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Abstract 
In the evolving energy landscape, a shift away from traditional 
centralized power models is underway. Distributed energy 
generation (DEG) takes the spotlight, enabling consumers to 
utilize a tailored mix of energy sources. Micro gas turbines 
(MGTs) emerge as key players, providing dispatchable power to 
seamlessly address renewable source intermittency. Aligned with 
global energy policies emphasizing renewables and efficiency, 
MGTs contribute significantly to sustainability goals.  
This study aims to actively advance power generation technology 
towards higher efficiency and environmental responsibility, 
supporting the vision for a cleaner and more resilient energy 
future. The focus centers on enhancing the fuel versatility of 
MGTs and optimizing their integration within distributed energy 
systems. Aligned with the visionary goals of the NextMGT 
project, this endeavor focuses on advancing MGT technology for 
high efficiency, low emissions, and enhanced fuel flexibility.  
The journey begins with an exploration into optimizing an MGT 
for efficient hydrogen operation — a clean fuel and potential 
storage solution for surplus renewable power. Despite substantial 
progress in the laboratory and theoretical realms, the research 
spotlights a critical gap: the absence of reported operational 
instances of MGTs running with hydrogen. This underscores the 
imperative to bridge the divide between theoretical prowess and 
real-world applications, a recurring theme in the thesis. 
Concurrently, the research navigates the intricate integration of 
MGTs into DEG, particularly those fueled by hydrogen. 
Addressing the challenges of integration and optimization with 
renewable systems, artificial intelligence (AI) based on real-world 
data is employed to enhance microgrid performance. 
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Undertaking the mission to create a functional hydrogen-fueled 
MGT, the research confronts challenges such as combustion 
stability and emissions control. Through targeted modifications in 
combustor design and operational adjustments, the thesis 
emphasizes real-world testing, highlighting the crucial need for 
practical implementations. Notably, the outcome is an MGT 
demonstrating fuel flexibility with various methane and hydrogen 
combinations, capable of running on pure hydrogen, all while 
maintaining NOx emissions below the permitted values. 
A significant step in the research narrative involves adopting a 
dual-modeling approach—utilizing both physics-based and data-
driven models. The physics-based models, also known as white-
box models, rooted in physics for theoretical understanding, 
exhibit adaptability to diverse operational scenarios, aligning with 
steady state and transient responses. This model plays a crucial 
role during the developmental phase of the MGT for hydrogen and 
hydrogen-blended methane, assessing its operation in different 
scenarios. 
In addressing the integration of MGT within a microgrid, a data-
driven or black-box modeling approach is employed. These black-
box models, driven by empirical data, incorporating artificial 
neural networks (ANNs) and recurrent neural networks (CNNs), 
emerge as a robust framework for MGT modeling. The versatility 
of the method extends beyond MGTs, laying the groundwork for 
advancements in various renewable energy contexts. 
In a dedicated chapter, the study delves into microgrid integration 
and optimization. Here, a smart management system coordinates 
interactions among wind turbines, an MGT, and an electrolyzer. 
The optimizer navigates the complex terrain of economic gains 
and environmental sustainability. The findings emphasize the 
practical application of a smart management system in optimizing 
microgrid operations for economic efficiency, demonstrating the 
relevance of the research insights. 
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In response to Norway’s imperative to curtail emissions from 
offshore oil and gas operations, the research broadens its focus to 
optimize gas turbine operations within integrated systems. The 
research demonstrates adaptability by transitioning from onshore 
microgrids with MGTs to offshore scenarios with larger gas 
turbines, highlighting the transformative and generalizable 
capacity of methodologies and insights. The optimization of 
offshore microgrids results in considerable cost and emission 
reductions. The hybrid optimization approach, efficiently utilizing 
genetic algorithms alongside rapid database searches, enhances 
efficiency without an excessive demand for computing resources. 
Throughout this project, the strategic adoption of an infrastructural 
approach has been pivotal in the development of all models and 
programs. This deliberate choice ensured the effectiveness of 
transformative insights and a seamless adaptability and 
expandability of the work. Integrating hydrogen-fueled MGTs 
with advanced AI management tools moves beyond theory; it 
represents a practical step toward achieving sustainable 
development goals. From onshore microgrids to offshore 
scenarios, the research illustrates a commitment to real-world 
applications. Its impact extends beyond theoretical contributions, 
actively shaping a more sustainable, resilient, and eco-friendly 
energy future. Additionally, by identifying areas for future 
research, this thesis lays the foundation for ongoing advancements 
in sustainable energy solutions. 
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1 Introduction 
Presently, the conventional approach to large-scale power 
generation, reliant on fossil fuels or nuclear technology, has fallen 
out of favor among climate change scientists, regulators, and an 
increasing majority of voters. Instead, there is a growing emphasis 
on distributed energy generation (DEG), which empowers 
customers to choose and deploy diverse energy sources in smaller 
increments, tailored to their specific needs. This DEG paradigm 
facilitates power generation at or near the point of consumption, 
utilizing a range of technologies including micro gas turbines 
(MGTs), fuel cells, diesel and gas reciprocating engines, solar 
panels, and wind turbines. 
In response to the dynamic changes in energy technology, the 
NextMGT project emerged as an initiative dedicated to advancing 
the next generation of MGTs for high efficiency, low emissions, 
and fuel flexibility [1]. The current project, operating under the 
NextMGT framework, aims to make an impact on the progression 
of MGTs as a fundamental element of DEG. The primary goal is to 
enhance MGT technology, focusing on design, operation, and 
integration strategies, aligning with NextMGT objectives for a 
resilient European industry in distributed power generation. 
Building upon this context, this chapter provides a concise 
overview of the evolution of electricity generation schemes. It 
examines the current global energy policy and associated studies to 
highlight the potential role of MGTs in the upcoming power 
generation landscape. Emphasis is placed on the significance of 
continued research and development in enhancing MGT 
performance, and the research’s objectives and scope are 
delineated accordingly.  



 
 
 
 
 
 
Introduction   

 

 
 

2 

1.1 Background and Motivation 
It is widely acknowledged among experts that the abnormal 
increase in the earth’s average surface temperature is primarily 
attributed to the emission of greenhouse gases (GHGs). This 
pressing issue has become a topic of extensive discussions within 
national and international political spheres, as they actively seek 
viable solutions. 
The pressing challenge of the “energy problem” has spurred the 
United Nations Framework Convention on Climate Change into 
taking resolute measures through the “COP21 Agreement.” This 
agreement has notably reinforced policies addressing climate 
change, propelling the shift towards an energy paradigm 
characterized by low carbon emissions. 
In December 2011, the European Commission communicated on 
the topic “Energy Roadmap 2050”. The European Union (EU) is 
committed to reducing GHG emissions to 80-95% below 1990 
levels, aiming to be climate-neutral (with net-zero GHG 
emissions) by 2050. 
In October 2014 the EU adopted “Vision 2030”, outlining a clear 
path to increase the embracing of renewable energy technologies 
and improve power production efficiency. Their ambitious targets 
include a 40% reduction in GHG emissions by 2030 (measured 
against 1990 levels) [2].  
The key targets of the EU for 2030 are [3]: 
- At least a 40% reduction in GHG emissions (from 1990 

levels), by decreasing emissions and increasing removals; 
- At least a 32.5% improvement in energy efficiency; 
- At least 32% share of renewable energy. 
Figure 1.1 depicts the EU energy targets. These targets aim to help 
the EU achieve more competitive, secure, and sustainable energy 
systems. 
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Figure 1.1 EU targets for GHG reduction with renewable energy technologies penetration 

[2] modified with new proposed targets [3]. 

The rapid rise of renewables as the leading global electricity 
source indicates a transformative shift to sustainable energy, with 
wind and solar photovoltaic expected to reach a 38% share by 
2027 [4] as shown in Figure 1.2. However, this transition 
necessitates addressing intermittent challenges, such as 
fluctuations in solar and wind power impacting grid stability. 
Consequently, energy backup systems, including storage for 
oversupply periods and flexible power production for low 
renewable inputs, become imperative [5], [6].  
 

 
Figure 1.2 Annual capacity additions by renewable technology, main and accelerated 

cases, 2015-2027 [4]. 

A comprehensive array of energy conversion and storage 
technologies may involve nuclear power generation, concentrated 
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solar power plants, wind farms, hydrogen power plants, and 
innovative technologies enhancing overall energy efficiency. 
Additionally, the roadmap anticipates the ongoing use of fossil 
fuels, ultimately incorporating carbon capture and storage [7]. 
The power generation sector plays a crucial role among all energy 
sectors, given its significant contribution to GHG emissions. 
Despite the abundance of renewable energy sources, the power 
sector witnessed the most substantial absolute increase in 
emissions in 2022, comprising 42% of the global CO2 emissions. 
This underscores the urgent necessity to expedite the transition 
towards renewable sources and diminish dependence on fossil 
fuels, particularly in coal-fired power generation, as an effective 
measure to mitigate climate change [8]. Figure 1.3 provides a 
visual representation of the sectoral distribution of global CO2 
production from 2019 to 2022. 
 

 
Figure 1.3 Global CO2 emissions by sector, 2019 to 2022 [8]. 

Figure 1.4 depicts the future power generation structure, featuring 
a system with both large and small generators. Small generators 
meet local power demands, while larger stations act as backups. 
Thermal power plants, especially gas plants, play a crucial role in 
supporting low renewable energy input, though at significant costs. 
Despite efforts to cut GHG emissions, phasing out fossil fuels by 
mid-century proves challenging due to their abundance and 
established infrastructure. 
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Figure 1.4 The integrated and intelligent electricity system of the future [9]. 

1.2 Microgrids: Navigating the Road to 
Decentralized Energy 

Within the dynamic context of power generation, microgrids 
emerge as localized and smaller-scale power systems. These 
systems incorporate distributed energy resources (DERs) like solar 
panels, batteries, and combined heat and power (CHP) systems, 
and they are capable of functioning independently or in 
coordination with the broader grid. The significance of microgrids 
lies in their pivotal role in strengthening overall system resilience, 
enabling self-sufficiency, and facilitating the efficient management 
of energy resources within specific areas [10]. 
Microgrids represent an interconnected network of loads and 
DERs within specific electrical boundaries, functioning as a 
unified and controllable entity. They have the flexibility to connect 
and disconnect from the grid, operating seamlessly in both grid-
connected and islanded modes [2]. The decentralized scheme 
offers the advantage of minimal power loss in electricity 
transportation due to the proximity of production units to 
consumers.  
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A microgrid is illustrated in Figure 1.4, integrating local networks 
with active consumers, small storage, a robust backbone network, 
and powerful generators. The future holds potential for synergies 
between power, heat, and the mobility sector by coupling 
electricity with chemistry [11]. The utilization of hydrogen or 
synthetic hydrocarbons not only enhances storage capabilities but 
also unlocks efficiency gains, leading to fossil energy savings and 
reduced CO2 emissions [12].  
Advanced microgrid systems are poised to enhance energy 
security, providing efficient, reliable, and clean power [6], [13]. 
Further incentivized by international energy policies aiming for 
reduced GHG emissions, there is a notable shift in the role of 
microgrids from a secondary to a primary energy supply [14], 
highlighting their pivotal role in managing and optimizing diverse 
energy resources. 
The swift integration of microgrids into the electricity grid poses 
technical challenges, including issues related to voltage stability, 
distribution system operation, control, and protection [15]. While 
these challenges have been under scrutiny for over a decade, recent 
advancements have resulted in a more stable and smoother energy 
supply [2]. Nevertheless, there remain opportunities for enhancing 
the operation and maintenance of microgrid power units to further 
ensure reliable power generation. 

1.3 Energy Consumption Trends and Sustainable 
Solutions 

In 2021, the EU-27’s primary final energy consumption sectors 
were residential (28%), transport (29%), and industry (26%) [16], 
as illustrated in Figure 1.5 depicting the sectoral distribution of 
final energy consumption in the EU-27. Global urbanization 
significantly influences energy demand, with over 50% of the 
population in developing countries living in urban areas, compared 
to 77.5% in industrialized regions like Europe (Table 1.1).  
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In developed nations, urban electrification rates surpass 95%, 
reaching full saturation at 100% in the EU, while rural areas 
achieve rates of 60 to 70%. This close relationship between 
urbanization and electrification trends is evident, highlighting 
electricity as a clean energy resource, ideal for densely populated 
urban areas [11]. The following sectors are anticipated to 
experience growing electricity demand in the future [11]: 
- end-use in the private sector; 
- energy-efficient buildings and smart cities; 
- urban traffic; 
- suburban traffic. 

 
Figure 1.5 Final energy consumption by sector, EU-27, 2021 [16]. 

Table 1.1 Urbanization rate in percent of the total population in developing countries 
(DC) and industrialized countries (IC) [11]. 

 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 
DC 18.0 21.7 25.3 29.6 35.1 40.2 45.3 50.5 56.0 61.6 
IC 52.5 58.7 64.6 68.8 71.2 73.1 75.0 77.5 80.6 83.5 

 

The EU’s energy and environmental goals hinge significantly on 
the building sector. Guided by the “Directive on the Energy 
Performance of Buildings”, the EU seeks to reduce total energy 
consumption in its residential sector [17]. This directive aims for 
low-energy buildings with exceptionally high energy performance, 
offering improved life quality and additional economic benefits to 
residents [18].  
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1.4 Cogeneration of Heat and Power 
For the increasing urban population, especially in residential areas, 
the microgrid concept proves to be a viable solution, particularly 
when operating in cogeneration mode of heat and power [19]. 
Figure 1.6 illustrates the dominant energy consumption pattern in 
the residential sector of EU countries in 2021, with heating 
purposes taking precedence [20]. 

 
Figure 1.6 Final energy consumption of the residential sector of EU countries, 2021 [20]. 

Microgrids, functioning in CHP generation mode, efficiently 
recover residual heat for end-user utilization. This approach avoids 
the inefficiencies associated with traditional heat-to-power and 
power-to-heat conversions in centralized power generation mode.   
In today’s predominantly centralized power generation structure, 
decentralized heat generation is not common due to high losses in 
heat distribution over long distances. The current shift toward a 
decentralized electricity market aligns with the distributed heat 
generation scheme, emphasizing the potential of decentralized co-
generation of power and heat to meet the evolving energy market 
structure. 
While the European Union cogeneration directive sets goals for 
incorporating high-quality CHP into delivered electricity, these 
objectives are yet to be achieved [21], [22]. In the United States, 
many states recognize the value of DERs and CHP to mitigate 
emissions, fulfill environmental targets, and achieve economic 
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benefits [23]. Global studies, spanning U.S. states and European 
nations, emphasize CHP’s role in reducing GHG emissions and 
grid dependence [24], [25], [26], [27], [28], [29].  
The U.S. Environmental Protection Agency (EPA) defines CHP as 
an efficient and clean approach to generating electricity and 
thermal energy from a single fuel source [30]. Operating by 
generating hot water or steam and deploying recovered waste heat, 
CHP systems fulfill end-users’ heat demand and can also provide 
cooling through combined cooling, heating, and power. 
Recognized for its economic and energy-efficient attributes, CHP, 
especially in industrial applications, converts a significant portion 
of input fuel into electricity and thermal energy onsite [31]. 
As climate change influences heating demands, the residential 
sector will experience a shift toward increased cooling needs, 
favoring the combined cooling, heating, and power mode of 
cogeneration. Various cooling technology options, including 
absorption chillers, are available for cogeneration of cooling, 
heating, and power. The U.S. EPA CHP partnership promotes the 
development of CHP, emphasizing small CHP technologies, or 
Micro CHP, as suitable options for distributed generation, defined 
as power generation smaller than 50 MW used either on-site or 
near production [32], [33].  

1.5 MGTs as Micro CHP Units 
Among various micro CHP options, MGTs stand out as a 
promising choice for the future. The detailed reasons behind their 
suitability and comparison with other micro CHP technologies are 
thoroughly discussed in Paper I. Moreover, a market research 
review provided in Paper I anticipates a notable surge in MGTs for 
CHP in the near future. The rising demand for low-emission 
energy solutions, driven by environmental concerns, is a major 
catalyst for the MGT market growth [34].  
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Favorable economic developments have also fueled market 
expansion. Despite challenges during the COVID-19 pandemic 
(January 2020 to May 2023), including a global economic 
slowdown, lockdown restrictions, and supply chain disruptions, 
government support has played a crucial role in encouraging MGT 
adoption, with incentives and subsidies promoting investments in 
the technology [34], [35].  
In terms of regional dynamics, North America, led by the United 
States, has emerged as a dominant market for MGTs, primarily 
driven by demand from sectors like pharmaceuticals, construction, 
and mining [34]. Simultaneously, Europe is expected to witness 
rapid growth, attributed to strict government regulations, a rising 
demand for clean energy, and substantial investments in clean fuel 
technology [34]. While the industrial sector, encompassing 
mining, oil and gas, wastewater treatment, construction, and 
manufacturing, remains a significant end-use segment, there is 
notable anticipated growth in the commercial sector [34]. This 
trend aligns with the escalating energy demand, especially for 
CHP, due to the increasing urban population. Notably, MGTs, as 
discussed in Paper I, stand out as a promising choice to meet this 
growing demand. 

1.6 Problem Statement   
While gas turbine (GT) engine performance improvements have 
been a longstanding interest, certain characteristics set MGTs apart 
from larger engines in their operating and system features. These 
challenges are elaborated in Paper I. In summary, addressing the 
distinct features of MGTs involves overcoming design 
complexities, optimizing performance at varying speeds, managing 
lower pressure ratios, and ensuring efficient fuel utilization. The 
strategies to enhance performance, particularly component-based 
variables, variable bounds, and imposed constraints in MGT 
operation, differ from those applied to large-scale GT. 
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Consequently, further development is required for MGTs and 
MGT cycles to align with [36]: 
- Higher electrical efficiency; 
- Increased flexibility for integration with other systems; 
- Increased flexibility towards the utilization of various sources 

of energy. 
In the future’s renewable-focused power landscape, MGTs, 
integrated into microgrids, frequently operate under part-load 
conditions. Achieving optimal efficiency involves controlling 
MGTs as dispatchable units, addressing off-design variations, and 
prioritizing efficiency improvement. MGTs play a crucial role in 
supporting intermittent renewables, highlighting the paramount 
importance of their reliability as backup power sources. 
Another pivotal advance in MGTs involves enhancing fuel 
flexibility, particularly towards net-zero or zero-emission fuels. 
Biogas, derived from organic waste, offers renewable attributes 
and ease of integration, while hydrogen, especially green 
hydrogen, presents a zero-emission profile and versatile 
applications. Notably, hydrogen-fueled MGTs are still undergoing 
research and development, reflecting ongoing exploration for 
sustainable fuel options. 
Hydrogen presents a compelling solution for energy storage [37], 
especially generated through electrolysis during excess renewable 
energy. Storing hydrogen facilitates harnessing surplus renewable 
energy, efficiently utilized in MGTs during demand peaks. While 
challenges exist for broader hydrogen adoption, MGTs, requiring 
less hydrogen, and allowing local production, present more 
manageable solutions to large-scale storage concerns and 
production complexities. 
The integration of hydrogen-utilizing MGTs demands continuous 
monitoring for efficient combustion and system reliability. Online 
engine monitoring tracks key parameters, ensuring combustion 
stability and optimizing performance. Early detection of deviations 
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in hydrogen combustion enhances reliability and minimizes 
downtime. Robust online monitoring is essential for seamlessly 
integrating and sustaining hydrogen-based technologies in power 
generation. 

1.7 Objectives and Research Questions 
In pursuit of advancing the role of MGTs in the future of power 
generation systems, this PhD project has strategically focused on 
two complementary paths. The first objective aims to enhance the 
fuel flexibility of MGTs, specifically targeting their operation with 
hydrogen. The second objective addresses the intricate challenge 
of integrating MGTs into distributed power generation systems 
effectively. 
To delve into these objectives, the thesis revolves around 
answering two fundamental questions: 
1. How can the development of an MGT operating with 

hydrogen-blended fuel be achieved? 
2. How to seamlessly integrate MGTs into distributed power 

systems? 
Exploring these inquiries has been a focal point throughout various 
sections of this thesis. After an extensive review of relevant 
literature in Chapter 2, the investigation initiates with the first 
question in Chapter 3. Supported by Papers II and III, this chapter 
delves into the subtleties of hydrogen combustion, shedding light 
on challenges encountered and inventive solutions devised to 
overcome them. After this exploration, the section presents the 
experimental outcomes derived from the engine’s operation on 
100% hydrogen. 
Chapter 4 diverges its focus by detailing the physics-based models 
developed to tackle challenges highlighted in Chapter 3. This 
chapter methodically constructs and evaluates models to simulate 
the operation of MGTs with varying hydrogen blends, providing a 
robust analysis of the engine’s behavior under different conditions. 
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Papers IV and V delve into the exploration and discussion of these 
models. 
In the pursuit of integrating MGTs into distributed power 
generation systems, advanced artificial intelligence (AI) and data-
driven methods take center stage. The creation of a precise 
performance model for the engine proves essential in predicting 
operations and outputs. Chapter 5 delves into the process of 
developing an AI-based model, beginning from raw data and 
culminating in the creation of a fast and accurate data-driven 
model for MGTs.  
Once the infrastructures are stabilized for the development of data-
driven models, the groundwork for effective condition monitoring 
and optimized operation of MGT systems in real-time applications 
is established. Chapter 6 and Paper VI delves into the exploration 
of integration strategies, highlighting the pivotal role of AI in 
optimizing MGTs within the integrated energy system.  
One of the core principles guiding the project is the development 
of an infrastructure that transcends the current scope, ensuring 
reusability for future endeavors. This theme resonates across all 
models and codes programmed throughout the project. In Chapter 
7, the microgrid optimization concept is applied to an offshore 
microgrid, utilizing the same approach as the onshore microgrid 
discussed in Chapter 6 but with larger GTs to be optimized. This 
expanded application is supported by Paper VI. 
The journey culminates in Chapter 8, where concluding remarks 
encapsulate the key findings and achievements of the work. The 
chapter also offers insights into future directions, providing 
suggestions for ongoing and prospective research in the field.  
Figure 1.7 presents a comprehensive overview of the research 
questions, corresponding chapters, and the accompanying 
supporting papers. 
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Figure 1.7 Overview of the thesis structure, detailing chapters and their corresponding research questions. 
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1.8 Significance of the Study 
The research undertaken in this study represents a step forward in 
the field of clean energy technologies, aspiring to seamlessly 
integrate renewable energy sources into existing power systems. 
At its core, this study seeks to contribute to the development of the 
world’s first hydrogen-fueled MGT while concurrently integrating 
it with renewable energy sources. The overarching goal is to make 
strides toward advancements in sustainable energy solutions: 
1. Advancement of Clean Energy Technologies: This research 

propels the progress in clean energy technologies by 
introducing a hydrogen-fueled MGT. Hydrogen, a fuel with 
zero carbon emissions, presents a compelling opportunity to 
curtail carbon emissions and alleviate the environmental 
impact of power generation. Beyond pushing the boundaries of 
clean energy technologies, this study advocates for the 
widespread adoption of hydrogen as a viable and sustainable 
fuel option. 

2. Integration of Renewables into Existing Power Systems: In the 
pursuit of a greener and more dependable energy landscape, it 
is crucial to seamlessly integrate renewable sources such as 
wind and solar with MGT. This study is dedicated to 
overcoming the challenges presented by the intermittent nature 
of renewables, aiming to synchronize them effectively with 
MGTs. The research strives to optimize the integrated system, 
promoting the development of a stable and reliable energy 
grid.  

3. Benefits of Advanced AI Management Tools: The 
incorporation of AI-driven management tools yields benefits in 
the energy domain. Real-time condition monitoring and 
optimization enhance energy efficiency as the integrated 
system dynamically responds to changes in demand and 
supply. By predicting energy generation patterns and demand 
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forecasts, the AI tools facilitate resource allocation and energy 
distribution, minimizing waste and optimizing overall system 
performance, leading to significant cost savings in the long 
term. 

4. Reduction of GHG Emissions: The effective integration of 
hydrogen-fueled MGTs and renewables plays a significant role 
in reducing GHG emissions. This study aligns with global 
initiatives to combat climate change and promote a low-carbon 
future by replacing traditional fossil fuel-based power 
generation methods with cleaner alternatives. 

In summary, this research promises to advance clean energy 
technologies, seamlessly integrate renewables, and reduce GHG 
emissions. Introducing hydrogen-fueled MGT and AI-based 
management tools actively enhances energy efficiency, cost-
effectiveness, and environmentally responsible energy solutions. 
The broader impact sparks innovation in the energy sector, 
aligning with global sustainable development goals and shaping a 
more sustainable, resilient, and eco-friendly energy future. 
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2 Literature Review 
Embarking on this scholarly journey, the pivotal role of a robust 
and extensive literature review within the thesis framework is 
underscored. This exploration intricately weaves through three key 
domains, each tied to the core principles and focal points 
underpinning the essence of this research. Identified domains 
include: 
- Developments of MGTs running with hydrogen; 
- Modeling MGTs (physics-based and data-driven); 
- Microgrid operation control and optimization. 
The examination of the chosen domain serves as the foundation of 
this PhD project, offering the potential to deepen comprehension 
and provide valuable guidance for the chosen project trajectory. It 
holds the promise of enriching understanding and steering the 
direction of this doctoral research endeavor.  

2.1 Developments of MGTs Running with 
Hydrogen 

The growing interest in hydrogen energy is marked by increased 
investments, research, and policy support [38]. Researchers 
explore hydrogen’s potential to transform heat and power 
generation for a sustainable, low-carbon energy system [39]. 
Policymakers, industries, and scientists recognize its 
transformative impact across various applications, including power 
generation with GTs [40]. 
Numerous research and development programs have been 
conducted for both large-scale as well as small-scale GT units, 
aiming to address complications of using pure hydrogen or 
hydrogen-blended fuels. In 1997 Minakawa et al. [39] developed a 
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prototype of a small combustor with a lean premixed swirling 
flame for an MGT to run with pure hydrogen. The combustor was 
tested at atmospheric pressure which showed high combustion 
efficiencies and low NOx emissions. The combustor was 
assembled to an MGT to assess the combustion in actual 
conditions [39]. During the start-up of the engine, flashbacks 
occurred that were not previously observed in the component test. 
The flashbacks were mitigated by the regulation of airflow to the 
combustor [39].  
A year later, Morris et al. published a paper [41], presenting their 
observation of adding hydrogen to heavy-duty GTs originally 
driven with natural gas. After overcoming the challenges of 
mixing the hydrogen with natural gas in the plant, the effect of 
adding up to 10% hydrogen in volume was investigated. 
According to the authors, the 10% amount of hydrogen did not 
affect the NOx emissions, however, the carbon monoxide 
production decreased as hydrogen was added [41]. The authors 
concluded that the plants have shown to be flexible in using 
hydrogen content up to 10% in volume in premixed steady state 
modes [41].  
In the same year, Waitz et. al [42] explored the development of 
hydrogen-powered micro combustors for MGTs, overcoming 
challenges associated with their compact size. The combustion 
approach involved upstream hydrogen introduction and air 
premixing, eliminating the need for a combustor dilution zone 
[42]. Experimental results demonstrated stable hydrogen-air 
combustion, showcasing the feasibility of small-scale applications 
[42].  
Years later, York et al [43] investigated the utilization of hydrogen 
as a primary fuel in heavy-duty GTs, with a specific focus on 
addressing combustion challenges and controlling emissions. A 
notable contribution was the introduction of a novel premixing fuel 
injector featuring small-scale jet-in-crossflow mixing, representing 
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a departure from conventional methods [43]. Rig experiments and 
subsequent full-scale testing demonstrated the efficacy of the 
design, achieving stable, flashback-free combustion and 
emphasizing low-NOx emissions [43].  
To assess the effect of hydrogen combustion, a computer 
simulation approach was chosen to simulate the combustion of 
hydrogen/methane blended fuels in an MGT [44]. In the paper, the 
authors used computational fluid dynamic (CFD) methods to 
investigate the characteristics of burning blended fuel with 
hydrogen share from 0 to 90% volumetric fraction in a can 
combustor that was originally designed for natural gas [44]. 
Evaluation of the effect of adding hydrogen on flame structure and 
emissions was the objective of the work [44]. The authors 
conducted different case scenarios to fuel the engine and 
concluded that although simulation results show stable combustion 
performance, to address the emissions, modifications to the 
combustor will be required and the original combustor design will 
not be adequate [44].  
Cappelletti et al. [45] investigated the combustion of pure 
hydrogen in a lean premix burner with experiments and via 
numerical simulation. The experimental setup was built based on 
an existing burner from a heavy-duty GT, which was modified to 
enable variable premixing levels. With hydrogen combustion, high 
flow velocity was required to avoid the flame positioning inside 
the premier duct. Their findings affirmed the feasibility of 
advancing combustion technology using pure hydrogen fuel, while 
ensuring emissions remain within regulated limits. 
Binesh et al. [46] performed a series of experiments to investigate 
the combustion behavior of hydrogen-enriched methane fuel in a 
swirl-stabilized type GT combustor. The amount of hydrogen in 
the blended fuel was increased up to 80% in volume and during 
the test, the upper and lower limits to provide air required to 
maintain stable combustion were derived [46]. 
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Rajpara et al. [47] conducted numerical and experimental 
investigations to assess the effect of hydrogen injection on a GT 
with an upward swirl combustor, running with methane fuel. 
Increasing hydrogen content resulted in smaller flame dimensions 
with an increase in NOx emissions due to higher flame 
temperature, but a decrease in CO emissions [47]. 
Pappa et al [48] investigated the potential of air humidification to 
stabilize hydrogen combustion in MGTs. Large Eddy Simulations 
compared pure methane and hydrogen-enriched methane/air 
combustions with and without humidification in a Turbec T100 
combustor [48]. Findings demonstrated that adding 10% water 
mass fraction facilitated stable hydrogen combustion, preventing 
flashback and enabling the use of hydrogen blends in MGTs with 
emission levels comparable to the reference case [48].  
In the pursuit of a future hydrogen-centric society, Kawasaki 
Heavy Industries conducted pioneering research, collaborating 
with Aachen University of Applied Science and B&B AGEMA, 
and demonstrated the effectiveness of the Micro-Mix combustor in 
the hydrogen-fueled M1A-17 GT [49]. Engine tests confirmed 
stable ignition, a smooth starting procedure, and established fuel 
staging capabilities [49]. The dry low NOx combustor achieved a 
maximum power output of 1635 kW with consistently low NOx 
emissions below 55 ppm [49]. The technology’s robustness was 
evident as all components remained issue-free post-testing [49]. 
November 4, 2020, witnessed successful heat and power supply to 
neighboring public facilities, highlighting the practicality and 
success of the hydrogen dry low NOx combustor for a 2MW class 
GT [49]. 
Lu et al [50] examined the influence of hydrogen-methane hybrid 
fuel on combustion characteristics and pollutant emissions in a 
counter-flow combustor of a 100 kW MGT. Numerical simulations 
explored varied airflow distributions, revealing that increased 
premixed air enlarged the recirculation region and high-
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temperature zone [50]. Optimal performance, with a uniform outlet 
temperature of 1172 K, was observed at 30% premixed air. The 
study demonstrated that beyond 40% premixed air, NOx 
concentrations increased, peaking at 23.46 ppm (@15% O2) and 
decreasing to 0.717 ppm (@15% O2) at 50% premixed air [50].  
Liu et al [51] employed CFD simulations to investigate the impact 
of air and fuel staging on combustion characteristics and emissions 
in an MGT combustor. Varying secondary oxygen (0–40%) and 
secondary fuel ratios (0–10%), the study found that increasing 
secondary oxygen reduced the central recirculation zone and 
average NO emissions [51]. Higher secondary fuel ratios led to 
reduced outlet velocity, improved temperature distribution, and a 
notable reduction in NO emissions [51]. Both air and fuel staging 
contributed to lower outlet temperature and NO emissions, with 
fuel staging exhibiting a more significant effect on NO reduction 
than air staging [51]. 
In May 2020, Kawasaki announced the successful test of an 
industrial GT with hydrogen fuel, through their dry low emission 
combustion technology [40], [52]. The combustor applied micro-
mix combustion technology, which featured ultra-small hydrogen-
fueled flames and achieved low NOx combustion without using 
water or steam, which was beneficial in terms of cycle efficiency 
[40], [52].  

2.2 Modeling  Gas Turbines 
Modeling and simulation are integral to GT design, providing cost-
efficient solutions. Reduced-order models are essential to simulate 
the entire GT cycle under diverse operational conditions. 
Researchers typically adopt distinct reduced-order modeling 
approaches for GTs, classifying them as white-box (physics-based) 
or black-box (data-driven). White-box models, rooted in physics 
and thermodynamics, delve into the fundamental principles 
governing system behavior. In contrast, black-box models rely 
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solely on data, while grey-box models combine physics with data-
driven insights, providing a comprehensive understanding of GT 
dynamics [53], [54], [55]. While hybrid approaches exist, 
categorizing them as clear-cut grey-box models can be 
challenging, as these models often lean towards either a data-
driven or physics-based dominance. 
White-box models play a pivotal role in designing and testing 
control strategies, ensuring operational safety, improving response 
times, and facilitating predictive maintenance. While CFD 
methods play a crucial role in enhancing the fuel flexibility of GTs 
by developing innovative combustor designs [56], [57], [58], 
reduced-order white-box models specifically contribute to the 
comprehension of the dynamic behavior of a GT as a system and 
the intricate interactions among its components. Their low 
computational complexity is essential for real-time simulations and 
integration with control systems hardware [53], [54], [55], [59]. 
This section introduces diverse modeling perspectives, advancing 
precise and computationally efficient dynamic models for MGTs. 
It outlines the evolutionary path of GT models, significantly 
impacting MGT modeling. 

2.2.1 White-Box Models 
A white-box model, grounded in a profound understanding of the 
system’s physics, relies on constitutive and conservation equations 
to realistically simulate its behavior. These equations usually 
include isentropic models for compression and expansion, the ideal 
gas law, and conservation equations (mass, momentum, and 
energy) applied to gas volumes and moving parts. Often referred to 
as “thermodynamic models,” these models typically consist of 5 to 
15 equations, calculating the key physical parameters such as 
pressure, temperature, and flow rates. The complexity of these 
models is associated with temporal and spatial dependencies, with 
a common strategy involving the simplification of system 
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components to their inlet and outlet boundaries. This 
transformation turns the models into a 0D form, making them 
applicable to systems with unknown geometries and offering 
advantages in managing computational complexity. 
The evolution of simplified physics-based models began in the 
1980s, initially for heavy-duty GTs in power systems studies. 
Pioneering this domain, Rowen [60] laid the foundation, followed 
by more precise models proposed by Hussain and Seifi [61] and de 
Mello et al. [62]. The main objective of their study was to prepare 
a simple model that can cover the full spectrum of GTs to be 
implemented in the power dispatching strategy. However, their 
application remained restricted in power systems simulation 
programs. Models tailored for processing GT operating conditions 
emerged later, integrating turbomachinery performance maps.  
Hannett et al. [63] introduced a model for a dual-shaft GT, 
utilizing data acquired from a field test to support the model’s 
parameters. The assessment of the engine governor’s response to 
load changes and load rejections was facilitated through 
monitoring data obtained from conducted tests [63]. Subsequently, 
Ricketts [64] furthered this line of research by developing a 
dynamic model for a twin-shaft GT. The model was constructed 
using generic methods and incorporated performance data 
collected directly from the engine, demonstrating its capability to 
predict the transient performance of the turbine [64]. 
A dynamic model of a single-shaft heavy-duty GT in 
Matlab/Simulink was developed by Crosa et al. [65]. The model 
showed good performance in predicting key thermodynamic 
variables [65]. Ailer et al. [66] developed a dynamic model of a 
low-power single-shaft GT for control purposes in a 
Matlab/Simulink environment. The focus of the study was the 
dynamic response of the GT control system [66]. The model was 
simplified by several assumptions to obtain a lower-order dynamic 
model [66]. Comparing the model predictions with collected 
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experimental data, the model was verified to imitate the dynamic 
behavior of the engine, however, some important aspects of engine 
dynamics were neglected due to simplifying assumptions [66]. 
Abdollahi and Vahedi [67] developed a dynamic model of a 
single-shaft MGT in Matlab/Simulink. Their model included 
dynamic characteristics of main components such as the turbine 
and the permanent magnet generator [67].  The results of their 
work showed that the provided model can be utilized for dynamic 
simulation of MGT operation in various conditions [67].  
A computer program was developed by Al-Hamdan et al. [68] in 
which thermodynamic equations of single-shaft GT components 
were implemented for dynamic modeling. The program was able 
to be utilized for investigating GT performance in off-design 
conditions and to design an efficient control system for specific 
applications [68]. In their paper, the analytical calculation for 
satisfying matching conditions between various GT components 
was explained, which is the basic strategy for thermodynamic 
models of GTs [68]. Such analytical models are capable of 
predicting GT performance in all off-design conditions that are 
covered within the components’ maps [68].  
Camporeale et al. [59] presented a novel approach for developing a 
high-fidelity real-time simulation of GTs in Matlab/Simulink. 
They provided nonlinear representations for the main components 
of the GT and solved a set of ordinary differential equations with 
components representing correlations to simulate the performance 
of the engine [59]. The proposed method provided a generic 
approach that was suitable for any configuration of power plants 
[59]. An illustration of the developed model is shown in Figure 
2.1. 
Garborg [69] developed a physical model of T100 in an IPSEpro 
environment. The model was validated by measurements collected 
from a partially modified engine in the Risavika Research Center, 
Stavanger, Norway. The modifications included an added bypass 
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which provided a possibility to replace the combustion chamber 
with a fuel cell. The data was gathered from the engine with an 
externally installed combustion chamber through a combination of 
3 measurement systems, including the T100 built-in sensors, the 
supervisory control and data acquisition system (SCADA), and 
some additionally implemented measurements. The results from 
the model and experimental data showed some discrepancy which 
was an indication of the low fidelity of the model [69].  
 

 
Figure 2.1 Simulink scheme of the single-shaft GT from [59]. 

Bang-Møller et al. [70] developed a 0D-based model of a hybrid 
cycle of micro CHP system, consisting of a biomass gasifier, solid 
oxide fuel cell, and an MGT. Optimizations based on energy and 
exergy calculations were performed to explore a more productive 
performance of the cycle [70]. The main energy and exergy loss in 
the cycle was recognized and modified which resulted in a 
configuration with an added heat exchanger and optimum 
operation point for the cycle with a total increased efficiency of 
87.5% compared to the original 82.6% [70].  
Rachtan and Malinowski [71] established an approximate 
mathematical correlation for the heat recovery unit in an MGT 
operating in CHP mode. The model underwent verification 
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through experimental data across various part-load performances, 
demonstrating its reliability for the modeling and design of micro 
CHP plants [71]. In a separate study, Malinowski and 
Lewandowska [72] developed an analytical model for the entire 
MGT, focusing on part-load operation. Exergy calculations were 
conducted for all MGT components, and the study provided 
formulas to address challenges arising from limited information 
about manufacturer-proprietary component maps [72]. The 
performance of the proposed model exhibited favorable agreement 
with the experimental data collected [72]. 
Shaw et al. [73] developed a model of a combined cycle power 
plant (CCPP) in Aspen Plus software by using data from an actual 
working GT. The effects of ambient temperature on the power 
output of the whole combined cycle as well as the simple GT cycle 
were investigated [73]. Results of the work indicated that the 
dependency of GT cycle power output on the ambient temperature 
is relatively high, while it is neglectable for a steam cycle [73]. 
From this outcome, the authors concluded that in summertime the 
operation of the combined cycle is more stable than a standalone 
simple cycle [73]. Figure 2.2 shows the presented model by Shaw 
et al. for CCPP [73]. 
Di Gaeta et al.  [74] developed and validated a dynamic model for 
a 100 kW MGT using MATLAB/Simulink, simulating various 
operating conditions and considering component efficiency. 
Results showed accurate reproduction of electrical power and 
acceptable predictions for fuel consumption and turbine speed 
[74]. In an advanced hybrid energy grid scenario, combining MGT 
with a water electrolyzer proved promising, providing a 37.5% 
fossil fuel saving and producing 1913 kg of hydrogen in partial 
hybridization [74]. Full hybridization increased fossil fuel savings 
to 41.5%, highlighting the potential of MGT and hydrogen 
integration for enhancing energy system efficiency and 
sustainability [74]. 
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Figure 2.2 Schematic of an Aspen Plus model of a two-pressure CCPP from [73]. 

Nelson et al. [75] constructed a quasi-steady physics-based model 
for a hybrid system integrating a T100 MGT with a concentrating 
solar power (CSP) tower. The CSP was implemented to exploit 
solar energy for heating air before it goes into the combustion 
chamber [75]. A range of electrical loads under varying ambient 
conditions was investigated to study load following and operation 
characteristics of the hybrid cycle [75]. Moreover, sensitivity 
analyses were performed to investigate the performance of the 
hybrid cycle in various ambient conditions [75]. The performance 
of the hybrid cycle was investigated through an annual power 
demand for different cities in the U.S. [75]. The results of this 
work showed that the proposed hybrid cycle is capable of meeting 
the performance targets of an MGT working as its basic nonhybrid 
configuration [75]. The authors also concluded that by utilizing 
this hybrid configuration, fuel consumption can be reduced by 
26% annually [75].   
Giorgetti et al. [76] investigated the dynamic modeling and control 
design of a solar-hybrid system, encompassing an MGT, a tubular 
air receiver, and a sensible thermal energy storage system (ESS). 
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The study underscored the significance of an accurate model for 
the implementation of effective control strategies [76]. The 
dynamic model developed for the investigation was experimentally 
validated using the MATLAB/Simulink environment [76]. The 
influence of integrating solar energy on both system stability and 
fuel consumption was thoroughly examined [76]. The insights 
gained contributed to addressing challenges and identifying 
opportunities in solar-hybrid MGT systems, offering valuable 
guidance for control strategy development in distributed energy 
systems [76]. 
Arsalis [77] presented a detailed thermodynamic model for a 
small-scale natural gas/hydrogen-fueled GT system, incorporating 
both basic thermodynamic and exergy analyses. The model 
explored the impact of hydrogen addition on system performance, 
revealing a marginal improvement in net electrical efficiency 
(0.347 to 0.356) and notable gains in energetic efficiency (0.338 to 
0.360) due to reduced combustor losses [77]. Off-design modeling 
provided insights into realistic part-load operations [77]. 
Additionally, hydrogen injection, even in small amounts, 
demonstrated a 6.1% reduction in CO2 emissions compared to 
methane-only fueling [77] The validated model served as a reliable 
basis for future decentralized power generation studies, 
emphasizing the positive influence of hydrogen addition on system 
efficiency and operational cost [77]. 
An organic Rankine cycle combined with a 100 kW MGT was 
modeled by Campos et al. [78], searching for higher electrical 
efficiency. The work included exploring different working fluids 
as well as cost evaluation for the whole system to include cost 
investigations for the miniature combined cycle [78]. The results 
showed over 4% electrical efficiency improvement (from the 
original 30%), however, the cost function for investing in added 
organic Rankine cycle was not accurate enough to decide about the 
economical viability of the combined configuration [78]. 
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Reale and Sannino [79] reviewed various numerical modeling 
approaches applied to MGT-based energy systems. The focus was 
on discussing different layout solutions proposed by researchers, 
highlighting the modeling approaches and methods employed in 
the related literature [79]. The authors delved into the growing 
research interest in MGT-based energy systems, particularly in 
overcoming performance limits and integrating MGTs into hybrid 
energy systems for enhanced performance and source 
diversification [79]. The review underscored the significance of 
numerical modeling in investigating innovative solutions and 
extending the operational range of MGTs [79].  
Lin et al. [80] investigated the modeling and control design of a 
135 kW MGT in a power generation scenario. It established a 
nominal nonlinear model by integrating start-up and component 
characteristic map models [80]. Controllers, including nonlinear 
active disturbance rejection control and proportional-integral-
derivative, ensured effective speed and load tracking [80]. The 
active disturbance rejection control outperformed, actively 
compensating for disturbances [80]. MATLAB/Simulink 
simulations demonstrated its superior performance in achieving 
speed and load control targets, showcasing its potential for future 
full-scale MGT tests [80]. 

2.2.2 Black-box Models 
A black-box model is crafted when limited or no information 
about the physics of the system is available. In such scenarios, the 
model is built using data collected from the system, and its training 
involves replicating the system’s behavior through a series of 
simplified mathematical calculations, not grounded in the system’s 
physics. Commonly employed in GT modeling, especially when 
proprietary GT component maps are unavailable, black-box 
models leverage abundant data collected from the engine. This 
data-driven approach allows the construction of a model that 
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mimics the system’s behavior, incorporating specific performance 
details of the engine that generated the data. In contrast to physics-
based modeling, which applies general rules to model all engines 
of the same type, black-box modeling addresses engine-to-engine 
variations resulting from manufacturing tolerances and differing 
health statuses. These models are particularly useful in scenarios 
where empirical data is the primary source, and they often utilize 
methods such as artificial neural networks (ANN) [81].  
In black-box models, the choice of simpler approaches is often 
viable. Linear models represent one such option, however, the 
application of these simpler models is constrained to operating 
points near the design, as GTs exhibit highly non-linear behaviors 
[82]. 
Chiras et al. [83] estimated a non-linear auto-regressive moving 
average with an exogenous input model for an aircraft engine, 
showcasing the application of intelligent models to GTs. Jurado 
[82], a few years later, proposed a non-linear auto-regressive 
exogenous (NARX) model specifically tailored for MGTs, with an 
emphasis on its application in model predictive control (MPC). 
These intelligent models leverage both past and present values of 
input and output series to construct an understanding of the 
system’s behavior [82]. 
Fast et al. [84] applied the ANN technique for data-driven 
modeling of GTs. They implemented the operational data collected 
from an industrial single-shaft GT for standalone and CHP plants 
[85]. They concluded that performance prediction with ANN has 
high accuracy and can be used as an offline simulation tool or a 
core model for online condition-based monitoring for early 
detection of faults or degradation and optimizing the maintenance 
intervals [85].  
Bartolini et al. [86] investigated the application of ANN and 
adaptive network-based fuzzy interface system (ANFIS) to 
describe the performance of an MGT. The data for training the 
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model was collected from the manufacturer’s testbed which did 
not cover the whole operation range of the MGT [86]. Therefore, 
ANNs and ANFIS methods were used to complete performance 
diagrams where there was no experimental data available [86]. The 
effect of ambient conditions on the power output of MGT was also 
investigated which showed that ambient temperature had more 
effect than pressure and humidity [86].  
Nikpey et al. [87] provided an optimized ANN of a T100 MGT 
with an extended set of measurements. The most important 
parameters as inputs to the ANN were defined through a 
sensitivity analysis among measurement data gathered from built-
in and added sensors to the engine [87]. The model was purely 
developed and verified by experimental data and proved to be 
accurate enough to be used for online monitoring applications 
[87]. The developed model is illustrated in [75] Figure 2.3. 

  
(a) (b) 

Figure 2.3 The developed ANN model in [87], (a) schematic of a multi-layer feed-
forward network, (b) the final optimized model structure. 

Ben Rahmoune et al [88]  introduced an effective tool for ensuring 
the stability of GTs through dynamic modeling. Employing a 
dynamic NARX, the study focused on identifying the dynamic 
behavior of the GT system [88]. The proposed ANN-based 
supervision system successfully monitored vibrational dynamics, 
providing valuable insights into the dynamic model behavior [88]. 
The outcomes highlighted the tool’s capabilities in real-time 
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failure detection and its effectiveness in modeling complex 
dynamic systems, particularly in the context of GTs [88]. 
Aslanidou et al. [89] provided a model for fleet monitoring of 
MGTs with electrical power output under 100 kW. The framework 
included a physics-based model for predicting system behavior 
and an AI tool for detecting and classification of anomalies in the 
system [89]. The challenges for fleetwide monitoring were 
addressed including processing a large amount of data and the 
need for a predictive model for each specific engine [89].  
A combined auto-associative neural network and K-nearest 
neighbor method were implemented for noise reduction and fault 
detection of a GT engine by Fentaye and Kyprianidis [90]. The 
performance of the proposed method was verified by the data 
generated from a model simulation and showed that the developed 
hybrid method is more effective and reliable than the conventional 
method for fault detection of the GT [90].  
Talebi et al. [91] proposed a diagnostics scheme for MGTs in 
smart grids, focusing on fault detection and isolation in part-load 
conditions, degradation, and uncertainties. The off-design MGT 
model, incorporating uncertainties, formed the basis for an ANN to 
capture nonlinear correlations [91]. Key findings included the 
necessity of power and shaft speed measurements for accurate 
fault detection and the importance of additional parameters for 
fault isolation [91].  
As the reviews of articles show, AI-based models of GTs using 
data excel in providing accurate predictions for the modeled 
engine. These data-driven models, rooted in simple mathematical 
equations, offer fast responses. The combination of speed and high 
accuracy makes them an excellent choice for online condition 
monitoring, as highlighted in [85], [87], [92]. In condition 
monitoring and fault diagnosis for GTs, the primary aim is to 
detect faults, identify problematic components, and estimate the 
extent of flaws within the system. Effective fault diagnosis ensures 
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safe performance, reduces maintenance costs, and lays the 
groundwork for performance improvements. Unlike traditional 
gas-path analysis, data-driven models surpass limitations arising 
from model simplifications and excel in learning from actual data. 
This results in superior diagnostic accuracy, particularly when 
dealing with the complex and non-linear characteristics of 
performance-related faults in GTs. 

2.3 Microgrid Operation and Optimization 
The integration of diverse generation units within distributed 
energy generation poses challenges due to disparate dynamics, 
particularly with limited control over renewable sources. In 
response, automated and adaptive frameworks have gained 
precedence over traditional centralized models for power and 
energy production management [93]. Microgrids exemplify this 
progressive approach, featuring well-defined electrical boundaries 
and resource management control systems, capable of autonomous 
operation independent of the main grid [93]. Effective modeling 
and optimization for microgrids’ operation are crucial for 
enhancing reliability, efficiency, and the integration of renewable 
sources [94], [95]. This literature review explores studies focusing 
on microgrid modeling and optimization, emphasizing control 
strategies and applications within integrated energy systems.  
A prominent approach widely adopted in the field of microgrid 
operation control is the “energy hub” concept, comprehensively 
elucidated in seminal literature [96]. This concept consolidates the 
intricate processes of energy generation and conversion into a 
unified input-output model, encapsulating within it all the intricate 
mathematical models specific to various units [96]. Optimization 
strategies grounded in this paradigm often incorporate techniques 
encompassing linear programming [97], dynamic particle swarm 
optimization, and the formation of an intricate network of energy 
hubs [98]. 
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The deployment of hyper-heuristic algorithms, as demonstrated by 
Mallol-Poyato et al. [99], in optimizing the charging and 
discharging of electrical ESSs, proved instrumental in delivering 
significant cost savings. Additionally, Zhang et al. [100] harnessed 
the potential of mixed-integer linear programming to schedule 
renewable supply, ESSs, and CHP units, and demonstrated the 
advantages of MPC over day-ahead control, resulting in substantial 
savings for consumers. Ma et al. [101] further expanded on the 
optimization domain, developing an MPC-based microgrid central 
controller. This innovation redistributed the load, successfully 
alleviating peak pricing periods [101]. However, it is worth noting 
that their control horizon was confined to one hour, and their 
demand profile was impeccably predictable [101]. 
The growing complexity inherent in managing multi-vector energy 
systems underscored the necessity for simultaneous control over 
energy supply, demand, and storage, ensuring the provision of a 
stable, cost-effective, and efficient energy supply that optimally 
harnesses renewable resources [94], [95]. The emergence of 
transformative technologies, notably the Internet of Things (IoT) 
and AI, has revolutionized the domain of building and district 
energy management, offering a wealth of data to be harnessed 
[102]. 
Reynolds et al. [103] have set forth two innovative optimization 
strategies that harness the power of ANNs for predicting building 
demand and solar photovoltaic generation. In tandem, a genetic 
algorithm (GA) was deployed to govern CHP, heat pumps, and 
thermal storage outputs [103]. Their first strategy was focused on 
optimizing heat generation to meet building demand at minimal 
cost [103]. In the second strategy, they introduced control over 
heating set point temperatures to more effectively manage office 
building demand [103]. The investigation conducted within a 
sliding window framework, yielded compelling results, marked by 
increased profit margins and reduced carbon emissions when 
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compared to baseline scenarios [103]. The researchers recommend 
a future emphasis on incorporating more advanced machine-
learning models and piloting these methodologies at actual sites 
[103]. 
Tooryan [104] addressed the optimization of operational costs in a 
hybrid residential microgrid comprising a diesel generator, wind 
turbine, photovoltaic array, and battery ESS. Utilizing a particle 
swarm optimization algorithm, the study focused on minimizing 
the total costs of DERs, reducing environmental emissions, and 
increasing the penetration level of renewable energy sources [104]. 
Numerical results demonstrated a 35% reduction in CO2   
emissions in the optimal configuration compared to scenarios 
relying solely on diesel generators [104]. The optimal installation 
of DER units in different years significantly enhanced microgrid 
performance, lowering fuel consumption and CO2 emissions [104]. 
Abdalla et al. [105]  introduced an optimization strategy for a 
microgrid, integrating combined cooling and heating power with a 
hybrid ESS. It outlined the operating characteristics and 
mathematical models of distributed micro-sources and employed 
an energy storage architecture for modeling [105]. The 
optimization focused on improving economic operation, 
demonstrating a 4.61% and 6.48% reduction in operation costs for 
winter and summer, respectively, and a 3.01% and 3.68% decrease 
in fuel consumption [105].  
Wang et al. [106] proposed an energy management strategy 
utilizing a hydrogen storage system. The aim was to minimize 
operating costs and address load supply constraints [106]. Using 
MATLAB and the gray wolf optimization algorithm, the proposed 
model showed that implementing a hydrogen storage system and a 
demand-side management program reduced microgrid costs [106]. 
Incorporating microgrid load into the demand response program 
further smoothed the load curve and decreased the islanded 
microgrid’s operating cost [106]. 
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Mansouri et al. [107] focused on optimizing microgrid operation 
using the Salp swarm algorithm, a metaheuristics technique, to 
address uncertainties in renewable energy sources, market prices, 
and loads. Results demonstrated the algorithm’s effectiveness in 
controlling operating and pollution costs, allowing compromise 
between the two in both grid-islanded and grid-connected modes 
[107]. Additionally, applying uncertainty to microgrid parameters 
improved the algorithm’s realism, highlighting its ability to obtain 
optimal solutions even with indefinite values [107]. 

2.4 Summary and Conclusion 
The literature review provides an overview of research efforts 
aimed at integrating hydrogen into MGTs. Both numerical 
simulations and experimental studies have explored combustion 
characteristics, emissions control, and design modifications for 
efficient hydrogen utilization. These studies offer valuable insights 
into the benefits and challenges of hydrogen-enriched fuels in 
MGTs, progressing from early experiments in the late 1990s to 
recent advancements. While strides have been made in addressing 
combustion anomalies and enhancing efficiency, transitioning 
theoretical advancements to real-world applications is crucial for 
realizing hydrogen’s practical viability in MGTs. The scarcity of 
reported operational instances underscores the need for more 
practical implementations and real-world testing, essential to 
unlock hydrogen’s full potential in MGTs and advance a cleaner, 
sustainable energy future. 
The review of MGT models underscores the importance of 
choosing between white-box and black-box models based on the 
development stage and data availability. In the early design phases, 
especially when exploring hypothetical scenarios like the 
introduction of hydrogen, white-box models rooted in physics are 
essential due to the absence of empirical data. These models 
provide a theoretical understanding of dynamic behavior. 
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As MGTs progress into operational phases, black-box models 
come to the forefront. Leveraging empirical data, these data-driven 
models, such as ANNs, offer rapid and accurate predictions. They 
prove crucial for real-time monitoring, fault detection, and 
optimizing performance. 
This dual-modeling approach, transitioning from white-box to 
black-box, ensures a comprehensive understanding of MGT 
systems, enabling effective decision-making across different 
lifecycle stages—from early design to real-time adaptability. 
The literature on microgrid operation control and optimization 
reflects a transition to automated and adaptive frameworks, pivotal 
in the smart grid evolution. Studies highlight the energy hub 
concept’s effectiveness, employing diverse optimization 
techniques. Integration of transformative technologies such as IoT 
and AI enriches building and district energy management, offering 
abundant data for optimization. Noteworthy strategies involve 
ANNs for prediction and GA for optimization, showcasing the 
potential of advanced modeling. 
Importantly, a large portion of the literature emphasizes the 
necessity for accurate modeling approaches, given the disparate 
dynamics of microgrid components. Many papers employ 
simplified equations, but the complex integration of components 
with varying dynamics necessitates precise models for effective 
optimization. Additionally, for optimization purposes, speed is 
crucial, making data-driven models particularly intriguing for 
efficient real-time decision-making. Future research should focus 
on advanced machine-learning models, explore socio-economic 
impacts, and validate proposed solutions in diverse contexts. 
 



 
 
 
 
 
 
Development of a Hydrogen-Powered MGT   

 

 
 

38 

3 Development of a Hydrogen-
Powered MGT 

The utilization of hydrogen as the primary fuel in MGTs presents 
significant complexities, leading to challenges in both stability and 
emissions. This chapter serves as an overview discussion, building 
upon the comprehensive insights presented in Papers II and III, 
exploring the complexities of employing hydrogen as the primary 
fuel in MGTs. It delves into challenges with a focus on achieving 
stable combustion and emissions control in MGT operation with 
hydrogen/methane blends. Progressing through the study, the 
chapter guides through the experimental phase, presenting results 
from testing with blended hydrogen/methane fuel and offering 
valuable insights into MGT performance under diverse conditions. 
It functions as a holistic guide, addressing challenges, presenting 
solutions, detailing modifications, and elucidating experimental 
outcomes in the development of an MGT optimized for a 
hydrogen-enriched environment. 

3.1 Challenges in Hydrogen Combustion 
Developing GT engines, including MGTs, for operation with 
alternative fuels presents numerous challenges. Notably, 
hydrogen’s high reactivity necessitates combustor design 
modifications to accommodate it. Additionally, variations in the 
characteristics of combustion products can necessitate changes in 
other system components to ensure safe and stable operation while 
meeting emissions regulations. Challenges associated with running 
MGTs on hydrogen or hydrogen-blended fuels can be broadly 
categorized into two areas: 
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- Component-level challenges which are combustor-related 
challenges arising from differences in combustion 
characteristics between hydrogen and fossil fuels; 

- System-level challenges result from alterations in working 
fluid properties due to different combustion products and their 
impact on engine performance.  

An overview of these challenges is provided in the following 
sections. 

3.1.1 Component-Level Complications 
The distinctive combustion characteristics of hydrogen fuel 
originate from the unique set of physical and chemical properties 
of the element. An overview of these properties is provided in 
Table 3.1 to compare hydrogen molecules against methane, which 
can be representative of natural gas as well.  

Table 3.1 Comparison of the properties of hydrogen and methane in atmospheric 
pressure and 300K temperature [108]. 

Property Methane Hydrogen 
Molecular weight 16.04	g/mol 2.02	g/mol 
Density 0.65	kg/m! 0.08	kg/m! 
Mass diffusivity in air 0.16	cm"/s 0.61	cm"/s 
Lower heating value (per mass) 50	MJ/kg 120	MJ/kg 
Lower heating value (per volume) 32.5	MJ/m! 9.6	MJ/m! 
Stochiometric air/fuel ratio 17.1	kg/kg 34.2	kg/kg 
Minimum ignition energy 0.28	mJ 0.02	mJ 
Flammability limits 0.5~1.67 0.1~7.1 
Stoichiometric air-to-fuel ratio 17.1	kg/kg  34.1	kg/kg 
Stoichiometric air-to-fuel ratio 59.7	kmol/kmol 2.4	kmol/kmol 

 

The challenges arising from the combustion of hydrogen-blended 
methane due to the difference between the combustion 
characteristics of hydrogen and methane are detailed in Paper II. 
The following is a concise overview covering the main points: 
- Flammability Characteristics: 
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- Hydrogen exhibits a wide range of flammability 
(equivalence ratio: 0.1–7.1), allowing versatility in GT 
engines [109]. 

