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Abstract. Conventional physics-based models can demand substantial computational resources 
when employed for operational optimization. To allow faster system simulations that can be 
employed for operational optimization, a surrogate model of the CO2 heat pump has been 
developed using an artificial neural network (ANN). The ANN model takes in six (6) inputs: 
evaporator water-side mass flow, its temperature, gas cooler water-side mass flow, its 
temperature, set-point output temperature, and high-side heat pump pressure. The model’s 
outputs comprise the electrical energy needed to run the heat pump, the heat from the gas coolers, 
the temperature of the heat pump-heated fluid, and the outlet temperature of the heat pump’s 
evaporator. Data used for training, validating, and testing the ANN model were generated by 
running a calibrated Modelica model of the CO2 heat pump for various combinations of input 
parameters obtained from Latin hypercube sampling. The ANN model developed includes an 
input layer with 6 inputs, 2 hidden dense layers, each with 30 neurons, and an output layer for 4 
outputs (6-30-30-3). The ReLU activation function was implemented on each hidden layer and 
no regularizations were imposed. The Adam optimizer was used with a learning rate of 0.001 
specified. Early stopping (patience = 2000) was implemented to ensure that the training data was 
not overfitted. A maximum of 30000 epochs was specified. The resulting Mean Square Error 
(MSE) obtained for the training, validation, and testing data sets were 1.38x10-5, 2.05x10-5, and 
3.65x10-5, respectively. When tested against one-week operational runs generated by Modelica, 
the Root Mean Square Errors (RMSEs) for coefficient of performance (COP)s for spring, 
summer, autumn, and winter operations obtained were 0.232, 0.346, 0.089 and 0.076, 
respectively. The resulting surrogate ANN model can be integrated into the system model as a 
functional mock-up unit within Modelica to facilitate faster simulations for operational 
optimization.  

1.  Introduction 
Powered by low-emissions electricity, heat pumps play a key role in the global transition to sustainable 
heating and cooling. It is estimated to have the potential to reduce global carbon dioxide (CO2) emissions 
by at least 500 million tons in 2030, which is roughly the same amount of annual CO2 emissions of all 
cars in Europe today [1]. With the pace of heat pump installation growing at record levels, it is necessary 
that this growth is accompanied using working fluids/refrigerants that have low global warming 
potential (GWP). Unfortunately, some of the commonly used working fluids nowadays have very high 
GWP. For instance, R134a, which is widely used in domestic hot water (DHW) production, has a GWP 
that is 1300 times higher than that of CO2 [2]. These high-GWP refrigerants can leak during 
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manufacturing, installation, maintenance, and disposal, offsetting the benefits that heat pumps can bring. 
However, using a low-GWP refrigerant for an incompatible system can result in an inefficient heat pump 
system, which can lead to using more energy and emitting more CO2. Having good operational 
efficiency while using low-GWP refrigerants is the ideal set up.  

Carbon dioxide is possibly one of the most promising low-GWP refrigerants. It has zero ozone 
depletion potential and a GWP of 1. Additionally, it is non-toxic, non-flammable, easily available, and 
affordable[3]–[5]. The modern use of CO2 in a trans-critical cycle was first proposed by Lorentzen [6]. 
Its most distinct difference from the conventional cycle is its use of a gas cooler instead of a condenser, 
accommodating a relatively large temperature glide in the heat rejection process [7]. So far, it has been 
commercially applied in combined cooling, heating, ventilation, and air conditioning in supermarkets 
[8], [9]; water heating [10]; and car air conditioning [11].  

A Modelica [12] model of a trans-critical CO2 heat pump, based on the 6.5 kW test rig constructed 
and tested by Stene [13, 14], has been developed and calibrated and was then integrated into a system 
model that utilizes borehole heat exchangers (BHEs), solar thermal collectors (SC), and a thermal energy 
storage (TES) tank for space and water heating [15]. Typically, optimization has to be performed for 
every energy system installation due to vastly different weather conditions, occupancy profiles, energy 
tariffs, government tariffs, system components, and building types [16]. Sazon et al. [17] studied the 
optimization of the design of this CO2 solar-assisted ground source heat pump (SAGSHP) system for 
West Norway climate and demand and showed that compared to a conventional SAGSHP system, it can 
perform at a slightly lower seasonal efficiency, but at a comparable levelized cost of heating (LCOH). 
To further improve the performance of this system, it has been recommended to explore the optimization 
of its operations as well.  

