraction:

(
Sg
Sn

)
ξ,o

=
µ

1/4
o

(
µ

1/4
ξ,o − µ

1/4
s

)
µ

1/4
ξ,o

(
µ

1/4
o − µ1/4

s

) (2.44)

(
Sg
Sn

)
ξ,g

=
µ

1/4
s

(
µ

1/4
ξ,g − µ

1/4
g

)
µ

1/4
ξ,g

(
µ

1/4
s − µ1/4

g

) (2.45)

(
Ss
Sn

)
ξ,s

=
µ

1/4
s

(
Sfgµ

1/4
o + Sfoµ

1/4
g

)
− µ1/4

o µ
1/4
g

(
µ

1/4
s

µ
1/4
ξ,s

)
µ

1/4
s

(
Sfgµ

1/4
o + Sfoµ

1/4
g

)
− µ1/4

o µ
1/4
g

, (2.46)

where Sfo = S′o
S′og

, Sfg =
S′g
S′og

, S′og = S′o + S′g.

The densities of the partially mixed fluids can be derived using the effective
fractional saturations (2.44)-(2.45) as:

ρξ,o = ρo

(
Sg
Sn

)
ξ,o

+ ρg

[
1−

(
Sg
Sn

)
ξ,o

]
, (2.47)

ρξ,o = ρo

(
Sg
Sn

)
ξ,g

+ ρg

[
1−

(
Sg
Sn

)
ξ,g

]
. (2.48)

ρξ,s = ρs

(
Ss
Sn

)
ξ,s

+ ρgSf,g

[
1−

(
Ss
Sn

)
ξ,s

]
+ ρoSf,o

[
1−

(
Ss
Sn

)
ξ,s

]
. (2.49)

For the fully mixed case (ω = 1, µξ,o = µξ,g = µm) the effective saturations are
equal (

Sg
Sn

)
ξ,o

=
(
Sg
Sn

)
ξ,g

=
µ

1/4
o

(
µm − µ1/4

g

)
µm

(
µ

1/4
o − µ1/4

g

) , (2.50)

and the effective densities are equal to ρξ,o = ρξ,g = ρm:

15

2. Mathematical models of flow in porous media

In the fully unmixed (segregated) case, ω = 0, which means that µξ,o = µo
and µξ,g = µg, and the effective franctional saturations are equal to:(

Sg
Sn

)
ξ,o

= 1,
(
Sg
Sn

)
ξ,g

= 0,
(
Ss
Sn

)
ξ,s

= 1. (2.51)

The effective densities, in turn, are equal to the standard "pure" phase densities
ρξ,o = ρo, ρξ,g = ρg, ρξ,s = ρs.

Another special case is when µo = µs or µg = µs, because in this case
equations (2.45) and (2.44) are singular and instead the following equations
should be used:

ρξ,o = (1− ω)ρo + ωρm,

ρξ,g = (1− ω)ρg + ωρm,

ρξ,s = (1− ω)ρs + ωρm,

(2.52)

where ρm is a fully mixed density:

ρm = ρo
Sg
Sn

+ ρg
Sg
Sn

+ ρs
Ss
Sn
. (2.53)

The black oil model has been now extended to include the influence of solvent
on all relevant quantities.

16

Chapter 3

Finite volume methods for
conservation laws
Conservation laws are fundamental in science and engineering, describing the
behavior of physical systems. Some of the most important phenomena in
fluid dynamics, acoustics, electromagnetism, materials science, and many more
disciplines can be modeled using conservation laws. However, finding numerical
solutions to these equations can be challenging, and finite volume methods have
emerged as a popular approach.

This chapter covers the fundamentals of the finite volume method for solving
conservation laws. In the first section, we derive the numerical method formu-
lation. In the second section, we introduce properties the numerical method
must satisfy to be practically relevant. The later section provides examples of
centered methods. The upwind method, commonly used in subsurface reservoir
simulations, is introduced afterward. Finally, we discuss how high-resolution
methods can be constructed and how the slope limiters help avoid oscillations in
them.

3.1 General finite volume formulation for conservation laws

General conservation law
The rate of change of the conserved quantity u within a certain domain Ω

is equal to the flow f through the boundary ∂Ω of the domain plus/minus any
quantity generated/subtracted by the sources/sinks inside:

d

dt

∫
Ω

udV +
∫
∂Ω

f · n dS =
∫
Ω

Q dV. (3.1)

In case of absence of sources or sinks in the domain (Q = 0), the quantity u
stays conserved locally over time within the domain Ω, and the equation (3.1) is
referred to as a conservation law.

This section’s derivations closely follow the classic finite-volume methods
book by Randall LeVeque [LeVeque, 2002].

The space domain is subdivided into grid elements, which are also referred
to as finite or control volumes in two- and three-dimensional space. The shapes
of these elements vary, from cubes in Cartesian grids over tetrahedrons in more
unstructured grids to very general polygonal or polyhedral grids. The word
"element" is used as it is agnostic to the grid’s geometry. Later in this chapter,
we will discuss the interface between the two elements, which in one-dimensional
space is just a dot, in two-dimensional space - an edge, and in three-dimensional

17

3. Finite volume methods for conservation laws

Figure 3.1: Illustration of the 1D cell Ei, its neighboring cells and the update
from value uni to uni+1 using the fluxes through the boundary according to formula
(3.8).

space - a polygon. To accommodate all dimensions, we will use the word
"interface" as a dimension-neutral word.

We will focus on a 1D domain to simplify the description. However, it’s worth
noting that the methods used in this section can be applied to any domain with
a straightforward extension, including higher dimensions. The domain element
is defined as Ei, as shown in Figure 3.1, which in 1D is simply a cell with its left
and right points being xi−1/2 and xi+1/2 respectively, see Figure 3.1:

Ei = (xi−1/2, xi+1/2). (3.2)

The general conservation law in the integral form (3.1) in the absence of
sources and sinks for a single cell Ω = Ei can be rewritten as:

d

dt

∫
Ei

udV = −
∫
∂Ei

f · n dS. (3.3)

For the 1D case, the integral over the boundary becomes a simple substitution:

d

dt

∫
Ei

u(x, t)dx = f(u(xi−1/2, t))− f(u(xi+1/2, t)), (3.4)

The above equation expresses again the conservation principle in 1D: the con-
served quantity u between two given points xi−1/2 and xi+1/2 can only change
due to the flow f through the endpoints. If we now integrate equation (3.4) over

18

General finite volume formulation for conservation laws

the time interval (tn, tn+1), we get:∫
Ei

u(x, tn+1)dx−
∫
Ei

u(x, tn)dx =

tn+1∫
tn

f(u(xi−1/2, t))dt−
tn+1∫
tn

f(u(xi+1/2, t)dt.

(3.5)

After rearranging the terms and dividing by the element size ∆x ≡ |Ei| we get:

1
∆x

∫
Ei

u(x, tn+1)dx = 1
∆x

∫
Ei

u(x, tn)dx−

1
∆x

 tn+1∫
tn

f(u(xi+1/2, t))dt−
tn+1∫
tn

f(u(xi−1/2, t)dt

 . (3.6)

To derive the numerical method, let us introduce a discrete variable uni , which
approximates the average value of the unknown over the cell Ei at the time tn:

uni ≈
1

∆x

∫
Ei

u(x, tn)dx. (3.7)

The formula (3.6) provides a way to update the cell average of u in a single
timestep. However, the integrals on the right-hand side cannot be evaluated
exactly in the general case, as in situations where u is non-smooth, it can have
multiple values at the interface, rendering the exact evaluation of the integrals
difficult. This motivates us to study numerical methods in the following form:

un+1 = uni −
∆t
∆x (F̃i+1/2 − F̃i−1/2), (3.8)

where F̃i+1/2 and F̃i−1/2 are the approximations of the average flux trough the
cell interface xi+1/2 and xi−1/2, respectively [LeVeque, 2002, Lie, 2019]:

F̃i±1/2 ≈
1

∆t

tn+1∫
tn

f(u(xi±1/2, t))dt. (3.9)

The flux function is evaluated at the interface of each pair of cells, while the
solution u(xi±1/2, t), represented by the cell average (3.7), differs on each side of
the interface; see Figure 3.1. However, we know that information in a hyperbolic
problem propagates with a final speed, which is why we can assume that the
flux through the interface depends on the neighboring cell averages:

F̃i−1/2 = F(uni−1, u
n
i). (3.10)

19

3. Finite volume methods for conservation laws

Function F is called numerical flux function. The specific method is defined,
among other things, by the choice of the numerical flux function F . Equation
(3.8) with the numerical flux function F forms a numerical method:

un+1 = uni −
∆t
∆x (F(uni , uni+1)−F(uni−1, u

n
i)). (3.11)

The numerical method of a form (3.8) is conservative [Lie, 2019], meaning
that if we sum up over any set of cells ΩIJ = {EI , . . . , EJ} the flux differences
will cancel out except for the outer boundary edges:

∆x
J∑
i=I

un+1
i = ∆x

J∑
i=I

uni −
∆t
∆x

(
FJ+1/2 −FI−1/2

)
. (3.12)

It is an important feature of the finite volume method, which aligns with the
physical properties of fluid flow. When fluid flows through the domain, whatever
one cell loses, the other gains, and the change in the overall fluid quantity can
happen only at the domain boundary.

3.2 Important properties of the numerical methods

The conservative numerical methods defined by the formula (3.11) vary based on
the numerical flux function used. This section will introduce crucial properties of
these methods, such as accuracy, stability, and convergence, which are essential
for evaluating their reliability and usefulness in practice. Note that the theoretical
background of numerical methods is extensive, and we recommend referring to
classic literature such as [Kröner, 1997, LeVeque, 2002, Trangenstein, 2009] for a
more comprehensive discussion.

3.2.1 Convergence of the numerical method

To be useful in practice, the numerical method should be convergent, meaning
that the numerical solution uN,∆x,∆t(x, t) at the final step N approaches the
exact solution u(x, t) as the reference grid size ∆x and time step ∆t approach 0
[LeVeque, 2002]. However, knowing the exact solution is unusual in practical
applications, so we rely instead on the method being consistent and stable
as the fundamental theorem of numerical analysis states that consistency and
stability of numerical methods implies convergence [LeVeque, 2002].

The numerical flux function F should approximate the integral in (3.9). If
the function u(x, t) ≡ u is constant, the integral in (3.9) is reduced to f(u),
therefore, as part of the consistency condition, we require that for any u the
following is true:

F(u, u) = f(u). (3.13)

Typically, some requirement of Lipschitz continuity of the numerical flux
function is made[LeVeque, 2002]. It means that there exists a real positive

20

Important properties of the numerical methods

constant L such that

F(uni−1, u
n
i)− f(u) ≤ Lmax(|uni − u|, |uni−1 − u|), (3.14)

holds for all uni−1, u
n
i .

3.2.2 Stability of the numerical method

For the numerical method to be stable and convergent as the grid is refined, the
Courant-Friedrichs-Lewy (CFL) condition must be satisfied. It is important to
note that it is necessary condition, but not sufficient [LeVeque, 2002].

The CFL condition was introduced in an early paper on finite-difference
methods [Courant et al., 1928, Courant et al., 1967]. It guarantees that infor-
mation travels at the physical rate, meaning that any information that may
influence the solution at element Ei will have enough time to reach it. The
condition can be expressed as:

∆t
∆x max

j
|λj | ≤ 1, (3.15)

Here, λ1 ≤ · · · ≤ λn refer to the eigenvalues of the Jacobian matrix of the flux
function f .

Another way to interpret (3.15) is that the domain of dependence of the exact
solution should be within the domain of dependence for the discrete equation
[LeVeque, 2002].

3.2.3 Order of the numerical method

Numerical methods can be classified based on their order, which represents their
convergence rate to the true solution as the grid is refined. It is identified as the
order of accuracy of the numerical method and indicates the speed at which
the error diminishes as the cell size decreases.

For a method to be k-order numerical method, a norm of its error ||E||
is expected to be bounded by the reference grid cell size ∆x to the power k
[LeVeque, 2002]:

‖uN,∆x,∆t − u‖ ≡ ‖E‖ ≤ C(∆x)k + higher-order terms, (3.16)

given that ∆x → 0 and C is some constant that depends on the particular
solution being computed and the time.

The order of convergence can be approximated numerically:

EOC = log(enew/eold)
log(∆xnew/∆xold)

, (3.17)

where EOC stands for Experimental Order of Convergence. Here, enew and
eold represent the L1-norm of the error, i.e., the difference between the numerical
and analytical solutions obtained on the grid with the reference cell sizes ∆xnew
and ∆xold, respectively. We use this measure to verify the implementation of
the proposed methods.

21

3. Finite volume methods for conservation laws

3.2.4 Total variation diminishing numerical method

While first-order numerical methods are oscillation-free, it is important to
control and minimize oscillations that occur when using second-order methods.
A standard metric for measuring oscillations is total variation. The total
variation [Trangenstein, 2009] of a function u(x, t) for a given t is

TV (u) = lim sup
ε→0

1
ε

∞∫
−∞

|u(x+ ε, t)− u(x, t)|dx, (3.18)

Note that for all continuously-differentiable functions u ∈ C1(−∞,∞) the total
variation is TV (u) =

∞∫
−∞
|u′(x)|dx. The total variation of a piecewise-constant

function w is defined as:

TV (w) =
∑
∀i

|wi+1 − wi|, (3.19)

where wi are cell values of w.
When a numerical method introduces oscillations, the total variation of the

discrete function is expected to increase over time. To prevent oscillations in
hyperbolic equations, [Harten, 1997] suggests using a method that does not
increase the total variation. A numerical method is said to be total variation
diminishing (TVD) if the total variation (3.19) of the solution at any next
time step un+1 is not larger than the total variation of the solution on current
time step un:

TV (un+1) ≤ TV (un). (3.20)

It was proved in [Harten, 1997] that a TVDmethod is monotonicity-preserving,
meaning that if the initial data is monotone, the solution will be monotone as
well. If, on the other hand, initial data contain discontinuity, it will be smeared
out with time, but no oscillation will be introduced.

3.3 Centered methods

This section introduces several first- and second-order centered numerical meth-
ods. As the name suggests, these methods draw information from both sides of
the cell interface, which means that these methods are agnostic to the type of
problem we want to solve. The next section will discuss an alternative class of
methods called "upwind," which only draws information from one side of the cell
interface.

22

Centered methods

3.3.1 First-order centered methods

Unstable centered method

The most straightforward method for approximating the numerical flux is to
calculate the arithmetic average of the flux values on the adjacent cells:

Fni±1/2 = 1
2
[
f(uni±1) + f(uni)

]
. (3.21)

The numerical method is then read as follows:

un+1 = uni −
∆t

2∆x
(
f(uni+1)− f(uni−1)

)
. (3.22)

Unfortunately, the method above is generally unstable for hyperbolic problems
[LeVeque, 2002].

Lax-Friedrichs method

A common approach for stabilizing the method is to add an artificial diffusion
term ∆x2

∆t uxx and, after applying the standard central difference, we get the
following formula for the numerical flux:

Fni+1/2 = 1
2
[
f(uni+1) + f(uni)

]
− ∆x

2∆t (u
n
i − uni+1). (3.23)

The numerical method (3.11) is than written as:

un+1 = 1
2(uni+1 + uni−1)− ∆t

2∆x
[
f(uni+1)− f(uni−1)

]
. (3.24)

The method is named after Peter Lax and Kurt O. Friedrichs and is forward
in time and centered in space. The method is formally first-order accurate and
stable under the CFL condition, introduced in Section 3.2.2.

3.3.2 Second-order centered methods

Lax-Wendroff method

The accuracy can be improved by using the mid-point rule to evaluate the
average flux through the cell interface (3.9) [Lie, 2019], with the mid-point values
obtained by the Lax-Friedrichs method. The resulting method is a second-order,
predictor-corrector method, which is called the Richtmyer two-step Lax–Wendroff
method and is written as follows:

u
n+1/2
i+1/2 = 1

2(uni+1 + uni)− ∆t
2∆x

[
f(uni+1)− f(uni)

]
,

u
n+1/2
i−1/2 = 1

2(uni + uni−1)− ∆t
2∆x

[
f(uni)− f(uni−1)

]
,

un+1 = uni −
∆t
∆x

(
f(un+1/2

i+1/2)− f(un+1/2
i−1/2)

)
.

(3.25)

The method is effective at accurately preserving the smooth parts of the solution.
However, it tends to introduce oscillations near areas where discontinuities are
present; see Figure 3.2.

23

3. Finite volume methods for conservation laws

Figure 3.2: A visual comparison of three numerical methods’ results on a simple
test case. Adapted from [LeVeque, 2002].

Beam-Warming method

This second-order implicit method was introduced by Richard M. Beam and R.
F. Warming in [Warming and Beam, 1976] and is defined as follows:

u
n+1/2
i+1/2 = uni + 1

2(uni − uni−1)− ∆t
2∆x

[
f(uni)− f(uni−1)

]
,

u
n+1/2
i−1/2 = uni−1 + 1

2(uni−1 − uni−2)− ∆t
2∆x

[
f(uni−1)− f(uni−2)

]
,

un+1 = uni −
∆t
∆x

(
f(un+1/2

i+1/2)− f(un+1/2
i−1/2)

)
.

(3.26)

As one can see, the scheme has a very similar structure to the Lax–Wendroff
scheme, but the evaluations are done on one side only.

3.4 The upwind method

The previously discussed methods are considered centered because they utilize
information from both sides of the grid interface when computing the flux
function. However, for partial differential equations that model a wave-like
phenomenon (or hyperbolic type PDE), we can anticipate how the solution
behaves across the interface. The quantity is propagated along the direction
of the flow. This idea has led to the development of the upwind scheme. A
detailed description and derivation of the upwind method can be found in many
books about numerical methods, including [LeVeque, 2002].

The upwind method only uses a one-sided difference in the "upwind" direction
or, in other words, aligned with the propagation of waves/information in the
domain. For a case of a conservation law, the value f ′(u) will determine the
direction of the wave propagation. The upwind scheme, in this case, is written

24

High-resolution methods

as follows:

un+1
i = uni −

∆t
∆x [f(uni)− f(uni−1)], if f ′(u) > 0,

un+1
i = uni −

∆t
∆x [f(uni+1)− f(uni)], if f ′(u) < 0.

(3.27)

See Figure 3.2 for the illustration of the method’s behavior on a simple test
case and a comparison of its results with the two methods presented before,
Lax-Friedrichs and Lax-Wendroff.

