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Abstract

Nonlinear Conservation Laws of Partial Differen-
tial Equations (PDEs) are widely used in differ-
ent domains. Solving these types of equations is
a significant and challenging task. Graph Neural
Networks (GNNs) have recently been established as
fast and accurate alternatives for principled solvers
when applied to standard equations with regular
solutions. There have been few investigations on
GNNs implemented for complex PDEs with non-
linear conservation laws. Herein, we explore GNNs
to solve the following problem

ut + f(u, β)x = 0 (∗)

where f(u, β) is the nonlinear flux function of the
scalar conservation law, u is the main variable, and
β is the physical parameter. The main challenge of
nonlinear conservation laws is that solutions typi-
cally create shocks. That is, one or several jumps
in the form (uL, uR) with uL ̸= uR moving in space
and probably changing over time such that infor-
mation about f(u) in the interval associated with
this jump is not present in the observation data.
We demonstrate that GNNs could achieve accurate
estimates of PDEs solutions based on new initial
conditions and physical parameters within a spe-
cific parameter range.

∗Corresponding Author: qing.li@uis.no
§The authors contributed equally to this work.

1 Introduction

Machine learning methods have been widely used
to solve PDEs in science and engineering, for exam-
ple, aerodynamics [16, 3], electromagnetism [13],
geophysics [17] and weather prediction [1], etc.
According to [18, 7, 14, 10], GNNs have re-
cently been introduced and made much progress
in this area, offering faster runtimes than princi-
pled solvers. Compared to grid-based convolutional
neural networks(CNNs) [20, 21], GNNs demon-
strated better adaptivity in the simulation scenar-
ios [22, 2, 5]. However, most currently published
papers use GNNs to resolve PDEs with regular so-
lutions, such as the Wave equation, the Poisson’s
equation, and the Navier-Stokes equations. These
tests have demonstrated that GNNs can resolve
these partial differential equations with high effi-
ciency and precision. How would GNNs perform if
we try to use it in the context of nonlinear conser-
vation laws?

In this paper, we implement GNN variants to
solve PDEs with nonlinear flux function f(u, β)
that is involved in general scalar nonlinear con-
servation laws. We restrict to the one-dimensional
case given by

ut + f(u, β)x = 0 (1)

where u = u(x, t) is the main variable and β is
a parameter of a physical phenomenon. We train
GNNs based on observation data u(xj , ti, βk) on a
spatial grid xj , j = 1, . . . , Nx at specified times
ti, i = 1, . . . , Nobs with some specific parameters
βk, k = 1, . . . , Nβ . Using learned GNNs, we pre-
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dict the solutions of Eq. (1) given new values of
parameter β and initial state u0.

Figure 1: Left: Example of nonlinear flux func-

tion f(u) = u2

u2+(1−u)2 (blue curve). Upper concave

envelope (brown curve) and lower convex envelope
(green curve) are also included. Right: The so-
lution of Eq. (1) at time T = 0.5 is shown (red
solid curve) together with its initial data u0(x) (red
dashed line).

Compared to equations with regular solutions,
Eq. (1) has some characteristics that make it more
challenging to solve. Typically, Eq. (1) generates
shock wave solutions u(x, t) in finite time, i.e., so-
lutions that contain one or more discontinuities ex-
pressed as a jump (uL, uR) with uL ̸= uR, though
the initial value u0(x) is smooth [8, 6]. In par-
ticular, the specific form of f(u) in the interval
[min(uL, uR),max(uL, uR)] is not used in the con-
struction of the entropy solution, only the slope

s = f(uL)−f(uR)
uL−uR

. As jumps arise and disappear
in the solution over the period for which observa-
tion data is collected, the data may lack informa-
tion about f(u). This situation is illustrated in
Fig. 1. In the left panel, we plot the flux function
f(u) = u2/(u2 + (1 − u)2). In the right panel, the
entropy solution is shown after a time T = 0.5. At
the time t = 0, the initial data u0(x) involves one
jump at x = 0 and another at x = 1. The initial
jump at x = 0 is instantly transformed into a solu-
tion that is a combination of a continuous wave so-
lution (rarefaction wave) and a discontinuous wave
(uL, uR) ≈ (0.3, 1.0), as dictated by the lower con-
vex envelope shown in the left panel (green curve)
[8]. Similarly, the initial jump at x = 1 is trans-
formed into a solution that is a combination of a
continuous wave solution (rarefaction wave) and a
discontinuous wave (uL, uR) ≈ (0.7, 0), by the up-
per concave envelope illustrated in the left panel

(brown curve) [8]. From this example, we see that
we have no observation data that directly can re-
veal the shape of f(u) in the interval u ∈ [0.3, 0.7]
(approximately).