Studies about optimizing the operation of a CO2 heat pump system typically focus on (1) controlling 
the compressor operation to take advantage of the variability in electricity prices or (2) controlling the 
gas cooler pressure to maximize efficiency.  

Heat pumps, when coupled with TES, can be operated flexibly to benefit from the variability of 
electricity tariffs. This is implemented by shifting electricity import from high-demand to low-demand 
periods, which helps in managing grid stress and averting peak plant operation [18]. By running the 
compressor during periods of low-electricity-price to charge the TES, stored heat can then be discharged 
later to meet demand when electricity prices are higher. Several studies have already investigated load 
shifting in conventional heat pumps [16, 18–21].  

It is well known that CO2 heat pumps exhibit an optimal gas cooler pressure due to the distinct 
working mode in the trans-critical region [22, 23]. Because of this, several studies have been 
implemented on developing empirical optimal pressure correlations or algorithms for maximizing the 
coefficient of performance (COP) or other performance metrics [24–32]. Typically, this is conducted 
offline using experiments, physics-based system modeling, and thermodynamic cycle simulations [24]. 
The experiment-based approach is straightforward but can be expensive and time-consuming. 
Correlations developed from this method can also be quite limited to the testing conditions during the 
conduct of the experiments. Thermodynamic cycle simulation is usually preferred over the physics-
based approach because it requires fewer modeling efforts. However, simple optimal pressure 
correlations based on thermodynamic simulation usually ignore some parameters and cannot model 
complex non-linear thermal fluid behaviors [24].  

The benefit of using Modelica to model the CO2 SAGSHP system is that detailed simulation 
characteristics of the energy system can be obtained. This can be done by using component models of 
the system that are calibrated or validated. However, these tools can be computationally expensive, more 
importantly when used for optimization problems that involve predictive control [16, 21]. One of the 
ways to overcome this is to replace component models that require heavy computations with a surrogate 
model that uses machine learning methods such as an artificial neural network (ANN) [33].  ANN is a 
rapidly emerging technology that has been widely applied for system optimization and modeling in 
energy and process systems [34]. Conventional thermodynamic analysis involves many iterations that 
cause much time in calculation. In comparison, ANN can correlate complex non-linear relationships 
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between input and output parameters more quickly, with no complicated iteration[34]. For CO2 heat 
pumps, ANN has been utilized in some studies [7, 35]. 

In this study, a surrogate model of a trans-critical CO2 heat pump in a SAGSHP system was 
developed using ANN. The model will eventually be utilized and integrated into the system model as a 
functional mock-up unit within Modelica to facilitate faster simulations for operations optimization 
studies.  

2.  Methods 
A surrogate model of a trans-critical CO2 heat pump, based on the 6.5 kW test rig constructed and tested 
by Stene [13, 14], has been developed using ANN. The surrogate model is meant to replace a calibrated 
model of a CO2 heat pump in a SAGSHP system in the Modelica environment.  

 
Figure 1. The Modelica Model of the trans-critical CO2 heat pump: (a) showing the underlying 

components of the heat pump and (b) showing the inputs and outputs to the ANN model.  

2.1.  The Modelica model of the trans-critical CO2 heat pump 
The CO2 heat pump model developed in this work was based on a 6.5 kW prototype unit. It consists of 
the counter-flow tripartite gas coolers, an evaporator, a compressor, a throttle valve, a suction gas heat 
exchanger (SGHX), a sub-cooler, and a low-pressure receiver (Figure 1a). Although the prototype can 
function in three modes (space heating only, domestic hot water (DHW) heating only, and simultaneous 
space and DHW heating), the model in this work was only calibrated for simultaneous space and DHW 
heating. It was developed using the Thermal Systems library [36] in the Dymola interface [37]. The 
Thermal Systems library, also synonymous with the TIL suite, is a commercial Modelica library for 
modeling thermo-fluid systems. It can be used to model various components, such as heat pump cycles, 
hydraulic networks, ventilation, and so on. It uses the TSMedia library to calculate the thermophysical 
properties of fluid and fluid mixtures. The model was calibrated against measured data at design 

a 

b 
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conditions of the heat pump by adjusting the heat transfer coefficients of the heat exchangers (gas 
coolers, evaporator, internal heat exchanger) and the efficiency of the compressor. Details about the 
specifications of the CO2 heat pump components and the calibration of the model are given in [15, 38]. 
In [17], this CO2 heat pump model was integrated into a system that comprises of BHEs, SCs, and a 
TES and was used for space and DHW heating for climate and demand conditions in Western Norway.    

