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1 Introduction 

1.1 Background 
In modern society, money and inflation are foundational to economic 
stability, wealth management, investment, trading, financial innovation, 
and wellbeing. 

Individuals’ awareness and understanding of these concepts are crucial 
for informed financial decisions, portfolio management, the maintenance 
of purchasing power, and the security of a stable financial future. 

The emergence of cryptocurrencies, notably Bitcoin, and the emergency 
of central bank digital currencies (CBDCs) have ushered in a new era 
characterized by novel dynamics, challenges, and opportunities (Badea 
& Mungiu-Pupӑzan, 2021; Böhme et al., 2015; Ferrari et al., 2022; 
Tercero-Lucas, 2023). Hence, market participants, e.g. investors, traders, 
assets holders, need to stay informed about new currencies since these 
innovations have the potential to reshape the financial landscape, 
impacting individuals and societies in various ways. 

Bitcoin was created by an unknown entity under the pseudonym Satoshi 
Nakamoto. Bitcoin runs on a peer-to-peer network without backing from 
physical assets, governments, central banks, or other central authorities 
(Nakamoto, 2008; Schilling & Uhlig, 2019). Bitcoin’s uniqueness lies in 
its decentralized nature, limited supply (21 million), transparency, global 
accessibility, permissionless transactions, and security features. These 
characteristics challenge traditional notions of fiat money, where 
centralized authorities control issuance and regulation, and financial 
intermediaries are pivotal in facilitating transactions (Zeng et al., 2020). 
Therefore, Bitcoin offers an alternative paradigm that empowers 
individuals and challenges the status quo of the existing financial system 
(Levulytė & Šapkauskienė, 2021; Senner & Sornette, 2019). 
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Bitcoin is a precursor to a myriad of cryptocurrencies. As of February 8, 
2024, 12,647 cryptocurrencies were enumerated on 
https://www.coingecko.com/, with a market capitalization of $1.79 
trillion. Topics related to cryptocurrencies are various. For instance, 
inflation expectations and cryptocurrencies (Cong, Ghosh, et al., 2023), 
token economy (Cong, Li, & Wang, 2021; Cong et al., 2022), financial 
characteristics of cryptocurrencies (Charfeddine et al., 2020), 
cryptocurrencies market and trading (Ahmed et al., 2023; Cong, Karolyi, 
et al., 2021; Cong, Li, et al., 2023; Le Tran & Leirvik, 2020; Liu et al., 
2022; Xu & Livshits, 2019), price and volatility (Bouri et al., 2017; 
Leirvik, 2022; Pichl & Kaizoji, 2017), decentralized finance (Perez et al., 
2021; Xu & Vadgama, 2022; Xu et al., 2022), taxation (Cong, Landsman, 
et al., 2023; Wang & Hausken, 2021b), adoption (Hinzen et al., 2022), 
security (Pagnotta, 2022), financial inclusion (Ozili, 2022b), mining and 
footprint (Jiang et al., 2021; Platt et al., 2021; Richardson & Xu, 2020; 
Sarkodie et al., 2022), monetary policy (Karau, 2023), etc. 

The foundational component of Bitcoin is the blockchain, a decentralized 
ledger that verifies and records transactions across numerous nodes. 
Bitcoin nodes are devices running Bitcoin software that maintain the 
network by validating transactions and blocks. All transactions backed 
up to the genesis block are recorded and secured in blocks, linked 
together using cryptography (Swan, 2015; Xu et al., 2019; Zheng et al., 
2018). 

Bhimani et al. (2021) investigate the impact of blockchain adoption in 
developed countries relative to developing countries. Blockchain 
technology has diverse applications, including finance, supply chain 
management, healthcare, education, and insurance. For example, in 
finance, blockchain enhances transparency and security in transactions 
and potentially removes financial intermediaries (Ali et al., 2020; 
Tapscott & Tapscott, 2017; Williamson, 2022). Supply chain 
management benefits from improved traceability and authenticity 
verification (Cole et al., 2019; Moosavi et al., 2021). In healthcare, 
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blockchain ensures secure and interoperable health data sharing, while 
for the government, it facilitates transparent and tamper-proof record-
keeping (Hasselgren et al., 2020). Other fields leveraging blockchain 
include identity verification, intellectual property protection, and 
decentralized applications, such as decentralized finance (DeFi), Web 
3.0, GameFi, and non-fungible tokens (NFT), that run on blockchain 
networks, offering diverse and innovative solutions to longstanding 
challenges in different industries. 

The rise of these digital currencies has created a dynamic and evolving 
landscape that underscores the imperative for a nuanced comprehension 
of the intricate strategic interactions embedded within economic systems. 
The introduction of CBDCs, representing digital forms of sovereign 
currencies, poses both challenges and opportunities in the realms of 
monetary policy, financial stability, financial intermediaries, security, 
cross-border payments and privacy (Allen et al., 2020; Andolfatto, 2021; 
Mancini-Griffoli et al., 2018; Prasad, 2023; Wang & Gao, 2024). 
Simultaneously, the decentralized nature of Bitcoin challenges 
traditional notions of fiat money. It presents an alternative some 
individuals perceive as a store of value and a safeguard against inflation. 
This transformative trajectory underscores the imperative for 
policymakers, economists, and stakeholders to navigate the multifaceted 
implications of digital currencies, steering toward a resilient and adaptive 
economic framework. 

Most central banks worldwide recognize the transformative potential of 
digital currencies and have embarked on exploring national digital 
currencies, known as CBDCs (Adrian & Mancini-Griffoli, 2021; Chiu et 
al., 2023; Raskin & Yermack, 2016). 

In contrast to the decentralized nature of Bitcoin, CBDCs are digital 
currencies issued and overseen by central authorities. CBDCs employ 
new technologies (e.g. blockchain and directed acyclic graphs) to 
facilitate secure and transparent transactions. CBDCs are commonly 
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accepted as a new type of fiat money (Allen et al., 2022; Cunha et al., 
2021). This central regulatory control introduces a nuanced dynamic 
because it enables governments and central banks to influence monetary 
policy, financial stability, and economic mechanisms while leveraging 
blockchain technology’s efficiency and security features. The motivation 
behind CBDCs is multifaceted and includes the enhancement of 
monetary policy tools, responses to the challenges and threats from 
cryptocurrencies, the facilitation of financial inclusion, the improvement 
of transactions and payments, and adaptation to the evolving digital age 
(Ahmat & Bashir, 2017; Allen et al., 2022; Atici, 2018; Banet & Lebeau, 
2022; Calle & Eidan, 2020; Davoodalhosseini, 2022; Kim & Kwon, 
2019, 2023; Kumhof & Noone, 2021; Lee et al., 2021; Opare & Kim, 
2020; Ozili, 2022a). 

The development and potential adoption of CBDCs introduce a new 
layer of complexity to economic systems. The unfolding dynamics 
prompt considerations of the potential impact of digital currencies on 
individual financial behavior, institutional investments, monetary 
policies, credit supply, financial stability, and the broader economic 
ecosystem. They also question the coexistence and competition between 
centrally issued digital currencies and decentralized alternatives such as 
Bitcoin, the future of currency systems, and regulatory frameworks. This 
interaction forms a critical aspect of the strategic landscape that requires 
comprehensive analysis and modeling. 

The advantages of fiat currencies include the following characteristics: 

 A variable supply of fiat currencies enables the funding of large 
projects (e.g. Roosevelt’s New Deal). 

 Central banks’ fiscal policies may stabilize the economy, for 
example, by smoothing out bubbles, incentivizing spending, and 
avoiding recessions.  

 A 2% inflation target may incentivize spending and investing, 
preventing people from storing too many fiat currencies. 
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 Central banks’ objectives (e.g. financial stability and controlling 
inflation, unemployment, interest, and exchange rates) may benefit 
society by supporting economic growth and job creation. 

 Fiat currencies comprise over 99% of the world’s transaction 
volume. The daily trading volume in fiat currency exchanges (aka 
forex), reaches $5 trillion, whereas the daily trading volume for 
cryptocurrencies seldom exceeds $500 billion (dydx, 2024) . 

 Due to centuries of inertia, most people and institutions trust fiat 
currencies more than cryptocurrencies. 

 Fiat currencies are mandatory in most countries, while 
cryptocurrencies are legal tender only in two countries (i.e. El 
Salvador and the Central African Republic). Bitcoin is currently 
illegal in several countries. 

 Fiat currencies are mandatory for paying taxes and are the only 
available or feasible currency in most countries.  

The disadvantages of fiat currencies are listed below: 

 Fiat currencies experience inflation (e.g. $1 in 1923 is worth $0.06 
in 2023; (Calculator, 2023). 

 Centralizations of fiat currencies enable blocking or constraining 
accounts. 

 Fiat currencies are prone to excluding marginal groups (e.g. 
homeless people and those in remote areas).  

 Fiat currency transactions may not be completely traceable (e.g. 
cash transaction records are hard to trace). 

 Fiat currency transactions are not necessarily final. 
 Fiat currencies lack 24/7/365 transaction availability. 
 Fiat currency transactions are time-consuming, especially over 

holidays and for cross-border payments. 

The emergence of digital currencies presents a spectrum of challenges 
and opportunities. One concern lies in the relationship and connection 
between the adoption of digital currencies and economic systems’ 
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overall financial stability, with the inherent volatility of cryptocurrencies 
posing a distinct risk. The strategic decisions undertaken by various 
stakeholders, such as households, enterprises, commercial banks, central 
banks, governments, and countries, are determinants shaping the 
trajectory of economic systems. Therefore, considering the adoption, 
regulation, and use of digital currencies requires a thorough analysis of 
their implications for monetary policy, the stability of financial 
institutions, and potential alterations in the dynamics of cross-border 
transactions. Furthermore, exploring the role of digital currencies in 
financial inclusion, privacy considerations, and broader socioeconomic 
implications amplifies the complexity of this evolving narrative. As 
economic agents navigate this dynamic intersection, strategic foresight, 
informed decision-making, and adaptive policies emerge as 
indispensable elements in charting a course that optimally balances the 
challenges and opportunities of the digital age. 

This dissertation includes 13 articles divided into four categories. These 
are game theory and security (one article), currency evolution and 
competition (five articles), digital currencies households, central banks, 
governments, and monetary policy (four articles), and interest rate 
modeling (three articles), see Figure 1. 
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Figure 1. The four categories of the 13 articles in the dissertation.
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1.2 Objectives and research questions 
Understanding the game theoretic underpinnings of these strategic 
interactions is essential for unraveling the complexities introduced by 
digital currencies. This dissertation analyzes how diverse stakeholders 
within the economic ecosystem strategically respond to introducing and 
integrating digital currencies and how these strategic decisions impact 
market dynamics. The objective is to furnish valuable insights for a 
spectrum of participants, including individuals, enterprises, 
policymakers, economists, researchers, and other stakeholders immersed 
in navigating the dynamic landscape of digital finance. 

The primary goal of this research is to develop a game theoretic model 
that captures the dynamics of economic systems involving digital 
currencies, including CBDCs, Bitcoin, and other cryptocurrencies. How 
the strategic choices made by various economic players impact the 
evolution of digital currencies is central to this focus. Questions 
considered in the articles include individual taxation choices in digital 
currencies, monetary policy within digital currencies, fiat money 
printing and inflation, and competition between fiat money (exemplified 
by CBDCs) and hard money (exemplified by Bitcoin).  

This dissertation seeks to unravel the strategic interactions of diverse 
economic players. It aims to highlight how the introduction and adoption 
of digital currencies impact economic agents’ strategic choices, thereby 
elucidating economic systems’ trajectories on the micro and macro levels. 

This dissertation’s research questions are as follows: 

1. Currency evolution and players dynamics: 

 How do the volume fractions of a national currency (e.g. CBDC) 
and a global currency (e.g. Bitcoin) and the fractions of the three 
players––conventionalists, pioneers, and criminals––evolve? 
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 How do currencies’ various characteristics relate to supply, 
ownership, decentralization, regulation, transaction confirmation, 
geographical extension, backing, convenience, confidentiality, 
transaction efficiency, financial stability, and security impact the 
player’s choice? 

2. Currency competition and dynamics: 

 How does a variable currency (e.g. fiat) compete with a fixed 
currency (e.g. Bitcoin), with a particular focus on the dynamics of 
currency supply? 

 How do factors such as inflation/deflation affect the currency 
competition? 

3. CBDC interest rates and economic impact: 

 How do positive and negative CBDC interest rates impact 
household production, consumption, CBDC holding, non-CBDC 
holding, and utility? 

 How does a household strategically allocate its resources per the 
central bank interest rate policy, and what are the resulting 
implications for economic activities? 

 How does a household earn utility and allocate monetary energy 
between consumption, CBDC holding, and non-CBDC holding 
depending on the interest rate of the CBDC chosen by the central 
bank and the non-CBDC interest rate (both of which may be positive 
or negative) as well as various preferences, transaction efficiencies, 
and other factors? 

 What are the implications for consumption, CBDC holding, non-
CBDC holding, and overall utility in different interest rate scenarios? 