The upwind method is widely used in reservoir modeling and is considered the
standard method in many reservoir simulators, including OPM Flow [Baxendale,
2023, Rasmussen et al., 2021]. In OPM Flow, the upwind direction of fluid flow
is determined by the pressure difference between the adjacent cells near the
interface, modified by the gravity component, which naturally agrees with the
physical model of fluid flow in the reservoir.

The second-order finite volume methods discussed in this work are built on
top of the upwind method. As the upwind method is standard in OPM Flow,
this choice eases the implementation and makes it least invasive to the code base.

3.5 High-resolution methods

Second-order methods, like Lax-Wendroff or Beam-Warming, provide better
accuracy on smooth parts of the solution than the upwind method. However,
such methods generate oscillations near discontinuities.

Numerical methods that are at least second-order accurate on smooth parts
of the solution and resolve discontinuities with high accuracy and no spurious
oscillations are called high-resolution methods [LeVeque, 2002, Mykkeltvedt,
2014]. High-resolution methods strive to provide second-order accuracy or higher
whenever possible and relax this condition near a discontinuity by introducing
some amount of numerical dissipation to avoid oscillations.

3.5.1 Flux-limiter methods

The numerical flux of such methods can be represented as a combination of
high-order and low-order fluxes [Lie, 2015]:

Fni+1/2 = F lowi+1/2 + ψi

(
Fhighi+1/2 −F

low
i+1/2

)
, (3.28)

where low-order flux can be, for example, Lax-Friedrichs flux (3.23) or upwind
(3.27), and Lax-Wendroff (3.25) can be used as the high-order flux. The flux
limiter function ψi represents a switch between high-resolution methods (ψi ≈ 1)
on smooth solution regions and a low-resolution method (ψi ≈ 0) on areas with
discontinuities.

25

3. Finite volume methods for conservation laws

3.5.2 Slope-limiter methods

In order to introduce slope-limiter methods, let us first introduce the REA
(reconstruct-evolve-average) algorithm [LeVeque, 2002]:

1. Reconstruct a piecewise polynomial function ũ(x, tn) for all x from the
known cell averages uni . If the reconstruction is constant, meaning that
the function ũ(x, tn) is a piecewise constant function that takes the cell
average value uni in each element Ei, we get a first-order scheme. Linear
reconstruction gives a second-order method, quadratic gives a third-order,
and so on.

2. Evolve the hyperbolic equation, exactly or approximately, with this initial
data ũ(x, tn) to obtain ũ(x, tn+1) at the next time tn+1 = tn + ∆t.

3. Average the obtained ũ(x, tn+1) function over each element of the grid to
get the new cell averages uni+1.

Solving the hyperbolic equation in Step 2 is essential to implement the
algorithm above. This can be achieved by utilizing the theory of Riemann
problems, as the initial data is a piecewise polynomial function ũ(x, tn). You can
find more comprehensive coverage on Riemann problems in the book authored
by LeVeque [LeVeque, 2002]. Moreover, utilizing this approach for the advection
equation will result in the upwind algorithm.

As for the third step in the algorithm above, here are two fundamentally
different approaches for the averaging. For upwind methods (x = xi), the
temporal integrals in (3.5) are evaluated at points x = xi±1/2, where ũ(x, t) is
discontinuous. Therefore, standard integration and extrapolation techniques
cannot be applied, and resolving the wave structures that emerge due to the
discontinuity is necessary. This is usually accomplished by solving a Riemann
problem or similar generalizations [Lie, 2015]. In contrast, central methods
(x = xi+1/2) use sliding averages that are computed over a staggered grid cell
[xi, xi+1]. If a CFL condition of one-half is maintained, the integrand remains
smooth, allowing for the application of standard integration and extrapolation
techniques.

The evolving and averaging steps cannot increase the total variation, therefore,
if the reconstruction step does not increase the total variation (3.20), the resulting
method would be total variation diminishing (TVD) [LeVeque, 2002], see Section
3.2.4 for the definition. If we use a linear reconstruction in the form:

ũ(x, tn) = uni + ψ(x− xi), xi−1/2 ≤ x ≤ xi+1/2, (3.29)

where xi is the center of the element Ei (xi = 1
2 (xi−1/2 +xi+1/2) in 1D case), and

ψ is the slope on the Ei [LeVeque, 2002]. Note that the linear function defined
in (3.29), is equivalent to uni in the center xi. Moreover, the cell average is also
equivalent to uni no matter the slope ψ. This property is crucial in creating
conservative methods for conservation laws. And, since the step 2 and 3 in

26

High-resolution methods

the REA algorithm above are conservative in general, the resulting method is
conservative [LeVeque, 2002].

To obtain a second-order numerical method, we want to choose the slope
ψ in a way that provides second-order accuracy on the smooth parts of the
solution and does not introduce oscillations near discontinuities. Therefore, ψ is
a possibly non-linear function that considers the solution’s behavior near the
cell Ei. For example, when the solution is smooth, the Lax-Wendroff slope is
suitable for ψ. However, near a discontinuity, a smaller magnitude value must
be used to limit the slope and avoid oscillations. This approach is known as the
slope-limiter method, which was first introduced in [Van Leer, 1974, Van Leer,
1977, Van Leer, 1979].

The limiter ψ(rEi) is defined as a function of a ratio of successive gradients
[Van Leer, 1974, Sweby, 1984]:

ψ(rEi) = ψ

(
uni − uni−1
uni+1 − uni

)
. (3.30)

[Sweby, 1984] performed a graphical analysis of the limiter functions and
presented a visualization for the second-order TVD region, where the limiter
function must fall for the method to be second-order TVD, see the shaded area
on Figure 3.3. The second-order region is bounded by the presented earlier
second-order Lax-Wendroff method (3.25), ψLW (r) = 1, and Warming and
Beam method (3.26), ψWB(r) = r. The TVD region is defined by the following
inequality [LeVeque, 2002]:

0 ≤ ψ(r) ≤ minmod(2, 2r). (3.31)
The second-order TVD region is, therefore, an intersection of the TVD and the
second-order regions. Its lower boundary is equivalent to the minmod limiter,
and it’s upper to the Superbee limiter, both presented below.

The minmod limiter

The lower line of the second-order TVD region from Figure 3.3 represents the
minmod limiter [LeVeque, 2002, Sweby, 1984]. It is a simple yet robust limiter
that is commonly used and is defined as:

ψminmod(r) := minmod(1, r) =

1 if |r| > 1 and r > 0,
r if |r| < 1 and r > 0,
0 if r ≤ 0.

(3.32)

The superbee limiter

The least restrictive limiter is the superbee limiter [Roe, 1985]. On the Figure
3.3 it is on the top of the second-order TVD region and it is defined as follows:

ψsuperbee(r) = max(0,min(1, 2r),min(2, r)). (3.33)
This limiter lies on the upper bound of the second-order TVD region and
generates sharp gradients.

27

3. Finite volume methods for conservation laws

Figure 3.3: Second-order TVD region and three limiters: minmod, superBee,
and van Leer.

The van Leer limiter

The two limiters presented above are piece-wise constant limiters. A smooth
limiter was introduced by van Leer in [Van Leer, 1974] and is defined as:

ψvanLeer = r + |r|
1 + |r| . (3.34)

The literature contains various limiters that can be used to construct higher-
order schemes [Van Leer, 1974, Sweby, 1984, Harten, 1997, LeVeque, 2002].

28

Chapter 4

Second-order finite volume
methods for reservoir simulation
In the previous chapter, we introduced the finite volume method concept in 1D.
Reservoir simulation requires applying these methods to the black-oil problems
in multi-dimensions. We first introduce the generalization of the second-order
FV method on more complex grids. Then, we present three second-order finite-
volume methods focusing on reservoir modeling applications.

4.1 General second-order finite volume method for
black-oil model

In this section, we present a numerical scheme for the cell-centered finite volume
method, as detailed in Section 3.1, and apply it to the black-oil model equations
from Chapter 2. Our derivations will utilize an integral formulation of the
black-oil model equations, as derived in Section 2.5. To simplify the discussion,
we will focus solely on the water component:

∂

∂t

(
φSw
Bw

)
−∇∇∇ · λwk

Bw
(∇∇∇pw − ρwg) = QW . (4.1)

It is worth noting that extending the derivations to other components is a
straightforward process.

Writing the equation above for each element Ei of the domain and applying
the implicit Euler method for the time discretization, we get:(

φSw
Bw

)n+1
=
(
φSnw
Bw

)n
+ dt

|Ei|

∮
∂Ei

λn+1
w k

Bw

(
∇∇∇pn+1

w − ρwg
)
·ndx+Qn+1

W , (4.2)

where n and n + 1 denote the current and the next time steps, respectively,
Qn+1
W is the time-averaged integral over the element of the right-hand side. We

assume a no-flow boundary condition as reservoirs generally have an impermeable
boundary with the surrounding rocks.

The first two terms, which are linear, can be computed easily by using
averaged element values. While the right-hand side integral can be approximated
through various quadrature rules, we are using the midpoint rule:∮

∂Ei

λn+1
w k

Bw

(
∇∇∇pn+1

w − ρwg
)
· ndx ≈

∑
eij∈∂Ei

|eij |
λn+1
w (xij)k(xij)

Bw

(
∇∇∇pn+1

w (xij)− ρw(xij)g(xij)
)
· nij ,

(4.3)

29

4. Second-order finite volume methods for reservoir simulation

where eij is the segment of the element’s boundary ∂Ei between the current
element Ei and its neighbour Ej , nij is the outer normal to the said segment, and
xij is the midpoint at which the integral is evaluated. The standard two-point
flux approximation [Aavatsmark, 2002, Lie, 2019, Alyaev et al., 2014] is used to
determine the pressure gradient, while the arithmetic mean is used to estimate
the gravitational acceleration.

Let us now focus on the computation of the mobility function λn+1
w (xij). For

conciseness, we will use the following notation:

λn+1
w (xij) = λijw . (4.4)

The most common approach to compute phase mobility in reservoir simulation
is the upwind method, which was discussed in Section 3.4:

λijw =
{
λ−ij , if

(
∇∇∇pn+1

w − ρwg
)
· n ≥ 0,

λ+
ij , otherwise,

(4.5)

where λ−ij is the mobility function on the element Ei and λ+
ij - on the neighboring

element Ej . The boundary condition value is used instead of the neighboring
value for the boundary elements. In the typical case of the "no-flow" boundary
condition, the interface is not considered.

For second-order methods, the upstream and downstream values of the phase
mobility function are calculated differently, meaning that the upwind scheme
gets values L−ij and L+

ij from the reconstructed linear function for every element
instead of λ−ij and λ+

ij . The linear reconstruction function has to satisfy the
following requirements:

LEi(x) : = λEi +∇LEi · (x−wEi),
LEi(wEj) = λEj , ∀(Ei, Ej) ∈ ∂Ei,

(4.6)

where wEi is the barycenter coordinates of the element Ei, and ∇LEi is the
gradient that needs to be computed. Figure 4.1 shows an illustration of how
linear reconstructions can be built in a simple 1D case. The blue color refers to
the values used in the first-order method, while in the orange color, we see the
local reconstruction function LEi for the element and its neighbors.

The second-order methods differ in how the linear reconstruction and the
gradient ∇LEi are computed. In the next sections, we will discuss in detail three
different approaches to reconstructing the function LEi . Since all derivations
must be applied to all phases, we will drop the water phase index.

4.2 Least squares reconstruction

We want to utilize information from all the neighboring cells, see Figure 4.2.
Therefore, we want our reconstructed function LEi on the element Ei to go
through all neighboring cell-averaged values, aka satisfy:

LEi(wEj) = λEj , ∀(Ei, Ej) ∈ ∂Ei, (4.7)

30

Least squares reconstruction

Figure 4.1: An example of the second-order reconstructions LEi(x) for the
one-dimensional grid cell Ei.

Figure 4.2: The stencil for the least-square method. The least-square method
simultaneously utilizes the information from all the neighbors to find the resulting
reconstruction.

31

4. Second-order finite volume methods for reservoir simulation

which is equivalent to:

(wEj −wEi)∇LEi = (λEj − λEi), ∀(Ei, Ej) ∈ ∂Ei. (4.8)

However, since the number of neighbors is much larger than the space dimension,
the system (4.8) is an over-determined linear system and can only be solved in
the least squares sense [Trefethen and Bau, 1997, Feistauer et al., 2003].

Let us define

AEi := (wEj −wEi)i=1...NEi ∈ RNEi×N ,

bEi := (λEj − λEi)i=1...NEi ∈ RNEi .
(4.9)

The system (4.8) can be written as

AEi∇LEi = bEi , (4.10)

And the least squares solution of the above system can be computed by solving
the following equation:

(AT
EiAEi)∇LEi = AT

EibEi , (4.11)

Note that the linear reconstruction near a no-flow boundary requires special
treatment. We need to ensure that the directional derivative of the reconstructed
saturation normal to the boundary is zero. A ghost cell behind the no-flow bound-
ary that mirrors the opposite neighbor can be used as suggested in [Mykkeltvedt
et al., 2017].

As it was stated before, a gradient obtained from solving (4.11) should be
limited in order to avoid spurious oscillations. One can apply any slope limiter
to the method, such as the ones described in Section 3.5.2. Paper A studied the
performance of the presented above numerical method combined with the slope
limiters described in Section 3.5.2. A brief overview of the study can be found
in Section 6.1.

Later on, we will refer to the described method as the second-order LS
method.

4.3 Selective linear reconstruction

In order to construct a linear function in N -dimensional space, N + 1 points
are needed. Therefore, another possible approach to find LEi is to compute all
possible linear functions using the current element’s value and N neighboring
values. Then, after possible limiting and checking that the approximate solution
is physical, choose one of the reconstructed functions for later computations, for
example, the one with the steepest gradient. This approach was introduced in
[Durlofsky et al., 1992] for 2D triangular grids. A similar approach but for the
Discontinuous Galerkin method was used in [Dedner and Klöfkorn, 2011], where
it was generalized for two- and three-dimensional non-conforming grids.

32

Selective linear reconstruction

Figure 4.3: The stencil for the selective reconstruction method. The selective
reconstruction method computes a set of all possible linear reconstructions based
on the value in the element and d = N − 1 neighbors; in the figure, you can see
an example of one reconstruction that uses the values in neighboring element 1
and 2.

To introduce this method, we will use the following notation. Let us consider
an element Ei. We define a set of all neighboring elements of Ei as Y(Ei), which
is the collection of all elements that share a boundary with Ei. A N -combination
of the set Y(Ei) is denoted as JEi and presents a complete set of all possible
neighbor combinations that can be used for the reconstruction. Figure 4.3 shows
a stencil of the element Ei and N = 2 chosen neighboring elements j = {1, 2}
that are used for the linear reconstruction. The size of the set JEi depends on
the number of neighbors and can be calculated as NEi !

N !(NEi −N)! . Therefore,
as the number of neighboring elements increases, the size of Je also increases,
making computation time-consuming, especially in complex multi-dimensional
grids where each element has many neighbors.

The algorithm for computing LEi then goes as follows:

1. Compute a complete set of all possible linear reconstructions LjE for each
possible combination of N − 1 neighbours j = E1, . . . , EN−1

2. Out of the above set of all possible functions, we compute a set of admissible
linear functions. It means that limiter is applied and only functions that
satisfy the physicality condition are allowed in this set.

3. Out of the set of admissible linear functions, the one with the steepest
gradient is chosen.

In the algorithm above, the term "physicality condition" refers to a set of criteria
based on the physics of the problem. For example, when dealing with saturation,
the physicality condition requires that the calculated values remain within the
physically possible range from 0 to 1.

33

4. Second-order finite volume methods for reservoir simulation

On the first step, for each j a linear N ×N system is solved:

Aj∇LjEi = bj , ∀j ∈ JEi , (4.12)

where
Aj := (w

Ej
−wEi) ∈ RN×N ,

bj := (λ
Ej
− λEi) ∈ RN .

(4.13)

It should be noted here that the inverse of the matrix Aj can be easily
computed using Cramer’s rule because its size only depends on the spatial
dimension N . However, special treatment is needed for the system in the case of
a Cartesian grid, as the matrix becomes singular when the considered barycenters
align. The special treatment is explained in [Dedner and Klöfkorn, 2011]. The
idea is to add one more neighbor to the system (4.12) that is not already a
member of j and solve the new system using a least squares method. Since
matrix Aj only depends on the grid’s geometry, this information needs to be
calculated only once.

The limiting is also done slightly differently here compared to the least
squares second-order method 4.2. In this scheme, only neighbors who are not
part of the reconstruction are used for limiting. For example, if in Figure 4.3
neighbours j = 1, 2 are used for the reconstruction than j̃ := {3, 4, 5, 6, 7} are
considered in limiter. We select the one with the steepest gradient from the set
of admissible limited linear reconstructions.

Similar to the previous numerical method, any slope limiter can be applied
to this method as well. In Paper A, Section 6.1, the performance of the method
combined with the slope limiters from Section 3.5.2 was studied.

4.4 Linear programming reconstruction

In the two second-order methods presented above, the final gradient was com-
puted in two steps: first, it was initially computed using either least squares
(4.2) or selective linear reconstruction (4.3), and second, a limiter (for example,
from Section 3.5.2) was applied. [May and Berger, 2013] proposed to use linear
programming instead of the limiter. They were still computing a gradient ∇L
first, but after the "limited" gradient ∇L̃ was obtained by solving a small linear
programming problem, which minimized the difference ∇L − ∇L̃ under the
monotonicity conditions. Each gradient component was limited by a separate
scalar, which means that the resulting gradient could be of a different length
and direction. Later, [Chen and Li, 2016] noticed this and proposed a new linear
programming scheme that did not require an initial gradient computation. It
is important to note here that the two schemes give different optimal solutions.
However, [Chen and Li, 2016] proves that the obtained gradient is sufficiently
close to the unlimited least squares gradient. This approach will be described
below.

Linear programming is a mathematical modeling technique that can find an
extremum of a linear objective function under certain linear constraints [Nocedal

34

Linear programming reconstruction

and Wright, 2006]. In our case, we want to minimize the total gaps between the
reconstructed values and the cell-averaged values at all neighboring cells:

δ(L) :=
∑

∀(Ei,Ej)∈∂Ei

|λEj − LEi(wEj)|. (4.14)

The constraints are the following monotonicity conditions:

min{λEi , λEj} ≤ LEi(wEj) ≤ max{λEi , λEj}, ∀(Ei, Ej) ∈ ∂Ei. (4.15)

The monotonicity condition can be stated as follows: when the reconstructed
function LEi on an element Ei is evaluated on each neighboring element Ej , the
resulting values should be bounded by the cell-averaged values on both Ei and
Ej . This constraint is equivalent to the minmod limiter on a one-dimensional
domain, as shown in [Chen and Li, 2016].