2.2.  Data preparation for training, validation, and testing of the ANN model 
The Modelica model of the CO2 heat pump was run for 10,000 combinations of input parameters to 
obtain the data needed to develop the ANN model. The inputs to the model were (1) the fluid mass flow 
to the water side of the evaporator (Evap_MF), (2) the temperature of this fluid (Evap_T), (3) the mass 
flow of the fluid to the water side of the gas coolers (GC_MF), (4) the temperature of this fluid (GC_T), 
(5) the set point output temperature (Tsetpoint) (controlled by adjusting the compressor speed), and (6) 
the gas cooler pressure set point (P_GC) (controlled by adjusting the throttle valve opening) (Figure 1b). 
Some of these parameters connect to the other components of the energy system while some can be 
controlled to optimize performance. The outputs chosen were (1) power consumption (Pcomp), (2) the 
total heat output (Heat_GC), (3) the output temperature of the heat pump (T_GC_out), and (4) the outlet 
temperature of the heat pump’s evaporator (T_evap_out). The 10,000 combinations of input parameters 
that were simulated using the Modelica model were obtained using Latin hypercube sampling [39]. The 
value ranges (Table 1) for every input parameter were decided based on observed values from full-year 
simulations [17]. Each case was run for 15000 seconds to ensure that steady conditions of the outputs 
were obtained. 

Table 1. The lower and upper bounds of the input parameters. 

Input Parameters Lower bound Upper bound 
Evaporator water side mass flow, kg/s 0.2 0.8 
Evaporator water side temperature, °C -5 25 
Gas cooler water side mass flow, kg/s 0.0085 0.048 
Gas cooler water side temperature, °C 15 55 
Output temperature, °C 60 70 
Gas cooler pressure, MPa 8.5 10 

Some combinations of input parameters that are known to produce unfavorable heat pump 
performance, i.e., it both fails to reach the target output temperature and produces very low COPs, were 
filtered out from use in the development of the ANN model. This occurrence can happen when 
combinations of the following are met: the temperature of the fluid to the gas cooler is too high, the 
mass flow to the gas cooler is too low, or the evaporation temperature is too high. Only 6604 data points 
remained after doing this.  

These data were then divided into training, testing, and validation sets. Twenty percent (20%) of the 
whole set was set for testing the ANN model. Afterward, 20% of the remainder was used for validation. 
All that remained were used for training the model. Given this, the training set, testing set, and validation 
set got 4226, 1321, and 1057 input/output combinations.  

Since the different inputs and outputs have different magnitudes and units, it is necessary to subject 
all of them to normalization to remove the bias to parameters with high magnitudes. Here, min-max 
scaling was done. Min-max normalization is done by subtracting the minimum value from the data and 
then dividing this by the difference between and minimum and maximum values in the parameter set. 
This shifted and rescaled the values of every parameter, so they all ended up ranging from 0 to 1. 
Histograms of the normalized outputs in the training, testing, and validation sets for every input and 
output are given in Figures 2 and 3, respectively. It can be seen that the different values of the inputs 
and outputs seem to be equivalently represented in the data splits.   



Fourth Conference of Computational Methods & Ocean Technology
IOP Conf. Series: Materials Science and Engineering 1294  (2023) 012060

IOP Publishing
doi:10.1088/1757-899X/1294/1/012060

5

 
 
 
 
 
 

 
Figure 2. The histograms showing the splits of the inputs for training, testing, and validation: (a) mass 

flow of waterside evaporator fluid, (b) fluid temperature water side evaporator, (c) mass flow of 
waterside gas cooler fluid, (d) fluid temperature waterside gas cooler, (e) set point output temperature, 

and (f) set point gas cooler pressure. 

 
Figure 3. Histograms showing the splits of the labels for training, testing, and validation: (a) power 
consumption, (b) thermal energy generated, (c) output temperature of the heat pump, and (d) outlet 

temperature of the heat pump’s evaporator.  

2.3.  Hyperparameter tuning and ANN model evaluation 
The three (3) output parameters from the Modelica model were used as labels in the training of the ANN 
model. This was treated as a batch supervised regression problem and was implemented using Keras 
[40] in Python. The ANN was trained through backpropagation [41]. 