- Methane (natural gas), in contrast, has a narrower 
flammability range, impacting its adaptability to 
various air-fuel ratios [109]. 

- Ignition Energy: 
- Hydrogen requires approximately 10 times less ignition 

energy than methane, contributing to improved 
combustion performance and stability [38], [110], 
[111], [112], [113]. 

- The higher ignition energy of methane poses challenges 
during ignitions and maintaining stable combustion, 
especially in low-load GT ranges [38], [110], [111], 
[112], [113]. 

- Laminar Flame Speed: 
- Increasing the hydrogen content enhances laminar 

burning velocity, leading to stable flames, reduced 
ignition delay, and improved performance in lean 
combustion conditions [114], [115], [116]. 

- Adiabatic Flame Temperature: 
- Hydrogen’s acceleration of the reaction rate results in a 

higher adiabatic flame temperature compared to 
methane, particularly at stoichiometric combustion 
[38], [117]. 

- NOx Formation: 
- Elevated flame temperatures associated with hydrogen 

combustion contribute to increased NOx production, 
posing environmental concerns [118]. 

- Traditional methods for mitigating NOx face 
challenges when applied to hydrogen-enriched fuels 
due to differences in flammability and reaction rates 
[119]. 
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- Combustion Efficiency and Stability: 
- Hydrogen’s wide flammability limits, high flame 

speeds, and low ignition energy offer efficiency 
benefits but also pose challenges such as flashback and 
unwanted flame propagation [120]. 

- Lean premixed burners, proven for hydrocarbons, 
encounter challenges with hydrogen or hydrogen-
enriched fuels, including combustion instabilities, 
flashbacks, and elevated NOx formation due to 
differing flammability and reaction rates. [119], [121], 
[122], [123]. 

Navigating the complexities arising from the aforementioned 
differences in combustion characteristics between hydrogen and 
methane, the development of combustor technology for hydrogen 
combustion becomes more intricate, especially when aiming to 
operate with both pure hydrogen and hydrogen-blended fuels 
[124]. 

3.1.2 System-Level Complications 
In the context of the system-level complications associated with 
MGTs running on hydrogen and hydrogen-blended fuels, the 
unique combustion characteristics of hydrogen and methane have 
far-reaching consequences beyond combustion, affecting the 
overall MGT system behavior [123], [125]. A detailed exploration 
of these complications is provided in Paper II, while the following 
overview serves as a condensed summary. 
The differences, including properties such as heating value and 
fuel density, influence fuel flow rates and may potentially alter the 
thermodynamics of the MGT cycle. A comparative analysis, 
simulating MGT operation at ISO conditions1, estimates the extent 

 
1 ISO 3977, an international standard for gas turbine design, is based on ASME 133, API 616, and 
API 11PGT standards. The standard specifies environmental conditions at the design point: 15 °C, 
60% relative humidity, and sea level elevation. 
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of these alterations by examining variations in adiabatic flame 
temperature, specific heat capacity, and flue gas density across 
different equivalence ratios for methane and hydrogen combustion. 
The observed disparities in flue gas properties become more 
pronounced with richer combustion, impacting fuel flow rates and 
necessitating considerations for cycle point alteration. This can be 
seen in Figure 3.1, where the flue gas properties of pure methane 
and pure hydrogen combustion are depicted for different 
equivalence ratios, using the Cantera program [126]. 
 

Adiabatic Flame Temperature   Specific Heat Capacity at Constant Pressure 

  
 

Density 

 
Figure 3.1 Flue gas properties in different equivalence ratios for burning methane and 

hydrogen, with air at 4.3 bar and 610 K. The plots are depicted using analysis conducted 
with Cantera [126]. 

The calculations reveal that the pure methane combustion in the 
MGT occurs in a very lean condition with an equivalence ratio of 
0.14 for the MGT’s baseload. This results in minor alterations in 
temperature, density, volumetric flow rate, and specific heat 
capacity during the transition from methane to hydrogen as a fuel 
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source. Fortunately, this lean combustion condition mitigates the 
impact on the flow entering the turbine section, addressing 
potential challenges associated with variations in flue gas 
properties. 
The computed values presented in Table 3.2 illustrate the changes 
in flue gas properties during the transition from methane to 
hydrogen as the fuel source. Notably, there is an approximate 6-
degree temperature increase, leading to adjustments in density. 
Consequently, this shift results in a 1.5% increase in the 
volumetric flow rate at the turbine inlet, reaching 0.68 m3/s. 
Additionally, the specific heat capacity of the flue gas experiences 
a 1% increment. As it is evident, the high air-to-fuel ratio of MGT 
combustion has led to a small alteration of flue gas properties, and 
therefore, a small variation in the cycle is anticipated.  

Table 3.2 Flue gas properties comparison burning methane and hydrogen. Air 
composition is 21% O2 and 79% N2 with 4.3 bar pressure and 610 K temperature. 

Property Methane Hydrogen 
Fuel flow rate for nominal power output 6.7	g/s 2.8	g/s 
Air flow rate 0.8	kg/s 0.8	kg/s 
Flue gas mass flow rate 0.8076	kg/s 0.8028	kg/s 
Flue gas density  1.2046	kg/m! 1.1815	kg/m! 
Flue gas flow rate 0.67	m!/s 0.68	m!/s 
Stoichiometric air-fuel ratio 17.12 34.06 
Actual air-fuel ratio 120 288 
Equivalence ratio 0.14 0.12 
Adiabatic flame temperature 1230.52	K 1236.51	K 
Flue gas heat capacity at constant pressure 1214.8	J/kgK 1228.8	J/kgK 

 

After outlining these challenges, a comprehensive understanding 
of developing an MGT for hydrogen/methane blended fuel has 
emerged. The following section provides an overview of the 
experimental setup, detailing specific modifications made to 
facilitate its operation with hydrogen-blended fuel, addressing 
each challenge systematically. 
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3.2 Development of an MGT Running with 
Hydrogen Fuel 

The pursuit of creating an MGT capable of running on a 
hydrogen/methane blend entailed modifications to the existing 
T100 MGT situated at the Risavika Research Center in Stavanger, 
Norway. These modifications focused on three critical aspects: the 
fuel delivery system, the combustor, and the controller. A 
comprehensive and detailed explanation of these modifications is 
available in Paper II, while subsequent sections offer a concise 
overview, highlighting key elements for clarity. 

3.2.1 Fuel Delivery System 
The original low-pressure fuel system, relying on an external 
compressor for pressure augmentation, has been replaced with a 
new setup incorporating methane and hydrogen batteries stored in 
a bundle structure. Pressure reduction is achieved through relief 
valves, and safety measures include flashback arrestors and fuel 
disconnecting valves for rapid shut-off in case of a leak, as seen in 
Figure 3.2.  
 

  
(a) (b) 

Figure 3.2 Fuel system arrangement installed outdoors, (a) the valves, (b) fuel bottles. 

Pressure relief valve 

Flashback arrestors 

Fuel source 
disconnecting valves

Hydrogen line

Methane line

Hydrogen batteries Methane batteries
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The updated fuel train system, temporarily installed on the MGT 
(Figure 3.3), features separate lines for methane and hydrogen, 
mixed to control the fuel ratio. Thorough mixing is facilitated at 
the larger-diameter mixing station, with the mixed fuel conveyed 
into the combustor through two lines, utilizing one main valve and 
one pilot valve for proper functioning.  
 

  
(a) (b) 

Figure 3.3 The modified fuel system, (a) the mixing station and fuel trained installed on 
top of the MGT enclosure, (b) the combustor. 

3.2.2 Combustor 
The experimental setup employed a DLR F400s.3 combustion 
system to operate the MGT with hydrogen-rich fuels. This system, 
replaced the original Turbec swirl-type combustor in the 
T100 MGT, as depicted in Figure 3.4. The DLR F400’s pilot stage 
utilized swirl stabilization, while the main stage employed the 
FLOX® concept, combining jet and recirculation for improved 
combustion stability and reduced peak temperatures compared to 
the original T100 combustor. 
Figure 3.5 illustrates the FLOX® combustor’s design, featuring ten 
nozzles arranged in a circular configuration for axial injection of 
high-momentum main-stage air. This design is engineered for 
versatile fuel compatibility, enhances lean equivalence ratios, 
lowers combustion temperatures, and minimizes the potential for 
NOx formation.  

Main burner

Pilot burner
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(a) (b) 

Figure 3.4 The combustor of the MGT a) the original Turbec design, b) F400s ver.02.  

 
Figure 3.5 Schematic of the FLOX® combustion principle [127]. 

Upon integration into the MGT operating at elevated pressure 
levels and increased volumetric energy density, the combustor’s 
behavior faced new parameters unaddressed in atmospheric tests. 
Adjustments in air allocation within the MGT combustor adapted 
to high hydrogen content. Four configurations (9 mm, 11 mm, 12 
mm, and 13 mm) were examined, showing increased performance 
in leaner configurations, with a 36% air distribution increase in the 
9 mm version while maintaining low NOx emissions and flame 
stability.  
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Figure 3.6 outlines the expected relative combustion air over the 
dilution hole diameter, providing insights into air distribution 
adjustments with increasing hydrogen content. The results indicate 
enhanced performance in leaner configurations, underscoring the 
combustor’s adaptability to hydrogen-rich fuels.  
 

 
Figure 3.6 Expected relative combustion air over dilution hole diameter. 

3.2.3 Controller System 
To accommodate hydrogen-rich fuels in the MGT system, crucial 
modifications were implemented in the controller system. Figure 
3.7 provides a view of the enhanced MGT unit, featuring a new 
fuel delivery system tailored for operation with fuels rich in 
hydrogen content. The high-pressure bottles of methane and 
hydrogen maintain pressures up to 250 bar with manual pressure 
adjustments via relief valves. The fuel train controller meticulously 
regulates mass flow rates to ensure a precise fuel mixture, 
showcasing the intricate interconnections between controllers and 
valves in Figure 3.7. 
During the engine start-up phase, where the flammability range of 
hydrogen and methane poses challenges, the controller system 
employs a pilot mode to facilitate a controlled transition. Making 
adjustments to the pilot valve mapping to ensure a stable start-up, 
especially in conditions with high hydrogen content,  led to a 
smoother transition during ignition and initial acceleration, 
addressing concerns related to hydrogen’s flammability limits. 
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Figure 3.7 Structure of the MGT unit equipped with the new fuel train system, 

controllers, and measurement points. 

3.2.4 Measurement System 
The engine is outfitted with an extensive array of strategically 
positioned sensors which play a critical role in monitoring various 
parameters, ensuring precise control of the engine, and collecting 
abundant data for comprehensive analysis. Notably, the engine 
incorporates sensors to measure temperature, pressure, and mass 
flow rate in different stages, while also employing a gas analyzer 
to quantify concentrations of O2, CO, NO, NO2, CO2, and HC in 
exhaust gases. A detailed examination of the measurement system 
is provided in Paper II. An elaboration on the rigorous process of 
data cleaning, ensuring the reliability and accuracy of the collected 
data is provided in Chapter 5 of the thesis. 

3.3 Results  
Figure 3.8 provides a visual representation of the final MGT 
engine configuration. A comprehensive examination of 
experiments conducted to understand the impact of enriching 
methane fuel with hydrogen on the performance of the MGT is 
provided in Papers II and III. The focus of the provided results is 
on investigating the influence of different hydrogen blends on 
emissions and the stability of combustion. In this section, a brief 
overview of the results is presented. 
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Figure 3.8 Turbec T100 unit with modified combustor and fuel train for flexible fuel 

operation. 

In the initial experiments, the designed combustor functioned well 
with hydrogen content below 30% (volume basis). However, 
operational instabilities increased with higher hydrogen content, 
particularly in high-power modes. This prompted an exploration of 
a modified combustor design. 
In the second phase, an improved version of the combustor was 
designed and manufactured with smaller dilution holes, enhancing 
airflow to the main burner and improving material cooling. 
Experiments involved varying hydrogen content in the fuel and 
operating the engine at different power outputs. Challenges 
emerged when the hydrogen content exceeded 55%, leading to 
instabilities and high NOx emissions during start-ups.  
Addressing these issues necessitated iterative adjustments to the 
controller, guided by a trial-and-error methodology, to facilitate 
safe operation under high hydrogen fuel conditions while 
minimizing emissions. To achieve this, critical control parameters 
governing MGT operation during start-ups were identified, and 
corresponding modifications were implemented. Subsequently, the 
observed behavior of the MGT during start-up sequences was 
systematically analyzed to elucidate the influence of these 



 
 
 
 
 
 
Development of a Hydrogen-Powered MGT   

 

 
 

50 

parameters on engine performance. Additionally, error codes 
generated during unsuccessful operations served as valuable 
indicators, aiding in the development of strategies to avoid such 
failures and ensure stable operations. 
After implementing the controller adjustments, a series of 
experiments with an increasing share of hydrogen in the fuel, up to 
100%, were conducted. In-depth analyses were performed, 
considering cycle parameters like rotational speed and turbine 
outlet temperature (TOT). The relationship between rotational 
speed and power output showed consistent behavior despite slight 
deviations from methane-fueled operation. The impact of 
hydrogen content on TOT and NOx production became more 
evident, highlighting the importance of valve adjustments in 
controlling emissions.  
Investigation into hydrogen injection impact on electrical 
efficiency demonstrated steady efficiency across hydrogen 
contents. Overall efficiency increased with higher power outputs, 
mirroring behavior with conventional fuels. Increasing hydrogen 
content correlated with rising NOx emissions but remained within 
permissible levels. Anomalies arose around 55% hydrogen 
content, linked to initial valve settings. Higher hydrogen content 
led to diminished CO emissions, reaching zero for pure hydrogen. 
Detailed measurements, evaluations, and results are discussed in 
Papers II and III. 

3.4 Conclusion 
This chapter addressed challenges in developing an MGT powered 
by a blend of hydrogen and methane, gradually transitioning to 
100% hydrogen. The focus was on achieving combustion stability, 
emissions control, and preventing excessive combustor 
temperatures to mitigate thermal NOx formation. It discussed a 
modified combustor design with adjusted dilution holes, enhancing 
airflow and material cooling efficiency, ensuring stable 
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combustion with high hydrogen content. Operational results 
highlighted the impact of fuel valve adjustments for achieving 
stable operation in varying conditions while keeping NOx 
emissions below allowed values. For detailed findings and 
extensive results, Papers II and III are provided in the appendix, 
which offer thorough analyses of experimental procedures and 
scientific insights into hydrogen-enriched MGT development.  
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4 Development of an MGT Model: 
Physics-Based Approach 

This chapter outlines the development of physics-based models for 
100 kW capacity MGTs, employing two strategies: dynamic 
modeling with MATLAB’s Simscape and steady state modeling in 
Python. MATLAB’s Simscape provides a structured framework 
for dynamic modeling, offering robustness and programming 
flexibility. Python is chosen for steady state modeling due to its 
versatile programming capabilities and efficient handling of 
iterative processes, enabling swift derivation of steady state 
solutions for complex MGT systems. Despite methodological 
differences, both models share a common approach—systematic 
deconstruction of the MGT system into discrete components, each 
treated as an independent entity. This involves formulating 
correlations detailing interdependencies between components. The 
chapter explores dynamic model formulation, steady state model 
development, and their alignment with empirical data. Tailored for 
the Turbec T100 MGT, the models exhibit adaptability to other 
MGT systems, contingent upon the availability of component 
maps for those systems. This chapter offers an overview of the 
models detailed in Papers IV and V. 

4.1 T100 MGT 
The Turbec T100 MGT, initially designed by Turbec and currently 
produced by Ansaldo Energia (AE), is a 100 kW electrical power 
MGT available in CHP and electric utility configurations. Two 
variants were extensively studied during this research: the Turbec 
version located at Risavika Research Center, Stavanger, Norway 
(Figure 4.1), and the AE version at Paul Scherrer Institute (PSI), 



 
 
 
 
 
 
Development of an MGT Model: Physics-Based Approach   

 

 
 

53 

Villigen, Switzerland (Figure 4.2), denoted as AE-T100 for clarity. 
Both variants significantly contributed to understanding 
operational intricacies and control logic throughout the PhD 
program. The core components, such as the compressor, turbine, 
combustor, and recuperator, share the same design for both 
engines and the primary distinction lies in computer system 
advancements. Therefore a uniform approach was pursued for their 
thermodynamic modeling. 
 

.  
Figure 4.1 The T100 MGT, located at Risavika Research Center, Stavanger, Norway. 

 
 

 
Figure 4.2 The T100 MGT, located at PSI, Villigen, Switzerland. 
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The T100 MGT, equipped with a single-stage centrifugal 
compressor, a single-stage radial turbine, and a can-type lean pre-
mix combustion chamber, operates efficiently on rich natural gas. 
It maintains a fuel/air equivalence ratio of 0.13 at full load, 
utilizing an auxiliary compressor to elevate fuel inlet pressure to 
6–7 bar when natural gas is available at atmospheric pressure. If 
natural gas is available with sufficient fuel pressure, the need for a 
fuel compressor can be eliminated. The engine incorporates a 
bottoming air/water heat exchanger for CHP, and the power train 
configuration features a water-cooled high-speed permanent 
magnet generator, which also acts as a motor during start-up. 
Operating within a recuperated cycle, the engine achieves a 
nominal electrical efficiency of 30%. In CHP mode, it 
demonstrates a maximum thermal output of approximately 
165 kWh, leading to a total efficiency of 80%. A pivotal factor 
contributing to the engine’s efficiency is the incorporation of a 
recuperator in the cycle. This component preheats the air entering 
the combustor by harnessing excess heat from the flow exiting the 
turbine. The schematic representation of the engine’s main 
components is provided in Figure 4.3, while Figure 4.4 offers a 
visual insight into the AE-T100 with identifiable parts. 
 

 

 
A Intake filter 
B Compressor  
C Turbine 
D Diffuser  
E Recuperator  
F Heat Exchanger 
G Generator 
H Combustor 

 

Figure 4.3 Schematic view of the T100 engine.  

Operational at its design point, the engine maintains a rotational 
speed of 70,000 rpm. The cycle features a pressure ratio of around 
4.5 and a controlled turbine inlet temperature (TIT) of 950 °C, 
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ensuring that the TOT remains below 645°C. A detailed summary 
of the engine’s specifications under baseload conditions is 
provided in Table 4.1. 
 

 
Figure 4.4 The MGT from outside (left) and its inside (right). The figure on the right side 

is imported from [128].  

Table 4.1 AE-T100 nominal characteristics reported by the manufacturer [128]. 
Characteristics Nominal Value 
Pressure in the combustion chamber 4.5 bar (a) 
Turbine inlet temperature 950 ˚C 
Rotational speed 70,000 rpm 
Frequency output 50 Hz (60 Hz on request) 
Voltage output 400 V(AC), three phases 
Required pressure for fuel (6 ~ 8) bar(g) 
Required temperature for fuel  (0 ~ 40)°C 
Electrical power output  100 ± 3kWe 
Electrical efficiency  30 ± 2% 
Exhaust gas flow rate ≈ 0.79kg/s 
Exhaust gas temperature ≈ 270˚C 
NOx emissions ≤ 15ppm(v) ≈ 31 mg/Nm3 @15%O2 
CO emissions ≤ 15ppm(v) ≈ 19 mg/Nm3 @15%O2 

4.2 Development of the Dynamic Model of the 
Fuel-Flexible MGT 

The dynamic model of the MGT consists of an interconnected 
network of components, including the compressor, combustor, 
turbine, recuperator, and heat exchanger. Each component is 
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modeled using governing equations and principles based on fluid 
dynamics, thermodynamics, and heat transfer. This dynamic model 
allows for the analysis of the transient behavior of the MGT 
system, capturing its responses to fluctuations in operating 
conditions, variations in load, and the intricacies of start-up and 
shutdown procedures. A simplified block diagram of this dynamic 
model, implemented within MATLAB’s Simscape, is illustrated in 
Figure 4.5.  
Traditionally, researchers and engineers have relied on Simulink 
for dynamic modeling, utilizing its graphical block diagram 
approach for systems such as GTs and control systems. The 
evolution of Simscape builds upon Simulink’s strengths, offering 
an advanced extension designed to meet the complex modeling 
demands of multi-domain physical systems. Simscape excels in 
efficiently integrating and managing interconnected domains, 
providing a foundational structure spanning all physical domains 
and a comprehensive library of physical components for detailed 
simulations. Unlike the conventional Simulink modeling approach, 
which relies on equation-based component connections, Simscape 
establishes authentic physical connections that accurately reflect 
the real-world topology of the system. While Simulink’s block 
diagram structure facilitates modeling, it is crucial to note that the 
relationships between its blocks and signals do not precisely 
replicate the actual physical connections inherent in components, 
such as flow or rotor connections. Figure 4.6, extracted from [129] 
illustrates the T100 MGT modeled in Simulink to underscore these 
disparities. 
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(a) 

  
(b) (c) 

Figure 4.5 Developed model for the T100 unit using MATLAB Simscape: (a)  thermodynamic cycle, (b) user’s inputs to the model, (c) a sample for reference power.
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Figure 4.6 Developed model for a Turbec T100 unit using MATLAB Simulink [129]. 

The foundation of Simscape models rests on two crucial 
components: domains that signify physical fields and components 
that represent the elements of a system. These components are 
versatile and capable of spanning multiple domains, offering 
flexibility in constructing models.  
While a detailed exploration of the dynamic model developed in 
Simscape is available in Paper IV, this section provides a concise 
overview, focusing on key aspects.  

4.2.1 Domain Definition 
Simscape domains represent physical fields like electrical or gas 
systems, featuring through-variables (e.g., mass flow rate) and 
across-variables (e.g., pressure). In the T100 engine Simscape 
model, gas, rotational, and thermal domains play key roles. 
The gas domain is customized for MGT cycle variations, 
encompassing through-variables such as mass flow rate (ṁ), 
energy flow rate (φ), and fuel flow rate (ṁ#), as well as across-
variables including pressure (p), temperature (T), and fuel 
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concentration (x#). Equation 4.1 correlates fuel concentration and 
flow rate. 

x! =
ṁ!

ṁ
 4.1 

The MGT model integrates the Mechanical Rotational Domain, 
defining torque (τ,⃗ ) and angular velocity (ω) as through and across 
variables. The Thermal Domain simulates heat transfer, employing 
heat flow (Q̇) as the through variable and temperature (T) as the 
across variable. 
The properties of the working fluid depend on molecular 
composition, pressure, and temperature. User-defined molecular 
compositions for air (C$) and fuel (C#) determine flow properties. 
Pre-combustor components have zero fuel concentration, with 
properties determined by air composition, pressure, and 
temperature at the entrance. Post-combustor components have 
non-zero fuel concentration, and species concentrations are 
calculated based on x#. The combustion chamber has varying fuel 
composition at its inlet and outlet, requiring distinct calculations 
for flow properties at each point.  
Users choose fuel type, and the model calculates fluid properties, 
including heat capacities, gas constant, thermal conductivity, and 
density. Figure 4.5 (b) illustrates user input data for boundary 
conditions in MGT simulation, including time-dependent ambient 
conditions. Users configure air and fuel conditions and set the 
power point through the bottoming block, represented as a time-
based signal in Figure 4.5 (c). This signal feeds into the engine 
controller, modeled by Simulink. Further details on these 
calculations are discussed in Paper IV. 

4.2.2 Controller 
The controller’s model, depicted in Figure 4.7, is developed in 
Simulink, and specific parameters are fine-tuned for a balance 
between meeting power demands and preserving engine integrity. 
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The user or grid sets the desired power output, guiding the 
controller’s dynamic adjustments to match the power demand 
while prioritizing engine safety. The controller parameters play a 
pivotal role in the transient behavior of the MGT, encompassing 
start-up, shutdown, and load variation, and are meticulously fine-
tuned to align with the MGT’s performance in these dynamic 
conditions. 
 

 
Figure 4.7 Controller of the T100 MGT developed in Simulink. 

The system’s controller operates automatically, responding to user 
inputs and real-time engine measurements, including TOT, rotor 
speed, and power output. Its primary goal is to meet power 
requirements while ensuring the TOT stays below 645°C so the 
turbine and recuperator are safe from high temperatures. The 
controller employs a dynamic strategy, adjusting fuel mass flow 
rate and rotational speed using proportional-integral regulators for 
gradual response. A correlation between reference rotational speed 
and desired power level is established, with safeguards to prevent 
rotor damage.  

4.2.3 MGT Main Components 
The main components of the MGT is presented in Figure 4.8 
which provides insight into the intricate relationships among the 
engine components and their thermodynamic interactions. Built 
upon these elements, the MGT model incorporates lumped 
components presumed to have a finite number of inlets and outlets, 
with uniform flow properties at their boundaries. Typically applied 
between the inlet and outlet of components, signifying their zero-
dimensional nature, a distinct approach is taken for the 
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recuperator, utilizing a one-dimensional approach within 
discretized cells. Time-dependent thermodynamic equations 
presented for all gas domain components serve as fundamental 
principles for mass, momentum, and  energy conservation within 
the system. These principles are elaborated in Paper IV, and a 
summary of the primary governing equations is provided in this 
section. 

 
Figure 4.8 The main components of the T100 MGT from [130]. 

By neglecting spatial variations at inlets and outlets, the 
conservation of mass in each of the components is simplified to 
Eq. 4.2: 

V
∂ρ
∂t
+*+m	̇ -"#$

%

−*+m	̇ -%&
%

= 0 4.2 

With the ideal gas assumption, the variation if gas density is 
correlated to pressure and temperature variations over time, as 
provided  in Eq. 4.3: 

∂ρ
∂t
=

1
RT
	
∂p
∂t
−
p
T
1
RT

∂T
∂t

 4.3 

The linear momentum and angular momentum equation is written 
as: 

*F5⃗ =*+ṁ	V55⃗ -"#$ −*+ṁ	V55⃗ -%& 4.4 

*M555⃗ =*+r⃗ × V55⃗ -"#$ ṁ"#$ −*+r⃗ × V55⃗ -%& ṁ%& 4.5 
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Similarly, the energy conservation equation for the component can 
be expressed as shown in Eq. 4.6: 
dQ
dt
−
dW
dt

= 

Vd(ρe)/dt +*Ah + 1/2DV55⃗ D
'
+ gzG

"#$
ṁ"#$

−*Ah + 1/2DV55⃗ D
'
+ gzG

%&
ṁ%& 

4.6 

The sigma symbol in the above equations account for all inputs 
and outputs of the component. Typically, most components have a 
single inlet and outlet, as leakage is disregarded.  
In Eq. 4.6 the parameters Q and W represent heat and work 
exchanges contributing to the total energy variation and the 
parameter e signifies total energy per unit mass, comprising 
internal, kinetic, and potential energy components: 

e = uI +
1
2
DV55⃗ D

'
+ gz 4.7 

Assuming negligible variations in velocity and level between 
inputs and outputs, and by applying the ideal gas assumption, the 
internal energy term takes precedence and can be related to 
temperature as shown in Eq. 4.8: 

d(ρu)
dt

= ρc(
∂T
∂t
+ ρT

∂c(
∂t

+ c(T
∂ρ
∂t

 4.8 

Consequently, the time derivative of the internal energy term can 
be calculated by rewriting the c% terms in relation to c" (Eq. 4.9), 
and the relationship between c" and temperature, as stated in 
Eq. 4.10: 

c( = c) − R 4.9 

dc(
dt

= 	
dc)
dt

= 	
∂c)
∂T

	
∂T
∂t

 4.10 

As a result, all the time-dependent terms within the mass and 
energy conservation equations are transformed into the time 
derivatives of pressure and temperature. 
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These equations serve as fundamental principles applied 
universally across all key components of the MGT system, 
including the compressor, turbine, combustor, and recuperator. 
The operational characteristics of the components in the MGT 
model are represented through maps and correlations detailing 
their flow behaviors at conditions, established through steady state 
test runs. These component-specific correlations are detailed in 
Paper IV and V. Integrated with dynamic equations for mass, 
momentum, and energy balance, these maps contribute to the 
model’s robust dynamic response.  
To address potential discrepancies between actual engine 
component behavior and representations offered by maps and 
correlations, a tuning process aligning the steady state operation 
with experimental data is conducted. A comprehensive explanation 
of this tuning process is provided in Section 4.4. 

4.3 Development of the Steady State Model of the 
Fuel-Flexible MGT 

The development of the steady state model for the fuel-flexible 
MGT system was undertaken using Python. To achieve 
steady state operating conditions, the model employs a 
combination of algebraic equations, iterative methods, and 
numerical solutions. 
The architecture of the steady state model mirrors the real-world 
operation of the MGT, where two sets of parameters determine its 
performance. These include user-defined parameters such as the 
power set point and fuel composition, alongside environmental 
conditions like ambient air and fuel condition. In Figure 4.9, a 
comprehensive overview of the code structure is provided, 
featuring modules for the controller, air composition calculator, 
fuel composition calculator, and the thermodynamic cycle. 
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Figure 4.9  Structure of the developed steady state model, showing the data transferred 

between four principal modules. 
 

The controller module plays a pivotal role in processing inputs 
related to power demand and ambient temperature. It calculates the 
fuel mass flow rate and engine rotational speed, which are then 
integrated into the thermodynamic cycle. This cycle encompasses 
the entire array of flow-based components and the generator, 
ensuring they operate at the specified rotational speed and fuel 
mass flow rate dictated by the controller. The air and fuel flow 
conditions are incorporated into the thermodynamic cycle through 
the air composition and fuel composition calculator modules. 
Upon completion of the thermodynamic cycle, the controller 
receives data on power output and TOT. It conducts a dual 
comparison, first evaluating the calculated power output against 
the desired reference value, and second, verifying that the TOT 
remains below the critical limit of 645°C. The controller iteratively 
adjusts the rotational speed and fuel flow rate to align with 
reference values while maintaining the TOT within acceptable 
thresholds. This iterative process persists until both power output 
and TOT converge to the desired values, ensuring the model 
accurately represents the steady state behavior of the fuel-flexible 
MGT system. 
The controller establishes the engine’s rotational speed based on a 
correlation derived from Eq. 4.11, which takes into account the 
reference power and ambient temperature. This correlation has 
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been derived from the engine’s performance under a variety of 
operational conditions.  

				N	 = 	93.035	P*+! 	+ 	700.698	T,-. + 	0.564	P*+!
' 	

+ 	2.007	P*+! ×	T,-. 	− 19.25	T,-.'

+ 	43682.417 
4.11 

To refine the fuel flow rate, the controller module utilizes the 
Secant method [131], a recognized approach known for its swift 
convergence. While the prescribed correlation for rotational speed 
typically remains stable, there are instances where iterations 
involving fuel flow rates may not converge within a specified 
number of steps. In such cases, an outer loop is activated to adjust 
the rotational speed. Following this adjustment, the iteration 
process for fuel flow rates is reiterated to ensure the convergence 
of both power and TOT to the desired values. The iterative 
procedure is visually outlined in Figure 4.10, providing a 
representation of the model’s refining process. The parameter ṁ& 
in Figure 4.10 represents the inlet air to the engine, as the 
subscribe represents the location in the MGT previously defined in 
Figure 4.3. 
The air and fuel composition modules leverage the Cantera [126] 
tool to determine the composition of the flow entering the 
thermodynamic cycle module. This cycle module is designed 
based on the principal components of the MGT. At the entrance of 
each component, the total pressure, total temperature, and 
composition of the flow are known. Similarly, these parameters are 
computed for the flow exiting each component. All calculations 
within the components utilize Cantera [126] to determine the 
properties of the flow based on its thermodynamic condition at the 
entrance of each component. This ensures accurate representation 
and calculation of the flow characteristics throughout the MGT 
system. 
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Figure 4.10 The flowchart of the steady state model. 

4.3.1 Thermodynamic Cycle 
The module’s thermodynamic cycle encompasses several 
functions, each aligning with a specific stage of the engine’s 
operation, as discussed in Section 4.2.3. However, in the 
steady state model, the time derivative terms of the equations are 
disregarded. Additionally, the steady state model integrates an air 
inlet filter and a turbine diffuser, which were absent in the 
dynamic model. The inclusion of these components enhances the 
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overall accuracy of the model. The structure of the thermodynamic 
model and its structure are provided in Figure 4.11.  
 

 
Figure 4.11 The structure of the thermodynamic cycle module and the stream of 

parameters. 

The foundation of the model lies in equations that calculate the 
outlet flow conditions based on the inlets and the component’s 
specific behavior. This modeling approach incorporates two main 
categories of equations: governing equations encompassing the 
steady state forms of mass and energy balance for a control 
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volume with one-dimensional open boundaries, and behavioral 
correlations that are component-specific and influenced by the 
geometry of each component. These correlations are derived from 
experimental data obtained from engine or individual component 
tests and are typically expressed as equations or organized in the 
form of maps. 
The governing equations, particularly the mass and energy balance 
equations, are consistent with those utilized for the transient 
model, as discussed in Section 4.2.3 and Paper IV. However, in 
this instance, the time derivative term is omitted to represent the 
steady state condition. Detailed behavioral correlations for all 
components are presented in Paper V. This comprehensive 
approach ensures a robust representation of the MGT system 
components, incorporating both fundamental mass and energy 
balance principles and component-specific behavioral correlations 

4.4 Adaptation of the Physics-Based Model to 
Experimental Data 

While physics-based models leverage thermodynamic equations 
and empirical maps and correlations, it is essential to acknowledge 
that some deviations from the model compared to an actual engine 
might be observed. These deviations can stem from a variety of 
factors as discussed in Paper V. To adapt the model to real-world 
data, it is imperative to fine-tune the imperfect maps and 
correlations implemented in the components. This involves the 
incorporation of suitable coefficients within these maps and 
correlations, followed by optimization to minimize the disparity 
between the model’s predictions and experimental data. 
Given that imperfections in the maps and correlations are linked to 
the steady state behavior of the engine, the tuning process 
primarily focuses on the steady state model. The adaptation 
journey initiates with the collection of comprehensive data from 
the MGT operating under diverse ambient conditions and various 
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power rates, thereby creating an extensive database. Subsequently, 
a fraction of this data (comprising 2 days of operation compared to 
the total of 21 days) is reserved for validating the tuned model. 
The remaining dataset is utilized for the tuning process, involving 
data cleaning to remove noise and selecting the steady state 
portions. The determination of steady state conditions is crucial, 
and Section 5.2.3 details the procedure for recognizing steady state 
time spans. 
Following these steps, a stratified sampling method is employed to 
choose a subset of 100 data points from the overall population of 
steady state data. This ensures a well-rounded representation of 
diverse operating scenarios by dividing the entire dataset into 
strata based on different power output levels and ambient 
conditions, and then randomly selecting data points from each 
stratum. 
The core of the adaptation process involves an iterative procedure 
where tuning coefficients are adjusted to minimize the difference 
between the 100 experimental data points and the model’s results 
under corresponding conditions. This intricate process utilizes a 
GA and is executed in two levels due to the high number of 
parameters. Detailed equations and adaptation procedures are 
available in Paper V. 
Upon concluding the adaptation, the adapted model undergoes 
validation using the reserved 2-day dataset. If the adapted model 
performs well with the validation set, the process is concluded. 
However, if discrepancies arise, adjustments to the measures used 
for selecting steady state time spans are crucial. Balancing the 
stringency of criteria is essential to avoid including transient 
conditions in the adaptation or having an insufficiently 
representative dataset. The entire adaptation process is visually 
presented in Figure 4.12. 
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Figure 4.12 The process of steady state model adaptation to experimental data. 

The impact of adaptation on error reduction is elucidated in Table 
4.2, showcasing errors before and after adaptation for the dataset 
used in adaptation. Additionally, errors on the validation set are 
provided, demonstrating acceptable levels that affirm the 
effectiveness of the implemented methodology. The parameters 
are numerically subscripted, denoting the measurement location as 
per Figure 4.3.  
As discussed earlier, the adaptation process plays a crucial role in 
fine-tuning the MGT model to experimental data under 
steady state conditions. The dynamic model, developed in 
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Simscape, is inherently capable of operating under steady state 
conditions by excluding the time derivative term in 
thermodynamic equations. It is worth noting that the simulation 
period, even for the steady state model in Simscape, is 
considerably lengthier than its Python-based counterpart. Given 
the iterative nature of the adaptation process, the necessity for a 
swift model prompted the development of a fast Python-based 
steady state model specifically for this project. 

Table 4.2 Model prediction error for target parameters before and after adaptation. 

No. Parameter 
Original Model Adapted Model Adapted Model-validation set 

MAE mAE MAE mAE MAE mAE 
1 p! 0.0025	bar 0.0027	bar 0.0010	bar 0.0012	bar 0.0013	bar 0.0015	bar 
2 T! 275.99	˚C 330.83˚C 0.16	˚C 0.64	˚C 0.20	˚C 0.94	˚C 
3 p" 0.0634	bar 0.1534	bar 0.043	bar 0.069	bar 0.049	bar 0.071	bar 
4 T" 1.74	˚C 5.20	˚C 0.27	˚C 0.86	˚C 0.30	˚C 0.89	˚C 
5 T# 269.69˚C 323.07	˚C 3.54	˚C 9.74	˚C 3.80˚C 9.98	˚C 
6 TOT 275.99	˚C 330.83˚C 1.79	˚C 4.94	˚C 2.00	˚C 6.06	˚C 
7 P 30.60	kW 41.80	kW 0.66	kW 1.67	kW 0.72	kW 1.99	kW 

 

 

 

Within the scope of this research, a dedicated steady state model 
and its corresponding adaptation process were devised for the AE-
T100 engine, with detailed findings presented in Paper V. 
Subsequently, an adaptation was executed for the T100 engine, 
and the adaptation coefficients were incorporated into the 
Simscape model. This involved modifying all components utilized 
in the steady state model to align with the dynamic model. 
Notably, the air filter and the diffuser were omitted from the 
steady state model, and adjustments were made to the recuperator 
to align with the same correlation as the dynamic model. This 
strategic alignment ensures that the adaptation coefficients derived 
from the steady state model’s adaptation process are directly 
applicable to the dynamic model. The outcomes of the adapted 
dynamic model, along with its comparison to experimental results, 
are presented in Paper IV. 
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4.5 Results  
The investigation detailed in Paper IV delves into the dynamic 
intricacies of a fuel-flexible MGT under diverse operational 
scenarios, modeled by the dynamic model discussed in this 
chapter. The outcomes provide insights into the engine’s 
performance, with particular emphasis on transient responses and 
varying fuel compositions. 
The results of the development and adaptation of the steady state 
model are comprehensively expounded upon in Paper V. The 
steady state model, adeptly calibrated through adaptation to 
empirical data extracted from the AE-T100 MGT, yielded results 
that underscore its efficacy. The findings, spanning power 
production to temperature dynamics, demonstrate good accuracy, 
with a maximum power prediction error of less than 2 kW and less 
than 5 ˚C maximum error for TOT. 
The physics-based model, fine-tuned with data from the T100 
engine, serves as a valuable tool for investigating the engine’s 
response to modifications, such as a switch in fuel type. 
Examining the MGT’s operation under ISO conditions and a 
100 kW load with pure methane and pure hydrogen reveals 
insights, as illustrated in Figure 4.13 and Figure 4.14. The model 
predicts a modest increase of less than 8 ˚C in TIT when 
transitioning from methane to hydrogen, accompanied by an 
elevation in pressure ratio and a 0.2 bar increment in combustor 
pressure. 
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Figure 4.13 Cycle analysis of the MGT running with pure methane, producing 100 kW at 

ISO conditions. 

 

 
Figure 4.14 Cycle analysis of the MGT running with pure hydrogen, producing 100 kW 

at ISO conditions. 
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This analysis is particularly pivotal during the conversion of the 
engine to hydrogen operation. The investigation extends to varying 
power rates, with a focus on the impact of replacing hydrogen with 
methane during part-load operation, as outlined in Table 4.3. The 
table encompasses key parameters, including TIT, TOT, relative 
rotational speed (N'()), and the thermodynamic efficiency (η*+) of 
the MGT. Relative rotational speed is calculated in relation to the 
nominal speed of 70,000 rpm. 

N*+F = N/N&"- 4.12 

The thermodynamic efficiency (η*+) is evaluated based on the 
engine’s produced power relative to the heat input: 

η$G =
P"#$)#$
ṁ!LHV!

 4.13 

Table 4.3 Comparison of MGT operation with methane and hydrogen fuel with different 
power rates at ISO conditions. 

 Methane Hydrogen 
P N#$% TIT TOT η&' N#$% TIT TOT η&' 

[kW] [%] [˚C] [˚C] [%] [%] [˚C] [˚C] [%] 
50 80.0 852.7 647.9 26.9 82.7 845.7 641.6 25.3 
60 87.2 873.9 645.2 27.0 86.5 869.9 643.5 27.2 
70 91.0 888.4 642.4 28.4 89.4 889.4 645.9 28.5 
80 95.5 912.6 647.3 28.0 93.7 914.9 648.7 29.7 
90 97.3 933.2 646.6 28.7 97.2 924.3 644.1 29.9 
100 101.2 938.7 642.9 29.5 103.0 946.3 645.5 28.8 

 

Notably, variations in TIT, TOT, N'(), and η*+ are non-uniform 
with changes in fuel type. While TIT is higher with hydrogen than 
methane at 100 kW, this trend does not persist at lower power 
rates. Similar non-uniform behavior is observed for engine 
efficiency, with instances where hydrogen outperforms methane 
and vice versa, depending on the power output. The same trend 
holds for TOT and N'(). 
Although these variations lack consistent patterns, the shift from 
methane to hydrogen induces discernible effects on engine 
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operation across all power rates, albeit to a minor extent. This 
assessment is crucial for anticipating any necessary preparations or 
precautions before experimental implementation. Particularly 
concerning is the potential impact on temperature and N'(), both 
critical for engine safety and endurance. In the current scenario, 
the moderate increases in TIT and N'() at 100 kW with hydrogen 
signify acceptable variations, ensuring operational integrity. 

4.6 Conclusion 
In this chapter, a comprehensive exploration of physics-based 
modeling for MGT systems was undertaken, employing 
MATLAB’s Simscape for dynamic modeling and Python for 
steady state models. The dynamic model allowed a detailed 
examination of transient behaviors, responses to various 
conditions, and start-up/shutdown intricacies. Simscape’s capacity 
for authentic physical connections was pivotal in constructing 
networks mirroring real-world system topology. The steady state 
model, integrating algebraic equations and iterative 
methodologies, mimicked MGT operational dynamics. The 
controller dynamically fine-tuned rotational speed and fuel flow 
for power requirements. Adaptation using a GA-enhanced model 
fidelity, making them potent instruments for predicting T100 MGT 
behavior under diverse scenarios. The dynamic model excels in 
capturing transient responses and adapting to varying fuel 
compositions, revealing load variations and fuel-specific nuances. 
The steady state model reproduces stable operational behavior, 
providing a sophisticated resource for predicting performance 
across power levels. Beyond T100, these models exhibit 
adaptability to alternative MGT systems, offering a robust 
platform for virtual experimentation, optimization, and analysis of 
performance and operational parameters. 
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5 Development of an MGT Model: 
Data-Driven Approach 

The efficacy of physics-based models, as demonstrated in 
Chapter 4, has been well-established for achieving the first goal of 
this PhD research — designing an MGT with a hydrogen blend to 
enhance fuel flexibility. However, for system integration and 
operational optimization, the imperative of swift simulations 
allowing numerous iterations necessitates an exploration beyond 
physics-based models. In this context, data-driven methods emerge 
as a promising avenue, leveraging AI and sophisticated machine-
learning tools with relevant physical system data to construct 
models that are not only rapid but also highly accurate. 
In crafting models for an integrated system, precision in each 
constituent model is crucial for overall accuracy. This work 
emphasizes a delicate balance between high accuracy and 
computational efficiency. An intentional infrastructural approach 
ensures the versatility and applicability of the codes across diverse 
systems, aligning with the planned implementation of AI 
modeling. Detailed steps in creating reliable, fast data-driven 
models and their significant applications are explained in this 
chapter and upcoming Chapters 6 and 7. 

5.1 The Importance of Data 
Understanding the intricacies of data importance naturally leads to 
an exploration of the various modeling approaches in AI. It is 
imperative to delineate between AI, machine-learning, and data-
driven methods. AI, the broader field, seeks to emulate human-like 
tasks. Machine-learning, integral to data-driven modeling, equips 
systems with the ability to learn and enhance performance over 
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time through data. Data-driven models consequently, rely on 
machine-learning algorithms to interpret vast datasets, extracting 
patterns, correlations, and insights that inform predictions and 
decisions. These models leverage datasets as their foundation, 
refining parameters autonomously through machine-learning 
techniques such as supervised learning, unsupervised learning, and 
reinforcement learning.  
The accuracy of a data-driven model is intricately dependent not 
only on data treatment and modeling but also on the inherent 
quality and quantity of the data itself. The quality of data 
predominantly pertains to how it is collected. If sensor data 
becomes excessively noisy, traditional noise cancellation methods 
may fail to extract meaningful information, thereby reducing the 
quality of the resulting data and hindering the development of a 
functional model. 
Concerning the quantity of data, dual interpretations emerge the 
count of sensors integrated into the system and the diversity of 
operational conditions from which the sensors have harvested data. 
The deployment of a greater number of sensors at strategic 
locations within the system yields richer insights into its 
functionality. However, pragmatic constraints such as cost 
limitations or logistical challenges may curtail the number and 
types of sensors employed. The selection of sensor types and their 
optimal placement becomes a pivotal facet of experimental work. 
While many systems host intrinsic sensors primarily designed for 
control and protection, additional sensors may be necessitated for a 
comprehensive system model. 
Another pivotal dimension of data quantity revolves around the 
diversity of system operations captured by the sensors. The data-
driven model’s predictive capacity is restricted by the operational 
range covered during training. Therefore, for a model that adeptly 
forecasts system behavior across a wide operational spectrum, it is 
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imperative to curate a dataset that mirrors this diversity in system 
operation. 

5.2 Data Preprocessing 
The volume of data collected from an MGT can be substantial, 
depending on factors such as sensor count, data logging frequency, 
and test duration. The data, gathered by sensors installed on the 
MGT, is stored in hardware and made available in CSV format for 
subsequent model development. Before embarking on any 
modeling endeavors, the so-called “raw data” undergoes a crucial 
preprocessing procedure. This process, termed “preprocessing,” 
serves several objectives: 
- Synchronizing data collected from different acquisition 

systems and at various frequencies; 
- Creating a visual representation of the data to facilitate rapid 

operational assessments; 
- Enhancing sensor comprehension by visually comparing data 

from different sensors; 
- Filtering out noise from the collected data; 
- Stratifying the operation data into steady state and transient 

time spans, serving modeling and condition monitoring 
purposes. 

For this purpose, an “experimental data preprocessing code” has 
been developed using the Python language. The code is designed 
with a generic approach, ensuring its applicability to various 
testbeds, extending beyond MGTs to encompass different 
technologies. In this project, the code was specifically utilized to 
preprocess data collected from both MGTs at the Risavika 
Research Center and PSI. 
The modules within the “experimental data preprocessing code” 
encompass: 
- Data cleaning; 
- Visualization; 
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- Steady state time recognition. 
Subsequent sections provide detailed explanations of these 
modules.  

5.2.1 Data Cleaning  
5.2.1.1 Sensor Renaming  
Enhancing readability is achievable through the adoption of 
concise names for sensor data that convey pertinent details about 
the sensor’s type, installation location, and redundancy status. As 
the collected sensor data is inherently tagged with predefined 
names which does not contain such information, a step for 
modifying these names is required. To facilitate this process, an 
Excel file is supplied, delineating the old tags alongside their 
corresponding new names. In instances where redundant sensors 
occupy a specific location, a numerical identifier is appended to 
the sensor’s name. 

5.2.1.2 Outliers Identification 
Upon renaming the sensors, the identification of redundant sensors 
in the same location is executed. Subsequently, an average value is 
computed to establish a mean measurement for that specific 
location, thereby mitigating localized variations that may impact 
the sensors’ readings. The process involves the detection and 
exclusion of abnormal sensors among the redundant ones from the 
average value calculation. Abnormal sensor identification employs 
the computation of mean and standard deviation based on readings 
from all redundant sensors. Subsequently, the Z-score for each 
sensor reading is calculated using Eq. 5.1: 

Z	 =
X	 − 	µ
σ

 5.1 

In the context of sensor data processing, the Z-score calculation 
utilizes parameters such as X for the sensor value, µ representing 
the mean of all sensor readings, and σ indicating the standard 
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deviation of all sensor readings. Z-scores falling beyond a 
predetermined range, often set at ±2 or ±3, serve as indicators of 
outliers, potentially signaling a malfunctioning sensor. 
Addressing identified outliers, specifically those associated with 
abnormal sensors, involves replacing the problematic values with 
the average value derived from other sensors in the same location. 
This corrective measure aims to enhance data consistency and 
mitigate the impact of malfunctioning sensors on subsequent 
analyses. 
While the approach outlined above effectively identifies 
abnormalities in redundant sensors, it may not capture 
malfunctions in sensors lacking several redundant counterparts in a 
specific location. To address this, a data validation process is 
implemented to identify physically implausible values. For 
instance, in the case of temperature measurement, a predefined 
temperature range is established. If a sensor reports a temperature 
significantly outside this range, it is flagged as a potential 
malfunction, prompting further examination and corrective 
actions. 

5.2.1.3 Resampling 
In certain scenarios, data collection from a system may involve 
obtaining data at different frequencies or with time lags. For 
instance, in the MGT tests at the Risavika Research Center, two 
distinct data acquisition systems initiated recording at different 
times and concluded at varying intervals. To consolidate data from 
all sensors effectively, it is imperative to establish a unified data 
table with consistent time intervals. This necessitates a resampling 
process to synchronize the time steps across all datasets. 
In this study, all data collected during a day of testing is organized 
within a folder. Subsequently, the code systematically scans 
through files containing data from diverse acquisition systems. It 
identifies time spans where all sensors have recorded data and 
selects the corresponding data for resampling. The resampling is 
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executed with a frequency equivalent to the smallest sampling rate 
(longest sampling time). The outcome is a comprehensive table 
featuring data from all sensors (columns) aligned with constant 
time intervals (rows), ensuring uniform temporal spacing between 
each data row. 

5.2.1.4 Noise Cancellation 
The sensor-collected data is susceptible to noise stemming from 
diverse sources, including electrical interference, sensor 
calibration discrepancies, and environmental conditions. This 
noise introduces random fluctuations and inaccuracies in the 
sensor measurements, potentially compromising the quality and 
reliability of the data. To mitigate these effects, various 
techniques, such as filtering, smoothing, and denoising algorithms 
(e.g., moving averages or median filters), have been implemented 
in this study to enhance the robustness of the reading data. 

5.2.2 Visualization  
Visualization plays a crucial role in the analysis of MGT sensor 
data, offering insights into performance and operational 
characteristics. Effectively representing time-based data from 
sensors is essential for comprehending the dynamics of turbine 
operation. 
Within the visualization module, an initial step involves plotting 
an overview of all signals against power output. Power output 
serves as a significant indicator of the engine’s operation over 
time, being a primary parameter set by the operator. While power 
output stands as the module’s default reference signal, users retain 
the flexibility to select any other signal as the reference for 
comparative plotting. 
Figure 5.1  illustrates two instances of visualizations depicting 
rotational speed and fuel flow rate against power output. 
Following this comprehensive overview of the test’s entire 
duration, the module offers diverse options for data inspection. 
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Users can zoom in on specific periods, obtain spot value readings, 
and annotate plots based on chosen time intervals, among other 
features, as depicted in Figure 5.2 

 
(a) 

 
(b) 

Figure 5.1 Visualization of experimental data, (a) engine rotational speed and (b) fuel 
flow rate, both plotted parallel to power output. 

 
Figure 5.2 Monitoring points for easy reading of the visualized data. 
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5.2.3 Steady State Time Recognition 
Throughout the MGT’s operational cycle, spanning from start-up 
to shutdown, the engine experiences both transient and steady state 
conditions. The engine’s transient behavior is influenced by input 
parameters and the engine’s state at the previous time step, while 
the steady state is fully defined based on input parameters. 
Similar to physics-based modeling, determining the type of the 
data-driven mode is crucial—whether it is a steady state model or 
dynamic. The methodology and model approach for steady state 
and dynamic models differ. 
For a dynamic model, the time-based data, which has undergone 
the cleaning procedure outlined in Section 5.2.1, is sufficient. 
However, to develop a steady state model, the dataset used must 
exclusively represent steady state operations. To address this 
requirement, a steady state time-span recognition module is 
integrated into the data preprocessing program. This module can 
identify operational segments where the engine was in a 
steady state condition. 
In Figure 5.3, a comprehensive representation of the engine’s 
operational envelope is depicted. During certain periods, where the 
power output exhibits minimal variation, it suggests the engine is 
in a steady state operation. While this visualization offers a 
glimpse into when the engine is in a steady state and when it is not, 
attempting to visualize the entire dataset for recognition purposes 
is impractical. Furthermore, confirming if the engine is genuinely 
in a steady state necessitates the evaluation of all sensors to ensure 
consistent readings. 
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Figure 5.3 A complete operational envelope for an MGT from start-up to shutdown. 

In this study, the identification of the beginning and conclusion of 
steady state periods is facilitated through a code that follows a 
procedure: 
- The algorithm initiates its evaluation from the first data point 

in the database, proceeding sequentially toward the last entry, 
to determine time intervals representing steady state operation. 
These intervals are independently identified for each sensor by 
the code and subsequently consolidated to define common 
steady state conditions. 

- The user defines an acceptable tolerance for each sensor, 
indicating the permissible variation during steady state 
conditions. Commencing from any point, the algorithm selects 
a window where all data points fall within the specified 
tolerance margin, exemplified in Figure 5.4 (a) from point A to 
point B. 

- Subsequently, all data points within the chosen window (A to 
B) are monitored, and their deviation from the mean value of 
all points within the same interval is calculated. Points with 
deviations exceeding the accepted margin are discarded. In 
Figure 5.4 (a), points between A and A’ and between B and B’ 
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exhibit high deviations, leaving the remaining points between 
A’ and B’ representing steady state operation concerning 
power output. 

- The algorithm then proceeds to the next evaluation window, 
initiating from the previous window’s endpoint (B in 
Figure 5.4), and extending to the next point (C in 
Figure 5.4 (b)) within the tolerance range. 

- The deviation calculation is repeated as the algorithm 
progresses from point B to C. During transient data, none of 
the points typically exhibit low deviation from the mean, 
except for those precisely on the mean value or in close 
proximity. In such cases, the length of the time span with small 
deviations becomes a small fraction of the entire window’s 
length, signaling transient operation. Specifically, the duration 
of the small deviation period (A’ to B’ in Figure 5.4 (a)) must 
exceed 50% of the tolerance window’s length (A to B in 
Figure 5.4 (a)) for the time interval to be categorized as 
steady state. 

The comprehensive dataset is systematically analyzed by the 
implemented module, sequentially processing each signal. This 
procedure identifies periods characterized by steady state 
conditions for each specific sensor. Subsequently, common time 
spans shared across all signals are selected, representing the 
steady state operation of the MGT. 
It is crucial to highlight that appropriate tolerance and deviation 
margin values must be defined by the user for each parameter. 
This determination often involves an iterative process, requiring a 
few trial-and-error iterations to identify the optimal combination 
which essentially defines the steady state criteria. Notably, these 
values are not universally applicable to the same parameters across 
different engines, as each engine may exhibit varying levels of 
oscillations and transient slopes. Therefore, the careful selection of 
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appropriate values is an essential prerequisite for executing the 
steady state recognition module 

 
(a) 

 
(b) 

Figure 5.4 Functionality of the steady state time recognizer module. 

The steady state time spans identified through this module serve to 
separate the steady state portion from the entire dataset, effectively 
isolating transient operations. Consequently, a new database, 
exclusively comprising steady state engine operation data, is 
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meticulously crafted and ready for utilization in modeling 
endeavors. 

5.3 Development of a Data-Driven Model 
After the process of data cleaning and the removal of outliers, two 
distinct datasets were generated. One dataset encompasses the 
entire sensor data, while the other specifically captures instances 
of steady state conditions. The subsequent steps entail feature 
selection, normalization, and the division of the datasets into 
training and testing sets. 

5.3.1 Feature Selection 
Feature selection is a pivotal step in the modeling process, guiding 
the identification of variables that significantly contribute to the 
model’s informativeness while excluding less pertinent or 
redundant features. This step is crucial for optimizing both model 
efficiency and interpretability. 
For GT sensor data, a judicious selection of features not only 
enhances model efficiency but also unveils key insights into the 
turbine’s performance dynamics. While various data analysis 
methods exist to identify crucial features for model development, 
this work relies on domain knowledge to pinpoint the most 
relevant parameters. 
In essence, the inputs and outputs of the model were predefined 
based on the specific requirements of creating a replica of the 
actual system. For an MGT, operational decisions stem from the 
operator’s choices, typically involving power output selection. In 
the case of the new hydrogen-fuel engine discussed in Chapter 3, 
user decisions also encompass the ratio of hydrogen in the 
hydrogen/methane mix. 
Beyond operator decisions, ambient conditions significantly 
influence engine operation. Factors such as pressure, temperature, 
and relative humidity impact the properties of the air entering the 
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engine, necessitating their inclusion in the model’s input set. Fuel 
conditions, including pressure and temperature upon entering the 
MGT, are also vital and form part of the input parameters. 
The remaining parameters are outcomes of the engine’s operation 
and are incorporated into the output list. This encompasses 
variables like fuel flow rate, rotational speed, and flow pressure 
and temperature throughout the cycle, wherever measurements are 
available. 

5.3.2 Normalization 
The dataset is refined to incorporate features relevant to the 
specified inputs and outputs. Prior to commencing model training 
with the data, a normalization process is applied to standardize the 
values of these features. Utilizing the min-max scaling technique 
ensures that all variables are presented on a consistent scale. This 
uniform scaling is pivotal for expediting convergence during 
training and preventing certain features from exerting 
disproportionate influence over others, ensuring consistent model 
performance. 
The min-max scaling technique, as denoted by Eq. 5.2, involves 
utilizing y as any parameter within the database at a given time. 
Additionally, y,-.	and y,$/ represent the minimum and maximum 
values of the same parameter across the entire database. 
 

yHI,F+J =
y − y-%&

y-,K − y-%&
 5.2 

This approach recalibrates the data to a range between 0 and 1. It 
ensured that all variables made equitable contributions to the data-
driven models, effectively preventing any individual feature from 
exerting disproportionate influence over the analysis. 

5.3.3 Train-Test Split 
Instead of solely training on the entire dataset, 20% of the data is 
chosen randomly and reserved for testing. This approach assesses 
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the model’s ability to generalize to unseen data, extending its 
performance beyond the training set. To further mitigate 
overfitting, k-fold cross-validation is employed. The training set is 
divided into k subsets, using k-1 for training and one for validation 
iteratively across k rounds. This repeated validation minimizes the 
risk of the model fitting noise, ensuring a reliable evaluation of its 
generalization performance. 