The equation (4.14) is equal to∑
∀(Ei,Ej)∈∂Ei

|λEj − LEi(wEj)|

=
∑

∀(Ei,Ej)∈∂Ei

|λEj − λEi −∇LEi · (wEj −wEi)|

=
∑

∀(Ei,Ej)∈∂Ei

|vEj − ṽEj |,

(4.16)

where v and ṽ are defined as

vEj := λEj − λEi and ṽEj = ∇LEi · (wEj −wEi). (4.17)

Under the monotonicity constraints (4.15), the difference vEj − ṽEj has
the same sign as vEj . This observation allows us to go from the non-linear
formulation (4.16) to linear

max
∑

∀(Ei,Ej)∈∂Ei

sgn(vEj)(wEj −wEi) · ∇LEi

subject to v−Ej ≤ (wEj −wEi) · ∇LEi ≤ v+
Ej
,

(4.18)

where
v−Ej = 0
v+
Ej

= |λEi − λEj |.
(4.19)

The linear programming problem takes the following form:

max cTx subject to Ax ≤ b, (4.20)

35

4. Second-order finite volume methods for reservoir simulation

where

c =

∑
∀(Ei,Ej)∈∂Ei

sgn(vEj)(xEj − xEi)∑
∀(Ei,Ej)∈∂Ei

sgn(vEj)(yEj − yEi)∑
∀(Ei,Ej)∈∂Ei

sgn(vEj)(zEj − zEi)

, (4.21)

A =

xE1 − xEi yE1 − yEi zE1 − zEi
...

...
xEη − xEi yEη − yEi zEη − zEi
−(xE1 − xEi) −(yE1 − yEi) −(zE1 − zEi)

...
...

−(xEη − xEi) −(yEη − yEi) −(zEη − zEi)

, b =

v+
E1...
v+
η

−v−E1...
−v−η

. (4.22)

In the equations above, η is the number of neighbouring elements Ej of the
element Ei. The unknown vector x is the transposed gradient vector of the
linear reconstruction x = [∇LxEi ,∇L

y
Ei
,∇LzEi]

T .
An admissible solution to our LP problem is the zero gradient, given by

x = [0, 0, 0]T , which corresponds to a first-order scheme. Therefore, we initialize
the LP with this solution. The LP starts with N active constraints, and similar
to previous works [May and Berger, 2013, Chen and Li, 2016], we adopt an
all-inequality simplex method to solve the LP. This method can be applied if
all constraints are inequalities, which is the case here. Furthermore, the all-
inequality simplex method is much faster than the standard simplex method
when the number of constraints exceeds the number of unknowns, which again
is the case here. We refer the interested reader to [May and Berger, 2013] and
Section 5.8 for a more detailed explanation of the all-inequality simplex algorithm.
Later on, we will refer to this method as the second-order LP method.

36

Chapter 5

Implementation in OPM

This chapter covers the implementation details of second-order methods in-
tegration in the reservoir simulator OPM Flow (Open Porous Media Flow)
opm-project.org.

The chapter consists of two parts. The first part serves as an introduction to
OPM Flow (Section 5.1) and provides build instructions for the OPM Flow with
the second-order methods option (Section 5.2).

The second part describes the implementation details of the second-order
method within a reservoir modeling software infrastructure and is intended to help
possible reimplementations in other simulators. The second-order implementation
has minimal impact on the existing code since it requires modifications in only a
few specific places.

Starting with the high-level overview of a reservoir simulator in Section 5.3,
we will go through the necessary changes to enable the second-order method
to function effectively in Sections 5.4 - 5.6. In Sections 5.7 - 5.8 we present
specifics of the implementation of methods with least-squares reconstruction and
linear programming reconstruction, respectively. These two methods had the
best performance on smaller problems, according to Paper A (see Section 6.1),
and therefore were chosen for the implementation in OPM Flow.

5.1 The Open Porous Media Initiative

The OPM initiative encourages open innovation and reproducible research in
the field of modeling flow in porous media. It started more than ten years ago
as a collaboration between groups at Equinor (formerly Statoil), SINTEF, the
University of Stuttgart, and the University of Bergen. The community grew over
time as more groups and individuals joined. It mainly has been developed by
SINTEF, NORCE, Equinor ASA, Ceetron Solutions and OPM-OP [Rasmussen
et al., 2021].

Open-source projects, such as OPM, offer transparency and accessibility
that attract both individual developers and companies. This accessibility allows
interested parties to inspect code, report bugs, provide constructive feedback,
suggest new features, and contribute directly to the project’s development,
consequently building a community around the project. In OPM, the development
is done through reviewed GitHub pull requests, ensuring the resulting software’s
quality. Only maintainers are allowed to merge new pieces of code into the main
branch.

OPM is a suite of packages designed for reservoir simulation, comprising
various tools and modules. It provides a powerful open-source tool for reservoir
simulation called OPM Flow, which is used in both industry and research commu-

37

https://opm-project.org/
https://www.sintef.no/en/
https://www.norceresearch.no/
https://www.equinor.com/
https://www.ceetronsolutions.com/

5. Implementation in OPM

nities. OPM includes other packages, such as upscaling tools and experimental
modules.

Our implementation extends the 2020.04 release of OPM Flow and is avail-
able on GitHub. OPM Flow 2020.04 consists of five modules: opm-common,
opm-material, opm-grid, opm-models, opm-simulators.These modules are
available under the standard open-source license GNU General Public Li-
cense v3.0 at the GitHub OPM page https://github.com/OPM. There are also
two data modules – opm-data and opm-tests for benchmarking and testing.
While the modules are separate, they depend on each other, and as the OPM
project is an actively developing software, their connections may change over
time. The structure of the modules and their interdependences are shown in
Figure 5.1. The opm-common module, which does not rely on any DUNE modules,
can be built separately. Other modules depend on one or more DUNE modules,
as the OPM Flow simulator is dependent on dune-common, dune-geometry,
dune-grid, and dune-istl.

Figure 5.1: OPM modules structure as of 2020.04 release. Adopted from OPM
project website https://opm-project.org/ (GPL3.0).

For 3D visualization and post-processing of the reservoir simulations, we
use ResInsight https://github.com/OPM/ResInsight developed by Ceetron
Solutions in collaboration with Equinor ASA. It is a powerful, open-source, 3D
visualization and post-processing tool for data in the standard output file format
from the reservoir simulation. Most of the resulting figures presented in this
thesis are done with the help of either ResInsight or ParaView, which is also
an open-source visualization tool suitable for .vtk and .pvd file formats [Ahrens
et al., 2005].

This work aims to test the applicability of higher-order finite volume methods
to practical reservoir simulation. Therefore, OPM Flow is a natural choice for
the implementation framework for many reasons, including:

• Easy to contribute; open-source.

• Fast and robust; has comparable performance with commercial reservoir
simulators both for serial and parallel simulations.

• Supports different grids, including those commonly used in practical reser-
voir simulation - corner point grids.

38

https://github.com/OPM
https://opm-project.org/
https://github.com/OPM/ResInsight
https://www.ceetronsolutions.com/
https://www.ceetronsolutions.com/
https://www.equinor.com/
https://www.paraview.org/

Instructions of building and running second-order methods in OPM Flow

• Supports industry-standard input and output file formats, allowing testing
on realistic and industry-relevant models.

The following sections list the most important implementation details on
extending any reservoir simulator with a second-order finite volume method. The
described implementation builds on top of OPM Flow 2020.04 – the latest at the
time of preparation of Paper C. With minor adjustments, the code would be
compatible with the latest version of OPM Flow. To ensure the reproducibility of
the results, the relevant versions of OPM Flow are frozen in the personal GitHub
"forks" with installation instructions in https://github.com/kvashchuka/second-
order-opm-tests.

5.2 Instructions of building and running second-order
methods in OPM Flow

This section contains detailed instructions for building and running second-order
methods in OPM Flow. The instructions have been divided into two subsections:
in the first subsection, the build instructions can be found, and in the second,
explanations on how to run OPM with second-order methods. The aim of this
section is to provide readers with a step-by-step guide to successfully building
and running second-order methods in OPM Flow.

5.2.1 Build instructions for OPM Flow with second-order
methods

The build instructions below are written for a Linux system and tested on
Ubuntu 2020.04.6 LTS virtual machine on Windows 10.

1. Make sure you have installed all prerequisites, available at the OPM website
opm-project.org, under prerequisites. To ease this process, you can use
Makefile from github.com/kvashchuka/second-order-opm-tests repository,
put it to the directory, where OPM Flow will be built, and simply run
make in the Terminal from this directory. Note that this command requires
make to be installed.

2. Clone and build dune modules dune-common, dune-geometry, dune-grid,
dune-istl, all in version 2.7.0:

1 for module in common geometry grid istl
2 do git clone -c http.sslVerify=false https://gitlab.dune-project.org/

core/dune-$module.git --branch v2.7.0
3 done
4 for module in common geometry grid istl
5 do ./dune-common/bin/dunecontrol --only=dune-$module cmake -

DCMAKE_DISABLE_FIND_PACKAGE_MPI=1
6 ./dune-common/bin/dunecontrol --only=dune-$module make -j5
7 done

Listing 5.1: Example of how one can clone and build dune modules

39

https://github.com/kvashchuka/second-order-opm-tests
https://github.com/kvashchuka/second-order-opm-tests
https://opm-project.org
https://opm-project.org/?page_id=239
https://github.com/kvashchuka/second-order-opm-tests

5. Implementation in OPM

3. Clone opmmodules opm-common, opm-material, opm-grid, opm-models,
opm-simulators from https://github.com/kvashchuka and checkout branch
thesis-build:

1 for repo in common material grid models simulators
2 do
3 git clone -c http.sslVerify=false -b thesis-build git@github.com:

kvashchuka/opm-$repo.git
4 done

Listing 5.2: Example of how one can clone opm modules.

4. Build OPM modules using cmake command. Remember to specify the
path to all built modules in CMake flags, otherwise, the build process will
not be completed due to the modules not being found. An example of how
one can build necessary OPM modules:

1 CURRENT_DIRECTORY="$PWD"
2 mkdir build
3 for repo in common material grid models opm-simulators
4 do
5 rm -rf build/opm-$repo
6 mkdir build/opm-$repo
7 cd build/opm-$repo
8
9 cmake -DUSE_MPI=0 -DCMAKE_BUILD_TYPE=Release -DCMAKE_PREFIX_PATH="

$CURRENT_DIRECTORY/dune-common/build-cmake;$CURRENT_DIRECTORY/dune-
grid/build-cmake;$CURRENT_DIRECTORY/dune-geometry/build-cmake;
$CURRENT_DIRECTORY/dune-istl/build-cmake;$CURRENT_DIRECTORY/build/opm
-common;$CURRENT_DIRECTORY/build/opm-grid;$CURRENT_DIRECTORY/build/
opm-models" $CURRENT_DIRECTORY/opm-$repo

10 make -j5
11 cd ../..
12 done

Listing 5.3: Example of how one can build opm modules.

The complete build script and the building instructions are also available in
github.com/kvashchuka/second-order-opm-tests repository.

5.2.2 Running OPM Flow with second-order methods

A large list of tests is available in the github.com/opm/opm-tests repository.
The test cases used in paper C, discussed in section 6.3, are available in the
https://github.com/kvashchuka/second-order-opm-tests repository.

To run a test case with the second-order method, all you need to do is enable
certain flags:

1 ./*path_to_the_build_folder_of_opm-simulators*/bin/flow CASE_NAME --enable-
higher-order=1 --enable-local-reconstruction=1 --reconstruction-scheme-id=3
--only-reconstruction-for-solvent-or-polymer=false

Listing 5.4: Example of how to run OPM Flow with second-order method.

40

https://github.com/kvashchuka
https://github.com/kvashchuka/second-order-opm-tests
https://github.com/opm/opm-tests
https://github.com/kvashchuka/second-order-opm-tests

High-level overview of OPM Flow

Linear solver

Read deck, setup
and initialization

Start report time
step t!: = 𝑇"

Start time step
t#$%: = t# + Δt

Assembly and linearization
(build Jacobian and Residual)

Convergence?

Max iter
reached?

Time step failed, reset
t#,	chop Δ𝑡 Yes

Solve linear system

Linear
convergence?

t# ≔ 𝑡!$%
propose larger Δ𝑡

Yes

Yes

No

No

No

Newton solver

New time step

𝑇𝑁+1
reached?

Retry time step

No

Yes

Output and report
at 𝑇𝑁+1

Time step
successful

Next non-linear
step

Figure 5.2: An overview of the reservoir simulator on the example of OPM Flow.

Here, reconstruction-scheme-id allows the user to choose between the imple-
mented second-order methods: 2 for the second-order method with least-squares
reconstruction (4.2), 3 for the second-order method with linear programming
reconstruction (4.4). Flag only-reconstruction-for-solvent-or-polymer
enables the use of higher-order methods only for solvent or polymer equations.
The default value is false. This option was tested and discussed in paper B; see
Section 6.2.

5.3 High-level overview of OPM Flow

This section presents a structure of the OPM Flow reservoir simulator, version
2020.04. A reservoir simulation solves a large, fully implicit system of nonlinear
equations, which results from discretizing the governing equations (presented
in Section 2.5), coupled with the well model, boundary conditions, etc. Solving
such a system efficiently is a non-trivial task. In OPM, it is solved with a
Newton–Raphson method. The table 5.1 and Figure 5.2 contain a high-level
structure of OPM Flow.

41

5. Implementation in OPM

Time loop Takes care of the adaptive time step. It
is the outermost loop that is started at
each time step.

Nonlinear solver (The
Newton-Raphson solver)

Builds residual and Jacobian, checks if
the convergence is reached. It calls the
discretization scheme to linearize the
system and, finally, calls the linear solver
itself.

Discretization Schemes Implementation of the finite volume dis-
cretization. This is the part that
changes for the second-order finite
volume implementation.

Linear solver together with
precondition

If linear solver converged, we return to
the non-linear solver loop. If the linear
convergence condition is not satisfied
and the maximum number of linear iter-
ations is not reached, we chop the time
step and try the linear solver again.

Table 5.1: High-level overview of a reservoir simulator with the example of OPM
Flow.

5.4 Newton iteration and automatic differentiation

The Newton-Rapson method has the second order of convergence. However, it
requires the initial guess to be sufficiently close to the solution. Initially, we
start with the large system of equations in the form:

Ku = f , (5.1)

which is equal to
r(u) = Ku− f = 0, (5.2)

where u is the primary variables vector. Let’s assume ξ is the point where the
residual achieves zero, and we have an initial guess u0. Under the assumption of
sufficient smoothness in the neighborhood N(ξ) of the solution, we can write a
Taylor expansion of the residual function:

0 = r(ξ) = r(u0 + ∆ui+1) ≈ r(u0) + J(u0)∆ui+1. (5.3)

In the formula above, we disregarded all the members of the Taylor expansion
that contain the derivative of order two and higher. Now, the Newton method
can be written as:

J(u0)∆ui+1 = −r(u0),
ui+1 = ui + ∆ui+1.

(5.4)

The efficiency of the Newton method is highly dependent on the accuracy of
the Jacobian matrix J. The system of equations describing flow in the reservoir

42

Variables reconstructed when using second-order scheme.

is complex and nonlinear. The key to efficiently and accurately computing the
Jacobian matrix of such a system is the automatic differentiation (AD).

The Evaluation class in AD implemented in OPM is designed to store not
only the function’s value but also its corresponding derivative(s). Any time the
object of this class undergoes an arithmetic operation, the derivative is updated
accordingly using the chain rule of differentiation. This allows for avoiding
expensive and inaccurate derivative computations using perturbation techniques.
Our implementation of the second-order methods in OPM uses the Evaluation
class, thus inheriting the AD benefits for the computation of the Jacobian matrix.
We refer the reader to [Lauser et al., 2018, Rasmussen et al., 2021] for the AD
implementation details.

5.5 Variables reconstructed when using second-order
scheme.

The extended black oil model equations were described in Chapter 2, Section
2.6. In principle, we are solving a system of nonlinear hyperbolic equations. The
primary variables in the immiscible case in OPM, as described in [Rasmussen
et al., 2021], are oil phase pressure and saturation of the water, gas, and solvent.
The miscible case is more complicated because at certain system states, either
oil or gas will not be present - gas can fully dissolve in the oleic phase, and oil
could vaporize into the gaseous phase. Therefore, the composition of the phase
that is present is tracked instead.

The second-order method is especially useful for front capture; therefore, we
want to apply it to the flow transport part of the problem. That is why, among
the primary variables, fluid saturation is the obvious candidate for second-order
reconstruction. However, we can reconstruct the phase mobility function λα,
defined in (2.8), as it depends non-linearly on the phase saturation. Our study
showed that the result does not change whether we reconstruct saturation or
phase mobility. For ease of implementation, we reconstruct the phase mobility
function.

5.6 Common changes required for second-order FV
methods

This section presents the common implementation details for both implemented
second-order finite volume methods.

5.6.1 Second-order stencil

A numerical stencil is a geometric arrangement of a nodal group used in fi-
nite differences/finite volumes methods to discretize differential operators. Any
second-order finite volume method utilizes information from the neighboring
cells. Therefore, the stencil has to be extended. We create a new second-
order finite volume stencil class class SofvStencil in the new file opm-

43

5. Implementation in OPM

models/opm/models/discretization/sofv/sofvstencil.hh. It has the same
methods as class EcfvStencil (element-center finite volume method’s stencil
implementation), with the straightforward update that the element and its
neighbors are now part of the stencil. To extend the stencil, we loop over all
element’s intersections and check if the current intersection has a neighbor. If it
does, we add a degree of freedom and an internal face, else, we add a boundary
face. Another difference is that the number of degrees of freedom is now not one,
but the number of sub-control volumes, which is equal to one plus the number
of neighboring elements:

5.6.2 Second-order discretization

For the second-order implementation, a new class SofvDiscretization has
been created to hold and handle specific functions. It is stored in new file opm-
models/opm/models/discretization/sofv/sofvdiscretization.hh This class
inherits from FvBaseDiscretization class.