The hyperparameters tuned in this study include (1) the number of neurons, (2) the number of dense 
layers, (3) the optimizer, (4) the learning rate, (5) activation functions, and (6) the number of epochs. 
Early stopping was implemented as a callback to ensure that overfitting the training set was avoided. 

The model was trained using mean square error (MSE) as the loss function. 
𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤��

2𝑛𝑛
𝑖𝑖=1      (1) 

The metrics used to evaluate the model’s performance after training and during model evaluation is 
the root mean square error (RMSE) 
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𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = �1
𝑛𝑛
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤��

2𝑛𝑛
𝑖𝑖=1      (2) 

Where n is the number of data points, 𝑌𝑌𝑖𝑖 are the observed values, and 𝑌𝑌𝑖𝑖 are the predicted values.  

3.  Results and discussions 
The iterations involved in solving physics-based models make them computationally heavy. 
Comparably, ANN can correlate complex non-linear relationships between the inputs and outputs 
(labels) in a quicker way, without complicated iterations. When compared to statistical models, it has 
also been seen to perform at a higher accuracy [42]. After data generation and filtering, the ANN model 
was trained using backpropagation while considering six (6) input parameters (Evap_MF, Evap_T, 
GC_MF, GC_T, Tsetpoint, P_GC) and 3 outputs (Pcomp, Heat_GC, T_GC_out).  

3.1.  ANN model hyperparameter specifications 
The training set, testing set, and validation set containing 4226, 1321, and 1057 input/output 
combinations, respectively were inputted to data frames in Python and used to develop the ANN model. 
The performance of an ANN significantly depends on its structure and hyper parameter settings. Here, 
the ANN performance was developed using trial and error approach. The loss function and metrics used 
were the MSE and the RMSE, respectively. 

In developing an ANN model, there is no one-size-fits all approach. Often, it involves a combination 
of experimentation and best practices. Here, we started with the simplest model with 1 layer and 5 
neurons while setting reasonable defaults for other hyper parameters. The number of neurons were 
increased until no significant improvement to the loss function was observed. By then, another hidden 
layer was added. The number of neurons investigated ranged from 5 to 50. The number of hidden layers 
from 1 to 3 were tested. Normalization of the inputs and outputs must be done to remove the biases to 
parameters with significant magnitudes. The min-max normalization was seen to give lower MSEs 
compared to standard scaling. The Adam optimizer outperformed other solvers, like SGD and RMSprop. 
Initially, SGD was giving better MSEs, but when the learning rate was reduced from 0.1 to 0.001, Adam 
performed better in terms of speed and accuracy. Among the activation functions tested (tanh, rectified 
linear unit (ReLU), sigmoid, scaled exponential linear unit (SELU)), ReLU gave the lowest MSEs. 
These observations underscore the iterative and dynamic nature of ANN model development, where a 
blend of experimentation and informed choices is essential to fine-tune the architecture and 
hyperparameters for optimal results.  

The resulting model after tuning the hyperparameters contains an input layer with 6 inputs, 2 hidden 
dense layers, each with 30 neurons, and an output layer for 4 outputs (6-30-30-4 structure). The ReLU 
activation function [43] was implemented on each hidden layer and no regularizations were imposed. 
The optimizer used was Adam [44] and a learning rate of 0.001 was seen to produce the best results for 
training. Early stopping, with a patience equal to 2000, and a maximum epoch of 30000 were specified.  

3.2.  Training, testing, and validation results  
The training of the ANN model terminated after 17627 epochs. Figure 4a below shows that the training 
and validation MSE decreased quickly at the start of the runs and remained almost constant until it 
satisfied the conditions for early stopping (patience = 2000). Figure 4b zooms into the last 500 epochs, 
showing the differences between the training and validation MSEs. Although a bit lower, the training 
losses obtained were comparable to the validation losses.  
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Figure 4. The MSE performance plot of the ANN during the training: (a) for the whole training period 

and (b) for the last 500 epochs.  
The resulting values of the MSE and RMSE for training, testing, and validation at the end of the 

training process are given in Table 2. All of them seem to be sufficiently small, inferring a good match 
between the data and the simulation. Additionally, the MSE and RMSE for the testing data set are very 
close to that of the train set. This implies the capability of the developed ANN model for generalization. 
Figure 5 illustrates the ANN model-generated values of the outputs compared to those generated by the 
Modelica model. Most data points have been matched.  