4. Taxation choices in dual-currency economies: 
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 What are the household and the government’s taxation choices in a 
two-currency economy (e.g. a national currency such as a CBDC 
and a global currency such as Bitcoin)?  

 How does the household choose fractions of two currencies to 
determine the tax evasion probability for each currency? 

 How does the government choose its probability of detecting and 
prosecuting tax evasion, the tax rate, and the penalty factor imposed 
on each household when tax evasion is successfully detected and 
prosecuted in each currency? 

5. Strategies of banks and agents in hard and fiat money economies: 

 How do various financial activities such as borrowing, lending, 
buying, and selling impact the utilities of the bank and three types 
of agents: borrowers and buyers, sellers, and nontraders?? 

 How banks and these agents choose their strategies include whether 
borrowers prefer to borrow hard and fiat money from banks to buy 
other assets from sellers, whether sellers want to sell? 

 How nontraders are impacted by financial activities in hard and fiat 
money economies? 

6. Zero-day attacks and stockpiling over the two periods: 

 How does attacking player 1 allocate resources between the 
immediate zero-day attack in period 1 and stockpiling for attack in 
period 2? 

 How does the defender defend in both periods, and how do the 
players’ strategic choices in both periods depend on the model 
characteristics (i.e. player 1’s available resources, the contest 
intensities in both periods, the zero-day appreciation factor from 
period 1 to period 2, and both players’ unit costs of effort, asset 
valuations, and time discount factors)? 

7. Interest rate modeling: 
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 How to combine the Taylor (1993) rule, the quantity equation 
(Friedman, 1970) and the Phillips (1958) curve into interest rate 
models? 

 How to incorporate the deviations in money supply, money velocity, 
and the unemployment rate into interest rate models? 

 How to deal with the scaling issues in interest rate models? 

1.3 Scientific approach 
This section overviews the scientific approach this dissertation employs. 

When individuals and businesses engage in competitive or collaborative 
pursuits, they essentially enter a “game” wherein their decisions impact 
and are impacted by the choices of others. This dynamic gives rise to 
strategic choices, and economists use game theory to comprehend and 
analyze these strategic choices. Game theory is a vital tool for 
researchers, offering a profound understanding of economic interactions. 

Game theory analysis involves at least two players, each with multiple 
strategies. Each player’s payoff is contingent on the choices of all 
participants (Fudenberg & Tirole, 1991; Osborne, 2004; Roth, 2002). 
Game theory mirrors the complexities of real-world decision-making 
involving interactions among individuals, groups, firms, organizations, 
and countries. 

This dissertation explores multiple participants, such as individuals and 
households, firms, commercial banks, central banks, governments, and 
countries. Each participant in the system possesses a strategy set that 
encompasses setting interest rates and engaging in lending, borrowing, 
production, consumption, investment, import, export, defaulting, and 
imposing penalties for default. Given the intricate nature of real-world 
decisions involving interaction among various entities, game theory is a 
powerful approach for exploring these research topics. 
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Furthermore, game theory is a valuable complement to qualitative 
methods in economics and finance, such as econometrics and 
bibliometrics. Econometrics is a robust economics methodology that 
enables researchers to empirically investigate economic relationships, 
test hypotheses, and contribute to a deeper understanding of the complex 
dynamics inherent in economic systems. Bibliometric analysis is a 
powerful instrument for analyzing existing research (Chen, 2017; 
Donthu et al., 2021). It is widely employed to provide a deeper 
understanding of the evolution of the intellectual framework and 
emerging trends within a research field (Hallinger, 2022; Wang & 
Hausken, 2024; Wang et al., 2021; Yu et al., 2023). 

1.4 Dissertation structure 
This dissertation is divided into two main parts. Part I introduces 
background information. Part II presents 13 articles in four categories: 
Game theory and security (one article), currency evolution and 
competition (five articles), digital currencies households, central banks, 
governments, and monetary policy (four articles), and interest rate 
modeling (three articles). The data sources of this dissertation are 
explained in detail in corresponding articles within Section 2 (if 
applicable). 

The remainder of Part I is organized as follows: Section 2 offers an 
introduction to the fundamentals of digital currency, Section 3 
contextualizes the topics of the dissertation within a broader framework, 
and Section 4 outlines general directions for further work inspired by the 
research presented. 
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2 Fundamentals of Digital Currencies 

2.1 Definitions of money and currencies 
Money is a medium of exchange, a unit of account, a store of value, and, 
occasionally, a standard of deferred payment (Belk & Wallendorf, 1990; 
Furnham & Lewis, 1986). Money is widely accepted in transactions 
involving goods, services, and debt settlement. It serves as a unit of 
account, providing a common measure for valuing different goods and 
services. The main difference between money and currency is that 
money is a store of value, whereas currency is not (Battilossi et al., 2020; 
Goodhart, 1998; Schumpeter, 1991). 

Currencies are specific types of money issued by governments or 
monetary authorities typically associated with a particular country or 
region (Cohen, 2013; Gilbert & Helleiner, 1999; Larue, 2020; Lavoie, 
2022). Currencies exist physically and digitally, facilitating trade and 
economic activities within their respective jurisdictions. They represent 
value and are essential for conducting transactions in the modern 
financial system (Caruana, 2016; Eichengreen et al., 2018; Iancu et al., 
2022). Currencies may include traditional forms like paper money, coins, 
banknotes, and electronic forms such as bank card balances. Currency is 
known as legal tender because the government approves it. Hence, it can 
be used domestically anywhere as a payment method. Currency is also 
commonly used in international transactions and trade between countries. 
The most used currencies for international payments are the US dollar, 
the euro, the British pound sterling, the Japanese yen, and the Chinese 
renminbi. Figure 2 displays the most used currencies in the world for 
international payments per the Society for Worldwide Interbank 
Financial Telecommunications from January 2019 to July 2023, based 
on share in total transaction value. 
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Figure 2. Monthly international payments currency share in SWIFT January 2019–July 2023 
(Statista, 2023). 

Table 1 presents the most traded currencies by the global foreign 
exchange market turnover per the Bank for International Settlements 
(2022). As two currencies are involved in each transaction, the sum of 
percentage in each currency is 200%. The US dollar (USD) holds the top 
position, constituting 88.5% of the daily trading volume, underscoring 
its widespread use and importance in international trade and finance. The 
euro (EUR) is the second most traded currency, with a proportion of 
30.5%, indicating its significant role in global foreign exchange 
transactions. Other major currencies in the list include the Japanese yen 
(JPY), the British pound sterling (GBP), and the Chinese renminbi 
(CNY), each contributing a notable share to the overall market turnover. 
The results are similar to Figure 2. 

Rank Currency Percentage of daily volume 
1 US dollar 88.5% 
2 Euro 30.5% 
3 Japanese yen 16.7% 
4 British pound sterling 12.9% 
5 Renminbi 7.0% 
6 Australian dollar 6.4% 
7 Canadian dollar 6.2% 
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8 Swiss franc 5.2% 
9 Hong Kong dollar 2.6% 
10 Singapore dollar 2.4% 

Table 1. Most traded currencies by foreign exchange market turnover (Bank for International 
Settlements, 2022). 

Money can be any type of commodity, such as gold or silver. Money has 
intrinsic value and possesses certain features such as divisibility, 
durability, and portability that currency does not have (Camera et al., 
2004; Fieleke, 1992; McKinnon, 1979; Velde, 1998). Bitcoin offers a 
decentralized and digital alternative to traditional monetary systems 
(Hendrickson et al., 2016; Huberman et al., 2021; Pagnotta, 2022; Weber, 
2016; Xu et al., 2023). 

2.2 Asset classification 
This section presents a way to classify assets. The 11 mutually exclusive 
and jointly exhaustive assets are fiat money, cryptocurrencies, anti-
inflationary investments, NFTs, bonds, stocks, other financial assets, real 
estate, physical assets, illegal assets, and other assets. 

 Fiat money encompasses a broad category, including traditional 
currencies, physical coins, and CBDCs. Currently, CBDCs have 
been launched by 11 countries (i.e. Jamaica, Nigeria, the Bahamas, 
and eight Caribbean Island nations—Anguilla, Saint Kitts and Nevis, 
Antigua and Barbuda, Montserrat, Dominica, Saint Lucia, Saint 
Vincent and the Grenadines, and Grenada). 

 Cryptocurrencies, such as Bitcoin, Ethereum, and Dogecoin, 
represent a distinct digital asset class. Cryptocurrencies has the 
potential to become the 12th sector of the Standard & Poor's 500 
Index. 

 Anti-inflationary investments like gold, silver, fine art, and limited-
edition collectibles provide alternative avenues for wealth 
preservation. NFTs, exemplified by BRC-420, Rune Stone, 
NodeMonkes, Bitcoin Frogs, Bitcoin Puppets, BoredApes, 
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Cryptopunks, Pudgy Penguins, Azuki, and Mad Lads, showcase 
unique digital assets with ownership recorded on a blockchain. 

 Bonds offer interest to bondholders as fixed-income instruments 
issued by governments or firms. 

 Stocks, representing company ownership, for example, in Apple, 
Alphabet, and Tesla, may yield dividends as a form of return on 
investment. 

 Other financial assets include exchange-traded funds (ETFs), 
mutual funds, and financial derivatives like futures, options, and 
swaps. 

 Real estate comprises residential, commercial, industrial, raw land, 
and special-use properties but is distinct from physical assets.  

 Physical assets include machinery, inventory, office and warehouse 
supplies, vehicles, and computers. 

 Illegal assets involve certain drugs and funds associated with money 
laundering, terrorist financing, bribery and corruption, tax evasion, 
illegal gambling, Ponzi schemes and are considered outside the legal 
financial system.  

 Other assets encompass a diverse range, including computer 
software, licenses, trademarks, patents, films, copyrights, import 
quotas, reputation, and design. Essentially, other assets encompass 
anything not explicitly covered by the previously mentioned 
categories, reflecting the multifaceted nature of the contemporary 
asset landscape. 

2.3 Central bank digital currencies 
CBDCs are digital currencies issued and regulated by central banks 
(Bordo & Levin, 2017; Mancini-Griffoli et al., 2018). CBDCs exist 
electronically and utilize technologies such as blockchain and directed 
acyclic graphs. The key features of CBDCs include the following: 

 Issued by central banks: CBDCs are issued and regulated by each 
country’s central bank. 
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 Legal tender: CBDCs are recognized as legal tender for transactions 
and payments within the country or central regions, similar to 
physical banknotes and coins. 

 Digital form: CBDCs are stored and transacted electronically, often 
through digital wallets and payment systems. 

 Backed by the government: CBDCs are typically backed by 
governments and considered central bank liabilities. 

 Controlled supply: Central banks and governments control the 
issuance and supply of CBDCs. 

 Regulatory compliance: CBDCs are subject to each country’s 
regulatory framework, ensuring compliance with financial laws and 
regulations. 

An early definition of a CBDC was developed by Bjerg (2017) based on 
a report on cryptocurrencies published in 2015 by the Committee on 
Payments and Market Infrastructures (CPMI, 2015). He included the 
characteristics of being universally accessible in addition to electronic 
and central-bank-issued in defining the new concept of central bank 
digital currency (see Figure 3). 

 
Figure 3. Cryptocurrency versus CBDC (Bjerg, 2017). 

Furthermore, Bech and Garratt (2017) presented a taxonomy of money 
based on four key properties: the issuer (the central bank or other), the 
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form (electronic or physical), the accessibility (universal or limited), and 
the transfer mechanism (centralized or decentralized). Under this 
framework, they defined a CBDC as an electronic form of central bank 
money that can be exchanged in a decentralized way. In addition, they 
identify two types of CBDC: retail and wholesale. Retail means a widely 
available, consumer-facing payment instrument targeted at retail 
transactions, whereas wholesale refers to a restricted-access, digital 
settlement token for wholesale payment applications (see Figure 4). 

 
Figure 4. A taxonomy of money and currency (Bech & Garratt, 2017). 

CBDCs are commonly divided into several types depending on their 
designs, architectures, and operational modes. Retail and wholesale 
CBDCs are classified based on payment types (Auer & Böhme, 2020; 
Cunha et al., 2021). The former is designed for the general public and 
daily transactions, while the latter is intended for financial institutions 
(e.g. commercial banks) and the settlement of transactions for large 
amounts. Regarding operational modes, CBDCs can be direct, indirect, 
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or hybrid (Auer et al., 2020). A direct CBDC is issued to individuals 
directly by a central bank, which records all transactions, so no 
intermediary is needed. An indirect CBDC is first exchanged between 
the central bank and intermediaries, such as commercial banks and other 
financial institutions. The public can access the CBDC via these 
institutions. The central bank manages wholesale transactions and 
payments. 

A hybrid CBDC combines a direct and indirect CBDC. Individuals can 
access a hybrid through intermediaries and the central bank. 
Intermediaries handle individual transactions and payments, and the 
central bank updates and retains transaction records and individual 
balances. Regarding system architecture, CBDCs are classified as 
account-based and token-based (Garratt et al., 2020; Ozili, 2023). The 
latter uses tokens in digital wallets and focuses on transaction validity, 
while the former opens a digital currency account and focuses on user 
identification. From an interest-rule perspective, CBDCs are interest-
bearing and noninterest-bearing (Agur et al., 2022; Syarifuddin & 
Bakhtiar, 2022). A depositor can keep an interest-bearing CBDC and 
earn interest but cannot earn interest on a noninterest-bearing CBDC. 
Figure 5 exhibits the classification of CBDCs. 
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Figure 5. Classification of CBDCs. 