5.3.4 Model Selection 
In the context of data-driven modeling for MGTs, various 
methodologies are worth considering. Among the available 
machine-learning methods, ANNs stand out due to their ability to 
capture non-linear behavior—a critical feature given the intricate, 
non-linear relationships inherent in MGT systems. ANNs excel at 
accurately representing these complex interactions, making them 
well-suited for modeling the system’s behavior. 
Furthermore, ANNs demonstrate the ability to adapt seamlessly 
and acquire knowledge from available data with minimal 
intervention. Since the performance of MGTs is closely tied to 
their health condition, operational characteristics may evolve. This 
evolution introduces the potential for variance between the 
model’s performance and the actual engine state, necessitating a 
re-adaptation process. This involves retraining the model to align 
with the changing engine behavior. 
ANNs aim to emulate the intricate functions of the human brain’s 
neural networks. In a fully connected computational system, 
numerous artificial neurons constitute an ANN, processing input 
data to generate output signals. The network’s core features 
interconnected neurons organized into layers. In a fully connected 
architecture, neurons within a layer establish connections with 
every neuron in the preceding layer, characterized by adjustable 
weights and bias terms. These parameters play a crucial role in 
enhancing ANN performance, complementing the weighted 
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summation of inputs during training. The weighted inputs then 
undergo aggregation and processing through an activation 
function, whose nature varies based on the specific problem 
addressed. 
Figure 5.5 (a) illustrates an artificial neuron, which not only 
receives inputs from the preceding layer’s neurons but also 
integrates a bias term. Both weights and the bias term are 
adjustable during training, enhancing the adaptability and overall 
performance of the ANN to effectively model the relationship 
between input and output data. 
The fundamental architecture of an ANN comprises an input layer 
and an output layer. However, introducing intermediary hidden 
layers strategically between the input and output layers can 
markedly enhance the model’s efficacy. Figure 5.5 (b) visually 
represents a multi-layer perceptron with two hidden layers. In this 
configuration, the neural network features 4 inputs, 8 neurons in 
the first hidden layer, 6 neurons in the second hidden layer, and 2 
outputs. The allocation of neurons to the input and output layers 
depends on the system’s complexity, mirroring the required 
number of inputs and outputs [132]. 
While expanding layers facilitates modeling more intricate 
complexities, it also increases susceptibility to overfitting. 
Overfitting occurs when the model excessively specializes in 
capturing training data nuances, potentially hindering 
generalization to new, unobserved data. To maintain an ANN 
model’s effective generalization, careful measures must be 
implemented in both the construction and training phases of the 
model. These measures involve applying regularization techniques 
to control model complexity, as well as utilizing cross-validation 
to evaluate performance on previously unseen data. By 
thoughtfully integrating these elements, ANN models achieve a 
harmonious balance between intricacy and generalization, ensuring 
reliability in real-world applications. 
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(a) 

 
(b) 

Figure 5.5 Structure of (a) an artificial neuron and (b) a multilayer ANN. 

For transient-based modeling, NARX models emerge as another 
valuable tool. NARX models excel in capturing the dynamic 
responses of complex systems, crucial for modeling transient 
behaviors in engineering applications. Effectively handling time-
dependent processes, NARX models are essential for 
understanding and predicting changes in MGT operation during 
transitions. The NARX architecture leverages both past system 
states and external input information to capture transient 
responses, enhancing accuracy and adaptability in MGT dynamic 
models. Figure 5.6 provides a schematic view of a NARX model. 
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Figure 5.6 Schematic of a NARX model.  

The incorporation of ANN for steady state operations and NARX 
models for transient behavior form a well-rounded methodology, 
providing a comprehensive understanding of MGT operation that 
covers both steady state and dynamic behaviors. Employing these 
modeling approaches, it becomes easier to comprehend MGT 
performance across various operational scenarios, ultimately 
enhancing the control, optimization, and decision-making 
effectiveness of MGTs. 

5.3.5 Hyperparameter Optimization 
The complexity of an ANN model is intricately linked to various 
key factors, encompassing the number of layers and neurons, and 
the selection of activation functions for each layer. Together, these 
factors define the hyperparameters of the model. However, finding 
the optimal combination of these hyperparameters is a time-
consuming task, especially given the vast array of options and 
configurations. This challenge is particularly pronounced in deep 
learning ANNs, known for their intricate architectural designs and 
deep layers, intensifying the complexity of hyperparameter 
optimization. 
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Manual fine-tuning of hyperparameters becomes impractical as 
ANNs grow in scale and complexity. The inherent subjectivity in 
human-driven selection can introduce biases and hinder the search 
for optimal configurations. Moreover, as the number of parameters 
and their interactions increase, achieving peak performance 
becomes more challenging. Hence, adopting a systematic and 
automated approach becomes imperative. 
Hyperparameter optimization offers a systematic, data-driven 
solution to these challenges. In this work, Bayesian optimization is 
employed as a potent strategy for navigating the complex 
hyperparameter landscape in the quest for superior ANNs. This 
approach involves constructing a probabilistic model of the target 
function, iteratively refined through Bayesian inference, often 
based on Gaussian processes. 
The essence of Bayesian optimization lies in balancing exploration 
and exploitation. By integrating the probabilistic model with an 
acquisition function, it strategically selects the next set of 
hyperparameters for evaluation, significantly reducing the number 
of function evaluations required, and enhancing the selection of 
hyperparameters. 
To ensure model convergence and mitigate overfitting, various 
techniques, including a learning rate schedule, early stopping, and 
continuous validation loss monitoring, are incorporated during 
training. The resulting model, with the optimized configuration 
and learning parameters, is presented in Table 5.1. This model, 
tailored for the fuel-flexible MGT, includes the operator’s decision 
on fuel combination in the input parameter list. The outputs are the 
fuel flow rate and the exhaust gas temperature, providing 
information about the power and heat performance of the engine. 
Engine efficiency can be calculated from the predicted fuel flow 
rate, while the exhaust gas temperature offers insights into the 
heating potential of the hot gas leaving the engine.  
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Table 5.1 Optimized hyperparameters for the ANN and NARX model of the MGT. 
inputs P()*,,$-, FR, T.-/, p.-/, RH, T0, p0 
outputs ṁ0, T$1 
No. of neurons hidden layers 102, 107, 48 
Activation function hidden layers Linear, ReLU, ReLU 
Learning rate 1.0 
Optimizer SGD 
 

As it is presented in Table 5.1, the activation functions for the 
model are linear (also known as identity function) and ReLU 
(rectified linear unit), which are presented in Eq. 5.3 and 5.4. The 
optimization function of training is stochastic gradient descent 
(SGD) which updates model weights by iteratively computing 
gradients of the loss based on randomly selected mini-batches 
from the training data, facilitating faster convergence and 
scalability to large datasets. 

Linear(x) = x 5.3 

ReLU(x) = max	(0, x) 5.4 

While more output parameters are feasible, the presented model 
includes the principal parameters for outputs, which proved 
sufficient for integration purposes and microgrid optimization 
(Chapter 6). Numerous models were developed during this work 
for different purposes, accommodating trustable sensor data for 
diverse output predictions. The simplicity of the presented model 
aligns with its suitability for integration and microgrid 
optimization, focusing on the fundamental parameters necessary 
for the intended applications. 

5.3.6 Model Training 
Upon the determination of optimal configurations, the ANNs 
undergo training using the backpropagation algorithm. This 
iterative process adjusts the weights and biases based on inputs 
and desired outputs, gradually aligning the model’s output with the 
expected results. As discussed, cross-validation is implemented to 
prevent overfitting, with approximately 80% of the data reserved 
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for training and 20% for testing. The selected models are trained 
on the training set, with the loss function being minimized by the 
chosen optimizer, SGD. Care is taken to avoid overfitting by 
implementing early stopping and regularization methods, thereby 
ensuring the models’ ability to generalize to unseen data. 

5.4 Performance Evaluation Metrics 
The performance of the developed ANN models has been 
rigorously examined. This examination is carried out on a 
dedicated test set, distinct from the training dataset, to ensure an 
objective assessment of the model’s predictive capabilities. The 
evaluation encompasses a range of error metrics; the mean 
absolute error (MAE) serves as an essential metric to quantify the 
average magnitude of errors in the model’s predictions. It is 
calculated as follows: 

MAE =
1
n
*|y% − yI%|
&

%LM

 5.5 

Where n represents the number of data points and y and y[ are 
actual and predicted value of parameters. Similarly, root mean 
square error (RMSE) could be calculated: 

RMSE = f
1
n
*(y% − yI%)'
&

%LM

 5.6 

The RSME provides a measure of the overall magnitude of errors, 
giving weight to larger deviations. 
The mean absolute percentage error (MAPE) offers insights into 
the average percentage discrepancies between the model’s 
predictions and observed data. It is expressed as: 

MAPE =
1
n
*|

y% − yI%
y%

|
&

%LM

 5.7 
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Employing all three types of average errors—MAE, RMSE, and 
MAPE—is helpful as each serves a distinct purpose in evaluating 
the model’s performance. MAE offers insight into the average 
magnitude of errors, RMSE captures the overall error magnitude 
with emphasis on larger deviations, and MAPE measures the 
average percentage discrepancies. These errors together with the 
maximum absolute error (max AE) of the predicted parameters for 
both models are presented in Table 5.2. Visual illustration of the 
models’ accuracy is provided in Figure 5.7 and Figure 5.8. 
The results demonstrate a high level of accuracy in predicting 
parameters, with both models achieving MAPE values of less than 
2%. Notably, the steady state model outperforms the transient 
model, indicating the complexities associated with modeling 
transient behaviors.  

Table 5.2 Evaluation of ANN and NARX model performance on test data. 

 
Steady state model Transient model 
ṁ! T"# ṁ! T"# 

Max AE 0.67 g/s 19.63 K 1.73 g/s 23.2 K 
MAE 0.06 g/s 2.92 K 0.14 g/s 5.2 K 
RMSE 0.09 g/s 6.18 K 0.38 g/s 8.12 K 
MAPE 1.17 % 0.5 % 1.78 % 0.98 % 

 

 

 
(a) 
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(b) 

Figure 5.7 Visualization of the prediction accuracy for the ANN model, (a) fuel flow 
rate, (b) exhaust gas temperature. 

 
(a) 

 
(b) 

Figure 5.8 Visualization of the prediction accuracy for the NARX model, (a) fuel flow 
rate, (b) exhaust gas temperature. 
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5.5 Conclusion 
This chapter introduced a robust data-driven framework developed 
for the modeling of MGTs. It comprised key elements, including 
steady state time recognition, data-driven model development, and 
systematic hyperparameter optimization. 
A distinctive feature of the framework was the inclusion of a 
module dedicated to recognizing steady state time spans. This 
facilitated the precise identification of stable operational segments 
within MGT performance data, ensuring data integrity—a 
prerequisite for accurate modeling. Leveraging ANNs for 
steady state modeling and NARX models for transient behavior, 
the framework adeptly captured intricate interactions between 
these operational modes. 
The significance of hyperparameter optimization was underscored 
as an integral facet of the framework. It provided an automated 
mechanism for fine-tuning numerous ANN configurations, with 
Bayesian optimization, grounded in probabilistic modeling, 
navigating this intricate parameter space. The resultant optimized 
models consistently demonstrated high accuracy, as corroborated 
by robust evaluation metrics, including MAE, RMSE, and MAPE, 
consistently yielding MAPE values below 2%. 
Moreover, the developed codes and tools exhibited infrastructural 
versatility, extending applicability beyond MGTs to encompass 
diverse systems such as heat pumps, wind turbines, and solar 
panels. his comprehensive approach facilitates the modeling of 
various components within a microgrid, contributing to the 
development of a unified model that spans diverse energy systems. 
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6 Optimization of MGT Operation 
in an Integrated System 

This chapter expands on the integration of MGT within a 
microgrid, leveraging the AI-based model development discussed 
in the preceding chapter. The objective is to develop a precise 
model for a conceptual microgrid, incorporating renewable 
sources, an MGT, and a storage system. The model includes 
meteorological predictions, demand forecasts, and a robust 
governing platform. The primary focus is on optimizing the 
operation of the conceptual microgrid serving an office building in 
Stavanger, Norway. While the microgrid is conceptual, each 
component’s model is empirically supported by over a year’s 
operational data. The study explores various scenarios over a 
week, offering an authentic representation of microgrid dynamics 
and emphasizing the vital role of integrated management systems 
and optimizers. This chapter serves as a review and introduction to 
the broader study detailed in Paper VI. 

6.1 Microgrid System Description 
This chapter delves into the intricacies of a microgrid system 
designed to supply electricity and heat to a municipal office 
building by integrating renewable (wind turbines) with 
conventional energy sources (MGT) and an energy storage unit 
(electrolyzer and hydrogen tank). The microgrid functions 
autonomously in “island mode” and can connect to the grid for 
imports or exports in “grid mode.”  
The consumer is a building in Stavanger city center, Norway, 
hosting the city’s public pool and municipal offices, as shown in 
Figure 6.1. Operational data, measured at five-minute intervals, 
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include comprehensive records of electricity and heat consumption 
of the building. 
 

 
Figure 6.1 The building that represents the heat and power demands of the microgrid. 

The microgrid’s wind turbines are WTN250, each featuring a 
nominal output of 250 kW, and provide reliable performance over 
a 25-year lifespan. They start generating power at 4 m/s (cut-in 
wind speed), achieve their rated output at 14 m/s, and shut down 
safely at 25 m/s (cut-off wind speed). Operating at 26 to 40 rpm, 
the fixed blade pitch angle is -20 degrees. The wind turbine and its 
power curve are illustrated in Figure 6.2. 
 

  
Figure 6.2 WTN250 wind turbine of the microgrid and its power curve [133]. 

The MGT, adaptable to part-load conditions, offers a nominal 
output of 100 kW and operates on a dual-fuel blend of natural gas 
and hydrogen, as discussed in Chapter 3. 
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The electrolyzer, an alkaline stack-up model as introduced and 
experimentally tested in [134], boasts a maximum power capacity 
of 100 kW. It utilizes surplus renewable power for electrochemical 
water splitting to produce hydrogen. A portion of the power 
directed to the electrolyzer is dissipated as heat during the 
electrolysis process, resulting in energy wastage. The generated 
hydrogen is then compressed to 20 bar and stored in a 50 kg unit. 
Figure 6.3 visually represents the microgrid’s interconnections, 
with colored lines indicating the medium of connection. Electricity 
(blue lines) from wind turbines and the MGT can be directed to the 
electrolyzer or the consumer. Heat generation (pink) primarily 
comes from the MGT, supplemented by an electrical heater in the 
building. Fuel lines include natural gas (yellow) supplied via a 
pipeline and hydrogen (green) produced by the electrolyzer. 
 

 
Figure 6.3 Schematic view of the microgrid. 

This microgrid is governed by a management system that decides 
on controllable units and manages power import/export in grid 
mode. The system considers weather forecasts, regional 
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regulations, and predictions of fuel and electricity prices to make 
optimal operational decisions. Advanced machine-learning 
techniques underpin an AI-based model, explored in subsequent 
sections, offering insights to optimize the microgrid’s performance 
across diverse scenarios. Figure 6.3 illustrates the interconnected 
components of the microgrid, emphasizing the importance of 
accurate forecasting, efficient optimization algorithms, and AI-
based models for ensuring economic viability and environmental 
sustainability. 

6.2 Modeling the Microgrid 
A data-driven approach was employed to model individual 
components of the microgrid, creating an integrated data-driven 
model of the whole system. The architecture of the ANN models 
for wind turbines and the MGT is depicted in Figure 6.4, 
showcasing input-output relationships and the optimized model 
configuration.  

  
(a) (b) 

Figure 6.4 The ANN models for (a) the wind turbines, and (b) the MGT of the microgrid. 
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The wind turbine model utilizes inputs like ambient temperature 
(T$,0), pressure (p$,0), wind speed (S1), and direction (D1),  to 
predict power output (P12). The MGT model considers inputs 
such as ambient temperature (T$,0), power set point (P342), and 
fuel heat ratio (FHR) which determines the outputs of the model 
that are consumed fuel flow rate (ṁ#) and exhaust gas temperature 
(T(5). The fuel heat ratio determines the natural gas and hydrogen 
blend in the fuel: 

FHR =
ṁNO × LHVNO

ṁNO × LHVNO + ṁP! × LHVP!
 6.1 

As outlined in Chapter 5, the MGT outputs offer sufficient insights 
for its operation. However, the model used here features fewer 
inputs compared to the one presented in Chapter 5. This 
simplification results in a more concise version that includes only 
highly crucial input parameters. 
Bayesian optimization guided model configuration, selecting 
Adadelta as the optimizer with specific learning rates. Activation 
functions include SELU, ReLU, Linear, Sigmoid, and hyperbolic 
tangent. The definition of activation functions is provided in Paper 
VI. 
The electrolyzer’s hydrogen production rate prediction considers 
its efficiency, influenced by operating power, as expressed in Eq. 
6.2 and 6.3 [135]. 

ṁP! =
ηQRS × PQRS
LHVP!

 6.2 

ηQRS = +6 × 10TU g
PQRS

PQRS,-,K
h
W

− 0.0001 g
PQRS

PQRS,-,K
h
'

+ 0.0085
PQRS

PQRS,-,K
+ 0.3995 

6.3 

Building energy demand prediction requires an LSTM architecture 
due to its effectiveness in capturing temporal transitions. The 
LSTM neuron addresses long-term dependency challenges in data 
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sequences. Training the LSTM model involves tuning weights and 
bias terms in various gates and memory cells. 
The building’s energy demand prediction model integrates 
historical data from the past two days and online data, forecasting 
hourly power and heat demand. Bayesian optimization determines 
the model’s structure and activation function. Figure 6.5 illustrates 
the structure of the model developed for building demand 
prediction.  

 
Figure 6.5. The model for heat and power demand prediction in the consumer building of 

the microgrid. 

Table 6.1 presents an overview of errors for wind turbine, MGT, 
electrolyzer, and building demand models on the test dataset, 
demonstrating their accuracy. 

Table 6.1 The error of the models’ predictions on the test data set. 
 Parameter  mAE MAE RSME MAPE 

Wind turbine P2* 27.2 [kW] 6.67  [kW] 11.35  [kW] 1.27 % 
Micro Gas Turbine ṁ0 2.3 [g/s] 0.14  [g/s] 0.38  [g/s] 0.25 % 
Micro Gas Turbine T$1 24.0 [˚C] 7.4 [˚C] 11.9 [˚C] 0.19 % 

Electrolyzer η345 0.0296 [-] 0.0120 [-] 0.0179 [-] 2.61% 
Consumer building P,$- 12.01 [kW] 8.00 [kW] 9.02 [kW] 11.53% 
Consumer building Q,$- 7.03 [kW] 4.91 [kW] 5.22 [kW] 9.38% 
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The operational management system operates in a predefined rule 
mode and an intelligent mode, utilizing predictions to optimize 
operations. The upcoming sections delve into the investigation of 
both management scenarios, emphasizing the significance of 
accurate forecasting, efficient optimization algorithms, and AI-
based models in ensuring the microgrid’s economic viability and 
environmental sustainability. 

6.3 Operation of the Microgrid without Smart 
Management 

The condition-based operation managed manually without an 
optimizer, follows predefined rules for microgrid management. 
These rules consider real-time conditions, aligning power, heat 
demands, and renewable energy production. Key principles 
include minimizing MGT usage, storing excess wind power when 
generation exceeds demand, and maximizing hydrogen content in 
the fuel blend. The primary aim is to balance energy consumption, 
avoiding unnecessary generation from the MGT. In case of a 
shortfall, the MGT operates at the lowest power, with import 
considered only in extreme circumstances. The sequence of rules 
is predefined for each hour, and strategically designed for optimal 
economic outcomes. 

6.4 Operation of the Microgrid with Smart 
Management 

Microgrid optimization strives to minimize costs and emissions 
while ensuring adaptability across diverse operational scenarios. 
The optimization process spans a week, considering hourly 
intervals, and involves critical elements such as weather forecasts, 
wind turbine power calculations, and consumer power and heat 
demand predictions. This comprehensive approach is vital for 
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maintaining the microgrid’s effective operation over varying 
conditions. 
The initiation of the optimization process begins with obtaining an 
hourly weather forecast for the upcoming day. Leveraging this 
forecast, the power output of the wind turbine is calculated for the 
next 24 hours. Concurrently, predictions for consumer power and 
heat demand are derived from historical data, integrating both into 
a demand prediction model. To manage the microgrid effectively, 
the optimization process determines crucial parameters for the 
dispatchable units, including the MGT and electrolyzer.  
For the MGT the power output and the choice of fuel combination 
have to be determined by the optimizer, both bound to the upper 
and lower limits: 

PXOY = iPXOYM	, PXOY', … , PXOY'Zk;		 
20 < 	PXOY% < 100 

6.4 

 FHRXOY = iFHRXOYM	, FHRXOY', … , FHRXOY'Zk; 
0 < 	FHRXOY% < 1	 

6.5 

The objective of the optimization is to minimize operational costs. 
The most significant cost contributor is the MGT, taking into 
account natural gas prices, associated CO2 taxes, and maintenance 
costs. The maintenance costs for the MGT are determined by its 
operational lifetime, quantifying the cost of power produced 
during a time step.  

CostXOY = CostNO + Cost$,K,[\! + CostXOY,-,%&$ 6.6 

During grid mode operation, where the microgrid interacts with 
the external grid, both revenue and costs come into play. The cost 
of purchasing or selling electricity is contingent upon specific 
hours, with the grid tending to purchase electricity from the 
microgrid close to the spot price.  

Cost+F = El%-) × pr+F,.#] − El+K) × pr+F,H+FF 6.7 
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The total cost of microgrid operation is formulated by summing up 
costs associated with each subsystem, including the MGT 
(Eq. 6.6), the operation and maintenance costs of the wind 
turbines, electrolyzer, and compressor, as well as the net electricity 
cost (Eq. 6.7): 
Cost$"$,F = CostXOY + Cost^Y + CostQRS + CostI-) + Cost+F 6.8 

The primary focus of the objective function lies in the total cost 
(Eq. 6.8), but additional parameters contribute to the holistic 
optimization. Constraints on hydrogen consumption, dependent on 
availability, and incentives for preservation are pivotal factors. The 
latter is related to the optimizer’s endeavor to recognize the future 
value of hydrogen by incorporating incentives to save or use it if 
the present value is higher. These incentives vary in island and 
grid modes, where hydrogen offsets natural gas costs or serves 
power generation and export. Eq. 4.10 shows the objective value to 
be minimized by the optimizer. 

OV = Cost$"$,F + PenP]Y − IncP]Y 6.9 

Utilizing a GA, renowned for its global minima discovery 
capability, the optimization process initiates with seeds from 
corresponding condition-based operations. Despite the potential 
time intensity due to numerous parameters, the optimizer’s 
efficient initialization and the model’s responsiveness ensure 
timely outcomes. 
Visual representations in Figure 6.6 (a) highlight the complex 
interplay among forecasting, optimization, and real-world 
adjustments, emphasizing the all-encompassing nature of this 
approach. Additionally, a comparative diagram for condition-
based operation is presented in Figure 6.6 (b). 
Notably, forecasting errors inherent in demand and production 
predictions necessitate an iterative fine-tuning process. This 
involves incorporating real-time data into the optimized scenario, 
adjusting operations based on actual conditions, and mitigating 
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imbalances that may arise from inaccuracies in predictions. This 
interplay between forecast-driven optimization and real-world 
adjustments ensures the microgrid’s efficient and reliable 
operation across dynamic conditions.  
 

 
(a) 

 
(b) 

Figure 6.6 The flowchart of the operations (a) optimization, and (b) condition-based.  
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6.5 Results 
The week-long microgrid analysis conducted from July 17th to 
23rd, 2022, explored various scenarios, assessing operations both 
with and without energy storage in islanded and grid-connected 
modes. This investigation aimed to understand the impact of 
different configurations, with a benchmark provided by a 
condition-based operation. 
Wind power was determined using the hourly distribution of 
weather parameters such as pressure, temperature, wind speed, and 
wind direction, extracted from both actual and forecasted data. 
This information facilitated the calculation of actual and forecasted 
values for wind power. 
Wind power exhibited notable fluctuations, initially showing a low 
output for the first 2.5 days, followed by a substantial increase 
over three days, and a subsequent decline in the last 24 hours. A 
daily summary of power balance, demands, and wind power is 
provided in Figure 6.7. 

 
Figure 6.7 Accumulated demanded power and heat, and the produced power by the wind 

on a daily basis. 

Cumulative power and heat demands for the week were 20.04 GJ 
and 12.09 GJ, respectively, with wind energy contributing 
40.91 GJ. Despite this, a clear mismatch between wind power 
generation and demands is apparent in Figure 6.7. In Figure 6.8 the 
mismatch on an hourly basis is observable. 
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Figure 6.8 The hourly distribution of wind power, demand power, and demand heat over 

the week of study. 
A comprehensive discussion of the results is presented in 
Paper VI, therefore an overview is presented here. Results of the 8 
different scenarios investigated, are presented in Table 6.2. The 
scenarios include island and grid mode operation, both with and 
without storage system presence, and condition-based and 
optimized operation for each of those arrangements. The reported 
outcomes are based on operations meeting all demands for power 
and heat. In some instances, when the MGT operates less, lower 
heat production is observed, suggesting the remaining heat demand 
is met by the electric heater. Conversely, in scenarios where the 
MGT runs more frequently, it covers the entire heat demand of 
12.09 GJ. 

Table 6.2 Overview of island mode operation of the microgrid. 
Island Model 

   Revenue Cost Profit/loss NG cons. H2 prod. H2 cons. PMGT QMGT 

   € € € kg kg kg GJ GJ 

1 w/o ELZ CB 0 542 -542 1341.7 0.0 0.0 10.26 8.27 
2 w/o ELZ OPT 0 541 -541 1339.6 0.0 0.0 10.21 8.26 
3 w/ ELZ CB 0 441 -441 1066.6 101.8 101.4 10.26 8.27 
4 w/ ELZ OPT 0 441 -441 1068.1 101.8 100.8 10.26 8.27 

Grid Mode 
5 w/o ELZ CB 1525 542 984 1341.7 0.0 0.0 10.26 8.27 
6 w/o ELZ OPT 4896 2219 2677 4514.4 0.0 0.0 64.07 12.09 
7 w/ ELZ CB 362 441 -79 1066.6 101.8 101.4 10.26 8.27 
8 w/ ELZ OPT 4899 2235 2664 4541.4 7.2 1.8 64.98 12.09 
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During island mode operation, the microgrid’s initial functioning 
omitted the electrolyzer and hydrogen tank, focusing on assessing 
condition-based and optimized operations without storage. 
Notably, Table 6.2  revealed that in island mode, whether with or 
without storage, condition-based (CB) and optimized (OPT) 
scenarios displayed analogous operational results, evident when 
comparing rows 1 to 2 and 3 to 4. It’s worth highlighting that 
condition-based operation yielded comparable outcomes to 
optimized operation but with a faster decision-making process. 
Furthermore, in island mode, the introduction of hydrogen storage 
in both condition-based and optimized microgrid operations 
resulted in reduced costs, primarily due to decreased natural gas 
consumption. This can be observed by comparing rows 1 to 3 and 
2 to 4 in Table 6.2. The storage and utilization of hydrogen 
revealed that excess wind power was stored and later utilized 
throughout the week, leading to a reduction in natural gas 
consumption. The introduction of the electrolyzer and hydrogen 
storage in the system resulted in a significant 19% cost reduction 
for both condition-based and optimized scenarios, accompanied by 
a notable 20% reduction in natural gas consumption 
(approximately 275 kg) and a decrease in emissions. This 
highlighted the environmental benefits of storing excess 
electricity. 
Upon interconnecting the microgrid with the grid and lacking 
storage, the integration of the microgrid with the grid converted 
surplus power into a lucrative revenue source. In grid mode 
without storage, optimized operation (rows 6 in Table 6.2) 
generated higher revenue than condition-based operation (rows 5 
in Table 6.2), albeit at increased costs. 
Integrating hydrogen storage in the optimized operation led to a 
13 € reduction in profit but conserved 5.4 kg of energy for the 
following weeks (row 8 compared to row 6 in Table 6.2). The 
potential advantage of the saved hydrogen for the upcoming week 
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could be assessed considering the hydrogen incentive. The 
adjusted profit for the optimized case with hydrogen amounted to 
€2678, indicating that the optimizer achieved a comparable profit 
in grid mode, irrespective of the presence of the storage system 
(rows 6 and 8 in Table 6.2). 
The inclusion of storage in grid mode, particularly for condition-
based operation, presented unexpected economic challenges, as 
evidenced by the comparison of rows 5 and 7 in Table 6.2. The 
results highlighted that, in the absence of optimizers in the 
management system, adopting a condition-based approach in grid-
mode operations could result in less favorable financial outcomes 
when incorporating storage. This is because the condition-based 
operation prioritizes storage over export. Consequently, when the 
electrolyzer is disconnected, operators can achieve higher profits 
by exporting excess power to the grid. 
Despite the economic challenges, incorporating storage into 
condition-based operation yielded a noteworthy 21% reduction in 
natural gas consumption (275.1 kg), as observed in the comparison 
between condition-based operation with and without storage (rows 
5 and 7 in Table 6.2). This translated to a substantial decrease of 
approximately 756 kg in carbon dioxide emissions, underscoring 
the environmental advantages of the storage system, even when 
the financial outcome may be less favorable in specific operational 
scenarios. 
Paper VI delves into the operational dynamics of the MGT and 
electrolyzer on an hourly basis in grid mode. The analysis 
uncovers that in optimized scenarios, the MGT exhibits a higher 
operational frequency compared to condition-based scenarios. 
During periods of low electricity prices, the MGT is more active, 
whereas it operates less frequently during high-price intervals in 
the optimized cases. This behavior is attributed to the optimizer’s 
discernment of the profitability associated with MGT power 
generation and export to the grid. When electricity prices are low, 
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the optimizer opts to run the MGT less frequently, as it becomes 
economically unviable. 
The comprehensive hourly analysis provides insight into the 
decision-making processes of the optimizer. This analysis 
highlights the optimizer’s capability to adjust both MGT and 
electrolyzer operations according to pricing conditions, 
demonstrating its responsiveness to economic dynamics. 
Importantly, fluctuations in fuel and electricity prices exert a 
substantial influence on the optimizer’s decisions, consequently 
affecting the operational outcomes of the microgrid. This 
economic responsiveness distinguishes optimized operation from 
condition-based operation, which does not consider price 
fluctuations when making operational decisions. 

6.6 Conclusion 
This chapter delved into the intricate dynamics of microgrid 
management, detailing the development of a sophisticated smart 
management system. It featured machine-learning-based models 
and offered crucial insights gleaned from diverse operational 
scenarios. The microgrid under consideration included two wind 
turbines and an MGT, incorporating an electrolyzer for green 
hydrogen storage. 
Among the key findings compared to the condition-based 
operation were notable reductions in losses, natural gas 
consumption, and emissions during island mode with an 
electrolyzer. However, in grid mode, while the optimizer achieved 
higher profits, there was a trade-off with increased natural gas 
consumption and emissions. This economic-environmental balance 
in microgrid management underscored the complex decision-
making processes involved. Comprehensive and detailed insights 
into the results are provided in Paper VI appended to the thesis. 
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7 Offshore Microgrid Integration 
and Optimization 

This PhD study centers on advancing MGT operations within DEG 
systems, involving key phases such as developing a hydrogen-
compatible MGT, modeling MGT and other energy systems, and 
creating integration and optimization tools. The strategic approach 
systematically develops infrastructural tools, ensuring adaptability 
to various integrated energy systems. 
This chapter applies integration and optimization tools in a real-
world scenario—an offshore microgrid. Integrating the offshore 
microgrid into the thesis expands the research’s practical 
applicability, highlighting adaptable solutions, refined 
methodologies, and crafted tools. This underscores the universal 
relevance of the research findings across diverse energy systems. 
In Norway, offshore oil and gas (O&G) operations are the main 
contributors to carbon-based emissions. Optimizing offshore 
microgrid operations not only enhances energy efficiency but also 
offers an opportunity to reduce emissions in a sector that 
significantly impacts Norway’s carbon footprint. A detailed 
examination and discussion of the offshore microgrid case can be 
found in Paper VII, while this chapter provides an overview of the 
case. 

7.1 Mitigating Offshore Oil and Gas Platform 
Emissions 

Fossil fuel extraction in Norway, primarily by gas turbines, 
contributes 81% of CO2 emissions on the Norwegian Continental 
Shelf [136], [137]. This reliance on GTs has far-reaching 
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environmental consequences, exacerbating global climate change 
and impacting local marine ecosystems. The offshore industry is 
adapting to regulatory changes, such as the Paris Agreement and 
International Maritime Organization’s regulations [138], [139]. 
Norwegian offshore facilities are actively seeking solutions, such 
as integrating offshore wind turbines and hybrid energy systems 
with GTs. This approach offers opportunities for efficiency gains 
and emission reductions, further supported by government 
incentives and regulations [139], [140]. The expansion of offshore 
wind offers prospects for reducing loads on GTs and enables 
hydrogen production during surplus power periods. Green 
hydrogen, produced using renewable energy sources, emerges as a 
carbon-free fuel for GTs, potentially revolutionizing offshore 
energy systems [141]. 
This chapter introduces a smart energy management system 
designed for an O&G field in Norway connected to a floating wind 
farm. It introduces a smart management system aimed at reducing 
costs and fuel consumption, providing insights into the efficient 
operation of integrated energy microgrids in offshore settings. 

7.2 Case Study Description: Gullfaks Platforms and 
Hywind Tampen 

The Gullfaks field in the Norwegian North Sea, housing platforms 
Gullfaks A (GFA), Gullfaks B (GFB), and Gullfaks C (GFC), 
originally operated with GT from the 1980s. In response to the 
need for emission reduction, operator Equinor initiated a 
transformation by integrating renewable energy from the Hywind 
Tampen floating wind farm. 
Situated 125 km offshore, the Hywind Tampen wind farm, 
featuring 11 turbines, contributes renewable energy to Gullfaks, 
specifically five turbines dedicated to this field. This initiative is 
expected to significantly cut approximately 200,000 tons of CO2 

and 1000 tons of NOx emissions. It aims to fulfill 30-35% of the 
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total energy demand across Gullfaks and neighboring Snorre 
platforms. 
Hywind Tampen features a spar buoy foundation and Siemens 
SQT 8.0-154 turbines, while Gullfaks platforms are equipped with 
General Electric’s LM2500 engines, each with a 22 MW capacity. 
Waste heat recovery units (WHRUs) on GFA and GFC handle 
most heat demands. GFA and GFC are interconnected, and a cable 
links Hywind to GFA for wind energy integration. GFB relies on 
GFA for power via cable, as it doesn’t have GTs. The cables 
connecting platforms are limited to a maximum 20 MW power 
transfer. 
Platform energy use includes lighting, heating, accommodations 
for 2-300 personnel, and management systems. O&G production is 
the main power consumer, using about 70% of onboard electrical 
power.  

7.3 Implementing a Storage System  
To achieve greater emissions reduction, expanding wind turbine 
installations is crucial. However, relying solely on wind power is 
limited by its intermittent nature. To address this, a proposed 
storage system mitigates power generation intermittency, as 
detailed in Chapter 6. Integrating wind turbines, storage systems, 
and GTs in a microgrid offers a promising approach to meet 
platform demands with minimal emissions, reducing reliance on 
fossil fuel gas.  
Studies extensively explore the feasibility and techno-economic 
aspects of offshore green hydrogen production and local storage, 
emphasizing cost-effectiveness and economic viability [142], 
[143]. GFA’s pivotal role suggests locating the platform near GFA 
for subsea hydrogen storage. The planned system includes 15 
proton exchange membrane electrolyzers with a 6 MW capacity 
each. Pressurized hydrogen storage connected to GFA provides an 
alternative fuel source for GTs. This chapter delves into managing 
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integrated Gullfaks platforms and Hywind Tampen, detailed in 
Figure 7.1. While all GTs share the same model and are up to 75% 
hydrogen compatible, only GFA-GT1 is assumed to use hydrogen-
blended fuel. 

 
Figure 7.1 Schematic diagram of the offshore microgrid and its smart management 

system. 

7.4 Managing the Microgrid Operation 
The primary role of the management system is to meet the power 
and heat demand of each platform at each time step. The energy 
balance for each platform is calculated, starting with GFB due to 
its minimal connections and absence of an energy production unit. 
Equations 7.1 to 7.3 detail the energy conservation equation for 
GFB, considering all heat demands met by the electrical heater. 

QQRP_O`a − QJ+-_O`a = 0 7.1 

PQRP_O`a = QQRP_O`a/ηQRP_O`a 7.2 

PO`b_O`a − PJ+-_O`a−PQRP_O`a = 0 7.3 

Similarly, for the GFC platform, which connects to GFA, 
Equations 7.4 to 7.6 describe power and heat conservation. The 
heat demand is met by GTs with WHRU and an additional 
electrical heater on GFC. 

QO`[_OYM + QO`[_OY' + QQRP_O`[ − QJ+-_O`[ = 0 7.4 

PQRP_O`[ = QQRP_O`[/ηQRP_O`[ 7.5 

P$%&_$() + P$%&_$(* + P$%&_$(+ + P$%,_$%& − P-"._$%&−P/01_$%& = 0 7.6 
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Equations 7.7 to 7.9 account for the heat and power balance for 
GFA, considering three GTs with WHRU and an additional 
electrical heater. The power allocated to the electrolysis process 
(P467_9:;) includes water desalination, electrolysis operations, and 
hydrogen pressurization, as detailed in Eq. 7.10. 
QO`b_OYM + QO`b_OY' + QO`b_OYW + QQRP_O`b − QJ+-_O`b = 0 7.7 

PQRP_O`b = QQRP_O`b/ηQRP_O`b 7.8 

PO`b_OYM + PO`b_OY' + PO`b_OYW + PO`b_OYZ + P̂ Y − PO`b_QRS
− PO`b_O`a − PO`b_O`[ − PJ+-_O`b−PQRP_O`b = 0 

7.9 

PO`b_QRS = PQRS + PJH + PI-) 7.10 

Additionally, power transmission between GFA and GFC 
(P467_46<	) and GFA to GFB (P467_46=) involves energy loss due 
to distance. Approximately 11% loss is factored in for 
transmission between GFA and GFC, while for GFA to GFB, a 
5.4% power loss is considered. 
In addition to power and heat conservation, ensuring hydrogen 
conservation is crucial, especially for supplying GTs. Constraints 
are applied to manage hydrogen content, as indicated in Eq. 7.11. 

+mP!,O`bTOYM-$" < +MP]Y-$# +*MP!,)*"J#I+J −MP!,I"&H#-+J

$"

$$

 7.11 

The detailed explanations of these equations can be found in 
Paper VII. The study evaluates two distinct approaches to 
microgrid operation management; the “condition-based” approach, 
which follows predefined rules based on declared demands and 
available wind power, and the “optimization” approach, involving 
predicting demands and renewable production. Both approaches 
are thoroughly explored, with the research emphasizing the 
potential of the optimization approach to enhance overall 
microgrid operation, achieving more efficient and cost-effective 
energy management compared to the condition-based approach. 
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7.4.1 Scenario 1: Condition-Based Operation 
In this scenario, the Gullfaks microgrid’s operation follows 
predefined rules, providing immediate operational guidance based 
on real-time demand and wind turbine power generation. These 
rules adhere to key principles: 
1. Localized Power Production: Platforms with GTs (GFA and 

GFC) prioritize local power production over importing from 
interconnected platforms to minimize unnecessary power 
transport and transmission losses. 

2. Optimized GT Operation: Platforms aim to minimize the 
number of concurrently operating GTs. If a platform’s demand 
can be met by two turbines instead of three, the two turbines 
operate at a higher load for enhanced engine efficiency. 

3. Balanced Operation: When multiple engines are required, the 
load is evenly distributed to ensure balanced operation. 

4. Heat Utilization: Platforms primarily meet heat requirements 
through GT-generated heat, considering it more cost-effective 
than using additional power for electric heaters. Electric 
heaters engage when GT heat falls short. 

5. Electrolyzer Activation: The electrolyzer is powered only 
when wind turbine-generated power exceeds the combined 
demand of platforms GFA and GFB, ensuring surplus 
renewable power is directed towards hydrogen production. 

6. Hydrogen Consumption Priority: In cases where hydrogen is 
available, its consumption is prioritized, contingent on 
hydrogen reserve availability. 

Based on these principles, the condition-based operation calculates 
the required power for platform GFB (Eq. 7.1 to Eq. 7.3) and 
subsequently determines the power output of each GFC GT and 
the power transfer value between GFC and GFA following the 
flowchart in Figure 7.2. The power allocation for GTs on the GFA 
platform and the electrolyzer is then decided according to the 
flowchart in Figure 7.3. 
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Figure 7.2 Condition-based operation flowchart for GFC. 

 
Figure 7.3 Condition-based operation flowchart for GFA. 
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7.4.2 Scenario 2: Optimized Operation 
Integrating an optimization code enhances the microgrid’s 
predictive abilities by anticipating variables like wind availability, 
and optimizing energy storage and usage. This proactive approach 
maximizes renewables, reducing reliance on conventional sources. 
Unlike platform-specific methods, the optimizer considers all 
assets, resources, and demands system-wide, optimizing the 
interplay of components. This iterative process tests various 
scenarios, balancing energy requirements with costs and emissions 
to identify the optimal solution that minimizes both. 
The optimizer employs AI techniques for swift and precise 
predictions. Robust forecasting modules predict variations in wind 
availability and demand patterns. ANNs model responsive 
microgrid subsystems, like GTs and wind turbines, with nonlinear 
behavior. A Bayesian technique, using Gaussian process models as 
detailed in section 5.3.5, fine-tunes the hyperparameters of ANN 
models. Input and output parameters for GTs, wind turbines, and 
the electrolyzer are outlined in Table 7.1. The optimized 
configuration of ANN models, presented in  
Table 7.2, specifies the number of neurons in each layer and 
activation functions. 

Table 7.1 Inputs and outputs of microgrid subsystem models. 
 Input parameters Output parameters 

Gas turbine P%&',)*+, FHR, T,+- ṁ. 

Wind turbine T,+-, p,+-, S/, D/ P/' 

Electrolyzer P012 ṁ3! 

 

Table 7.2 ANN models optimized configuration. 
 No. of neurons Activation function  

 layer 1 layer 2 layer 3 layer 1 layer 2 layer 3 Learning rate 

Gas turbine 42 17 - Sigmoid ReLU - 0.72 
Wind turbine 45 100 22 SELU ReLU Linear 0.57 
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The models’ accuracy is evaluated using maximum absolute error 
(mAE), MAE, and MAPE, defined in Eq. 5.5 to Eq. 5.7. Table 7.3 
presents the results, highlighting the high accuracy achieved by the 
developed models. Visual representations of the models’ accuracy 
are available in Paper VII in the appendix. 

Table 7.3 Models prediction error. 
 mAE MAE MAPE 

Gas turbine 0.017 [kg/s] 0.004 [kg/s] 0.21% 
Wind turbine 0.801 [MW] 0.152 [MW] 0.61 % 
Electrolyzer 1.6e-5 [kg/s] 1.2e-5 [kg/s] 0.05% 

 

7.4.2.1 Optimization Parameters and Objective Function 
Determining power set-points for all seven GTs, selecting the 
optimal hydrogen/natural gas blend for GFA-GT1, and setting the 
power input for the electrolyzer constitute the tasks involved in the 
optimization process.  The optimization window is defined as a 
day of operation, and decisions for dispatchable units are made at a 
1-hour time step, totaling 216 parameters (9 × 24 hours). Each 
parameter adheres to upper and lower limits based on specific 
physical characteristics. 
The GTs’ power setpoints are constrained between 9 to 22 MW 
(Eq. 7.12), while the hydrogen/natural gas blend for GFA-GT1 is 
bounded by the LM2500 GT’s tolerance of a maximum 75% 
hydrogen volume (Eq. 7.13). The fuel blend is defined based on 
the heating value ratios as previously presented by Eq. 6.1. The 
power allocated to the electrolyzer is restricted to not exceed its 
operational limit of 90 MW (Eq. 7.14). 
POY = iPOY,M	,POY,', … ,POY,'Zk, POY,-%& <	POY,% < POY,-,K 7.12 

FHROY = iFHROY,M	, FHROY,', … , FHROY,'Zk,
0.516 <	FHROY,% < 1 

7.13 

PO`b_$"_QRS = iPO`b$"	QRS,M	,PO`b	$"	QRS,', … ,PO`b	$"	QRS,'Zk,
0 < 	PO`b	$"	QRS,% < 90 7.14 
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The primary objective of the optimization process is to minimize 
the total cost of operation (Eq. 7.15). This includes factors such as 
the cost of purchasing natural gas (Cost>4), taxes on CO2 and 
NOx emissions (Cost>4,*$/ and Cost>@/,*$/), and maintenance 
costs for GTs and electrolyzation components (Cost42,,$-.* and 
Cost9:; ). 
Cost$"$,F = CostNO + CostNO,$,K + CostN\K,$,K + CostOY,-,%&$

+ CostQRS 
7.15 

The cost of purchasing natural gas (Cost>4) is calculated based on 
the daily fuel price, while C>4,*$/ represents the specific tax 
imposed by the Norwegian government on natural gas 
consumption. The tax for NOx emissions (Cost>@/,*$/) is 
computed based on the NOx emitted from the engines, correlated 
with power output. Maintenance costs for GTs, electrolyzer, 
compressor, and water desalination system are derived from 
reported values [144]. 
The objective function extends beyond total cost to include the 
preservation of hydrogen in the tank. Incentivizing hydrogen 
preservation, the estimation of the saved hydrogen’s value for the 
next day is calculated using Eq. 7.16. 

IncP]Y = mP]Y ×
LHVP!
LHVNO

× +CostNO + CostNO,$,K- 7.16 

The objective value to be minimized by the optimizer becomes: 
OV = Cost$"$,F − IncP]Y 7.17 

This modification ensures that the optimizer not only minimizes 
immediate costs but also considers the future value of preserved 
hydrogen, encouraging more sustainable and forward-thinking 
energy management. 

7.4.2.2 Hybrid Optimization Approach 
Addressing the intricate challenges associated with optimizing a 
complex system featuring numerous parameters and interrelated 
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constraints, a novel hybrid optimization approach has been 
proposed. This innovative strategy seeks to streamline the 
optimization process while ensuring strict compliance with all 
constraints, including the intricate hydrogen fuel conservation 
constraint outlined in Eq. 7.11.  
The hydrogen conservation constraint stipulates that hydrogen 
consumption at each time step should not surpass the available 
amount in the tank. This dependency on both the hydrogen 
produced (related to P467	*B	9:;) up to that time step and the 
hydrogen consumed (linked to P467C42& and FHR) up to that time 
step introduces complexities in the optimization process, as 
indicated in Eq. 7.18. 
for	1 ≤ i ≤ 24:	 
ψ+FHRM, FHR', … , FHR%, PO`bTOYM,M, PO`bTOYM,', … , PO`bTOYM,%,

PO`b	$"	QRS,M, PO`b	$"	QRS,', … , PO`b	$"	QRS,%TM- ≤ 0 
7.18 

The introduced hybrid optimization approach operates at two 
distinct levels to effectively manage these complexities. At the 
field optimization level (outer optimization loop), the primary 
focus is on searching for optimal power transfer values between 
various platforms, such as GFA and GFC, and between GFA and 
ELZ. This level leverages the efficiency of the GA for decision-
making. 
Once the power transfer values are determined, the optimization 
process shifts to the platform optimization level (inner loop). Here, 
the objective is to optimize the operation of GTs on each platform, 
considering power balance requirements derived from each 
platform’s demand and the previously determined power transfers. 
To minimize computational costs, this level employs a simplified 
approach, utilizing a pre-prepared database of platform operations 
and a table look-up to identify cost-effective combinations. 
This two-level structure significantly reduces the number of 
optimization parameters, mitigating challenges associated with 
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high-dimensional optimization. The outer loop, dealing with field-
level optimization, utilizes GA, while the inner loop, focusing on 
platform-level optimization, functions as a table look-up process, 
minimizing computational time. 
The overall functionality of the hybrid optimization approach is 
illustrated in Figure 7.4 providing a visual representation of its 
operation. This approach not only streamlines the optimization of 
the offshore microgrid but also enables rapid decision-making, 
facilitating real-time adjustments for optimal power balance and 
platform operations. 

 
Figure 7.4 Hybrid optimization approach with outer loop for power transfer and fuel 

ratios and inner loop for platform operations. 

7.5 Results 
The integrated microgrid of the Gullfaks field and Hywind 
Tampen, coupled with an electrolyzer, underwent a comprehensive 
simulation to assess its performance over a week, from January 
24th, 2022, to January 30th, 2022. The simulation encompassed 
both condition-based and optimization approaches, each offering 
unique insights into the system’s dynamics. This discussion 
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provides a condensed overview of the simulation results and 
technical insights; detailed analysis and insights are provided in 
Paper VII. 
In the simulation, a daily optimization window with a 1-hour time 
step was utilized to examine hourly operational variations. 
Weather forecast data from the previous day’s 18:00 update were 
employed to estimate wind farm power. Understanding platform 
demand patterns is crucial for effective microgrid optimization. 
Due to the lack of a detailed demand dataset for the Gullfaks 
platforms, the study relied on average values and common 
variations, generated using random distributions. The forecasted 
demand was adjusted with a maximum deviation of 7% and a 
mean of 5%, considering a deliberately higher error margin for a 
conservative approach. 
Throughout the week, the combined power demand from the 
platforms was 59,20 GJ, with a total heat demand of 11,97 GJ. 
Wind farm power generation fell short by 3,83 GJ to meet power 
demand or 15,80 GJ when considering both heat and power 
requirements. Figure 7.5 visually highlights the wind power 
deviation from total power demand, emphasizing three distinct 
periods of low wind power generation. 
 

 
Figure 7.5 Total power demand from three Gullfaks platforms in comparison to the 

power generated by the wind farm. 

The simulation began with an empty hydrogen tank, comparing the 
condition-based method, hourly analyzed throughout the week 
using actual data, and the optimization process, run seven times, 
each taking about one hour of run time. The optimizer employs 
forecast data for optimization, yet its evaluation depends on real-
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world data to simulate practical scenarios. Any differences in 
forecasted and actual demand or wind power production are 
addressed online, through condition-based operations for 
remaining imbalances. This approach aligns with the methodology 
in Figure 9 of Paper VI. 
The total power generated by all the GTs, as depicted in Figure 
7.6, showed that the optimizer managed to operate the microgrid 
with considerably less power production from the GTs. However, 
there were time spans where the power production of the GTs was 
nearly the same for both scenarios, coinciding with periods of 
wind power deficiencies (Figure 7.5). 
   

 
Figure 7.6 The total power produced by the seven GTs on the three Gullfaks platforms. 

Figure 7.7 and Figure 7.8 provide a detailed breakdown of the total 
power produced by each platform. Interestingly, GFA 
demonstrated slightly higher power output from the GTs in the 
optimized scenario compared to the condition-based scenario, 
while the opposite trend was observed for GFC. In both scenarios, 
the GT production in GFA remained below the total demand, 
primarily because wind power contributed to fulfilling a portion of 
the demand. 
In GFC, the condition-based scenario effectively balanced GT 
production with demand, while the GTs in optimized operation 
struggled to meet demand. Figure 7.9 illustrates the optimizer’s 
dynamic allocation strategy, directing power from GFA to GFC to 
compensate for shortfalls, responding to varying wind power 
conditions. Despite the power loss penalty during transmission, the 
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optimizer strategically selects instances where this trade-off is 
economically justified. 
 

   

 
Figure 7.7 The total power produced by the four GTs on the GFA platform. 

 

   

 
Figure 7.8 The total power produced by the three GTs on the GFC platform. 

   

 
Figure 7.9 The power received by GFC from GFA. 

Notably, there is a distinct contrast in hydrogen production and 
consumption patterns between scenarios as shown in Figure 7.10 
and Figure 7.11. The condition-based operation consistently 
generated surplus power from wind turbines, while the optimizer 
often directed it to GFC (Figure 7.9), resulting in fewer GTs 
running on GFC (Figure 7.8). The condition-based approach 
exhibited a steady hydrogen consumption pattern, with minimal 
fluctuations except during wind deficiency periods. Conversely, 
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the optimized scenario displayed greater variability in hydrogen 
usage, reflecting the optimizer’s decision-making process and its 
impact on cost across optimization windows. 
   

 
Figure 7.10 The rate of hydrogen production.  

 

   

 
Figure 7.11 The rate of hydrogen consumption. 

A comprehensive overview of the total hydrogen balance for both 
scenarios, presented in Table 7.4, highlighted a relative difference 
in hydrogen production, consumption, and reserves.  

Table 7.4 Comparison of hydrogen balance after a week of operation by different 
scenarios. 

 H2 prod. H2 cons. H2 res. 
CB 124.98 [t] 73.40 [kg] 51.58 [t] 
OPT 72.89 [t] 65.79 [kg] 7.10 [t] 
Relative difference -41.68% -10.37% -86.23% 

 

The economic and environmental implications of both scenarios 
were also assessed in Table 7.5. The optimized scenario 
demonstrated a decrease of about 16% in total costs compared to 
the condition-based approach. This cost reduction was attributed to 
the optimizer’s efficient utilization of wind power and strategic 
power transfer between platforms. The hydrogen saved in the tank 
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for the next week also has a potential value that is calculated based 
on Eq. 7.16. Based on this value, the total costs of the operations 
are modified and the results show about 12% improvement by the 
optimizer, compared to the condition-based operation. 

Table 7.5 Overview of grid mode operation of the microgrid. 
 NG cons. NOx prod. Total cost H2 res. cost red. Total Cost-mod 
 t t € € € 
CB 2684.3 4.4 1136109 59657 1076452 
OPT 2243.7 4.4 950741 8213 942529 
Relative difference -16.4% 0.9% -16.3% -86.2% -12.4% 

 

While the optimized scenario showcased reduced natural gas 
consumption by more than 16%, it experienced a slight increase of 
0.9% in NOx emissions compared to the condition-based 
operation. It is expected that introducing an increasing coefficient 
for NOx tax could guide the optimizer toward more effective NOx 
reduction strategies if the emphasis on minimizing NOx emissions 
increases. 

7.6 Conclusion 
In this chapter, the integration and optimization of an offshore 
microgrid for a petroleum field with three platforms, a floating 
wind farm, and a green hydrogen production and storage system 
were focused on. A smart microgrid management system was 
developed using accurate models and real operational data, 
considering two approaches: a predefined condition-based method 
and an optimization. Over the course of a week, the optimized 
scenario exhibited a 16% reduction in costs compared to the 
condition-based operation, accompanied by a simultaneous 
decrease in natural gas consumption and emissions. The study 
presented a hybrid optimization approach, streamlining processes 
for real-world offshore microgrid systems, highlighting advanced 
energy management’s potential for environmental responsibility in 
maritime energy. Further details can be found in Paper VII in the 
appendix.  
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8 Concluding Remarks 
In the pursuit of advancing clean energy technologies and 
seamlessly integrating renewables into existing power systems, 
this thesis has undertaken a comprehensive exploration. As this 
research journey concludes, the importance of the study will be 
reflected upon, key findings summarized, and potential avenues 
for future research outlined. 

8.1 Overview of the Conducted Study 
Introducing a hydrogen-fueled MGT and advocating for the 
widespread adoption of hydrogen as a viable fuel option, the 
research advanced clean energy technologies. The integration of 
renewables, facilitated by advanced AI management tools, aimed 
to address the challenges posed by intermittency, fostering a stable 
and reliable energy grid. Moreover, the broader implications of 
this research align with various sustainable development goals, 
including affordable and clean energy, climate action, and industry 
innovation and infrastructure. 
The literature review emphasized the extensive research conducted 
to integrate hydrogen into MGTs. While theoretical and laboratory 
advancements have been substantial, the lack of reported 
operational instances of MGTs running with hydrogen highlighted 
the need for practical implementations. The transition from 
theoretical advancements to real-world applications was essential 
for unlocking the full potential of hydrogen as a fuel source in 
MGTs. 
The dual-modeling approach discussed in the literature, 
transitioning from white-box to black-box models, was identified 
as crucial. In early design phases, white-box models rooted in 
physics provided a theoretical understanding, while black-box 
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models, driven by empirical data, proved crucial in operational 
phases for real-time adaptability. 
The literature on microgrid operation control and optimization 
underscored the transition to automated and adaptive frameworks, 
particularly in the smart grid evolution. The integration of 
transformative technologies, such as the energy hub concept and 
advanced modeling using ANNs and GA, showcased the potential 
for efficient real-time decision-making. 
In the development of the hydrogen-powered MGT, challenges 
related to combustion stability, emissions control, and excessive 
combustor temperatures were extensively addressed. 
Modifications in combustor design and operational adjustments 
were highlighted, emphasizing the need for real-world testing. 
The physics-based MGT model, employing a dual-strategy 
paradigm, demonstrated its adaptability to diverse operational 
scenarios. The dynamic model demonstrated proficiency in 
capturing both steady state and transient responses, while the 
steady state model accurately replicated the engine’s behavior in 
stable operational conditions. 
These models validated through empirical data, serve as useful 
tools for optimizing fuel-flexible MGT systems. Notably, the 
steady state model exhibited a faster response, making it 
particularly suitable for finding proper coefficients to adapt the 
models to experimental data. The adaptation process minimized 
differences between the model and experimental outcomes, 
enhancing the model’s accuracy and applicability. 
Utilizing ANNs for steady state modeling and NARX models for 
transient behavior, the data-driven model showcased a robust 
framework for MGT modeling. Achieving high accuracy was 
facilitated through systematic hyperparameter optimization. Its 
infrastructural versatility went beyond MGT applications, 
contributing to the foundational framework for advancements in 
renewable energy contexts. 
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The chapter on microgrid integration and optimization presented 
the development of a smart management system for a microgrid 
featuring wind turbines, an MGT, and an electrolyzer for energy 
storage. The use of an optimizer showcased its efficiency in 
finding the most cost-effective operation scenario.  
In response to Norway’s imperative to reduce emissions from 
offshore oil and gas operations, this research extended its scope to 
optimize GT operations within integrated systems. The research’s 
adaptability was showcased by transitioning from onshore 
microgrids with MGTs to offshore scenarios with larger GTs, 
demonstrating the transformative and generalizable capacity of its 
methodologies and insights. The offshore microgrid integration 
and optimization chapter delved into the complexities of a real-
world scenario—a petroleum field with three platforms, a floating 
wind farm, and introducing a green hydrogen production and 
storage setup. The implementation of a smart integrated microgrid 
management system, integrating actual operational data, 
showcased reductions in cost and natural gas consumption over a 
week of operation. The hybrid optimization approach efficiently 
employed GA alongside a rapid database search, providing 
enhanced efficiency without an exorbitant need for computing 
resources. 