2 Related Works

Several machine learning approaches are proposed
to solve the PDEs. Raissi et al. [15] introduced
the physics informed neural networks (PINNs) for
solving solutions of PDEs and learning the param-
eters in PDEs. However, the neural network meth-
ods struggle to learn the nonlinear hyperbolic PDE
that governs two-phase transport in porous me-
dia [4]. They experimentally indicated that this
shortcoming of PINNs for hyperbolic PDEs is not
due to the specific architecture or to the choice of
the hyperparameters, but rather to the lack of reg-
ularity in the solution. Long et al. [11, 12] pro-
posed a PDE-Net that combines numerical approx-
imations of differential operators and a symbolic
multi-layer neural network. They employed convo-
lutions to approximate differential operators and
deep networks to approximate the nonlinear re-
sponse. However, in our case, f(u)x can not be
written by f ′(u)ux as f(u) is not in general a dif-
ferentiable function in our problem. Recently, more
and more GNNs methods are being used to solve
PDE problems. Gao et al. presented a novel dis-
crete PINN framework based on Graph Convolu-
tional Networks (GCNs) and the variational struc-
ture of PDEs in [5]. This framework could solve for-
ward and inverse PDEs in a unified manner. Zhao
et al. used GNNs in conjunction with autodecoder
style priors to tackle PDE-constrained inverse prob-
lems [22]. In [2], authors combined GNNs with
some classical numerical methods, such as finite
differences, finite volumes, and WENO schemes to
solve PDEs problems. They experimentally proved
that this method has fast, stable, and accurate per-
formance across different domain topologies on var-
ious fluid-related flow problems. However, these
current works mainly use GNNs on some typical
equations with regular solutions. Several complex
equations with discontinuous solutions still need to
be researched. In a recent work [9], we intro-
duced a framework coined ConsLaw-Net that com-
bines a symbolic multi-layer neural network and an
entropy-satisfying discrete scheme to learn the non-
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Figure 2: The pipeline of the approach. For
each node ci, at time point tk, the last K solu-
tions (u(xi, tk−K+1), ..., u(xi, tk−1), u(xi, tk)), posi-
tion xi, current time tk, and equation parameters
βPDE are fed into GNNs. After the operators of
Encoder, Processor andDecoder, we get the infor-
mation increment of this node ci at the nextK time
points: (d(xi, tk+1), d(xi, tk+2), ..., d(xi, tk+K)). Fi-
nally, we get solutions of the next K time points by
u(xi, tk+l) = u(xi, tk) + (tk+l − tk)d(xi, tk+l), 1 ≤
l ≤ K.

linear, unknown flux function f(u) without param-
eter β.

3 Method

3.1 Graph Neural Networks (GNNs)

In this paper, we leverage GNNs with encoder pro-
cessor decoder structure to learn a fast-forward
model that predicts solutions of PDEs. We model
the domain X as a graph G = (V, E) with node
ci ∈ V, edges lij ∈ E . The features of node ci are
remarked by fi ∈ Rc and the edges lij define local
neighborhoods. An overview of the approach that
we use is shown in Fig. 2.

Encoder Encoder computes node embed-
dings. For each node ci, the operator of
Encoder maps the last K solution values
(u(xi, tk−K+1), ..., u(xi, tk−1), u(xi, tk)), node posi-
tion xi, current time tk, and equation parameters

βPDE to node embedding vector

fi =ϵ([u(xi, tk−K+1), ..., u(xi, tk−1), u(xi, tk)

, xi, tk,βPDE ])
(2)

where ϵ representing the operator of Encoder.
Processor Processor contains M layers with

intermediate graphs Gm, m = 1, 2, ...,M . Eq. (3)
and Eq. (4) is the messaging of edges and the
information update of node ci, respectively.