Subsequently, Figure 6 compares the number of countries and currency 
unions exploring, testing, and implementing CBDCs in April 2021 and 
June 2023. The data indicates a growing global interest in CBDCs over 
the past two years. 
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Figure 6. The number of countries and currency unions exploring CBDC in April 2021 and June 
2023 (Atlantic Council, 2023). 

The US Federal Reserve and the Biden Administration have expressed 
keen interest in developing a digital dollar (Reserve, 2022). Federal 
Reserve Banks, such as those in New York and Boston, are actively 
exploring CBDC prototypes designed for wholesale and retail purposes. 

China initiated the Digital Currency Electronic Payments project in 2017, 
naming it e-CNY in 2021. The People’s Bank of China (PBOC), China’s 
central bank, undertakes this digital currency initiative. The primary goal 
of the digital currency electronic payment project is to create a digital 
version of the official Chinese currency, the renminbi (RMB), commonly 
known as the yuan. By October 2021, 123 million individual and 9.2 
million corporate wallets had been established, facilitating a transaction 
volume of 142 million and a transaction value denominated in renminbi 
(The People's Bank of China, 2021; Xu, 2022). In January 2023, China 
incorporated the e-CNY into its currency circulation assessments, with 
the e-CNY constituting 0.13% of the cash and reserves held by the 
central bank (Amitoj Singh, 2023). 

The European Central Bank is poised to commence the preparation phase 
in November 2023, concentrating on advancing the groundwork for 
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developing the digital euro. This phase involves establishing the 
fundamentals for a prospective digital euro, involving tasks such as 
finalizing a rulebook and selecting providers to develop the necessary 
platform and infrastructure (The European Central Bank, 2023). 

Norway has investigated CBDCs since 2016. In April 2021, the Central 
Bank of Norway announced a plan for technical testing over the next two 
years (The Central Bank of Norway, 2021). The Norwegian CBDC 
experimentation concluded in June 2023 (Helge Syrstad, 2023). The 
Central Bank of Norway disclosed findings from the fourth phase of its 
CBDC experiments on December 18, 2023, concluding that a retail 
CBDC is not currently necessary. Instead, it focuses on a wholesale 
CBDC for interbank settlement of tokenized deposits. The fifth phase, 
concluding in 2025, aims to provide the central bank with the necessary 
insights to decide on the potential launch of a CBDC. 

Figure 7 displays the status of CBDC development worldwide. As of 
October 24, 2023, 130 countries, representing 98% of global GDP, were 
investigating CBDCs (Atlantic Council, 2023). Among G20 countries, 
19 (except Argentina) are in advanced stages of CBDC development, 
with nine already in the pilot phase (i.e. Australia, China, India, Japan, 
South Korea, Russia, Saudi Arabia, South Africa, and Turkey). 
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Figure 7. Status of CBDC development by country (Atlantic Council, 2023). 

2.4 Bitcoin and cryptocurrencies 
The Bitcoin white paper was published on October 31, 2008, by 
Nakamoto (2008). The genesis block, symbolizing the birth of Bitcoin, 
was successfully mined on January 3, 2009, at 18:15:05 UTC 
(Coordinated Universal Time). Within the realm of cryptocurrencies, 
Bitcoin is widely accepted as the most secure and decentralized 
cryptocurrency (Hameed, 2019). It has experienced enduring growth in 
both value and popularity. Bitcoin uses the proof-of-work method to 
secure the distributed ledger and is a peer-to-peer network without 
central authorities. Nobody controls the entire Bitcoin network, so 
everyone can join the Bitcoin network via the internet, with every 
transaction permanently verified and recorded. Halaburda et al. (2022) 
summarize the microeconomics of Bitcoin. 

Bitcoin mining involves specialized devices, such as application-specific 
integrated circuit (ASIC) miners, to validate transactions on Bitcoin’s 
blockchain. Bitcoin mining aims to create a new block for the blockchain 
by solving a complex mathematical problem. The hash of a block’s 
header must be lower than or equal to a target value set by the network’s 
difficulty level. Miners cannot predict which nonce (number used once) 
will result in a valid hash, so they go through various nonce values in 
combination with the block’s other data. A nonce is a 32-bit (4-byte) 
field within a block’s header, a random number that Bitcoin miners try 
to find to mine a new block in the blockchain and receive a block reward 
for their efforts. Härdle et al. (2020) provide an overview of the 
blockchain technology underpinning cryptocurrencies. 

Miners repeatedly hash the block header using the SHA-256 algorithm, 
adjusting the nonce with each attempt. This process is computationally 
intensive and requires significant computational power. The first miner 
to find a nonce that satisfies the difficulty requirement broadcasts the 
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newly mined block to the network, and the block is added to the 
blockchain. This process, known as proof-of-work, is how miners 
compete to add a new block to the blockchain and receive the associated 
reward. Thus, the nonce is crucial in creating a valid block hash during 
this computational process. 

Confirmation occurs when a miner successfully creates a valid hash, 
discovering a new block. Upon acceptance by the entire Bitcoin network, 
the miner is rewarded with newly minted bitcoins. The transactions 
awaiting confirmation are included in this new block, becoming part of 
the blockchain. Figure 8 shows a simplified Bitcoin blockchain structure 
with four transactions. 

 

Figure 8. A simplified Bitcoin blockchain structure with four transactions in a block. 

Figure 9 summarizes Bitcoin block 829,515, see 
https://bitaps.com/829515 for more detailed information. 
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Figure 9. Summary of Bitcoin block 829,515 (Bitaps, 2024). 

A Bitcoin node validates, relays, and stores transactions in each block. 
Nodes broadcast transactions to other nodes and miners. Miners then 
group these transactions into blocks and add them to the blockchain after 
validating them. Nodes receive and share these blocks, ensuring miners 
adhere to network rules. When a node obtains a new transaction or block, 
it relays it to peers, ensuring synchronization among all nodes and miners 
to maintain identical blockchains. Figure 10 shows the interactions 
between Bitcoin nodes and miners. 
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Figure 10. Bitcoin network interactions between nodes and miners (River, 2023). 

Bitcoin is increasingly considered to have value (Kelleher, 2021). When 
the global currency is conceptualized as a cryptocurrency like Bitcoin, 
which currently allows five to seven transactions per second, Layer 2 is 
a promising solution for scaling, for example, using the lightning 
network, where transactions are faster, less costly, and more readily 
confirmed (Frankenfield, 2021). The lightning network introduces off-
ledger transactions and disintermediates central institutions such as 
banks. Off-ledger transactions are updated on the main blockchain on 
base Layer 1 only when two parties open and close a payment channel 
on the lightning network (Poon & Dryja, 2016). 

El Salvador adopted Bitcoin as legal tender on September 7, 2021, and 
the Central African Republic followed suit on April 27, 2022, 
highlighting its expanding acceptance on a global scale. Notably, 
prominent public companies, including MicroStrategy, Tesla, Coinbase 
Global, Inc., and Marathon Digital Holdings, are actively investing in 
and holding Bitcoin, showcasing a growing trend of institutional 
adoption (Buybitcoinworldwide, 2023).  

The Securities and Exchange Commission (SEC) approved 11 Bitcoin 
exchange-traded funds (ETFs) based on Bitcoin’s real-time spot price for 
listing and trading on the US stock exchanges on January 10, 2024 
(Gensler, 2024). The 11 approved spot Bitcoin ETFs are Grayscale 
Bitcoin Trust (GBTC), ARK 21shares Bitcoin ETF (ARKB), Franklin 
Bitcoin ETF (EZBC), Invesco Galaxy Bitcoin ETF (BTCO), Fidelity 
Wise Origin Bitcoin Fund (FBTC), Vaneck Bitcoin Trust (HODL), 
Wisdomtree Bitcoin Fund (BTCW), Ishares Bitcoin Trust (IBIT), 
Bitwise Bitcoin Trust (BITB), Valkyrie Bitcoin Fund (BRRR), Hashdex 
Bitcoin ETF (DEFI). Table 2 summarizes the 11 Bitcoin ETFs. 

Issuing 
company Ticker Assets under 

management Management fee Fee waiver 

Grayscale GTBC $20 billon 1.5% N/A 
VanEck HODL $134 million 0.21% N/A 
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Fidelity FBTC $2.7 billon 0.39% N/A 

21 Shares & 
ARK ARKB $717 million 0.25% 

No fees for the first 6 
months OR first $1 billon 
of inflows 

Blackrock IBTC $3.3 billon 0.25% 
0.12% for the first 6 
months OR first $5 billon 
on inflows 

Invesco & 
Galaxy 
Digital 

BTCW $306 million 0.25% 
No fees for the first 6 
months OR first $5 billon 
of inflows 

Hashdex DEFI $5 million 0.9% N/A 

Bitwise BITB $672 million 0.20% 
No fees for the first 6 
months OR first $5 billon 
of inflows 

Wisdomtree BTCW $15 million 0.3% N/A 
Valkyrie BRRR $114 million 0.49% N/A 
Franklin 
Templeton EZBC $64 million 0.19% No fees for the first $10 

billon of inflows 

Table 2. Summary of the 11 Bitcoin ETFs as of February 8, 2024.

Bitcoin ETFs provide individual and institutional investors with 
exposure to Bitcoin globally without the need to buy Bitcoin directly.

Bitcoin is the first application of blockchain technology. The main 
features of blockchain include distribution, immutability, security, 
programmability, decentralization, and transparency with pseudonymity 
(Figure 11).
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Figure 11. Summary of blockchain features. 

Bitcoin and blockchain have demonstrated potential for changing the 
financial system due to their ability to provide decentralized, secure, and 
transparent systems (Biais et al., 2023). Their transformative capabilities 
extend beyond conventional financial paradigms and are driving the 
emergence of decentralized finance (Carapella et al., 2022). Other well-
known cryptocurrencies include Ethereum, Solana, Dogecoin, Pepe coin, 
Dogwifhat, Bittensor, Chainlink, BNB coin, and Matic. Table 3 
compares Bitcoin and fiat money. 

Aspect Bitcoin Fiat money 
Operation 
time Open 24/7, 365 days a year Closed on holidays 

Transaction 
fee 

Low fees with flexible 
transaction fees determined by 
miners and users. The current 
average transaction fee is c.a. 
$0.78 (Bitinfocharts, 2023). 

Users pay fees to banks. 
Cross-border payments 
are costly, ranging from 
1.5% to 7.5% of the 
transaction value (Morar, 
2023). 

Transaction The speed depends on Bitcoin Transfers may not go 



Fundamentals of Digital Currencies 

30 

speed network congestion, normally 
ca. 10–15 minutes (Hari & 
Sai, 2015). 

through on bank 
holidays, while 
international transfers are 
slow, ranging from one 
to five working days 
(Keating, 2023). 

Transparency 
All transactions are 
transparently recorded on the 
blockchain and visible to all. 

Banks do not normally 
disclose their opaque 
financial transactions to 
the public. 

Trust Blockchain and cryptographic 
techniques 

Trust in central 
authorities 

Know your 
customer 
(KYC) 

No KYC requirements means 
anyone can join the Bitcoin 
network. 

Requires KYC 
procedures where users 
must provide personal 
information to create 
bank accounts. 

Financial 
inclusion 

A universal accessibility 
internet connection is 
required. 

Limited inclusion, 
especially in remote 
areas without bank 
branches 

Privacy  
Anonymous, except when an 
address is linked to KYC 
exchange accounts. 

User information is 
owned and managed by 
the bank. 

Security 
Cryptographic techniques 
secure Bitcoin with no single 
point of failure. 

Passwords secure 
accounts. 

Authorized 
party or 
intermediary 

No authorized or intermediary 
parties. 

Centralized control by 
banks that serve as 
intermediaries. 

Control of 
assets Full control 

Banks have full control 
over the users’ bank 
accounts (e.g. they can 
lock them). 

Table 3. Comparison of Bitcoin and fiat money. 
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Discussions surrounding the regulatory framework for cryptocurrencies 
continue, and the situation is improving. For example, the European 
Union is positioned to become the first major jurisdiction to implement 
a dedicated and comprehensive crypto law. The Markets in Crypto 
Assets Regulation (MiCA), scheduled to be enforced in 2024 (European 
Securities and Markets Authority, 2023), signifies a groundbreaking 
development, offering legal clarity, addressing compliance challenges, 
and carrying global implications. Table 4 summarizes the regulations on 
cryptocurrency in the US, EU, UK, China, Canada, Singapore, and 
Austria. 

Country or 
region Regulator Regulation 

framework Main points 

US 

The Securities 
and Exchange 
Commission, 
The 
Commodity 
Futures Trading 
Commission 

 Still working toward creating an 
efficient set of digital asset regulations. 