8.2 Additional Studies Conducted During the PhD 
Program 

In addition to the research documented in this thesis, several 
studies were conducted during the course of this PhD program, 
contributing to the broader field of sustainable energy solutions. 
While these studies were not included in the main body of the 
thesis, their outcomes and methodologies align with the 
infrastructural approach employed here, emphasizing transferrable 
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skills and adaptable codes for similar research endeavors. The 
following provides an overview of these additional studies: 
1. Optimizing Micro Gas Turbine Operation in a Microgrid 

System With Natural Gas and Hydrogen Fuel: An AI-Based 
Approach [145], [146]: 

This study marks the author’s initial contribution to the 
optimization of microgrids featuring hydrogen-compatible MGT. 
Although the paper covers the same content expounded in detail in 
Chapter 6, it specifically focuses on grid mode operation, omitting 
the discussion of island mode. Furthermore, the definition of 
“condition-based” operation presented in the paper is refined in 
Chapter 6. Essentially, the paper represents the preliminary stage 
of the research, paving the way for more mature and 
comprehensive work detailed in Chapter 6. The work was 
presented at the ASME Turbo Expo conference and was 
subsequently selected by the committee for publication in the 
associated ASME journal. 
2. Techno-economic Analysis of a Biogas-Fueled Micro Gas 

Turbine Cogeneration System with Seasonal Thermal Energy 
Storage [147]: 

In this study, a comprehensive analysis was undertaken to evaluate 
the techno-economic aspects of an integrated energy system 
designed for a small hotel’s electricity and heating requirements. 
The system featured a biogas-fueled MGT, seasonal thermal 
energy storage with a borehole heat exchanger, and a ground 
source heat pump. The study, building upon the foundation laid by 
the PhD research, focused on the development and validation of 
intricate models, including a sophisticated data-driven MGT model 
utilizing feed-forward neural networks. 
Utilizing the data-driven model introduced in Chapter 5, this paper 
exemplifies the transformative essence of the PhD work by 
demonstrating the effectiveness of such models in integrated 
energy system analyses.  
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3. Optimizing Building Heating Efficiency: A Data-Driven 
Approach for Cost and Energy Savings [148]: 

Utilizing the data-driven modeling codes and infrastructure 
explained in Chapter 5, along with the MPC approach 
demonstrated in Chapter 6, this study introduced an innovative 
approach to enhance building heating control. The goal was to 
optimize the heating system while maintaining comfort levels. The 
proposed method integrates advanced tools based on building data 
and weather forecasts for predictive control, optimizing heating 
system operation using the infrastructural programs developed in 
Chapters 5 and 6 of this thesis. 
4. Using Artificial Neural Networks to Gather Intelligence on a 

Fully Operational Heat Pump System in an Existing Building 
Cluster [149]: 

This article introduced an innovative method that employed ANNs 
for developing heat pump models based on measured data from a 
municipal building cluster in Stavanger, Norway. The complexity 
and integration challenges of heat pumps were addressed, 
emphasizing an understanding of system intricacies. High 
accuracy in predicting energy-related parameters was 
demonstrated by ANN models. 
The ANN model development code discussed in Chapter 5 played 
a main role in cleaning data and optimizing the structure of the 
ANN model. Future enhancements were considered, such as 
evaluating higher sampling resolutions and incorporating external 
temperature sensors for model refinement. 
5. Artificial Neural Network Model for Predicting CO2 Heat 

Pump Behavior in Domestic Hot Water and Space Heating 
Systems [150]: 

This paper focused on advancing small-scale CO2 heat pump 
technology through the development and optimization of control 
models using tailored ANNs. The ANN model constructing code 
from Chapter 5, contributing to data cleaning and structural 
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optimization, played a vital role. The study successfully predicted 
outlet temperatures, heat production, and electricity consumption 
based on measurable parameters. Acknowledging challenges in 
achieving precision under variable conditions, the aim was to 
minimize mean absolute percentage error in the models. 
 

6. Optimal Operating Scenario and Performance Comparison of 
Biomass-Fueled Externally-Fired Microturbine [151]: 

This paper focused on determining the optimal operating scenario 
for an Externally-fired MGT (EFMGT) using gas produced by 
biomass gasification. The ANN model for MGT developed in 
Chapter 5 was instrumental in the analysis, specifically for the 
natural-gas-fired MGT configuration. The optimization process 
resulted in an externally-fired performance of 77.9 kW electrical 
power and 20.3% efficiency, showcasing a 31.5% improvement 
over average current externally-fired demonstrated efficiencies. 
7. On The Potential of Biomass-fueled Externally-fired Micro 

Gas Turbines in the Energy Transition: Off-design 
Performance Analysis [152]: 

This paper explored substituting natural gas with biomass 
gasification syngas in an EFMGT for CHP generation. The 
developed model for the AE-T100 engine in Chapter 5 facilitated 
the comparison of the EFMGT with a reference natural-gas-fired 
MGT. The correlations and adaptations developed for the physics-
based model of AE-T100 in Chapter 4 were employed for 
modeling the EFMGT. The analytical thermodynamic model 
validated using an ANN, demonstrated improved electricity 
efficiency at part-load conditions, reaching a maximum relative 
value of 110% compared to nominal conditions.  
8. Streamlining Multi-Hole Probe Calibration Using Artificial 

Neural Networks [153]: 
This study focused on the efficient calibration of multi-hole probes 
using ANNs. Traditional calibration processes for multi-hole 
pressure probes are time-consuming and require costly equipment 
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due to manufacturing imperfections affecting measuring accuracy. 
The research introduced a novel approach employing ANNs, 
known for their adaptability and generalization capabilities. 
Specifically, an ANN calibration model for a 5-hole probe was 
developed, and optimized through automated hyperparameter 
optimization, utilizing the programs presented in Chapter 5. The 
study demonstrated the ANN model’s accuracy and successful 
application to new probes with minimal calibration data, 
showcasing its potential to streamline the calibration process with 
reduced data requirements. 

8.3 Future Research 
Concluding this doctoral study, several avenues for future research 
come to the forefront, representing the conclusion of the 
exploration while also signaling unexplored directions in this 
study: 
• Implementation of Hydrogen-Fueled GTs in Real-world 

Scenarios: Although the research underscores the significance 
of green hydrogen as an energy storage solution, its actual 
application in hydrogen-compatible GT units is limited. 
Particularly for offshore microgrids, numerous challenges need 
to be addressed for the effective use of hydrogen in platform 
GTs. 

• Advanced Machine-Learning Models: Future investigations 
should delve into cutting-edge machine-learning techniques, 
expanding the application and implications of advanced 
models like reinforcement learning and ensemble methods. 
This exploration holds promise for enhancing their pivotal role 
in optimizing energy systems. 

• Validation in Diverse Contexts: While the research framework 
and models demonstrate efficacy, validating proposed 
solutions in diverse contexts remains essential. Future studies 
should extend the validation process to different geographical, 
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climatic, and operational contexts. This ensures the robustness 
and generalizability of the developed models, considering 
variations in environmental conditions and energy 
infrastructure. 

• Enhanced Techno-Economic Analysis for Microgrid Design: 
Extending its scope beyond the operational phase, forthcoming 
research endeavors should concentrate on refining the accuracy 
of techno-economic analysis during the design phase of 
microgrids. The integration of advanced AI models into the 
design process holds promise for augmenting predictions of 
energy demand, optimizing component sizing, and facilitating 
more precise cost-benefit analyses. By adopting a data-driven 
approach, an improved assessment of operational risk analysis 
becomes feasible. This allows for the proactive addressing of 
critical issues such as reliability, lifetime, and energy balance 
during the design phase. Consequently, strategic component 
arrangement and the inclusion of buffer elements can be 
optimized to effectively mitigate potential challenges. 

• Real-Time Discrepancy Mitigation in Microgrid Optimization: 
Addressing the difference between prediction and reality in 
microgrid optimization is crucial. Future studies should 
explore innovative solutions to mitigate real-time discrepancies 
between predicted and actual energy demand, especially 
concerning renewable energy sources like wind power. 
Improved methods for condition-based adjustments can 
contribute to more accurate and adaptive optimization. 

• Emphasizing Interconnected Microgrids and Collaborative 
Data Utilization: The future trajectory of research should 
explore the integration of microgrids, fostering collaborative 
data-sharing practices. Leveraging operational data from 
diverse microgrids can provide valuable insights for enhanced 
control strategies. Addressing challenges such as big data 
handling and ensuring data security will be pivotal in 
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optimizing the collective performance and resilience of 
interconnected microgrids. 

• Real Integration Challenges: While the emphasis of this PhD 
has been on modeling actual energy systems, particularly with 
data-driven models derived from real-world data, the 
integration process has been conceptual. The practical 
integration of these models into real-life systems remains 
unexplored and holds potential challenges.  
Notably, at the Risavika Research Center in Stavanger, a 
genuine integrated system with MGT, electrolyzer, and 
reformer is under construction and is expected to be 
operational in 2025. However, this real-world integration did 
not align with the timeline of this PhD study. 

8.4 Conclusion 
In conclusion, this thesis contributed to the field of clean energy 
technologies, emphasizing the practical use of data and AI in 
operational management. The development of a hydrogen-fueled 
MGT, physics-based modeling, and data-driven approaches, 
offered a comprehensive understanding of challenges and 
opportunities in the realm of MGTs. The onshore and offshore 
microgrid integration cases highlighted effective data and AI 
utilization in operational management, showcasing the 
applicability of the developed models and systems. 
Looking ahead, the identified areas for future research lay the 
groundwork for ongoing advancements in sustainable energy 
solutions, underscoring the continued relevance of data-driven 
approaches. The potential impact of this research extends beyond 
theory, influencing the practical implementation of clean energy 
technologies for a more sustainable, resilient, and eco-friendly 
energy future.  
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Abstract: In the progressively rising decentralized energy market, micro gas turbines (MGT) are
seen with great potential owing to their low emissions, fuel flexibility, and low maintenance. The
current transformation in the landscape of electricity supply with an increasing share of fluctuant
renewable energy resources and increasing complexity requires a reliable and energy-efficient power
generation source to support the grid. In this scenario, small-scale power plants that are constructed
based on micro gas turbines with up to 250 kW power range can play a substantial role in meeting
the challenges of the modern electricity grid. Micro gas turbines provide a reliable and cost-effective
power source with a quick load-following ability which can respond to demand peaks and compensate
for intermittent renewable sources when they are not available. MGT units can work as a system
together with renewables, or function as a stand-alone unit in off-grid operations. The features of
micro gas turbines are compatible with the energy transition that is the carbon-free modern energy
grid. The technology underlying MGTs offer hybridization with renewable energy sources, flexibility
in operations and type of fuel, and promising low emission solutions that align with environmental
concerns. However, there is a continuous need to improve energy efficiency with a pressing urge
for reducing emissions. This paper provides a review of micro gas turbines’ characteristics which
promote their role in future power and heat generation systems. A brief overview of the challenges
to improving operational flexibility, reliability, and availability of MGTs while maintaining low
environmental impact and lowering the costs is presented. A model for an active monitoring and
control system of the micro gas turbines is proposed which could improve the reliability of MGT
operation in the grid by means of AI methods.

Keywords: micro gas turbine; energy transition; condition monitoring; performance improvement

1. Introduction

Centralized power generation exploiting fossil fuels or nuclear technology in largescale
plants is no longer a vision of the future that climate change scientists, regulators, and
growing majorities of voters approve of. Distributed energy generation (DEG) facilitates the
use of different energy sources that are available for customers to choose from and install
in small increments. These units provide the required power to meet the end-user demand.
Distributed power is generated at or near the point of use with technologies such as gas
turbines, fuel cells, diesel and gas reciprocating engines, solar panels, and wind turbines.

There are significant advantages that are associated with the replacement of centralized
energy generation plants with a DEG system. The main environmental benefit of distributed
systems is the reduction in carbon dioxide emissions from fossil fuels that is replaced
by renewable sources such as solar power and wind. Long-term cost savings can be
achieved as DEGs enable the governments and decision-smakers in the utility division to
avoid considerable capital investments in new fossil fuel-based power plants and build
transmission and distribution infrastructure. DEG plants are situated near commercial,
industrial, and residential users, which results in a reduction of energy losses that may
occur due to inefficient power lines. Moreover, the short distance between generation and
consumption enables access to small heat sources/sinks and provides the opportunity for
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exploiting waste heat for cooling/heating purposes which is scarcely feasible in centralized
power generation. DEG’s location flexibility has a great positive effect on energy prices as
well [1]. The distributed system provides diverse options for types of energy resources and
fuels employing different technologies. Therefore, there is no need for a certain type of fuel
more than others which can reduce fuel prices for customers [2].

Besides the economical benefits, DEGs have positive technical impacts on system
operation such as improving voltage profile and power quality [3]. They can reduce the
distribution networks’ power losses by providing sufficient power relative to demand and
reducing unnecessary power flow inside the transmission network [4].

DEGs can harness energy through a combined heat and power system, which might
otherwise be wasted. Combined heat and power (CHP) units are more economical than
conventional power generation systems [5]. They exploit waste heat for heating, cooling,
or improving their efficiency by generating more power, which is not feasible in the sole
utilization of centralized power generation [1].

The European Union (EU) energy system is shifting towards decentralized power and
heat generation due to the availability of a vast share of renewable sources [6]. With an
increasing number of units deploying solar, wind, and hydropower and small-scaled CHP
plants connecting to the grid, the role of the utilities and independent power producers is
evolving. Figure 1 displays the share of DEG in global power generation for the years 2000
and 2020 according to [7].
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The current shift in the power generation industry towards more renewable and dis-
tributed generation strengthens the need for reliable and efficient small-scale dispatchable
supply units. With increasing utilization of intermittent renewables such as solar and
wind, a larger fluctuation in electricity input to the grid is introduced because of their
non-dispatchable nature. They provide fluctuating and uncertain power outputs that are
specific to certain locations. Therefore, supplementary systems and hybrid technologies
are required to secure power outputs and meet demands. Micro gas turbines can provide
fast and reliable power to compensate for renewable oscillations and guarantee smooth
outputs to meet energy demands.

A decentralized power generation scenario integrating MGTs with wind turbines,
solar systems, biomass plants, fuel cells, and energy storage would provide a secure, stable,
efficient, economical, and environmentally friendly energy production system, close to
consumption points, which provides the heat and electricity without major transportation
and conversion losses [6]. Figure 2 gives an overview of different technologies in DEG
and the position of MGT in the mix. It is worthful to note that the fuel flexibility of MGTs
provides carbon-free and carbon-neutral choices of fuel such as hydrogen and biogas,
which is not shown in the figure.
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MGTs have reliable operations [9] and have well-known technology, can start up
rapidly, and require less maintenance due to their simple design [10]. An economic lifetime
of up to 80,000 operating hours can be achieved in micro gas turbines with a maintenance
interval of 4000–8000 h of operation, which is longer than most internal combustion en-
gines [11]. They have been commonly used in many engineering fields and have already
been proven to be reliable, work satisfactorily [9], and are suitable for integration with
other systems or as a subsystem in a larger energy system [6].

They have lower capital costs than other DEG technologies with the potential for
low-cost mass production [12]. Opportunities to utilize waste fuels (such as agricultural
residues or organic waste) and energy recovery are other economic advantages of utilizing
MGT systems. MGTs are very efficient with an overall efficiency (electricity + heat) up to
90% in case of using an economizer and have lower emissions compared to large-scale
gas turbines [6].

Micro gas turbines that are used in co-generative applications have proven to be a
promising technical solution for high-efficiency energy conversion. These comprise both
combined heat and power and combined cooling/heating and power (CCHP). Exhaust gas
out of the turbine in MGTs can be employed directly for heating or be recovered in a heat
recovery unit (CHP application) or an absorption chiller (CCHP application) for cooling
purposes. The utilization of MGTs in cogeneration mode improves their overall efficiency
and operational flexibility, which makes them an attractive choice for applications that
require a range of electrical to thermal output ratios [13]. These characteristics of MGTs have
made them a transition technology for the EU’s ambitious 2030 energy targets and a prime
mover of the future for competitive, secure, and sustainable micro-scale poly-generation [6].

The structure of the paper is as follows: first, the environmental reasons that shape the
energy roadmap are discussed in Section 2. In that section, the shift of power generation
from a centralized to a decentralized scheme is reviewed. In Section 3 the position of heat
and power cogeneration units in a decentralized system is discussed. Section 4 presents
the micro gas turbine structure and its advantages over the competitors, followed by a
brief history of MGT development in Section 5. Lastly, the challenges of improving MGT
performance and suggestions for promoting them are provided by proposing an active
condition monitoring and control system in Section 6.

2. Energy Policy

In this section, a brief review of the evolution of the electricity generation scheme is
presented. The energy policy in the current world and associated studies are reviewed to
illustrate the potential of MGTs in the near-future power generation system.
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2.1. Climate Change and the Future of the Energy Framework

It is common knowledge that greenhouse gas (GHG) emissions are the main reason
for the abnormal increase in the average surface temperature of the earth. National and
international political bodies are discussing the “energy problem” and are pursuing pos-
sible solutions. The United Nations Framework Convention on Climate Change “COP21
Agreement” has given strength to the policies on climate change and the energy transition
to a low-carbon energy scheme. In October 2014, the European Union agreed on vision
2030, to further increase the penetration of renewable energy technologies and improve the
overall energy efficiency of electricity production with a reduction of GHG down to 40%
(from 1990 levels), along with an ambitious target to reduce GHG by 95% until 2050 [14].
The vision is to keep the global temperature increase to well below 2 ◦C and pursue efforts
to keep it to 1.5 ◦C [15].

According to the International Energy Agency projections, the average CO2 intensity
of electricity production needs to fall from 411 g per kilowatt-hour (g/kWh) in 2015 to
15 g/kWh by 2050 to achieve the goal of limiting the global increase in temperatures
below 2 ◦C. While many studies confirm the feasibility of the goal, the development of
a clear strategy and designing technical infrastructure is essential to achieve the new
power market [16].

The key targets of the EU for 2030 were [15]:

- At least 40% reduction in greenhouse gas emissions (from 1990 levels), by decreasing
emissions and increasing removals;

- At least 32.5% improvement in energy efficiency;
- At least 32% share for renewable energy.

As a part of the European Green Deal, in September 2020 the European Commission
proposed to raise the 2030 greenhouse gas emission reduction target, to at least 55%
compared to 1990 [15]. In December 2011, the European Commission communicated on the
topic “Energy Roadmap 2050”. The EU is committed to reducing greenhouse gas emissions
to 80–95% below 1990 levels, aiming to be climate-neutral (with net-zero GHG emissions)
by 2050. Figure 3 depicts the EU energy targets. These targets aim to help the EU achieve a
more competitive, secure, and sustainable energy system.
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One of the main challenges of the energy roadmap is the volatile feed-in from the solar
and wind power plants. Electricity generation from wind and solar sources represents
fluctuations that are inherited from their intermittent nature which affects the stability and
reliability of the grid and could cause issues to a secure energy supply. This necessitates
the development of energy backup systems to compensate for the fluctuations, consisting
of storage methods for periods of oversupply, and flexible power production stations in
episodes of low inputs from the renewable sources [17,18].

To provide secure, reliable, clean, and sustainable energy, a broad portfolio of energy
conversion and storage technologies will be required. This is likely to include nuclear
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power generation, concentrated-solar power plants, and hydrogen power plants, along
with new technologies improving overall energy efficiency, as well as continued use of
fossil fuels, ultimately with carbon capture and storage [19]. Due to the inevitable phases of
low energy input from renewables, thermal power plants will be suitable for load control
and backup power if sufficient storage capabilities are not available. The fossil power
stations will be utilized only for the periods when wind and sun are absent. Utilizing
large thermal power plants for standby functions will be accompanied by considerable
operation costs.

Currently, the energy supplement in the world is dominated by fossil fuels and there
are numerous functioning power plants and substantial fuel resources available. Therefore,
even though they are the undesired sources for long-term ambitions of GHG reduction,
it seems impossible for them to be phased out by the mid-century. According to recent
research, 37% of the global CO2 emissions are attributed to some industrial sectors such
as iron, steel, and cement sectors. Therefore, fossil fuel-based power plants are difficult
to eliminate [20]. Consequently, it is important to develop technologies that permit fossil-
fueled plants to operate as low-emission power generators.

There are two main concepts to capture CO2 from fossil fuel power plants: pre-
combustion (CO2 extraction from the synfuel) and post-combustion (CO2 capture from
exhaust gas) [21]. The CO2 may be stored and disposed of in a distant geological storage
site after capture. However, there is public and political opposition against geological
storage sites on land in several European countries [22]. The carbon capture and storage
(CCS) process costs about 10 to 14% of the production efficiency of a fossil-fuel plant [21]
which is a considerable fraction of the whole establishment.

Another fuel resource for power plants is biomass, the most important renewable
energy source which covered nearly 60% of renewable-based power production in Europe
in 2016 [23]. On average, in industrialized countries, biomass contributes about 9–13% to
the total energy supplies, but in developing countries, the proportion is less than 7% [21].
The electricity and heat producers of future power production systems must be able to
function with carbon-neutral or carbon-free fuels, such as biofuels, hydrogen, or ammonia.
While redeveloping large-scale fuel-flexible power plants is expensive, building small-scale
power generation technologies which can operate with a range of fuels are technically and
economically feasible.

It is anticipated that the future structure of power generation will appear in a similar
layout as depicted in Figure 4. The power supply system will be a combination of big and
small generators, where the small ones supply local power demands, and the big stations
are for the system backup and are equipped with carbon capture and storage.
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In the new scheme of power generation, the local power supply is called a microgrid
(MG) which bind together to organize the local balance of the power system. If a microgrid
cannot achieve the balance, then it will get power from the neighbor microgrid or the strong
backup system to assure constant frequency [25].

Figure 4 shows a “smart grid”, a combination of local networks with active consumers
and small storage, a strong backbone network, and powerful generators. The buildings, as
one of the main consumers of electricity in today’s platform, will play an active role in the
system, where they become flexible storage or even a supplier for the grid [26].

2.2. Option for Future Decentralized Microgrid Energy Structures

Microgrids are a group of interconnected loads and distributed energy resources
within defined electrical boundaries, which act as a single controllable entity with respect to
the grid. It can be connected and disconnected from the grid since it is capable of operating
in both grid-connected and islanded modes [14]. Microgrids have been researched for
decades [27], however, increasing penetration of distributed energy resources (DERs)
into the existing power sector is raising the motive to develop advanced technologies
for MG power generation units [28]. Besides the global warming effects, the increasing
penetration of DER is attributed to fossil fuel shortage and political instability in the major
energy-supplying countries [14]. Moreover, production costs for developing distributed
energy resources declined due to technological improvements, hence the renewable energy
sector has witnessed a boom in the past decade [14]. In the decentralized scheme, low
power loss in the transportation of electricity due to the proximity of the production unit
to the consumer is another attractive feature promoting it. Advanced MG systems will
improve energy security and provide power that is efficient, reliable, and clean [18,29].
The international energy policies toward less GHG emissions are other key drivers for
promoting renewable energy targets and DER, changing the MG role from a secondary
energy source to a primary energy supply [27].

The rapidly increasing trend of microgrid integration into the electricity grid presents
technical barriers and problems such as voltage stability, distribution system operation,
control, and protection [30]. Technical challenges have been investigated for over a decade,
and now can offer a stable and smoother energy supply [14]. However, the operation
and maintenance of MG power units show improvement prospects for more reliable
power generation.

2.3. Changing Role of Electric Power

The main sectors of the final energy consumption of EU-27 in 2018 were in the areas
of residential (26.1%), transport (30.5%), and industry (25.8%) [31]. Figure 5 illustrates
the share of different sectors in final energy consumption for EU-27 countries in 2018.
The urbanization of the world is in progress which has a significant influence on energy
demand. In developing countries, today more than 50% of the population are living in
urban areas (Table 1), whereas in industrialized regions such as Europe already 77.5% has
been reached. In industrialized countries, the electrification rate is more than 95% in urban
areas (100% in the EU), but it is only about 60 to 70% in rural areas. One can say that
urbanization is linked to electrification [21].

Table 1. Urbanization rate in percent of the total population in developing countries and industrial-
ized countries [20].

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040

DC 18.0 21.7 25.3 29.6 35.1 40.2 45.3 50.5 56.0 61.6
IC 52.5 58.7 64.6 68.8 71.2 73.1 75.0 77.5 80.6 83.5
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Electricity represents clean energy and is the ideal form of supply for densely pop-
ulated urban areas. The building sector is crucial for achieving the EU’s energy and
environmental goals. The EU “directive on the energy performance of buildings” pro-
vides the guidelines for the reduction of total energy consumption in the residential sector
in the EU [32]. The aim of the directive is a “low-energy building” with a very high
energy performance which improves the higher life quality of residents with additional
economic advantages [33].

The microgrid concept for urban and residential households is a suitable solution for
an increasing urban population, especially for operation in cogeneration mode [33]. A
combined heat and power (CHP) generation mode of microgrids is an efficient solution for
recovering the residual heat in the power generation unit to be exploited in proper form
by the end-user. In centralized power generation mode, a part of the electrical power that
is delivered to the residential sector is transformed and expended for heating or cooling
purposes. Cogeneration units in DEG networks avoid inefficient heat to power and again
power to heat conversion deficiencies.

3. Cogeneration of Heat and Power

Providing electricity and heat at the demanded location is the main purpose of the
energy market. Even in today’s predominantly centralized power generation structure,
heat generation is decentralized and produced near the end-user because of the high loss in
heat distribution over long distances. The current shift in the electricity market towards a
decentralized generation network corresponds with the current distributed heat generation
scheme, particularly, a decentralized co-generation of power and heat will fulfill the new
energy market structure.

Small-scale energy conversion units that can provide both electricity and heat to the
customer are assumed to be the main elements of microgrids that correspond to the urban
sector. Besides a reliable power supply, a micro-CHP unit provides the opportunity to
exploit the remaining energy from the electricity generation process for heating or even
cooling purposes, thus maximizing the level of fuel utilization and potentially decreasing
carbon and air pollutant emissions by improving energy efficiency.

The European Union Cogeneration Directive sets down goals for “good quality”
CHP to be a part of the delivered electricity [34,35]. However, these goals are yet to be
reached. In the United States (U.S.), many states realized the value of DER and CHP to
mitigate emissions and fuel consumption to fulfill environmental targets as well as achieve
economic benefits [36]. Studies focusing on CHP systems and their role in meeting GHG
reduction goals were investigated in different states of the U.S. [37,38], different countries
in Europe [34,35,39,40], as well as on a global scale [41]. It was concluded through these
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efforts that CHP is promoted as an economical and energy-efficient option for reducing
air emissions, mitigating GHG emissions, and reducing reliance on grid electricity and
hence enabling peak load shaving [42]. Industrial applications of CHP have been around
for decades, converting 80 percent or more of the input fuel into an adequate type of
energy, producing electricity and thermal energy onsite [43]. New thermally-driven cooling
technologies are being developed and demonstrated that can potentially utilize the CHP
heat output effectively for cooling purposes [43].

The U.S. Environmental Protection Agency (EPA) defines CHP as an efficient and clean
approach for generating electricity and useful thermal energy from a single fuel source [20].
A typical CHP system operates by generating hot water or steam, deploying the recovered
waste heat, and therefore, fulfilling the end-user’s heat demand. The provided heat can also
be directed to an absorption chiller where it can provide cooling which is called combined
cooling, heating, and power.

With climate change and increasing temperature, the heating demand for the residen-
tial sector of energy consumers will decrease. Conversely, the cooling desires of household
and commercial units will grow in which the CCHP mode of cogeneration will be desired.
In today’s marketplace, there is a variety of cooling technology options for the cogeneration
of cooling, heating, and power. Absorption chillers are the most common technology that
can be installed to utilize heat output to produce cooling [43].

The U.S. EPA CHP partnership gathered data and promoted the development of CHP
in the industrial and commercial sectors in the U.S. and provided a thorough summary
of the available existing prime mover technologies to drive a CHP system and a review
of CHP systems around the world [44]. According to this effort, small CHP technologies
or so-called micro-CHP technologies are the proper options for distributed generation
(DG) [44]. Typically, DG is defined as power generation that is smaller than 50 MW with
the unit output being used either on-site or close to where it is produced.

In one study, researchers evaluated a wide range of DG units to determine the po-
tential for cooling, heating, and power in the U.S. industrial sector [43]. The study was
focused on units by the year 2002, and included reciprocating engines, industrial turbines,
microturbines, combined-cycle turbines, and fuel cells. The application of these units for
electricity generation as well as cogeneration with heat and cooling were considered. The
outcome of this research showed substantial market potential for CHP units in the U.S.
industrial sector [43]. Market estimates show that almost three-quarters (73%) of the power
market potential is for straight CHP applications, of which only one-third of the potential
was available and in use in 2022 [43]. CHP with an absorber represents 15 percent of
the potential, serving industries with substantial cooling demand, including the chemical
and petroleum industries. The sole power generations showed only 11 percent of market
potential. The research clearly shows the promising future for cogeneration on small scales
in the U.S. [43].

In the same research, the authors investigated the market potential of CHP technolo-
gies variations by the size of the generating unit. In 2002, the U.S. market for small-size
engines (under 1 MW) was dominated by reciprocating engines. Their combination of
high efficiency and low installed cost made them a perfect choice. In the mid-range
(1–20 MW), however, turbines were the prime movers, due to the large concentration of
CHP-compatible sites in this size range. In large power sizes (20–50 MW), turbines offer
economic potential with large combined cycles. The combined cycle applications were
attractive in industries (such as steel) with relatively low steam demands.

The details of the investigation provide more insight into this market analysis with
aspects such as the type of technology depicted in Figure 6. The analysis showed the
dominance of micro gas turbines, industrial turbines, and reciprocating engines in 2002’s
CHP market. At that time, analyses showed that an adaptation of many high-efficiency
features to turbine technology was to be expected which will take CHP’s market share from
other technologies, and even improve reciprocating engines. The same conclusion was
made regarding the growing market for micro gas turbines in [45]. The reason behind this
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was that the electrical efficiency improvements that were projected for micro and industrial
turbines were much greater than those that were projected for reciprocating engines [43].
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The investigations in [43] also showed that the turbine CHP market will expand and
microturbines will take over in the under 1 MW applications, and larger (over 1 MW)
turbines benefit from improved electrical efficiency and lower capital cost per unit power
output [43]. Moreover, the low noise levels and NOx emissions of the micro gas turbines
will be their other advantages over the rest of micro-CHP technologies [20]. The results are
illustrated in Figure 7, showing the role of micro gas turbines with cogeneration capabilities
in the future of energy production.
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To attain the high efficiency and reliable performance of MGTs as a CHP unit in
future microgrids, further research, and development (R&D) is needed to promote these
technologies and compete with more conventional options. CHP and thermal cooling
technologies share the need for lower costs, increased efficiency, reduced maintenance,
greater reliability, and lower emissions. While these needs vary by technology, the overall
goal should be to support the industry in developing lower-cost CHP packages that improve
industrial energy efficiency and reduce operating costs.

Currently, utilities and consumers are encouraged to move towards decentralized mar-
ket structures and integrate with distributed small generators. With increasing power and
heat demand due to the expansion of the urban sector, CHP technologies in compliance with
microgrid networks will gain the most attention. As the study showed, micro gas turbines
with cogeneration mode show the most potential as an economically beneficial market.

4. Micro Gas Turbines

Micro gas turbines are basically small gas turbines with a power output range of 30 to
250 kW, operating on the same principle as open-cycle gas turbines. The setup consists of a
compressor, a combustion chamber, and a turbine, forming a basic Brayton cycle. In this
cycle, the air is compressed by the compressor then receives thermal energy by added fuel
that is passing through the combustion chamber, thus leaving with a high-temperature gas.
The high-pressure and-temperature gas enters the turbine where it expands and provides
power to drive the compressor and the electric generator. For typical power ratings, the
optimum rotational speed in micro gas turbines is between 60,000 to 120,000 rpm, a pressure
ratio of 2:1 to 5:1, and turbine inlet temperature up to 1000 ◦C [46].

The single-shaft structure is the most common configuration of micro gas turbines [47],
however, there are dual-shaft MGTs that are available in the market [46]. Single-stage
centrifugal compressor and radial turbine are employed, which are manufacturing choices
for compact sizes. Typical MGT employs a permanent magnet generator that is capable
of compensating for the high rotational speed of MGTs which varies during the operation
period [46]. Furthermore, microturbines usually employ variable-speed alternators gen-
erating a very high-frequency alternating current which must be first rectified and then
converted to alternating current (AC) to match the required supply frequency [46].

The net electrical efficiency of a micro gas turbine in a basic Brayton cycle is usually
low and about 17% [48] due to the small cycle pressure ratio. Moreover, the power output
is also limited to turbine material constraints and cost limitations of the implementation of
internal cooling systems on small scales such as micro gas turbines. The overall efficiency
of MGTs is improved by preheating the compressed air to reduce fuel consumption. This
pre-heating occurs in an air–air heat exchanger element called a recuperator that is placed
in the way of exhaust hot gases to facilitate heat transfer between the hot exhaust gas
and cold compressed air. The recuperator is, therefore, a vital element that increases the
cycle efficiency to acceptable ranges. Fuel consumption in cycles that are equipped with
recuperators is reduced and electrical efficiency of up to 30% can be achieved [48]. Further-
more, the low-pressure ratio in micro gas turbine cycles is advantageous for regenerative
cycles since these cycles operate with higher efficiency in lower pressure ratios, as shown
in Figure 8 [28]. For co-generation mode, the remaining heat in exhaust gas leaving the
recuperator is transferred through another heat exchanger to provide hot water for heating
purposes or be exploited in a chiller for cooling applications.
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Figure 9 shows the simplified scheme of a micro gas turbine cycle arrangement with 
a recuperator and an economizer for co-generation. 

Figure 8. Cycle efficiency based on pressure ratio, (a) simple cycle, (b) regenerative cycle [49]. In
schematic diagrams of gas turbine cycles in (a,b), the numbered locations are: 1. engine inlet,
2. compressor outlet, 3. combustor outlet, 4, turbine outlet. additional locations in (b): 5. recuperator
outlet—cold-side and 6. recuperator outlet—hot-side. In efficiency diagram of (b) t is defined as
ration of turbine inlet temperature to engine inlet temperature.

Figure 9 shows the simplified scheme of a micro gas turbine cycle arrangement with a
recuperator and an economizer for co-generation.
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Technology  Steam Turbine Gas Turbine Microturbine 
Capacity MW 0.5 to several hundred 0.5–300 0.03–0.25 

Power efficiency 
Based on 

HHV 5–40+% 24–36% 25–35% 
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Typical power–
heat ratio - 0.07–0.1 0.6–1.1 0.5–0.7 

Part-load - ok poor ok 
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An important advantage of micro gas turbines over other heat engines for decentral-
ized power generation is their fuel flexibility, ranging from natural gas, diesel, liquefied
petroleum gas (LPG), and hydrogen, to waste- and biomass-derived fuels. In fact, MGTs
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can operate with fuels with low heating value without engine derating [6]. The combustion
systems of micro gas turbines can also be designed in such a way that they can easily burn
fuels with lower octane numbers as well as heavier hydrocarbon components [50]. The
same is true for fuels containing hydrogen [51].

Relative to other technologies for small-scale power generation, micro gas turbines
offer several advantages, including compact size, light weight, and low noise compared to
other internal combustion engines (ICE) with similar power output ranges. They can be
installed on-site with limited space. They have a small number of moving parts with small
inertia (unlike large gas turbines with large inertia).

Another important advantage of micro gas turbines, over other ICEs such as recipro-
cating engines, is MGTs’ low emissions [20]. Table 2 presents the baseload emissions for
different micro gas turbine systems.

Table 2. Baseload emissions for different micro gas turbine systems [21].

Capstone Ansaldo FlexEnergy MTT

NOx [@ 15% O2] <9 ppm <15 ppm <5 ppm <27 ppm (10 ppm with FLOX)
CO [@ 15% O2] <40 ppm <15 ppm <5 ppm <50 ppm (10 ppm with FLOX)

UHC [@ 15% O2] <9 ppm N/A <5 ppm N/A

A comprehensive survey was performed and reported in [20] and modified by Rein-
ert [52] investigating the performance indicators, cost, and advantages of different cogen-
eration technologies towards one another. A summary of this investigation is reported in
Tables 3 and 4, showing the advantages of MGT over the other technologies of the same
power range.

Table 3. Comparison of CHP technologies: sizing, cost, and performance parameters—part 1 [20,52].

Technology Steam Turbine Gas Turbine Microturbine

Capacity MW 0.5 to several hundred 0.5–300 0.03–0.25

Power efficiency Based on HHV 5–40+% 24–36% 25–35%

Overall efficiency Based on HHV near 80% 66–71% 63–85%

Typical power–heat ratio - 0.07–0.1 0.6–1.1 0.5–0.7

Part-load - ok poor ok

CHP installed costs $/kWe 670–1100 1200–3300 2500–4300

O&M cost $/kWe 0.006–0.01 0.009–0.013 0.009–0.013

Availability 72–99% 93–96% 98–99%

Hours to overhauls >50,000 25,000–50,000 40,000–80,000

Start-up time 1 h–1 day 10 min–1 h 60 s

Fuels all natural gas, synthetic gas,
landfill gas, fuel oils

natural gas, biogas, sour
gas, liquid fuels

Noise high moderate moderate

Uses of thermal output process steam, district heating,
hot water, chilled water

direct heat, hot water, LP
& HP steam

direct heat, hot water,
chiller

Power density kW/m2 >100 20–500 5–70

NOx lb/MMBtU
gas 0.1–0.2

wood 0.2–0.5
coal 0.3–1.2

0.036–0.05 0.015–0.036

NOx lb/MWh total output
gas 0.4–0.8

wood 0.9–1.4
coal 1.2–5.0

0.52–1.31 0.14–0.49
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Table 3. Cont.

Technology Steam Turbine Gas Turbine Microturbine

Advantages

high overall efficiency, high
temperature, high-quality heat
any type of fuel may be used
ability to meet more than one
site heat grade requirement
long working life and high
reliability power–heat ratio

can be varied

high reliability
low emissions

high-grade heat available
no cooling required

high-cost effectiveness

small number of moving
parts compact size and

light weight low emissions
no cooling required

Disadvantages slow start-up low power to
heat ratio

require high-pressure gas
or in-house gas

compressor poor efficiency
at low loading

output falls as ambient
temperature rises

high costs relatively low
mechanical efficiency

limited to lower
temperature cogeneration

applications

Table 4. Comparison of CHP technologies: sizing, cost, and performance parameters—part 2 [20,52].

Technology Reciprocating Engine Fuel Cell

Capacity MW 0.005–10 200–2.8 commercial CHP

Power efficiency Based on HHV 27–41% 30–63%

Overall efficiency Based on HHV 77–80% 55–80%

Typical power–heat ratio - 0.5–1.2 1–2

Part-load - ok good

CHP installed costs $/kWe 1500–29,000 5000–6500

O&M cost $/kWe 0.009–0.025 0.032–0.038

Availability 96–98% >95%

Hours to overhauls 30,000–60,000 32,000–64,000

Start-up time 10 s 3 h–2 days

Fuels natural gas, biogas, propane, LPG, sour gas,
industrial waste gas, manufactured gas

hydrogen, natural gas,
propane, methanol

Noise high low

Uses of thermal output space heating, hot water, cooling, LP steam hot water, LP-HP steam

Power density kW/m2 35–50 5–20

NOx lb/MMBtU
0.013 rich burn 3-way

cat.
0.17 lean burn

0.0025–0.0040

NOx lb/MWh total output
0.06 rich burn 3-way

cat.
0.8 lean burn

0.011–0.016

Advantages

high power efficiency with part-load
operational flexibility

fast start-up
relatively low investment cost

can be used in standalone mode and have
good load following capability

can be overhauled on-site
with normal operators

operate on low-pressure gas

low emissions
low noise

high efficiency
good part-load behavior

low maintenance

Disadvantages low electrical efficiency

high costs
low durability

fuels requiring processing unless
pure hydrogen is used

start-up time
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5. History

The development of micro gas turbines started in the early 1950s when most of
the research was driven by the automotive industry viewing the possibility of using
microturbines as alternatives to reciprocating piston engines [53]. This initiative was
because of micro gas turbines’ advantages regarding low emissions and operational and fuel
flexibility. The technology became more suitable for utilization by introducing permanent
magnets as high-speed generators in the early 1980s [54]. Permanent magnet generators
are rotating electric machines in which permanent magnets prepare field excitation [46].
These high-speed generators offer small size, light weight, high reliability, high efficiency,
and low maintenance which make them an advantageous choice to integrate with micro
gas turbines [54]. However, even with permanent magnet generators, the technology of a
hybrid-electric drivetrain was not mature enough and, therefore, microturbines did not
achieve great success in the automotive segment [55].

The interest in micro gas turbines increased in the late 1980s and accelerated in the
1990s due to increased market interest in distributed power generation [55]. In the late 1990s,
the market for hybrid vehicles started to expand and they also began to increase interest in
micro gas turbines, integrating them with electric motors to generate propulsion force [46].

The deregulation of the electricity market began in late 1970s in the United States and
several countries in Europe [46,56]. Breaking the monopoly in the electricity generation
sector and increasing the expansion of decentralized power generation was another reason
for the promotion of micro gas turbines. Micro gas turbines began to attract attention
from the research and development sector due to their potential and place in the new
decentralized electricity market. In the 1980s, a 50-kW gas turbine with a heat recovery
system for cogeneration was under development under the Advanced Energy System (AES)
program [46]. The program, however, was abandoned in the 1990s due to the high final
cost of the product [46].

A Capstone turbine was incorporated in 1988 as NoMac Energy Systems started
developing the micro gas turbine concept in the late 1980s, began field testing in 1997 for a
24-kW engine, and introduced the commercial product to the market in 1998 [53]. In the
late 1990s micro gas turbines found acceptance in large quantities in the distributed power
generation field [57]. In 2000, the state-of-the-art MGTs had electrical efficiency between
23% to 30% with an overall efficiency in cogeneration mode between 65% and 75% [58].

Other companies that were based in the United States, England, and Sweden have
been introduced since then which offer a variety of power outputs to be installed in
microgrids or for implementation in hybrid cars. Among these companies are Elliott
Energy Systems, Capstone, Aurelia, Turbec (a spin-off of Volvo which was later purchased
by Ansaldo Energia), AlliedSignal, Browman Power, and ABB Distributed Generation in a
joint venture with Volvo Aero Corporation. A summary of the main features of MGTs in
leading manufacturers is presented in Table 5 and a more elaborated history of micro gas
turbine development could be found in [59].

Table 5. Technical characteristics of leading microturbine manufacturers [46].

Model Manufacturers Power Output Set Total Efficiency 1 PR TIT NS

kW % - ◦C rpm

- AlliedSignal 75 single shaft 30 (HHV) 3.8 871 85,000
TA45 Elliott Energy System 45 single shaft 30 - 871 -
TA80 Elliott Energy System 80 single shaft 30 - 871 68,000

TA200 Elliott Energy System 200 single shaft 30 - 871 43,000
C30 Capstone 30 single shaft 28 - 871 96,000
C65 Capstone 65 single shaft 29 - 871 85,000

C200 HP Capstone 200 single shaft 33 - 870 45,000
- Power WorksTM 70 dual shaft 30 (HHV) 3 704 -

T100 Turbec 100 single shaft 30 4.5 950 70,000
1 Total efficiency is calculated based on LHV unless it is specified otherwise.
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6. Challenges and Opportunities

The MGT industry currently faces new challenges of increasing operational flexibil-
ity, reducing operating costs, and improving reliability and availability while mitigating
environmental impact. The main concern when it comes to distributed generation is the
ability to maintain performance and high availability while minimizing the operation and
maintenance costs [60].

One of the main challenges that is raised in the MGT is the overall efficiency of the
cycle in the operation range, including design point and part-load conditions. Even though
cogeneration applications of MGT lead to higher thermodynamic efficiencies, there are
episodes of poor matching between heat and power demand, which indicates that further
investigations are required to attain more efficient performance schemes [60]. With an
increasing number of passive houses, demand for heating will decrease which raises more
challenges in the techno-economic aspects of MGT technology. However, the decrease
of heat demand due to a paradigm shift in the structure of residential units and global
warming effects will increase cooling demand, in which case the cooling application of
MGTs will become more prevalent. For such applications, developing technologies for a
more sophisticated operation of a micro gas turbine in cogeneration mode is essential.

Although performance improvements of gas turbine engines have been a subject of
interest for decades, some features of micro gas turbines make them dissimilar to larger
engines in several operating and system characteristics:

- The simple cycle form of micro gas turbines is less efficient than larger industrial gas
turbines since the cycle pressure ratio in MGTs is considerably lower. The small size
constraint in micro gas turbines imposes manufacturing complications to potential im-
provements of cycle parameters, such as pressure ratio and turbine inlet temperature.
A recuperator helps with compensating for these deficiencies in MGT cycles which
makes them an essential element of micro gas turbines, unlike large-scale engines.

- Micro gas turbines operate at significantly higher shaft speeds. With a smaller size,
typical problems such as tip supersonic speeds or mechanical limits are delayed to
even higher rotational speeds. Therefore, micro gas turbines can operate at speeds
above 100,000 rpm whereas a larger gas turbine will typically operate in the range of
3000 to 20,000 rpm [6]. Moreover, with compensating generators connected to MGTs,
the rotational speed can vary according to power demand, unlike most large-scale
turbines that remain at a constant speed. This alteration of rotational speed leads to
different optimization practices for performance improvements.

- MGT cycles operate with lower pressure ratios (2~5) and turbine inlet temperatures
(typically less than 1000 ◦C) which make the part-load operation span of these systems
different from large-scale gas turbines (with pressure ratios up to 25 and turbine inlet
temperatures up to 1700 ◦C). The span of cycle parameter variations, especially with
altering rotational speed, is smaller compared to large-scale gas turbines.

- Considering the low-pressure ratio as well as the small volumetric flow and small
power rating, a single-stage radial compressor and turbine are usually used. Both
components have different operational behavior from axial versions, which is the
common configuration that is implemented in large-scale engines.

- If the micro gas turbine operates as a CHP or CCHP unit, the system includes a
second heat exchanger that uses the remaining exhaust thermal energy after the
recuperator. The available exhaust gas, typically around 300 ◦C, provides energy for
water and space heating, cooling systems such as absorption chillers, and process heat
applications. The implementation of an economizer adds more application flexibility
as well as constraints to the cycle.

- The fuel flexibility of MGTs, although having environmental and financial advantages,
poses certain challenges to MGT design and operation. For conventional cycles, the
low calorific value of the fuels requires the implementation of a larger volumetric
flow of fuel to achieve the design turbine inlet temperature. This will affect the
original matching point with the compressor. Considering the common turbine
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choking condition, the larger fuel flow rate results in lower demand for air from the
compressor and, in general, an increase in compressor back-pressure and, therefore,
lowering the surge margin [6]. On the other hand, a high air–fuel ratio within the
primary combustion zone is required for achieving low emission levels at full-load
conditions. Lean premix operation requires a large amount of air to be thoroughly
mixed with fuel before combustion. This premixing of air and fuel enables clean
combustion to occur at a relatively low temperature that is tolerated in uncooled
turbines [61]. Therefore, some operational limitations are imposed on the fuel–air flow
ratio considering the type of fuel that is injected into the engine.

All the above-mentioned aspects of MGTs lead to a different practice to improve
theirs in comparison with large-scale gas turbines. MGTs and the MGT cycles need further
development towards [6]:

• higher electrical efficiency;
• increased flexibility for integration with other systems;
• increased flexibility towards the utilization of various sources of energy.

Improving the efficiency, flexibility, and reliability of micro gas turbines could be
pursued by two approaches:

- component level
- system level

The main components of the engine, namely the compressor, recuperator, combustor,
and turbine, show great potential for improvement in MGTs. The recuperator is responsible
for a significant fraction of the electrical efficiency; therefore, its performance and limitations
are additional parameters to be considered for improvements. On the other hand, the
materials that are used in recuperators impose limitations on flow temperature at the
turbine outlet (and the turbine inlet and hence the power output). Focusing on new designs
and materials for recuperators could contribute to the efficiency of MGTs.

MGTs as a backup for the renewable-dominant power system of the future will operate
in part-load conditions as frequently as in full-load conditions. Therefore, it is essential to
improve the efficiency of the compressor and turbine in off-design conditions along with
the design point.

Combustion in MGTs occurs with lower equivalence ratios; the typical fuel–air ratio
in MGTs is about an order of magnitude smaller than large-scale gas turbines. This means
that the variation of flow properties in the flue gas in the case of replacing natural gas
with hydrogen is small and, therefore, fewer complications are to be expected. The reason
behind this is that flue gas properties of pure methane and pure hydrogen combustion
diverge from each other as the equivalence ratio increases, yet in very lean combustions the
difference is small. Focusing on hydrogen-driven MGTs will lead to building dispatchable
units with zero carbon dioxide emissions. While fuel flexibility is an established advantage
of MGTs, burning hydrogen and hydrogen-blended fuel is a goal to be accomplished by
focusing on new technologies for combustion chambers.

Besides the component improvements, the system level improvements which are
associated with the engine cycle and control of its operation could have a significant effect.
Although MGTs are designed to run in cogeneration mode, the operation strategy is not
mature and works the same as large-scale engines with addendums for cogeneration. The
common design philosophy of operation control is based on sole electricity generation
with an additional option of heat production. The controller runs the engine by focus-
ing on power output and placing heat demand as the second priority. To improve the
performance and operation efficiency of MGTs, it is essential to increase the flexibility of
their operation by modifying the control and by setting the same priority for both heat
and power generation.

As elaborated in the previous sections, the MGTs’ main role in the future power gener-
ation industry is to provide support for intermittent renewable energy sources. Therefore,
continuously monitoring MGTs’ condition is important to maintain a reliable operation
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and avoid unpredicted shutdowns. Engine online monitoring is essential for tracking
key parameters that are linked to the engine’s health condition. Deterioration in engine
performance has to be detected in the early stages, as well as signs of potential engine faults.
Proper measures should be recommended based on the detections to prevent penalties on
engine performance or even its life cycle in more severe cases.

A fault refers to a condition of an engine with a change of the form of its component(s)
and hence its performance, from its original design or its initial operation. An engine fault
can manifest itself by a change of the geometrical characteristics and/or integrity of the
material of its parts, such as fouling, corrosion, erosion, etc., in a compressor or turbine.
Monitoring the condition of the engine and its performance during operation and analyzing
the observations and sensor measurements can help with detecting those possible faults.
Engine faults can have other reasons such as bearings’ wear, insufficient cooling of bearings,
combustor malfunction, etc. Usually, non-performance-based monitoring methods such as
vibration and oil samples can help with the detection of these faults.

To properly monitor the health condition of an MGT, an accurate model which repre-
sents healthy operation, and a condition monitoring platform that compares the engine
and the model outputs are required. A precise computer model of the engine imitating
the whole cycle performance in full-load and part-loads must be employed. The healthy
engine model could be physics-based [62,63] or data-driven, either way, the accuracy and
speed of their prediction are the essential characteristics.

To develop a predictive model of the MGT cycle when a physics-based approach is
chosen, a reduced order (0D and in some cases 1D) model is sufficient, as long as the maps
and correlations that are implemented inside the components match the behavior of the
actual healthy engine. To this end, a generic model of an MGT must be ready which could
be tuned and become “adapted” to the actual engine during the first maneuvers of the
operation. Once this model is tuned, then it works as a representative of a healthy engine
and could be utilized as the core of condition monitoring platform. In [64] a review on
cycle modeling of MGTs is presented, and in [63] a full process of accurate MGT model
adaptation to experimental data is presented. Figure 10 shows the adaptation process
which is titled “learning period”. The model should run by the same power setpoint as
the actual engine and then the outputs of MGT and the model are compared and used for
modifying the model’s tuning parameters, which are basically the calibration factors of the
maps and correlations. This process will continue until the difference between the engine
outputs and model results are closer than acceptable tolerance. If the data-driven approach
is chosen for building the model, the process will be replaced by simple data-based model
training, by the means of machine learning methods.

After the learning period is completed, the model must be utilized to provide inputs
for the condition monitoring platform. In Figure 10, in the section “operation period”, a
structure for intelligent monitoring and control of MGT is proposed. The structure has three
main poles: engine model, condition monitoring, and optimizer. The model is adapted to
the healthy engine during the learning period, based on the initial operating hours of the
MGT when it was assumed healthy. Then, a condition monitoring platform plays its role,
which receives data from the engine as well as the model predictions.

The data-based condition monitoring can help with improving the reliability of the
engine and reducing maintenance and operational expenditure by preventing harmful
damages to the engine and avoiding unscheduled shutdowns. The advent of Industry 4.0
and the digitalization era provides the infrastructure for online collection and fast analysis
of sensors’ data to infer the condition of parts of the engine without dismantling the engine
or getting direct access to its parts.

Artificial intelligence (AI) has demonstrated a powerful capacity in detecting and
diagnosing faults of gas turbine engines [65]. Monitoring through AI is proven to be
an effective method for shifting from classical “fail and fix” practices to a “predict and
prevent” methodology. Enhanced analytics and AI-enabled algorithms can help identify
out-of-band behavior to improve efficiency and help with keeping the balance between



Energies 2022, 15, 8084 18 of 22

energy supply and energy demand. AI techniques are quite useful when the problem is
highly non-linear and a functional relationship between inputs and outputs is not easy to
set up, or a quick response is required for real-time applications. Since physical problems
of gas turbines have nonlinear and multidimensional characteristics, efforts to apply AI to
performance prediction and fault detection and diagnosis of gas turbines have increased
during the past decade [65,66].
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Figure 10. Micro gas turbine fleet control based on online condition monitoring.

The collected data in the condition monitoring platform of Figure 10 will be recorded
and analyzed to estimate the health status of the MGT, which could improve the machinery
maintenance strategy by employing statistical machine performance data and operational
experience and hence prevent unexpected failure in the system. Online condition moni-
toring helps with predictive model improvements and, therefore, finding more optimized
solutions for engine performance, which is the main role of the third pole of the system,
the optimizer. Realizing the actual health condition of components of the engine, an adap-
tive control scheme can be employed to compensate for the effect of deterioration. The
component degradation level is assessed by the variations in the available measurements;
then the information about engine health conditions is employed to adopt modified control
strategies that guarantee a safe operation and limit the reduction in performance efficiency.

The function of the optimizer is tied to the controller of the micro gas turbine. The
controller’s function is to command the engine to operate with a specific fuel flow rate and
specific rotational speed, that generates the demanded power while keeping the engines’
components safe. The controller parameters, however, are constant and usually designed
based on the engine operating at its absolute healthy status. If the condition monitoring
platform could provide information that indicates the engine’s deviation from its initial
health, these control parameters could be modified by the optimizer and lead to higher
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efficiency and lifetime of the MGT. This flexibility of operation and increasing efficiency
could be enhanced furthermore by adding flexibility to the cogeneration mode, as discussed
previously. Inputs from weather and energy market forecast will be also beneficial to find
the optimum operational strategy. The weather condition not only affects the fuel prices
but also affects the amount and type of demand (i.e., electricity or heat).

It Is useful to put the data from one engine into a database of the fleet of micro gas
turbines, where the diagnosis information of each engine could be available for others. The
changes in controller parameters and their effect on performance will be useful and provide
guidelines. Other than diagnostics of the micro gas turbine, sharing information among the
engines could be beneficial for prognostic purposes. In Figure 10, the data from condition
monitoring are collected and stored in the fleet database which is called by the optimizer.
With a sophisticated infrastructure to organize the data, the prospect of employing more
intelligent operation strategies will be increased.

7. Conclusions

Micro gas turbines provide a reliable and cost-effective power source with a quick
load-following ability which can respond to demand peaks and compensate for intermittent
renewable sources when they are not available. MGT units can work as a system together
with renewables, or function as a stand-alone unit in off-grid operations. MGTs are fuel
flexible which can offer cost-effective electricity and heat production, especially with fluctu-
ating fuel prices. As a small power plant that is utilized in private households or public
buildings, MGTs offer low noise, easy operation, and highly reliable power generation
units, which are the most important requirements for decentralized energy systems.

Combined heat and power systems based on MGTs have a higher share than microp-
ower generators in the market due to the decentralized foundation of heat production.
Moreover, the cogeneration of heat and power increases thermal energy conversion effi-
ciency and reduces costs.

In this paper, the increasing role of micro gas turbines in the future of energy transition
was investigated. The characteristics of micro gas turbines which make them a perfect
choice as dispatchable standby unit for a renewable-dominant power generation scheme is
reviewed. The challenges and places for further improvements that could accelerate the
promotion of micro gas turbine was explained. Finally, a model for an active monitoring
and control system of the micro gas turbine was proposed which could benefit from AI
techniques to improve the reliability of micro gas turbines.

The continuous development and implementation of diagnostics can significantly
reduce both the financial losses that are caused by system breakdown and the costs that are
attributed to unnecessary repair and replacement of components. Moreover, the condition
monitoring assessments could be provided to an optimizer that changes the operational
strategy of the MGT controller, seeking higher efficiencies, a longer lifetime, or both. The
integration of MGT cycle data with smart tools based on AI techniques can potentially
increase the useful operational hours and thus higher investment returns. Digitalization
based on intelligent tools is, therefore, needed to conduct real-time analysis, considering the
key parameters such as components’ conditions, power demand patterns, and market prices
to identify a smart combination and deliver high efficiency from existing installations [60].
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� Hydrogen's potential as an alternative, carbon-free fuel for micro gas turbines is assessed.

� The obstacles of utilizing hydrogen fuel in a micro gas turbine are addressed and the necessary modifications are presented.

� Data from successful tests of a micro gas turbine running on hydrogen blends ranging up to 100% hydrogen is presented.

� NOx emissions below the standard limits were achieved with the new setup.

� The study's outcomes could aid researchers and developers in incorporating hydrogen as a carbon-free energy carrier.
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Hydrogen, as a carbon-free energy carrier, has emerged as a crucial component in the

decarbonization of the energy system, serving as both an energy storage option and fuel for

dispatchable power generation to mitigate the intermittent nature of renewable energy

sources. However, the unique physical and combustion characteristics of hydrogen, which

differ from conventional gaseous fuels such as biogas and natural gas, present new chal-

lenges that must be addressed.

To fully integrate hydrogen as an energy carrier in the energy system, the development

of low-emission and highly reliable technologies capable of handling hydrogen combustion

is imperative. This study presents a ground-breaking achievement - the first successful test

of a micro gas turbine running on 100% hydrogen with NOx emissions below the standard

limits. Furthermore, the combustor of the micro gas turbine demonstrates exceptional fuel

flexibility, allowing for the use of various blends of hydrogen, biogas, and natural gas,

covering a wide range of heating values. In addition to a comprehensive presentation of the

test rig and its instrumentation, this paper illuminates the challenges of hydrogen com-

bustion and offers real-world operational data from engine operation with 100% hydrogen

and its blends with methane.

© 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

Alphanumeric Variables

cp Specific heat of gas at constant pressure (J/kg K)
_m Mass flow rate (kg/s)

N Relative rotational speed [%]

P Power (kW)

p Pressure [bar]

T Temperature (K)

V Valve position [%]

Greek Symbols

r Density (kg/m3)

4 Equivalence ratio

Indices

comb Combustor

f Fuel

nom Nominal

norm Normalized

Abbreviations

AF Adiabatic Flame

LHV Lower heating value

MGT Micro gas turbine

TIT Turbine inlet temperature

TOT Turbine outlet temperature
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Introduction

Micro gas turbine (MGT) engines with a power output between

3 and 300 kW are instrumental in decentralized power gen-

eration, due to their reliability and ability to quickly respond to

changes in load, making them an ideal backup option for

intermittent renewables [1,2]. Their compact size, lightweight,

and low installation andmaintenance cost further strengthen

MGT's position as a power generator in the future's distributed
power system. Today's MGTs can run on a variety of fuels,

from high-heating value fuels like methane and natural gas to

lower-heating value fuels like biogas.

Despite the fuel-flexibility of MGTs providing a wide range

of options, greenhouse gas emissions from carbon-based fuels

continue to be a concern. Using carbon-free fuels, such as

hydrogen, or carbon-neutral fuels is the most efficient way to

achieve zero net CO2 emissions in anMGT, given the difficulties

associatedwith capturingCO2 due to its lowpartial pressure [3].

The shift from the current power generation infrastructure,

which primarily relies on carbon-based fuels, necessitates

bridging technologies such as fuel-flexible MGTs that can work

with blended fuels containing high levels of hydrogen [4].