The flux is calculated in opm-simulators/ebos/eclfluxmodule.hh. In
that file, there is a function calculateGradients_, which updates the re-
quired gradients for interior faces. The function takes as an argument the
element context const ElementContext elemCtx, stencil-local finite volume
geometry index scvfIdx, and time index timeIdx. Upstream mobility is
calculated in this function and used for the volume flux computations on
each element. In the case of the second-order method, this function calls
evaluateReconstruction, a function of class SofvDiscretization that will
provide upstreamMobilityLocal - the upstream mobility.

Through some more abstraction layers, we finally call updateLocal function
from reconstruction.hh file. The function updateLocal calls the specific im-
plementation of the second-order method to compute the gradient. The implemen-
tations are stored in files leastsquaresreconstruction.hh and lpreconstruc-
tion.hh in the following folder of opm-models module opm-models/dune/fv/.
In the next sections, we will discuss how the computation for each second-order
method is carried out.

void computeError() function is implemented for computing the error of
the method after the end of the simulation, given that the exact solution is
known. The method was used in the EOC studies.

5.7 Implementation of the second-order method with
least-squares reconstruction

opm-models/dune/fv/leastsquaresreconstruction.hh

The LimitedLeastSquaresReconstructionLocal class uses a second-order
least-squares reconstruction scheme to fit a polynomial to the solution values at
the center and neighbors of a given element.

For each element, we run the least-squares reconstruction algorithm, presented
below.

44

Implementation of the second-order method with least-squares reconstruction

1. loop over current element’s intersections with neighbors end compute "dis-
crete gradient" pairs (δx,∆λ), where δx is the distance vector between the
elements barycenters and ∆λ is the difference of solutions (4.9). Simulta-
neously count the total number of such intersections.

1 for(auto iit = gridView().ibegin(element); iit != iend; ++iit) {
2 const auto intersection = *iit;
3
4 if (intersection.neighbor()) {
5 const auto neighbor = intersection.outside();
6 const size_t neighborIdx = stencil.globalToLocal(neighbor);
7 const GlobalCoordinate dx = neighbor.geometry().center() -

elCenter;
8 const GlobalCoordinate iNormal = intersection.

centerUnitOuterNormal();
9 const StateVector uBv = u[neighborIdx];

10
11 const StateVector du1 = u[neighborIdx] - u[elIndex];
12 negGradient.axpy(du1, dx);
13 differences.emplace_back(dx, du1);
14 neighbours.emplace_back(uBv, iNormal);
15 neighboursCounter++;
16 }
17 }

2. if there are unaccounted intersections, they belong to the domain external
boundary. For each of them, we create a "ghost element" to simulate no-flow
boundary conditions. To implement it, we apply a symmetric negative
discrete difference for all the actual neighbors "opposing" the boundary.
"Opposing" elements are those for which the projection of their normal to
the ghost normal is negative.

1 if ((stencilSize - neighboursCounter) > 1.0) {
2 const auto iend = gridView().iend(element);
3 for(auto iit = gridView().ibegin(element); iit != iend; ++iit) {
4 const auto intersection = *iit;
5 const GlobalCoordinate iCenter = intersection.geometry().center();
6
7 if(intersection.boundary()){
8 const GlobalCoordinate iNormal = intersection.

centerUnitOuterNormal();
9 GlobalCoordinate iNormalOpposite;

10 for (auto ii=0; ii < iNormal.size(); ++ii)
11 iNormalOpposite [ii] = (-1.0) * iNormal[ii];
12 for(const auto &neighbour : neighbours) {
13 double product = neighbour.second[0]*iNormalOpposite[0] +

neighbour.second[1]*iNormalOpposite[1] + neighbour.second[2]*
iNormalOpposite[2];

14 if (product < 0.0) {
15 const StateVector du1 = neighbour.first - u[elIndex];
16 const GlobalCoordinate dx = (iCenter - elCenter) + (

iCenter - elCenter);
17 negGradient.axpy(du1, dx);
18 differences.emplace_back(dx, du1);
19 }
20 }

45

5. Implementation in OPM

21 }
22 }
23 }

3. the sum of the "discrete gradient" pairs form the negative flow gradient on
the element

1 hessianInverse.mv(negGradient, du);

4. if the limiter shall be applied to the chosen limiter function based on all
the "discrete gradient" pairs.

1 du = limit(differences, du, factor);

5.8 Implementation of the second-order method with linear
programming reconstruction. All-inequality simplex
method.

opm-models/dune/fv/lpreconstruction.hh

When second-order LP method is used, the function updateLocal from recon-
struction.hh calls

1 linProgLocal_[ThreadManager::threadId()](elemCtx, upstreamDofIdx, timeIdx, U
, gradient);

1 typedef Dune::FV::LPReconstructionLocal< GridViewType, Evaluation,
BoundaryValue > LinearProgrammingLocal;

2 ...
3 std::vector< LinearProgrammingLocal > linProgLocal_;

Below are the key steps that are performed in the operator() (const
ElementContext& elemCtx, unsigned elIndex, unsigned timeIdx, const
Vector & u, Jacobian & du) of a class LPReconstructionLocal, which
is the implemented class for linear programming reconstruction.

1. Initialize an empty vector of pairs differences that will store pairs
< dx, du >, and an empty vector of type Constraint called constraints
(). This type is defined in the file <dune/optim/constraint/lin-
ear.hh>.

2. Loop over all intersections in the element’s grid view and populate differ-
ences, taking into account whether the intersection is on a boundary or
with a neighbor:

1 if(intersection.boundary())
2 {
3 const GlobalCoordinate iCenter = intersection.geometry().center();
4 differences.emplace_back(iCenter - elCenter, StateVector(0));
5 }
6 else if(intersection.neighbor())

46

Implementation of the second-order method with linear programming
reconstruction. All-inequality simplex method.

7 {
8 const auto neighbor = intersection.outside();
9 const GlobalCoordinate nbCenter = neighbor.geometry().center();

10 const size_t neighborIdx = stencil.globalToLocal(neighbor);
11 differences.emplace_back(nbCenter - elCenter, u[neighborIdx] -

u[elIndex]);
12 }
13

3. prepare variables for the linear programming optimization according to
formulas (4.21) - (4.22). In the code below, constraints[*].normal()
corresponds to the matrix A and constraints[*].rhs() corresponds to
the vector b from (4.22). negGradient_ corresponds to the vector c from
(4.21).

1 GlobalCoordinate negGradient(0);
2 for(std::size_t i = 0u; i < numConstraints; ++i)
3 {
4 const double sign = (differences[i].second >= 0 ? 1 : -1);
5
6 negGradient.axpy(sign, differences[i].first);
7
8 constraints[2*i].normal() = differences[i].first;
9 constraints[2*i].normal() *= sign;

10 constraints[2*i].rhs() = sign*differences[i].second;
11
12 constraints[2*i+1].normal() = constraints[2*i].normal();
13 constraints[2*i+1].normal() *= -1;
14 constraints[2*i+1].rhs() = 0;
15 }

4. Choose active constraints

5. Solve the linear programming problem using lp_ with negGradient, con-
straints, du, and active as arguments

dune/optim/lp.hh

The efficiency of the second-order linear programming method, presented in
Section 4.4, largely depends on how effectively we solve the linear programming
problem for each cell. Even though each cell’s LP problem is very small, in the
reservoir simulation, typically, the number of cells is very large - hundreds of
thousands. Therefore, efficiency is the key. Following [May and Berger, 2013]
and [Chen and Li, 2016], we use an all-inequality simplex algorithm for solving
LP problems. As the name suggests, it can be applied only to problems where
all constraints are inequalities, which is the case here. What is more, it works
particularly well when the number of constraints is much larger than the number
of variables, which again is the case for most of the grids.

Same as in the usual simplex method, an optimal solution is assumed to
be reached on one of the vertices of the feasible region, and the search is an
iterative process. We have described what the problem and constraints look

47

5. Implementation in OPM

like in Section 4.4, and here we will briefly discuss the all-inequality simplex
algorithm.

Simplex algorithm

Let us start with an LP problem with only inequality constraints in a standard
form:

min
x
cTx subject to Ax ≥ b, (5.5)

where c, x ∈ RN , A ∈ Rm×N , b ∈ Rm, and rank(A) = N . N here denotes the
dimension of the space and m is the number of constraints. Let us reformulate
(5.5) with Lagrange multipliers:

min
x,λ

L(x, λ) = cTx− λT (Ax− b), (5.6)

where L is the Lagrangian.
The all-inequality simplex algorithm is an iterative algorithm, where at each

iteration k we perform the following steps [May and Berger, 2013].

1. First, we need to choose N active constraints and set a new matrix Ak,
which is an N ×N subset of the initial matrix A that contains only rows
with currently active constraints. In the same fashion, we choose bk. We
denote the set of active constraints as Wk = w1, . . . wN . On the first step
we compute xk as a solution to ∂L

∂λ = 0, which simplifies to Akxk = bk.

2. Calculate the Lagrange multipliers that satisfy ∂L
∂x = 0. That is, find

λk ∈ RN by solving ATk λk = c.

3. If all λk ≥ 0, the iterations stop as the found xk is optimal.

4. Otherwise we find index q that corresponds to the smallest Lagrange
multiplier λqk = min(λk). The corresponding constraint will be removed
from the active constraints.

5. The descent direction pk is calculated as Apk = eq, where eq is the q-th
coordinate vector.

6. Now it is time to calculate the step length αk.

• Find indices of the constraints that are decreasing along the descent
direction pk:

D := {i : aipk < 0},
where ai is the i-th row of Ak. Note that it means that we are not
choosing from the active constraints, as for all the active constraints
aTi pk = 0.

• If D = 0 we stop as the problem is unbound. However, it cannot
happen for our LP problem.

48

Implementation of the second-order method with linear programming
reconstruction. All-inequality simplex method.

• Calculate the maximum step length that does not violate the con-
straints:

αk = maxa
T
i xk − bi
−aTi pk

. (5.7)

7. xk+1 = xk + αkpk.

8. Replace q-th row of active matrix Ak with the row of A to which the largest
step length αk correspond. If there are multiple, choose the one with the
lowest index and update the set of active constraints accordingly.

9. Return to step 2 and repeat.

49

Chapter 6

Summary of the included papers
This chapter summarizes the included papers in the thesis that investigate the
use of second-order finite volume methods in subsurface reservoir modeling. The
primary objective of this research is to explore the potential of second-order
methods in improving the accuracy and efficiency of reservoir simulations, thereby
advancing the field of subsurface reservoir modeling.

The papers included in this thesis address different aspects of using second-
order finite volume methods. The first paper compares various second-order
methods against each other and the commonly used first-order finite volume
method on simply shaped domains with grids relevant to practical reservoir
simulations. The second paper takes a step towards incorporating second-order
methods into an open-source reservoir simulator called OPM Flow. Finally, the
last paper investigates the reliability of the implemented second-order method’s
results and analyzes its benefits and limitations on realistic reservoir models.

Overall, the papers provide a comprehensive overview and analysis of various
aspects related to using second-order finite volume methods in reservoir modeling.
These papers emphasize the need for more sophisticated simulation tools that
reduce numerical diffusion and improve accuracy in predictions for successful
reservoir modeling and management.

6.1 Testing second-order FV methods and slope-limiters
on general polyhedral and corner-point grids [Paper A]

Title: Comparison of linear reconstructions for second-order finite
volume schemes on polyhedral grids

Authors: Robert Klöfkorn, Anna Kvashchuk, Martin Nolte
Published in: Computational Geosciences 21, pages 909–919 (2017)

This paper is the first step toward using higher-order methods in reservoir
modeling. We explore the behavior of three second-order finite volume methods
combined with several slope limiters on general polyhedral and corner-point grids,
which are standard in reservoir simulation. By doing so, we aim to compare these
methods against each other and the traditionally used first-order finite volume
method and discuss their respective advantages and disadvantages. The numerical
methods implementation is based on the DUNE framework [Bastian et al.,
2008b, Bastian et al., 2008a, Bastian et al., 2021, Dedner et al., 2010, Alkämper
et al., 2016], and the corresponding code is available within the DUNE module
at https://gitlab.dune-project.org/anna.kvashchuk/polygonal-fv. Specifically, we
use PolygonGrid for 2D computations, which is a standalone implementation,

51

https://gitlab.dune-project.org/anna.kvashchuk/polygonal-fv

6. Summary of the included papers

and PolyhedralGrid for 3D computations, which is a component of the Open
Porous Media (OPM) Initiative [Rasmussen et al., 2021].

This study focuses on the second-order finite volume method with least-
squares reconstruction (introduced in Section 4.2), the second-order finite volume
method with selective linear reconstruction (introduced in Section 4.3), and the
second-order finite volume method with an optimization-based reconstruction
(introduced in Section 4.4). As discussed in the Sections 4.2 - 4.4, the least
squares and the selective linear reconstruction second-order FV methods require
limiters. We use three limiters with each of these two methods - minmod (3.32),
van Leer (3.34), and Superbee (3.33) The optimization-based second-order finite
volume method has a limiter embedded in it.

This study aims to verify the experimental convergence properties of selected
second-order methods on arbitrary polyhedral meshes. The test cases use 2D
and 3D domains with simple shapes (a square and a cube, respectively). We
choose transport problems that have known analytical solutions, enabling us to
measure and compare the experimental order of convergence (EOC) (3.17) for
all the methods.

The 2D solid body rotation test [Leveque, 1996] is performed on triangular
and polygonal grids. In this classical test case, we rotate three shapes - a cone,
a cylinder, and a cylinder with a part missing, with a constant velocity around
the center of the unit square. When conducting an EOC study, the results of
all methods are computed and compared on a series of grids. Each grid has a
reference size twice as small as the previous grid. This test case allows us to see to
which extent the methods can preserve discontinuity presented in the initial state
and how much smearing they introduce. All second-order approaches outperform
the first-order method by orders of magnitude in terms of accuracy vs. run time.
The second-order method with the linear reconstruction combined with Van Leer
or Superbee limiters together with the optimization-based second-order method
shows the best performance on both triangular and polygonal grids.

The second 2D test case studies the Buckley-Leverett type problem, again
on a series of triangular and polygonal grids. It represents a simplified model for
water-oil displacement in a reservoir. This is a non-linear scalar problem with a
shock and a rarefaction wave, where a quasi-exact solution can be computed,
which provides an interesting setup for a convergence study. In this test case,
the second-order methods are more accurate and faster than the first-order
method. The first-order method would require a much finer grid and two orders
of magnitude more run time to achieve the accuracy of the second-order methods.
This behavior is consistent across different meshes for this test case.

In the two three-dimensional test cases, we use a series of unit cubes with
hexagonal prisms and tetrahedral decreasing in size. The grids are part of the
3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on
General Grids presented in [Eymard et al., 2011]. A simple tracer transport is
modeled, together with the Buckley-Leverett equation. In both test cases, the
second-order schemes outperform the first-order scheme by orders of magnitude
on coarse grids, with the first-order scheme only achieving similar accuracy
on much finer grids. However, the least squares approach fails to achieve the

52

Convergence study of second-order FV implementation in OPM Flow [Paper B]

second-order method performance on polyhedral grids and shows accuracy and
CPU time almost identical to the first-order method. The first-order method
and second-order method with least-squares reconstruction on 3D polyhedral
grids achieve comparable accuracy on the finest grid as the second-order method
with selective linear reconstruction and linear programming reconstruction on
the coarsest grid in the series.

Our major findings showed that second-order methods outperform first-order
method in terms of accuracy and run time in all test cases, indicating the
potential for improving reservoir simulation tools to avoid numerical diffusion.
While second-order methods require more CPU time, for the first-order method
to achieve the same accuracy, a much finer grid has to be used, leading to a
considerably larger increase in the run time. Of the second-order methods, the
fastest was the least squares approach. However, the method deteriorated to
the first-order accuracy on the 3D polyhedral grid. On the other hand, the
selective reconstruction showed better accuracy at the expense of around 50%
more CPU time than the least squares reconstruction. The second-order finite
volume method with selective linear reconstruction slows down as the number of
neighbors per cell increases. This is why it takes longer to execute in 3D despite
showing a comparable CPU time to other second-order methods in 2D. The LP
reconstruction scheme provided a good compromise between the two approaches
in terms of complexity and accuracy.

These findings show the potential of second-order finite volume schemes for
reservoir simulation with complex geometries.

6.2 Convergence study of second-order FV implementation
in OPM Flow [Paper B]

Title: Comparison of Higher Order Schemes on Complicated
Meshes and Reservoirs

Authors: Anna Kvashchuk, Robert Klöfkorn, Tor Harald Sandve
Published in: SPE Reservoir Simulation Conference, Galveston, Texas,

USA, April 2019

This paper builds upon the previous study by extending the integration of
second-order numerical schemes into the open-source framework - the Open
Porous Media (OPM) initiative. The study focuses on implementing two second-
order finite volume methods, the least-squares and linear programming recon-
structions, in the OPM Flow simulator. The accuracy, performance, and ability
to handle nonlinearities of the second-order methods are compared to the stan-
dard first-order method using several benchmark cases relevant to practical
reservoir simulation. Overall, the paper provides valuable insights into enhancing
the accuracy and efficiency of fluid transport modeling in reservoir simulations
using more sophisticated numerical schemes.

53

6. Summary of the included papers

To verify the implementation, the experimental order of convergence is
checked on a simple transport test case on two series of grids - Cartesian and
corner-point grids typically used in reservoir modeling. The results indicate that
both second-order methods produce more accurate solutions than the first-order
method on Cartesian grids. However, the second-order method with linear
programming reconstruction outperforms the second-order least-squares method
on the 3D unstructured corner-point grid, indicating it is a preferred choice for
complex reservoir grids.

In the next test case, we compare the methods’ performance on a well-known
benchmark test case for the solvent injection - SPE5. The water alternating gas
injection (WAG) with a one-year cycle scenario is employed. The most noticeable
difference between the first- and second-order methods is observed in how well
they could capture a sharp gas wave formed in the reservoir. Both second-order
methods predict a half-a-year delay in the arrival of the gas wave and render the
front sharper and with less smearing.

The use of a Cartesian grid in this test case allows for straightforward
refinement, facilitating the comparison of second-order methods’ predictions
with the results from the first-order method on a finer grid, i.e., the reference
solution. The reference solution agrees with the front positioning obtained by
the two second-order methods. However, the amplitude of the gas wave was
slightly overestimated.

While second-order numerical methods produce more accurate results than
the first-order method, they can be computationally expensive. It may be
beneficial to selectively apply the second-order method to equations with linear
fluxes to reduce computational time while providing an accurate solution. Later,
in this test case, we show that applying the second-order method only to the
solvent equation provides good predictions of the position and the amplitude of
the gas wave and reduces computational time while still providing an accurate
solution that agrees well with the first-order method on a refined grid.