EU 

The European 
Securities and 
Markets 
Authority 

Markets in 
Crypto Assets 
Regulation 

Identifies three categories of crypto 
assets: Asset-referenced tokens, 
electronic money tokens, and other 
crypto assets not covered by existing 
EU legislation (including utility 
tokens), with projected implementation 
in 2024. 

UK 
Financial 
Conduct 
Authority 

Consultation 
paper 

Firms promoting crypto assets in the 
UK must be authorized or registered by 
the Financial Conduct Authority or 
have their marketing approved by an 
authorized firm.  

China 

The National 
Financial 
Regulatory 
Administration 

 
Legally banned crypto-asset activity in 
2021. Chinese citizens are technically 
permitted to hold crypto assets. 

Canada 
Canadian 
Securities 
Administrators 

Primarily 
under 
securities law, 
the Proceeds 
of Crime and 
Terrorist 

Digital assets such as cryptocurrencies 
are treated as securities in Canada. 
Require companies transacting in 
cryptocurrency to keep records of all 
cross-border transactions, report 
suspicious activity, and register with 
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Financing Act local regulators. 

Singapore 
The Monetary 
Authority of 
Singapore 

The Payment 
Services Act 

Aims to ensure consumer protection, 
maintain financial stability, and guard 
against money laundering and 
terrorism financing risks. Crypto 
exchanges are required to be registered 
and hold a license to operate in 
Singapore. Continuously working to 
improve the regulatory framework of 
digital payment token services. 

Austria 

The Australian 
Securities and 
Investments 
Commission, 
The Australian 
Treasury 

A range of 
laws, 
Australia’s 
financial 
services, and 
anti-money 
laundering and 
counter-
terrorism 
financing 
regime 

Plans to release draft legislation 
covering licensing and custody rules 
for crypto-asset providers by 2024. 
Cryptocurrencies are legal in Australia 
and treated as property. Trading, 
spending, receiving, and storing 
cryptocurrency are all legally 
permissible activities. 

Table 4. Overview of cryptocurrency regulations in US, EU, UK, China, Canada, Singapore, and 
Austria. 

2.5 Fiat money supply and inflation 
Historically, central banks worldwide tend to print fiat money. 
Sometimes, they may decrease the fiat money supply to reduce a high 
inflation rate. Central banks use a combination of tools to control the fiat 
money supply, such as open market operations, adjustments to interest 
rates and reserve requirements, and forward guidance for printing or 
withdrawing fiat money from the economy. 

Figure 12 depicts the historical fiat money supply represented by M2 in 
the US, China, and EU. M2 is a monetary aggregate representing a 
broader measure of the money supply within an economy (Investopedia, 
2023). It is widely used by economists, researchers, and policymakers to 
understand and analyze the overall money supply in an economy. M2 
provides a more comprehensive view than M1, which only includes the 
most liquid forms of money (Parhizgari & Nguyen, 2011). 
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As of October 2023, the M2 money supply in the US was $20.865 trillion, 
in China ￥286.934 trillion (equivalent to $39.2 trillion at an exchange 
rate of 0.14), and in the EU €19.032 trillion (equivalent to $20.06 trillion 
at an exchange rate of 1.05). Figure 12 illustrates that the fiat money 
supply has historically increased extensively. Panel a: Historical M2 
money supply trend in the US, Panel b: Historical M2 money supply 
trend in China, and Panel c: Historical M2 money supply trend in the EU. 
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Figure 12. The historical M2 money supply trends in the US (Panel a), China (Panel b), and the 
EU (Panel c) (TradingView, 2023). 

Inflation is a general increase in the economy’s overall price level of 
goods and services (Board of Governors of the Federal Reserve System, 
2021). Various economic theories attempt to explain the causes of 
inflation, such as the cost-push theory (Batten, 1981), the demand-pull 
theory (Holzman, 1960), the expectation theory (Carlson & Parkin, 
1975), and the quantity theory of money (Friedman, 1989; Lucas, 1980). 

Generally, a prevailing perspective holds that an increase in the money 
supply contributes to inflation. Hence, inflation is caused when an 
economy’s money supply grows faster than the economy’s ability to 
produce goods and services (The Federal Reserve Bank of St. Louis, 
2023).  

The fiat system is characterized by inflation. Figure 13 shows the 
inflation rate by country in 2022. The global average inflation rate was 
13.9% in 2022. Zimbabwe had the highest inflation rate in the world at 
284.94%, followed by Venezuela at 210%, Sudan at 154.91%, Turkey at 
73.13%, and Argentina at 72.37%. 
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Figure 13. Inflation rate (%) by country in 2022 (Wisevoter, 2023). 

Table 5 compares Bitcoin to the world’s top 20 largest fiat currencies by 
market cap as of February 8, 2024. 

Rank Name Price Market Cap Circulating Supply Max Supply 

1 Chinese 
Yuan (CNY) 

316 sats 926,147,102 
BTC 

292,270,000,000,000 
CNY 

Unlimited 

2 
United States 
Dollar 
(USD) 

2,253 sats 869,747,261 
BTC 

38,597,643,970,000 
USD 

Unlimited 

3 Icelandic 
Krona (ISK) 

16 sats 451,883,549 
BTC 

2,760,185,000,000,000 
ISK 

Unlimited 

4 Euro (EUR) 2,428 sats 362,627,307 
BTC 

14,935,209,000,000 
EUR 

Unlimited 

5 Japanese 
Yen (JPY) 

15 sats 243,395,017 
BTC 

1,599,534,000,000,000 
JPY 

Unlimited 

6 
Pound 
Sterling 
(GBP) 

2,845 sats 100,280,417 
BTC 

3,524,371,000,000 GBP Unlimited 

7 
South 
Korean Won 
(KRW) 

1 sats 89,609,196 
BTC 

5,283,931,000,000,000 
KRW 

Unlimited 

8 Indian Rupee 
(INR) 

27 sats 65,715,707 
BTC 

242,093,000,000,000 
INR 

Unlimited 

btcxy
Stamp
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9 
Canadian 
Dollar 
(CAD) 

1,673 sats 60,030,968 
BTC 

3,587,269,000,000 
CAD 

Unlimited 

10 
Hong Kong 
Dollar 
(HKD) 

288 sats 49,665,800 
BTC 

17,234,053,000,000 
HKD 

Unlimited 

11 Brazilian 
Real (BRL) 

453 sats 48,538,158 
BTC 

10,707,230,000,000 
BRL 

Unlimited 

12 Australian 
Dollar 
(AUD) 

1,469 sats 43,583,367 
BTC 

2,966,000,000,000 
AUD 

Unlimited 

13 New Taiwan 
Dollar 
(TWD) 

71 sats 43,476,892 
BTC 

60,548,592,000,000 
TWD 

Unlimited 

14 Swiss Franc 
(CHF) 

2,577 sats 29,287,379 
BTC 

1,136,215,000,000 CHF Unlimited 

15 Russian 
Ruble (RUB) 

24 sats 24,488,863 
BTC 

98,385,000,000,000 
RUB 

Unlimited 

16 Mexican 
Peso (MXN) 

132 sats 21,380,666 
BTC 

16,187,436,797,000 
MXN 

Unlimited 

17 Bitcoin 
(BTC) 

100,000,000 
sats 

19,607,828 
BTC 

19,621,506 BTC 21,000,000 
BTC 

18 Thai Baht 
(THB) 

63 sats 16,137,291 
BTC 

25,497,000,000,000 
THB 

Unlimited 

19 Saudi Riyal 
(SAR) 

600 sats 16,135,110 
BTC 

2,685,343,000,000 SAR Unlimited 

20 United Arab 
Emirates 
Dirham 
(AED) 

613 sats 14,654,185 
BTC 

2,388,647,000,000 
AED 

Unlimited 

Table 5. Bitcoin compared to the top 20 largest fiat currencies in the world by market cap 
(CoinMarketCap, 2024). 
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3 Research Areas and Problems 

3.1 Game theory and security 
Article 1, in Category 1, discusses security in the production and 
deployment of zero-day exploits. 

Article 1 introduces a two-period game theory model. Player 1 chooses 
to produce zero-day exploits immediately or stockpile for future 
deployment in period 2. Player 2 defends its asset in the two periods. The 
article illuminates how the two players balance exerting effort in the two 
periods. The analysis considers asset valuations, asset growth, time 
discounting, and contest intensities. Based on a no-stockpiling 
benchmark, 18 parameter values are varied to understand the zero-day 
phenomenon over the two periods.  

Article 1 explores 11 possible solutions based on various settings, such 
as stockpiling, budget utilization, attacking in Period 2, and deterring 
Player 2 from defending. Player 1’s stockpiling choice depends on unit 
effort cost, Period 1’s advantage, and zero-day appreciation. Contest 
intensity impacts players’ efforts, leading to withdrawal if negative 
expected utility occurs over the two periods. 

The time discount factor affects efforts and expected utilities, with lower 
efforts when the factor decreases. The model validates intuitive results, 
such as players exerting more effort if it is cheaper, valuing the asset 
more, or having a higher growth factor. Inverse U-shaped efforts are 
observed, with fierce competition when advantageous and decreasing 
efforts in cases of extreme advantages or disadvantages. 

3.2 Currency evolution and competition 
Articles 2 to 6 in Category 2 discuss the following topics: 
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 The decision-making dynamics of conventionalists, pioneers, and 
criminals in choosing between a national currency and a global 
currency 

 The evolution and competition of fixed-supply and variable-supply 
currencies 

 The interplay between borrowers and buyers, sellers, nontraders, 
and banks in a hard and fiat money economic system 

 Bitcoin price evolution uses differential equation growth models 
incorporating oscillation and lengthening cycles. 

Article 2 categorizes players into three types: Conventionalists, pioneers, 
and criminals. Conventionalists follow traditional finance and prefer 
national currency. Pioneers tend to break from tradition (early adopters), 
and criminals prefer not to get caught. They both tend to prefer global 
currencies. 

Article 2 examines how conventionalists, pioneers, and criminals choose 
between a national currency (e.g. a CBDC) and a global currency (e.g. 
Bitcoin), considering specific characteristics. All players have Cobb-
Douglas utilities with one output elasticity for each of the two currencies, 
comprised of backing, convenience, confidentiality, transaction 
efficiency, financial stability, and security. Players choose the fraction of 
transaction volumes in each currency and player type accordingly for 
maximum expected utility. 

The expected utility for each player follows an inversely U-shaped curve 
based on the transaction volume fraction skewed toward national 
currency for conventionalists and global currency for pioneers and 
criminals. The society’s expected utility is a weighted sum of each 
player’s expected utility, considering the fraction of each player type. 

The replicator equation illustrates the evolution of player types and their 
currency choice over time. It shows dominance shifts based on players’ 
expected utility preferences. Fifteen parameter values are varied to 
illustrate sensitivity. When conventionalists become extinct, pioneers 
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and criminals directly compete. Players make strategic choices 
considering factors like criminal transaction fractions, detection 
probability, and scaling exponents for expected utility. Conventionalists 
become extinct when criminals benefit more from criminal behavior and 
when the parameter values in the conventionalists’ expected utility are 
unfavorable, leading to competition between pioneers and criminals. 

Article 3 investigates the competition between a fixed-supply currency 
(e.g. Bitcoin) and a variable-supply currency (e.g. a fiat currency such as 
a CBDC). Two kinds of players support fixed- and variable-supply 
currency differently and choose their volume fractions of transactions in 
each currency. Each player’s utility depends on how that player supports 
that currency, the transaction volume fractions of all players’ (of both 
kinds) transactions in that currency, and the fractions of players of the 
same kind. The player’s utility in transacting in a variable-supply 
currency involves two ratios. The first is the initial money supply plus 
the cumulative money printing or withdrawal divided by the initial 
money supply. The second is the inverse of cumulative inflation or 
deflation. Currency backing considers factors such as financial stability, 
transaction efficiency, convenience, confidentiality, and security (Wang 
& Hausken, 2021a).  

Three replicator equations are analyzed. Two illustrate each player’s 
volume fraction of transactions in each currency over time, while the 
third shows the evolution of the fraction of each kind of player over time.  

Players are inclined to prefer the variable-supply currency with a high 
weight assigned to the money supply relative to inflation. Conversely, a 
low weight assigned to the money supply relative to inflation induces 
players to be more inclined to prefer the fixed-supply currency. 
Transaction preferences between the two currencies may exhibit inverse 
U or U shapes before converging. Players choose their player kind and 
may opt for the kind with the highest support for a given currency. 
Players may align with the kind that supports a currency with 
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exceptionally high support. If a player’s utility is proportional to the 
fraction of the same kind of players, a higher impact for one kind leads 
to a preference for that kind. 

Article 4 relates to Article 3 and analyzes how a player’s low, high, 
increasing, and decreasing support for fixed-supply currencies relative to 
variable-supply currencies impacts currency choices. A currency’s 
support by the player relies on factors such as backing, convenience, 
confidentiality, transaction efficiency, financial stability, and security. 