Hydrogen fuel has the potential to significantly contribute

to the shift towards a more sustainable and low-carbon en-

ergy system in the heat and power generation sector. The

advantage of using hydrogen in power generation is its ability

to significantly decrease greenhouse gas emissions and

enhance air quality, as it only releases water vapor during

combustion, in contrast to traditional fossil fuels like coal and

natural gas, which emit harmful pollutants. By using
hydrogen as an energy storage solution, excess energy

generated from renewable sources can be saved and utilized

at a later time, ensuring a consistent and dependable energy

supply even when renewable sources are unavailable [5].

Many research and development initiatives have been

carried out on both large-scale and small-scale gas turbine

units to address the challenges of using pure hydrogen or

hydrogen-blended fuels. In 1998, Morris et al. published a

paper [6] that presented their findings on incorporating

hydrogen into heavy-duty gas turbines that were originally

powered by natural gas. According to the authors, adding 10%

hydrogen did not impact NOx emissions, but it reduced car-

bon monoxide production.

Shih et al. [7] conducted a study using computer simulation

to evaluate the impact of hydrogen combustion in micro gas

turbines. The authors employed computational fluid dy-

namics to examine the burning features of mixed fuels with

different hydrogen volumetric fractions (ranging from 0 to

90%) in a can combustor that was initially designed for natural

gas. Several case scenarios were tested to fuel the engine, and

the results indicated steady combustion performance. How-

ever, the researchers found that modifications to the

combustor design were necessary to tackle emissions since

the original design was found to be insufficient [7].

In another study by Imteyaz et al. [8], a series of experi-

ments were conducted to investigate the combustion behav-

iour of hydrogen-enriched methane fuel in a swirl-stabilized

type gas-turbine combustor. The researchers increased the

amount of hydrogen in the blended fuel up to 80% by volume

and derived upper and lower limits for providing air to

maintain stable combustion.

Rajpara et al. [9] performed both experimental and nu-

merical investigations to assess the effect of hydrogen injec-

tion on a gas turbinewith an upward swirl combustor running

on methane fuel. The study found that increasing hydrogen

content resulted in smaller flame dimensions but higher NOx

emissions due to higher flame temperature, as well as a

decrease in CO emissions.

Minakawa et al. [10] designed a prototype of a lean pre-

mixed swirling flame combustor for a micro gas turbine to

operate with pure hydrogen. The combustor was tested at at-

mospheric pressure and demonstrated high combustion effi-

ciency and lowNOx emissions. It was then installed on amicro

gas turbine to assess its performance in actual conditions.

During engine startup, flashbacks were observed which had

not been seen in previous component tests. By controlling the

airflow to the combustor, the flashbacks were prevented, and

the engine achieved self-sustaining operation. The results of

the study confirmed the excellent combustion performance of

the micro gas turbine, including heat release rate, combustion

efficiency, and low NOx emissions in lean conditions [10].

Cappelletti et al. [11] conducted a study to investigate the

combustion of pure hydrogen in a lean premix burner using

both experimental and numerical simulation methods. The

experimental setupwas based on a pre-existing burner from a

heavy-duty gas turbine and wasmodified to allow for variable

premixing levels. The study found that to avoid flame posi-

tioning inside the premix duct, high flow velocity was

required during hydrogen combustion. The results indicated

the potential for developing combustion technology using
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pure hydrogen fuel while maintaining emissions within the

regulated limits.

InMay 2020, Kawasaki successfully tested an industrial gas

turbine with hydrogen fuel using their dry low emission

combustion technology. The combustor employs micro-mix

combustion technology that utilizes ultra-small hydrogen-

fueled flames and achieves low NOx combustion without the

need for water or steam, which is beneficial in terms of cycle

efficiency [12,13].

In this paper, the process of transforming a commercial

micro gas turbine to run on blendedmethane/hydrogen fuel is

outlined in detail. The project began in September 2021 in

Stavanger, Norway, where a 100-kW micro gas turbine was

modified to operate on a blend of hydrogen and methane.

During the first phase, a hydrogen content of up to 30% on a

volume basis was achieved, leading to unstable operation due

to combustion instabilities at high power rates. The findings

fromphase 1 can be found in Ref. [14]. In the second phase, the

combustion chamber and fuel control system were reengi-

neered to handle higher hydrogen content and operate at

higher power rates. All the modifications made to the system

are described and illustrated in the paper. The engine was run

on 100% hydrogen fuel and produced NOx emissions below

regulatory standards, as demonstrated by the data collected

from the sensors, which is presented in the paper.

In the following sections, first, the main challenges of the

work are described, followed by the methods and approaches

to overcome them. Lastly, the experimental results from

running the MGT with a high hydrogen content of up to 100%

are presented and discussed. Throughout the article, the

content of hydrogen is presented as percentages of the whole

fuel based on volume.
Table 1 e Comparison of the properties of hydrogen and
methane in atmospheric pressure and 300 K temperature
[15].

Property Methane Hydrogen

Molecular weight 16:04 g=mol 2:02 g=mol

Density 0:65 kg=m3 0:08 kg=m3

Lower heating value (per mass) 50 MJ=kg 120 MJ=kg

Stochiometric air/fuel ratio 17:1 kg=kg 34:2 kg=kg

Minimum ignition energy 0:28 mJ 0:02 mJ

Flammability limits 0:5 � 1:67 0:1 � 7:1

Stoichiometric air-to-fuel ratio (kg/kg) 17:1 34:1

Stoichiometric air-to-fuel ratio (kmol/

kmol)

59:7 2:4
Challenges of running an Mgt with hydrogen

The transformation of a gas turbine engine, including MGTs,

to run on alternative fuels presents numerous challenges. The

unique characteristics of hydrogen combustion require ad-

justments to both the combustor and other components of the

system to ensure secure and stable operation while adhering

to emission regulations. The difficulties associated with

operatingMGTswith hydrogen or hydrogen-blended fuels can

be categorized into two distinct areas.

� The change in combustion properties of hydrogen

compared to traditional fossil fuels, which affects the

design and function of the combustor, i.e., challenges at

the component level.

� Challenges related to the modification of the flow charac-

teristics as a result of variations in combustion products

and their impact on engine performance, i.e., challenges at

the system level.

In this section, an overview of those challenges is provided.

Component-level complications

Provided in Table 1 is an outline of the physical and chemical

properties of hydrogen and methane, serving to contrast the
combustion characteristics of hydrogen fuel. Variations in

these properties create differences in combustion character-

istics between the two fuels, necessitating distinct combustor

designs. Developing combustor technology for hydrogen

combustion becomes even more complex when the objective

is to operate with both pure hydrogen and hydrogen-blended

fuels.

The hydrogen molecule has a light weight and a broad

flammability range, which makes it suitable for use in gas

turbine engines. It has the ability to burn in a mixture with an

equivalence ratio of 0.1 in lean conditions, and up to 7.1 in rich

conditions, allowing for a wide range of power outputs at

different air-fuel ratios. The values presented in Table 1 are

under atmospheric conditions, however, it is important to

note that the lower limit of flammability increases under high-

pressure conditions and decreases with higher temperatures.

As a result of these opposing effects, the lower flammability

limit of hydrogen in a micro gas turbine is higher than 0.1 but

lower than methane under the same thermodynamic condi-

tions, according to Ref. [16].

Hydrogen and methane have a significant difference in

their minimum required ignition energy, with hydrogen being

about 10 times lower in atmospheric conditions than

methane. This high ignition temperature of methane and its

slow flame propagation temperature can pose difficulties in

ignition and maintaining stable combustion in low-load

ranges of gas turbines. The addition of hydrogen holds the

potential in enhancing combustion performance with regard

to efficiency and stability as shown in studies [8,17e20]. It has

been observed that an increase in the hydrogen share results

in an increase in laminar burning velocity [21]. This is ex-

pected to result in a more stable flame, reducing the risk of

flame-out in lean combustion conditions [22]. The broad

flammability limits, high flame speeds, and low required

ignition energy of hydrogen make it beneficial for hydrogen

engine efficiency. Researchers have found that using

hydrogen as a supplementary fuel to hydrocarbons can

enhance the ignitability and flammability of lean premixed

combustors and potentially allow for stable lean burn at lower

temperatures [17,18]. Blending hydrogen with hydrocarbon

fuels has the potential to improve flame stability in lean

conditions with low temperatures, which in turn could help to

reduce NOx emissions [18,19].

The laminar flame speed, which is an indicator of the

burning rate, can have a significant impact on combustion
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efficiency and serves as the basis of turbulent combustion. In

essence, the laminar flame speed represents the propagation

rate of the flame front relative to the unburned mixture.

Determining values for laminar flame speeds can provide

validation targets for chemical kinetic models or be used in

turbulent combustion models [20].

Zhou et al. [23] conducted numerical and experimental

investigations to study the effect of fuel composition on

combustion kinetics, for different equivalence ratios (0.6e1.5)

and pressures (0.1e0.5 MPa), with a wide range of H2/CO/CH4

compositions. Their research showed that increasing the H2

content in the fuel significantly promotes fuel reaction activ-

ity, which in turn increases the laminar flame speed. Addi-

tionally, the study found that increasing pressure resulted in a

reduction in flame speed.

The addition of hydrogen to the fuel mix also results in a

change in the adiabatic flame temperature, which increases as

the hydrogen content increases [23,24]. The temperature will

rise with the equivalence ratio (4) until reaching its peak,

which occurs in slightly rich conditions (4z1:05). Beyond that

point, the adiabatic flame temperature decreases as the

mixture becomes richer because the specific heat value of the

combustion products decreases at a faster rate than the heat

release rate. The introduction of hydrogen into amethanemix

will cause an increase in the adiabatic flame temperature [22]

as hydrogen will speed up the reaction rate [25].

The production of toxic nitrogen oxides, also known as

thermal NOx formation, is a concern in combustion processes

with high flame temperatures. The oxidation of nitrogen

molecules in the air occurs as the fuel burns at high temper-

atures, leading to the formation of NOx. Research has shown

that a significant amount of NOx formation occurs around

1800 K and the rate of production increases rapidly with

further temperature rise [26].

In gas turbines that use hydrocarbon-based fuels, the

problem of high flame temperatures is addressed by premix-

ing the fuel with air before combustion, thereby keeping the

flame temperature below a certain value without affecting

efficiency [27]. This approach is known as lean premixed

burners or dry low NOx burners, which however, face several

critical issues during fuel premixing, such as combustion in-

stabilities, flashbacks, extinction, and thermo-acoustic in-

stabilities [28,29].

The utilization of hydrogen or hydrogen-enriched fuels in

gas turbines requires rethinking the design of the combustors,

due to the large differences in flammability range and reaction

rates between hydrogen and hydrocarbons [30]. The quick

ignition of hydrogen before adequate premixing with air will

result in high flame temperatures, promoting NOx formation.

Another aspect to consider when examining the effects of

hydrogen addition to fuel is its impact on CO emissions. Car-

bonmonoxide production in a gas turbine is primarily a result

of the incomplete combustion of hydrocarbon fuel and is

therefore inversely proportional to the flame temperature [31].

It is believed that the addition of hydrogen to the fuel blend

will result in a decrease in CO emissions because there will be

fewer carbon elements present and the flame temperature

will be higher in the presence of hydrogen, given that the

equivalence ratios are the same in both cases [32].
System-level complications

The properties of hydrogen and methane, which are distinct

from each other, have an influence on the combustion

behaviour as previously discussed. Variations in fuel flow rate

are expected as a result of differences in heating value and

density between the two fuels. In addition, the altered flow

properties resulting from the different combustion products

could potentially have an impact on the thermodynamics of

the MGT cycle, as outlined in Refs. [33,34].

To assess the impact of the difference in properties be-

tween hydrogen and methane on the combustion character-

istics, a comparative assessment is carried out based on the

design point of the cycle. This assessment is performed by

running the MGT at baseload and ISO conditions. The flue gas

properties are analysed over a range of equivalence ratios for

both methane and hydrogen combustion using Cantera soft-

ware [35]. The air is mixed with the fuel in different equiva-

lence ratioswhile keeping the pressure constant. Thismixture

equilibrates at 21% oxygen and 79% nitrogen, with a pressure

of 4.3 bar and a temperature of 610 K. The results of these

calculations are shown in Fig. 1, which illustrates the adia-

batic flame temperature, the specific heat capacity at constant

pressure, and the density of the flue gas for both fuels. The

results show that the differences in flue gas properties be-

tween methane and hydrogen combustion become more

pronounced as the mixture becomes richer.

In theory, the combustion process of methanewill result in

the production of steam and carbon dioxide which will then

be mixed with the water and nitrogen content in the air, as

described in Eq. (1). On the other hand, the combustion pro-

cess of hydrogenwill result in the production of only steam, as

described in Eq. (2).

CH4 þ 2ðO2 þ 3:76N2Þ /CO2 þH2Oþ 7:52N2 (1)

2H2 þðO2 þ3:76N2Þ /2H2Oþ 3:76N2 (2)

In reality, the combustion process of both methane and

hydrogen fuels can result in the production of toxic nitrogen

oxides, carbonmonoxides, and other radicals, which can alter

the composition and properties of the flue gas produced. To

account for these factors, a computational tool known as

Cantera is used to calculate the chemical potential of each

element present in the flue gas [35]. The tool uses a mixture of

fuel and air and sets it to a state of chemical equilibrium. It

then employs a stoichiometric algorithm to determine the

intermediate states thatmeet the constraints of each element,

though they are not necessarily in a state of chemical equi-

librium [35].

In Fig. 1, the differences in the flue gas properties are

shown to be closely related to the equivalence ratio. To

determine the conditions that exist in the current MGT, it is

necessary to evaluate the value of the equivalence ratio. To

produce 100 kW of power with 30% efficiency, the fuel flow

rate is calculated based on the heat input required. Using

50 MJ/kg of lower heating value (LHV) for methane, 6.7 g/s of

methane is needed and an equivalence ratio of 0.14 is ach-

ieved. The adiabatic flame temperature of the flue gas under

these conditions is recorded as 1230.5 K, with a density of
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Fig. 1 e Flue gas properties in different equivalence ratios for burning methane and hydrogen with air at 4.3 bar and 610 K.
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1.21 kg/m3 and a specific heat at a constant pressure of

1214.8 J/kg K.

To have an assessment of the case with pure hydrogen,

first, it is assumed that the air enters the combustor with the

same pressure and temperature. If the flue gas properties

show a significant difference, itmeans thematching pointwill

alter in a way that the original assumption was not correct.
Table 2 e Flue gas properties comparison for methane and hy

Property

Fuel flow rate for nominal power output

Air flow rate

Flue gas mass flow rate

Flue gas density

Flue gas flow rate

Stoichiometric air fuel ratio

Actual air fuel ratio

Equivalence ratio

Adiabatic flame temperature

Flue gas heat capacity at constant pressure

Mass fraction of N2

Mass fraction of O2

Mass fraction of H2O

Mass fraction of CO2

Mass fraction of NO and NO2 (sum)
The hydrogen fuel rate is calculated based on equal heat input

and 120 MJ/kg of LHV. This leads to 2.8 g/s of hydrogen which

with assumed 0.8 kg/s of the air inlet, an equivalence ratio of

0.12 will be realized. The adiabatic temperature will be

1236.51 K with 1.18 kg/m3 density and 1228.8 J/kg K of specific

heat. All these values and the composition of products are

provided in Table 2.
drogen. Air with 21% O2 and 79% N2 at 4.3 bar and 610 K.

Methane Hydrogen

6:7 g=s 2:8 g=s

0:8 kg=s 0:8 kg=s

0:8076 kg=s 0:8028 kg=s

1:2046 kg=m3 1:1815 kg=m3

0:67 m3=s 0:68 m3=s

17:12 34:06

120 288

0:14 0:12

1230:52 K 1236:51 K

1214:8 J=kgK 1228:8 J=kgK

0:75587 0:76423

0:17352 0:20459

0:03138 0:03092

0:03834 0:00000

< 0:001 < 0:001
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Fig. 2 e Schematic of the components in AE-T100 PH micro gas turbine.
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Shifting the fuel from methane to hydrogen has increased

the temperature by around 6� and with the changes in the

density, the volumetric flow rate at the turbine is changed

from 0.67 m3/s to 0.68 m3/s (a 1.5% increase). The specific heat

capacity of the flue is increased by 1%. These minor changes

are due to lean combustion (4<0:15) in theMGT, so the impact

of fuel alteration on the composition of the flue gas isminor as

the largest share of it is the excess air. For gas turbineswith air

to fuel ratios lower thanMGTs, the variation of flow properties

is expected to be higher [33].

Although the assessmentswere conducted using a reduced

order model, it provides the basis for cycle evaluation, as they

are also usually conducted by zero-dimensional or one-

dimensional models. Even with this level of accuracy, it

could be concluded that the fuel shift from methane to

hydrogen will have a minor effect on the flow entering the

turbine section and therefore only small variations in cycle

points are expected thanks to the low fuel-air ratios in the

MGT.

The following section presents an overview of the experi-

mental setup of the micro gas turbine with details on the

modifications implemented to enable running the enginewith

hydrogen blended fuel. Each of the challenges described pre-

viously has been addressed during the modifications

described.
Fig. 3 e Turbec T100 PH unit with modified combustor and

fuel train for flexible fuel operation.
Development of Mgt running with hydrogen fuel

T100 PH micro gas turbine

The Turbec T100 PH micro gas turbine is a commercial engine

used for the production of both power and heat. The engine

consists of a single-stage centrifugal compressor, a single-

stage radial turbine, and a single tubular combustor. It oper-

ates based on the regenerative Brayton cycle, where the heat

from the hot gas that exits the turbine is transferred to the air

entering the combustor via a recuperator. In addition to the

recuperator, the engine is also equippedwith a gas/water heat

exchanger, which makes use of the remaining heat in the

exhaust gas to warm up the recirculating water. The perma-

nent magnet generator present in the engine enables it to run

with a variable rotational speed.

To produce a desired power output, the controller of the

T100 PH utilizes two main parameters: fuel flow rate and

rotational speed. The engine is run to produce the demanded
power, while maintaining the turbine outlet temperature

below the maximum allowed value to prevent damage to the

hot components of the engine due to high temperatures.

The Turbec T100 PHmicro gas turbine has the capability to

produce 100 kW of power at ISO conditions with a pressure

ratio of 4.3, a turbine inlet temperature of 960 �C, and a rota-

tional speed of 70,000 rpm. The engine operates within the

range of power outputs and the controller manages this by

adjusting the fuel flow rate and rotational speed. To ensure

the endurance of the hot components in the engine, the tur-

bine outlet temperature (TOT) must be maintained below a

maximum allowed value of 645 �C, which is the nominal load.

A schematic representation of the main components of the

T100 PH unit can be seen in Fig. 2.

A T100 PH unit has been installed in the Risavika gas centre

located in Stavanger, Norway. This unit has been the subject

of various research projects in the past. The most recent

program aimed to expand the operation of the micro gas

turbine to a wider range of fuel types, including hydrogen-

enriched fuels and ultimately pure hydrogen. To achieve

this goal, the programwas divided into two phases. In the first

phase, a hydrogen content of up to 30%was achieved, while in

the second phase, the operation was successful with a

hydrogen content of up to 100% while still maintaining

emissions below regulated limits. The modifications made to

the system to accommodate the project are depicted in Fig. 3

and mainly consisted of changes to the fuel system,

combustor, and controller. To evaluate the performance of the
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Fig. 4 e Fuel system arrangement outdoors, the valves left and fuel bottles right.
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engine, numerous sensors were installed, and their readings

were carefully monitored during the testing phase. Each of

these modifications will be discussed in more detail in the

sections that follow.

Fuel system

The original fuel system of the engines was designed to

operate at low pressures, with an external compressor

providing the necessary pressure boost. However, this system

has been replaced with a new set-up that includes fuel sour-

ces such as methane and hydrogen batteries stored in a

bundle structure. The pressure of the fuels is reduced using

pressure relief valves and protected from flashbacks via ar-

restors. The fuel bundles and valves are located outside the

building, with fuel disconnecting valves in place as a safety
Fig. 5 e Fuel system indoors, the mixing station and fuel traine

combustor, right.
measure to cut the fuel supply in the event of a leak. The fuel

bundles and valves can be seen in Fig. 4.

The new fuel train system is temporarily installed on the

MGT and is depicted in Fig. 5. The system consists of separate

lines formethane and hydrogenwhich are combined to forma

mixture that is delivered to the engine. The engine operator

controls the mass flow rates of both fuels to regulate the fuel

ratio. The mixing station has larger diameters than the rest of

the system and is designed to allow for adequatemixing of the

fuels. Themixed fuel then passes through a safety valve and is

divided into main and pilot lines. Initially, two main valves

were installed for increased flexibility in control, but the ex-

periments showed that only one main valve and one pilot

valve were needed to function properly. The fuel is trans-

mitted into the combustor through two lines, with a pilot in

the middle and the main burners surrounding it. The main
d installed on top of the MGT enclosure, left, and the
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Fig. 6 e Evolution of combustion chambers, a) Turbec, b) F400s ver.01 and c) F400s ver.02.
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burner is composed of 10 single-jet nozzles that are supplied

by four lines.

Combustor

The experiments utilized the F400s.3 combustion system

developed by DLR, which consisted of two different flame

tubes: ver.01, with the same length as the original combustor,

and ver.02, with an extended flame tube. This combustion

system was used as a replacement for the original Turbec

swirl-type combustor. All of the experimental results reported

in this work are based on variant (c) shown in Fig. 6.

Unlike the original combustor, the DLR F400's primary

stage doesn't rely on swirl stabilization. Instead, it employs a

stabilization principle that involves a combination of jet and

recirculation, commonly referred to as the FLOX® concept.

However, the pilot stage still uses the widely used swirl sta-

bilization method. The swirler with annularly arranged air
Fig. 7 e Schematic of the FLOX®
and fuel orifices directs fuel tangentially and axially into the

pilot stage, thus enhancing mixing.

In the main stage, the nozzles allow for good premixing

and homogenization of the air-and fuel stream flow before

reaching the flame zone. This, in turn, enhances combustion

stability and reduces peak temperatures, thereby minimizing

the chances of NOx formation.

Fig. 7 illustrates the FLOX® combustor, which features ten

separate nozzles arranged in a circular pattern around the

combustor cross-sectional area and pilot dome to inject main

stage air axially with high momentum. Fuel is injected coax-

ially inside each nozzle to enable controlled premixing. The

air jet mantle serves as a shield, reducing the risk of flashback

and delaying ignition to achieve lean equivalence ratios and

lower combustion temperatures.

Flame stabilization is ensured through a recirculation zone

developed by the air jets, where hot exhaust gases are trans-

ported back toward the root of the flame with negative axial
-combustion principle [36].
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Fig. 8 e Expected relative combustion air over dilution hole diameter.
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velocity. The developing flame is lifted off the combustor base

to avoid excessive material stress inside the combustor head.

More details about the combustor design and principle are

available in Refs. [36,37].

The F400s.3 combustor is designed to operate with a range

of fuels from low calorific synthesis gas up to natural gas. The

combustor core underwent successful testing at DLR in an

atmospheric test rig prior to the MGT test. The atmospheric

tests were conducted with a gradual increase in hydrogen

contents, up to pure hydrogen, to evaluate the fuel flexibility

and performance of the optimized F400s combustor. To

ensure that the velocity fields and jet velocities inside the

combustor were comparable, the fuel input level and the

supplied air were pressure-scaled. OH* chemiluminescence

and emissions measurements were performed to assess sta-

bility and functionality [37]. Results indicated that stable

flames were achieved across the fuel composition range

tested, and no flashback or material problems were observed

during the investigations. The optimized combustor demon-

strated fuel flexibility and an increased operating range con-

cerning NOx emissions. Nevertheless, the increased pressure

level and higher volumetric energy density in the operational

environment introduce new factors that affect combustor

behaviour and were not captured by the atmospheric in-

vestigations at DLR. The tests conducted in this work extend

the experiences to the real-use case and demonstrate the

feasibility of the optimized combustor under operational

conditions.

In a recuperated MGT, a significant [37] amount of air is

used as dilution air to cool down the exhaust gases after

combustion, making them manageable for the turbine. When

operating with high hydrogen content, the air split between

combustor core air and dilution air was adjusted to accom-

modate the changed conditions. The diameter of the dilution

holes downstream of the combustion zone, which distribute

the supplied air inside the combustor, was adjusted to achieve

this. The spot-welded dilution ring with defined holes was

switched to four different configurations investigated ac-

cording to Fig. 8: 9 mm (quite lean), 11 mm (slightly leaner),

12mm (the original syngas configuration), and 13mm (slightly

richer). As the hydrogen content increases, better perfor-

mance of the leaner variants is expected, but there is a higher
risk of a lean blowout of the flame. Optimal operating condi-

tions for increased hydrogen content operation are expected

to be much leaner compared to natural gas operation because

the reactivity of hydrogen is significantly higher, along with

the adiabatic and resulting flame temperature for a certain

amount of air or equivalence ratio (see Fig. 1).

For all results approaching high hydrogen contents up to

pure hydrogen, the 9 mm configuration was used, resulting in

approximately 36% more air distributed to the combustion

zone than in the original configuration. These values are

based on rough estimations by resulting cross-sectional areas

of the different significant holes or openings. This is expected

to allow for low enough NOx emissions levels combined with

sufficient flame stability margin.

Controller system

In addition to the new combustor design, modifications to the

fuel controller were necessary to ensure the safe operation of

the MGT with the ability to vary power and maintain emis-

sions below the regulated values [38]. To accommodate the

MGT to run on blended fuels, a new fuel delivery system was

installed to provide the user-specified fuel mixture for the

engine. To minimize changes to the engine controller, an

additional fuel controller was added upstream from the MGT

controller, which manages the fuel system before the MGT

controller takes over. The modifications to the MGT controller

are limited to adjustments in controller parameters to mini-

mize changes to the existing system.

Fig. 9 presents the schematics of themicro gas turbine unit

designed to operate with fuels containing high levels of

hydrogen. The methane and hydrogen fuels are stored in

bottles under pressures of up to 250 bar. The pressure is then

reduced to 12e15 bar, which is set manually by the operator,

through pressure relief valves. The fuel flow is then directed to

flow controllers, where the mass flow rate of methane and

hydrogen is regulated by the fuel train controller, an addi-

tional system. The purpose of this system is to supply the

desired fuel mixture in accordance with the operator's
specifications.

The mixed fuel enters a series of valves which are pneu-

matically controlled by the MGT controller. The first valve is a
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Fig. 9 e Structure of micro gas turbine unit equipped with the new fuel train system, controllers, and measurement points.
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shutoff valve that connects the mixed fuel to the fuel train.

After that, a 3-way valve is installed which provides a line to

discharge the fuel to the atmosphere for safety reasons. The

main path is divided into two separate lines and valves for the

pilot andmain fuel supply. TheMGT controller regulates these

valves to run the engine according to the operator's demand,

the engine state (start-up, shut-down, steady, etc.), and the

feedback from the engine sensors. Since the MGT controller

has the primary control role, at the beginning of the operation

it sends a signal to the fuel train controller to activate it. In

Fig. 9 the connections between the controllers and valves are

depicted. Moreover, the installed pressure, temperature, and

flow rate sensors are also provided in red font. Some of these

measurements are used by controllers and all of them are

logged and collected for online monitoring of the operation

and further post-process of the data.

The flammability range of hydrogen and methane poses a

challenge in the fuel control systemduring the start-up.When
Fig. 10 e Pilot valve setting, (a) the refer
starting the engine, the combustor runs at pilot mode where

the valve for the pilot burner permits a high flow rate and then

reduces to a lower value that remains unchanged through the

operation. The pilot valve opening is regulated by the

controller based on a map, with respect to the reference TOT

and rotational speed of the engine, which are set by the en-

gine's state and power set point. In Fig. 10 (a) the original

mapping of the valve is presented. This setting is suitable for

fuel blends with low hydrogen content. However, for high

hydrogen content, the flammability limit of the fuel is

reduced, thereforemodifications are implemented to permit a

stable start-up. The new mapping is shown in Fig. 10 (b),

where a smoother transition is provided which is the suc-

cessful pattern derived from a try-and-error procedure during

the tests.

To see the effect of a valve adjustment, the start-up dia-

gram for the engine before and after the pilot valve adjust-

ment is illustrated in Figs. 11 and 12. Themaximumpilot valve
ence settings, (b) modified settings.
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Fig. 11 e Start-up diagram for MGT before pilot valve adjustment. The hydrogen content in the fuel is 55% and the ambient

condition during the test is 14 �C and 1.03 bar.
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opening was 20% in the original setting which is reduced to

around 14.5% for steady opening. These values are reduced to

17% and 10% after the adjustmentwhich is visible in Fig. 10 (b).

The pattern of reference TOT and rotational speed is also

presented in both cases which are the parameters that pilot

maps are based on. With these minor modifications in the

start-up controller, the ignition and initial acceleration of the

MGT were achieved without any difficulties.

Measurement system

To attain the most from the experiments, several additional

sensors were installed at different locations of the engine.

Sensors installed on the new fuel train are employed for

controlling the fuel valves. Moreover, the combustion cham-

ber as the new component of the engine is equipped with

sensors so that its condition is constantly monitored during

the test, trying to avoid high material temperatures. The

pressure and temperature sensors inside the engine cycle are

shown in Fig. 13 and a list of sensorsmeasuring fuel properties

is provided in Table 3. Hydrogen and methane properties are

measured before and after mixing, as shown in Fig. 9. There is

a thermocouple installed inside the combustor which mea-

sures the temperature of the fuel delivered to the combustor.

The accuracy of sensors installed in the cycle and fuel system

is presented in Table 4.

Out of 32 sensors listed in Figs. 13 and 6 sensors are built-

in, and the rest are added for the purpose of the
experiments. The temperature at the turbine inlet is

measured by the thermocouples installed on the combustor,

close to the flue gas exit from the combustor (Fig. 14 (a)). Other

than the flue gas temperature, the metal temperature on both

sides of the liner is alsomeasured tomonitor the component's
condition. An example of such measurement is shown in

Fig. 14 (b). The number of sensors installed on the combustor

and their type and accuracy are described in Table 5.

To evaluate the effect of hydrogen injection on CO andNOx

emissions a gas analyser is installed to measure the concen-

tration of different components. The analyser's probe is

installed on the way of exhaust gas (location 9 in Fig. 13).

During the measurement phase, the exhaust gas emissions

(NOx, CO, CO2) are measured via the system shown in Fig. 15.

The specification of the sensors in the analyser is provided in

Table 6.
Results and discussion

Experiments have been conducted to realize the influence of

enrichingmethane fuel with hydrogen, on the performance of

a micro gas turbine and to investigate the influence of

different amounts of hydrogen blend on the emissions and

the stability of the combustion.

An initial setting was chosen for the new fuel train system,

and it was tested. During the test runs in phase 1, unstable

operations were observed, during which a better controller
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Fig. 12 e Start-up diagram for MGT before pilot valve adjustment. The hydrogen content in the fuel is 75% and the ambient

condition during the test is 15 �C and 1.02 bar.

Fig. 13 e Cycle measurements, the table shows the number of installed sensors at each position.

Table 3 e Sensors installed on fuel system.

No. Description Temperature Pressure Mass
flow rate

1 Methane fuel 1 1 1

2 Hydrogen fuel 1 1 1

3 Mixed fuel 1 2 e

4 Fuel in combustor 1 e e

Table 4e Performance of the installed sensors in the cycle
and fuel system.

No. Sensor Accuracy

1 Temperature ±1.1 �C - 2.2 �C
2 Pressure ±0.3% of Full Scale

3 Mass flow rate ± (0.4% of

Reading þ 0.2% of Full Scale)
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Fig. 14 e Examples of sensors installed in the combustion

chamber, (a) flow temperature and (b) metal temperature.

Table 6 e Sensors in the gas analyser.

Item Unit Accuracy Resolution

1 O2 % ±0.8% of f.v. 0.01 vol%

2 CO ppm ±2 ppm CO 1 ppm CO

3 NO ppm ±2 ppm NO 0.1 ppm NO

4 NO2 ppm ±5 ppm NO2 0.1 ppm NO2

5 CO2 % þ1% of m.v. 0.01 vol% (0e25 vol%)

6 HC ppm ±2% of m.v. 10 ppm
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setup was explored through a try-and-error manner. While

this was effective for hydrogen content below 30%, for higher

contents of hydrogen and especially in high powermodes, the

instabilities grew which were not controllable via fuel injec-

tion control.

During the second phase of the experiments, a modified

version of the combustor was designed and manufactured by

DLR, with smaller dilution holes to increase the airflow to the

main burner and thereby imply more effective material cool-

ing. Stable combustion was achieved in phase 2, thanks to the

combustor setup. During a week of operation, blended fuel

consisting of methane and hydrogen, with a high share of

hydrogen (more than 50%) was fed to the engine, and different

manoeuvres were conducted.

To illustrate the importance of the valve setting, opera-

tional results from the engine before and after valve adjust-

ments are reported here. The normalized values reported in

percentage points are calculated through the equations below,

where Pnom and Nnom represent the power output and rota-

tional speed of the engine at nominal conditions. Tcomb,max

represents the maximum allowed temperature in the

combustor and Tcooling air is temperature of cooling air sur-

rounding the combustion chamber.

Pnorm ¼ P
Pnom

(3)

Nnorm ¼ N
Nnom

(4)

Tcomb;norm ¼ Tcomb � Tcooling air

Tcomb;max � Tcooling air
(5)
Table 5 e Sensors installed on the combustor.

Description No. Of sensors Type Accuracy

Metal temperature 9 Type N ±0.4%
Flue gas temperature 2 Type N ±0.4%
Inlet air temperature 1 Type N ±0.4%
Fuel temperature 1 Type N ±1.5 �C
Fig. 16 displays the main operational parameters during a

start-up and load variation test before the controller modifi-

cations were made. The test was run using a blended fuel

consisting of approximately 55% hydrogen and 45% methane.

A start-up to 85 kW was performed, and before reaching

steady-state conditions, NOx emissions close to 18 ppm were

observed and then reduced to 14.1 ppm at steady-state. When

the power was increased to 100 kW, the NOx emissions rose to

15.7 ppm. The power was then reduced to 80 kW and

increased again to 100 kW. During the second 100 kW load, the

temperature of the flue gaswas slightly higher and sowere the

NOx emissions. The fuel for themain burner was regulated by

themain valve, which variedwith the power output, while the

opening of the pilot valve was almost constant throughout the

operation. The shutdown from 100 kW was accompanied by

changes in the fuel valve positions, and while the main valve

was completely shut off, the pilot valve was reduced to 10%.

The experiments involving themicro gas turbine unit were

conducted by increasing the hydrogen content in the fuel and

running the engine at different power outputs. However,

when the hydrogen content in the fuel exceeded 55%, in-

stabilities during start-ups were observed along with high

NOx emissions. To overcome this, modifications to the control

parameters were made through a try-and-error process,

which enabled safe operation in high hydrogen fuel mode

with low emissions. The results from experiments with

hydrogen content between 55% and 75% are missing due to a

crash in the log systemon one day and fuel leakage on another

day. However, data from experiments with hydrogen content

from 75% to 100% is available, and the effect of valve adjust-

ments on the engine's performance is evident. Fig. 17 shows

the engine's run with a hydrogen content of around 75%. The

reason why the percentage of hydrogen is almost but not

exactly equal to 75% is that the fuel controller is designed to

receive hydrogen/methane mix ratios in mass bases, and the

volume base mix depends on the density of the fuels, which

can vary based on changes in pressure and temperature of the

fuel.

The experiments continued by increasing the hydrogen

content in the fuel and running the engine at different power

levels. However, instabilities were observed during start-ups

and high NOx emissions were recorded when the hydrogen

content was above 55%. To address this, modifications to

control parameters were made through a try-and-error pro-

cess to allow safe operation in high hydrogen fuel mode with

low emissions. The results from two days of runs with

hydrogen content between 55% and 75% are missing due to a

crash in the log system and fuel leakage. However, data from

experiments with hydrogen content from 75% to 100% after
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Fig. 15 e Exhaust gas composition measurements, probe installed on exhaust path in the left and analysing kit in the right.
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the controller modifications are available. Fig. 17 shows the

engine's run with approximately 75% hydrogen. During the

manoeuvre, the engine was started successfully with 75%

hydrogen and 90 kW power output, and the difference in

operation with the new valve settings compared to before the

controller adjustments (Fig. 16) was noticeable. Themaximum

pilot valve opening occurred during the start-up at 17% and

was reduced to around 10% during the rest of the manoeuvre.

The highest NOx emissions during the run were 14 ppm,

which occurred during the power step up to 100 kW. This is
Fig. 16 e Start-up and power stepdown before adjusting the con

ambient pressure was 1.03 bar during the test.
compared to the previous setup where the NOx emissions

were 19 ppm during the overshoot for a 100-kW load (Fig. 16).

Other than transient conditions, the steady-state data from

80-, 90-, and 100-kW power outputs could be compared from

two controller settings. At 80 kW the normalized flue gas

temperature was 88.9% with 13.3 ppm of NOx production,

while the same parameters are 89.2% and 8.1 ppm in the new

controller arrangements. Although the trend of the tempera-

ture of flue gas close to the combustor outlet is consistentwith

the NOx emissions, it is worth mentioning that NOx
troller setup. The ambient temperature was 14 �C and the
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Fig. 18 e Power and rotational speed for manoeuvring with high hydrogen content.

Fig. 17 e Power variation with F400-s ver02, modified controller setup. The ambient temperature was 15 �C and the ambient

pressure was 1.02 bar during the test.
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production is a local phenomenon and more correlated to

temperature in different regions of the combustor. The flue

gas temperature presented here is also a value measured at a

specific location. However, it could be used as an indicator of

temperature increase or decrease in the combustor. For 90-

and 100-kW power outputs, the NOx emissions after

controller adjustments are 10.2 and 12.3 respectively while in

previous arrangements the values were 14.1 for 90 kW and
Fig. 19 e Hydrogen content and NOx emission
15.7 and 16.5 for 100 kW. The adjustment of the pilot valve has

not only provided a stable start-up and ignition but also hel-

ped to significantly reduce the NOx produced during the

combustion.

After reaching a suitable setup for the controller, a series of

experiments were conducted with an increasing share of

hydrogen in the fuel, up to 100%. The whole test included 2

start-ups and shutdowns which lasted for 3 h and 30min. The
s for manoeuvring with 100% hydrogen.
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Fig. 20 e NO and NO2 emissions for manoeuvring with 100% hydrogen.

Fig. 21 e Combustor outlet temperature and turbine outlet temperature for manoeuvring with 100% hydrogen.

Fig. 22 e Fuel valves' position for manoeuvring with 100% hydrogen.

Fig. 23 e Engine rotational speed in different power output

and different hydrogen content.
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collected data are presented in Figs. 18e22. About an hour of

data between two runs is eliminated in these figures, as it was

only a cooling-down process for the engine. The initial igni-

tion was successfully achieved with 90 kW of power with 97%

hydrogen, with a smooth transition thanks to the optimized

valves’ positioning (Fig. 22). In about 10 min, the engine

reached to 95.8% of its nominal rotational speed and produced

90 kW power with NOx productions of less than 20 ppm (Figs.

18 and 19). A 10 kW step-up was conducted after about 10 min

to reach the maximum power of 100 kW. At this point, the

rotational speed was elevated up to 98.9% of the nominal

value and NOx emissions increased to 22.8 ppm (Figs. 18 and

19). Preserving the same power set point, hydrogen was

added to the fuel to reach 98.5% concentration resulting

1.2 ppm increase in NOx emissions, presented in Fig. 19 and

the share of NO and NO2 production in NOx emissions is

visible in Fig. 20.

After about 10 min of running at maximum power, the

power was reduced to 35 kW in steps, without changing the
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fuel blend. The NOx production was consequently reduced in

steps to reach 6.1 ppm at 35 kW power. At this point, the

hydrogen content was increased to 100% to examine the

operation in low power output. The logged data presented in

the figures show that only minor changes occurred in the

engine when the hydrogen share was increased to 100%. With

pure hydrogen, the power was increased to 50, 70, and 80, the

same levels during the step-down with 98.5% hydrogen.

Therefore, a comparison could be conducted; in all these tree

levels, NOx emissions were 1~2 ppm lower than pure

hydrogen. The amount of produced NOx during the load in-

crease with pure hydrogen is lower than step-downs with

98.5% hydrogen. According to Fig. 20, this behaviour was

attributed to lower NO which could be due to hysteresis ef-

fects, since a step up in power (and with it increasing NOx

values) was compared with a step-down manoeuvre, hence

decreasing NOx values.

The MGT was shut down while producing 80 kWwith pure

hydrogen. After waiting for an hour for the engine to cool

down, a start-up to 80 kWwas initiatedwith pure hydrogen. In

that case, NOx emissions were slightly lower than 80 kW

power rates during two previous 80 kW hits which are due to

lower NO production according to Fig. 20. Since a similar

behaviour has been observed by the authors for hot restarts,

this might be an indication of a short cool-downwhich entails

hot-start settings for the engine controller.

With three small steps, the power is increased to 100 kW,

where a stable operation is achieved with pure hydrogen with

NOx emissions of 21.9 ppm.With time passing, the rate of NO2

production decreased and the total NOx produced decreased

to 21.7 ppm. After about 45 min of running the engine with

pure fuel at maximum power, the engine was safely shut

down. The value of TOT is normalized based on Eq. (6) below,

where TOTnom is the turbine outlet temperature at nominal

conditions (temperatures in Kelvin):

TOTnorm ¼ TOT
TOTnom

(6)
Fig. 24 e Turbine outlet temperature in different power output,

temperature.
In Fig. 23, the relationship between rotational speed and

power output is shown after the transient time spans were

removed from the data collected from different engine ma-

noeuvres. The TOT (total temperature of the cycle) of the en-

gine is also considered in evaluating the effect of fuel variation

on the engine's steady-state operation. The rotational speed of

the engine at various power rates exhibits a linear relationship

with power output, which is the expected pattern from the

engine as previously observed when running on fossil fuels.

The highest power output of 100 kW was reached with

hydrogen content ranging from 55% to 100%, and as seen in

Fig. 23, the range of fuel is almost at the same rotational speed.

However, slight deviations in rotational speed can be observed

in the figure, for instance at 60 kW, mainly due to the fact that

they were collected from different experiments carried out on

different days with varying ambient temperatures.

Another cycle parameter indicating the controller's per-

formance is the steady-state condition in turbine outlet tem-

perature, which is provided in Fig. 24, again from all

manoeuvres by filtering the transient time spans. In Fig. 24 (a)

the amount of hydrogen content in the fuel is presented by

colour and as it is visible, the hydrogen content does not seem

to have a correlation with TOT. Note that the relative share of

hydrogen in the figures is calculated on a volume basis. For

instance, at 100 kWhigher hydrogen contents have resulted in

lower TOT values while the opposite could be observed at

80 kW. This is also the effect of ambient temperature, as

illustrated in Fig. 24 (b), higher TOT values are developed in

the cycle when the environment was warmer.

The rate of NOx production in all power production rates

with different hydrogen content is illustrated in Fig. 25. As it is

evident from this figure, the rate of NOx emissions is directly

correlated with an increase in hydrogen content and power

rate, as both will increase the temperature in the combustion

chamber. Therefore, moving to the upper right part of the

graph, the darker the markers become, except for the data

from 55% hydrogen which is not in compliance with this

trend. The data from 55% hydrogen is from the experiments
(a) effect of hydrogen content and (b) effect of ambient
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Fig. 25 e Effect of hydrogen content on NOx emissions in different power output (a) measured values (b) corrected values

based on 15% oxygen case.

Fig. 26 e Effect of hydrogen content on CO emission in different power output(a) measured values (b) corrected values based

on 15% oxygen case.
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before valve adjustments. Fig. 25 shows how the valve ad-

justments are essential to control the emissions; as the col-

oring suggests, the NOx emissions at 100 kW with 55%

hydrogen before valve adjustments are close to the case of

running with 87% hydrogen and producing 100 kW after

optimizing the valve settings.

To be able to compare the emissions against different

combustion systems, the concentration of NOx and CO is

corrected based on the case with 15% O2 in the exhaust gas, as

a standard. For this purpose, the measured emissions are

corrected using Eq. (3) and the corrected values are illustrated

beside the actual values (Figs. 25 and 26).
Xcorr ¼Xmeas

�
20:95� 15

20:95� O2;meas

�
(3)

It is expected that increasing hydrogen content in the fuel

will reduce the rate of CO and CO2 production. The concen-

tration of CO and CO2 ismeasured in flue gas and presented in

Figs. 26 and 27 over a range of experimented power output and

fuel blends. With pure hydrogen combustion, concentrations

of CO and CO2 in the flue gas are zero. With less hydrogen

content the rate of carbon monoxide and carbon dioxide

production increases. Looking at Fig. 26, it can be realized that
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Fig. 27 e Effect of hydrogen content on CO2 emission in

different power output.
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at constant fuel mix (for instance 75% hydrogen), the rate of

CO production is higher at lower powers, which indicates

nonideal combustion in low powers.

Conclusions

In this paper, the objectivewas to explore the potential of using

hydrogen as an alternative fuel for carbon-free power genera-

tion in gas turbines. The challenges of using hydrogen as fuel

include its less stable combustion and a higher likelihood of

flashbacks, as well as higher generation of NOx emissions due

to its higher combustion temperatures. The studypresented the

process of modifying a micro gas turbine originally designed to

run on natural gas, to run on hydrogen-enriched fuel, and

eventually pure hydrogen. The modifications involved the

combustor, fuel train, and controller components. These mod-

ifications enabled the safe operation of the turbine while

ensuring the emissions remained below regulated values.

The micro gas turbine was developed to run on hydrogen-

enriched fuel up to 100% pure hydrogen. To achieve stable

operation throughout the full range of power outputs, modi-

fications were made to the combustor, fuel train, and

controller. During the tests, the volume-based hydrogen

content in the fuel varied from 40% to 100%, and the results

showed a steady operation of the micro gas turbine with NOx

emissions below the regulated limits. The highest NOx emis-

sions recorded for pure hydrogen and full-load operation was

22 ppm, which equates to 62 ppm of the corrected value based

on a reference of 15% oxygen in the exhaust gas. The full range

of operation results with different hydrogen contents is pre-

sented, demonstrating the stability of the micro gas turbine

while meeting the regulatory NOx emission requirements.
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Abstract: The energy transition with transformation into predominantly renewable sources requires
technology development to secure power production at all times, despite the intermittent nature
of the renewables. Micro gas turbines (MGTs) are small heat and power generation units with fast
startup and load-following capability and are thereby suitable backup for the future’s decentralized
power generation systems. Due to MGTs’ fuel flexibility, a range of fuels from high-heat to low-
heat content could be utilized, with different greenhouse gas generation. Developing micro gas
turbines that can operate with carbon-free fuels will guarantee carbon-free power production with
zero CO2 emission and will contribute to the alleviation of the global warming problem. In this
paper, the redevelopment of a standard 100-kW micro gas turbine to run with methane/hydrogen
blended fuel is presented. Enabling micro gas turbines to run with hydrogen blended fuels has
been pursued by researchers for decades. The first micro gas turbine running with pure hydrogen
was developed in Stavanger, Norway, and launched in May 2022. This was achieved through a
collaboration between the University of Stavanger (UiS) and the German Aerospace Centre (DLR).
This paper provides an overview of the project and reports the experimental results from the engine
operating with methane/hydrogen blended fuel, with various hydrogen content up to 100%. During
the development process, the MGT’s original combustor was replaced with an innovative design
to deal with the challenges of burning hydrogen. The fuel train was replaced with a mixing unit,
new fuel valves, and an additional controller that enables the required energy input to maintain
the maximum power output, independent of the fuel blend specification. This paper presents the
test rig setup and the preliminary results of the test campaign, which verifies the capability of the
MGT unit to support intermittent renewable generation with minimum greenhouse gas production.
Results from the MGT operating with blended methane/hydrogen fuel are provided in the paper.
The hydrogen content varied from 50% to 100% (volume-based) and power outputs between 35 kW
to 100kW were tested. The modifications of the engine, mainly the new combustor, fuel train, valve
settings, and controller, resulted in a stable operation of the MGT with NOx emissions below the
allowed limits. Running the engine with pure hydrogen at full load has resulted in less than 25 ppm
of NOx emissions, with zero carbon-based greenhouse gas production.

Keywords: micro gas turbine; fuel flexible combustor; experimental data; hydrogen

1. Introduction

The global warming caused by CO2 emissions from anthropogenic activities is threat-
ening life on earth. Intermittent renewables, such as wind and solar energy, are foreseen to
provide the largest increase in renewable power generation as the most important contrib-
utors to sustainable development. The paradigm change, from today’s energy system to
the future’s carbon-free version based on intermittent renewables, can be formulated as
the power will be generated when possible, not when needed. However, the intermittent
nature of these energy sources is already causing grid instability, which will become even
more severe when their share in the power mix will further increase in the near future.
Therefore, fuel-flexible, dispatchable energy conversion technologies and energy storage
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will be needed to bridge the gap caused by the intermittency of the renewables, such as
wind and solar.

Distributed energy generation (DEG) facilitates the use of different energy sources.
Since distributed power is generated at or near the point of use, transfer losses can be
reduced, and small heat sinks close to end-users can be utilized resulting in considerable
efficiency improvements and reduction in emissions. The characteristics of micro gas
turbines, i.e., reliability and low maintenance, along with their fuel flexibility and load-
following capability have made them an interesting option for combined heat and power
generation and a prime mover for competitive, secure and sustainable micro-scale poly-
generation [1]. In fact, MGTs can operate on a range of fuels, from high heating values
such as methane to low heating value fuels such as biogas [2]. The combustion systems
of micro gas turbines can also be designed so that they can burn fuels with lower octane
numbers and heavier hydrocarbon components [3,4]. This applies also to fuels containing
hydrogen [5].

Fuel flexible, distributed generation units that can utilize locally available resources to
provide heat and power on demand, will be of paramount importance for the realization of
sustainable energy solutions. Therefore, experimental studies for technology verification
and the provision of data for model validation are needed to support this development.
Utilizing hydrogen or hydrogen blends has become an important issue for carbon-free
power generation. Various challenges are associated with developing and/or modifying
the engine components to manage the variable volume flow of the fuel and the changing
flame structure and kinetics due to hydrogen combustion [6,7]. However, evaluating the
system operation with a large portion of the hydrogen in the fuel blend is a concern for
which just a limited number of publications are available in the open literature.

The journey of driving gas turbines with hydrogen-enriched fuels began decades
ago. In 1939, Hans von Ohain tested a prototype of a gas turbine that was supplied with
hydrogen from an externally pressurized source. The smooth and fast combustion of
hydrogen was observed while metal burnout was reported as an obstacle [7]. A combustor
prototype for a micro gas turbine was developed by Minakawa et al. [8] to run with
pure hydrogen. The combustor was a lean premixed swirling type, and it was tested in
atmospheric pressure conditions, resulting in efficient combustion and low NOx emissions.
The prototype was later assembled on an MGT which resulted in flashbacks during the
startup. This issue, which was unforeseen during the component test, was addressed by
modifying the air inlet to the combustor [8]. One of the first publications reporting the
measurements of hydrogen injection into a heavy-duty gas turbine was provided by Morris
et al. [9] in 1998. An immediate reduction in CO emissions and a slight increase in NOx
production were observed by hydrogen injection up to 10% in the fuel.

With the development of computers over the years, researchers pursued modeling and
simulation of combustion with hydrogen to reduce experimental costs and attain a deep
understanding of the phenomena. Combustion of hydrogen/methane-blended fuels in a
micro gas turbine was studied by Shih et al. utilizing computational fluid dynamic (CFD)
methods [10]. In their research, the effect of hydrogen on flame structure and emissions were
investigated by adding hydrogen from 0 to 90% on volume bases. The authors concluded
that although simulation results indicate a stable combustion performance, modifications
to the original combustor will be required to address the emissions of the combustor
with a high hydrogen content [10]. Experiments, as well as numerical investigations,
were conducted by Rajpara et al. [11] to assess the effect of hydrogen injection on a gas
turbine burning methane, upstream of the swirl combustor. Increasing hydrogen content
resulted in smaller flame dimensions with an increase in NOx emissions due to higher
flame temperature but a decrease in CO emissions. Cappelletti et al. [12] investigated the
combustion of pure hydrogen in a lean premix burner with experimental and numerical
simulations. The experimental setup was built based on an existing burner from a heavy-
duty gas turbine, which was modified to enable variable premixing levels. With hydrogen
combustion, high flow velocity was required to avoid the flame positioning inside the pre-
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mixer duct. The results of their work confirmed the possibilities of developing combustion
technology with pure hydrogen fuel while keeping the emissions below the regulated limits.
Binesh et al. [13] performed a series of experiments to investigate the combustion behavior
of hydrogen-enriched methane fuel in a swirl-stabilized model gas-turbine combustor. The
amount of hydrogen in the blended fuel was increased up to 80% in volume and during
their test, the upper and lower limits of air to maintain stable combustion were derived.

In May 2020, Kawasaki announced a successful test of an industrial gas turbine with
hydrogen fuel, through their dry low emission combustion technology. The combustor
applies micro-mix combustion technology, which features ultra-small hydrogen-fueled
flames and achieves low NOx combustion without using water or steam, which is beneficial
in terms of cycle efficiency [14,15].

This paper presents the experimental setup of a test rig in Stavanger, Norway, utilizing
a T100 micro gas turbine in combined heat and power (CHP) mode. As the reviewed
literature shows, the goal of operating micro gas turbines has been pursued for decades,
however, the successful operation of a micro gas turbine with high (up to 100%) content
of hydrogen was not achieved before. In fact, burning high hydrogen content fuels was
investigated in two ways, either numerical or experiments with combustor test rigs to
focus on combustion phenomena. The stable combustion was achieved in most of the
combustor test rigs at the atmospheric condition which fails to imitate the real pressure
conditions in an engine. Furthermore, a test rig that is specified for a combustor, fails to
simulate the interaction between the combustor and other components, different operating
conditions of the engine, the transitions, and how they all affect the combustion of the
hydrogen-enriched fuel.

This paper provides insights into the application of hydrogen-enriched fuel on a
commercial micro gas turbine. The complications of running the engine in part-loads
and base-load operations have been addressed. The transitions between loads are crucial
situations in the engine, where the varying fuel flow rate and rotational speed in the
engine will impact the air/fuel ratio in the combustor and the main flow rate through the
engine as well. The complications of hydrogen combustion have a destructive effect on the
performance of the engine, which has been encountered during the current endeavor and
undertaken via design modifications and controller optimization.

The structure of the paper is as follows: first, an overview of the main challenges with
hydrogen combustion is provided. Secondly, the engine setup is presented, with a focus on
technology modifications, overcoming the issues of hydrogen combustion. The preliminary
results from engine operation with various mixtures of methane and hydrogen are also
presented which verifies the presented technology.

2. Problem Formulation

Developing a gas turbine engine to run with hydrogen is accompanied by numer-
ous challenges; especially when the goal is to accommodate the variable content of the
hydrogen blend with carbon-based fuels. The difference in characteristics of hydrogen and
hydrocarbon (in this case, methane) leads to different combustion characteristics which
must be considered during the designing process of the combustor and fuel delivery sys-
tem. Reviewing numerous studies on combustion with hydrogen, a summary of these
characteristics is provided in the following subsections.

2.1. Combustion Kinetics

Hydrogen has higher flammability and a lower ignition temperature. In fact, the low
ignition temperature of hydrogen together with the high flame propagation speed and
high flame temperature could improve the conditions for maintaining stable combustion
in low-load ranges of gas turbines operation, also lower the risk of flame-out in lean
combustion conditions [16–20]. The higher speed of hydrogen flame in comparison with
methane can cause flashbacks, in which the flame sits in unwanted locations and could
result in component damage. Part-load operations are more prone to flashbacks, therefore
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careful consideration for controlling the airflow during the operation is required to avoid
flashbacks [21].

2.2. Flame Temperature

The adiabatic flame temperature of hydrogen combustion is higher than methane and
their differences increase as the combustion becomes richer [22,23]. Adding hydrogen to
methane will also increase the adiabatic flame temperature since hydrogen will accelerate
the reaction rate [16,24]. In Figure 1, the adiabatic flame temperature of burning methane
and hydrogen is compared with each other. The air/fuel mixture in the calculation is
assumed to be at 4.3 bar pressure and 630 K temperature, which is the condition of the air
entering the combustor when the MGT is running at the baseload. As it is evident from the
figure, the richer the combustion is, the larger the difference between the adiabatic flame
temperature of methane and hydrogen becomes. However, in very lean air/fuel mixes, the
adiabatic temperature of methane and hydrogen are very close to each other.
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2.3. NOx Emissions

One of the main concerns of hydrogen combustion is the production of toxic nitrogen
oxides due to high temperatures. The nitrogen molecule present in the air reacts with
oxygen in high temperature conditions. The NOx production begins when the temperature
reaches above 1000 ◦C and the rate of production increases rapidly with further increase
in the temperature [25]. One of the common ways of preventing NOx emissions in gas
turbines is to use lean premixed burners or dry low NOx burners, where the fuel is
premixed with the air prior to the combustion, to keep the flame temperature below a
certain value [26]. The main concerns with lean premixed burners are providing stable
conditions for combustion, avoiding flashbacks, and thermo-acoustic instabilities [27,28].
These issues become more complicated when using hydrogen and methane blends. The
established technology designed for hydrocarbon-based fuels is not adequate for hydrogen
blends, especially with high hydrogen contents. With a big difference in flammability
range and reaction rates of hydrogen from hydrocarbons, the ignition in combustors will
occur before the fuel is adequately mixed with air which results in high temperatures and
promotes NOx emissions. Dilution with steam and water is another method employed in
gas turbines to alleviate the combustion temperature and NOx production, which is not the
best solution since it has a destructive effect on cycle efficiency because of the evaporation
of water spray in the hot combustion gas. Besides, dilution with water and steam could
cause thermal stress which affects the material integrity of the components. Moreover, high
quality water will be required which will increase the costs.

2.4. Different Combustion Products

The replacement of carbon atoms with hydrogen when hydrogen is added to the
fuel will result in different combustion products. Burning methane will produce carbon
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dioxide and water, while the products of hydrogen combustion will be only water (steam).
Therefore, hydrogen combustion will result in a higher content of water (steam) in flue
gas than when methane is combusted. Burning the fuels with air assuming the two main
components of it (nitrogen and oxygen) will be as described in Equations (1) and (2):

CH4 + 2(O2 + 3.76N2) → CO2 + 2H2O + 7.52N2 (1)

2H2 + (O2 + 3.76N2) → 2H2O + 3.76N2 (2)

This is when we are assuming complete combustion, however, the reality includes
other products as the combustion is not complete. Carbon monoxide, nitrogen oxides, and
even radicals could be in the product mix. Adding hydrogen to the fuel could improve
the combustion efficiency and reduce the share of these products, as it increases the flame
temperature [29].

To evaluate the effect of adding hydrogen to a methane–fuels combustor, two different
approaches were conducted by the authors in [11]. Once, the hydrogen injection was
performed while keeping the heat input constant, and secondly, the volume flow rate was
kept constant. Both mechanisms that resulted in the reduction of CO in the products were
observed in these two scenarios.

A numerical approach was taken by the authors of [16], where CO emissions for
combustion at different pressure and temperature conditions with variant hydrogen content
were simulated. According to their work, once the hydrogen share in the fuel reaches
80% of the whole fuel flow, CO emissions decreased to the half value of when there is
no hydrogen in the mix. This result was somewhat true regardless of the pressure and
temperature conditions. The simulations show that even a small quantity of hydrogen
in the primary zone of combustion could contribute to CO reduction, because of both
mechanisms discussed [30].

The destructive effect of premix on combustion efficiency and CO and HC emissions
could be lessened by injecting small quantities of hydrogen (up to 4%) to lean primary
zones, without affecting NOx production [31].