• edge cj → ci message:

mm
ij = ϕ(fm

i ,fm
j , u(xi, tk−K+1)− u(xj , tk−K+1)

, ..., u(xi, tk)− u(xj , tk), xi − xj ,βPDE)

(3)

• node ci update:

fm+1
i = ψ

fm
i ,

∑
j∈N(i)

mm
ij ,βPDE

 (4)

where N(i) holds the neighbors of node ci, and ϕ
and ψ are multilayer perceptrons (MLPs). Using
relative positions xi − xj can be justified by the
translational symmetry of the PDEs we consider.
Solution differences ui−uj make sense by thinking
of the message passing as a local difference opera-
tor, like a numerical derivative operator.
Decoder After Processor, we use a shal-

low convolutional network to output the K next
timesteps information increment at grid point
xi ∈ X. The result is a new vector di =
(d(xi, tk+1), d(xi, tk+2), ..., d(xi, tk+K)) with each
element d(xi, tk+l), 1 ≤ l ≤ K corresponding to
different time point tk+l.
Readout After GNNs with the structure of en-

coder processor decoder, we get solutions of the
next K time points by

u(xi, tk+l) = u(xi, tk) + (tk+l − tk)d(xi, tk+l) (5)

where 1 ≤ l ≤ K.

3.2 Data Generator

We investigate a discretization of the spatial do-
main [0, L] in terms of {xi}Nx−1

i=0 where xi = (1/2+
i)∆x for i = 0, . . . , Nx − 1 with ∆x = L/Nx.
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Algorithm 1: CFL

Input: L: length of the spatial domain; Nx:
the number of spatial grid cells;
f(u): the nonlinear flux function; T :
computational time period;

Output: ∆t: local time interval

Function CFL(L,Nx, f(u), T):
∆x = L/Nx

M = max
u

|f ′(u)|
dt = ( 34∆x)/(M + 0.0001)
n time = ⌊T/dt⌋
∆t = T/n time
return ∆t;

End Function

Furthermore, we consider time lines {tn}Nt
n=0 with

Nt∆t = T . The discretization of Eq. (1) is based
on the Rusanov scheme [8] which is expressed as

un+1
j = un

j − λ(Fn
j+1/2 − Fn

j−1/2), λ =
∆t

∆x
,

un+1
1 = un+1

2 , un+1
Nx

= un+1
Nx−1

(6)

with j = 2, . . . , Nx − 1 and the Rusanov flux takes
the form

Fn
j+1/2 =

f(un
j ) + f(un

j+1)

2

−
max{|f ′(un

j )|, |f ′(un
j+1)|}

2
(un

j+1 − un
j ).

The Courant–Friedrichs–Lewy(CFL) condition [8]
determines the magnitude of ∆t for a given ∆x.
We detail the CFL condition in Algorithm 1. We
illustrate how to learn the solution U = {u(xj , t

n)}
of the discrete conservation law Eq. (6) in Algo-
rithm 2.

4 Experiments

Experiment Setup
In this section, we study a class of nonlinear con-
servation laws that are naturally from the prob-
lems where one fluid is displaced by another fluid
in a vertical domain. The displacement process
involves a balance between buoyancy and viscous

Algorithm 2: DataGenerator

Input: T : computational time period; Nx:
the number of spatial grid cells; L:
length of the spatial domain;
u0 = {u0(xj)}Nx

j=1: initial state set of
dimension Nx; f(u): the flux
function;

Output: U = {un
j }: the solution based on

initial state u0;

∆t = CFL(L, Nx, f(u), T )
∆x = L/Nx

U [0] = u0

ũ = u0

for n = 1,...,T/∆t do
for j = 1,...,Nx - 1 do

Fj+1/2 = 1
2 (f(ũj) + f(ũj+1))−

max{|f ′(ũj)|,|f ′(ũj+1)|}
2 (ũj+1 − ũj)

end
for j = 2,...,Nx - 1 do

uj = ũj − ∆t
∆x

(
Fj+1/2 − Fj−1/2

)
end
u1 = u2

uNx = uNx−1

ũ = u
U [i] = u

end

Figure 3: Flux function Eq. (7).

forces. Depending on the properties of the used flu-
ids, there could be various displacement processes.
One can derive a family of flux functions f(u, β) in
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(a) β = −252 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.5, if x ∈ [2.575, 4.3]

0.0, otherwise
.
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(b) β = 264 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.88, if x ∈ [4.675, 6.4]

0.0, otherwise
.
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(c) β = 360 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.86, if x ∈ [2.675, 4.4]

0.0, otherwise
.