A player’s high weight assigned to money printing causes the quick 
dominance of variable-supply currency, with low support for fixed-
supply currency. A player placing high weight on the fixed-supply 
currency may cause a temporary decrease in the fraction that eventually 
increases, except in cases of very high support for the fixed-supply 
currency. Very low support for the fixed-supply currency causes the 
variable-supply currency fraction to approach 1. High player support for 
the fixed-supply currency may temporarily increase the fraction, but it 
eventually decreases, especially when the player highly supports it. 

With a high player weight assigned to money printing and low but 
linearly increasing support for the fixed-supply currency, the variable-
supply currency fraction approaches 1 quickly. High and linearly 
increasing support may temporarily increase and eventually decrease the 
fraction. With a high weight on money printing, linearly decreasing 
support for the fixed-supply currency may temporarily decrease the 
fraction and then increase it toward 1. Low weight on money printing 
may cause the fraction to increase with low and decreasing support and 
decrease with slightly higher and decreasing support. 

Article 5 examines the interactions between borrowers and buyers, 
sellers, nontraders, and banks in an economy with hard and fiat money. 
Hard money, approximated by Bitcoin, assumes the infeasibility of 
printing, withdrawal, inflation, and deflation. In contrast, fiat money, 
controlled by the bank, may undergo inflation or deflation through 
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printing or withdrawal. Hence, hard money has a fixed supply, while fiat 
money has a variable supply.  

Article 5 focuses on one unitary bank and multiple agents, comparing 
their utilities in Periods 1 and 2. The agents choose their actions, such as 
borrowing, buying, selling, and lending, to maximize utilities. Period 1 
serves as a benchmark with no fiat money printing or withdrawal, 
maintaining a stable fiat money supply. In Period 2, the bank prints fiat 
money to lend to the borrower or buyer, causing corresponding inflation 
or deflation. Interactions and impacts on the bank and agents are 
explored by varying 64 parameters relative to a benchmark. 

Fiat money printing benefits the borrower or buyer and, if not excessive, 
harms the seller and nontraders due to inflation costs. Nontraders are 
unaffected in a hard-money economy but vulnerable in a fiat economy 
with money printing. Increasing nontraders decreases inflation, 
benefiting the seller, nontraders, and the bank but harming the borrower 
or buyer. 

In a hard-money economy with borrowing, neither inflation nor deflation 
occurs. Nontraders holding hard money and other assets remain 
unaffected. Borrowers and buyers, sellers, and banks experience the 
impact of portfolio changes between hard money, fiat money, other 
assets, loans, and associated interest rates. 

Borrowers and buyers benefit from buying assets with borrowed money 
if it values other assets more than loan interest and benefits from inflation. 
Sellers benefit from selling assets for hard and fiat money if they value 
money more than the assets. Excessive lending harms the bank. Banks 
prefer a balanced portfolio between money holdings and lending to avoid 
excessive inflation. 

Article 6 explores the Bitcoin price evolution using five growth models: 
conventional logistics, Gompertz, a charged capacitor, a combination of 
logistics with charged capacitor growth, and a combination of Gompertz 
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and charged capacitor growth. These five growth models are estimated 
and compared using Bitcoin empirics. The models are further enhanced 
with oscillation and damped lengthening cycles for realistic predictions 
of the Bitcoin price evolution, such as the future bull market maxima and 
the future bear market minima. 

Two Bitcoin carrying capacities are analyzed and explored, 
corresponding to the market capitalization of gold, which is $10 trillion, 
and the market capitalization as 50 times the market cap of gold. 

The analysis utilizes the least squares and weighted least squares 
methods to estimate parameters against empirical data from July 23, 
2010, to June 21, 2021. The parameters related to sine oscillations, 
including cycle length and degree of lengthening, are estimated using the 
historical three bull market maxima and three bear market minima. 

The results indicate that Gompertz growth fits the damped oscillations 
and lengthening cycles well and tracks the early data better with the 
weighted least squares method. The combination of Gompertz and 
charged capacitor growth tracks the early data even better. Logistic 
growth is too slow to track the early data. The combination of logistic 
growth with charged capacitor growth partly tracks the early data. Pure-
charged capacitor growth is unrealistic. Five future Bitcoin bull market 
local price maxima and the bear market local price minima are estimated 
under two different Bitcoin carrying capacities. 

3.3 Digital currencies, households, central banks, 
governments and monetary policy 

Articles 7 to 10 in Category 3 discuss the following topics: 

 The interplay between households and governments in currency 
holdings and taxation 

 CBDCs, other digital currencies, and negative interest rates 
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 The interplay between the central bank choosing interest rates and 
households choosing resource allocation in CBDCs and non-
CBDCs. 

Article 7 introduces a game involving a government and a representative 
household holding two currencies and taxation choices. The analysis 
explicitly focuses on a national currency, like a CBDC, and a global 
currency, like Bitcoin. The national currency is the most used by citizens 
for transactions such as purchasing and selling goods and services, 
paying taxes, and saving for retirement. Meanwhile, the global currency 
has limited usage within a nation. However, it may offer other 
opportunities such as tax evasion, user autonomy, discretion, peer-to-
peer focus, no banking fees, payment on the black market, criminal 
activities, and potential returns. 

The household’s three strategic choices are as follows. First, the fraction 
of its holdings held in the national currency, causing the remaining 
fraction to be held in the global currency. Second and third are the tax 
evasion probabilities on the national and global currencies. The 
government’s six strategic choices are the probabilities of detecting and 
prosecuting tax evasion, the tax rates, and the penalty factors on the 
national currency and global currency. Both the household and the 
government aim to maximize their expected Cobb-Douglas utilities. 

The household prefers low tax rates, while the government balances 
household support with the need for income through taxation and 
penalties. The household’s strategic choices align closely with its 
currency output elasticities and the government’s preferences for 
taxation and penalties. A high output elasticity for the national currency 
prompts the government to impose higher taxes. The household’s global 
currency tax evasion probability increases with the government’s output 
elasticity for the global currency.  

The household’s tax evasion probability on the national (global) 
currency decreases (increases) if the government values taxation and 
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penalties on the national (global) currency. The results are illustrated 
through numerical variations of eight parameter values relative to a 
benchmark. 

Article 8 introduces a game between a central bank (accounting for the 
government’s interest) choosing the CBDC interest rate and a 
representative household choosing consumption, holding a CBDC, or 
holding a non-CBDC, focusing on the impact of negative interest rates. 
The emergence of a CBDC facilitates negative interest rates, 
encouraging consumption over saving. 

The household allocates resources to consumption, holding a CBDC, and 
holding a non-CBDC. The central bank controls a CBDC. A non-CBDC 
can be any asset not issued or controlled by the central bank. The central 
bank sets its interest rate for the CBDC. Holdings in both a CBDC and a 
non-CBDC can have positive or negative interest rates. 

The central bank adopts a more negative interest rate under several 
conditions, such as increased household output elasticity for 
consumption, decreased household output elasticity for holding a CBDC, 
increased CBDC and non-CBDC transaction efficiencies, decreased 
household transaction efficiency for consumption, increased household 
scaling of the transaction cost, decreased scaling parameter for the 
central bank’s profit per household, reduced household monetary energy, 
and decreased non-CBDC interest rate. The numerical illustrations are 
explored by varying nine parameter values relative to a benchmark. 

Article 9 introduces a two-period decision model between a central bank 
and a representative household. The central bank follows the Taylor 
(1993) rule to set positive or negative interest rates. The household 
allocates resources into production, consumption, and holdings in 
CBDCs and non-CBDCs, guided by a Cobb-Douglas utility with 
elasticities. The CBDC interest rate, the non-CBDC interest rate, and 
transaction efficiency impact the household’s utility. 
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The central bank chooses a negative interest rate when the household 
holds far more CBDCs than non-CBDCs, discouraging excessive 
savings in CBDCs. Increasing the non-CBDC interest rate causes the 
household to hold more non-CBDCs and fewer CBDCs, prompting the 
central bank to increase its CBDC interest rate to compete with non-
CBDCs.  

Increasing the household’s transaction efficiencies for CBDCs and non-
CBDCs causes the central bank to increase its CBDC interest rate. 
Decreasing the real interest rate (i.e. the nominal interest rate adjusted 
for inflation), the inflation rate, the household’s potential production, or 
the weight assigned to inflation in the Taylor (1993) rule or increasing 
the target inflation rate or the household production parameter causes 
lower and eventually negative CBDC interest rates, which induces the 
household to decrease its CBDC holdings and increase its non-CBDC 
holdings, production, and consumption. 

Positive production shocks lead to lower CBDC interest rates, causing 
the household to hold fewer CBDCs, consume more, and earn lower 
utility. Positive inflation shocks result in higher CBDC interest rates, 
increasing the household’s CBDC holdings but reducing its production, 
consumption, and non-CBDC holdings.  

Positive CBDC interest rate shocks cause the household to hold more 
CBDCs and fewer non-CBDCs, and conversely, positive non-CBDC 
interest rate shocks cause the household to hold more CBDCs and fewer 
non-CBDCs. Positive shocks to the real interest rate cause higher CBDC 
interest rates. The findings are determined analytically and illustrated 
numerically with variations in 19 parameter values relative to a 
benchmark. 

Article 10 provides empirics for the model introduced in Article 9, 
comparing data from the United States, China, and Russia. The article 
also explores the implications of hypothetically higher inflation rates for 
these three countries. The analysis suggests that in 2021 and 2022, the 
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United States should have chosen a 7.56% CBDC interest rate rather than 
the low 0.125% CBDC interest rate to address its high October 2021 
inflation rate of 6.2%. This finding aligns with the observed trend of 
increasing interest rates post-2022. The US Federal Reserve maintained 
a target range for the federal funds rate at a 22-year high of 5.25%–5.5% 
in its October 2023 meeting.  

Conversely, the model suggests China should adopt a modest 2.99% 
CBDC interest rate instead of the empirical 3.85%. This adjustment is to 
reduce household savings in CBDC. The model recommends a 6.82% 
CBDC interest rate for Russia, slightly higher than the empirical 6.75%. 
The model further predicts that a negative CBDC interest rate is 
advisable when inflation and real interest rates are low but the inflation 
target is high. 

3.4 Interest rate modeling 
Articles 11 to 13 in Category 4 discuss extended interest rate modeling, 
considering terms beyond the Taylor (1993) rule. 

Article 11 introduces an extended interest rate model, combining the 
Taylor (1993) rule, the quantity equation (Friedman, 1970), and the 
Phillips (1958) curve. The article examines how deviations in inflation 
rate, real GDP, money supply, money velocity, and unemployment rate 
interact with the interest rate. 

Using the US empirics, i.e. monthly data from January 1, 1959 to March 
31, 2022, the Pearson correlation analysis reveals positive correlations 
between the interest rate and the deviations in the inflation rate, real GDP, 
money supply, money velocity, and the unemployment rate. Regression 
analysis confirms statistically positive interactions between the interest 
rate, the deviations in the inflation rate, and the real GDP, aligning with 
the Taylor (1993) rule. Additionally, the interest rate increases with 
deviations from the unemployment rate, consistent with the Phillips 
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(1958) curve. Overall, the deviations in inflation rate, money supply, 
money velocity, and unemployment rate serve as effective indicators for 
the interest rate, providing a more realistic explanation than the Taylor 
(1993) rule. 

Article 12 builds on the analysis in Article 11 by extending the Taylor 
(1993) rule to include additional variables: money supply, money 
velocity, and the unemployment rate. It introduces and estimates five 
parameters: The weights assigned to the deviations in the inflation rate, 
real GDP, money supply, money velocity, and the unemployment rate. 

Optimal parameter values are estimated using the monthly US data from 
January 1, 1959 to March 31, 2022. In contrast to the Taylor (1993) rule 
with only two parameters (i.e. the weights assigned to the deviations in 
real GDP and inflation rate), the optimal parameter values assign a 
relatively high weight to the deviation in the unemployment rate and 
moderate weights to the deviations in the inflation rate, the real GDP, 
money supply, and money velocity. Various combinations of parameter 
values are tested and analyzed. 

Article 13 relates to Articles 11 and 12 by scaling the terms in interest 
rate modeling. Specifically, it introduces the scaling and extension of the 
Taylor (1993) interest rate rule from four terms to seven terms. The three 
additional terms are the deviations in money supply, money velocity, and 
the unemployment rate. The four original terms are the inflation rate, the 
equilibrium real interest rate, the deviation in the inflation rate, and the 
deviation in real GDP. 

The seven combinations of the Taylor (1993) rule, the quantity equation 
(Friedman, 1970), and the Phillips (1958) curve with scaling yield 
significantly improved results compared to the unscaled Taylor (1993, 
1999) rules. The Phillips (1958) curve stands out as the best regarding 
the squared differences between the empirical interest rate and the 
theoretical interest rates when selecting one rule with scaling. Combining 
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the Taylor (1993) rule and the Phillips (1958) curve emerges as the best 
when choosing two rules with scaling. 

3.5 Mapping the core elements of the 13 articles 
Table 6 presents the knowledge framing, research questions, and 
methods in the 13 articles. 