Developing combustor technology for hydrogen combustion becomes more com-
plex when the goal is to operate with pure hydrogen as well as hydrogen-blended fuels.
Blended fuels of methane and hydrogen should be applicable to small-scale heat and power
generation units, such as micro gas turbines, with the option to vary the mixture ratio [32].

The difference in the heating value and density of the fuels is another variation that
must be considered. This will lead to variations in the fuel flow rate and therefore flue gas
flow rate. Moreover, with the difference in flue gas composition, the thermodynamic cycle
of the MGT could be altered, as the matching point could be moved [33]. Assuming the
same condition for the air entering the combustion chamber, the engine baseload condition
is compared between methane and hydrogen. For the micro gas turbine to receive the
required heat input, 6.7 g/s methane (pure methane case) and 2.8 g/s of hydrogen (pure
hydrogen case) should be provided. The air has 4.3 bar and 610 K after passing through the
compressor and the recuperator.

The equivalence ratio of the combustion mix could be calculated, assuming that the
airflow inlet to the engine is 0.8 kg/s at the baseload. For pure methane, the equivalence
ratio is 0.14 and for hydrogen it is 0.12, both indicating lean combustion. This difference will
cause a 6 ◦C increase in the adiabatic flame temperature of hydrogen in comparison with
methane. The volumetric flow rate of the flue gas entering the turbine will increase by 1.5%
due to the alteration of the density and mass flow rate. The specific heat capacity in flue
gas with hydrogen will be 1% higher compared to methane. All of these minor changes are
due to the fact that the combustion mix at the baseload is very lean, so the difference in the
properties is relatively small. This situation is very different from large-scale gas turbines,
where the fuel-to-air ratio is an order of magnitude higher compared to MGTs. The flue
gas properties are reported in Table 1 for pure methane and pure hydrogen combustion in
the MGT.
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Table 1. Flue gas properties comparison burning methane and hydrogen. Air composition is 21% O2
and 79% N2 with 4.3 bar pressure and 610 K temperature.

Property Methane Hydrogen

Lower heating value (per mass) 50 MJ/kg 120 MJ/kg
Fuel flow rate for nominal power output 6.7 g/s 2.8 g/s

Air flow rate 0.8 kg/s 0.8 kg/s
Flue gas flow rate 0.67 m3/s 0.68 m3/s

Stoichiometric air–fuel ratio (mass-based) 17.12 34.06
Actual air–fuel ratio (mass-based) 120 288

Equivalence ratio 0.14 0.12
Adiabatic flame temperature 1230.52 K 1236.51 K

Flue gas heat capacity at constant pressure 1214.8 J/kgK 1228.8 J/kgK

In the following section, an overview of the experimental setup with the main mod-
ifications and redeveloped items are explained which were essential to solve the chal-
lenges explained.

3. Test Rig Description

The test rig was based on a commercial Turbec T100 unit (T100PH) Series 2 micro
gas turbine. T100PH is a single shaft micro gas turbine designed to work both in power
generation mode and in cogeneration mode for combined heat and power generation. The
T100 is equipped with a recuperator that preheats the air before the combustion chamber
by transferring heat from the turbine exhaust gas. There is also a heat exchanger, exploiting
the remaining heat in the exhaust gas to warm up the circulating water.

The power generating unit consists of a single-stage centrifugal compressor, a single-
stage radial turbine, a tubular combustor, and a high-speed permanent magnet generator.
The compressor and the turbine work with a pressure ratio of about 4.3 and a turbine
inlet temperature of around 950 degrees Celsius. At nominal operating conditions (with
ISO ambient conditions), the unit can produce 100 kW of electrical power at a rotational
speed of 70,000 rpm and electrical efficiency of 30%, thanks to the recuperator which is
compensating for the low-pressure ratio and low turbine-inlet temperature. In cogeneration
mode, the total efficiency (fuel utilization factor) increases to 80%. The test rig, modified
for fuel flexible operation is presented in Figure 2.
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During the past few years, numerous modifications have been made to the engine
to enable research and development activities, exploring the fuel flexibility of the unit.
Recently, the original engine was modified to enable running with hydrogen-enriched
fuels, by replacing the original combustor with a new design. The fuel train was also
modified to enable different fuel blends in terms of hydrogen content. Over 50 sensors
have been installed in different locations of the engine for a comprehensive overview of the
engine condition during a test run. In this section, an overview of the main modifications
implemented on the engine is provided.

Hydrogen and methane fuel is provided by bundles, each comprising high-pressure
interconnected bottles. The bundles are connected to the fuel train via a pressure regulator,
to reduce the pressure from over 200 bars to below 20 bars. There are also flashback
arrestors and disconnecting valves in the circuit which protect the line. The disconnecting
valves are controlled by a leakage sensor inside the building. The bundles and regulator
are shown in Figure 3.
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Figure 3. Fuel bundles and regulators.

To enable seamless fuel mixing and to accommodate for the changing volume flow of
the fuel blend, the fuel train and the gas mixing station have been modified. The system
consists of two separate flow controllers for methane and hydrogen, a mixing station, two
main valves, and a pilot valve to supply fuel to the MGT. The mixing station is a wide and
long pipe that provides enough space so that methane and hydrogen mix well together,
preventing hydrogen pockets and local high temperatures inside the combustor which
could result in thermal damage and NOx production. The mixed fuel rate is determined
by the MGT controller, which has a PID system that finds the adequate fuel flow rate that
provides enough heat input to the system at each power set point. The amount of each fuel
type is however defined and regulated by the additional controller provided for the fuel
train, working based on the ratio of the fuel types defined by the operator.

In Figure 4, the fuel train temporarily installed on top of the MGT encloser is shown
with a schematic diagram of the system. Originally, two main valves were installed to
increase the flexibility during the operation, however, one of them remained closed since
it was not required. A three-way valve that provides discharge to the atmosphere is also
included in the system for safety reasons.

The combustion chamber and fuel system of the MGT test rig have been replaced with
a new design to accommodate various fuel mixtures of hydrogen and hydrocarbon-based
fuels. The original combustor has been replaced by a fuel-flexible combustor designed
and manufactured by the German Aerospace Centre (DLR) to investigate the performance
of the engine in different load conditions. To evaluate the unit’s performance and cyclic
behavior, additional pressure and temperature sensors have been installed.
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Figure 4. Fuel train for hydrogen/methane fuel supply and mixing.

The test rig is equipped with an F400s FLOX® combustor (see Figure 5). It is a low
NOx, flameless combustor with proven fuel flexibility, capable of running on hydrogen [3,5].
The combustor was tested on an atmospheric test rig with up to 100% hydrogen, but its
hydrogen capability in real conditions inside a gas turbine was verified during the current
experiments. An overview of the original combustor’s geometry could be found in [34].
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Figure 5. The original combustor was installed on T100 (left) compared to the F400s fuel flexible
combustor installed on the test rig (right).

The baseline engine is equipped with sensors, that measure the flow properties,
rotational speed, power output, and a few other parameters mainly for controlling the
engine operation. The test rig has been equipped with over 50 additional sensors to enable
detailed condition monitoring and performance analysis. Figure 6 shows the position of the
sensors at different locations. These sensors can be divided into four different categories:

1. Cycle measurements: Pressure and temperature sensors are placed in different loca-
tions to provide operational data;

2. Fuel measurement: Pressure, temperature, and mass flow sensors are providing
comprehensive information about the fuel at every operational condition;

3. Metal temperature measurement: The metal temperature is measured inside the
combustor for lifetime assessments;

4. Emissions measurement: Measuring the concentration of the exhaust gas components.
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Figure 6. Cycle measurements.

Among the 32 sensors listed in the table of Figure 6 are 6 Turbec built-in sensors and
26 are additionally installed. It is worth mentioning that two thermocouples have been
installed in position 5, where the working flow has the highest temperature in the cycle.
These sensors are located inside the combustor, measuring the temperature of the flow
close to the combustion and dilution zone. The temperature of the inlet air to the combustor
is also measured (see Figure 7).
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Figure 7. Flow measurements installed in the combustor.

The measurements related to the fuel system are presented in Table 2, providing
detailed information about fuel conditions, before and after mixing. The sensors listed in
rows 1 to 3 are installed in the fuel train (Figures 3 and 4) and the fuel temperature in the
combustor is measured by a thermocouple close to the combustion point.

Table 2. Number of fuel measurements in the fuel system.

Description Temperature Pressure Mass flowrate

Methane fuel 1 1 1
Hydrogen fuel 1 1 1

Mixed fuel 1 1 -
Fuel in combustor 1 - -

4. Results

To investigate the transient performance of the engine running with high hydrogen
content, a maneuver of the engine with increasing hydrogen content, from 85% to 90%
was conducted without changing the controller’s settings. The run was executed in 13 ◦C
ambient temperature and 1.01 bar ambient pressure for which the logged data are presented
in Figure 8. Snapshot data are extracted and presented in Table 3, where the performance
parameters at each power step in steady-state conditions are presented. The hydrogen
content in the fuel is calculated based on the volume flow rate. Power step-up was run with
88% hydrogen and at the maximum load it was increased to 90% and then a step-down
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was conducted. These data provide the bases for comparison as it was collected from less
than an hour’s run, however, the ambient temperature during the run gradually increased
by one degree.
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Figure 8. Power variation with F400-s ver02, modified controller setup. The ambient condition
during the test is 13 ◦C and 1.01 bar.

Table 3. Data extracted from steady-state spans from a test run depicted in Figure 8.

Elapsed time P (kW) N (%)
.

mf(g/s) H2 (%) Tcomb(◦C) NOx (ppm) Vpilot (%) Vmain(%)

t1 100 35 77.9 2.1 85.1 869.8 3.3 10.3 20.6
t2 600 50 82.9 2.4 87.7 899.7 5.4 10.5 25.1
t3 850 70 89.5 3.1 87.6 934.5 8.7 9.8 31.5
t4 1000 80 92.7 3.5 87.7 948.1 11.0 10.3 35.0
t5 1350 90 95.8 3.9 88.1 966.3 13.9 10.6 39.5
t6 1600 100 98.7 4.2 87.9 979.2 16.4 9.9 43.3
t7 1800 100 98.8 4.1 90.4 980.5 17.5 10.2 43.9
t8 2100 90 96.0 3.7 90.4 964.6 14.2 10.2 39.2
t9 2350 80 93.5 3.3 90.3 947.8 12.0 10.2 35.8
t10 2500 70 90.2 2.9 90.3 933.5 9.7 10.2 31.3
t11 2800 50 83.7 2.3 90.0 902.6 5.3 9.9 24.9

At 100 kW the increase in hydrogen resulted in less than 2 ◦C increase in flue gas
temperature and more than 1 ppm increase in NOx emissions. The same difference in the
temperature and emissions could be observed for other power rates as well. The differ-
ence in NOx emission rate is due to the higher temperature in the combustor, previously
discussed in the section "flame temperature." The variation in combustion temperature is
illustrated in Figure 8 and according to the data reported in Table 3, less than 2 ◦C could be
observed in flue gas temperature. This change is measured by the thermocouple shown in
Figure 7 which is installed inside the combustor and closed to the dilution holes. Therefore,
the measured temperature could only be an indicator of the increase in combustion tem-
perature, since it is a local measurement after cooling and the actual value of the increase
in combustion temperature is not clear. Other than the 100 kW case, the comparison for
other power rates shows that NOx production is 1 ppm higher due to a 3% increase in
hydrogen content.

The rotational speed of the engine for the same power outputs is slightly (less than
1% relative to the nominal speed) higher with increased hydrogen content, however, the
ambient temperature is higher during the second half of the operation and that has a direct
impact on the rotational speed. In general, when weather is warmer, the engine rotates at
higher speeds.

The position of the pilot and main valves is also presented in Figure 8, where the
pilot valve position is almost constant throughout the operation. The main valve provides
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variations in fuel flow rate for the maneuver. The pilot opening for the steady-state
operation was originally set to 14%, which is a value appropriate for methane and blended
methane/hydrogen fuel with small share of hydrogen. With increasing the amount of
hydrogen, the pilot valve is recalibrated to a lower value which keeps the NOx emissions
below the regulated amount and also stabilizes the combustion.

Other than the discussed maneuvers, several runs with different hydrogen content
have been conducted. Using the data post-processing tool, the steady-state period data are
extracted which can provide insights into the influence of hydrogen injection on the MGT
performance parameters. In Figure 9, the NOx emissions in different power outputs with
various hydrogen content are presented. The general trend taken from the figure suggests
that the production of NOx increases as the share of hydrogen in the fuel increases. There
are a few points in Figure 9 that are from the runs with a hydrogen content of around
55% (white circles) which do not follow the general behavior. The reason is that, during
that test, the original valve setting was used which led to high NOx emissions. The high
temperatures in the combustor encouraged modifying the valves’ settings which led to the
lower opening of the pilot valve. All other points are from the maneuvers after recalibration
of the valves.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 15 
 

𝑡8 2100 90 96.0 3.7 90.4 964.6 14.2 10.2 39.2 

𝑡9 2350 80 93.5 3.3 90.3 947.8 12.0 10.2 35.8 

𝑡10 2500 70 90.2 2.9 90.3 933.5 9.7 10.2 31.3 

𝑡11 2800 50 83.7 2.3 90.0 902.6 5.3 9.9 24.9 

The rotational speed of the engine for the same power outputs is slightly (less than 

1% relative to the nominal speed) higher with increased hydrogen content, however, the 

ambient temperature is higher during the second half of the operation and that has a direct 

impact on the rotational speed. In general, when weather is warmer, the engine rotates at 

higher speeds.  

The position of the pilot and main valves is also presented in Figure 8, where the pilot 

valve position is almost constant throughout the operation. The main valve provides var-

iations in fuel flow rate for the maneuver. The pilot opening for the steady-state operation 

was originally set to 14%, which is a value appropriate for methane and blended me-

thane/hydrogen fuel with small share of hydrogen. With increasing the amount of hydro-

gen, the pilot valve is recalibrated to a lower value which keeps the NOx emissions below 

the regulated amount and also stabilizes the combustion. 

Other than the discussed maneuvers, several runs with different hydrogen content 

have been conducted. Using the data post-processing tool, the steady-state period data 

are extracted which can provide insights into the influence of hydrogen injection on the 

MGT performance parameters. In Figure 9, the NOx emissions in different power outputs 

with various hydrogen content are presented. The general trend taken from the figure 

suggests that the production of NOx increases as the share of hydrogen in the fuel in-

creases. There are a few points in Figure 9 that are from the runs with a hydrogen content 

of around 55% (white circles) which do not follow the general behavior. The reason is that, 

during that test, the original valve setting was used which led to high NOx emissions. The 

high temperatures in the combustor encouraged modifying the valves’ settings which led 

to the lower opening of the pilot valve. All other points are from the maneuvers after 

recalibration of the valves.  

 

Figure 9. NOx production in a range of power outputs with respect to hydrogen content in the fuel. 

The impact of hydrogen injection on the efficiency of the engine cycle is investigated 

in Figure 10. The performance of the engine in terms of electrical efficiency for a range of 

hydrogen contents is similar to each other and increases with the power output. There is 

a slight difference in the efficiency of the cycle at a constant power output, but the main 

reason is the effect of ambient conditions; as the engine inlet temperature increases, the 

efficiency of the engine reduces [35].  

Figure 9. NOx production in a range of power outputs with respect to hydrogen content in the fuel.

The impact of hydrogen injection on the efficiency of the engine cycle is investigated
in Figure 10. The performance of the engine in terms of electrical efficiency for a range of
hydrogen contents is similar to each other and increases with the power output. There is
a slight difference in the efficiency of the cycle at a constant power output, but the main
reason is the effect of ambient conditions; as the engine inlet temperature increases, the
efficiency of the engine reduces [35].

The main reason for replacing carbon-based fuels with hydrogen is to reduce the
production of carbon oxides. As discussed, adding hydrogen fuel will contribute to the
reduction in the greenhouse gasses that result in global warming, both by replacement
of carbon atoms with hydrogen and by promoting combustion efficiency and complete
combustion. This effect is illustrated in Figure 11, where a higher content of hydrogen has
resulted in lower CO emissions and zero CO emissions are evident for pure hydrogen. The
only points that are not compliant with the trends are, once again, the experiment with 55%
hydrogen. The run of that case included trials and errors to ensure a stable operation with
NOx emissions below the regulated values, so different arrangements for pilot valves were
tried. The results of these tests led to different combustion efficiencies and therefore CO
emission rates.
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5. Conclusions

In this paper, the process of redeveloping a commercial micro gas turbine to operate
with blended methane/hydrogen fuel is presented. Previous studies have shown that a
small amount of hydrogen injection into gas turbines is tolerated, however, as the share
of hydrogen increases, combustion temperatures and therefore NOx emissions increase.
Moreover, using the same combustion system will result in unstable combustion and the
risk of flashbacks, because of the difference between the combustion characteristics between
hydrogen and methane (or natural gas).

During a collaboration between the university of Stavanger and the German Aerospace
Centre (DLR), a modified version of the T100 PH micro gas turbine is provided, with
minimum modifications required. A new combustor with an innovative design based
on FLOX technology developed by DLR is used to accommodate combustion with high
hydrogen content. The engine is also equipped with a new fuel train with an additional
controller, so a range of fuel blends could be provided for the engine. The modifications to
the main controller of the engine are kept to a minimum and confined only to the controller
parameters in the software. With a smaller opening in the pilot valve, stable combustion
with regulated NOx is realized.

Several maneuvers with different hydrogen contents are conducted for a range of
power outputs. The maximum NOx emission is 25 ppm for running the engine at maximum
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load with pure hydrogen. The corrected NOx emission based on the case with 15% O2 is
64 ppm, which is lower than the regulated value. The electrical efficiency of the engine
is not impaired by hydrogen injection into the system. The greenhouse gas emission is
reduced by increasing the share of hydrogen in the fuel, by replacement of the carbon
element with hydrogen, also by the improvement of combustion efficiency. Close to zero
CO emissions are realized when the engine is derived with pure hydrogen.
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ABSTRACT 
The current shift from centralized to decentralized power 

generation with renewables as prime movers necessitates the 
integration of reliable small-scale power supply units to 
compensate for the intermittency of renewables. Micro gas 
turbines' (MGTs) characteristics such as high reliability and low 
maintenance, along with flexible operation and quick load-
following capabilities have made them a dependable source for 
the modern power generation industry and for households. 
MGTs are small-scale gas turbine units with a power range 
lower than 500 kW that can operate with low-calorific fuels such 
as biofuels and syngas as well as conventional fossil fuels and 
zero-carbon fuels. 

The utilization of MGTs in innovative cycle layouts or 
varying types of feeding fuels is increasing, which requires the 
evaluation of system dynamics to ensure the safe operation of the 
engine and its components. Moreover, the role of MGTs as a 
backup for the intermittent renewable inputs means that they 
operate under more transient conditions rather than constant 
power production mode. Therefore, a reliable dynamic model of 
an MGT is required to investigate the dynamic response of the 
engine under various transient modes to ensure safe operation. 
Moreover, utilizing a dynamic model is vital in the designing 
process of MGT-based cycles in order to evaluate the behaviour 
of coupled components in off-design conditions and to optimize 
the controller parameters. To that end, developing a dynamic 
model of the MGT cycle that is accurate enough to predict the 
dynamic response of the engine and its components and fast 
enough to be utilized in design iterations is necessary.  

In this paper, a high-fidelity model for real-time simulation 
of an MGT, based on a lumped and nonlinear representation of 
gas turbine components is presented. The model for a 
recuperated T100 MGT was constructed in Simscape, the object-
oriented environment of MATLAB for modelling physical 
systems. MGT components were modelled as lumped volumes 

with dynamic equations of mass, momentum, and energy balance 
along with component-characteristic maps describing the 
evolution of the flow passing through them. Results from 
simulations were validated by experimental data collected from 
a real engine operating under different load conditions. 
Experimental tests and numerical simulations were conducted 
for pure methane as well as for blended methane/hydrogen as 
feeding fuels. 

Keywords: micro gas turbine, dynamic modelling, 
simulation, controller system, transient manoeuvres, blended 
fuels, hydrogen 

NOMENCLATURE 
Alphanumeric Variables 
𝐶 Molecular composition vector 
𝑐 Specific heat (J/kg K) 
𝑐! Specific heat of gas at constant volume (J/kg K) 
𝑐" Specific heat of gas at constant pressure (J/kg K) 
𝐸 Total energy (J) 
𝐷 Diameter (m) 
𝑒 Total energy per unit mass (J/kg) 
𝑓 Function / friction factor 
𝑔 Acceleration of gravity (m/s2) 
ℎ Specific enthalpy (J/kg) 
𝑘 Thermal conductivity (W/mK) 
𝑀 Molar mass (g/mol) 
𝑚̇ Mass flow rate (kg/s) 
𝑁𝑢 Nusselt number 
𝑝  Pressure (Pa) 
𝑃𝑟 Prandtl number  
𝑄 Heat exchange (J) 
𝑅 Specific gas constant (J/kg K) 
𝑅𝑒 Reynolds number 
𝑇 Temperature (K) 
𝑡 Time (s) 
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𝑢6  Internal energy per unit mass (J/kg) 
𝑉 Volume (m3) 
𝑉8⃗  Velocity (m/s) 
𝑊 Work exchange (J) 
𝑥 Weight coefficient (kg/kg) 
𝑧 Direction against gravity field, (m) 

 

Greek Symbols 
𝜂 Efficiency (-)  
𝜌 Density (kg/m3) 
𝜏 Time constant (s) 
𝜏 Torque (N.m) 
Φ Humidity ratio (kg/kg) 
𝜙 Energy flow rate (W) 
𝜔 Rotational velocity (rad/s) 

 

Indices 
𝑎	 Air 
𝑎𝑐𝑡	 actual 
𝑎𝑑	 adapted 
𝑎𝑚𝑏	 Ambient 
𝑐𝑐	 Combustion chamber 
𝑐𝑚𝑝	 Compressor 
𝑐𝑟	 Critical  
𝑒 Electrical  
𝑒𝑐	 Energy conservation 
𝑒𝑥	 Excess  
𝑓	 Fuel 
𝑓𝑙	 Flue  
𝐻𝐸 Heat exchanger 
ℎ	 Hydraulic  
𝑖𝑛	 Inlet  
𝑖𝑠	 Isentropic 
𝑙𝑎𝑚	 Laminar  
𝑚𝑐	 Mass conservation  
𝑜𝑟𝑖𝑔	 Original 
𝑜𝑢𝑡 Outlet  
𝑝	 Pressure  
𝑝𝑟𝑜𝑑	 Product 
𝑟𝑒𝑎𝑐𝑡	 Reactant  
𝑟𝑒𝑓	 Reference  
𝑠𝑎𝑡	 saturated 
𝑇	 Temperature  
𝑡𝑟𝑏	 Turbine 
𝑡𝑢𝑟	 Turbulent  
𝑣	 Vapor 
𝑤𝑓	 Working fluid, either air or flue gas 

 

Abbreviations 
AF Air/fuel ratio 
CHP Cogeneration of heat and power 
LHV Lower heating value 
MGT Micro gas turbine 
PR Pressure ratio 
pu Per unit 
RH Relative humidity 

TOT Turbine outlet temperature 
1. INTRODUCTION 

Distributed energy generation facilitates the use of different 
energy sources that are available for customers to choose from 
and to install in small increments. These units provide the 
required power to meet the end-user demand. Distributed power 
is generated at or near the point of use with technologies such as 
gas turbines, fuel cells, diesel and gas reciprocating engines, 
solar panels, and small wind turbines. 

The characteristics of micro gas turbines (MGTs) such as 
high reliability and low maintenance, along with flexible 
operation and quick load-following capabilities, have made them 
a dependable source of power generation and a prime mover for 
the future of competitive, secure, and sustainable micro-scale 
polygeneration [1]. 

An important advantage of MGTs over other heat engines 
for decentralized power generation is their fuel flexibility, 
ranging from natural gas, diesel, liquefied petroleum gas, and 
hydrogen to waste and biomass-derived fuels. In fact, MGTs can 
operate with fuels with low heating value without engine de-
rating [2]. The combustion systems of MGTs can also be 
designed in such a way that they can easily burn fuels with lower 
octane numbers as well as heavier hydrocarbon components [3], 
[4]. The same is true for fuels containing hydrogen [5]. 

Modelling and simulation have significant importance in the 
design and manufacturing of gas turbines. These models provide 
a cost-effective solution for the inevitable design iterations of 
such complicated engines. High fidelity simulations of flow 
through gas turbine components provide insights into the details 
of component and flow interactions and thus enhance the 
knowledge about operations of the components. These models 
are usually three-dimensional and are performed with 
computational fluid dynamics and are widely employed by 
designers.  

While high-fidelity models have a significant role in the 
world of design and manufacturing, the time-consuming 
simulations due to computational limitations of today’s 
computers make them impractical for monitoring and controlling 
gas turbine engines. A rapid simulation of the whole gas turbine 
that can provide information about engine condition, narrowed 
to average flow properties at each main component entrance and 
exit, is sufficient and can be implemented for control and 
monitoring purposes.  

A computer model that can mirror and simulate the 
operation of the power generation unit as a system of integrated 
components is called a digital twin, and manufacturers are using 
them for performance optimization and life cycle management, 
which have resulted in considerable savings for their customers 
[6]. The ability of the digital twin to predict the key variables of 
a healthy engine makes it suitable to be employed as a basis for 
condition monitoring systems, where any performance 
deviations from its calculations imply a fault.  

Moreover, a substitute for the engine is essential for 
verifying the functionality of mechanics and electronic devices 
without taking any risks on the real engine’s life. If a model were 
accurate enough, critical transients could be not only detected, 
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but predicted and avoided to protect the components of the 
engine. Because the models are faster than a real engine, they are 
useful for diagnostic and prognostic purposes [7]. 

Lumped models of gas turbine engine cycles consisting of 
time-dependent equations in individual elements have been 
proven to be reliable for dynamic simulations in previous studies 
[8]–[10]. Because the dynamic behaviour of the engine is 
inherently coupled and nonlinear [11], modifications are applied 
to the accurate equations in order to simplify the calculations and 
make them suitable for fast calculations. Moreover, empirical 
correlations are developed and utilized for some complex 
components to avoid unnecessary calculations. 

Dynamic modelling of power-generating cycles based on 
MGTs has been pursued by researchers, but because of their 
complexity a number of assumptions and simplifications have 
been implemented. The developed dynamic models have mostly 
comprised steady-state models that are based on flow 
thermodynamics and component characteristics with additional 
adjacent elements representing the dynamic behaviour of each 
component [7], [12]. 

Abdollahi and Vahedi [13] developed a dynamic model of a 
single-shaft MGT in MATLAB/Simulink. Their model included 
the dynamic characteristics of the main components such as the 
turbine and the permanent magnet generator. Results of their 
work showed that the provided model can be used for dynamic 
simulation of MGT operation in various conditions. However, a 
validation of the developed model with experimental data was 
not reported in the paper.  

Nikpey et al. [14] developed a thermodynamic model of two 
innovative cycles, Exhaust Gas Recirculation and Humid Air 
Turbine, based on a T100 MGT in the IPSEpro environment. The 
model was validated by experimental data, proving the accuracy 
of the model results. Because the model was not equipped with 
an engine controller system or with the dynamics of the 
components, it could not be used as an engine substitute for 
design or monitoring purposes; however, it could be utilized for 
comparative assessment of different cycle layouts. In another 
paper, Nikpey et al. [15] developed an artificial neural network 
model based on a T100 MGT driven by biogas.  Pursuing a data-
driven approach, the authors successfully overcame the 
dependency on “non-accurate” component maps by using 
measurement data for model development. The developed model 
can only be utilized for steady-state predictions because of the 
chosen artificial neural network layout and training data.  

Rachtan and Malinowski [16] provided an approximate 
mathematical correlation for a heat recovery unit in an MGT 
cogenerating heat and power (CHP). The model was verified by 
experimental data for different part-load performances and 
proved to be reliable for modelling and design of micro-CHP 
plants. In another work, Malinowski and Lewandowska [17] 
developed an analytical model of a whole MGT for part-load 
operation. Exergy calculations were performed for all MGT 
components, and formulas were provided to overcome the 
problem of inadequate information about component maps due 
to the proprietary nature of the information for the manufacturer. 
The performance of the proposed model showed good agreement 

with collected experimental data. The models provided in both 
publications were based on the thermodynamics of the system 
and therefore lacked the ability to predict the dynamic behaviour 
of the engine.   

Nelson et al. [18] developed a quasi-steady physics-based 
model for a hybrid cycle consisting of a T100 MGT with a 
concentrating solar power tower. The tower was implemented to 
exploit solar energy for heating the air before it enters the 
combustion chamber. A range of electrical loads under varying 
ambient conditions was investigated to study the load-following 
and operation characteristics of the hybrid cycle. Moreover, 
sensitivity analyses were performed to investigate the 
performance of the hybrid cycle under various ambient 
conditions. The performance of the hybrid cycle was 
investigated based on the annual power demand for different 
cities in the US. The results of their work showed that the 
proposed hybrid cycle is capable of meeting the performance 
targets of an MGT working as its basic nonhybrid configuration. 
The authors also concluded that by utilizing this hybrid 
configuration fuel consumption can be reduced by 26% annually.   

Two models were developed and presented by Roberts et al. 
to predict the performance of a T100 MGT that was modified in 
an experimental test rig [19]. One model was developed in 
MATLAB/Simulink and used time constants to simulate the 
dynamic behaviour of the components. In the second model, a 
plenum with time-dependent mass conservation was assumed to 
compensate for the dynamics of the engine. The data collected 
from the experiments showed agreement under steady-state 
conditions, where each modelling approach was more accurate 
than the other depending on which test and parameter was being 
investigated. Overall, the first approach based on time constants 
performed better at predicting the engine behaviour. 

Another approach has been used for providing a dynamic 
model of MGTs inspired by Rowen’s model of gas turbines [20]. 
In these works, the transient behaviour of an MGT is assumed to 
be associated only with the dynamic response of the controller 
and the sensors [21]. The fluid-mechanical components of the 
MGT are replaced by simplified equations, and a time delay is 
associated with the large-sized components in the engine (e.g. 
the combustion chamber). While these models are very fast in 
simulations, they lack accuracy in predicting the conditions for 
the mechanical components of the engine such as the compressor 
and turbine. This problem can be augmented in engines with 
variable rotational speed (such as MGTs) where a broader range 
of performance is expected for the components.   

In this paper a dynamic model of a 100 kW MGT, designed 
and manufactured by Turbec, is presented in which most of the 
components are represented with a zero-dimensional approach; 
however, the complete form of transient equations is solved 
without any simplifying assumptions or term negligence. We 
sought to overcome the limitations of the developed models in 
previous studies by constructing a fast and accurate dynamic 
model of an MGT that can be utilized as an engine substitute for 
performance evaluation and condition monitoring.  

Using MATLAB Simscape facilitated physics-based 
modelling by providing a well-structured foundation while 
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preserving flexibility and a high degree of freedom for 
generating component models by programming.  

In the following section, an overview of the T100 unit is 
presented, which was equipped with a modified combustor to 
enable the use of a fuel blend containing a large amount of 
hydrogen. This is followed by a comprehensive overview of the 
model development in Simscape, focusing on features for 
representing the dynamic behaviour as well as the fuel flexibility 
of the engine. Simulations were conducted to verify the 
performance of the model under varying loads and with different 
mixtures of hydrogen/methane fuel using measured data.   

Utilizing hydrogen or hydrogen-mixed fuels has become a 
long-term goal for carbon-free power generation. Driving MGTs 
as one of the futurist micro-CHP generators is another ongoing 
topic for research and development. Various challenges are 
associated with developing and/or modifying the components to 
operate with high flame propagation speed as a result of 
hydrogen combustion [20], [21]. However, evaluating the whole 
system operating with hydrogen is another concern for which a 
limited number of publications are available in the open 
literature. In this work, the model construction was developed to 
be applicable for any fuel composition, which provided the 
ability to simulate the tested fuels with hydrogen mixtures. The 
model will enable the study of a range of engine setups and fuel 
mixtures for different purposes, such as predicting engine 
behaviour in expanding applications (e.g. innovative cycles or 
fuels), designing control logics, and monitoring the condition of 
the unit.  

 

2. THE TURBEC T100 SYSTEM  
The unit studied was a Turbec T100, which is a single-shaft 

MGT designed to work under power generation mode as well as 
the cogeneration of power and heat. This unit was installed at 
Risavika district, Stavanger, Norway, and the power and the heat 
produced by the unit is consumed locally. Numerous 
modifications and tests have been implemented on these engines 
during the past decade, enabling research and development on 
MGTs such as applications with simulated biogas and natural gas 
mixtures [15]. Recently, the combustion chamber and the fuel 
train system for one of the MGTs were replaced with a new 
design to enable the combustion of fuel mixtures with a high 
percentage of hydrogen.  

The T100 in power mode (T100 P) works in the regenerative 
Brayton cycle to increase efficiency. The unit is equipped with a 
recuperator that preheats the air before the combustion chamber 
by transferring heat from the turbine exhaust gas. The T100 
Power and Heat unit (T100 PH) is basically a T100 Power 
module combined with an exhaust gas heat exchanger, exploiting 
the remaining heat in the exhaust gas for heating the circulating 
water.  

The power-generating unit consists of a single-stage 
centrifugal compressor, a single-stage radial turbine, a tubular 
combustor, a high-speed permanent magnet generator, and 
additional auxiliary units. The compressor and non-cooled 
turbine work with a pressure ratio of about 4.5 and a turbine inlet 
temperature of around 950°C. Under nominal operating 
conditions (with ISO ambient condition), the unit can achieve 

100 kW of electrical power with a rotational speed of 70,000 
rpm. The cycle electrical efficiency is 30% thanks to the 
recuperator that compensates for the low-pressure ratio and low 
turbine inlet temperature. In cogeneration mode, the total 
efficiency (fuel utilization factor) increases up to 80%. More 
details about this unit can be found in the technical description 
in  [23].  

The combustor was replaced by a fuel-flexible combustor 
designed and manufactured by the German Aerospace Centre to 
investigate the performance of the engine under different load 
conditions. The unit with the modified combustor and fuel train 
is shown in Figure 1. To evaluate the unit performance and cyclic 
behaviour, additional pressure and temperature sensors were 
installed in the unit under investigation. 
 

 
FIGURE 1: TURBEC T100 UNIT WITH MODIFIED 

COMBUSTOR AND FUEL TRAIN FOR A 
HYDROGEN/METHANE FUEL MIXTURE  

 

The fuel is provided by bundles, each comprising 12 high-
pressure interconnected bottles of hydrogen or methane. The 
bundles are connected to the fuel train within a pressure regulator 
to reduce the pressure to the proper value for the MGT. The fuel 
setting allows for running the engine with different percentages 
of hydrogen mixed with methane. Figure 2 shows the fuel system 
and the connecting valves.  
 

  
FIGURE 2: HYDROGEN AND METHANE FUEL BUNDLES AND 

VALVES 
 

3. DEVELOPED MODEL 
Building a dynamic model of an MGT that encompasses the 

mechanics, thermodynamics, and control system of an MGT 
system can be best carried out in software that provides 
infrastructure for all those domains and the relations between 
them. MATLAB Simscape is a powerful tool developed for 
modelling physical systems that provides the foundation for all 
physical domains while preserving the freedom to define 
arbitrary components based on those domains.  

modified fuel train and 
combustor for H2/CH4 mixture

pressure & 
temperature sensors
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Simscape was originally developed within the well-known 
Simulink environment with features that facilitate building 
models for physical systems. While the connections in Simulink 
components are defined based on equations, in Simscape they 
establish an actual physical connection between physical 
components, which results in a model that topologically matches 
the physical system, thus simplifying the construction of even 
complex physical networks [24]. 

Every Simscape model is constructed based on two 
elements: domains and components.  Domains are the definitions 
of the physical fields of the system, e.g., electrical, gas, 
magnetic, etc., and are based on declaring “through” and 
“across” variables. A through-variable is referred to as a type of 
domain variable that imitates a flow in a domain, whereas a 
cross-variable is associated with a point in the domain. For 
instance, electrical current is a through-variable and voltage is an 
across-variable in the electrical domain. Another way of 
describing this is based on the way these variables can be 
measured. For a through-variable, a gauge must be installed in 
series (e.g., an ammeter for electric current) while an across-
variable is measured by connecting in parallel (e.g., a voltmeter 
for measuring voltage) with one port of the gauge attached to the 
measurement point and the other port attached to the domain 
reference point (electrical ground).  

Components represent the actual physical elements that are 
working in the defined domains. A resistor or capacitor is an 
example of a physical component. A physical system with a 
multi-domain background with components that are defined 
based on more than one domain can be constructed in Simscape. 
For instance, a DC motor can be defined in the mechanical, 
electrical, and thermal domains. Libraries of physical domains 
and components are available; however, custom domains and 
components can be defined as textual files. This is an advantage 
over most software in which components and domains are 
predefined and only changing parameters is permitted.  

Because Simscape has been developed based on Simulink, 
it is worth describing the advantages of Simscape that make it 
suitable for modelling physical systems. A model that is 
constructed with Simscape easily reproduces the actual physical 
system layout, while in Simulink equations play the main role in 
constructing the system, which make them more difficult to 
interpret by people other than the model developer. Moreover, 
each connection line in Simulink transports a single variable that 
can be transferred in one direction, while connections in 
Simscape are capable of simulating bidirectional flow and 
transferring multiple through-variables in either direction. In 
addition, the equations and mathematical functions within the 
components allow acausal modelling and the ability to solve the 
equations implicitly. Simscape converts the entire network to 
equations and solves them simultaneously with no order 
expected. This clearly provides an undemanding method of 
component definition that is more flexible than Simulink’s 
explicit calculation approach.  

A Simscape model can also connect to Simulink 
components by converting a physical signal to a Simulink signal 

and vice versa, which enables the modelling of control systems 
in a physical system within the Simulink environment.  

In this section, the developed model is presented while 
highlighting the approach for building an MGT model that is 
capable of running with various fuel mixtures.   

 

3.1 Domain Definition 
A model of the T100 PH engine was constructed in 

Simscape based on three domains – gas, rotational, and thermal. 
The through and across-variables of these domains are presented 
in Table 1. The thermal and rotational domains are predefined in 
Simscape, but a new version of the gas domain was defined for 
the current work, which has added variables and functions to 
enable the modelling of variations in flow properties due to 
internal combustion during the cycle.  
 

TABLE 1: DOMAINS AND CORRESPONDING VARIABLES 
EMPLOYED IN THE MGT MODEL 

Domain Through variables Across variables 
Gas 𝑚̇, 𝜙, 𝑚̇! 𝑝, 𝑇, 𝑥! 
Rotational 𝜏 𝜔 
Thermal 𝑄̇ 𝑇 

 

The gas domain is defined based on flowing variables, 
including the mass flow rate 𝑚̇, energy flow rate 𝜙, and fuel flow 
rate 𝑚̇#. The across-variables are the pressure (𝑝), temperature 
(𝑇), and fuel concentration (𝑥#) in the flow. The pressures and 
temperatures are defined based on stagnation values that are 
correlated with thermodynamic properties. The concentration of 
fuel inflow is correlated to the total mass flow rate and the fuel 
mass flow rate by Eq.1. Therefore, only one of them (𝑥# or 𝑚̇#) 
is sufficient; however, both are defined because having equal 
numbers of through and across-variables in a domain improves 
the Simscape solver’s performance [25]. 

𝑥! =
𝑚̇!

𝑚̇  (1) 

3.2 Flow Properties 
The properties of the working fluid depend on the molecular 

composition, thermodynamic pressure, and thermodynamic 
temperature of the gas. For components mounted upstream of the 
combustion chamber, airflow is considered, while downstream 
of the combustion chamber the calculation for gas composition 
in the flue is performed. The model is capable of accepting 
different dry air compositions. The ambient conditions including 
pressure, temperature, and relative humidity are set as inputs to 
the model. The weight fraction of humid air molecules is 
calculated by calculating the vapor fraction. 

𝐴𝑖𝑟 = 	𝑥"!𝑂# + 𝑥$!𝑁# + 𝑥%&𝐴𝑟 + 𝑥'"!𝑆𝑂# + 𝑥("!𝐶𝑂#
+ 𝑥)!"𝐻#𝑂 + 𝑥)*𝐻𝑒	

(2) 

𝐹𝑢𝑒𝑙 = 𝑥()"𝐶𝐻+ + 𝑥)!𝐻#  

The relative humidity of the air is defined as the ratio of the 
actual vapor pressure to the saturation vapor pressure: 

𝑅𝐻 =
𝑝,
𝑝,,./0

	 (3) 

The vapor pressure is calculated from the relative humidity 
and the saturated vapor pressure, which is available in 
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temperature-saturation pressure tables. The humidity ratio is 
defined as the ratio of vapor mass to dry mass: 

𝛷 =
𝑚,

𝑚/,1&2
	 (4) 

Assuming ideal gas status for both vapor and dry air, the 
relative humidity can be calculated from: 

Φ =
𝑀,

𝑀/,1&2
×

𝑝,
𝑝/,1&2

	 (5) 

In the above equation, 𝑀! is the molar mass of water (18.016 
g/mol) and 𝑀$,&'( is calculated based on the dry air composition 
in the simulation. The dry air pressure in Eq.5 is simply 
calculated as: 

𝑝/,1&2 = 𝑝/34 − 𝑝,	 (6) 

The weight fraction of the vapor is calculated from the 
relative humidity, and the weight fraction of humid air is 
calculated based on the weight fraction of water in the air: 

𝑥)!" 	= 	
𝛷

1 + 𝛷 , 𝑥/,56371 	=
1

1 − 𝑥)!"
	 (7) 

The weight fraction of all components of humid air can be 
calculated from their weight fraction in dry air and the weight 
fraction of humid air: 

𝑥/,893:9;*;0,56371 	=
𝑥/,893:9;*;0,1&2

𝑥/,56371
	 (8) 

The air composition vector is built from Eq.8, and for fuel 
the composition vector is prepared based on the elements 
included in the fuel: 

𝐶/BBBB⃗ = C𝑥"! 		𝑥$! 		𝑥%&		𝑥'"! 		𝑥("! 		𝑥)!"		𝑥)*D	 (9) 

𝐶!BBBB⃗ = [𝑥()+		𝑥)#] (10) 

The working fluid in the cycle changes from air to flue gas 
in the combustion chamber and the downstream MGT 
components. The composition vector for flue is assumed to have 
similar components as defined for air in Eq.9 (because of 
combustion products elaborated later in section 3.6); however, 
the weight coefficients are different from air and must be 
calculated based on the air/fuel ratio: 

𝐶!<BBBBB⃗ = 𝐶!<BBBBB⃗ (𝐶/BBBB⃗ , 𝐶!BBBB⃗ , 𝐴𝐹)	 (11) 

Where 𝐴𝐹 is the ratio of air mass to fuel mass and can be 
calculated in the model based on the mass flow variables and is 
available for calculation from the across-variable 𝑥#.  

𝐴𝐹 = 𝑚̇/ 𝑚̇!⁄ 	 (12) 

It is worth noting that defining 𝑥# (or 𝑚̇#) as a variable in 
the domain provided the possibility to calculate the accurate flow 
composition at any point of the system and at any time of the 
simulation. By knowing the composition of the working fluid 
(air or flue gas) at the entrance of each MGT component, the 
properties of the gas are calculated based on the composition and 
thermodynamic state of the working fluid: 

𝑘 = 𝑘K𝐶=!BBBBBBB⃗ , 𝑇L, 𝑐: = 𝑐:K𝐶=!BBBBBBB⃗ , 𝑇L, 𝑐, = 𝑐: − 𝑅	 (13) 

For density calculation, the ideal gas law is assumed: 
𝑀=! =	𝑀=!K𝐶=!BBBBBBB⃗ L, 𝑅 = 𝑅K𝑀=!L, 𝑝 = 𝜌𝑅𝑇	 (14) 
 

3.3 Principal Equations for Modelling Components  
As discussed, the model is comprised of lumped 

components that are assumed to have uniform flow properties at 
their boundaries. Therefore, for all of the components running on 
a gas domain, basic thermodynamic equations are provided in 
the full time-dependent form. The balance of the mass flow is 
defined from: 

𝑉
𝜕𝜌
𝜕𝑡 +RK𝑚	̇ L960

7

−RK𝑚	̇ L7;
7

= 0	 (15) 

With ideal gas assumption (Eq.14), the mass conservation 
results in: 

𝜕𝜌
𝜕𝑡 =

1
𝑅𝑇	

𝜕𝑝
𝜕𝑡 −

𝑝
𝑇
1
𝑅𝑇

𝜕𝑇
𝜕𝑡 		

(16) 

Similarly, the conservation of energy for the component can 
be written: 

𝑑𝑄/𝑑𝑡 − 𝑑𝑊/𝑑𝑡 = 𝑉𝑑(𝜌𝑒)/𝑑𝑡

+RWℎ + 1/2Z𝑉B⃗ Z
#
+ 𝑔𝑧]

960
𝑚̇960

−RWℎ + 1/2Z𝑉B⃗ Z
#
+ 𝑔𝑧]

7;
𝑚̇7;	

(17) 

𝑄 and 𝑊 are the heat and work exchange that contribute to 
the total energy variation, 𝐸, and 𝑒 is the total energy per unit 
mass and consists of internal kinetic and potential energy: 

𝑒 = 𝑢̂ +
1
2 Z𝑉
B⃗ Z
#
+ 𝑔𝑧	 (18) 

The sigma in Eq.16 and Eq.17 is to account for all inputs 
and all outputs of the component. For most of the components, 
there is only one inlet and one outlet because the leakages are 
neglected. Neglecting variation in velocity and level of flow in 
transient mode and with ideal gas assumption, the internal 
energy term will be left, which can be related to temperature as: 

𝑢̂ = 𝑐,𝑇	 (19) 
Therefore, the time derivative of the internal energy term 

can be calculated from the following equation: 
𝑑(𝜌𝑢)
𝑑𝑡 = 𝜌𝑐,

𝜕𝑇
𝜕𝑡 + 𝜌𝑇

𝜕𝑐,
𝜕𝑡 + 𝑐,𝑇

𝜕𝜌
𝜕𝑡		

(20) 

The 𝑐! terms are rewritten using their relation to 𝑐" (Eq.13), 
so the correlation between 𝑐" and temperature and flow 
composition can be calculated:  

𝑑𝑐,
𝑑𝑡 = 	

𝑑𝑐:
𝑑𝑡 = 	

𝜕𝑐:
𝜕𝑇 	

𝜕𝑇
𝜕𝑡 	

(21) 

Rearranging Eq.16 and Eq.17 with respect to terms for the 
time derivative of pressure and temperature results in the full 
form of the time-dependent conservation equations as below:  

𝜏:,38
𝜕𝑝
𝜕𝑡 +	𝜏>,38

𝜕𝑇
𝜕𝑡 = 	 𝑚̇960 −	𝑚̇7;	

(22) 

𝜏!,#$
𝜕𝑝
𝜕𝑡
+	𝜏%,#$

𝜕𝑇
𝜕𝑡

= 	 𝑚̇&'(𝑐!,&'(𝑇&'( −	𝑚̇)*𝑐!,)*𝑇)* +
𝜕𝑞
𝜕𝑡
−
𝜕𝑤
𝜕𝑡

 (23) 

In the above equations, 𝜏 is the time constant for the time 
derivative terms in the mass and energy conservation equations: 

𝜏:,38 =
𝑉
𝑅𝑇 , 	𝜏>,38 = −

𝜌𝑉
𝑇 , 𝜏:,*8 =

𝑐,𝑉
𝑅 , 𝜏:,*8 = 𝜌𝑇𝑉(𝜕𝑐:)/𝜕𝑇	

(24) 

The last three equations are implemented as common 
principal equations for modelling all main components of the 
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MGT, namely the compressor, turbine, combustor, and 
recuperator. In all components, except for the recuperator, these 
equations are written between the inlet and outlet of the 
component because they are treated as zero-dimensional 
components. For the recuperator, a one-dimensional approach is 
chosen and the same equations are employed but within each 
discretized cell. Other than principal laws of conservation, 
specific equations explaining the behaviour of each component 
are employed as demonstrated in the following sections. 

After the model has been constructed, running the model 
requires the same inputs as the real engine. In an operating real­
life engine, the following information is available, either 
imposed by the environment or chosen by the user: 

Ambient condition: pressure, temperature, and humidity 
(imposed by the environment) 
Fuel condition: pressure, temperature (imposed based on 
where and how the fuel is sourced) and mixture (chosen by 
the user as the volumetric ratio between different fuel types) 
Power set point (chosen by the user, constant, or varying) 
The same information is required by the model, and once 

these are prepared, the model will run and provide all data, 
including flow properties throughout the engine cycle, in 
addition to rotational speed, fuel flow rate, and efficiency of the 
engine (the required inputs are summarized in Table 2). 

The developed model for the TlOO is depicted in Figure 3. 
As presented in the thermodynamic cycle shown in Figure 3(A), 
there are different physics domains that are distinguished by 

fuel composition 
fuel pressure 

fuel temperature 

air composition 
ambient pressure 

ambient tern rature 

Fuel Reservoir 

' . 

.----
Upstream Reservoir Centrifugal Compressor 

'{ _c 

0 
Combus_ to_r_ 

color. Note that even though the model runs in the thermal 
domain, the thermal domain is not visible in the picture because 
it is only used inside the components and does not contribute to 
their connection points. In between every two connected 
components, a measuring component has been placed to extract 
all flow properties. 

Input 
Ambient condition 
Fuel condition 
Demand power 

TABLE 2: MODEL INPUTS 

Pamb 
Pt 

P(t) 

RHamb 
CH4/H2 choice 

The input set for the model is shown In Figure 3(B), where 
mixture, pressure, and temperature constants are set for the fuel 
(which can be replaced with time-varying signals if required). 
For ambient conditions and for demand power, a signal builder 
is chosen that enables creating either constant or varying signals. 
In Figure 3(C), the power set by the user (created inside the 
signal builder) is shown, where the user has chosen a stepwise 
power set. This is the same way the engine user sets the input. 
The figures are from the first case discussed in section 4 of the 
paper. Air and fuel compositions are calculated as explained 
previously and then used as inputs together with the pressure and 
temperatures of the air and fuel reservoirs. The mass flow of fuel 
and rotational speed is defined by the controller, which is built 
in the Simulink environment. In the following sections the main 
components of the engine and the controller are described. 

- Gasoomain 

Recuperator 
- MechanicalRotationalDomain 

Downstream Reservoir 

-El-

(-------------- -:.:o--------]--,1 
: : 
:m'P' • :

¢ 

methane 
hydrogen 
fuel pressure 
fuel temperature 

ambient pressure 
ambient temperature 
humidity 

I + : 
! Tarnsient-based Princi�al Equations ! 
�� .. _ - - - - - - - - _(��:.�� �- ��� - - - - - - - �) 

(A) 

!�_composition 

air_composi�on 

� 
case 1 

PDemarxl Power_rer 

(B) (C) 
FIGURE 3: DEVELOPED MODEL FOR A TURBEC TlOO UNIT USING MATLAB SIMSCAPE. (A) THERMODYNAMIC CYCLE, (B) 

INPUTS REQUIRED FOR THE MODEL, (C) EXAMPLE POWER SET CHOSEN BY THE USER 
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3.4 Compressor and Turbine 
The turbo components are modelled based on the map data, 

which represent the correlation between the flow parameters of 
the components under a range of pressure ratios and rotational 
speeds. The maps are generated by test runs of each component 
under steady-state conditions. However, coupling them with 
dynamic equations for mass and energy balance (Eq.22 and 
Eq.23) results in the adequate dynamic response of the model 
[26]. The map parameters are normalized through Eq.25, and the 
maps reveal the correlation between the mass flow rate and the 
isentropic efficiency of the component and the imposed pressure 
ratio and rotational speed within these normalized forms (Eq.26). 

m* _ m ff;, N* _ _!!_ c2s) 

- Pin ' - -ff;;, 
m*, 1Jis = f (PR, N*) (26) 

Collecting measured values from the engine revealed that 
the operation points are slightly deviated from the map points. 
This might be due to the fact that component maps are usually 
generated by testing components separately while imposing 
several boundary conditions and using computer programs for 
other conditions that might be different from a component's 
actual behaviour when mounted in an engine [27]. Moreover, the 
components are prone to deviation from their original condition 
due to operation for several tens of thousands of hours over 
several years. For that reason, both the compressor and turbine 
maps are adapted as follows [27]: 

MF11 = T/actfrJmap,original (27) 
The adaptation of efficiency is possible because pressure 

and temperature are measured at the inlet and outlet of the 
compressor and turbine. The value of the modification factor MF 
is calculated by minimizing the results from the modified map 
and the measurements, at different pressure ratios, as 
demonstrated in Eq.28. 

m 
MFn = argmin I (rout.exp - Tout,map,ad (PR;, MFn x 1Jmap,orig) )2 

i=l 

(28) 

The MF is calculated for both the compressor and turbine 
by an optimization algorithm in MATLAB (outside of the 
Simscape module) and is used for adapting both components' 
maps. These modified maps are used with linear interpolation 
between two points and with linear extrapolation for points 
outside of the map boundaries, which can occur in simulation 
iterations. 

3.5 Recuperator 
The recuperator of the TlOO is a compact-type heat 

exchanger with dense arrays of wavy plates, enhancing the 
transfer of heat from the turbine outlet gas to the compressor 
outlet air. A single-pass arrangement is designed for both hot and 
cold flow, and both flow in a single direction [28]. The flow 
paths are perpendicular to each other as depicted in Figure 4, 
which creates a 2-dimensional temperature distribution on the 
separating sheets. Modelling the recuperator dynamic response 
is done by discretizing the flow path and metal sheets into 
uniform elements. Both metal and flow cells are provided with 

time-varying governing equations to account for the dynamic 
response of the recuperator. Heat is transferred between 
neighbouring metal and flow cells, while heat and mass are 
transferred between neighbouring flow cells. 

Tm,t,1,1ITm,t,2,1!Tm,t,3,l i �m,t,M,1 j-lifl-. ·L1-,17-l� -c£.bU-2l-i-!�-c[.,
-1.,l._-;j --------_,,,�--------l

;-!E -LM
--,
,l] 

�1�=;=�
1
�i �=�='�:����:=::�: i ________ -1�"�t--------- ��=:=1 

FIGURE 4: DISCRETIZED RECUPERATOR MODEL HOT GAS 
FLOWS IN THE X-DIRECTION, AND COLD AIR FLOWS IN THE 

Y-DIRECTION 
For the metal sheet cells, heat conduction along two 

dimensions parallel to the plate is assumed, and the temperature 
is assumed to be uniform in a perpendicular direction 
considering the sheets' thinness. 

a2T a2T 1 ar 
-+-=--ax2 ay2 a at, 

k (29) 
a=-pc 

For flow path cells, the rectangular duct is assumed to have 
a wall temperature imposed by adjacent sheets. The model is a 
constant volume of gas that accounts for viscous friction losses 
and convective heat transfer with the walls. Flow pressure and 
temperature evolve along the flow path based on the 
compressibility and thermal capacity of the gas (Eq.13 & Eq.14). 
Convective heat transfer imposed by wall temperature is 
imposed by calculating the Nusselt number for laminar and 
turbulent flow regimes [28]: 

Nuzam = 5.60 k1am, 
f /8(Re0h - lOOO)Pr 

Nutur = ktur 1 2 ' 1+12.7([ /8)2 (Pr3 - 1) 

(30) 

(31) 

In the above equations, kiam and ktur are correction factors 
to account for the plates' wave pattern, which is extracted from 
experimental data while the unit is operating under steady-state 
conditions. 

3.6 Combustor 
The combustion chamber is modelled as a plenum with an 

inlet from the fuel source and air leaving the recuperator. The 
user sets the percentage of methane and hydrogen in the fuel 
source (which is the same as for the actual engine for which the 
operator chooses the combination). The molecular composition 
of dry air is also known and set with a default value, but it is 
modifiable if required. With ambient conditions (including 
pressure, temperature, and relative humidity) set by the user, the 
correct molecular composition of air is calculated (as 
demonstrated in section 3.2). The composition of the inlet 
mixture to the combustion chamber is therefore known, and from 
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there the thermophysical properties such as heat capacity are 
calculated using Eq.13 and Eq.14. 

During combustion the composition of the flow changes due 
to the combustion of fuel, which is modelled with two reactions 
described in Eq.32 & Eq.33, considering complete combustion 
in all operational conditions, except for start-up, which is 
corrected by an efficiency value [12]. Other than oxygen, the 
remaining parts of the air will not take part in combustion, but 
they are included in the calculation of heat capacity for the flue 
gas and therefore affect the temperature of the flow at the inlet 
to the turbine.  

𝐶𝐻+ + 2𝑂# 	→ 𝐶𝑂# + 2𝐻#𝑂		 (32) 

𝐻# + 1/2		𝑂# → 𝐻#𝑂 (33) 
To obtain the flue gas temperature, the enthalpy of 

formation is calculated, which is available at the reference 
temperature of 25°C. Thus, the heat transfer for a temperature 
change in the reactants relative to a reference temperature can be 
calculated. In Eq.34 𝑛# is the number of fuel types, which is 2 
for this case. For the air side, it is assumed that nitrogen in the 
air will not take part in combustion and therefore only oxygen is 
considered in the reactant side. 

𝑄&*/80,&*! =	R𝑚̇!$o 𝑐:,!$(𝑇)𝑑𝑇
>%&'

>',$)

;'

7FD

+	𝑚̇"!o 𝑐:,"!𝑑𝑇
>%&'

>*,7;
		

(34) 

The combustion heat is then calculated by employing the 
difference in formation enthalpies between products and 
reactants: 

𝑄+#,$()&* = 		 0 𝑚̇!+&-,)ℎ.&+/,!+&-,)

*+%,-

)01

−	 0 𝑚̇+#,$(,)ℎ.&+/,+#,$(,)

*%&*./

)01

	
(35) 

From the above equations, the heat released from 
combustion is calculated and used for the calculation of the flue 
gas temperature. The flue gas consists of combustion products 
and excess air. Using the 𝐴𝐹 ratio, the weight ratio vector for the 
molecular composition of the exhaust gas can be calculated 
separately for the combustion product and excess air (Eq.11). 
The heat transfer coefficient can be calculated (Eq.13) and then 
used in Eq.37 to calculate the temperature of the flow leaving the 
combustion chamber. In Eq.37 the heat capacity terms are a 
function of temperature (Eq.13), and therefore the two equations 
are iteratively solved by initial guesses for the combustor outlet 
temperature. 

𝑚̇/,*G = 𝑚̇/ − 𝑚̇"!,&*/80		 (36) 
 

𝑄+#,$(,+#. +	𝑄+#,$()&*

= 	 𝑚̇!+&- 2 𝑐!,!+&-𝑑𝑇
%,0/

%%&'
+ 𝑚̇,,#22 𝑐!,#2𝑑𝑇

%,0/

%*$)

		

(37) 

3.7 Heat Exchanger 
The exhaust gas leaving the recuperator still contains useful 

energy, which is exploited by a gas/water heat exchanger. The 
component is modelled using an empirical correlation, indicating 
the relation between the pressure drop and the hot gas mass flow 
in the unit.  
 

3.8 Controller 
The unit is controlled by an automatic control system using 

inputs from the user (setpoints) and measurements from the 
engine. The built-in measurements used by the controller include 
turbine outlet temperature, rotor speed, and power output. For 
safety reasons the temperature of the oil and water that cool the 
generator and the vibration of the unit were also measured. The 
purpose of the control system is to achieve the demanded power 
while keeping the turbine outlet temperature (TOT) around a 
certain value that is below 645 ℃. Limiting the TOT is necessary 
to protect components downstream of the turbine, such as the 
recuperator and the heat exchanger. Moreover, confining the 
TOT will constrain the turbine inlet temperature as well, which 
is less convenient to measure continuously. High turbine inlet 
temperatures run with the risk of damaging the combustor and 
the turbine.  