In the last test case, we study the impact of using a higher-order numerical
method in the field-scale CO2-EOR study. The openly available Norne field
reservoir model is used for this study. The study employs the solvent model, an
extended black-oil model that distinguishes between the injected and formation
gas. We observe that the first and second-order methods provide different results
when predicting the solvent production rate. Unfortunately, since it is a field-
scale example with a full complexity of the used grid and fluid interactions, we
do not know the true solution and cannot verify which of the methods provides
a more accurate solution.

54

Validation of OPM Flow’s second-order methods for practical EOR simulations
[Paper C]

6.3 Validation of OPM Flow’s second-order methods for
practical EOR simulations [Paper C]

Title: A second order finite volume method for field-scale reservoir
simulation

Authors: Anna Kvashchuk, Robert Klöfkorn, Tor Harald Sandve
Published in: Transport in Porous Media, volume 150, pages 109-129,

2023.

This paper explores the potential of the second-order linear programming
method in fluid transport modeling for reservoir simulations. We aim to investi-
gate the accuracy and efficiency of this method in complex and realistic reservoir
examples. Our objective is to verify the results’ reliability, given the absence of
"true" solutions, and to analyze the limitations and benefits of the method.

Our tests use two realistic reservoirs: a medium-sized realistic reservoir with
an unstructured corner point grid and an openly available Norne field model. As
a reference solution for the result verification, we use the first-order method on
the refined grid, and a new refined Norne model has been produced for this study.
All mentioned models are available in the second-order-opm-tests repository,
https://github.com/kvashchuka/second-order-opm-tests.

The first test case in this study presents a complex setup with regard to fluid
interaction and uses a corner-point grid. However, the realistic features present
in most reservoirs, such as faults and regions, are absent here, which makes
interpreting the results more accessible. The domain consists of a rectangular
hexahedron with a single production and an injection well placed in opposing
corners. In this test case, we set up a water-alternating gas injection (WAG)
scenario, modeling a three-phase flow with four components. We analyze pro-
duction rate curves for solvent, water, oil, and gas components. Results show an
agreement between the second-order method on the coarse grid and the reference
solution provided by the first-order method on the refined grid. As expected, the
second-order method tends to show later arrival times of the fluid fronts because
of the reduced smearing. Furthermore, proper interpretation of the results
requires careful consideration of the nature of the fluid fronts. When pressure
changes are driving the fluid fronts, the implemented second-order method fails
to improve the results of the first-order method, as pressure calculations remain
unchanged. However, when the transport phenomena dominate the fluid flow,
the front positioning is improved, and smearing is reduced. This behavior agrees
with the first-order method result on the refined grid.

The study provides three test cases on the Norne field. The first test is a piston-
type injection with homogeneous and heterogeneous porosity and permeability.
In order to focus on fluid displacement effects, the two fluids have the same
properties, and any regions and faults in the reservoir are neglected.

While the differences between the first- and second-order methods are more
pronounced in the homogeneous test case, the second-order method reduces the
smearing effect in both setups.

55

https://github.com/kvashchuka/second-order-opm-tests

6. Summary of the included papers

To verify the performance of the second-order method, the first-order method
is run on the refined Norne model. The standard Norne field model has a grid
block size of approximately 100m, and the refined model used in this study - 50 m
in X and Y directions (since we are interested in fluid displacement, the grid cells
are not refined in the Z direction). The test case shows that the second-order
method on the standard grid successfully produces a sharper resolution of the
front, with minimal spread, compared to the first-order method. This outcome
agrees with the results from the first-order method on the refined Norne field
model.

The last test case provides the most complex setup as we model a CO2
injection on the Norne field with its full complexity, meaning we have two wells,
heterogeneity, regions, faults, etc. It is worth noting that while the Norne field
is not a primary target for CO2 injection, this test case provides valuable insight
into the methods’ performance in the EOR/IOR scenario on a realistic field
model. Our objective is to determine when the effect of the second-order method
is most pronounced. That is why we vary the placement of the injector well:
first, it is placed in the same compartment as the producer well; second, the
two wells are separated by one fault; and third, the injector is in the corner
surrounded by faults. In all three cases, the second-order method predicts the
later arrival of the injected CO2. However, a smaller difference is seen when
there are faults between the wells. It shows that while we observe a relevant
difference in the front positioning when using the higher-order method, when the
complexity of the reservoir increases, it can overshadow the effects gained by it.

Overall, this paper provides an important contribution to the field of subsur-
face reservoir modeling and addresses the limitations of the first-order method,
potentially enabling more informed decision-making in various applications.

56

Chapter 7

Conclusions and future work
Throughout this work, several higher-order numerical methods for fluid transport
in reservoir simulation were implemented, tested, and compared. Consequently,
the implementation of second-order finite volume methods in OPM Flow, an open-
source reservoir simulator, was published. This also serves as an implementation
guide for further developments.

The studies presented here investigated and provided valuable insights into
the benefits and limitations of second-order numerical methods. We compared
the performance of several second-order methods and the traditional first-order
method on different grid types, various injection/production scenarios, and
reservoir models of different complexity levels.

Based on the findings of the study, the second-order method with linear
programming reconstruction (the second-order LP method) outperformed the
other second-order methods that were tested. On 3D grids, where elements have
more neighbors, the LP method showed faster performance than the second-order
method with selective reconstruction. The third second-order method, with
the least square reconstruction, did not improve accuracy over the first-order
method in complex reservoir settings. During our final testing, the LP method
showed good agreement with the reference solution obtained on a refined grid
of a complex reservoir Norne field (the reference solution used the standard
first-order method).

Let us highlight the benefits and limitations of the second-order LP method
for practical reservoir simulation based on our findings (compared to standard
methods).

Benefits

• Improved accuracy of fluid transport modeling in reservoir simulations.

• Sharper front representation, with reduced smearing.

• Potential to enhance decision-making in various applications.

Disadvantages

• Increased computational time.

• Benefits may be overshadowed by reservoir model complexity.

We see several future research possibilities for improved reservoir simulation
that can mitigate the listed disadvantages of the second-order LP method.

To increase the computational efficiency of the second-order method while
preserving accuracy, one option could be to explore machine-learning reconstruc-
tions on the local stencils. Such a reconstruction based on a neural network

57

7. Conclusions and future work

might reduce the number of function calls and be optimized with respect to
the Newton solver. Very recently, [Keim et al., 2023] explored the utilization of
reinforcement learning (RL) in numerical modeling. The authors present a new
slope limiter for a two-dimensional finite volume scheme derived through the use
of RL techniques.

The complex nature of the reservoir simulation problem does not allow us
to say with certainty that using the second-order methods will always give
enough benefit to compensate for the significant increase in simulation time.
Although accuracy is important in transport modeling, the complexity and
inherent uncertainty of the subsurface reservoirs, coupled with numerous fluid
interactions and pressure effects, can overshadow the benefits gained from using
second-order methods for transport. However, using more advanced numerical
methods is not the only way to improve the prediction accuracy simulations.
For instance, ensemble methods are steadily gaining more and more popularity
in closed-loop reservoir modeling. Using an ensemble method means running
multiple realizations of a reservoir model, each with slightly different parameters,
and then adjusting those parameters to fit the available data in a closed loop.
This allows to capture of uncertainties associated with the complex geologic
and fluid properties of subsurface systems. While an ensemble method does
not improve simulation results directly, its ability to capture uncertainty and
possibly compensate for modeling errors enables better results with existing
simulation tools. With the increase of computational power, one can combine
the second-order finite volume methods with the ensemble methods in the future.

Lately, there has been an increased focus on data-driven approaches and ma-
chine learning algorithms, which can be easily integrated with ensemble methods
to accelerate and sometimes improve reservoir characterization, modeling, and
forecasting. However, for problems with relatively scarce data, such as reservoir
modeling, the field data shall be combined with simulated data during train-
ing. To that end, second-order methods can excel in providing more accurate
simulated data during slow-pace ’offline’ training of the ML models.

58

Bibliography

[Aavatsmark, 2002] Aavatsmark, I. (2002). An introduction to multipoint flux
approximations for quadrilateral grids. Computational Geosciences, 6:405–432.

[Ahrens et al., 2005] Ahrens, J., Geveci, B., and Law, C. (2005). ParaView: An
end-user tool for large data visualization. In Visualization Handbook. Elesvier.
ISBN 978-0123875822.

[Alkämper et al., 2016] Alkämper, M., Dedner, A., Klöfkorn, R., and Nolte, M.
(2016). The dune-alugrid module. Archive of Numerical Software, 4(1):1–28.

[Alyaev et al., 2014] Alyaev, S., Keilegavlen, E., and Nordbotten, J. M. (2014).
Analysis of control volume heterogeneous multiscale methods for single phase
flow in porous media. Multiscale Modeling & Simulation, 12(1):335–363.

[Bastian et al., 2008a] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn,
R., Kornhuber, R., Ohlberger, M., and Sander, O. (2008a). A generic grid
interface for parallel and adaptive scientific computing. part II: implementation
and tests in dune. Computing, 82:121–138.

[Bastian et al., 2008b] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn,
R., Ohlberger, M., and Sander, O. (2008b). A generic grid interface for parallel
and adaptive scientific computing. part I: abstract framework. Computing,
82:103–119.

[Bastian et al., 2021] Bastian, P., Blatt, M., Dedner, M., Dreier, N.-A., Engwer,
Ch. Fritze, R., Gräser, C., Grüninger, C., Kempf, D., Klöfkorn, R., Ohlberger,
M., and Sander, O. (2021). The dune framework: Basic concepts and recent
developments. Computers & Mathematics with Applications, 81:75–112.

[Baxendale, 2023] Baxendale, D. (2023). OPEN POROUS MEDIA OPM Flow
Reference Manual (2023-04).

[Bell and Shubin, 1985] Bell, J. B. and Shubin, G. R. (1985). Higher-Order
Godunov Methods for Reducing Numerical Dispersion in Reservoir Simulation.
In SPE Reservoir Simulation Symposium, Dallas, Texas. Society of Petroleum
Engineers.

[Blunt and Rubin, 1992] Blunt, M. and Rubin, B. (1992). Implicit flux limiting
schemes for petroleum reservoir simulation. Journal of Computational Physics,
102(1):194–210.

[Brooks and Corey, 1964] Brooks, R. H. and Corey, A. T. (1964). Hydraulic
properties of porous media, volume 3. Colorado State University.

59

Bibliography

[Chase Jr et al., 1984] Chase Jr, C. A., Todd, M. R., et al. (1984). Numerical
simulation of CO2 flood performance. Society of Petroleum Engineers Journal,
24(06):597–605.

[Chen and Li, 2016] Chen, L. and Li, R. (2016). An integrated linear recon-
struction for finite volume scheme on unstructured grids. Journal of Scientific
Computing, 68(3):1172–1197.

[Chen et al., 1993] Chen, W., Durlofsky, L., Engquist, B., and Osher, S. (1993).
Minimization of grid orientation effects through use of higher order finite
difference methods. SPE Advanced Technology Series, 1(02):43–52.

[Chen, 2000] Chen, Z. (2000). Formulations and numerical methods of the
black oil model in porous media. SIAM Journal on Numerical Analysis,
38(2):489–514.

[Chen et al., 2006] Chen, Z., Huan, G., and Ma, Y. (2006). Computational
methods for multiphase flows in porous media. SIAM.

[Chierici, 1992] Chierici, G. L. (1992). Economically improving oil recovery by
advanced reservoir management. Journal of Petroleum Science and Engineer-
ing, 8(3):205–219.

[Cockburn and Shu, 1989] Cockburn, B. and Shu, C.-W. (1989). TVB Runge-
Kutta local projection discontinuous Galerkin finite element method for conser-
vation laws. II. General framework. Mathematics of computation, 52(186):411–
435.

[Contreras et al., 2016] Contreras, F., Lyra, P., Souza, M., and Carvalho, D. d.
(2016). A cell-centered multipoint flux approximation method with a diamond
stencil coupled with a higher order finite volume method for the simulation of
oil–water displacements in heterogeneous and anisotropic petroleum reservoirs.
Computers & Fluids, 127:1–16.

[Courant et al., 1928] Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die
partiellen differenzengleichungen der mathematischen physik. Mathematische
annalen, 100(1):32–74.

[Courant et al., 1967] Courant, R., Friedrichs, K., and Lewy, H. (1967). On the
partial difference equations of mathematical physics. IBM journal of Research
and Development, 11(2):215–234.

[Dedner and Klöfkorn, 2011] Dedner, A. and Klöfkorn, R. (2011). A generic
stabilization approach for higher order discontinuous galerkin methods for
convection dominated problems. Journal of Scientific Computing, 47(3):365–
388.

[Dedner et al., 2010] Dedner, A., Klöfkorn, R., Nolte, M., and Ohlberger, M.
(2010). A generic interface for parallel and adaptive scientific computing:
Abstraction principles and the dune-fem module. Computing, 90(3–4):165–
196.

60

Bibliography

[Durlofsky et al., 1992] Durlofsky, L. J., Engquist, B., and Osher, S. (1992).
Triangle based adaptive stencils for the solution of hyperbolic conservation
laws. Journal of Computational Physics, 98(1):64–73.

[Eymard et al., 2011] Eymard, R., Henry, G., Herbin, R., Hubert, F., Klöfkorn,
R., and Manzini, G. (2011). 3D benchmark on discretization schemes for
anisotropic diffusion problems on general grids. In Finite Volumes for Complex
Applications VI Problems & Perspectives: FVCA 6, International Symposium,
Prague, June 6-10, 2011, pages 895–930. Springer.

[Feistauer et al., 2003] Feistauer, M., Felcman, J., and Straškraba, I. (2003).
Mathematical and computational methods for compressible flow. Oxford Uni-
versity Press, USA.

[Flemisch et al., 2011] Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B.,
Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M.,
et al. (2011). DuMux: DUNE for multi-{phase, component, scale, physics,
. . . } flow and transport in porous media. Advances in Water Resources,
34(9):1102–1112.

[Gao, 2011] Gao, C. H. (2011). Scientific research and field applications of
polymer flooding in heavy oil recovery. Journal of Petroleum Exploration and
Production Technology, 1:65–70.

[Geiger et al., 2009] Geiger, S., Matthäi, S., Niessner, J., and Helmig, R. (2009).
Black-oil simulations for three-component, three-phase flow in fractured porous
media. SPE journal, 14(02):338–354.

[Ghoreishian Amiri et al., 2013] Ghoreishian Amiri, S., Sadrnejad, S.,
Ghasemzadeh, H., and Montazeri, G. (2013). Application of control volume
based finite element method for solving the black-oil fluid equations. Petroleum
Science, 10:361–372.

[Harten, 1997] Harten, A. (1997). High resolution schemes for hyperbolic con-
servation laws. Journal of computational physics, 135(2):260–278.

[Hassanizadeh et al., 2002] Hassanizadeh, S. M., Celia, M. A., and Dahle, H. K.
(2002). Dynamic effect in the capillary pressure–saturation relationship and
its impacts on unsaturated flow. Vadose Zone Journal, 1(1):38–57.

[Holm et al., 2008] Holm, R., Van Dijke, M. I. J., Geiger, S., and Espedal, M.
(2008). Consistent capillary pressure and relative permeability for mixed-
wet systems in macroscopic three-phase flow simulation. In ECMOR XI-
11th European Conference on the Mathematics of Oil Recovery, pages cp–62.
European Association of Geoscientists & Engineers.

[Jiang and Shu, 1996] Jiang, G.-S. and Shu, C.-W. (1996). Efficient imple-
mentation of weighted ENO schemes. Journal of computational physics,
126(1):202–228.

61

Bibliography

[Joekar-Niasar et al., 2010] Joekar-Niasar, V., Hassanizadeh, S., and Dahle, H.
(2010). Non-equilibrium effects in capillarity and interfacial area in two-phase
flow: dynamic pore-network modelling. Journal of Fluid Mechanics, 655:38–71.

[Jung et al., 2017] Jung, Y., Pau, G. S. H., Finsterle, S., and Pollyea, R. M.
(2017). TOUGH3: a new efficient version of the tough suite of multiphase
flow and transport simulators. Computers & Geosciences, 108:2–7.

[Keim et al., 2023] Keim, J., Schwarz, A., Chiocchetti, S., Rohde, C., and Beck,
A. (2023). A reinforcement learning based slope limiter for two-dimensional
finite volume schemes. In International Conference on Finite Volumes for
Complex Applications, pages 209–217. Springer.

[Klemetsdal et al., 2020] Klemetsdal, Ø. S., Rasmussen, A. F., Møyner, O., and
Lie, K.-A. (2020). Efficient reordered nonlinear gauss–seidel solvers with higher
order for black-oil models. Computational Geosciences, 24(2):593–607.

[Koch et al., 2021] Koch, T., Gläser, D., Weishaupt, K., et al. (2021). DuMux
3 – an open-source simulator for solving flow and transport problems in
porous media with a focus on model coupling. Computers & Mathematics
with Applications, 81:423–443.

[Kröner, 1997] Kröner, D. (1997). Numerical Schemes for Conservation Laws.
Verlag Wiley & Teubner, Stuttgart.

[Lamine and Edwards, 2015] Lamine, S. and Edwards, M. G. (2015). Multidi-
mensional upwind schemes and higher resolution methods for three-component
two-phase systems including gravity driven flow in porous media on un-
structured grids. Computer Methods in Applied Mechanics and Engineering,
292:171–194.

[Lauser et al., 2018] Lauser, A., Rasmussen, A., Sandve, T., and Nilsen, H.
(2018). Local forward-mode automatic differentiation for high performance
parallel pilot-level reservoir simulation. In ECMOR XVI-16th European Con-
ference on the Mathematics of Oil Recovery, pages 1–12. European Association
of Geoscientists & Engineers.

[Leveque, 1996] Leveque, R. J. (1996). High-resolution conservative algorithms
for advection in incompressible flow. SIAM Journal on Numerical Analysis,
33(2):627–665.

[LeVeque, 2002] LeVeque, R. J. (2002). Finite volume methods for hyperbolic
problems, volume 31. Cambridge University Press.

[Lichtner et al., 2019] Lichtner, P. C., Hammond, G. E., Lu, C., Karra, S.,
Bisht, G., Andre, B., Mills, R. T., Kumar, J., and Frederick, J. M. (2019).
PFLOTRAN user manual.