Article 
number Article title Knowledge 

framing Research questions Methods 

1 

A Two-Period 
Game Theoretic 
Model of Zero-
Day Attacks with 
Stockpiling 

Security, zero-
day attacks, 
defense, and 
attack 

How do the defender and 
attacker strike balances 
between how to exert 
efforts in zero-day 
exploits over the two 
periods? 

Game theory, 
analytical 
analysis, 
numerical 
analysis 

2 

Conventionalists, 
Pioneers and 
Criminals 
Choosing Between 
a National 
Currency and a 
Global Currency 

Currency 
utility 
elasticities, 
currency 
competition 

How do the players 
choose between two 
currencies, and how do 
the fractions of the three 
player types evolve over 
time? 

Conceptual 
model, 
replicator 
equation, 
numerical 
analysis 

3 

The Evolution of 
Fixed-Supply and 
Variable-Supply 
Currencies 

Currency 
competition, 
money 
printing/withdr
awal 

How do the two 
currencies compete, 
given that the two kinds 
of players support the 
currencies differently? 
How does the player’s 
volume fraction of 
transactions in each 
currency evolve over 
time? 

Analytic 
model, 
empirical 
analysis, 
replicator 
equation, 
numerical 
analysis 

4 

Competition 
Between Variable-
Supply and Fixed-
Supply Currencies 

Currency 
competition, 
currency 
support 

How does the player’s 
low, high, or increasing 
and decreasing support of 
currencies impact the 
currency competition? 

Analytic 
model, 
empirical 
analysis, 
replicator 
equation, 
numerical 
analysis 
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5 
Hard Money and 
Fiat Money in an 
Inflationary World 

Hard economy 
and fiat 
economy, 
borrowing, 
buying and 
selling, 
lending 

How do the choices of 
the borrower and buyer, 
seller, nontraders, and the 
bank in a hard and fiat 
economy impact each 
other? 

Analytic 
model, 
numerical 
analysis 

6 

A Bitcoin Price 
Prediction Model 
Assuming 
Oscillatory 
Growth and 
Lengthening 
Cycles 

The Bitcoin 
price 
evolution, 
market 
prediction 

How are the five growth 
models integrated with 
oscillation and 
lengthening cycles to 
capture the Bitcoin price 
evolution? 

Growth 
models, 
lengthening 
cycles, 
oscillatory 
growth, 
empirical 
analysis 

7 

Governmental 
Taxation of 
Households 
Choosing Between 
a National 
Currency and a 
Cryptocurrency 

Taxation 
choices given 
two 
currencies, tax 
evasion, 
detecting and 
prosecuting 
tax evasion 
and penalty 

How do the household 
and government make 
strategic taxation choices 
with two available 
currencies? 

Game theory, 
analytical 
analysis, 
numerical 
analysis 

8 

A Game Between 
Central Banks and 
Households 
Involving Central 
Bank Digital 
Currencies, Other 
Digital Currencies 
and Negative 
Interest Rates 

Negative 
interest rates 
with CBDCs, 
household 
resources 
allocation, 
transaction 
efficiencies 
and costs 

How do the household 
and the bank strategically 
interact when the 
household chooses 
holdings in CBDC, non-
CBDC, and consumption, 
and the central bank 
chooses CBDC interest 
rates? 

Game theory, 
analytical 
analysis, 
numerical 
analysis 

9 

A Two-Period 
Decision Model 
for Central Bank 
Digital Currencies 
and Households 

Household 
resources 
allocation, the 
Taylor (1993) 
rule, CBDC 
interest rates 

How does the household 
choose production, 
consumption, holdings in 
CBDCs and non-
CBDCs? How does the 
bank choose CBDC 
interest rates over the two 
periods? 

Decision 
model, 
analytical 
analysis, 
numerical 
analysis 

10 

Comparative 
Analysis of 
Households and 
Digital Currencies 

Decision 
model 
application, 
CBDC interest 

How do the empirics 
from the US, China, and 
Russia differ using the 
model in Article 9? 

Empirical 
analysis, 
numerical 
analysis 
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for the US, China, 
and Russia 

rates empirics, 
economic 
shocks 

11 

Interest Rates, the 
Taylor Rule, the 
Quantity Equation, 
and the Phillips 
Curve 

Interest rates 
model 
combining the 
Taylor (1993) 
rule, the 
Quantity 
Equation 
(Friedman, 
1970), and the 
Phillips (1958) 
curve 

How do deviations in the 
inflation rate, real GDP, 
money supply, money 
velocity, and the 
unemployment rate 
interact with the interest 
rate? 

Econometric 
model 
statistical 
analysis, 
empirical 
analysis 

12 
Modeling Which 
Factors Impact 
Interest Rates 

The various 
combinations 
of the Taylor 
(1993) rule, 
the Quantity 
Equation 
(Friedman, 
1970), and the 
Phillips (1958) 
curve 

What are the optimal 
weights assigned to the 
deviations in inflation 
rate, real GDP, money 
supply, money velocity, 
and unemployment rate 
in generalized interest 
rate models? 

Statistical 
analysis, 
empirical 
analysis 

13 

A Generalized 
Interest Rates 
Model with 
Scaling 

Interest rates 
model with 
scaling 

How does scaling impact 
the interest rate models? 

Statistical 
analysis, 
empirical 
analysis 

Table 6. Mapping the core elements in the 13 articles. 

Table 7 presents the main findings in Article 1 (Category 1: Game theory 
and security). 

Article 
number Article title Main findings 

1 

A Two-
Period 
Game 
Theoretic 
Model of 
Zero-Day 
Attacks 

 Player 1 stockpiles zero-day exploits in period 1 if the effort 
cost in period 1 is lower than in period 2, if the effort cost in 
period 2 is higher than in period 1, and if the appreciation 
factor of zero-day exploits from period 1 to period 2 is 
above 1. 

 Increased contest intensity in period 1 leads to fierce 
competition and decreased expected utilities for both players 
until player 1 reaches its budget constraint.  
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with 
Stockpiling 

 Increased contest intensity in period 2 leads to increased 
efforts by both players until they reach zero expected
utilities, assuming two players are equally advantaged in 
terms of unit effort cost.

 A player exerts more effort if its unit costs of effort is
cheaper, if it values the asset more, if the asset has a higher
growth factor, and if the asset added in period 2 is more 
valuable.

 The players compete most fiercely when equally advantaged 
in terms of unit effort cost and decrease efforts when too
advantaged or too disadvantaged.

Table 7. Main findings in Article 1.

Table 8 presents the main findings in Articles 2-6 (Category 2: Currency 
evolution and competition).

Article
number Article title Main findings

2 

Convention
alists, 
Pioneers 
and 
Criminals 
Choosing 
Between a 
National 
Currency 
and a 
Global 
Currency 

 Each player’s expected utility is inversely U-shaped in the 
volume fraction of transactions in the national and global 
currencies, skewed toward national currency for 
conventionalists and global currency for pioneers and 
criminals. 

 If conventionalists become extinct, pioneers and criminals 
compete directly.  

 Conventionalists become extinct when criminals gain more 
from criminal behavior, which happens when the scaling 
proportionality parameters for criminal expected utility 
increase. Also, if the parameter values in conventionalists' 
expected utility are unfavorable, it leads to competition 
between pioneers and criminals, further contributing to the 
extinction of conventionalists. 

 The fraction of criminal players decreases as the probability 
of detection and prosecution increases. 

3 

The 
Evolution 
of Fixed-
Supply and 
Variable-
Supply 
Currencies 

 Two kinds of players support fixed- and variable-supply 
currency differently and choose their volume fractions of 
transactions in each currency. 

 A player's utility in a currency is assumed to be proportional 
to its support for that currency, the volume fraction of all 
players’ transactions, and the fraction of players of the same 
kind. 

 A player’s utility in a variable-supply currency is 
additionally assumed to be proportional to a Cobb-Douglas 
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utility, considering factors like initial money supply, 
cumulative money printing/withdrawal, and 
inflation/deflation. 

 The high weight assigned to the money supply relative to 
inflation induces each player to prefer the variable-supply 
currency. Each player’s volume fraction of transactions in 
each currency can be U-shaped or inversely U-shaped when 
applying replicator dynamics before converging exclusively 
toward preferring one or the other currency. 

 A player may choose to support a specific currency if the 
player’s support for that currency is especially high. When a 
player’s utility of transacting in a given currency is 
proportional to the fraction of players of the same kind as 
the given player, and the proportional impact is higher for 
one kind of player than the other kind of player, the player 
tends to prefer to be the kind of player that support the given 
currency. 

4 

Competitio
n Between 
Variable-
Supply and 
Fixed-
Supply 
Currencies 

 $1 in 2022 buys 1.22% of what it would buy in 1695. 
 A player’s utility increases with a high weight assigned to 

money printing/withdrawal and increases less or decreases 
overall with a high weight assigned to inflation/deflation. 

 Assume a high weight assigned to money printing. Then, a 
player’s low support of the fixed-supply currency causes the 
fraction of transactions in the variable-supply currency to 
approach 1 quickly. With a higher weight assigned to the 
fixed-supply currency, the fraction may temporarily 
decrease but will eventually increase, except for very high 
support for the fixed-supply currency. 

 Assume a low weight assigned to money printing. Then, a 
player’s low support of the fixed-supply currency still 
causes the fraction of transactions in the variable-supply 
currency to approach 1. With a high weight assigned to the 
fixed-supply currency, the fraction may temporarily increase 
but will eventually decrease. 

 Assume increasing support for the fixed-supply currency. 
Then, if a player assigns high weight to money printing, the 
fraction of transactions in the variable-supply currency may 
increase temporarily but will eventually decrease. 

 Assume decreasing support for the fixed-supply currency. 
Then, if a player assigns high weight to money printing, the 
fraction of transactions in the variable-supply currency may 
decrease temporarily but will eventually increase. 

5 
Hard 
Money and 
Fiat Money 

 Fiat money printing benefits the borrower/buyer (preferring 
inflation) and the bank (if not excessive) but hurts the seller 
and nontraders. 
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in an 
Inflationar
y World 

 The seller and nontraders bear the costs of inflation. The 
seller and nontraders prefer a hard money economy or a fiat 
money economy where the bank withdraws money to ensure 
deflation. 

 More nontraders decrease inflation as money printing is 
distributed across more agents, benefiting the seller, 
nontraders, and the bank but hurting the borrower/buyer. 

 In a hard money economy, the bank cannot transfer inflation 
costs to agents. Borrowing and lending in a hard money 
economy results in neither inflation nor deflation. 

 Excessive lending does not benefit the bank, 
borrowers/buyers or sellers who prefer a balanced portfolio 
between money holdings and lending that earns interest 
payments from the borrower/buyer. 

6 

A Bitcoin 
Price 
Prediction 
Model 
Assuming 
Oscillatory 
Growth 
and 
Lengthenin
g Cycles 

 Gompertz’s growth of the Bitcoin price combined with 
charged capacitor growth tracks the empirical data well.

 Logistic growth is too slow to track the early data. Charged 
capacitor growth is not realistic. Logistic growth combined 
with charged capacitor growth somewhat tracks the early
data.

 Five future bull market maxima and bear market minima are
predicted based on the models, with the Bitcoin carrying 
capacities assumed to match gold at $10 trillion and 50 
times the gold market cap.

 Short-term traders should consider large standard deviations
for stop-loss orders. Long-term investors can compare 
Bitcoin price growth with competing asset classes. All 
market participants must consider Bitcoin’s volatility and
potential growth.

Table 8. Main findings in Articles 2-6.

Table 9 presents the main findings in Articles 7-10 (Category 3: Digital 
currencies households, central banks, governments, and monetary 
policy).

Article
number Article title Main findings

7 

Governme
ntal 
Taxation of 
Household
s Choosing 
Between a 

 The household chooses the fraction of a national currency 
and a global currency it holds and the probability of tax 
evasion on each currency. The government chooses the tax 
rate, the probability of detecting tax evasion, and the penalty 
factors for national and global currencies. 
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National 
Currency 
and a 
Cryptocurr
ency 

 The household’s tax evasion probabilities on both currencies 
increase in the government’s Cobb-Douglas output elasticity 
for the national currency. 

 The household’s fraction of the national currency, the 
government’s monitoring probability of the national 
currency, and the penalty factor imposed on the global 
currency increase the household’s Cobb-Douglas output 
elasticity for the national currency. 

 The government’s taxation rates on both currencies decrease 
the output elasticity of the national currency. 

 High output elasticity for the national currency eventually 
induces the government to tax the national currency more 
than the global currency. 

 High output elasticity for the national currency leads to 
higher taxation. The household’s tax evasion probability 
depends on the government's output elasticity for each 
currency. 

 The household is less (more) likely to tax evade on the 
national (global) currency if the government values taxation 
and penalties on tax evasion on the national (global) 
currency. 

8 

A Game 
Between 
Central 
Banks and 
Household
s Involving 
Central 
Bank 
Digital 
Currencies, 
Other 
Digital 
Currencies, 
and 
Negative 
Interest 
Rates 

 As the household’s output elasticity for consumption 
increases, it consumes more and holds less non-CBDC, and 
the CBDC interest rate decreases and becomes negative. 