Figure 4: Solutions of (1) based on different initial states and values of β at time point t = 0.8, 1.2, 1.6
and 2.0, respectively. In each subplot, the solid red line is the true solution obtained by Algorithm 2,
and the blue dashed line is the solution predicted by the trained GNNs.

Eq. (1) which takes the form [19]

f(u, β) =
1

2
u(3−u2)+

β

12
u2

(
3

4
− 2u+

3

2
u2 − 1

4
u4

)
,

(7)

where the parameter β ∈ (−400, 400) represents
the balance between gravity (bouyancy) and vis-
cous forces. We study the solution of Eq. (1) at
t ∈ [0, 2] in x ∈ [0, 10]. As shown in Fig. 3, dif-
ferent values of β result in different types of flux
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(b) β = 192 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.74, if x ∈ [3.55, 5.275]

0.0, otherwise
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(c) β = 336 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.76, if x ∈ [2.475, 4.2]
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.

Figure 5: Solutions of (1) based on different initial states and values of β at time t ∈ [0.0, 2.0]. The left
subplot is the real solutions of Eq. (1). The middle subplot is the solutions generated by GNNs, and the
right subplot is the error of real and predicted u(x, t).

6



functions.
We use Algorithm 2 to generate 500 samples with

different values of β and initial states. The values
of β are randomly selected from (0, 300) and initial
states are from [0.0, 1.0]. We consider the obser-
vation in terms of x-dependent data at fixed times
{t∗i }

Nobs
i=1 extracted from the solution U as follows:

Usub =
{
u(xj , t

∗
1), u(xj , t

∗
2), . . . , u(xj , t

∗
Nobs

)
}

(8)

where j = 1, . . . , Nx, Nx = 400 with ∆x = 0.025
and Nobs = 250 with ∆tobs = 0.008.
For training, we split Usub into five parts of

length 50 in terms of time. Values of u(x) for the
first 25 time points are used to predict u(x) for the
following 25 time points, i.e., K = 25 in Eq. (5). In
the testing, we use the first stage, which contains 25
time points of u(x) to predict the solutions of the
second stage, and then predict u(x) at the third
phase based on the predicted value of the second
stage. This process is repeated until T = 2.

Results and discussions

The total number of trainable parameters is
0.28M. We set epoch = 30 and divide the 100 test
samples into three groups according to β, (i)G1:
50 examples with β ∈ (−400, 0), (ii)G2: 30 exam-
ples with β ∈ (0, 300),(iii)G3: 20 examples with
β ∈ (300, 400).

We randomly select one sample β =
−252, 264, 360 from each group. Fig. 4 displays the
exact and predicted u(x, t) of these selected exam-
ples with x ∈ [0, 10] at time t = 0.8, 1.2, 1.6, 2.0.
All the examples show that the error between exact
and predicted values of u(x) increases with time.
Notably, the model cannot predict the underlying
trend at t = 1.6 and t = 2.0 on the case selected
from G1. While, it performs very well on G2 and
G3. The result is also reflected in Table 1 that
counts MSE of G1, G2, G3. The MSE of G1 is 10
times higher than the MSE of G2 and G3.
Fig. 5 shows another set of samples from G1, G2,

G3 with x ∈ [0, 10) and t ∈ [0.4, 2.0]. When the
solution fluctuates, the model is prone to large pre-
diction errors. This phenomenon is also reflected
in Fig. 4. This phenomenon is probably related to
the discontinuity of the solutions of 1.
Experimental results show that the model can

predict more accurately when β is within a specific

Group G1 G2 G3

MSE 0.0268 0.004 0.0015

Table 1: The value of MSE for each group. We
calculate MSE of the true and predicted u(x, t) of
all samples with x ∈ [0, 10] and t ∈ [0.4, 2.0]in each
group.

range. However, when β deviates too much from
that used for the training model, the model’s pre-
dictive power is significantly reduced.

5 Conclusion

In this work, we apply GNNs to solve PDEs, which
are unique since their solutions usually contain
shocks. Our experiments demonstrate that the
GNN models can predict accurately when the pa-
rameter β is within a specific range. However,
when the parameter deviates far from the value
for training, the model’s predictive performance
drops sharply. Furthermore, the model is not very
good at predicting the discontinuity of the solu-
tions. There will be numerous small fluctuations
around the discontinuity. One of our future work
directions is to explore how to improve GNN’s be-
havior when handling discontinuous solutions or de-
velop new methods to deal with PDEs containing
shocks.
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