[Lie, 2015] Lie, K.-A. (2015). Hyperbolic conservation laws: Computation.
Encyclopedia of Applied and Computational Mathematics.

62

Bibliography

[Lie, 2019] Lie, K.-A. (2019). An introduction to reservoir simulation using
MATLAB/GNU Octave: User guide for the MATLAB Reservoir Simulation
Toolbox (MRST). Cambridge University Press.

[Lie and Møyner, 2021] Lie, K.-A. and Møyner, O. (2021). Advanced Modeling
with the MATLAB Reservoir Simulation Toolbox. Cambridge University Press.

[Lie et al., 2020] Lie, K.-A., Mykkeltvedt, T. S., and Møyner, O. (2020). A
fully implicit weno scheme on stratigraphic and unstructured polyhedral grids.
Computational Geosciences, 24(2):405–423.

[Liu et al., 1994] Liu, X.-D., Osher, S., and Chan, T. (1994). Weighted essentially
non-oscillatory schemes. Journal of computational physics, 115(1):200–212.

[May and Berger, 2013] May, S. and Berger, M. (2013). Two-dimensional slope
limiters for finite volume schemes on non-coordinate-aligned meshes. SIAM
Journal on Scientific Computing, 35(5):A2163–A2187.

[Mykkeltvedt, 2014] Mykkeltvedt, T. S. (2014). Numerical solutions of two-
phase flow with applications to CO2 sequestration and polymer flooding. PhD
thesis, The University of Bergen.

[Mykkeltvedt et al., 2017] Mykkeltvedt, T. S., Raynaud, X., and Lie, K.-A.
(2017). Fully implicit higher-order schemes applied to polymer flooding.
Computational Geosciences, 21(5):1245–1266.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. (2006). Numerical opti-
mization. Springer Science & Business Media.

[Nordbotten and Celia, 2011] Nordbotten, J. M. and Celia, M. A. (2011). Geo-
logical storage of CO2: modeling approaches for large-scale simulation. John
Wiley & Sons.

[OG21, 2021] OG21 (2021). Og21 a new chapter. oil and gas for the 21st
century. https://www.og21.no/siteassets/figurer-og21-strategi-2021/og21-
strategi_eng.pdf.

[Rasmussen et al., 2021] Rasmussen, A. F., Sandve, T. H., Bao, K., Lauser, A.,
Hove, J., Skaflestad, B., Klöfkorn, R., Blatt, M., Rustad, A. B., Sævareid, O.,
et al. (2021). The open porous media flow reservoir simulator. Computers &
Mathematics with Applications, 81:159–185.

[Roe, 1985] Roe, P. L. (1985). Some contributions to the modelling of discontin-
uous flows. Large-scale computations in fluid mechanics, pages 163–193.

[Rubin and Blunt, 1991] Rubin, B. and Blunt, M. (1991). Higher-order implicit
flux limiting schemes for black oil simulation. In SPE Symposium on Reservoir
Simulation. Society of Petroleum Engineers.

63

https://www.og21.no/siteassets/figurer-og21-strategi-2021/og21-strategi_eng.pdf
https://www.og21.no/siteassets/figurer-og21-strategi-2021/og21-strategi_eng.pdf

Bibliography

[Rubin and Edwards, 1993] Rubin, B. and Edwards, M. (1993). Extension of the
TVD midpoint scheme to higher-order accuracy in time. In SPE Symposium
on Reservoir Simulation. Society of Petroleum Engineers.

[Sandve et al., 2018] Sandve, T. H., Rasmussen, A., and Rustad, A. B. (2018).
Open reservoir simulator for CO2 storage and CO2-EOR. In 14th Greenhouse
Gas Control Technologies Conference Melbourne, pages 21–26.

[SLB, 2020] SLB (2020). Eclipse™2020.3. http://www.software.slb.com/product
s/eclipse.

[Sweby, 1984] Sweby, P. K. (1984). High resolution schemes using flux limiters for
hyperbolic conservation laws. SIAM journal on numerical analysis, 21(5):995–
1011.

[Todd et al., 1972] Todd, M., Longstaff, W., et al. (1972). The development,
testing, and application of a numerical simulator for predicting miscible flood
performance. Journal of Petroleum Technology, 24(07):874–882.

[Trangenstein, 2009] Trangenstein, J. A. (2009). Numerical solution of hyperbolic
partial differential equations. Cambridge University Press.

[Trefethen and Bau, 1997] Trefethen, L. N. and Bau, D. (1997). Numerical
Linear Algebra. Society for Industrial and Applied Mathematics.

[Van Genuchten, 1980] Van Genuchten, M. T. (1980). A closed-form equation
for predicting the hydraulic conductivity of unsaturated soils. Soil science
society of America journal, 44(5):892–898.

[Van Leer, 1974] Van Leer, B. (1974). Towards the ultimate conservative differ-
ence scheme. II. Monotonicity and conservation combined in a second-order
scheme. Journal of computational physics, 14(4):361–370.

[Van Leer, 1977] Van Leer, B. (1977). Towards the ultimate conservative differ-
ence scheme III. Upstream-centered finite-difference schemes for ideal com-
pressible flow. Journal of Computational Physics, 23(3):263–275.

[Van Leer, 1979] Van Leer, B. (1979). Towards the ultimate conservative dif-
ference scheme. V. A second-order sequel to Godunov’s method. Journal of
computational Physics, 32(1):101–136.

[Voskov and Tchelepi, 2012] Voskov, D. V. and Tchelepi, H. A. (2012). Com-
parison of nonlinear formulations for two-phase multi-component EoS based
simulation. Journal of Petroleum Science and Engineering, 82:101–111.

[Walsh et al., 2003] Walsh, M. P., Lake, L. W., and Walsh, M. (2003). A
generalized approach to primary hydrocarbon recovery, volume 4. Elsevier
Amsterdam.

64

http://www.software.slb.com/products/eclipse
http://www.software.slb.com/products/eclipse

Bibliography

[Warming and Beam, 1976] Warming, R. and Beam, R. M. (1976). Upwind
second-order difference schemes and applications in aerodynamic flows. AIAA
Journal, 14(9):1241–1249.

65

Papers

Paper A

Comparison of linear reconstructions for second-order finite
volume schemes on polyhedral grids.

Robert Klöfkorn, Anna Kvashchuk, Martin Nolte
Computational Geosciences, volume 21, pages 909–919 (2017)
DOI: 10.1007/s10596-017-9658-8

69

This paper is not included in the repository due to copyright restrictions.

Paper B

Comparison of Higher Order Schemes on Complicated
Meshes and Reservoirs.

Anna Kvashchuk, Robert Klöfkorn, Tor Harald Sandve
In SPE Reservoir Simulation Conference, Galveston, Texas, USA
(2019)
DOI: 10.2118/193839-MS

83

This paper is not included in the repository due to copyright restrictions.

Paper C

A Second-Order Finite Volume Method for Field-Scale
Reservoir Simulation.

Anna Kvashchuk, Robert Klöfkorn, Tor Harald Sandve
Transport in Porous Media, volume 150, pages 109-129 (2023)

99

Vol.:(0123456789)

Transport in Porous Media (2023) 150:109–129
https://doi.org/10.1007/s11242-023-01999-1

1 3

A Second‑Order Finite Volume Method for Field‑Scale
Reservoir Simulation

Anna Kvashchuk1,2 · Robert Klöfkorn3 · Tor Harald Sandve4

Received: 10 June 2022 / Accepted: 7 July 2023 / Published online: 18 August 2023
© The Author(s) 2023

Abstract
Subsurface reservoirs are large complex systems. Reservoir flow models are defined on
complex grids that follow geology with relatively large block sizes to make consistent
simulations feasible. Reservoir engineers rely on established reservoir simulation software
to model fluid flow. Nevertheless, fluid front position inaccuracies and front smearing on
large grids may cause significant errors and make it hard to predict hydrocarbon produc-
tion efficiency. We investigate higher-order methods that reduce these undesired effects
without refining the grid, thus making reservoir simulation more accurate and robust. For
this paper, we implemented a second-order finite volume method with linear programming
(LP) reconstruction in the open-source industry-grade reservoir simulator OPM Flow (part
of the open porous media initiative, OPM). We benchmark it against the first-order method
on full-scale cases with standard coarse and refined grids. We prepared open refined-grid
models of a synthetic reservoir with an unstructured grid and refined Norne field example.
Our results confirm that the LP method predicts front positions as accurately as the first-
order method on the refined grid for problems dominated by transport. These include the
water alternating gas scenario on the synthetic reservoir and piston-type injection on the
Norne field. Moreover, we study the gains from the LP method for CO2 injection problems
on the Norne field with full multi-phase complexity beyond transport. We observe the rel-
evant difference between the first- and the second-order methods in these cases. However,
in some configurations, the reservoir complexity overshadows the gains from the second-
order methods.

 * Anna Kvashchuk
kvashchuk.anna@gmail.com

Robert Klöfkorn
robertk@math.lu.se

Tor Harald Sandve
tosa@norceresearch.no

1 Equinor ASA, Forusbeen 50, 4035 Stavanger, Norway
2 Faculty of Science and Technology, Department of Energy Resources, University of Stavanger,

P.O. Box 8600, 4036 Stavanger, Norway
3 Center for Mathematical Sciences, Lund University, P.O. Box 117, 221 00 Lund, Sweden
4 Energy and Technology, NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008 Bergen,

Norway
101

110 A. Kvashchuk et al.

1 3

Keywords Second-order method · Reservoir simulation · OPM · Norne · Realistic reservoir

1 Introduction

Modeling multi-phase multi-component flow in porous media requires accurate and robust
numerical methods. It is an essential part of the oil and gas production (Trangenstein and
Bell 1989; Coats et al. 1995), carbon storage (Class et al. 2009; Celia and Nordbotten
2009; Sandve et al. 2018; Mykkeltvedt et al. 2021), enhanced oil recovery (Lake 1989;
Mykkeltvedt et al. 2017) and many other applications.

The first-order finite volume (FV) is the usual method for modeling multi-phase multi-
component flow. It is the default option in many standard reservoir simulators, both com-
mercial and open-source, for example, ECLIPSE (2014), OPM (Open Porous Media)
(Lauser et al. 2018), the Matlab Reservoir Simulation Toolbox (MRST) (Lie 2019), DuMux
(Flemisch et al. 2011), PFLOTRAN (Lichtner et al. 2019), an Automatic Differentiation
General Purpose Research Simulator (ADGPRS) (Voskov and Tchelepi 2012) or TOUGH3
(Jung et al. 2017). First-order methods are widely used because of their robustness and
ease of implementation. Unfortunately, those are known to suffer from numerical diffusion,
which leads to smearing of the fluid fronts and, therefore, incorrect computations of the
front position, components concentrations, water breakthrough, etc.

To reduce the numerical diffusion and increase the accuracy, there are mainly two
options: to refine the grid or increase the order of the numerical method. Grid refinement,
while being a valid solution in many cases, is often impractical for reservoir simulation due
to the reservoir size and complex grids, faults, etc. It complicates the model and increases
the simulation time significantly. On the other hand, increasing the order of the numeri-
cal method can provide a more accurate solution with reduced grid-orientation effects and
better front resolution on a practical grid block size without modifying the grid (Sammon
et al. 2001). However, a practical challenge with the higher-order methods is unphysical
oscillations (undershoots and overshoots) around the front, which require the introduction
of slope-limiters (LeVeque 2002).

The early papers applying higher-order methods in reservoir simulation date back to
the 1980s. Bell and Shubin (1985) presented a higher-order Godunov scheme for one- and
two-dimensional five-spot problems with miscible and immiscible displacement flow mod-
els. In Rubin and Blunt (1991), Blunt and Rubin (1992) and Rubin and Edwards (1993),
the authors show how higher-order total variation diminishing (TVD) schemes can be
applied to one- and two-dimensional simplified reservoir simulation. Chen et al. (1993)
used second-order TVD- and third-order essentially non-oscillatory (ENO) schemes to
minimize grid orientation effects and improve front resolution on the 2D five-spot model.
In May and Berger (2013) proposed to use constraint optimization with linear program-
ming to compute the reconstruction in a higher-order method. And Chen and Li (2016)
further proposed an improved linear-programming scheme that did not require an initial
gradient computation.

Despite continued research of higher-order methods in reservoir simulation (Durlofsky
et al. 1992; Harten 1997; Geiger-Boschung et al. 2009; Lamine and Edwards 2015; Contre-
ras et al. 2016; Mykkeltvedt et al. 2017), most implementations are done in academic codes
with Cartesian or simplex meshes. Only a few researchers applied them to implementation-
intensive corner-point grids that capture complex geometries of subsurface reservoirs. In
Lie et al. (2020), a weighted-ENO (WENO, introduced in Jiang and Shu 1996; Liu et al.

102

111A Second‑Order Finite Volume Method for Field‑Scale Reservoir…

1 3

1994) method was applied to simplified test cases on reservoir-type grids. In Klemetsdal
et al. (2020), a discontinuous Galerkin (DG) method (introduced for transport problems in
Cockburn and Shu 1989) was applied for compositional flow on realistic reservoir meshes.
DG are very promising for such problems; however, since most industrial simulators rely
on a data layout corresponding to that of first-order FV methods, the implementation of
DG methods in industrial codes will be even more complicated than reconstruction-based
higher-order FV methods.

In Klöfkorn et al. (2017), the authors compared three second-order schemes, each with
several limiting techniques on different 2D and 3D grids, including corner-point examples.
The study concluded that the second-order method with reconstruction based on optimiza-
tion with linear programming (second-order LP method) was among the best methods for
3D cases. Moreover, the second-order LP method was most suitable for implementation in
the full-scale reservoir simulator OPM Flow.

In this paper, we present and verify the implementation of the second-order LP method
in a full-scale reservoir simulator. To show the method’s capabilities, we run WAG and
CO2 injection scenarios on a medium-sized synthetic reservoir with an unstructured grid
and the openly available Norne field. We constructed experiments that isolate and high-
lights the effects of components’ transport, for which the simulation quality will deteriorate
for the classical methods. The implementation is done in OPM Flow, an open reservoir
simulator capable of modeling the black-oil model as fast and accurately as conventional
commercial reservoir simulators (Rasmussen et al. 2021; Lauser et al. 2018; Sandve et al.
2018). The open-source access allows us to integrate new features directly and verify
them on industry-standard test cases and field studies. This means that the second-order
method is readily available for practical reservoir simulation. A reservoir engineer wanting
to increase the accuracy and improve the fluid front positioning and resolution can start
the simulation with the higher order flag –enable-higher-order instead of going
through the time-consuming and work-intensive process of grid refinement.

The paper is organized as follows: We start by describing the first- and second-order
finite volume methods on reservoir discretizations. Section 3 presents the numerical results
on realistic cases. We summarise the results in Sect. 4.

2 Discretization

In this section, we discuss discretization used in the fully-implicit numerical method for
solving the black oil model extended with a solvent component (22–24).

Let us start by introducing a computational grid T of the domain Ω ⊂ Rd and denoting
�T as a tessellation of the boundary �Ω . In the classical cell-centered finite volume method
the unknown function is approximated by a piece-wise constant function, which takes the
average value of the unknowns for each discretization element (Eymard et al. 2000). The
finite volume method uses an integral formulation of the model Eqs. (22–24) applied on
each element of the computational grid. For the sake of simplicity, all further derivations
will be done for the water component equation from (23):

As for time discretization we use an implicit Euler method. Following the derivations from
LeVeque (2002) and Eymard et al. (2000), we integrate the water component equation over

(1)
�

�t
AW − ∇ ⋅

�wk

Bw

(
∇p� − ��g

)
= QW .

103

112 A. Kvashchuk et al.

1 3

the element E ∈ T , apply the Gauss theorem and get the implicit formulation of a classical
finite volume scheme:

where the superscripts n and n + 1 denote the time step, Qn+1
�

 is the averaged in time inte-
gral over the element of the right-hand side, AW is the accumulation term of the water com-
ponent, nij is the outer normal to the intersection eij and �n+1

w
 is the water mobility, which

is equal to the ratio of the relative permeability function to the water viscosity. As we are
modeling reservoirs, which typically are isolated from the surrounding rocks, a no-flow
boundary condition is assumed.

The two accumulation terms are linear and can be easily computed using the averaged
values at each element. The integral in the right-hand side can, in principle, be approxi-
mated using any quadrature rule, we choose the midpoint rule:

To calculate the gradient of the pressure we use the standard two-point flux approximation
(Aavatsmark 2007; Alyaev et al. 2014) and the gravitational acceleration is approximated
using the arithmetic mean. The mobility function �n+1

w
 , on the other hand, is non-trivial to

compute. Let us denote it as:

The reconstruction of the phase mobility function will determine the type of the numerical
method. As discussed in Lie et al. (2020), one can use either primary variables or the phase
mobilities to reconstruct the second-order method. We compared the results when recon-
structing primary variables and mobilities in the test run and observed that the choice did
not influence the results significantly. Also reconstructing mobilities extends the current
version of OPM more naturally. Therefore, in this paper, we chose to reconstruct the phase
mobilities in the presented second-order method implementation.

In the first-order method, we use a simple upwind scheme for the mobility evaluation
and the mid-point rule for the integral:

where �−
ij
 is the mobility function on the element E and �+

ij
—on the neighboring element

E′ . For boundary elements, the boundary condition value is used instead of the neighbor-
ing value or the same value in the case of a no-flow boundary, which is typical in reservoir
modeling. Now, when all the terms in (2) are discretized, we can repeat the same procedure
with the obvious modifications for the other components and get a non-linear system of
equations. The solution of the system is computed by the Newton method with an auto-
matic differentiation approach for the computation of Jacobian matrices. More details on
the use of automatic differentiation in OPM can be found in Lauser et al. (2018).

(2)(�AW)
n+1 = (�AW)

n +
dt

|E| ∮�E

�n+1
w

k

Bw

(
∇pn+1

w
− �wg

)
⋅ n dx + Qn+1

�
,

(3)
∮
�E

�n+1
w

k

Bw

(
∇pn+1

w
− �wg

)
⋅ n dx

≈
∑
eij∈�E

|eij|
�n+1
w

(xij)k(xij)

Bw

(
∇pn+1

w
(xij) − �w(xij)g(xij)

)
⋅ nij.

(4)�n+1
w

(xij) = �ij
w
.