 As the household’s output elasticity for holding CBDC 
increases, it holds more CBDC and less non-CBDC. The 
central bank eventually imposes a positive CBDC interest 
rate on the household since it identifies partly with the 
household that substitutes holding non-CBDC with holding 
CBDC. 

 The household’s consumption, CBDC holding, and non-
CBDC holding are affected by the transaction efficiency for 
CBDC relative to non-CBDC. Increasing both the CBDC 
and non-CBDC transaction efficiencies eventually induces 
the central bank to choose a negative interest rate. 

 An increase in the non-CBDC interest rate induces the 
central bank to competitively raise the CBDC interest rate to 
retain the household’s holding of CBDC. 

 The central bank chooses a more negative interest rate on 
CBDC when the household’s output elasticity for 
consumption increases, the household’s output elasticity for 
holding CBDC decreases, the CBDC and non-CBDC 
transaction efficiencies increase, the household’s transaction 
efficiency for consumption decreases, the household’s 
scaling of the transaction cost increases, the scaling 
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parameter for the central bank’s profit per household 
decreases, the household’s monetary energy decreases, and 
the non-CBDC interest rate decreases. 

9 

A Two-
Period 
Decision 
Model for 
Central 
Bank 
Digital 
Currencies 
and 
Household
s 

 The central bank chooses a negative CBDC interest rate. 
The grey zones correspond to the Period 1 game only, when 
the representative household holds far more CBDCs than 
non-CBDCs. 

 Increasing non-CBDC interest rates prompts the central 
bank to raise the CBDC interest rate to compete and retain 
CBDC holding by the representative household. 

 Increasing transaction efficiencies for CBDCs and non-
CBDCs cause the central bank to increase its CBDC interest 
rate to support the household’s CBDC holdings and compete 
with non-CBDCs. 

 Positive shocks to household production cause lower CBDC 
interest rates, leading to less CBDC holding by the 
representative household but increased household 
production and consumption. 

 Positive inflation shocks increase the household’s CBDC 
holding due to higher CBDC interest rate while the 
household’s production, consumption, and non-CBDC 
holding decrease. 

 Positive shocks to the CBDC and non-CBDC interest rates 
increase the household’s holdings of CBDC and non-CBDC, 
leading to reduced production and consumption but higher 
overall utility. 

 Positive shocks to the real interest rate on CBDC cause 
higher CBDC interest rate. 

 The central bank may choose negative CBDC interest rate 
when the household holds far more CBDC than non-CBDC, 
causing low inflation rate low real interest rate low 
household’s potential production, low weight assigned to 
inflation in the Taylor (1993) rule, high target inflation rate, 
and high household’s production parameter. 

 A negative CBDC interest rate usually causes the household 
to decrease its CBDC holding and increase its non-CBDC 
holding, production and consumption. 

10 

Comparati
ve 
Analysis of 
Household
s and 
Digital 
Currencies 
for the US, 

 For the US, with a high empirical inflation rate (6.2%) 
compared to the target inflation rate (2%), the model 
suggests a substantially higher CBDC interest rate (7.56%) 
than the empirical interest rate (0.125%) to suppress the 
inflation of 6.2% in October 2021. 

 For China, with a low empirical inflation rate (2.419%) 
below the target inflation rate (3%), the model suggests a 
lower CBDC interest rate (2.99%) than the empirical 
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China, and 
Russia 

interest rate (3.85%) to increase the inflation of 2.419% in 
2021.

 Russia’s strategy falls between that of the US and China. 
With an inflation rate (3.382%) below the inflation target 
(4%), the model suggests a slightly higher CBDC interest 
rate (6.82%) than the empirical interest rate (6.75%).

 The model predicts that the central bank should choose a
negative CBDC interest rate when the inflation and real 
interest rates are low, and the inflation target is high.

 An extremely high inflation rate increases the CBDC 
interest rate significantly, making production and
consumption nearly impossible unless the real interest rate is 
extremely negative.

Table 9. Main findings in Articles 7-10.

Table 10 presents the main findings in Articles 11-13 (Category 4: 
interest rate modeling).

Article
number Article title Main findings

11 

Interest 
Rates, the 
Taylor 
Rule, the 
Quantity 
Equation, 
and the 
Phillips 
Curve 

 The interest rate and deviations in inflation rate, real GDP, 
money supply, money velocity, and unemployment rate are 
positively correlated. 

 The ranking of correlation coefficients with the interest rates 
are (from high to low) the deviation in the inflation rate, the 
money velocity, the deviation in the unemployment rate, the 
deviation in real GDP, and the deviation in the money 
supply. 

 Regression analysis shows positive interactions between the 
interest rate and the deviation in the inflation rate, the 
deviation in real GDP, the money supply, the money 
velocity, and the deviation in unemployment rate. 

 The interest rate increases with the deviation in the 
unemployment rate, aligning with the Phillips (1958) curve. 

 Money velocity and the deviations in inflation rate, money 
supply, and unemployment rate are good indicators for the 
interest rate. 

12 

Modeling 
Which 
Factors 
Impact 
Interest 
Rates 

 The model introduces and estimates five parameters, i.e. the 
weights assigned to the deviations in the inflation rate, real 
GDP, money supply, money velocity, and unemployment 
rate. 

 The optimal parameter values assign a relatively high 
weight to the deviation in the unemployment rate and 
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moderate weights to the deviations in the inflation rate, real 
GDP, money supply, and money velocity. 

 Optimal parameter values show lower weights for the 
deviation in inflation rate and the deviation in the real GDP 
compared to the Taylor (1993) rule. 

 The generalized equation fits the US empirical interest rate 
better than the Taylor (1993) rule, resulting in a notable 
decrease of 42.95% in the corresponding sum of squares. 

13 

A 
Generalize
d Interest 
Rates 
Model with 
Scaling 

 All seven combinations of the Taylor (1993) rule, the 
Quantity Equation (Friedman, 1970), and the Phillips (1958) 
curve with scaling give substantially better results than both 
Taylor (1993, 1999) rules without scaling. 

 The Phillips (1958) curve is the best when choosing only 
one rule with scaling. 

 Combining the Taylor (1993) rule and the Phillips (1958) 
curve is best when choosing among two rules with scaling. 

 Among the seven terms (i.e. the inflation rate, the 
equilibrium real interest rate, the deviation in the inflation 
rate, the deviation in real GDP, the deviation in money 
supply, the deviation in money velocity, and the deviation in 
the unemployment rate), the inflation rate is the most 
explanatory, impacting interest rates positively.  

 Equilibrium real interest rate and deviation in inflation rate 
are also significant, affecting interest rates negatively. 

 Deviation in money velocity is more explanatory than 
money supply, impacting interest rates positively. 

 Deviations in the real GDP, the unemployment rate, and the 
money supply impact interest rates positively with varying 
degrees of significance. 

Table 10. Main findings in Articles 10-13. 
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4 Future Work 

4.1 Attacks, conflicts, security, safety, and game 
theory 

Based on the insights from Article 1, one potential avenue for future 
research involves involving more players and examining the impact of 
external interference from governmental and non-governmental entities. 
Additionally, investigating the regulations and technological 
advancements in zero-day exploits may reveal valuable insights. 

The estimation of parameter values can be refined by applying real-world 
instances of zero-day attacks to improve the accuracy of the research. 
Validation from both current and historical records provides empirical 
support. Future studies may consider increasing complexity and 
extending the scope beyond two time periods to enhance the analytical 
framework. 

4.2 The conception of subelasticities for 
currencies 

Exploring several future directions can enhance the conception model of 
subelasticities in national and global currencies, for example 

• evaluate empirical evidence for the six output subelasticities 
associated with national and global currencies. Examine their 
relevance and consider the possibility of identifying additional 
subelasticities or focusing on a subset. Assess empirical support 
for the volume fractions players choose for national and global 
currencies. 

• explore alternative models for players’ expected utilities, 
incorporating different risk attitudes and modeling more than 
three types of players. 
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• extend the analysis to include more than one global currency, 
delving into the competition between multiple national and 
global currencies to highlight the complex dynamics in the 
currency ecosystem. 

• assess the impact of currency competition on the economic 
system and aspects such as inflation rate, interest rate, and fiscal 
policy, expanding the scope of the research to provide a broader 
perspective. Incorporate additional players (e.g. governments) to 
account for external influences on the currency competition to 
offer a comprehensive understanding of the ecosystem and its 
dynamics. 

4.3 Expanding perspectives in currency 
competition research 

Future research on the competition and evolution of variable-supply and 
fixed-supply currencies can expand the analytical framework by 
encompassing various currency characteristics, players’ risk attitudes 
and preferences, perspectives from private and public entities, empirical 
data, and the impact of factors like regulation and taxation. 

4.4 Enhancing the models to analyze dynamics in 
hard and fiat money economies 

Future research may 

• explore alternative utility functions to overcome the limitations 
associated with Cobb-Douglas utility in Article 5, 

• adopt a game theoretic approach to analyze the equilibrium 
between the bank and agents,  

• explore model extensions related to hard money, such as 
scenarios where the burning of hard money causes a decreased 
supply, 



Future Work 

60 

• reduce the number of nontraders and assume that a [0,1] 
continuum represents each buyer, seller, and nontrader, 

• formulate a representative agent’s problem for each type, 
combine models, and incorporate more structure on the 
preferences and constraints of the agents’ problem, such as a 
Lagos-Wright monetary model, a money-in-utility function 
mode, and a cash-in-advance-constraint model (Benigno et al., 
2022), and 

• enhance inflation modeling by incorporating factors like money 
velocity, production, transaction efficiency, demand, and supply 
shocks. 

4.5 Exploring beyond Bitcoin and enhancing 
models in cryptocurrency market analysis 

The five models introduced in Article 6 can be improved by integrating 
other established models, such as the stock-to-flow model, machine 
learning techniques, neural networks, deep learning methodologies, and 
econometric approaches, thereby contributing to a comprehensive 
modeling framework to capture the evolution of cryptocurrencies.  

Future research may 

• investigate the various aspects of Bitcoin, such as trading 
volume, mining difficulty, hash rate, network value to 
transactions, average transaction volume, gas fee, NFT 
transaction volume, active and new addresses, on-chain 
transaction volume, electricity consumption, renewable energy 
adoption, institutional investor involvement, and the connection 
with other cryptocurrencies like Ethereum and traditional 
financial assets like bonds and stocks, and 

• delve into the regulatory landscape, examining regulations, 
policies, and attitudes across different countries can provide 
valuable insights into cryptocurrency markets. 
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4.6 Investigating dynamics in household and 
government strategic choices across national 
and global currencies 

Future research may 

• delve into scenarios with more than two currencies and introduce 
additional players, including firms, multiple governments across 
different countries, central banks, commercial banks, and 
international financial institutions, 

• explore alternatives to expected utilities, considering backing, 
convenience, confidentiality, transaction efficiency, financial 
stability, and security, and  

• introduce a multiple-time-periods game, along with different 
interest rate settings. 

4.7 Exploring the diverse dimensions in strategic 
decision-making associated with CBDCs 

Future research can incorporate more asset types, such as gold, bonds, 
stocks, and multiple CBDCs. This exploration may account for 
additional players by, for example, distinguishing between central banks 
and governments, commercial banks, firms, financial institutions, and 
households with different characteristics and risk attitudes that can be 
incorporated into the analysis. 

Players’ Cobb-Douglas utilities can be enriched to include privacy, 
convenience, security, and tax considerations. The strategy sets of 
players can be extended to allow for a more inclusive decision-making 
framework, such as enabling each household to choose production and 
leisure in addition to consumption. 
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4.8 Negative interest rates and players’ resource 
allocation 

Future research can introduce additional players like governments, 
commercial banks, and firms to enrich the model in Article 9. Research 
can expand the household’s Cobb-Douglas utility by incorporating 
convenience, taxes, and preferences, thereby providing a more realistic 
representation of decision-making processes. The model in Article 9 can 
be adjusted to analyze scenarios where households, central banks, and 
other players make strategic decisions simultaneously or sequentially 
over one or multiple periods. 

4.9 Exploring comprehensive interest rate models 
Future research may 

• explore how the weights assigned to the terms in Articles 11, 12, 
and 13 evolve over time, moving beyond the assumption of 
constant weights in the Taylor (1993) rule, 

• investigate incorporating the concept of “interest smoothing” by 
incorporating additional lagged variables into the models and 
examining non-lagged variables,  

• consider forward-looking approaches, as proposed by Conrad 
and Eife (2012), that can address the limitations of backward-
looking models, 

• investigate the influence of economic crises, fiscal deficits, 
global interest rates, and financial variables (e.g. house prices, 
stock prices, leverage, oil, and commodity prices) on interest 
rates while systematically exploring the impact paths of the 
terms in Articles 11, 12, and 13 on each other and the interest 
rate,  

• compare empirical findings across different geographical 
regions, considering monetary policy changes over time and 
Evaluate alternative methods for estimating key economic 
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parameters (e.g. real GDP gap, long-term equilibrium real 
interest rate) and incorporate time series approaches and broader 
financial theories into interest rate analysis,  

• explore interest rate models encompassing hard and soft money, 
such as Bitcoin and fiat money (e.g. a CBDC), and  

• analyze the interplay between various players (e.g. households, 
firms, commercial banks, governments, and countries) in hard 
and fiat money economies. 