Figure 5 shows the diagram of the controller used in the 
model. The main difference between MGT controllers and those 
of large-scale gas turbine power generators is the rotational 
speed, which has higher values and is more variable in operation 
in MGTs. The controller’s purpose is to control the power output 
and TOT by changing the fuel mass flow and the rotational 
speed. 

The controller for both TOT and power is equipped with 
proportional-integral regulators as presented in Figure 5. Abrupt 
changes in power are restricted and modified to acceptable rates 
in order to control the acceleration of the rotor, and a correlation 
between the reference rotational speed and the reference power 
is defined based on generator’s characteristics. Moreover, the 
reference power (and hence the rotational speed) is kept below a 
maximum limit in order to protect the rotor. The operational 
limits also include low TOT, which has the prospect of high 
emissions, and thus is not included in the modelled controller 
because only practical operations were of interest in this work. 
Values of the parameters used in the controller are provided in 
Table 3. 

 
FIGURE 5: CONTROLLER FOR THE T100 MGT DEVELOPED IN SIMULINK  
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TABLE 3: CONTROLLER PARAMETERS 
controller section 
speed 𝐷4 = 0.05 𝑘, = 0.1 𝑘. = 0.5 
fuel 𝑘0 = 0.77 𝜏5 = 0.05 𝜏$ = 0.4 
temperature 𝜏(6 = 5 𝑘, = 0.1 𝑘. = 0.5 

 𝐶6 = 0.8 𝜏6 = 80  
 

4. RESULTS AND DISCUSSION 
The described test rig was provided to investigate the overall 

behaviour of the unit under different operating conditions and 
with different concentrations of hydrogen in the fuel. From those 
tests, the main operational behaviour was extracted to evaluate 
the performance of the developed model. At the beginning phase 
of the test, only methane was used as the fuel from which the 
measured values were extracted under steady-state conditions. 
The model was tuned using these data by adapting the maps for 
the compressor and turbine (section 3.4) and by accounting for 
the mechanical loss in the engine. A series of transient 
manoeuvres were then conducted, and the collected data allowed 
us to analyse the dynamic response of the model.  

The first transient manoeuvre was conducted with pure 
methane as the fuel. The ambient conditions were an 
atmospheric pressure of 1.0007 bar, an atmospheric temperature 
of 17.7℃, and a relative humidity of 78%. The fuel had a 
pressure of around 6 bar with an average temperature of 13℃ 
(varying between 12℃ and 14℃). The demanded power was 
increased gradually during the manoeuvre, which is visible in the 
power production plot presented in Figure 6.  
 

 
FIGURE 6: COMPARISON OF GENERATED POWER FOR THE 

MGT RUNNING WITH PURE METHANE 
 

 

 
FIGURE 7: COMPARISON OF ROTATIONAL SPEED FOR THE 

MGT RUNNING WITH PURE METHANE 
 

At the beginning the MGT was running in a steady-state and 
producing 55 kW of power, then the demanded power was 
increased in a stepwise manner to 65, 80, 90, and 95 kW. The 

blue line in Figure 6 represents the measured values from the 
engine and the red line shows the model’s prediction. As it is 
clear in Figure 6, the model imitated the engine’s behavior under 
transient conditions, especially with rapid load fall-down and 
overshoots in stepping periods. Capturing these overshoots is 
important for identifying the critical conditions that occur under 
such transient load conditions. The rotational speed of the engine 
is presented in Figure 7, which shows fairly good agreement 
between the model predictions and the measured values. In these 
figures, the rotational speed of the engine is normalized by its 
nominal value (for design point) of 70,000 rpm. Although 
overshoots in speeds are captured by the model, their magnitudes 
are underestimated. The duration of simulation for this test was 
49 seconds, which was about 7% of the whole run duration.  

For the second manoeuvre, the MGT was operated with a 
mixture of methane and hydrogen with a volume ratio of 70/30. 
The test condition of this case included an ambient air 
temperature of 13.6℃ with the same atmospheric pressure and 
humidity as before. The mixed fuel was provided with a pressure 
of 8 bar and a temperature of 12℃. The unit was initially running 
at 50 kW under steady state conditions and then underwent 
stepwise load ramp-ups by 10 kW steps up to 100 kW. The 
power produced by the engine and the model predictions are 
presented in Figure 8, which indicates that the model’s transient 
behaviour was very similar to the engine up to 80 kW. However, 
for the last two steps certain deviations can be noticed. It seems 
that the operation of the engine with hydrogen-blended fuel is 
less stable at high power demands, which might be due to 
combustion instabilities that cannot be captured by this model.  

The same behaviour was noticed in the rotational speed 
(Figure 9), which showed good agreement up to 80 kW, but at 
higher power demands the model predictions deviated from the 
measurements in terms of overshoot magnitudes and delay times. 
For this simulation, 63 seconds were consumed by the model, 
which is about 6% of the manoeuvre time.  

As discussed in section 3.8, the logic behind the controller 
is to define the proper fuel mass flow rate and rotational speed 
for the engine in order to produce the demanded power while 
keeping the engine safe from high temperatures. This correlation 
is depicted in Figure 10. At a constant ambient temperature, both 
the rotational speed and fuel mass flow increased to produce 
higher power. Similar behaviour was observed for the engine 
running with a mixture of fuels, as shown in Figure 11.  

 

 
FIGURE 8: COMPARISON OF GENERATED POWER FOR THE 
MGT RUNNING WITH MIXED METHANE/HYDROGEN FUEL 
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FIGURE 9: COMPARISON OF THE ROTATIONAL SPEED FOR 
THE MGT RUNNING WITH MIXED METHANE/HYDROGEN 

FUEL 
 

 

 
FIGURE 10: ROTATIONAL SPEED AND FUEL MASS FLOW 

RATE IN DIFFERENT POWER MODES BY THE MGT RUNNING 
ON PURE METHANE 

It is worth noting that the rotational speeds for the same 
power outputs were different in the two manoeuvres. For 
instance, at 80 kW the engine driven with pure methane as fuel 
was rotating at 93.9% of its nominal value (predicted to be 94.2% 
by the model) as can be seen in Figure 10, while the engine 
running with mixed fuel rotated at 92.7% (Figure 11). This 
deviation was imposed by the controller and seems to be related 
to changes in ambient conditions rather than changes in the fuel 
composition. The same behaviour was noted with the engine 
running with the same fuel but at different ambient temperatures.  
 

 
FIGURE 11: ROTATIONAL SPEED AND FUEL MASS FLOW 

RATE IN THE MGT RUNNING WITH MIXED 
METHANE/HYDROGEN FUEL 

 

This variation in rotational speed was accompanied by 
changes in fuel flow rate, which was 5.06 g/s in the engine 
running with pure methane and 6.04 g/s in the blended fuel. This 
means that the total efficiency of the engine (Eq. 38) will 

increase with increasing ambient temperature, which was 
presented in the technical description of the CHP unit and is 
shown in Figure 12.  

𝜂090/< =
𝑊* +𝑄)H
𝑚̇!𝐿𝐻𝑉

	 (38) 

As is shown in Figure 12, the heat output decreased with 
higher ambient temperatures, while the total efficiency seemed 
to increase. This means that electrical efficiency increased with 
increasing temperatures. As is shown in these experiments, with 
lower ambient temperature more fuel (even with higher heat 
value in the case of this study) was consumed to produce the 
same power output. 

 

 
FIGURE 12: EFFECT OF AMBIENT TEMPERATURE ON HEAT 

OUTPUT AND TOTAL EFFICIENCY OF T100 PH [23] 
 

A comparison between steady-state results is provided in 
Table 4 and Table 5. For all the variables, the error of the model 
prediction is calculated by Eq. 39: 

 

𝐸𝑟𝑟𝑜𝑟	[%] =
𝑋391*< − 𝑋3*/.6&*3*;0

𝑋3*/.6&*3*;0
× 100	 (39) 

 

TABLE 4: COMPARISON OF EXPERIMENTAL DATA AND 
MODEL PREDICTIONS IN AN MGT RUNNING ON PURE 

METHANE 
𝑃𝑜𝑤𝑒𝑟	 55	𝑘𝑊		 65	𝑘𝑊	 80	𝑘𝑊	 90	𝑘𝑊	 95	𝑘𝑊	

𝑁7&/"	[%] 84.40 88.79 93.90 97.20 100.13 

𝑁7&/","&-*8[%] 84.28 88.61 94.18 97.40 99.16 

𝐸𝑟𝑟𝑜𝑟	[%] –0.142 –0.203 0.298 0.206 –0.969 

𝑚̇$	[𝑔/𝑠] 4.31 4.72 5.06 5.89 6.84 

𝑚̇$,"&-*8	[𝑔/𝑠] 4.33 4.76 5.11 5.85 6.88 

𝐸𝑟𝑟𝑜𝑟	[%] 0.464 0.847 0.988 –0.679 0.585 

𝑝9",,&'(	[𝑏𝑎𝑟] 3.05 3.44 3.80 4.11 4.27 

𝑝9",,&'(,"&-*8	[𝑏𝑎𝑟] 2.98 3.51 3.78 4.19 4.32 

𝐸𝑟𝑟𝑜𝑟	[%] –2.295 2.035 –0.526 1.946 1.171 

𝑇9",,&'(	[℃] 167 178 195 215 221 

𝑇9",,&'(,"&-*8	[℃] 164.23 180.12 194.07 214.01 220.57 

𝐸𝑟𝑟𝑜𝑟	[%] –1.659 1.191 –0.477 –0.460 –0.195 
 

The model seems to be accurate in the prediction of the 
variables, with less than 1% error in methane mass flow and 
rotational speed and 4.5% error for hydrogen mass flow. To 
assess the error margin in hydrogen mass flow, the 90 kW case 
is considered when there is a 0.01 g/s deviation in prediction. By 
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assuming 120,000 kJ/kg to be the lower heating value (LHV) of 
hydrogen, this deviation will cause a 1.2 kW difference in heat 
provided by the fuel, resulting in less than 0.1% deviation in the 
calculation of total efficiency of the engine at the design point 
(100 kW electrical power output with 30% electrical efficiency). 
Therefore, the hydrogen mass flow rate predictions are accurate 
enough for cycle performance assessments.  

 

TABLE 5: COMPARISON OF EXPERIMENTAL DATA AND 
MODEL PREDICTIONS FOR THE MGT RUNNING WITH MIXED 

METHANE/HYDROGEN FUEL 
𝑃𝑜𝑤𝑒𝑟	 50	𝑘𝑊		 60	𝑘𝑊	 70	𝑘𝑊	 80	𝑘𝑊	 90	𝑘𝑊	

𝑁7&/"	[%] 82.60 86.54 89.55 92.65 95.84 

𝑁7&/","&-*8[%]  82.98   86.11 89.34  92.57  95.78  

𝐸𝑟𝑟𝑜𝑟	[%] 0.460 –0.497 –0.235 –0.086 –0.063 

𝑚̇:;! 	[𝑔/𝑠] 4.03 4.49 4.96 5.75 5.97 

𝑚̇:;!,"&-*8	[𝑔/𝑠] 4.05 4.53 5.01 5.77 6 

𝐸𝑟𝑟𝑜𝑟	[%] 0.496 0.891 1.008 0.348 0.503 

𝑚̇;" 	[𝑔/𝑠] 0.20 0.22 0.25 0.29 0.30 

𝑚̇;","&-*8	[𝑔/𝑠] 0.21 0.23 0.26 0.30 0.31 

𝐸𝑟𝑟𝑜𝑟	[%] 4.545 4.000 3.448 3.333 4.545 

𝑝9",,&'(	[𝑏𝑎𝑟] 3.25 3.31 3.58 3.81 4.12 

𝑝9",,&'(,"&-*8	[𝑏𝑎𝑟] 3.15 3.40 3.62 3.86 4.09 

𝐸𝑟𝑟𝑜𝑟	[%] –3.077 2.719 1.117 1.312 –0.728 

𝑇9",,&'(	[℃] 162.18 167.78 177.07 189.09 200.54 

𝑇9",,&'(,"&-*8	[℃] 160.01 166.98 176.34 189.76 199.86 

𝐸𝑟𝑟𝑜𝑟	[%] –1.338 –0.477 –0.412 0.354 –0.339 
 

 
 
 
 

5. CONCLUSION 
This paper presents a comprehensive overview of a dynamic 

model for a fuel-flexible MGT that was developed in MATLAB 
Simscape. The infrastructures of the software for physics-based 
modelling were utilized to develop a model with fully transient 
forms of equations with minimal simplifying assumptions. The 
main points of the model construction process were presented 
including the measures undertaken to permit fuel-flexible 
simulations and adaptations of the component maps to the real 
engine. For high-fidelity purposes, in the mathematical 
calculation of the properties (such as thermal capacity) the flow 
composition is considered along with pressure and temperature. 
The controller of the engine is an important element and is 
modelled and described.  

The performance of the model was examined by transient 
manoeuvres of the actual engine running with pure methane and 
methane/hydrogen mixtures. The time-dependent parameters of 
the simulation are presented along with measured values, 
proving the prediction accuracy of the model for steady-state 
operation as well as transient conditions. Fairly good agreements 
were observed between the model predictions and the 
experimental measurements. Other than for high power outputs 
in mixed fuel cases, the model was able to capture the dynamic 
response of the engine in transient mode. With the accuracy of 
the predictions and speed of the simulation (less than 8% of the 

actual operation time), the model is assumed to be trustable for 
the process of cycle design or controller systems design, as well 
as for condition-monitoring purposes. In future work, the results 
from these experiments will be investigated to understand the 
effect of ingesting hydrogen on the behaviour of the engine at 
the component level.  
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ABSTRACT 
The future of decentralized power production with renewables as the main driver necessitates small-scale units such 

as micro gas turbines (MGTs) that are reliable and flexible in operation. Similar to large-scale gas turbines, MGTs operate 
based on the Brayton cycle, while providing added flexibility by variable rotational speed. To continuously monitor the 
condition of MGTs and maintain a reliable operation, an accurate model of the engine is required which predicts the 
expected operation of the engine in its healthy status.  

This work aims to develop a model for individual MGTs that is fast and accurate enough to be utilized for condition 
monitoring purposes. Due to the role of MGTs in the power generation system as backup for renewables, they operate 
frequently in part-load conditions to provide the remaining required power for the electric grid. Therefore, the model should 
provide accurate predictions for both design and off-design operations. In this paper, the development of an engine model 
and the extensive adaptation process are presented during which the characteristics of the gas turbine components are 
modified in order to meet the experimental data within a range of operational conditions. The adaptive approach is validated 
by the experimental results extracted from a test rig of a MGT unit such that the model can be subsequently used as a 
reliable tool for condition monitoring of that MGT.  

INTRODUCTION 
To guarantee the availability of power generation units such as micro gas turbines, a condition monitoring (CM) system 

for assessing operational health of the engine is required (Tahan et al. 2017). Manufacturers are adopting CM approach to 
optimize maintenance intervals and avoid unwanted shutdowns. A CM system monitors the performance of the engine by 
collecting the sensors’ data and assessing the health status of the components. The core element in a model-based CM 
system is a model of the so-called “healthy engine” that can predict the expected behaviour of the unit in which none of 
the components had endured any deteriorations (Cruz-Manzo et al. 2018). After the model is prepared, it will be 
implemented in the condition monitoring platform and deviations between model predictions and sensors’ data from the 
unit will be investigated to assess the health status of the engine. In this procedure, the healthy-engine model should be 
able to operate by same inputs as the real engine and provide the same information that is available through the sensors. 

Two main approaches are available to provide predictions for the healthy-engine: physics-based, and data-based. In 
physics-based approach, the engine is presented by component models connected to each other by applying the law of 
thermodynamics. Each component is modelled based on the characteristics of the components extracted from experiments 
(such as component maps) together with thermodynamic laws. In data-based approach, the model is constructed exclusively 
based on operational data extracted from the engine. In this approach, artificial intelligence methods will be used to 
construct and train the model, based on the data collected from the healthy engine.  
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Both physics-based and data-based models have their merits and shortcomings: the physics-based models are usually 
more complicated to construct as it is elaborated with models of each individual component. The components require 
characteristic curves or correlations that represents the behaviour of the flow passing through them. Whereas with data-
based model, no information about the components’ behaviour is required since the model is constructed based on black-
box assumption of the whole system. The efforts to build a physics-based model is rewarded by providing insights to engine 
behaviour by providing flow properties at each component’s inlet/outlet. Moreover, since predictions from the model are 
physics-informed, they can provide acceptable predictions for a range of operational conditions, while the data-based model 
fail to provide good predictions for the operational range that was not included in the training dataset.  

Even with a detailed physics-based model, it is common to see deviations of model predictions from real life engine 
data. The main reason is imperfect component models due to mismatches between employed maps and corelations, and the 
actual behaviour of the components. To overcome this issue, the components’ model should be tuned or “adapt” to real life 
components data.  

The adaptation approach has been pursued by researchers during past decades, to overcome the mismatches between 
experimental data and modelling maps of gas turbine components. Stamatis et al. introduced a scaling method where the 
search for best scaling factors is conducted to minimize the difference between model predictions and the experimental 
data (Stamatis et al. 1990). While this scaling method showed great improvement of modelling accuracy, Kong et al. (Kong 
et al. 2003) proposed a new adaptation algorithm based on the conventional scaling method. In their approach, first the 
scaling parameters were calculated based on the data from a real engine and then new component maps were constructed 
based on mathematical models. The proposed method was tested on modelling a turboprop which showed significant 
increase in the accuracy of prediction in comparison with the model based on traditionally scaled maps.  

A design-point adaptation approach was pursued by Li et al. (Li et al. 2006) to provide an accurate simulation of an 
industrial gas turbine by selection of parameters according to sensitivity analysis. The results of this work showed 
improvements in both simulation accuracy and reduction of the duration of adaptation. The work was further extended to 
perform multiple points adaptation of a model developed for a dual shaft aeroengine (Li et al. 2012b). While the results 
were satisfactory, it was declared that the outcome depended on defining proper range for each adaptation factors. 
Therefore, the adaptation process was improved by regression model between the prior scaling factors and off-design 
conditions. The regression coefficients were used to determine the search range for the multiple off-design point 
performance adaptation. The method was applied on a single shaft turboshaft which was proved to be accurate and faster 
than before since it avoided several try and errors, searching for correct parameter ranges (Li et al. 2012a). 

A semi-automated procedure was introduced by Rompokos et al. (Rompokos et al. 2020) where integrated tuning 
methods for components’ map were applied to adapt a computer model of a heavy-duty gas turbine in a range of operations. 
Other than map scaling, IGV corrections were applied, which resulted in increased accuracy in part-load conditions and 
providing trustable model for condition monitoring purposes. 
Most of the adaptation algorithms employs map scaling methods which is proved to be practical and accurate for gas turbine 
modelling purposes. Pursuing more elaborated approach on component maps, numerous studies have been conducted to 
analytically express the turbo component maps which can represent the nonlinear behaviour of these components 
(Tsoutsanis et al. 2013; Tsoutsanis et al. 2015; Gaitanis et al. 2021). The advantage of this approach is that adapting the 
correlations to actual experimental data is not bound to scaling and provides higher degree of freedom depending on the 
complexity of the correlation. 

In this paper, development of an accurate physics-based model of a micro gas turbine is presented. Empirical 
correlations are employed together with thermodynamic equations to provide components’ model. Proper adaptation 
parameters are implemented inside the component’s correlations and adaptation is performed to find the best set of 
parameters to increase the accuracy of the model in a range of operations. 

The rest of the paper is structured as follows: first, the developed model for this work is presented including the 
correlations implemented in each component, followed by the adaptation procedure based on the parameters introduce in 
modelling section. Finally the results of the adapted model are compared to the data from an actual engine and the 
improvements are investigated.  

DEVELOPED MODEL 
The developed model for the MGT system is a computer code written in Python language and is constructed based on 

connecting models for each of principal components of the engine. Each of the components are represented by the lumped 
assumption in which the flow condition at inlet and outlet are considered uniform. Required inputs for the solver are: 
demanded power and ambient conditions, namely: ambient pressure, ambient temperature and relative humidity.  

Values for fuel flow rate and rotational speed is initially guessed by the solver, as well as air mass flow rate at inlet to 
the engine. Then the simulation is started by entering the first component with fully determined flow condition at inlet: 
pressure and temperature from defined ambient condition and the guessed mass flowrate. The outlet condition is calculated 
based on the thermodynamic equations and behavioural correlations/maps of the component, and is passed as input to the 
next component. After a complete course of calculation is performed from the first component to the last one, the outlet 
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pressure is compared to ambient value. According to the error in outlet pressure, the guessed air mass flowrate is modified 
until convergence in pressure is achieved. This is the innermost loop of the code. Two other loops are present in the code 
in which fuel flowrate and rotational speed are the modifying parameter and output power and turbine outlet temperature 
(TOT) is the controlling parameters respectively. At each modification step of these loops, the Secant method has been 
implemented which assures fast convergence.   

The component models are defined as functions, in which flow properties at component inlets are input arguments, 
and the output arguments are outlet flow condition. Inside each component, principal thermodynamic equations are solved 
with steady-state assumption, together with the behaviour correlations. These correlations are often dependent on flow 
properties (e.g., heat capacity) which are functions of molecular composition as well as thermodynamic pressure and 
temperature. To accurately evaluate flow properties, the composition of the working fluid is evaluated inside each 
component. 

The composition of working fluid is humid air before the combustion chamber. By defining relative humidity, the 
actual composition of air is calculated based on the dry air composition and the ambient pressure. Detail calculation and 
formula can be found in (Banihabib and Assadi 2022). Downstream of combustor, the working fluid is a mixture of 
combustion products and the excess air. The molecular composition depends on the fuel type (composition), air 
composition and air/fuel ratio. The air/fuel ratio depends on the operational point, which imposes different inlet air flow 
rate and different fuel flow rate. Therefor the concentration of the fuel is defined (Eq. 1) and calculated for each simulation 
point: 

𝑥! =
𝑚̇!

𝑚̇ 	 (1) 

In above equation, 𝑚̇ is total mass flow rate. Knowing the air composition and the fuel concentration in the working 
fluid, the weight fraction of each element is calculated. 

𝐶"! = (𝑥#! , 𝑥$! , 𝑥%& , 𝑥'#! , 𝑥(#! , 𝑥)!#, 𝑥)**	 (2) 
The flow properties in each component are calculated based on the pressure and temperature of the flow: 

𝑘 = 𝑘(𝐶"! , 𝑇+*, 𝑐, = 𝑐,(𝐶"! , 𝑇+*, 𝑐- = 𝑐, − 𝑅	 (3) 

𝑀"! =	𝑀"!(𝐶"!*, 𝑅 = 𝑅(𝑀"!*, 𝑝+ = 𝜌𝑅𝑇+	 (4) 
The thermodynamic equations inside components are well-known mass, momentum and energy conservation which 

is common among all components. However, characteristic curves (maps) and correlations are specific to each component 
which requires adaptation to each specific engine. The adaptation procedure (which will be covered in the next section) is 
in fact calibration of these characteristic curves and correlations to better match with experimental data.  

The engine modelled in this work is AE-T100 which is a recuperated micro gas turbine manufactured by Ansaldo 
Energia. At design point, the engine produces 100 kW power with 30% electrical efficiency while running at 70,000 rpm. 
The cycle pressure ratio at this point is about 4.5 and the turbine inlet temperature is around 950°C. The engine is designed 
to operate with turbine outlet temperature not higher than 645°C. T100 PH version of this model is equipped with a 
bottoming heat exchanger which increases the total efficiency (fuel utilization factor) of the unit to 80%. More detailed 
information about this engine can be found in (Technical Description Microturbine Turbec T100).  

A schematic figure of the engine with the main components are presented in Figure 1. The flow at different location 
of the engine is distinguished by a number, which will be used inside correlations in following sections. The correlations 
are empirically extracted from several studies conducted on the same engine and presented as functions of flow properties. 
Inside the correlations, the tuning parameters are differentiated from the original correlations by the symbol “*”. Note that 
in all equations, the pressures and temperatures represent the total (stagnation) values, unless written with the index “s”, in 
which case the static (thermodynamic) value was intended. 

 

 
A Intake filter 
B Compressor  
C Turbine 
D Diffuser  
E Recuperator  
F Heat Exchanger 
G Generator 
H Combustor 

 

Figure 1 Schematic of the components in AE-T100 (PH) micro gas turbine 
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Intake Air Filter 
The air entering the engine passes through a filter to prevent small particles from entering to the compressor. This filter 

imposes a small pressure drop which can be correlated based on collected experimental data as a function of the pressure 
drop at design point (Björn Nyberg 2010), presented below: 

Δ𝑝./01 = Δ𝑝23*!!,./01 ×
𝑚̇5 ×5𝑇5

𝑝5
 (5) 

𝛥𝑝23*!!,./01 = 𝛥𝑝23*!!,./01∗ × 7𝛥𝑝5/(
𝑚̇5 ×5𝑇5

𝑝5
)	;

7*+
 (6) 

Incoming air circulates around the generator and the cooling water of auxiliary parts before entering the compressor, 
leading to temperature increase of the inlet air. A linear correlation between the air inlet temperature and increased value 
is extracted from the experiments, defined by the correlation below:  

Δ𝑇	./01 = Δ𝑇23*!!,./01∗ × Δ𝑇23*!!,./01𝑇5 + 	Δ𝑇./2,0,./01∗ × 	Δ𝑇./2,0,./01 (7) 
Three adaptation coefficients are implemented to adjust the pressure drop and the temperature increase in the flow as 

described in Eq. 6 and 7.  

Turbo Components  
The compression of the air in AE-T100 is conducted in a single stage centrifugal compressor, for which, characteristic 

behaviour of flow is presented through maps, represented with corrected physical parameters. The mass flow rate is 
corrected based on inlet pressure and inlet temperature, and the rotational speed is corrected based on the inlet temperature, 
as presented in Eq. 8. The maps are organized as isentropic efficiency based on pressure ratio and corrected mass flow rate. 
The rotational speed is illustrated with constant corrected speed lines. For adaptation purposes, two tuning factors are 
implemented as presented in Eq. 9 and 10. To implement the maps inside the developed computer model, the maps’ data 
are provided through 2D tables in 𝑓9̇,29,(𝑃𝑅,𝑁23&&) and 𝑓;,29,(𝑃𝑅,𝑁23&&). 

𝑚̇<,23&& = 𝑚̇<5𝑇</𝑝<, 𝑁23&&,29, = 𝑁/@𝑇<	, 𝑃𝑅29, = 𝑝=/𝑝<	 (8) 

𝑚̇<,23&& =	 𝑚̇∗
23*!!,29, × 𝑚̇23*!!,29, × 𝑓9,29,(𝑃𝑅29,, 𝑁23&&,29,)	 (9) 

𝜂.+,29, =	𝜂23*!!,29,∗ × 𝜂23*!!,29, × 𝑓;,29,(𝑃𝑅29,, 𝑁23&&,29,)	 (10) 
Similar correlations are employed for modelling single-stage radial turbine, in which the distribution of corrected mass 

flow rate and isentropic efficiency are provided via tabular data representing the performance map of the turbine. Two 
adaptation parameters to tune the turbine map are implemented as well (Eq. 12 and 13). 

𝑚̇>,23&& = 𝑚̇>5𝑇>/𝑝>, 𝑁23&&,0&? = 𝑁/@𝑇>	, 𝑃𝑅0&? = 𝑝>/𝑝@	 (11) 

𝑚̇>,23&& =	 𝑚̇∗
23*!!,0&? × 𝑚̇23*!!,0&? × 𝑓9,0&?(𝑃𝑅0&? , 𝑁23&&,0&?)	 (12) 

𝜂.+,0&? =	𝜂23*!!,0&?∗ × 𝜂23*!!,0&? × 𝑓;,0&?(𝑃𝑅0&? , 𝑁23&&,0&?)	 (13) 

Diffuser  
The gas leaving the turbine section flows into a diffuser before entering the hot side of the recuperator. In diffuser the 

flow-path area increases gradually to lower the flow velocity that was previously increased by the turbine impeller. An 
empirical equation from (Björn Nyberg 2010) is employed to model the pressure drop in diffuser while the temperature is 
assumed to remain constant. The dynamic term of pressure after the diffuser is neglected. For diffuser no adaptation is 
considered. 

𝑝A = 𝑝+,A	 = 𝛥𝑝23*!!,7.!! × (𝑝@ − 𝑝+,@* + 𝑝+,@ (14) 

𝛥𝑝23*!!,7.!! = 7
𝑝+,A − 𝑝+,@
𝑝@ − 𝑝+,@

;
7*+

 (15) 

Recuperator 
To model the recuperator, the cold side and hot sides are defined as two separated functions while the heat balance 

between two flow-paths is the connecting correlation between them.  The effectiveness of the recuperator is defined based 
on the temperature increase in the cold side and the maximum temperature difference at inlets of the component: 

𝜀&2, =
𝑇B − 𝑇=
𝑇A − 𝑇=

	 (16) 

According to (Hohloch et al. 2010) the effectiveness of recuperator increases with rotational speed up to its maximum 
and then decreases. Here, instead of correlation with MGT rotational speed, same pattern but as a function of flow mass 
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flow rate is assumed, as the air flow rate to the engine has a linear dependency to the engine rotational speed. Based on the 
experimental data collected from same model of engine in (Hohloch et al. 2010), a conditional function is assumed for the 
recuperator effectiveness where there are two linear correlations, for mass flow rates below and above the optimum value: 

𝜀&2, = C
𝜀3,0,&2,∗ × 𝜀3,0,	&2, − 𝜀23*!!5,	&2,∗ × 𝜀23*!!5,	&2,	(𝑚̇= − 𝑚̇3,0,&2,

∗ × 𝑚̇3,0,&2,*, 		𝑚̇= < 𝑚̇3,0,&2,

𝜀3,0,&2,∗ × 𝜀3,0,	&2, + 𝜀23*!!<,	&2,∗ × 𝜀23*!!<,	&2,	(𝑚̇= − 𝑚̇3,0,&2,
∗ × 𝑚̇3,0,&2,*, 		𝑚̇= > 𝑚̇3,0,&2,

	 (17) 

Four adaptation parameters have been implemented in recuperator effectiveness correlations, two for the optimum 
mass flow rate and the effectiveness and two for the slope of the lines. 

Temperature rise in the cold side is calculated based on the effectiveness, from which the amount of absorbed heat is 
defined. Extracted heat from hot side is equal to increase of the value in the cold side plus a fraction that is considered as 
wasted to the surrounding. The heat loss coefficient is equipped with an adaptation coefficient: 

𝑄&2,,2+ = 𝑄&2,,C+(1 + 𝑄D3++,&2,∗ × 𝑄D3++,&2,*	 (18) 
The pressure loss on both cold and hot sides are calculated based on empirical correlations with dependency on mass 

flow rate, pressure and temperature, described below (Björn Nyberg 2010). Both correlations are tuned with adaptation 
coefficients. 

𝑝B = 𝑝= − 𝑝= × H
𝑚̇=

𝑝=
I
<

×
𝑇B5.>>

𝑇=F.>>
× 𝛥𝑝23*!!,&2,,	2+∗ × 𝛥𝑝23*!!,&2,	2+	 (19) 

𝑝G = 𝑝A − 𝑝A × 𝑚̇<
A × 𝑇A × 𝛥𝑝23*!!,&2,,	C+∗ × 𝛥𝑝23*!!,&2,,	C+	 (20) 

Combustor  
The pressure loss in the combustor is a function of mass flow rate, inlet pressure and inlet and outlet temperature of 

the gas in the component. The correlation below is extracted from the experimental data which counts for pressure loss due 
to both combustion air and dilution air (Björn Nyberg 2010): 

𝑝> = 𝑝B − (𝛥𝑝23*!!,29?∗ × 𝛥𝑝23*!!,29? × 𝑝B × 7
𝑚̇B5𝑇B
𝑝B

;
<

× 71 + 𝛥𝑝23/+0,29? × H
𝑇>
𝑇B
− 1I; (21) 

The outlet temperature of the combustion product is calculated via an energy balance, where the inlet heat is calculated 
based on fuel mass flow rate and the enthalpy of the inlet air to the combustor.  

𝐻> 	= 	 (𝑚̇! × 𝐿𝐻𝑉	 +	𝑚̇B 	× 	ℎB* ×	(1	 −	𝑄D3++,29?∗ × 𝑄D3++,29?) (22) 
To calculate the temperature at combustor outlet, the heat capacity of the flow is calculated based on the molecular 

composition of the combustion products (diluted by the excess air) and static temperature (Eq. 3). Hence, an iterative 
procedure is conducted to accurately calculate the turbine inlet temperature. 

𝑇> =
𝐻>

𝑚̇> × 𝑐,(𝐶"!,>, 𝑇+,>*
 (23) 

Heat Exchanger 
The temperature of the flow leaving the hot side of the recuperator is still high enough to warm-up water that can be 

utilized for district heating purposes. The pressure drop inside the gas-water heat exchanger is extracted from empirical 
data available from (Björn Nyberg 2010) which provides the pressure drop values versus gas mass flow rate.  

Shaft 
The AE-T100 micro gas turbine is designed as a single-shaft unit in which mechanical components and generator 

rotate with same speed. Newton’s 2ⁿᵈ law for the solid shaft results in balance of the torque imposed by mechanical 
components and the torque from generator in steady state conditions. A fraction of transmitted torque by turbo components 
is consumed to overcome losses such as friction: 

𝑇9*2C = 𝑇0&? − 𝑇29, (24) 
𝑇9*H2C − 𝑇*D*2 − 𝑇!&.2 = 𝐼𝜔̇ = 0	 (25) 

The loss of torque has been evaluated by the wasted power due to frictions and the unideal conversions in the generator: 
𝑇9*2C𝜔 − 𝑇*D*2𝜔 = 𝑇!&.2𝜔 (26) 
𝑃0I&?3 − 𝑃*D*2 = 𝑃D3++	 (27) 

According to (Henke et al. 2017) the power loss can be formulated by Eq. 29. For the adaptation purposes, only the 
value of intercept is multiplied by a tuning parameter.  

𝑃D3++ = 𝑃!&.2 + 𝑃2/-& , 𝑃!&.2 = 𝑃23*!!,!&.2	𝜔, 𝑃&*9H./ = 𝑃0I&?3 − 𝑃!&.2	 (28) 
𝑃2/-& = 𝑃	23*!!5,2/-&𝑃&*9H./= + 𝑃23*!!<,2/-&𝑃&*9H./< + 𝑃23*!!=,2/-&	𝑃&*9H./ + 𝑃./2,0,2/-&∗ 𝑃./2,0,2/-& (29) 
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All coefficients and constants of the empirical correlations are presented with their values in Table 1 and an overview 
of implemented adaptation parameters is provided in Table 2.  

Table 1 Components’ modeling coefficients 
Component Eq. # Coefficients 

intake 5, 7 Δ𝑝!"#$$,&'() = 	16.72 × 10*	𝑚𝑠√𝐾, Δ𝑇!"#$$,&'() = 0.11, Δ𝑇&'!+(,&'() = −30.46𝐾 
diffuser 14 𝛥𝑝!"#$$,,&$$ = 0.64 

recuperator 17, 18 ε"+(,	.!+ = 0.93	, 𝑚̇"+(,.!+ = 0.63𝑘𝑔/𝑠, ε!"#$$/,	.!+ = 0.14	𝑠/𝑘𝑔, ε!"#$$0,	.!+ = −0.4	𝑠/𝑘𝑔, 𝑄1"22,.!+ = 0.02 
combustor 21 𝛥𝑝!"#$$,!34 = 	2 × 1051/𝑚0𝑠0𝐾, 𝛥𝑝!"'2(,!34 = 0.2, 𝑄1"22,!34 = 0.015 

shaft 28, 29 𝑃!"#$$,$.&! = 1.28	𝑊/𝑠, 𝑃	!"#$$/,!'6. = −4.48 × 107/0	1/𝑊0, 𝑃!"#$$0,!'6. = 2.67 × 1075	1/𝑊, 𝑃!"#$$8,!'6. = 0.0812, 𝑃&'!+(,!'6. = 3473𝑊 
 

Table 2 Adaptation parameters 
Component Eq. # No. of Parameters Adaptation Parameters 

intake 6, 7 3 Δ𝑝!"#$$,&'()∗ , Δ𝑇!"#$$,&'()∗ , Δ𝑇&'!+(,&'()∗  
compressor 9, 10 2 𝑚̇∗

!"#$$,!3+, 𝜂!"#$$,!3+∗  
turbine 12, 13 2 𝑚̇∗

!"#$$,(.4, 𝜂!"#$$,(.4∗  
recuperator 17, 18, 19, 20 7 𝑚̇"+(,.!+

∗ , ε"+(,.!+∗ , ε!"#$$/,	.!+∗ 	ε!"#$$0,	.!+∗ , 𝑄1"22,.!+∗ , 𝛥𝑝!"#$$,.!+,	!2∗ , 𝛥𝑝!"#$$,.!+,	:2∗  
combustor 21, 22 2 𝛥𝑝!"#$$,!34∗ 𝑄1"22,!34∗  

shaft 29 1 𝑃&'!+(,!'6.∗  

METHODOLOGY OF ADAPTATION 
While the developed model presented in previous section is capable of predicting engine behaviour, the accuracy of 

each prediction point is dependent on how the characteristic curves and correlations match the behaviour of the components 
in an actual engine. In most cases, the performance of the real engine shows deviation from those predefined characteristics 
which can be due to one or several of the reasons listed below: 
1. Most of the characteristic maps and correlations are extracted from tests of isolated components. These results can be 

different from the integrated engine. One reason for such deviation is that even a sophisticated test stand fails to provide 
exact flow property distribution that occur in a real engine.  

2. In some cases, the maps are generated by computer for the points where there is insufficient experimental data 
available. For such points, interpolation and extrapolations are employed which can be different from actual 
experimental results.  

3. Some physical properties that are involved in the maps might be difficult to measure (e.g. high temperatures), in which 
calculation will be used to fill the gap and therefore causing calculation error. 

4. The accuracy of measurements during the component tests can affect the accuracy of the generated map, which can 
lead to deviations.  

5. If the characteristic maps are generated from measurements in an engine, some deviations can be observed compared 
to other engines, due to manufacturing tolerances. 

6. Even if the maps were accurate at certain time, aging of the engine and several thousands hours of operation can cause 
small deformations which created deviation of performance from previously accurate map. 
To utilize the model in condition monitoring platform, it is necessary to calibrate it with the experimental data from 

the healthy engine, to avoid misclassification of aforementioned deviations as engine faults. The calibration of components 
characteristics with actual engine data is called model adaptation.  

Model adaptation can also be helpful in the cases that actual maps of the components (even imperfect version) are not 
available since they are considered proprietary to the manufacturer. In those cases, maps from similar components can be 
implemented in the model and then modified by proper adaptation procedure.  

The process of adaptation starts with defining adequate adaptation coefficients in characteristics of different 
components. These coefficients must be able to calibrate the component behaviour while retaining the overall behavioural 
pattern. The adaptation parameters will be modified so that the prediction of the integrated model reach closer to the 
experimental data from the actual engine. Therefore, the whole process can be defined as an optimization problem: 

𝑋3,0 = 	𝑎𝑟𝑔𝑚𝑖𝑛 WX
𝛼.

Δ𝑌.,&*!𝑛
	X[𝑌*J,,K − 𝑌937*D,K(𝑋)[
/

KL5

9

.L5

\ (30) 

In the equation 30 above, 𝑋 represents the set of adaptation parameters and 𝑌 includes the target properties to assess 
the adaptation of the model to experimental data. By definition of objective function as summation of errors on different 
target parameters, multiple objectives of the optimization (i.e. the multiple targets), are reduced to a single value. Mean 
absolute error (MAE) for each of target parameter extracted from the model and from different operation points (𝑛 points) 
are then normalized with a reference error value (Δ𝑌.,&*!). By implementing weights (𝛼.) for each target parameter, the 
importance of each target parameter is defined. The optimum set of adaptation parameters will minimize this objective 
function. 
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RESULTS AND DISCUSSION 
To examine the presented methodology, adaptation of the developed model to experimental data available from a test 

rig of AE-T100 is performed. The test rig is at Paul Scherrer Institute (PSI), Switzerland, which is installed and equipped 
with additional sensors for research purposes. The engine with principal flow-based components is presented in Figure 2. 
In Table 3, an overview of available data from the engine is presented, which shows the built-in measurements and the 
additional ones.  The numbering of the parameters used is the same as in Figure 1. 
 

 
Figure 2 AT-T100 at PSI with components from outside (left), engine inside with components (right). 

The right picture is from (ANSALDO ENERGIA)   
 

Table 3 Flow-path measurements in the MGT 
 
 
 
 
 
 
 
 

Other than main flow-path measurements provided in Table 3, cycle measurement are available from built-in sensor, 
such as shaft rotational speed (𝑁), produced power (𝑃) and fuel flow rate (𝑚̇!).  

The data log from the engine includes a complete envelop of operation, from start-up to load changes and to shut down 
and hot restarts. Since the model of the engine is developed based on steady-state assumptions, only steady state data points 
from the experiments were extracted to be employed in model adaptation process. From all logs of sensors collected from 
running the engine over 24 days, about 10,800 operation points were proved to be steady state. Since running the model 
for all these points takes long time, a smaller subset was chosen randomly, which is representative for the whole dataset. 
The 100 data points chosen for adaptation purpose is well distributed in terms of power range and ambient conditions. The 
distribution for ambient condition is shown in Figure 3. The produced electrical power by engine is distributed between 70 
kW to 110 kW. Note that over 100 kW electrical power production albeit in the data, the manufacturer does not recommend 
operating the engine with that power rate.  

The adaptation is performed in two separate steps to avoid conducting high dimensional optimizations with high 
calculation costs. Since the models for recuperators cold side and hot side are convoluted with each other (Eq.16 & Eq.18), 
the only possible separating point is the outlet of the compressor. Intake and compressor are adapted in the first step (5 
parameters) and the remaining 12 parameters are adapted in the second step.  

For each adaptation parameter, proper bound is defined by verifying feasibility of the results from the model at max 
and min values. The first step is conducted with objective function, based on pressure and temperature after intake (𝑝<	&	𝑇<) 
and compressor (𝑝=	&	𝑇=), as shown in Eq. 31. For the second step, the temperature of air after cold side of the recuperator 
(𝑇B), the turbine outlet temperature (𝑇𝑂𝑇) and the net power output (𝑃) is chosen as target parameters for the adaptation 
(Eq. 32). All errors are optimized with a normalized value and the weight factors. The weights are chosen based on the 
importance of each objective parameter and also through a try and error procedure, searching for the best weight set that 
guides the optimization to reduce the errors for each objective parameter down to their accepted tolerance. Since the data 
from experiment are noisy, even after noise cancelation, mean absolute error is chosen so that the objective function will 
be less affected by the presence of noise. The units used in equations below are kW for power, Celsius for temperatures 
and bar for pressure (absolute values). The optimization problem is solved with genetic algorithm embedded in SciPy 
library (Virtanen et al. 2019). 

 

Air Inlet

Heat 
Exchanger

Exhaust

Ventilation Intake Filter

RecuperatorCombustor

Compressor
&

Turbine

Location Description Built-in Measurements Additional Measurements 
1 Engine inlet 𝑇! 𝑅𝐻 
2 After inlet air filter Δ𝑝!"# 𝑝#, 𝑇# 
3 After compressor - 𝑝$, 𝑇$ 
4 After recuperator cold side - 𝑇% 
7 After diffuser 𝑇&	(𝑇𝑂𝑇) - 
9 Engine outlet 𝑇' - 
10 Before heat exchanger cold side 𝑇!( - 
11 After heat exchanger cold side 𝑇!! - 
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Figure 3 Distribution of ambient pressure, ambient temperature and relative humidity in dataset used 

for adaptation 

𝑂𝐹! =
0.05

0.001 × 100	*+(𝑝#))*+,- − (𝑝#)./0)1,-+
!((

-2!

+
0.1

0.1 × 100	*+(𝑇#))*+,- − (𝑇#)./0)1,-+
!((

-2!

+
0.5

0.1 × 100	*+(𝑝$))*+,- − (𝑝$)./0)1,-+ +
0.15

2.0 × 100	*+(𝑇$))*+,- − (𝑇$)./0)1,-+
!((

-2!

!((

-2!

 

(31) 

𝑂𝐹< =
0.1

2 × 100	X[(𝑇B)*J,,K − (𝑇B)937*D,K[
5FF

KL5

+
0.2

2 × 100	X[(𝑇𝑂𝑇)*J,,K − (𝑇𝑂𝑇)937*D,K[
5FF

KL5

+
0.2

2 × 100	X[(𝑃)*J,,K − (𝑃)937*D,K[
5FF

KL5

 

(32) 

To start the optimization process, initial population was chosen randomly, with 3 times the number of adaptation 
parameters. Mutation is imposed during the optimization to avoid convergence to local minimum. The evolution of 
objective function for the second step is shown in Figure 4 as an example. During each optimization step, uneven number 
of model runs have been conducted. For instance, at first optimization iteration, the simulation ran for 72 times over 100 
data points, which means 7200 times of calling and running the model. Average time for model run is 0.3 seconds which 
resulted 36 minutes for the first iteration of optimization, however the number of model runs is decreased as the 
optimization proceeds. Duration of whole process was 8 hours and 27 minutes. For the first adaptation step only 7 iterations 
of optimization were conducted which took less than 3 hours, as there was only 5 parameters to optimize. In total, the 
model with 17 adaptation parameters was adapted with less than 11 hours of run.  

The bounds specified for each of the adaptation parameters with their final adapted values are presented in Table 4. 
Since the final optimized values lie between the maximum and minimum bounds, adequacy of specification of the bounds 
is reassured.  

 
Figure 4 Objective function during adaptation step 2. 
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Table 4 Adaptation parameters with bounds, associated objective function and optimum values 
No. Parameter Bound Adapted value Objective Function No. Parameter Bound Adapted value Objective Function 
1 Δ𝑝!"#$$,&'()∗  (0.50, 2.00) 1.735 𝑂𝐹/ 10 𝜂!"#$$/,	.!+∗  (0.80, 1.20) 0.864 𝑂𝐹0 
2 Δ𝑇!"#$$,&'()∗  (0.50, 2.00) 1.051 𝑂𝐹/ 11 𝜂!"#$$0,	.!+∗  (0.80, 1.20) 0.900 𝑂𝐹0 
3 Δ𝑇&'!+(,&'()∗  (0.50, 2.00) 1.503 𝑂𝐹/ 12 𝑄1"22,.!+∗  (0.05, 5.00) 2.612 𝑂𝐹0 
4 𝑚̇∗

!"#$$,!3+ (0.50, 2.00) 1.001 𝑂𝐹/ 13 𝛥𝑝!"#$$,.!+,	!2∗  (0.50, 3.00) 2.901 𝑂𝐹0 
5 𝜂!"#$$,!3+∗  (0.50, 2.00) 0.977 𝑂𝐹/ 14 𝛥𝑝!"#$$,.!+,	:2∗  (1.00, 3.00) 2.719 𝑂𝐹0 
6 𝑚̇∗

!"#$$,(.4 (0.70, 1.20) 1.007 𝑂𝐹0 15 𝛥𝑝!"#$$,!34∗  (0.08, 1.70) 1.029 𝑂𝐹0 
7 𝜂!"#$$,(.4∗  (0.70, 1.20) 1.046 𝑂𝐹0 16 𝑄1"22,!34∗  (0.10, 5.00) 2.769 𝑂𝐹0 
8 𝑚̇"+(,.!+

∗  (0.80, 1.10) 1.04 𝑂𝐹0 17 𝑃&'!+(,!'6.∗  (0.10, 2.00) 0.796 𝑂𝐹0 
9 𝜂"+(,.!+∗  (0.80, 1.05) 1.030 𝑂𝐹0      

 
To evaluate the performance of the adapted model, another set of 100 points were chosen from the steady state dataset, 

again assuring that it covers a good range of power and ambient condition by choosing randomly. An overview of model 
prediction errors (both MAE and maximum) for target parameters before and after adaptation is presented in Table 5. By 
looking at the error values associated with the adapted column, the maximum prediction error of power is less than 2 kW 
which is fairly accurate for an engine with 100 kW baseload power and minimum of 50 kW at part-load operation. Less 
than 5˚C of maximum error is achieved for TOT, however the maximum error for T4 is close to 10˚C. The reason behind 
this is the implemented correlation for heat transfer in the recuperator.  

 
Table 5 Model prediction error for target parameters before and after adaptation 

No. Parameter 
Original Model Adapted Model 

MAE Absolute of Maximum Error MAE Absolute of Maximum Error 
1 𝑝0 0.0025	bar 0.0027	bar 0.0010	bar 0.0012	bar 
2 𝑇0 275.99	˚C 330.83˚C 0.16	˚C 0.64	˚C 
3 𝑝8 0.0634	bar 0.1534	bar 0.043	bar 0.069	bar 
4 𝑇8 1.74	˚C 5.20	˚C 0.27	˚C 0.86	˚C 
5 𝑇; 269.69˚C 323.07	˚C 3.54	˚C 9.74	˚C 
6 𝑇𝑂𝑇 275.99	˚C 330.83˚C 1.79	˚C 4.94	˚C 
7 𝑃 30.60	kW 41.80	kW 0.66	kW 1.67	kW 

 
As discussed in “Developed Model” section, the correlation employed for modelling the recuperator efficiency is 

inspired by the results presented in (Hohloch et al. 2010), shown in view (a) of Figure 5 with green markers. The 
effectiveness of the adapted recuperator is presented in view (b), which has a maximum value and two linear correlations 
with the mass flow, given the linear relation between rotational speed and air mass flow rate. In view (c) of Figure 5, the 
actual error for T4 is presented (model prediction minus experiment). It can be seen that the difference with experiment is 
low near the optimum mass flow rate but increases when the mass flow rate gets far from the optimum. This can be 
explained by looking at the data from view (a), where it seems that green marker points show parabolic behaviour on two 
sides of the optimum mass flow rate, while the model assumption is linear. It is anticipated that modifying the correlation 
to two parabolic correlations will increase the accuracy, however it will increase the number of adaptation parameters 
further and hence increases the time required for the optimization.  

Figure 6 presents an overview of adaptation results, for target parameters of the second step of adaptation, namely 
power, temperature at outlet of the cold side of the recuperator and the turbine outlet temperature. As it is obvious from the 
left side figures, the model prediction was far from experimental data at the beginning. The adapted model predictions are 
depicted on the right side of Figure 6 which show a satisfactory compliance with experimental data. The results from before 
adaptation has high errors, mainly due to correlations for the components were extracted from different works and 
references, which were derived from using data collected from different engines. However, the configuration of the 
correlations was proper and compliant with the component behaviour since by tuning the coefficients, a high accuracy of 
prediction is achieved. 

By looking at the errors reported in Table 5 and predicted values shown in Figure 6, accuracy of TOT prediction is 
higher than T4, even though it is expected that errors of T4 prediction will be destructive for TOT as well. It seems that the 
adaptation of turbine maps compensated for high T4 errors. Even so, by looking at Figure 6 it is obvious that points with 
high T4 errors have led to high TOT errors as well (for example, the points for power output higher above 105 kW).  
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(a) 

 

  
(b) (c) 

Figure 5 Temperature data and effectiveness of recuperator reported in (Hohloch et al. 2010) (a), 
effectiveness of adapted recuperator in the current work (b), error of T4 predict in current work (c). 

 

  

  

  
Figure 6 Model prediction and experimental data for power, TOT and T4. Left figures are from the 

model before adaptation and right figures are from the adapted model. 
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CONCLUSION 
In this paper a comprehensive overview of the development of a computer model for a micro gas turbine operating in 

steady-state condition is provided. The code is constructed with lumped assumption for all of the principal gas turbine 
components, employing thermodynamic equations and empirical correlations to model each components behaviour. Proper 
adaptation parameters were implemented during the modelling which led to a total number of 17 adaptation parameters.  

The adaptation process was conducted through two separate courses of optimization, employing a genetic algorithm 
method. At each course of optimization, a number of parameters were tuned to decrease the error between model predictions 
and experimental data collected from an MGT test rig. The results showed high accuracy of the adapted model which 
proves the suitability of the employed method, to provide an accurate model that can be utilized for condition monitoring 
purposes. For further improvements, a more flexible correlation for the modelling of the recuperator is expected to improve 
the accuracy of the predictions even more, however at the expense of increased computational cost.  

NOMENCLATURE 
Alphanumeric Variables 
𝐶 Molecular composition vector 𝑛 Number of operation points 
𝑐- Specific heat of gas at constant volume (J/kg K) 𝑝 Pressure (Pa) 
𝑐, Specific heat of gas at constant pressure (J/kg K) 𝑄 Heat exchange (J) 
ℎ Specific enthalpy (J/kg) 𝑅 Specific gas constant (J/kg K) 
𝑘 Thermal conductivity (W/mK) 𝑇 Temperature (K) 
𝑀 Molar mass (g/mol) 𝑋 Adaptation parameters 
𝑚 Number of target parameters for adaptation 𝑥 Weight coefficient (kg/kg) 
𝑚̇	 Mass flow rate (kg/s) 𝑌 Measurements from the MGT 
𝑁	 Absolute or relative rotational speed (rpm or %)   
Greek Symbols 
𝛼 Weight factor inside objective function 𝜌 Density (kg/m3) 
𝜀 Effectiveness (-)  𝜔 Rotational speed (rad/s) 
𝜂 Efficiency (-)    
Indices 
𝑐𝑚𝑏 Combustor ℎ𝑠 Hot side 
𝑐𝑚𝑝 Compressor 𝑖𝑛𝑐𝑝𝑡 Intercept 
𝑐𝑛𝑣𝑟 Conversion 𝑖𝑠 Isentropic 
𝑐𝑜𝑒𝑓𝑓 Coefficient 𝑖𝑛𝑡𝑘 Intake 
𝑐𝑜𝑟𝑟 Corrected 𝑚𝑒𝑐ℎ Mechanical 
𝑐𝑠 Cold side 𝑜𝑝𝑡 Optimum 
𝑑𝑒𝑠 Design 𝑟𝑐𝑝 Recuperator 
𝑑𝑖𝑓𝑓 Diffuser 𝑟𝑒𝑓 Reference  
𝑒𝑙𝑒𝑐 Electrical  𝑠 Static 
𝑓 Fuel 𝑡𝑟𝑏 Turbine 
𝑓𝑟𝑖𝑐 Friction 𝑤𝑓 Working fluid, either air or flue gas 
Abbreviations 
CM Condition monitoring PR Pressure ratio 
LHV Lower heating value PSI Paul Scherrer Institute 
MAE Mean absolute error RH Relative humidity 
MGT Micro gas turbine TOT Turbine outlet temperature 
PH Power and heat   
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A B S T R A C T   

Decarbonizing offshore oil and gas fields is crucial in the global fight against climate change. To achieve this 
objective, the offshore oil and gas industry has embraced innovative energy systems, including microgrids that 
seamlessly integrate renewable energy sources like floating wind turbines. This study presents a comprehensive 
investigation into an integrated energy management system for an offshore microgrid, encompassing three 
platforms and a floating wind farm, along with green hydrogen production and storage facilities. 

The operational decision-making process for such a complex microgrid, involving numerous assets, presents 
notable challenges. To address this, a sophisticated smart management system is employed, enabling efficient 
optimization with advanced forecasting capabilities to identify the most cost-effective and environmentally 
friendly version of the microgrid’s operation. To overcome the intricacies of optimization and computational 
constraints, a novel hybrid optimization approach, with a platform-centric strategy, is utilized. Leveraging real- 
world operational data, the study harnesses an innovative online optimization method fortified with state-of-the- 
art AI algorithms. 

The results of the optimization are benchmarked against a rule-based operation, wherein no formal optimi
zation occurs, but the most economically viable decisions are made. The findings underscore the effectiveness of 
the developed optimization method, leading to a significant 16% reduction in operational costs and carbon-based 
emissions compared to the rule-based approach. 

This study effectively demonstrates the real-world applicability of the developed method by applying and 
testing the smart management system on an actual offshore platform with minimal simplifications. The inves
tigation provides valuable evidence of the method’s adaptability to complex operational scenarios, highlighting 
its potential for practical implementation in the offshore oil and gas industry.   

1. Introduction 

The extraction and processing of fossil fuels significantly impact the 
release of greenhouse gases (GHGs), highlighting the urgency to find 
effective strategies for minimizing these emissions and achieving a 
carbon-neutral society. Offshore facilities rely heavily on gas turbines 
(GTs) for power generation, using natural gas or diesel oil as fuels, 
thereby being the primary sources of CO2 and NOx emissions. According 
to a report, in 2022, GTs accounted for 81% of CO2 emissions generated 
by petroleum activities in the Norwegian Continental Shelf (NCS) 
(Norwegian Petroleum Directorate, 2023). The power required on oil 
and gas (O&G) platforms ranges from 10 MW to several hundreds of 

MW, depending on factors like temperature, pressure, and field prop
erties (Polleux et al., 2022). To meet this demand GTs coupled with 
electric generators operate by burning natural gas or diesel oil (Zhang 
et al., 2018). 

Dependence on GTs for power generation in offshore O&G facilities 
significantly amplifies environmental consequences. The continuous 
release of CO2 intensifies the global issue of climate change (Hachem 
et al., 2022), setting off a series of effects. These include the gradual 
increase in global temperatures, rising sea levels, and disruptions to 
ecosystems. The long-term consequences of GHG emissions not only 
affect the local marine environments around offshore installations but 
also contribute to broader climate shifts (Grasso, 2019), underscoring 
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the need for a comprehensive and globally oriented response (Interna
tional Energy Agency, 2020). In response to environmental concerns, 
the offshore O&G industry is experiencing a transformative shift driven 
by evolving regulations, societal pressures, and a growing recognition of 
its environmental footprint. International efforts like the Paris Agree
ment illustrate the joint commitment to reducing emissions and con
trolling global warming (Haszeldine et al., 2018). The International 
Maritime Organization and its Energy Efficiency Existing Ship Index 
regulations demonstrate global initiatives to limit emissions in the 
maritime sector, which also influence offshore operations (Watson, 
2020). 

Norway has been a pioneer in promoting environmental awareness 
and reducing GHG from the O&G sector. In 1991, Norway introduced a 
CO2 tax of approximately 40 €/ton. Over time, the implementation of 
this policy has resulted in operators on the NCS now facing a combined 
CO2 tax of 52 €/ton, which is expected to increase to more than 70 €/ton 
by 2040 due to the tightening of regulatory frameworks in Europe 
(Oliveira-Pinto et al., 2019). The European Union Trading System (ETS), 
created in 2005, has also significantly promoted environmental aware
ness, with current ETS prices around 5 €/ton of CO2 (Oliveira-Pinto 
et al., 2019). As a result, the increasing emissions of GHGs not only pose 
environmental concerns but also result in significant financial penalties. 
Therefore, improving the energy management of offshore facilities is 
becoming an economic driver for the industry (Oliveira-Pinto et al., 
2019). Particularly in Norway, where the cost of CO2 emissions stem
ming from natural gas utilization in petroleum fields is notably high at 
approximately 2400 NOK/ton of natural gas (equivalent to about 214 
€/ton) under the 2023 regulatory framework (“Tax rates in Norway), 
field operators have shown keen interest in exploring solutions to reduce 
O&G platform emissions. 