(5)�ij
w
=

{
�−
ij

if
(
∇pn+1

w
− �wg

)
⋅ nij ≤ 0,

�+
ij

otherwise,

104

113A Second‑Order Finite Volume Method for Field‑Scale Reservoir…

1 3

For second-order methods we use a reconstructed linear function for every element:

where wE is the coordinates of the barycenter of the element E , and ∇LE is the gradient that
needs to be computed. For clarity of notation, we are dropping the water component index
w in the mobility function. The same procedure is applied to all the mobility functions.
Afterward, the same upwind scheme (5) is used, however, instead of �−

ij
 and �+

ij
 we use the

reconstructed L−
ij
 and L+

ij
 , which corresponds to the linear reconstructions functions evalu-

ated on the intersections barycenter on element E and its neighbor E′ , respectively:

In order to reconstruct the linear function we need to compute a gradient ∇LE on each ele-
ment. Below we discuss one possible approach to computing the gradient and therefore the
linear function.

2.1 Linear Programming Reconstruction

One option to compute the gradient for the linear reconstructions is by solving an optimi-
zation problem for each cell. The idea of using linear programming (LP) for reconstruc-
tion and limiting the gradient was presented in May and Berger (2013). The algorithm for
obtaining the linear reconstruction still consists of two steps: computation of the initial
gradient and solving a constrained optimization problem, where the goal is to minimize the
difference between the initial and the limited gradients while satisfying monotonicity con-
straints. Each component of the multidimensional gradient is limited separately using sca-
lars, which means that in the end the direction of the initial gradient could be changed (in
contrast with scalar limiters, when all gradient’s components are multiplied with the same
scalar). Chen and Li (2016) addressed this in the paper, where they presented a method
that does not require an initial gradient computation. Indeed, since both the direction and
the length of the gradient can be changed by the LP algorithm, it would be beneficial com-
putationally to omit the initial gradient computation. As the authors point out in Chen and
Li (2016), the two algorithms give different optimal solutions, however, they also present a
theorem, where they prove that the obtained gradient is sufficiently close to the unlimited
least squares gradient. The approach used in this paper is based on Chen and Li (2016) and
will be briefly described below.

Linear programming is an optimization method to find an extremum of the objective
function under the linear constraints (Nocedal and Wright 2006). In our case, we want to
minimize the difference between reconstructed values and the cell-averaged values without
violating the monotonicity conditions:

This means that the reconstructed function evaluated in the center of every neighboring
element should be bounded by minimum and maximum from the cell-averaged values of
the current element and the neighbor. The elements center is calculated as an average of
the corner coordinates. This will allow better numerical accuracy and reduce the numerical

(6)
LE(x) ∶ = �E + ∇LE ⋅ (x − wE),

LE(wE�) = �E� , ∀(E,E
�) ∈ �E,

(7)�ij
w
=

{
L−
ij
(w(E,E�)) if

(
∇pn+1

w
− �wg

)
⋅ nij ≤ 0,

L+
ij
(w(E,E�)) otherwise,

(8)min{�E, �E� } ≤ LE(wE�) ≤ max{�E, �E� }, ∀(E,E
�) ∈ �E.

105

114 A. Kvashchuk et al.

1 3

diffusion without creating spurious oscillations. This monotonicity condition essentially
acts like a minmod limiter applied to the gradient of the reconstructed function.

The standard form of the linear programming problem is:

where c̃ and x̃ are vectors from ℝn , vector b̃ belongs to ℝm , and Ã ∈ ℝ(m×n).
As it was said before, we are minimizing the total gaps between the reconstructed values

and the cell-averaged values at the neighboring cells:

which is equal to

where v and ṽ are variables defined as

As it was pointed out in Chen and Li (2016), the difference vE� − ṽE� has the same sign as
vE′ , which brings us to the following LP problem:

where

The transition from max to min formulation in (14) is straightforward, so we will just write
down how matrix A and vectors b and c from (9) will look like. The unknown vector x is
the gradient of the linear reconstruction x = [∇Lx

E
,∇L

y

E
,∇Lz

E
]T . The matrix A and vectors

c and b are:

(9)min c̃Tx̃ subject to Ãx̃ = b̃, x̃ ≥ 0,

(10)�(L) ∶=
∑

∀(E,E�)∈�E

∣ �E� − LE(wE�) ∣,

(11)
∑

∀(E,E�)∈�E

∣ �E� − LE(wE�) ∣ =
∑

∀(E,E�)∈�E

∣ �E� − �E − ∇LE ⋅ (wE� − wE) ∣

(12)=
∑

∀(E,E�)∈𝜕E

∣ vE� − ṽE� ∣,

(13)ṽE� = ∇LE ⋅ (wE� − wE) and vE� ∶= 𝜆E� − 𝜆E.

(14)
max

∑
∀(E,E�)∈�E

sgn(vE�)(wE� − wE) ⋅ ∇LE

subject to v−
E� ≤ (wE� − wE) ⋅ ∇LE ≤ v+

E� ,

(15)
v−
E� = min{0, �E − �E� },

v+
E� = max{0, �E − �E� }.

(16)c =

⎡
⎢⎢⎢⎢⎢⎢⎣

�
∀(E,E�)∈�E

sgn(vE�)(xE� − xE)

�
∀(E,E�)∈�E

sgn(vE�)(yE� − yE)

�
∀(E,E�)∈�E

sgn(vE�)(zE� − zE)

⎤⎥⎥⎥⎥⎥⎥⎦

,

106

115A Second‑Order Finite Volume Method for Field‑Scale Reservoir…

1 3

We start the iteration process with zero gradient

which corresponds to the first-order scheme. Following May and Berger (2013) and
Chen and Li (2016), an all-inequality simplex method is used as a linear programming
solver. Compared to the usual simplex method, the advantage of this method is that it is
much faster on problems where the number of constraints is bigger than the number of
unknowns, which is the case for polyhedral meshes where each cell has many neighbors.
A detailed description of the all-inequality simplex algorithm can be found in the appen-
dix of May and Berger (2013). Further on in this paper, we will refer to this method as the
second-order LP method.

3 Numerical Results

In this chapter, we test and compare the methods on two realistic reservoirs. In the first test
case, we compare the methods on a medium-sized realistic reservoir with an unstructured
corner point grid when modeling water-alternating gas injection (WAG), Sect. 3.1. This
test case provides a complicated setup in terms of the presented fluids and their interac-
tions; however, the reservoir is relatively small and does not contain complex features like
faults, regions, etc. After that, we present the simulation results on the Norne field, an open
data set of a real reservoir on the Norwegian Continental Shelf. We run three different
experiments on the Norne field. First, we model a piston-type injection on homogeneous
and heterogeneous Norne fields to observe reduced smearing for the second-order method,
Sect. 3.2. Second, we run the first-order method on a refined Norne model to validate
the front resolution of both methods, Sect. 3.2. And finally, we present the carbon diox-
ide injection test case on a heterogeneous Norne field with its full complexity, Sect. 3.3.
We run several setups to compare the accuracy of the front position of the second-order
method in less and more complex conditions. We constructed experiments that isolate and
highlights effects of components’ transport, for which the simulation quality will deterio-
rate for the classical methods.

3.1 Medium‑Sized Realistic Reservoir

In this test case, we model a three-phase flow with four components on a 3D domain with
an unstructured grid. The phases are the same as in the standard black-oil model: oleic,
gaseous, and aqueous. The components are oil, gas, water, and solvent. The domain is a
rectangular hexahedron, which is 7014 m long in X and Y directions and 120 m long in the
Z direction, having 14 × 14 × 3 grids cells, each 501 m by 501 m by 40 m, see left part of
Fig. 1. It is located 8325 m below the surface and has two wells—an injector in the lower

(17)A =

⎡⎢⎢⎢⎢⎢⎢⎣

xE1
− xE yE1

− yE zE1
− zE

⋮ ⋮

xE� − xE yE� − yE zE� − zE
−(xE1

− xE) − (yE1
− yE) − (zE1

− zE)

⋮ ⋮

−(xE� − xE) − (yE� − yE) − (zE� − zE)

⎤⎥⎥⎥⎥⎥⎥⎦

, b =

⎡⎢⎢⎢⎢⎢⎢⎣

v+
E1

⋮

v+
E�

−v−
E1

⋮

−v−
E�

⎤⎥⎥⎥⎥⎥⎥⎦

,

(18)x =
[
∇Lx

E
,∇L

y

E
,∇Lz

E
]T = [0, 0, 0

]T
,

107

116 A. Kvashchuk et al.

1 3

left corner and a producer in the upper right. Both wells are under rate control with a target
rate of 12,000 STB/day. The BHP target is set to 1000 psia for the producer and 10000 psia
for the injector. The fluid properties are adopted from the well-known SPE5 benchmark
(Killough and Kossack 1987). On this reservoir, we will run both first- and second-order
methods. As we do not know the “true” solution, we will also run first-order method on a
refined grid (28 × 28 × 3 grid cells) and view it as the reference solution. Note, we refine
the grid only in X and Y direction, since fluid flow mostly happening in this direction.

The schedule in this test case emulates WAG (water alternating gas) injection with 1
and 5-year cycles. During the first 2 years, we perform depletion of the reservoir and only
produce without injecting. After the first 2 years, we do 20 years of WAG injection with
1 year cycle, meaning that we inject water for one full year and follow it with gas injection
for the next full year, both with a constant rate. Afterward, we change the schedule and
inject gas for 5 consecutive years and water for the next 5 years. The simulation is finished
with 5 more years of gas injection, which gives us 15 years of WAG injection with 5-year
cycle. The schedule has two cycle schedules in one, first with the short and second with the
long span, which will help us to show how the methods perform in different conditions.

Initially, the reservoir is filled with oil in the top layers and water in the bottom. The oil
in the reservoir is light and has a certain fraction of gas mixed into it. The injected gas con-
sists only of solvent, which is a mix of several components, but mostly consists of methane.

Let us now examine the production rate curves for all the components. We will start
with the solvent production rate, see Fig. 2. Three curves in the figure correspond to the
result produced by the first- and second-order methods on the coarse grid and a reference
first-order method on the refined grid. Throughout the whole simulation time, we see an
agreement between the second-order method and the reference method. We zoom into
three parts of the production rate curve: first, to the time when the solvent first reaches the
producer, second, the waves of 1-year WAG injection, and third, to the last wave of the
5-year WAG injection. In the first, we see that both the second-order method and first-order
on fine grid method predict later arrival time and sharper front for the solvent production.

Fig. 1 Top and west views of the coarse and refined medium-sized reservoir, described in the Sect. 3.1

108

117A Second‑Order Finite Volume Method for Field‑Scale Reservoir…

1 3

This agrees very well with the results obtained for the simple immiscible fluid displace-
ment cases, presented in Klöfkorn et al. (2017). We see a 3-month difference between the
first- and second-order methods’ curves reaching 200 MSCF/day level of production. In the
two later stages, we also see a noticeable difference in the results: the second-order method
tends to show later arrival of the fronts. It also predicts higher local maximums and lower
local minimums, which is expected as the second-order method reduces smearing.

Gas and oil production rates are shown in Fig. 3. We plot them together because they
share one interesting feature. We observe a gas wave formed due to the pressure drop in
the reservoir during the first 2 years of depletion. The gas that was initially dissolved in
the oil was realized and formed a separate sharp gas wave. And therefore, around 1995
we observe a pick in gas production and a drop in oil production. The first-order method
on the refined grid confirms the front position obtained by the second-order method.

Fig. 2 Solvent production rate: whole simulation time on the left and three zoom-ins on the right

109

118 A. Kvashchuk et al.

1 3

The second-order method, therefore, outperforms the first order in the accuracy of the
positioning of the sharp front.

Let us examine closely the water production rate, see Fig. 4. Here we see two
“waves”: first at the beginning of 1988 and second at the beginning of 1995. However,
the second-order method gives identical results to the first order on the first wave and
predicts a later arrival of the waterfront for the second wave. The reason for it is the
nature of those peaks in water production. The water production rate is plotted together
with the solvent production rate, such that we know when the injected fluid reaches the
producer. And in our case, it happens only in 1995 (May 1995 for the first order and
December 1995 for the second to reach 50 STB/day production rate). This means that
before that time we produce the reservoir water and its behavior, especially during the
first 2 years when there is no injection, is pressure driven. And as we do not improve the
pressure calculations, the production curves for the first- and second-order methods are
identical. However, when the injected water reaches the producer, we see the transport

Fig. 3 Gas and oil production rates during the whole simulation time on the right and zoom-ins on the right

110

119A Second‑Order Finite Volume Method for Field‑Scale Reservoir…

1 3

phenomena and the second-order method predicts the later arrival of the waterfront, and
the reference method agrees with it.

In summary, whenever the transport phenomena were dominant for all production rate
curves, we saw an improved front position and reduced smearing for the second-order
method compared to the first-order. The result was verified by the result of the first-order
method on the refined grid.

3.2 Simulation on the Norne Field

The Norne field is an oil and gas sandstone reservoir on the Norwegian continental shelf.
It is one of the few fields where the simulation model together with production data was
published under an open content license. Since then it became a benchmark field model.

In order to compare the performance of the first- and second-order FV methods on a
realistic reservoir, we are going to use the benchmark simulation model with a grid block
size of approximately 100 m and a refined Norne model with a grid block size of approxi-
mately 50 m. Since this is a real reservoir, we do not know the analytical solution even to
the simplest production/injection schedule. That is why we will use the Norne field with
the refined grid, such that we can compare the results of the second-order method with

Fig. 4 Production rates of water and solvent during the whole simulation on the right and zoom in on the
left

111

120 A. Kvashchuk et al.

1 3

the results of the first-order method on the refined grid. The previous study on the simple
geometry reservoirs (Kvashchuk et al. 2019) suggests that the second-order method accu-
racy in the front position detection can be compared with the first-order only on the refined
grid.

Following Lie et al. (2020) we construct a simple piston-type injection example on
the Norne field. In order to do so, first we use homogeneous porosity and permeability
throughout the whole reservoir and neglect regions and fault multipliers, that are used in
the original model. Second, we fill the whole reservoir with “red” fluid and inject “blue”
fluid through the east side. Red and blue liquids have the same properties such that we
can isolate the fluid displacement effects. Third, we put two production wells on the other
side such that the injected fluid can flow through the reservoir. Finally, we run simula-
tions for almost 25 years (9000 days) for both the first- and second-order methods. The
field after 4.5 years is shown in Fig. 5. The top row corresponds to the homogeneous case
and the bottom to the heterogeneous. The difference is more visible for the homogeneous
grid, which also agrees with the curves in Fig. 7. The curves in the figure represent the
ratio of the red fluid produced in the reservoir to the total fluid volume. Figure 6 shows
the actual difference between the results on each grid cell in December 2002, 5 years and
1 month after the simulation started. The curves in Fig. 7 agrees with the results reported
in Lie et al. (2020). We see that the second-order finite volume method reduces the smear-
ing effect and that the reduction is more pronounced on the homogeneous media.

We verify the results obtained above by running the same simulation on the refined
Norne grid. We refine the original grid block, which is approximately 100 m, in X and Y
directions, and get a refined Norne model with a grid block size of approximately 50 m.
Since we are focusing on fluid displacement and it is happening in the X–Y plane, we do
not refine cells in the Z direction, where mostly gravity effects take place. The results on
the refined grid confirm the behavior of the second-order method that we saw in Klöfkorn
et al. (2017) and Kvashchuk et al. (2019) and in the previous example—it gives a sharper
front and predicts its position closer to what is obtained with the first-order method on the
refined grid, see Fig. 8. In Fig. 8 we see very good agreement between the higher order
method and the first-order method on the refined grid in predicting the arrival time of the
fluid front. However, when it comes to later stages of production (around the year 2020),

Fig. 5 Homogeneous (top) and heterogeneous (bottom) Norne field in the middle of production, east view.
The results for the first order are on the left, and for the second order on the right side. Here we can clearly
see the reduced smearing for the second-order method on the homogeneous Norne

112

121A Second‑Order Finite Volume Method for Field‑Scale Reservoir…

1 3

the first- and second-order methods on the coarse grid produce the same result, while the
first-order on the refined grid predicts a lower number. The results of the first- and second-
order methods on the same grid differ only in how much the front is spread: it is spread
more for the first-order method and is sharper (less spread) for the second-order. That is
why after the front is resolved they agree and stay on the same level.

3.3 Carbon Dioxide Injection on Norne

In order to test the performance of the second-order method in more realistic conditions,
we set up a CO2 injection test case. Even though the Norne field is not a primary candidate
for the CO2 injection, it can give valuable insight into how the methods compare to the
realistic field scale model.

For ease of simulation, we will have only two wells—one injector and one producer.
However, the rest of the complexity of the field is present—we have faults, regions, het-
erogeneity, etc. Also, we change the initial conditions—in this test case, the reservoir is
filled only with oil at the start of the simulation. The CO2 is injected at a constant rate
of 100,000 sm3/day from the start of the simulation and for consecutive 5000 days. We
assume the injected CO2 is miscible in oil when its gas fraction is more than 0.01. We use

Fig. 6 Difference between the results of the first- and second-order methods

113

122 A. Kvashchuk et al.

1 3

Fig. 7 The ratio of red liquid produced compared to the volume of total liquids produced in the Norne res-
ervoir. The full simulation time is on the left, and on the right we zoom in from 2000 to 2006

Fig. 8 The ratio of red liquid produced compared to the volume of total liquids produced in the standard
and refined Norne reservoir. The full simulation time is on the left and from 2003 to 2008—on the right

114

123A Second‑Order Finite Volume Method for Field‑Scale Reservoir…

1 3

the “MISC” keyword (Baxendale 2022) to define that fluid is immiscible at low concentra-
tions and switches to miscible behavior when the concentration increases. For all simulated
scenarios, the production well is placed in the middle of the reservoir and is controlled by
a liquid rate target of 4000 sm3/day. It is a horizontal well in layer 13 with wellhead coor-
dinates I = 13 and J = 39 . The injector well will be placed in three different places: first,
the two wells are in the same compartment meaning that there are no faults between them,
second—the injector and producer are separated by just one fault; and third, the injector
well is placed in the corner of the reservoir surrounded by faults, see Fig. 9.

The resulting CO2 (solvent) production rate curves are presented in Fig. 10. In the first
scenario, solvent reaches the producer faster than in the other two as there are no faults
between the two wells. We also observe 105 days difference between the first- and second-
order methods’ prediction of when the solvent production rate reaches 1000 sm3/day. In
two other cases, when we have faults between the injector and producer, we see the same
trend—the second-order method predicts the later arrival of the carbon dioxide; however,
the difference is less: solvent production rate reaches 1000 sm3/day with 70 days difference
for the “behind one fault” case and 65 days difference for the “corner” case. It shows that
the increased complexity of the reservoir can overshadow the effects gained by using a
higher-order computational method. However, we still observe a relevant difference in the
front positioning when using the higher-order method.