Table 2. MSE and RMSE for the training, validation, and testing sets. 

 Training Validation Testing 
MSE 1.38 x10-5 2.05 x10-5 3.65 x10-5 
RMSE 0.0037 0.0045 0.0060 

 
Training Validation Testing 

   

   

   

   
Figure 5. Match between the data and the ANN model-generated results for the training, validation, 

and testing sets.  

(a) (b) 
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3.3.  Testing the ANN model for operational runs  
To see if the training implemented is sufficient for the intended purpose, the ANN model was also tested 
against one-week operational runs generated in Modelica for different representative seasons (spring, 
summer, autumn, and winter). It can be seen that the model can follow the expected trends of output 
parameters of the CO2 heat pump (Figure 6). This is slightly more evident for autumn and winter 
operations than for spring and summer. The RMSEs for each output for every season are summarized 
in Table 3. It shows that the average error the ANN model generates seems to be within reasonable 
levels. In particular, the COPs it generated differ from the Modelica-generated COPs only by 0.076 to 
0.346. 

Spring Summer Autumn Winter 

    

    

    

    

    
Figure 6. Match between the data and the ANN model-generated results for 1-week operational runs 

for different seasons 

 
Table 3. RMSE for the model outputs for 1-week operation runs different seasons. 

 RMSE 
 Pcomp, W Heat_GC, W T_GC_out, °C T_evap_out, °C COP 

Spring 34.314 125.252 0.356 0.252 0.232 
Summer 32.410 123.414 0.204 0.145 0.346 
Autumn 31.990 95.921 0.489 0.346 0.089 
Winter 31.859 79.933 0.413 0.293 0.076 

4.  Conclusion 
Physics-based models of the trans-critical CO2 heat pump can entail significant computational resources, 
particularly when used for operational optimization and predictive control. One way to bypass this is to 
replace them with a surrogate model developed using ANN. In this study, we successfully developed an 
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ANN-based surrogate model for a trans-critical CO2 heat pump in a SAGSHP system. The key 
takeaways from this work can be summarized as follows: 

• The selection of input parameters for the ANN model was based on three criteria: (1) 
controllability during operations, (2) strong correlation with the chosen outputs, and (3) 
dependence on inputs from other system components. In this work, the inputs considered include 
(1) the fluid mass flow to the water side of the evaporator (Evap_MF), (2) the temperature of this 
fluid (Evap_T), (3) the mass flow of the fluid to the water side of the gas coolers (GC_MF), (4) 
the temperature of this fluid (GC_T), (5) the set point output temperature (Tsetpoint), and (6) the 
gas cooler pressure set point (P_GC).    

• The selected outputs should represent the CO2 heat pump's performance and supply the necessary 
input data for interconnected system components. In this work, the outputs chosen were (1) power 
consumption (Pcomp), (2) the total heat output (Heat_GC),  (3) the output temperature of the heat 
pump (T_GC_out), and (4) the outlet temperature of the heat pump’s evaporator. 

• Normalization is essential for both inputs and outputs to eliminate biases resulting from 
parameters with significant magnitudes. In this work, it was seen that min-max normalization 
generated lower MSEs and RMSEs.  

• For the CO2 heat pump considered in this work, an ANN architecture comprising an input layer 
with 6 inputs, 2 hidden dense layers, each with 30 neurons, and an output layer with 4 outputs (6-
30-30-4) yielded satisfactory results with reasonable MSEs and RMSEs. The ReLU activation 
function was implemented on each hidden layer and no regularizations were imposed. The Adam 
optimizer was used with a learning rate of 0.001. Early stopping (patience = 2000) was 
implemented to ensure that the training data was not overfitted. A maximum of 30000 epochs was 
specified.  

• The resulting MSE for the training, validation, and testing data sets were 1.38x10-5, 2.05x10-5, and 
3.65x10-5, respectively. Correspondingly, the RMSE for the training, validation, and testing data 
sets were 0.0037, 0.0045, and 0.0060, respectively. These results demonstrate a reasonable 
alignment between the model and the data.  

• The ANN model was also tested against the Modelica model for one-week operational runs for 
different seasons. The results indicate favourable performance, with RMSEs for the COP to be 
0.232, 0.346, 0.089, and 0.076, for spring, summer, autumn, and winter, respectively. This 
demonstrates its suitability for operational simulations. 
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