One of the strategies embraced by O&G facilities in Norway to attain 
sustainability and decrease emissions is adopting onshore power sour
ces. Given that a substantial portion of onshore power in Norway is 
derived from renewable sources (International Energy Agency, 2022), 
this approach is gaining momentum. Currently, 16 fields have either 
already implemented or are planning to use this technology (Norwegian 
Petroleum Directorate Professor Olav Hanssens and vei, 2020), which is 
projected to account for around 45% of total O&G production on the 
continental shelf (Norwegian Petroleum Directorate Professor Olav 
Hanssens and vei, 2020). This shift towards power from land solutions is 
expected to significantly reduce petroleum-related emissions in Norway, 
avoiding approximately 3.2 million tons of CO2 emissions 
annually-equivalent to a quarter of the total emissions from the petro
leum sector in 2019 (Norwegian Petroleum Directorate Professor Olav 
Hanssens and vei, 2020). 

Another avenue showing promise in mitigating emissions within the 
offshore sector is CO2 capture and storage (CCS) from turbine exhaust. 
Despite its potential, the practical implementation of this method on 
platforms presents intricate logistical challenges that necessitate careful 
consideration. The need for substantial infrastructure in proximity to the 
gas turbine, combined with spatial constraints on these platforms, 
complicates the approach (Roussanaly et al., 2019). Consequently, 
exploring innovative solutions characterized by compactness and 
reduced weight becomes essential, bypassing the hurdles posed by 
spatial limitations and heavy equipment installation (Anekwe et al., 
2023). Despite the challenges, significant progress has been achieved in 
implementing CO2 capture from turbine exhaust on offshore platforms, 
exemplified by the United Kingdom and Norway (“Carbon capture and 
storage, 2023). This uptake validates the technology’s feasibility in the 
offshore environment. Other than Europe, the initiatives in offshore 
carbon dioxide storage in regions such as the United States, Japan, and 
Australia, underscore a commitment to safe and environmentally 
responsible storage, complemented by their respective regulations and 
policies (Luo et al., 2023). 

The integration of renewable energy sources and alternative power 
supply methods is another avenue to address the challenges of 

sustainable offshore operations. This approach offers a multifaceted 
solution to the challenges of sustainable offshore operations. Renewable 
energy sources, including wind, solar, and wave energy, have gained 
traction as effective tools to reduce the carbon footprint of offshore O&G 
platforms (de Souza et al., 2022). Wind turbines, in particular, stand out 
due to their suitability for offshore high wind speeds. Developing hybrid 
energy systems that combine renewable sources with conventional gas 
turbines aims to enhance offshore platform efficiency and sustainability, 
ensuring a consistent power supply to meet operational demands. This 
integration leads to substantial contributions to energy demand through 
renewables, resulting in emissions reduction and notable cost savings 
(Watson, 2020). While the shift to renewable energy sources may entail 
upfront expenses, the reduction in operational costs and avoidance of 
emissions-related taxes can lead to significant economic benefits (In
ternational Renewable Energy Agency (IRENA), 2019). Government 
incentives and regulatory support play a pivotal role in shaping the 
economic landscape of this transition (International Renewable Energy 
Agency (IRENA), 2019). 

Insights into the growth of offshore wind in the Asia Pacific region 
and the policies implemented by various governments to promote this 
sector are provided in (Cheng and Hughes, 2023). The operation of a 4 
× 5 MW offshore wind farm operating in parallel with GTs was studied 
by Korpås et al. (2012). The findings highlight the potential for signif
icant cost savings and emissions reductions, validating the viability of 
offshore wind integration for sustainable and efficient power supply to 
O&G field centers. Zhang et al. (2021) explored the integration of wind 
power into offshore O&G field energy systems, assessing its economic 
and environmental performance. According to the authors (Zhang et al., 
2021), introducing wind energy reduced carbon emissions by approxi
mately 39.91% and lowered the total annual cost by about 2.57% 
(Zhang et al., 2021).Additionally, Panda et al. investigated an 
XAI-driven net-zero carbon roadmap for the petrochemical industry, 
considering stochastic scenarios of offshore wind energy, which 
demonstrated the potential for further advancements in cost reductions 
and emissions mitigation through the integration of renewable energy 
sources (Panda and Das, 2021). 

Although the benefits of integrating renewable energy sources, 
particularly wind power, are evident, its intermittent nature introduces 
technical challenges causing system instability, potentially requiring a 
reliable backup power source (Al-Shetwi, 2022). To that end, the 
incorporation of energy storage and energy management systems be
comes imperative in the integrated system. Notably, the offshore wind 
sector is undergoing rapid global expansion since it holds the dual 
promise of decarbonizing electricity and serving as a platform for 
hydrogen production, thus addressing energy storage needs (Durakovic 
et al., 2023). This concept involves generating green hydrogen through 
electrolysis technology by converting water into hydrogen using surplus 
renewable energy. The stored hydrogen can then serve as carbon-free 
fuel for gas turbine units. The utilization of hydrogen and 
hydrogen-based fuels has gained attention for gas turbines in recent 
decades and many original equipment manufacturers have shared in
formation regarding the hydrogen compatibility of their engines (Amin 
and Fors, 2020), (Goldmeer, 2019). 

Researchers have investigated the feasibility of producing and uti
lizing green hydrogen on offshore platforms by harnessing available 
wind power to run an electrolyzer, converting water, readily abundant 
in offshore fields, into hydrogen (Dokhani et al., 2023), (Riboldi et al., 
2020). In (Kumar et al., 2023), the authors offered valuable insights into 
the symbiotic relationship between the green hydrogen sector and 
offshore industries. Their analysis of integrating offshore renewable 
energy systems with O&G sectors revealed the advantages, contribu
tions, and safety considerations of green hydrogen in decarbonizing 
offshore industries (Kumar et al., 2023). Giampieri et al. (Giampieri 
et al., 2023) show that producing green hydrogen from offshore wind 
could achieve significant cost reduction by 2030 and 2050, making it 
competitive against grey and blue hydrogen. According to their study, 
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compressed hydrogen production offshore is the most cost-effective 
scenario for projects starting in 2025, while alternative strategies like 
liquefied hydrogen or methylcyclohexane may become more 
cost-effective for projects beginning in 2050 (Giampieri et al., 2023). 
Riboldi et al. compared three offshore energy supply models: standard 
gas turbines, a hybrid GT-wind turbine setup, and a hybrid energy sys
tem for offshore integrating GTs, WTs, and hydrogen storage (Riboldi 
et al., 2020). Results reveal the third approach’s potential to notably cut 
CO2 emissions (up to 40%) compared to conventional setups, supported 
by an optimization framework for sustainable offshore energy solutions 
(Riboldi et al., 2020). 

To power offshore rigs sustainably, a hybrid energy system that 
combines offshore wind power, on-site gas turbines, and power-to-gas 
storing electrolyzers becomes a necessary solution. Integrating these 
diverse energy sources and technologies is imperative to transform 
various offshore drilling and production platforms into integrated en
ergy microgrids (IEMs) that can interact effectively with offshore power 
plants (Li et al., 2022). The criteria for a microgrid include having a 
well-defined electrical boundary, a control system for resource man
agement, and a generation capacity exceeding critical load to allow the 
microgrid to operate independently from the main grid (Li et al., 2020). 
Implementing smart IME can optimize the use of diverse energy sources, 
minimize waste, and improve system reliability for the sustainable 
development of offshore O&G platforms. These advanced energy man
agement systems facilitate decarbonization efforts, enable remote 
monitoring, reduce human intervention, and enhance overall safety. 

The offshore microgrid concept has been extensively studied 
(Grainger et al., 2021; Adrian, 2022; Peters et al., 2020; Ventrelli, 2022), 
with most research concentrating on evaluating the feasibility and 
analyzing renewable integration in O&G fields. Some studies targeted 
power balancing for IEM systems and addressed the challenges of as
suring power demand satisfaction (Anglani et al., 2020; Yu et al., 2020; 
Zare et al., 2023; Jing et al., 2022). The literature also addresses the 
significance of operational strategies and system integration involving 
offshore wind farms and gas turbines on platforms for achieving emis
sion reductions (Svendsen et al., 2022). 

This study goes beyond ensuring power demand and production 
balance, by introducing a smart energy management system that opti
mizes asset operation in the microgrid to reduce costs and emissions. 
Furthermore, the development of an online platform with highly accu
rate models for optimizing offshore microgrid operation is a novel 
practice, yet to be conducted as per the authors’ knowledge. Addition
ally, while the concept of offshore microgrids in a theoretical context has 
been covered in the literature (Panda and Das, 2021), (Zare et al., 2023), 
(Li et al., 2023) this study delves into a real-world scenario, analyzing an 
actual case with verifiable data. In line with the challenges posed by 
hybrid integrated energy systems, the incorporation of advanced opti
mization techniques and control strategies, as highlighted in (Shezan 
et al., 2023), could potentially enhance the effectiveness of the proposed 
smart energy management system. 

The paper is organized as follows: first, a description of the offshore 
platform under study is presented, followed by the methodology for 
operating the platform conventionally versus using smart management 
tools. Lastly, the results of the operation in both scenarios are presented 
for a week of operation, demonstrating the value of using smart man
agement systems for offshore IEMs. 

2. Case study description 

2.1. Gullfaks platforms and Hywind Tampen 

The Gullfaks O&G field is situated in the Norwegian sector of the 
North Sea, at a latitude of 61.21 and a longitude of 2.27. The field 
comprises three platforms - Gullfaks A (GFA), Gullfaks B (GFB), and 
Gullfaks C (GFC) - all of which were constructed in the 1980s. These 
platforms serve the dual purpose of drilling and production, as well as 

accommodating personnel. Originally, these platforms were designed to 
operate using gas turbines; however, in line with the goal of reducing 
carbon emissions, Equinor, the field operator, has initiated a project to 
source a portion of the power needed for the platforms from a floating 
wind farm. Hywind Tampen is the first offshore wind farm that provides 
renewable energy to the offshore O&G field (Tampen - Equinor). The 
farm is designed to operate at a 125 km distance from the shore. 

The floating wind farm consists of a total of 11 wind turbines, each of 
8 MW capacity. Out of these 11 turbines, five are specifically allocated to 
generate power for the Gullfaks field, while the rest are intended to serve 
the Snorre field, another O&G field in the Norwegian sector of the North 
Sea (Norwegian Petroleum Directorate Professor Olav Hanssens and vei, 
2020). The field operator has provided a visual representation, depicted 
in Fig. 1, to illustrate the positioning of the Hywind Tampen, Gullfaks, 
and Snorre fields. The field operator is currently exploring the feasibility 
of expanding the farm’s capacity to 94.6 MW by upgrading the wind 
turbines. 

Through the utilization of this floating wind farm to supply power to 
the Gullfaks and Snorre fields, it is projected that around 200,000 tons of 
CO2 emissions and 1000 tons of NOx emissions can be omitted (Tampen 
- Equinor). Notably, the wind turbines will directly deliver electricity to 
the offshore oil platforms, without relying on any connections to the 
land. It is expected that these turbines will meet approximately 30–35% 
of the total energy demand across the five platforms (Adrian, 2022). 

Hywind’s design is based on a spar buoy, with a heavy sub-structure 
and a lighter upper structure to maintain stability. The Siemens SQT 
8.0–154 turbine model has been chosen for the farm, featuring a hub 
height of 95 m, 3 blades with a diameter of 154 m, a nacelle weight of 
480 tons, and a floater weight of 10,000 tons. Since Siemens has not 
disclosed the power curve for this specific model, the power curve for 
Vestas’ V164–8.0 MW turbine was utilized. The relevant data for both 
Siemens and Vestas turbines are presented in Table 1 below. The simi
larity between the configuration and the operational parameters of these 
two models enables the use of operational data of V165–8.0 (available in 
(Desmond et al., 2016)) as a close estimation of SWT 8.0–154. 

All the platforms are equipped with General Electric’s LM2500 en
gines, which is an aero-derivative gas turbine with a power capacity of 
22 MW. The GFA platform has four of these gas turbines installed, while 
the GFC platform has three. Each turbine, except one, on both platforms 
is equipped with a waste heat recovery unit (WHRU). GFB platform 
doesn’t house any gas turbines and instead receives its required power 
from GFA through two sea cables, capable of transferring a maximum of 
20 MW of power. GFA and GFC are also connected via a cable with the 
same power transmission limit. To supply power to the Gullfaks field 
using wind energy, there is a cable that connects the Hywind facility to 
GFA. Fig. 2 provides a visual representation of the fields and their 
interconnections. 

The energy demand on the platforms encompasses essential needs 
such as lighting, heating for the accommodation spaces, accommodating 
2–300 personnel, as well as computer and control systems responsible 
for platform management and communication. However, the primary 
power consumer is the O&G production process itself. Around 70% of 
the total onboard electrical power is dedicated to fulfilling the energy 
requirements of the production process consumers (Tangerås and 
Tveiten, 2018). 

2.2. Adding storage system 

Assuming the installed wind turbines cover 35% of the total demands 
on the platform, it is expected to reduce the emissions more with further 
installation of the wind turbines. However, a platform that could solely 
operate on wind farms is not feasible due to the intermittency of power 
generation from the wind. Adding a storage system, suitable to the 
condition and the environment, could mitigate problem. A microgrid 
serving as an integration of wind turbines, storage systems, and gas 
turbines could manage the demands of the field with the minimum 
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emissions possible. The end goal is to reduce the operation of gas tur
bines with fossil fuel gas. 

Various studies have extensively explored the feasibility and techno- 
economic aspects of green hydrogen production and local storage, spe
cifically focusing on harnessing seawater and wind power (Dokhani 
et al., 2023), (Adrian, 2022). These investigations highlight the low cost 
associated with water desalination (Dokhani et al., 2023) and empha
sized the economic viability of subsea storage of compressed hydrogen 
as a means to effectively store surplus wind power (Adrian, 2022). 

To establish the necessary infrastructure for hydrogen production 
and storage, key components such as a saltwater desalination facility, 
feed water storage, electrolyzer, hydrogen compressor, hydrogen stor
age tanks, and the requisite transmission elements (including pipes and 
connections) between these components are essential (GREENSTAT). It 
is envisioned that a platform or floater will be required to accommodate 
the hydrogen production line, with the storage tanks positioned subsea. 
At present, the commercial availability of subsea hydrogen storage re
mains limited. However, ongoing initiatives led by Norwegian com
panies indicate promising developments in this field, with a focus on 
pressurized hydrogen tanks supported by a rigid structure capable of 
storing up to 12 tons of compressed hydrogen (“Hydrogen). 

Given the existing connection of GFA with the wind turbines and the 
two other platforms (GFB and GFC), GFA serves as a pivotal junction in 
the microgrid setup. Consequently, it is proposed that the platform or 
floater be constructed in close proximity to GFA, housing the subsea 
hydrogen storage tanks. For the planned system, a stack comprising 15 
proton exchange membrane electrolyzers, each boasting 6 MW capacity 
is considered. Relevant data relating to the electrolyzers can be found in 
(Kopp et al., 2017), while Fig. 3 provides the performance curve for each 
electrolyzer. 

Regarding hydrogen storage, a capacity of 100 tons is deemed 
economically viable and reliable, as demonstrated by (Adrian, 2022). 
Occupying approximately 580 m3 of space on the seabed, the pressur
ized hydrogen storage will be connected to GFA, facilitating an alter
native fuel source for the gas turbines. While all the gas turbines on the 
platform are of the same model, this study assumes that only one of the 
turbines will be modified to operate on hydrogen-blended fuel, and the 
remaining turbines will continue to utilize natural gas as their conven
tional fuel source. 

3. Microgrid operation management 

For the operation of the Gullfaks field with power productions from 
Hywind farm, the seven gas turbines installed on GFA and GFC platforms 
and the electrolyzer and hydrogen storage are considered within a 
microgrid operation, running in island mode. The wind farm is assumed 
to increase its capacity to cover 100% of the field’s operation and the 
storage system and gas turbines will help with mismatches of production 
and demand. Fig. 4 illustrates the Gullfaks microgrid’s layout. A 
comprehensive control system oversees all microgrid components and 
manages their operation. The gas turbines’ power output, the electro
lyzer’s power supply, and the hydrogen consumption are determined by 
the control system, with one of the gas turbines assumed to run with a 
hydrogen blend. The controller has to assure the balance of the demand 
and production (both power and heat) at each time step of the operation. 

The management system ensures that the combined power output 
from the gas- and wind turbines adequately meets the power demand of 

Fig. 1. The Hywind Tampen project and its connection to Gullfaks and Snorre fields (“Hywind Tampen approved by Norwegian), (“Views from the industry).  

Table 1 
Comparison of wind turbine models (Tangerås and Tveiten, 2018).  

Parameter Siemens SWT 8.0–154 Vestas V164–8.0 

Diameter [m] 154 164 
Area [m2] 18627 21124 
No. of blades [-] 3 3 
Cut-in wind speed [m/s] 3~5 4 
Cut-out wind speed [m/s] 25 25 
Nominal wind speed [m/s] 13~15 13 
Nominal power [MW] 8 8  

Fig. 2. Schematic view of Gullfaks platforms and Hywind wind farm with their 
connections. 

Fig. 3. The efficiency of hydrogen production as a function of the total power 
consumption of the electrolyzer (Kopp et al., 2017). 
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each platform while also supplying power to the electrolyzer, in case of a 
surplus. The platforms require power and heat for essential operations 
and for running accommodations for personnel. The heating re
quirements of the facilities can be partially met by gas turbines equipped 
with WHRUs. Additionally, circulating water passes through an elec
trical heater to further warm it when the heating capacity of the gas 
turbines is insufficient or unavailable. For instance, on the GFB platform, 
which lacks a gas turbine, both the power and heat demands are fulfilled 
by GFA and transferred via a cable, since the heating demand on the GFB 
platform is addressed by an installed electrical heater. 

At each time step, the operation decision made for the controllable 
units has to satisfy certain constraints regarding the conservation of 
power, heat, and hydrogen content. To write the energy balance for each 
platform, GFB could be conducted first as it has minimum connections to 
other platforms and has no energy production unit on it. The conser
vation of energy for platform GFB is shown in Eq. (1) to Eq. (3). All of the 
heat demand of GFB is provided by the electrical heater (Eq. (1)) and the 
power required to run it is calculated based on its efficiency (Eq. (2)), 
which is 85%. The power received from platform A should be equal to 
the demanded power and the power consumed by the electrical heater 
(Eq. (3)). 

QELH GFB − Qdem GFB = 0 (1)  

PELH GFB =QELH GFB
/

ηELH GFB (2)  

PGFA GFB − Pdem GFB− PELH GFB = 0 (3) 

The GFC platform also has a connection to GFA for which the power 
and heat conservation is written as below, in Eq. (4) to Eq. (6). The heat 
demands on GFC are met by the two gas turbines with WHRU, along 
with the utilization of an additional electrical heater on GFC (Eq. (4)). 
The electrical heater’s power is calculated based on its efficiency (Eq. 
(5)). Finally the power balance of GFC is calculated, balancing the power 
generated by the gas turbines, the demanded power, the electrical 
heater’s power, and the power transferred between GFA and GFC (Eq. 
(6)). 

QGFC GT1 +QGFC GT2 + QELH GFC − Qdem GFC = 0 (4)  

PELH GFC =QELH GFC
/

ηELH GFC (5)  

PGFC GT1 +PGFC GT2 + PGFC GT3 + PGFA GFC − Pdem GFC− PELH GFC = 0 (6) 

Lastly, the heat and power balance for GFA is analyzed by Eq. (7) to 
Eq. (9). The required heat demand is met by the implementation of three 
gas turbines equipped with WHRU, accompanied by an additional 
electric heater (Eq. (7)). The power consumption of the electrical heater 
is computed based on its efficiency (Eq. (8)), which is then integrated 
into the power balance equation (Eq. (9)). The power balance for GFA 
encompasses the generated power from the four gas turbines, the power 
supplied from the wind farm, and the consuming elements, including the 
electrolyzer’s consumption, power transfers to GFB and GFC, as well as 
the power demand and electrical heater’s consumption on the GFA 

platform (Eq. (9)). 

QGFA GT1 +QGFA GT2 + QGFA GT3 + QELH GFA − Qdem GFA = 0 (7)  

PELH GFA =QELH GFA
/

ηELH GFA (8)  

PGFA GT1 + PGFA GT2 + PGFA GT3 + PGFA GT4 + PWT − PGFA ELZ − PGFA GFB

− PGFA GFC − Pdem GFA− PELH GFA

= 0
(9) 

The power allocated to the electrolysis process (PGFA_ELZ) serves 
multiple purposes, including water desalination, electrolysis operations, 
and pressurizing the stored hydrogen (Eq. (10)). To fulfill the desali
nation requirement of seawater, an energy input of 3.86 kJ per kilogram 
of seawater is considered (Lim et al., 2021). Additionally, with an 
adiabatic compression process and a compressor efficiency of 70%, the 
power consumed by the compressor amounts to 60 kJ per kilogram of 
hydrogen. Therefore, the complete process necessitates approximately 
90 kJ of power for the production of 1 kg of hydrogen, which is obtained 
from 9 kg of seawater. 

PGFA ELZ = PELZ + Pds + Pcomp (10) 

An important aspect to consider is that the power transmission be
tween GFA and GFC (PGFA GFC) is prone to power waste, due to the 
approximately 6 km distance between the platforms. While transmission 
in both directions is possible, around 0.11 MW are considered to be 
wasted for every megawatt of power leaving the platform. Therefore, 
when modeling and exploring different operation scenarios, special 
attention must be given to the direction of power transferred between 
GFA and GFC, as well as the value of the power term involved in the 
power balance of each platform. The power transferred from GFA to GFB 
(PGFA GFB), is also prone to 5.4% of waste due to the approximately 3 km 
distance between them. However, this power transfers in one direction, 
making it simpler to implement in the equations. 

In addition to power and heat conservation, hydrogen conservation 
is also a critical consideration. Ensuring an adequate fuel supply for the 
gas turbines at the beginning of each time step is essential. Specifically, 
for GFA-GT1, the availability of hydrogen in the tank is crucial. Thus, 
the hydrogen required for consumption at each time step, denoted as ti, 
must be less than the tank value accumulated from the initial condition 
to time step ti. This constraint is represented by Eq. (11). 

(
mH2 ,GFA− GT1

)

ti
<
(
MHyT

)

t0
+
∑ti

to

MH2 ,produced − MH2 ,consumed (11) 

Ensuring heat and power conservation on each platform within the 
field is a constant requirement that must be met. However, variables 
such as the power output of gas turbines, the levels of hydrogen pro
duction and consumption, and the power transmission between plat
forms can fluctuate. These operational choices inherently lead to 
varying costs and emissions. There are two approaches to managing the 
operation: 

Fig. 4. Schematic diagram of the offshore microgrid and the smart management system.  
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- To follow certain rules which assure the balance of demand and 
production. This approach is called “condition-based”. At each time 
step, the demands (power and heat on each of the three platforms) 
are declared and the wind power is determined. According to the 
condition, a decision is made to control the microgrid’s operation.  

- To predict the demands and renewable production ahead of time, 
and optimize the microgrid operation based on the forecasts. This 
approach is called “optimization”, which searches for the best 
operational solution with minimum costs and emissions while as
suring the demands are met. 

In this study, both operation scenarios are thoroughly investigated 
and discussed. It is important to note that the condition-based operation 
does not involve optimization or forecasting tools; yet, decisions are 
based on a set of rules which aims to minimize costs as much as possible. 
This aspect is crucial to ensure a fair comparison with the optimizer’s 
performance, as it would be unfair to compare it with an operator that 
does not make the best economical decision at each time step. The 
research demonstrates how the intelligent management system, i.e., the 
optimizer operation, can further enhance the overall operation 
compared to the already economical condition-based operation. 

3.1. Scenario 1: condition-based operation 

In this scenario, the Gullfaks microgrid follows a set of predefined 
rules to manage the assets. These rules provide immediate guidelines for 
operation based on real-time demand and the power generated by the 
wind turbine. The rules are designed with the following principles in 
mind:  

- Platforms equipped with gas turbines (GFA and GFC) prioritize local 
power production over receiving power from connecting platforms. 
This approach minimizes unnecessary power transportation, which 
can lead to transmission losses.  

- Each platform aims to minimize the number of gas turbines operating 
simultaneously. If the power demand of a platform can be met by two 

gas turbines instead of three, the two engines will operate at a higher 
load. This decision is driven by the fact that higher loads result in 
increased engine efficiency (Brenntrø, 2016). 

- When multiple engines are required to meet the demand of a plat
form, the load is distributed equally among them to ensure balanced 
operation.  

- The heat demand of the platforms is primarily fulfilled by the heat 
generated by the gas turbines. Utilizing the excess heat from gas 
turbines is more economical than using additional power for elec
trical heaters. In cases where the heating capacity is insufficient, an 
electrical heater is utilized to supplement the heat supply.  

- The electrolyzer is only supplied with power if the power generated 
by the wind turbine exceeds the combined demand of platforms GFA 
and GFB. This ensures that excess renewable power is utilized for 
hydrogen production.  

- If hydrogen is available, its consumption takes priority, limited to the 
availability of hydrogen reserves. 

According to these principles, the condition-based operation will be 
pursued by calculating the power required to be delivered to platform 
GFB (Eq. (1) to Eq. (3)). Afterwards, calculations for GFC are considered 
by following the flowchart (a) in Fig. 5. From GFC’s operation, the 
power output of each GFC gas turbine is determined, as well as the value 
of power transfer between GFC and GFA. Lastly, the decision for the GFA 
platform’s gas turbine power and the power allocated for the electro
lyzer is determined according to the flowchart (b) in Fig. 5. 

The flowcharts are strategically designed to adhere to economic ef
ficiency rules. The number of gas turbines involved is determined by 
both the heat demand (NGTQ) and the power demand (NGTP). The elec
trical heater is utilized only if the gas turbines cannot meet the re
quirements adequately. Referring to diagram (a) in Fig. 5, GFC requests 
power from GFA only when all gas turbines are unable to fulfill the 
demands. Similarly, the same principles are applied to GFA (diagram (b) 
in Fig. 5), with an additional condition involving the electrolyzers’ 
power, which is determined by comparing wind power to the aggregated 
demand on GFA. 

Fig. 5. Condition-based operation flowchart, (a) GFC operation, (b) GFA operation.  
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3.2. Scenario 2: optimization 

While the condition-based operation excels in providing the best 
economically efficient decisions at each time step, leveraging optimi
zation offers significant untapped potential in making energy manage
ment decisions over an extended time span. By incorporating an 
optimization code, the microgrid gains predictive capabilities, allowing 
it to anticipate future conditions, such as wind availability, and strate
gically plan its energy usage. For instance, the optimization code can 
intelligently choose to store excess energy during periods of high wind 
generation, ensuring a reserve for times when wind resources may be 
limited. This proactive approach optimizes energy storage and utiliza
tion, maximizing the utilization of renewable resources and minimizing 
reliance on conventional energy sources during adverse conditions. 
Consequently, the integration of predictive optimization empowers the 
microgrid to make well-informed, forward-looking decisions, resulting 
in enhanced overall performance and economic efficiency. 

Another compelling advantage of the optimizer lies in its ability to 
manage the entire microgrid integration comprehensively. While the 
condition-based approach is confined to managing each platform sepa
rately according to predefined rules, the optimizer can holistically 
consider all assets, resources, and demands within the system. This 
increased freedom allows the optimizer to explore a wide range of 
possibilities and optimize the complex interplay of various components. 
However, this versatility also adds to the complexity of the optimization 
problem. 

The optimization process involves testing numerous options and 
scenarios for running the microgrid over the given time span. Each 
scenario satisfies the energy balance requirements, but different costs 
and emissions are associated with each alternative. The iterative nature 
of the procedure enables the optimizer to continuously refine its 
approach, and ultimately identify the best solution that optimizes cost, 
efficiency, and emissions. 

3.2.1. Digital twin of the microgrid 
The optimizer relies on both precise predictions and high-speed 

processing to explore different scenarios effectively. To achieve this, 
the implementation of Artificial Intelligence (AI) techniques is essential 
in creating robust forecasting modules that anticipate changes in wind 
availability, demand patterns, and other dynamic factors. Moreover, the 
optimizer requires fast-responding models or “digital twins” of micro
grid subsystems, and in the case of subsystems with nonlinear behavior, 
such as gas turbines and wind turbines, Artificial Neural Networks 
(ANNs) are utilized. 

The use of ANN models allows for processing data, predicting system 
behavior, and capturing complex patterns through hidden layers, 
enabling accurate representations of the subsystems’ dynamics. A 
Bayesian technique is utilized to tune the hyperparameters of the ANN 
models, employing Gaussian process models (Wu et al., 2019). The 
training of ANNs for gas turbines and wind turbines is conducted using 
the backpropagation algorithm, with 80% of the data allocated for 
cross-validation and the remaining 20% for testing. Detailed informa
tion on the hyperparameters and models’ inputs and outputs can be 
found in Table 2 and Table 3, respectively. Additionally, for the elec
trolyzer, a polynomial regression is applied to fit the efficiency curve 
shown in Fig. 3, while the hydrogen flow rate is calculated using Eq. 
(12). 

ṁH2 = ηELZ ×
PELZ

LHVH2

(12) 

The gas turbine models used in this study were developed based on 
real data, obtained from operating the LM2500 gas turbine with natural 
gas on an offshore platform. To create a model capable of predicting gas 
turbine operation with blends of natural gas and hydrogen, the models 
were fine-tuned and adjusted slightly using insights from the results 
presented in (Stuen, 2021), which investigated the impact of hydrogen 
fuel on LM2500 engines. 

The accuracy of the models is evaluated by calculating maximum 
absolute error (mAE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE) as defined in Eqs. (13) and (14). In the equa
tions, Xact and Xpred are the actual values and predicted values from the 
model and n is the number of data in the test set. The errors are reported 
in Table 4. 

MAE=
1
n
∑n

i=1

⃒
⃒Xpred − Xact

⃒
⃒ (13)  

MAPE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Xpred − Xact

Xact

⃒
⃒
⃒
⃒ (14) 

The gas turbine and wind turbine’s model prediction in comparison 
to real operation data is visualized in Fig. 6. The model takes into careful 
consideration the NOx emissions of the gas turbines. 

3.3. Optimization parameters and objective function 

In addressing the current challenge, the optimization process must 
accomplish multiple tasks, including identifying power set-points for all 
gas turbines, determining the hydrogen/natural gas blend for GFA-GT1, 
and deciding on the power input to the electrolyzer. To optimize the 
microgrid’s operation, a day of operation is considered to be the opti
mization window, and the smart management system must conduct the 
optimization ahead of this time span. The management system operates 
at a time step of 1 h, necessitating it to make decisions for the dis
patchable units (gas turbines and electrolyzer) every hour, summing up 
to a total of 216 parameters (9 × 24 h). These parameters must be 
carefully established to optimize the microgrid’s performance. Each 
parameter is bound by defined upper and lower limits based on its 
specific physical characteristics. 

The gas turbines’ power setpoint is constrained within the range of 
9–22 MW, as defined in Eq. (15). Additionally, the hydrogen/natural gas 
blend for the GFA-GT1 engine is subject to a limitation, considering that 
the LM2500 gas turbine can tolerate a maximum hydrogen volume of 
75%. These bounds are incorporated into the model through the fuel 
heating value ratio (FHR), defined in Eq. (16). With a lower heating 
value of 12.7 MJ/m3 for hydrogen and 40.6 MJ/m3 for methane, the 
engine’s acceptable minimum FHR is determined to be 0.516 (Eq. (17)). 
Furthermore, the power allocated to the electrolyzer is restricted by its 
capacity to ensure it does not exceed its operational limit (90 MW), as 
outlined in Eq. (18). 

PGT =
[
PGT,1,PGT,2,…,PGT,24

]
,PGT,min < PGT,i <PGT,max (15)  

FHRGT =(ṁNG ×LHVNG) / (ṁNG ×LHVNG + ṁH2 ×LHVH2 ) (16)  

FHRGT =
[
FHRGT,1,FHRGT,2,…,FHRGT,24

]
, 0.516 < FHRGT,i < 1 (17)  

PGFA to ELZ =
[
PGFAtoELZ,1

, PGFAtoELZ,2
,…,PGFAtoELZ,24

]
, 0

< PGFA to ELZ,i <PGFA to ELZ,max (18) 

The primary objective of the optimization process is to minimize the 
total cost of operation, which encompasses various factors (Eq. (19)). 
These factors include the cost of purchasing natural gas (CNG), the taxes 

Table 2 
Subsystem models inputs and output.  

Subsystem Input parameters Output parameters 

Gas turbine PMGT,dem,FR,Tamb ṁf 

Wind turbine Tamb ,pamb ,SW,DW PWT 

Electrolyzer PELZ ṁH2  
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associated with CO2 and NOx emissions (CNG,tax and CNOx,tax), as well as 
the maintenance costs related to the gas turbines and electrolyzation 
components (CMGT and CELZ). 

Ctotal =CNG + CNG,tax + CNOx,tax + CMGT + CELZ (19) 

The first two terms of the total cost equation (Eq. (19)) are deter
mined based on the total amount of natural gas consumed by all 7 gas 
turbines throughout the optimization day. The cost of purchasing nat
ural gas (CNG) is calculated using the daily fuel price. The term CNG,tax 

represents the specific tax imposed by the Norwegian government on 
natural gas to regulate CO2 emissions. For the petroleum industry, the 
tax value in 2022 amounted to 1.65 NOK (about 0.16 EUR) per standard 
cubic meter of natural gas consumed (“Tax rates in Norway). 

The tax for NOx emissions (CNOx,tax) is computed based on the NOx 
emitted from the engines, which is calculated using the power output of 
each engine at each time step. A correlation between NOx emissions and 
power output is established, fitted to real data presented in Fig. 7, 
derived from measurements obtained from the actual engine and re
ported in (Sundsbø Alne, 2007). The value of tax for NOx emissions was 
23.79 NOK (about 2.36 EUR) per kilogram of emission in 2022 (“Tax 
rates in Norway). Additionally, the maintenance cost of the gas turbines, 
electrolyzer, compressor, and water desalination system is computed 
using the values reported in (Tilocca et al., 2023). 

The optimization process primarily aims to reduce the calculated 
cost, but an additional factor must be considered in the objective func
tion and that is the preservation of hydrogen in the tank. Focusing solely 
on cost reduction would lead the optimization algorithm to prioritize 
immediate hydrogen consumption, disregarding its potential future 
value when wind power is limited. To address this issue, it becomes 
crucial to incentivize the preservation of hydrogen at the end of each 
day. 

Optimizing for a limited time span means that the optimizer’s vision 
is confined to that specific window, and it cannot anticipate future needs 
beyond that period. Consequently, it may use the stored hydrogen at 
early time steps, potentially missing the opportunity to benefit from it in 
subsequent optimization windows. To counteract this, it is essential to 
encourage the preservation of hydrogen for future utilization. 

This incentive is essential irrespective of the optimization window’s 
duration, as it accounts for an unpredictable future following any finite 
period of optimization. To calculate this incentive, an estimation of the 
saved hydrogen’s value for the next day is necessary, as it can offset 
natural gas costs, including both price and tax. The incentive for pre
serving hydrogen is determined using Eq. (20). 

IncHyT =mHyT ×
LHVH2

LHVNG
×
(
CNG +CNG,tax

)
(20) 

Consequently, the objective value to be reduced by the optimizer will 
become as stated in Eq. (21): 

OV=Ctotal − IncHyT (21)  

3.3.1. Hybrid optimization approach 
Optimizing the power setpoints for each gas turbine and the elec

trolyzer can lead to significantly long computational times due to a large 
number of optimization parameters (9 × 24 parameters for each day). 
Additionally, the consideration of constraints (Eq. (1) to Eq. (11)) 
further adds to the duration of optimization. Notably, the hydrogen fuel 
conservation constraint (Eq. (11)) introduces complexity to the problem 
due to its nature. 

This constraint ensures that the hydrogen consumption at each time 
step “i” (dependent on PGFA− GT1,i and FHRi) must not exceed the amount 
available in the tank. However, the tank’s content is influenced by both 
the hydrogen produced (dependent on PGFA− to− ELZ)) up to that time step 
and the hydrogen consumed (dependent on PGFA− GT1 and FHR) up to 

Table 3 
ANN models optimized configuration.  

Subsystem No. of neurons, layer 1 No. of neurons, layer 2 No. of neurons, layer 3 AF, layer 1 AF, layer 2 AF, layer 3 LR 

Gas turbine 42 17 – sigmoid ReLU – 0.72 
Wind turbine 45 100 22 SELU ReLU linear 0.57  

Table 4 
Models prediction error.  

Subsystem mAE MAE MAPE 

Gas turbine 0.017 [kg/s] 0.004 [kg/s] 0.21% 
Wind turbine 0.801 [MW] 0.152 [MW] 0.61% 
Electrolyzer 1.6e-5 [kg/s] 1.2e-5 [kg/s] 0.05%  

Fig. 6. Visualization of ANN models’ accuracy, (a) gas turbine, (b) wind turbine.  

Fig. 7. NOx production at different power outputs of LM2500 (Sundsbø 
Alne, 2007). 
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that time step. These quantities are also optimization parameters, 
making the constraint interrelated with the optimization parameters, 
resulting in intricacies within the optimization process. The constraint is 
shown in Eq. (22) below: 

for 1≤ i ≤ 24:  

ψ
(
FHR1, FHR2,…,FHRi, PGFA− GT1,1,PGFA− GT1,2,…,PGFA− GT1,i, PGFA− to− ELZ,1

,PGFA− to− ELZ,2,…,PGFA− to− ELZ,i− 1
)
≤ 0

(22) 

To overcome the complications of the optimization, a novel hybrid 
approach is proposed to enhance the optimization process while 
ensuring compliance with constraints. The approach involves priori
tizing the optimization of power balance for each platform, rather than 
focusing solely on optimizing individual components such as gas tur
bines and the electrolyzer. The optimizer first determines the most 
favorable power transfer values between GFA and GFC, as well as be
tween GFA and ELZ, to achieve an optimized power balance across the 
system. Subsequently, the optimal operation of gas turbines on each 
platform is determined in the next step. This decision for each platform 
is based on the power balance requirements derived from the platform’s 
demand and the power transfers identified in the preceding step. 

Therefore, the optimization algorithm is structured into two levels: 
the field optimization level (outer optimization loop) and the platform 
optimization level (inner loop). At the field optimization level, the focus 
is on searching for the optimum power transfer values. Once these 
values are set, the platform optimization level takes over to optimize the 
operation of the gas turbines based on the power balance requirements. 

By breaking down the optimization process into two levels, the 
number of optimization parameters is reduced. This reduction mitigates 
the challenges associated with the curse of dimensionality. Additionally, 
the constraints of power balance are imposed between the two optimi
zation levels, ensuring a stable and reliable system operation. 

The outer loop optimization, which plays a critical role in the 

process, utilizes Genetic Algorithm (GA) for efficient decision-making. 
For platform optimization (the inner loop), a simplified approach is 
employed to reduce computational costs. Prior to optimization, a 
comprehensive database of platform operations is prepared, encom
passing all possible combinations of engine operation within the plat
form. The platform optimizer’s task is to search through this database 
and identify combinations that meet the power and heat demand re
quirements. From these combinations, the optimizer selects the one with 
the lowest cost among the available choices. The optimization process 
flowchart is depicted in Fig. 8, providing an overview of the optimizer’s 
operation. As it is depicted, within the GA optimization loop, the opti
mizer determines the power flow of transmission cables and the fuel 
heating value ratio of GT1 on GFA. 

In the next step, the net power imposed on each platform is calcu
lated based on the demand of the platform and the transferred values 
defined by the level 1 optimizer. Subsequently, the optimization of 
platforms A and C is carried out based on the net power and heat de
mand of the platform. The optimizer selects rows from the database that 
closely align with the boundary conditions for heat and power output. 
From these rows, the optimizer chooses the solution with the minimum 
cost. 

The proposed hybrid optimization approach results in a much faster 
optimization process. The platform optimization (inner loop, level 2) is a 
table look-up and filtering process, which consumes minimal time. Most 
of the optimization duration is attributed to field optimization, which 
involves only 72 (3 × 24) parameters. By reducing the number of 
optimizing parameters, the method significantly increases the speed of 
optimization. Within just 1 h of running the optimization, the proposed 
approach provides the optimized answer. This reduction in computa
tional time allows for more rapid decision-making and real-time ad
justments to achieve optimal power balance and platform operations in 
the offshore microgrid. 

Fig. 8. The new optimization approach; the outer loop is responsible for power flow in connection cables and fuel ratio, and the inner loop optimizes the plat
forms’ operation. 
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4. Results and discussion 

The integrated microgrid of Gullfaks field and Hywind Tampen, 
along with the electrolyzer, is simulated to evaluate its operation for a 
week-long period from 24/01/2022 to 30/01/2022. The simulation 
includes both condition-based and optimization approaches to assess the 
benefits of employing an optimizer in the process. While the condition- 
based approach provides immediate decisions for each time step during 
operation, the optimizer requires pre-planning and provides decisions in 
advance within a designated optimization window. In this study, the 
optimization window spans a day, and the time step is set at 1 h, 
allowing for hourly variations in operational decisions. 

The utilization of the optimizer necessitates the use of forecast data 
instead of actual data prior to the operation. Weather data plays a 
critical role in estimating the power output from wind farms and serves 
as an input for the gas turbine model. In this study, weather forecasts 
were obtained from the Norwegian Meteorological Institute (Norwegian 
Meteorological Institute, 2022), which provides updates every 6 h. 
Specifically, the forecast data utilized in this research was collected from 
the 6 p.m. update the day before. Both the forecast data employed for 
optimization and the actual weather data used in the condition-based 
operation are depicted in Fig. 9. Fig. 10 illustrates the wind power 
calculated by the wind turbine model based on both the actual weather 
data and the forecasted data. 

To optimize the microgrid, accurate knowledge of the platforms’ 
demand patterns is crucial. However, due to the unavailability of 
detailed demand data and historical records for the Gullfaks platforms, 
only average values and common variations are accessible (Tangerås 
and Tveiten, 2018). As a result, constructing a demand model and 
providing precise forecasts based on historical data and weather infor
mation becomes infeasible. Nevertheless, previous studies in demand 
prediction have shown promising results, achieving a mean absolute 
error of less than 5% (Tan et al., 2019). In this study, the demand pat
terns are generated based on the available information from (Tangerås 
and Tveiten, 2018), utilizing random distributions. Fig. 11 presents the 
demand profiles for the three platforms. The power demand distribution 
is generated using a random distribution, incorporating specific values 
for the average, minimum, and maximum values collected from (Tan
gerås and Tveiten, 2018). A similar approach is applied for the heat 
distribution, but with a sequential pattern that aligns more closely with 
the platform’s heating demands. The criteria employed for demand data 
generation are reported in Table 5. 

The forecasted demand is adjusted using randomly distributed error 
values, with a maximum deviation of 7% and a mean of 5%. It is 
important to note that the literature suggests achieving demand pre
dictions with a maximum error of 5% for O&G platforms (Tan et al., 
2019). However, in this work, a deliberately higher error margin is 
considered to ensure a conservative approach. 

Over the course of the week, the combined power demand from the 

three platforms amounts to 59,203 GJ, while the total heat demand is 
11,969 GJ. The power generated by the wind farm during this period is 
55,373 GJ, resulting in a shortfall of 3830 GJ to meet the power demand 
or 15,799 GJ when considering both heat and power requirements. The 
deviation of wind power from the total power demand is visualized in 
Fig. 12. Notably, there are three distinct time periods with low wind 
power generation, indicating a need for increased participation of gas 
turbines in the operation during those intervals. For the remaining 
duration of the week, the wind power aligns relatively closely with the 
total power demand, although occasional surpluses and deficiencies are 
observed. 

The simulation started with an empty hydrogen tank at the begin
ning of the week. In the condition-based approach, each time step (1 h) 
throughout the week was analyzed hence the flowcharts shown in Fig. 5 
were conducted 7 × 24 times. The optimization process, on the other 
hand, was run seven times, with each run taking approximately 1 h to 
complete. The condition-based operation was carried out using actual 
data at each hour, while the optimizer was employed one day ahead of 
the actual day of operation, utilizing forecasted data. A visual compar
ison of these two approaches is provided in Fig. 13. 

It is important to highlight that although the optimizer in this study 
utilized forecast data to conduct the optimization process, the evalua
tion of its performance is conducted based on real data to mirror real-life 
applications. In practical use, the optimizer relies on forecasts to 
generate an efficient schedule, but its true value lies in how well this 
schedule performs on the actual day when the real wind power or de
mands arises. Therefore, accurate forecasts and models are crucial to 
achieve optimal performance from the optimizer. Otherwise, the devi
ation between forecasted and real data may significantly impact the 
optimizer’s efficiency. In the current study, the optimized schedule 
resulted in low costs, which slightly increased when real values were 
employed on real data which was due to forecast errors when compared 
to actual data. 

The total power generated by all the gas turbines is presented in 
Fig. 14. As depicted, the optimizer successfully managed to operate the 
gas turbines with considerably less power compared to the condition- 
based approach. However, there were three time spans where the 
power production of the gas turbines was nearly the same for both 
scenarios. These time spans coincided with periods of wind power de
ficiencies (Fig. 12). 

Figs. 15 and 16 provide the total power produced by each platform. 
The analysis of Figs. 15 and 16 highlights interesting observations 
regarding the gas turbine performance in the optimized and condition- 
based scenarios. Notably, GFA demonstrates slightly higher power 
output from the gas turbines in the optimized scenario compared to the 
condition-based scenario, while the opposite trend is observed for GFC. 

In both scenarios, the gas turbine production in GFA remains below 
the total demand, primarily because wind power contributes to fulfilling 
a portion of the demand. This relationship is supported by the three 

Fig. 9. Weather data and forecasts compared to real data, (a) ambient pressure, (b) ambient temperature, (c) wind speed, and (d) wind direction. The data is 
downloaded from (Norwegian Meteorological Institute, 2022). 
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instances of increased gas turbine production shown in Fig. 15, where 
the production of gas turbines reaches the demand values during periods 
of low wind power. 

Conversely, in GFC, the gas turbines’ production closely matches the 
demand in the condition-based scenario, but the optimized operation 
falls short of meeting the demand (Fig. 16). Examining Fig. 17 reveals 
that the optimizer opted to direct power from GFA to GFC in order to 
compensate for the shortfall. In other words, the optimizer decided to 
compensate for the GFC demand partly from its gas turbines, and partly 

by getting power from GFA. On GFA however, the power produced by 
gas turbines was more or less similar in the condition-based and opti
mization scenario. Therefore the power transmitted to GFC from GFA 
was not attributed to GFA gas turbines, but might be from the wind 
power. Fig. 17 can reveal the source of the power transmitted from GFA 
to GFC. This allocation pattern aligns with the variations in wind power, 
indicating that a portion of the wind power delivered to GFA is redir
ected to GFC in the optimized scenario. It could be seen that the power 
transmission from GFA to GFC during times of low wind power in the 
optimized scenario has been decreased in comparison to other times. 

As mentioned earlier, power transmission between GFA and GFC is 
possible in both directions. The occurrences of power transfer from GFC 
to GFA seldom times, as indicated in Fig. 18, align with the times of 
deficiency in wind power production, which is expected. 

Notably, for the condition-based operation, the power transmission 
option is used only if the gas turbines on the platform are incapable of 
meeting the demand (flowchart in Fig. 5), which is not the case in this 
study and therefore zero power transmissions for condition-based 
operation is shown in Figs. 17 and 18. However, the optimizer 

Fig. 10. Wind farm power production is calculated based on actual weather data as well as weather forecasts.  

Fig. 11. Demand patterns and predictions for Gullfaks platforms, (a) demand power on GFA, (b) demand heat on GFA, (c) demand power on GFB, (d) demand heat 
on GFB, (e) demand power on GFC, and (f) demand heat on GFC. 

Table 5 
Models prediction error.   

Power Heat 

Platform max 
[MW] 

mean 
[MW] 

min 
[MW] 

max 
[MW] 

mean 
[MW] 

min 
[MW] 

GFA 60 36 30 21 15 0 
GFB 9 5.4 4 5 2 0 
GFC 60 36 30 14 10 0  

Fig. 12. Total power demand from three Gullfaks platforms vs. the power generated by the wind farm.  
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discovers that it is more efficient to transfer power from other platforms 
rather than running the gas turbines on its own platform, as demon
strated in the optimized scenario in these figures. 

In the optimized scenario, it was observed that the gas turbines 
produced less power compared to the condition-based operation. 
Instead, the optimized scenario utilized a greater proportion of wind 
power to meet the demands of the platforms. This naturally raises the 
question of what happens to the surplus power generated in the 

condition-based operation. The only plausible explanation is that it is 
stored through the allocation of power to water electrolysis and 
hydrogen production. The rates of hydrogen production and consump
tion for both scenarios are illustrated in Figs. 19 and 20, respectively, 
and the amount of hydrogen available in the tank is shown in Fig. 21. 
The data clearly indicates that the condition-based operation achieves 
greater energy savings, whereas the optimizer primarily utilizes energy 
during the optimization window. 

Fig. 13. The process of control and management of the microgrid and the data transfer; (a) condition-based and (b) optimization.  

Fig. 14. The total power produced by the seven gas turbines on the three Gullfaks platforms.  

Fig. 15. The total power produced by the four gas turbines on the GFA platform.  

Fig. 16. The total power produced by the three gas turbines on the GFC platform.  
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Fig. 17. The power received by GFC from GFA.  

Fig. 18. The power received by GFA from GFC.  

Fig. 19. The rate of hydrogen production.  

Fig. 20. The rate of hydrogen consumption.  

Fig. 21. Hydrogen fuel availability over the week.  
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Examining the consumption pattern in Fig. 20 reveals distinct dif
ferences between the condition-based and optimized operations. The 
condition-based scenario exhibits a consistent pattern of hydrogen 
consumption, with mostly constant values, but higher consumption 
during periods of wind deficiency. On the contrary, the optimized sce
nario shows more variability in hydrogen usage. Understanding the 
optimizer’s decision-making process for hydrogen usage is challenging, 
as it depends not only on the tank’s available quantity but also considers 
its impact on the cost of the current and subsequent optimization win
dows, as previously discussed and implemented through the hydrogen 
saving incentive (Eq. (20)). Never the less, it is evident from Fig. 21 that 
the rate of filling the hydrogen tank in condition-based operation is 
considerably higher than the optimization. 

An overview of the total hydrogen balance for both scenarios is 
presented in Table 6. The relative difference reported in the tables is 
calculated according to Eq. (23). 

Xrel diff =
(
Xoptimized − Xcondition − based

) /
Xcondition − based × 100

(23) 

Although conducting a direct hourly comparison between the 
condition-based operation and the optimized scenario is complex, 
certain observations have become evident. The condition-based 
approach prioritizes saving more energy and transferring less between 
platforms, while the optimized scenario takes the opposite approach. It 
should be noted, as depicted in Fig. 3, that the maximum energy-saving 
efficiency cannot exceed 70%. However, when power is transmitted 
between GFA and GFC, only 11% of the energy is wasted. Consequently, 
the optimizer takes advantage of this option and efficiently manages the 
platforms through an integrated approach. In contrast, the condition- 
based operation adopts a more localized approach, with power trans
mission between platforms occurring only when necessary. An overview 
of the costs, emissions, and fuel consumption for both scenarios is re
ported in Table 7. 

The optimizer’s operation throughout the week exhibits a cost 
reduction of 16.32% compared to the condition-based approach. How
ever, it is important to consider the impact of the disparity in the amount 
of hydrogen remaining in the tank. After all, the hydrogen in the tank is a 
source of power that will not entail the costs associated with natural gas 
(CNG and CNG,tax in Eq. (19)). To assess this, the cost savings attributed to 
the hydrogen quantity are calculated by comparing the costs of using 
natural gas with an equivalent heat value, as detailed in Table 7 under 
the column “H2 res. cost red.”. The findings reveal that despite the 
condition-based scenario having a higher quantity of saved hydrogen in 
the tank, the optimizer still manages to achieve approximately a 12.44% 
cost reduction. It should be noted that the gap in hydrogen availability 
rates will eventually stabilize once the tank reaches full capacity. At that 
point, it is expected that the optimizer will consume less hydrogen, as 
observed during this case study. Consequently, the cost reduction 
prospects will continue to favor the optimized operation. 

The optimized operation demonstrates a notable decrease of 16.42% 
in the total consumption of natural gas compared to the condition-based 
approach, reflecting a similar relative difference in carbon-based emis
sions. However, it is important to note that the optimized operation 
experienced a slight increase of 0.9% in NOx emissions compared to the 
condition-based operation. This outcome can be attributed to the gas 
turbine’s high NOx emissions at low power outputs, as illustrated in 
Fig. 7. Despite the optimized operation’s reduced reliance on gas 

turbines, the emission levels were slightly higher. 
It is worth mentioning that the objective function solely focuses on 

operational costs (as shown in Eq. (19)). Therefore, the motivation to 
reduce NOx emissions primarily stems from the NOx tax. If there is a 
greater emphasis on minimizing NOx emissions, one can introduce an 
increasing coefficient (a value greater than 1) before the term CNOx,tax in 
Eq. (19) to guide the optimizer towards more effective NOx reduction 
strategies. 

The optimization operations discussed in this paper were primarily 
conducted within a 24-h window. However, the authors also explored 
the effects of shorter and longer optimization windows, yielding similar 
results. Interestingly, as the optimization window lengthened, the per
formance of the optimization process exhibited only marginal im
provements. Nevertheless, extending the optimization window 
significantly increased the duration of the optimization process due to 
the larger number of parameters to optimize. 

One advantage of utilizing a shorter optimization window is the 
enhanced accuracy of weather and demand data forecasts. For instance, 
if a 6-h window is employed, the optimizer can utilize more precise 
weather forecast values during the final hours of the same day. In 
contrast, a 24-h window necessitates relying on weather forecast values 
from the following day. Similar improvements in accuracy can be 
observed in demand forecasts when shorter prediction periods are uti
lized. However, it should be noted that as the optimization window 
decreases in duration, the performance of the optimizer diminishes. For 
example, in the examined 6-h version, the relative total cost reduction 
was − 16.27% (instead of 16.32%). Thus, a trade-off between the opti
mizer’s performance and the duration of optimization must be carefully 
considered. 

5. Conclusion 

This work introduced an integrated energy management system for 
an offshore microgrid comprising three petroleum platforms, a floating 
wind farm, and a setup for green hydrogen production and storage. Two 
of the platforms housed seven aero-derivative gas turbines, providing 
power and heat. A management tool was developed by integrating 
highly accurate, fast-response models of all components, representing a 
digital twin of the system. Actual component data were utilized with an 
AI approach to develop the digital twin. The study explored two oper
ation approaches: “condition-based” with predefined economic rules for 
demand and production balance, and “optimization” which forecasted 
demands and renewable production to determine the efficient, low-cost, 
and low-emission solution. 

The study presented a novel hybrid optimization approach for 
enhancing energy management efficiency. The algorithm involved two 
levels: field optimization with Genetic Algorithm, and platform opti
mization using a rapid database searching process. This approach ach
ieved optimized solutions within 1 h, enabling real-time adjustments 
and fast decision-making in the offshore microgrid. 

The research demonstrated that the intelligent management system, 
i.e., the optimizer operation, significantly enhances overall perfor
mance, compared to the already economical condition-based approach. 
Over a week of operation, the optimized scenario resulted in a 16% of 
cost reduction (c.a. 185,000 €) and a 16% reduction in natural gas 

Table 6 
Comparison of hydrogen balance after a week of operation by different 
scenarios.   

H2 prod. H2 cons. H2 res. 

Condition-based 124.98 [t] 73.40 [kg] 51.58 [t] 
Optimized 72.89 [t] 65.79 [kg] 7.10 [t] 
Relative difference − 41.68% − 10.37% − 86.23%  

Table 7 
Overview of cost balance after a week of operation by different scenarios.   

NG cons. NOx 
prod. 

Total Cost H2 res. cost 
red. 

Total Cost - 
mod 

Condition- 
based 

2684.30 
[t] 

4.40 [t] 1136109 
[€] 

59657 [€] 1076452 
[€] 

Optimized 2243.65 
[t] 

4.44 [t] 950741 
[€] 

8213 [€] 942529 [€] 

Relative 
difference 

− 16.42% 0.90% − 16.32% − 86.23% − 12.44%  
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consumption and carbon-based emissions. The study’s optimized sce
nario effectively determined the best operation schedule by considering 
the entire field and integrating units’ operations. This success resulted 
from overcoming the limitations of the condition-based approach, which 
relied on a “platform approach” and predefined rules, lacking the ability 
to fully utilize all microgrid assets. In contrast, the optimization prob
lem’s complexity necessitated exploring different combinations of as
sets’ operations to achieve cost efficiency; a task accomplished using 
demand and production forecasts. 

The significance of this work can be summarized as follows:  

• The study provided a real case study of an offshore petroleum field 
with minimal simplification, moving beyond conceptual microgrids 
typically studied in related literature and presenting a more realistic 
assessment with complex power connections between platforms. 

• Unlike many microgrid studies, this work considered demand bal
ance with respect to both power and heat. The inclusion of gas tur
bines equipped with waste heat recovery units enabled the 
management systems (condition-based and optimized) to address 
heat balance efficiently and also enhanced the realism of the study.  

• The introduction of a hybrid optimization approach, utilizing both 
genetic algorithms and a database search, significantly reduced the 
computational time required for microgrid optimization. This 
allowed for the optimization of a day’s operation within hourly 
schedules for all microgrid units.  

• The use of the Python language and execution on a standard personal 
laptop underscored the efficiency and scalability of the proposed 
hybrid optimization method. This makes the approach practical and 
accessible for real-world offshore microgrid systems without the 
need for extensive computing resources. 

While the advantages of the introduced method are highlighted, a 
few points must be considered:  

• Model accuracy is crucial for the system’s performance. Since all of 
the models are data-driven, access to operational data from the gas 
turbines, wind turbines, and electrolyzer is essential for developing 
highly accurate models.  

• Data access readiness over time is also important for maintaining 
model accuracy as the microgrid components age. Periodic retrain
ing of models with new data ensures the maintaining accuracy of the 
models.  

• The accuracy of the demand forecast model is dependent on the 
quality and reliability of the weather forecasts, which are provided 
by meteorological institutions. It is essential to carefully select a 
trustworthy source of weather forecasts to ensure the performance of 
the developed structure.  

• The two-level optimization approach improves efficiency but has 
limitations. Optimal results depend on database quality and the ge
netic algorithm’s exploration of the outer loop. Enhancements in 
microgrid performance are possible with improved complexity and 
database accuracy. 

In conclusion, this study introduced a smart integrated microgrid 
management system with low development costs, achieving significant 
cost and emission reduction in petroleum operations. These findings 
contribute to a more sustainable energy future in the offshore O&G in
dustry, emphasizing the potential of advanced energy management 
techniques in addressing climate change and promoting environmental 
responsibility. 
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Nomenclature 

AI Artificial Intelligence 
ANN Artificial Neural Network 
C Cost 
dem Demand 
ELZ Electrolyzer 
ETS European Union Trading System 
FHR Fuel heating value ratio 
GFA Gullfaks A 
GFB Gullfaks B 
GFC Gullfaks C 
GHG Greenhouse gases 
GT Gas turbine 
hr Hour 
HyT Hydrogen tank 
IEM Integrated energy microgrids 
Inc Incentive 
LHV Lower heating value 
LNG Liquefied Natural Gas 
M Mass (stored) 
m Mass (consumption) 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
NCS Norwegian Continental Shelf 
O&G Oil and gas 
ov Objective value 
P Power 
N Number of gas turbines 
NG Natural gas 
Q Heat 
red Reduction 
res Reserved 
R&D Research and Development 
WHRU Waste heat recovery unit 
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