4 Conclusion

We showed that the presented second-order linear programming method predicts the fluid
front position more accurately and decreases the numerical diffusion on realistic reservoir
models. We also verified the results with the first-order method on the refined grid, both for
the medium-sized reservoir and the Norne test case. In all the presented test cases, we saw
that the second-order method would predict the position of the fluid front as accurately as
the first order on the refined grid.

We also observed that the result depends on the type of fluid flow. When pressure
effects dominated the fluid flow, we did not observe significant improvements, which
is not surprising as we did not improve the accuracy of the pressure computation. In
general, the more complex fluid flow we have, the harder it is to model the process
and interpret the result. For example, in the simple scenario of carbon dioxide injec-
tion on a complex Norne field, we observed that the difference between the first- and
second-order methods results depends on the number of faults between the injector
and the producer. And for piston-type injection, the smearing was reduced more for

Fig. 9 Positions of the wells in the Norne CO2 injection scenarios: left for the wells in the same compart-
ment, middle–wells are separated by a fault, right—injection well in the corner

115

124 A. Kvashchuk et al.

1 3

the homogeneous grid than for the heterogeneous. More testing in realistic settings is
needed to answer under which conditions the higher-order methods are most helpful.

A significant advantage of the presented second-order method is the fact that it is
implemented in the open reservoir simulator OPM Flow (Open porous media), where
using the higher order method is a simple task of switching the flag when starting
the simulation. This allows for immediate usage and further testing in realistic set-
tings and facilitates future improvements and extensions of the presented method. This
means faster learning and more informed decisions when modeling the fluid flow in the
reservoir.

Fig. 10 Solvent production rate for the three scenarios of solvent injection on Norne. The subplots zoom
into the times of solvent arrival for each scenario: (1) Wells in the same compartment; (2) Wells separated
by a fault; (3) Injection well in the corner

116

125A Second‑Order Finite Volume Method for Field‑Scale Reservoir…

1 3

Appendix 1. Modeling Equations

Black‑Oil Model

The black-oil model is a three-phase three-component model, which is an industry-
standard model for the reservoir processes (Chen et al. 2006). Let us state below the
assumptions and equations that are governing the model. As phases and components
share the same names (gas, water, and oil), we will use different indices in order to
distinguish between them: index � ∈ {w, g, o} (“water”, “gas” and “oil”) for phases
and index � ∈ {W,G,O} (“Water”, “Gas” and “Oil”) for components. The miscibility
assumptions are:

• water and gas phases are immiscible,
• the water phase is composed only of water,
• gas phase may contain vaporized oil,
• the oil phase is assumed to be a mixture of gas and oil components.

The densities of the phases are determined by so-called formation volume factors, which
is the ratio of the phase volume measured at reservoir conditions �� to the phase volume
measured at standard conditions ��sc:

Here and later on, we will use subscript sc to indicate that quantity was measured at stand-
ard condition.

The water density can be computed using just the water volume formation factor. In
order to compute oil and gas densities, we need to introduce gas solubility Rs (also called
dissolved gas-oil ratio), which is the volume of gas at standard conditions VGsc divided by
the volume of oil at standard conditions VOsc given that they were both obtained from some
amount of oil phase at reservoir conditions:

and oil volatility Rv , which is the volume of oil at standard conditions VOsc divided by the
volume of gas at standard conditions VGsc given that they were both obtained from some
amount of gas phase at reservoir conditions:

This allows for calculating all quantities required for the mass-conservation equations for
each component. All three equations share the same structure:

where � is the porosity, A�—the accumulation term, v� and Q� is the mass flux and source
or sink term of the phase � respectively. For each component � the accumulation term and
the mass flux are:

(19)B� ∶=
��

��sc
.

(20)Rs ∶=
VGsc

VOsc

,

(21)Rv ∶=
VOsc

VGsc

.

(22)
�

�t
(�A�) + ∇ ⋅ v� = Q� ,

117

126 A. Kvashchuk et al.

1 3

The phase flux u� is determined by the standard multi-phase Darcy equation (Nordbotten
and Celia 2011), i.e.

where k is the permeability, g - gravity, and kr,� , �� , �� , p� are relative permeability, vis-
cosity, density and pressure of the phase � respectively.

The Model with Solvent

In this study, we use the black-oil model extended with the solvent equation instead of a
fully compositional model. This choice has been made in OPM to reduce the computa-
tional time and to ease the implementation of the CO2-EOR injection scenario (Sandve
et al. 2018). However, the proposed second-order methods are not limited to this model and
in principle can be used in any other formulation. To extend the black-oil model we add the
following equation:

Additionally, the presence of solvent influences relative permeability and viscosity, and
these become effective relative permeability kr�e and effective viscosity ��e . The effective
properties depend on the miscibility factor M and are defined as follows:

Here krgt is the total relative permeability of the gas phase, Sn is the total hydrocarbon
saturation and Sor and Sgc is the residual oil saturation and the critical gas saturation,
respectively.

Effective viscosities are calculated using the Todd-Longstaff mixing parameter w (Todd
and Longstaff 1972):

(23)

AW =
Sw

Bw

,

AO =
So

Bo

+
RvSg

Bg

,

AG =
Sg

Bg

+
RsSo

Bo

,

vW =
uw

Bw

,

vO =
uo

Bo

+
Rvug

Bg

,

vG =
ug

Bg

+
Rsuo

Bo

.

(24)u� = −
kr,�

��

k
(
∇p� − ��g

)
,

(25)As =
Ss

Bs

, vs =
us

Bs

.

(26)kroe =M ⋅
So − Sor

Sn − Sgc − Sor
⋅ krn + (1 −M) ⋅ kro,

(27)krge =M ⋅
Sg + Ss − Sgc

Sn − Sgc − Sor
⋅ krn + (1 −M) ⋅

Sg

Sg + Ss
krgt,

(28)krse =M ⋅
Sg + Ss − Sgc

Sn − Sgc − Sor
⋅ krn + (1 −M) ⋅

Ss

Sg + Ss
krgt.

(29)�oe = �1−w
o

⋅ �w
mos

, �ge = �1−w
g

⋅ �w
msg

, �se = �1−w
s

⋅ �w
m
.

118

127A Second‑Order Finite Volume Method for Field‑Scale Reservoir…

1 3

The fully mixed viscosities for the oil and solvent mixture �mos , the gas and solvent mixture
�msg , and the oil, gas, and solvent mixture �m are computed using the standard mixing rule
(Todd and Longstaff 1972).

Acknowledgements Anna Kvashchuk acknowledges Alexey Khrulenko for help with the refined Norne
model and many fruitful discussions. Anna Kvashchuk also acknowledges Equinor ASA for support. Robert
Klöfkorn acknowledges the INTPART project INSPIRE (274883). Anna Kvashchuk and Robert Klöfkorn
acknowledge the Research Council of Norway and the industry partners, ConocoPhillips Skandinavia AS,
Aker BP ASA, Eni Norge AS, Equinor ASA, Neptune Energy Norge AS, Lundin Norway AS, Hallibur-
ton AS, Schlumberger Norge AS, Wintershall Norge AS, and DEA Norge AS, of The National IOR Cen-
tre of Norway for support. Tor Harald Sandve acknowledges the CLIMIT program (617115) and Equinor
ASA for support. The authors three anonymous reviewers for thoughtful comments that helped improve the
manuscript.

Funding Open access funding provided by University of Stavanger & Stavanger University Hospital.
Authors Anna Kvashchuk and Robert Klöfkorn received support from the Research Council of Norway and
the industry partners ConocoPhillips Skandinavia AS, Aker BP ASA, Eni Norge AS, Equinor ASA, Nep-
tune Energy Norge AS, Lundin Norway AS, Halliburton AS, Schlumberger Norge AS, Wintershall Norge
AS, and DEA Norge AS, of The National IOR Centre of Norway (230303). Author Anna Kvashchuk has
received research support from Equinor ASA. The contribution of Robert Klöfkorn was also supported by
the INTPART project INSPIRE (274883). The contribution of Tor Harald Sandve was supported by the
CLIMIT program (617115). The authors have no relevant financial or non-financial interests to disclose. All
authors contributed to the study’s conception and design. Data collection and analysis were performed by
Anna Kvashchuk, Robert Klöfkorn, and Tor Harald Sandve. The first draft of the manuscript was written by
Anna Kvashchuk, and all authors commented on previous versions of the manuscript. All authors read and
approved the final manuscript.The datasets generated during and/or analysed during the current study are
available in the second-order-opm-tests repository, https://github.com/kvashchuka/second-order-opm-tests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aavatsmark, I.: Interpretation of a two-point flux stencil for skew parallelogram grids. Comput. Geosci.
11(3), 199–206 (2007)

Alyaev, S., Keilegavlen, E., Nordbotten, J.M.: Analysis of control volume heterogeneous multiscale methods
for single phase flow in porous media. Multiscale Model. Simul. 12(1), 335–363 (2014)

Baxendale, D.: OPM flow reference manual (2022-10). Open Porous Media Initiative (2022)
Bell, J., Shubin, G.: Higher-order godunov methods for reducing numerical dispersion in reservoir simula-

tion. In: SPE Reservoir Simulation Symposium. OnePetro (1985)
Blunt, M., Rubin, B.: Implicit flux limiting schemes for petroleum reservoir simulation. J. Comput. Phys.

102(1), 194–210 (1992)
Celia, M.A., Nordbotten, J.M.: Practical modeling approaches for geological storage of carbon dioxide.

Groundwater 47(5), 627–638 (2009)
Chen, L., Li, R.: An integrated linear reconstruction for finite volume scheme on unstructured grids. J. Sci.

Comput. 68(3), 1172–1197 (2016)
Chen, W., Durlofsky, L., Engquist, B., Osher, S.: Minimization of grid orientation effects through use of

higher order finite difference methods. SPE Adv. Technol. Ser. 1(02), 43–52 (1993)
Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media, vol. 2. SIAM,

Philadelphia (2006)

119

128 A. Kvashchuk et al.

1 3

Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M.,
Ennis-King, J., Fan, Y., et al.: A benchmark study on problems related to CO2 storage in geologic for-
mations. Comput. Geosci. 13(4), 409–434 (2009)

Coats, K.H., Thomas, L., Pierson, R.: Compositional and black oil reservoir simulation. In: SPE Reservoir
Simulation Symposium. OnePetro (1995)

Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method
for conservation laws. II. general framework. Math. Comput. 52(186), 411–435 (1989)

Contreras, F., Lyra, P., Souza, M., Carvalho, Dd.: A cell-centered multipoint flux approximation method
with a diamond stencil coupled with a higher order finite volume method for the simulation of oil-
water displacements in heterogeneous and anisotropic petroleum reservoirs. Comput. Fluids 127, 1–16
(2016)

Durlofsky, L.J., Engquist, B., Osher, S.: Triangle based adaptive stencils for the solution of hyperbolic con-
servation laws. J. Comput. Phys. 98(1), 64–73 (1992)

ECLIPSETM 2014.2 (2014). http:// www. softw are. slb. com/ produ cts/ eclip se
Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. 7,

pp. 713–1018 (2000)
Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P.,

Tatomir, A., Wolff, M., et al.: Dumux: Dune for multi-phase, component, scale, physics, flow and
transport in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011)

Geiger-Boschung, S., Matthäi, S.K., Niessner, J., Helmig, R.: Black-oil simulations for three-component,
three-phase flow in fractured porous media. SPE J. 14(02), 338–354 (2009)

Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 135(2), 260–278
(1997)

Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1),
202–228 (1996)

Jung, Y., Pau, G.S.H., Finsterle, S., Pollyea, R.M.: Tough3: a new efficient version of the tough suite of mul-
tiphase flow and transport simulators. Comput. Geosci. 108, 2–7 (2017)

Killough, J.E., Kossack, C.A.: Fifth comparative solution project: evaluation of miscible flood simulators.
In: SPE Symposium on Reservoir Simulation (1987). https://doi.org/10.2118/16000-MS

Klemetsdal, Ø.S., Rasmussen, A.F., Møyner, O., Lie, K.-A.: Efficient reordered nonlinear gauss-seidel solv-
ers with higher order for black-oil models. Comput. Geosci. 24(2), 593–607 (2020). https://doi.org/10.
1007/s10596-019-09844-5

Klöfkorn, R., Kvashchuk, A., Nolte, M.: Comparison of linear reconstructions for second-order finite vol-
ume schemes on polyhedral grids. Comput. Geosci. (2017). https:// doi. org/ 10. 1007/ s10596- 017- 9658-8

Kvashchuk, A., Klöfkorn, R., Sandve, T.H.: Comparison of higher order schemes on complicated meshes
and reservoirs. In: SPE Reservoir Simulation Conference. OnePetro (2019)

Lake, L.W.: Enhanced oil recovery (1989)
Lamine, S., Edwards, M.G.: Multidimensional upwind schemes and higher resolution methods for three-

component two-phase systems including gravity driven flow in porous media on unstructured grids.
Comput. Methods Appl. Mech. Eng. 292, 171–194 (2015)

Lauser, A., Rasmussen, A., Sandve, T., Nilsen, H.: Local forward-mode automatic differentiation for high
performance parallel pilot-level reservoir simulation. In: ECMOR XVI-16th European Conference on
the Mathematics of Oil Recovery, vol. 2018, pp. 1–12. European Association of Geoscientists andEn-
gineers (2018)

Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cam-
bridge (2002)

Lichtner, P.C., Hammond, G.E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R.T., Kumar, J., Frederick,
J.M.: PFLOTRAN user manual. Technical report (2019). http:// docum entat ion. pflot ran. org

Lie, K.-A.: An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the
MATLAB Reservoir Simulation Toolbox (MRST). Cambridge University Press, Cambridge (2019).
https:// doi. org/ 10. 1017/ 97811 08591 416

Lie, K.-A., Mykkeltvedt, T.S., Møyner, O.: A fully implicit WENO scheme on stratigraphic and unstruc-
tured polyhedral grids. Comput. Geosci. 24(2), 405–423 (2020)

Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1),
200–212 (1994)

May, S., Berger, M.: Two-dimensional slope limiters for finite volume schemes on non-coordinate-aligned
meshes. SIAM J. Sci. Comput. 35(5), 2163–2187 (2013)

Mykkeltvedt, T.S., Raynaud, X., Lie, K.-A.: Fully implicit higher-order schemes applied to polymer flood-
ing. Comput. Geosci. 21(5), 1245–1266 (2017)

120

129A Second‑Order Finite Volume Method for Field‑Scale Reservoir…

1 3

Mykkeltvedt, T.S., Gasda, S.E., Sandve, T.H.: CO2 convection in hydrocarbon under flowing conditions.
Transp. Porous Media 139(1), 155–170 (2021)

Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)
Nordbotten, J.M., Celia, M.A.: Geological Storage of CO2: Modeling Approaches for Large-Scale Simula-

tion. Wiley, New Jersey (2011)
Rasmussen, A.F., Sandve, T.H., Bao, K., Lauser, A., Hove, J., Skaflestad, B., Klöfkorn, R., Blatt, M.,

Rustad, A.B., Sævareid, O., Lie, K.-A., Thune, A.: The open porous media flow reservoir simulator.
Comput. Math. Appl. 81, 159–185 (2021). https:// doi. org/ 10. 1016/j. camwa. 2020. 05. 014

Rubin, B., Blunt, M.: Higher-order implicit flux limiting schemes for black oil simulation. In: SPE Sympo-
sium on Reservoir Simulation. OnePetro (1991)

Rubin, B., Edwards, M.: Extension of the TVD midpoint scheme to higher-order accuracy in time. In: SPE
Symposium on Reservoir Simulation. OnePetro (1993)

Sammon, P.H., Kurihara, M., Jialing, L.: Applying high-resolution numerical schemes in reservoirs
described by complex corner-point grids. In: SPE Reservoir Simulation Symposium. OnePetro (2001)

Sandve, T.H., Rasmussen, A., Rustad, A.B.: Open reservoir simulator for CO2 storage and CO2-EOR. In:
14th Greenhouse gas control technologies conference Melbourne, pp. 21–26 (2018)

Todd, M., Longstaff, W., et al.: The development, testing, and application of a numerical simulator for pre-
dicting miscible flood performance. J. Pet. Technol. 24(07), 874–882 (1972)

Trangenstein, J.A., Bell, J.B.: Mathematical structure of the black-oil model for petroleum reservoir simula-
tion. SIAM J. Appl. Math. 49(3), 749–783 (1989)

Voskov, D.V., Tchelepi, H.A.: Comparison of nonlinear formulations for two-phase multi-component EoS
based simulation. J. Pet. Sci. Eng. 82, 101–111 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

121

	Acknowledgements
	Abstract
	List of Papers
	Contents
	List of Figures
	Introduction
	Mathematical models of flow in porous media
	Physical properties
	Darcy's law
	Single-phase flow
	Two-phase immiscible flow
	Black-oil equations
	The black oil model extended with the solvent component

	Finite volume methods for conservation laws
	General finite volume formulation for conservation laws
	Important properties of the numerical methods
	Convergence of the numerical method
	Stability of the numerical method
	Order of the numerical method
	Total variation diminishing numerical method

	Centered methods
	First-order centered methods
	Second-order centered methods

	The upwind method
	High-resolution methods
	Flux-limiter methods
	Slope-limiter methods

	Second-order finite volume methods for reservoir simulation
	General second-order finite volume method for black-oil model
	Least squares reconstruction
	Selective linear reconstruction
	Linear programming reconstruction

	Implementation in OPM
	The Open Porous Media Initiative
	Instructions of building and running second-order methods in OPM Flow
	Build instructions for OPM Flow with second-order methods
	Running OPM Flow with second-order methods

	High-level overview of OPM Flow
	Newton iteration and automatic differentiation
	Variables reconstructed when using second-order scheme.
	Common changes required for second-order FV methods
	Second-order stencil
	Second-order discretization

	Implementation of the second-order method with least-squares reconstruction
	Implementation of the second-order method with linear programming reconstruction. All-inequality simplex method.

	Summary of the included papers
	Testing second-order FV methods and slope-limiters on general polyhedral and corner-point grids [Paper A]
	Convergence study of second-order FV implementation in OPM Flow [Paper B]
	Validation of OPM Flow's second-order methods for practical EOR simulations [Paper C]

	Conclusions and future work
	Bibliography
	Papers
	Paper A
	Paper B
	Paper C
	Paper D
	Paper E