4.10 Digital technologies and business analytics 
Future research can explore the impact of emerging technologies (e.g. 
blockchain and cryptocurrencies) on business analytics. For example, the 
role of blockchain in ensuring data sharing, integrity, and security and 
how NFTs contribute to business activities and market strategies can be 
investigated. 

4.11 Security and privacy in emerging technologies 
Future research may 

• explore the dynamic security and privacy landscape arising from 
emerging technologies like blockchain and cryptocurrencies, 

• investigate the development of strategies to protect sensitive 
information in the context of digital currencies and digitalization, 

• examine the regulatory environment surrounding these emerging 
technologies, assess the effectiveness of current policies, and 
suggest enhancements to ensure compliance with evolving 
security and privacy requirements, and 

• consider how to balance innovation and security to foster the 
responsible adoption of digital currencies while addressing 
money laundering, fraud, and financial stability concerns. 
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4.12 Digital currencies, decentralized finance, and 
financial inclusion 

Future research can investigate the promising potential of digital 
currencies and DeFi for enhancing financial inclusion for those currently 
underserved and unbanked worldwide. Examples of research questions 
include the following: 

• What socioeconomic and technological factors are shaping the 
adoption of digital currencies? 

• What are the regulatory challenges for digital currencies and 
DeFi, and how can these innovative financial technologies be 
integrated into existing or new regulatory frameworks?  

• How does centralized finance compete with decentralized 
finance? 

4.13 The economic system within Bitcoin and 
CBDCs 

Future research can delve into the intricate dynamics of the economic 
systems within Bitcoin and CBDCs by, for example, investigating the 
broader impact of Bitcoin on traditional financial systems such as 
monetary policy, inflation, and fiat money printing; exploring the 
regulatory challenges associated with Bitcoin and CBDCs; exploring 
user behavior and adoption patterns for Bitcoin and CBDCs; and 
examining the competition between Bitcoin and CBDCs. 

4.14 Environmental sustainability in digital 
currencies 

Future research can assess the environmental sustainability of Bitcoin 
mining. Strategies can be investigated to enhance the environmental 
sustainability of Bitcoin mining, and technologies and practices that 
reduce energy consumption and the carbon footprint associated with 
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Bitcoin mining can be explored. The feasibility and impact of integrating 
renewable energy sources into Bitcoin mining can also be examined. 

A comparative analysis of the environmental sustainability of Bitcoin 
and CBDCs can be useful. Factors such as energy consumption, resource 
utilization, and long-term ecological consequences can be tested to 
provide insights into the overall environmental impact of digital 
currencies. Strategies for raising public awareness and educating 
stakeholders about the environmental impact of digital currencies can be 
proposed. 

4.15 Beyond applications in financial markets 
Blockchain extends beyond finance, permeating diverse sectors, 
including management, governance, supply chain, gaming, metaverses, 
education, and healthcare. Blockchain has the potential to transform the 
way entities are structured and governed. For example, smart contracts 
can automate and enforce agreements, reducing reliance on 
intermediaries and enhancing the efficiency of decision-making 
processes. 

Broader research topics include exploring interactions between Bitcoin 
and democracy, digitalization and innovation, blockchain, and 
organizational governance. 
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Terminology 
Bitcoin is a decentralized peer-to-peer network. All transactions are 
verified and recorded in a public ledger called blockchain. Bitcoin was 
invented by (Nakamoto, 2008). Decentralization means no central 
authority controls the Bitcoin network like a government or bank. 
Anyone can join the Bitcoin network using the internet. Bitcoin 
transactions are secure and transparent. They can be made directly 
between users without the need for intermediaries. The supply of Bitcoin 
is limited to 21 million. At the time of writing, the Bitcoin network block 
height is 827,994. See https://www.blockchain.com/explorer/blocks/btc 
for more information on the Bitcoin network blocks.  

Bitcoin mining uses powerful computers or devices to solve complex 
mathematical puzzles. When a miner successfully solves a puzzle (i.e. 
finds a cryptographic solution that matches specific criteria), the miner 
owns the right to add a new block to the blockchain and earns new 
Bitcoin as a reward. The miner also secures the transaction feed in that 
block. Essentially, miners worldwide run devices (e.g. ASIC machines) 
to generate tons of hashes. Transactions are confirmed when miners 
generate a valid hash that produces a new block. These miners commit 
substantial electricity, time, and resources to mining Bitcoin. This proof-
of-work mechanism keeps the network secure and adds to Bitcoin’s 
value. The Bitcoin network automatically adjusts the mining difficulty 
level to maintain a consistent block time (ca. 10 minutes). Bitcoin mining 
difficulty has been increasing extensively over the years, and miners 
need powerful devices or join mining pools to stay competitive. The hash 
rate of the Bitcoin network is accessible at 
https://www.blockchain.com/explorer/ charts/hash-rate. 

Bitcoin nodes are typically computers that run the Bitcoin software. 
Bitcoin nodes help relay transactions, verify the blockchain, and ensure 
consensus among participants in the Bitcoin network. Nodes 
communicate with each other to ensure that all transactions follow the 
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rules of the Bitcoin protocol. Running a node contributes to the 
network’s security and integrity. Bitcoin nodes can be divided into full 
nodes and pruned nodes. A full node maintains a copy of the entire 
blockchain, while a pruned node stores and relays only a copy of recent 
blocks limited to the computer space. Bitcoin nodes per country can be 
tracked at https://bitnodes.io/nodes/all/countries/1d/. 

Central bank digital currency (CBDC) is a country’s official currency 
issued and regulated by the central bank. CBDCs typically leverage 
emerging technologies such as blockchains. The up-to-date information 
on CBDCs worldwide can be found at https://www.atlanticcouncil.org/ 
cbdctracker/. 

Charged capacitor growth is the increase in voltage across the 
capacitor over time as it charges. A capacitor is a passive electronic 
component that stores electrical energy in an electric field. It involves a 
time-dependent increase in charge, influenced by the time constant and 
the opposing potential difference across the capacitor plates. 

The Cobb-Douglas utility function is a mathematical representation 
widely used in microeconomics to model player preferences or the 
satisfaction derived from consuming different goods and services named 
after Cobb and Douglas (1928). The Cobb-Douglas utility function takes 
the form 𝑈𝑈(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝛼𝛼𝑦𝑦𝛽𝛽, where 𝑈𝑈 represents the total utility, 𝑥𝑥 and 𝑦𝑦 
are the quantities of two goods being consumed, and 𝛼𝛼 and 𝛽𝛽 are positive 
constants that represent the elasticity of substitution between the two 
goods. The Cobb-Douglas utility function has several interesting 
properties, such as constant relative risk aversion, which means that the 
ratio of the marginal utilities of the goods is constant. This function is 
widely used in economic models to analyze player behavior and 
production functions. 

Conventionalists are players who tend to do what is traditional and 
historically common. 
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Criminals are players who conduct criminal activities and prefer not to 
be caught. 

Currency is money issued by governments or monetary authorities 
(Cohen, 2013). Currency is typically associated with a particular country 
or region and serves as a means of exchanging commodities and services.  

Decentralized finance (DeFi) offers financial services and applications 
built on blockchain technology. DeFi operates decentralized using smart 
contracts on the blockchain and encompasses various financial activities, 
including lending, borrowing, trading, and more, without the need for 
traditional intermediaries. Users typically interact with smart contracts 
through decentralized applications to access financial services. 

Fiat money is government-issued currency declared legal tender (Ritter, 
1995) that is commonly not backed by valuable commodities but by 
government credit. Governments or central banks determine the supply 
of fiat money, which is typically paper money. 

Game theory analyzes strategic interactions among players. Players 
make decisions interdependently. This interdependence causes each 
player to consider the other player’s possible strategies to formulate the 
given player’s strategy. A solution to a game describes the optimal 
strategies of the players responding to the other players’ optimal 
strategies. 

Gompertz growth is a mathematical equation that describes the growth 
of a population over time. It assumes that the growth rate decays 
exponentially as the population approaches its maximum. The equation 
is named after Benjamin Gompertz, who introduced the growth function 
in 1833 (Gompertz, 1833). 

Hard money is currency backed by or comprised of valuable 
commodities or backed by emerging technology such as blockchain. 
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Examples of hard money include Bitcoin and gold-backed currencies. 
The supply of hard money is relatively fixed. 

A hash is a mathematical function converting input into an encrypted 
output of fixed length. Bitcoin uses SHA-256, which stands for Secure 
Hash Algorithm 256-bit. It is a cryptographic hash function that takes an 
input (or message) and produces a fixed-size 256-bit (32-byte) hash 
value. 

Inflation targeting is a typical monetary policy where central banks 
follow a specific target for the annual inflation rate (Mishkin & Schmidt-
Hebbel, 2001). The typical inflation rate is 2%. 

Inflation is a general increase in the prices of goods and services in an 
economy (Frisch, 1977), which is usually measured using the consumer 
price index. When inflation occurs, each currency unit buys fewer goods 
and services than before. 

The least squares method is used in statistics and econometrics to find 
the best-fitting curve for a set of data points. The idea is to minimize the 
sum of the square difference between the observed data points and the 
points predicted by the model. 

Legal tender is currency acceptable for transactions and debt payment 
(Greco, 2001) and is recognized by law to settle debts, meet financial 
obligations, and make payments for services and goods. 

Lengthening cycles occur when the duration of cycles, such as 
economic cycles, become longer over time. In the context of economic 
cycles, periods of expansion and contraction in the economy take more 
time to complete. For example, in economic terms, lengthening cycles 
suggest that the time between one economic recession and the next 
increases. Various factors, including changes in economic policies, 
technological advancements, global economic conditions, conflicts, wars, 
and epidemics, can influence these cycles. 
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Logistic growth is a concept in population ecology where a population’s 
per capita growth rate decreases as it approaches carrying capacity, 
resulting in an S-shaped curve (Tsoularis & Wallace, 2002). It contrasts 
with exponential growth (Stango & Zinman, 2009), which produces a J-
shaped curve without considering limiting factors. Logistic growth 
reflects the real-world scenario where resources become limited as a 
population expands, leading to a gradual slowdown in growth. 

The M1 money supply is an economy’s most liquid form of money. It 
includes physical currency (coins and paper money) outside of the 
private banking system, the amount of demand deposits, travel checks 
and other checkable deposits, and most savings accounts. These assets 
can be quickly converted into cash. 

The M2 money supply is a monetary aggregate representing a broader 
measure of the money supply within an economy. In addition to the 
components of M1, M2 includes other less liquid assets that are still 
relatively easily convertible to cash, including money market accounts, 
retail money market mutual funds, and small-debt time deposits 
(certificates of deposit of under $100,000). 

Money is a commodity accepted by general consent as a medium of 
economic exchange (Laidler, 1969), a unit of account, a store of value, 
and, occasionally, a standard of deferred payment. 

The nominal interest rate is the stated interest rate on a financial 
product, such as a loan or investment, without adjusting for inflation or 
deflation. It represents the raw percentage return or cost of borrowing 
money over a specified period before considering the impact of changes 
in the purchasing power of money due to inflation or deflation. 

Non-fungible tokens (NFTs) are digital assets using blockchain 
technology to represent ownership or proof of authenticity of a unique 
item or piece of content. The ownership of an NFT is recorded in the 
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blockchain and can only be transferred by the owner. NFTs typically 
reference digital files such as artwork, photos, videos, and audio. 

Oscillatory growth is a pattern of expansion and contraction or periodic 
fluctuations in the growth of a system or a quantity over time. In various 
fields, such as biology, economics, and mathematics, oscillatory growth 
indicates a repeating pattern of increases and decreases rather than steady 
or linear growth. For example, in population dynamics, oscillatory 
growth might describe a population that experiences cycles of increases 
followed by declines and then repeats the pattern. In economic terms, 
oscillatory growth is observed in business cycles where contractions and 
vice versa follow periods of economic expansion. 

The Phillips curve is an inverse relationship between inflation and 
unemployment. Phillips observed that unemployment is high when 
inflation is low and vice versa (Phillips, 1958). This empirical 
relationship suggests that policymakers can choose between inflation 
and unemployment. 

Pioneers are players who tend to break from tradition as the early 
adopters of new or emerging things. 

The quantity equation is a concept in monetary economics expressing 
the relationship between the money supply, money velocity, price level, 
and the level of real output. The quantity equation 𝑀𝑀𝑀𝑀 =  𝑃𝑃𝑃𝑃 relates the 
price level and the quantity of money (Friedman, 1989), where 𝑀𝑀 is the 
quantity of money, 𝑀𝑀 is the velocity of circulation, 𝑃𝑃 is the price level, 
and 𝑃𝑃 is the volume of transactions. The quantity equation is the basis 
for the quantity theory of money. 

The real equilibrium interest rate, often referred to as the natural 
interest rate, is the theoretical interest rate at which the supply of savings 
equals the demand for investment in an economy, resulting in stable 
economic conditions. This interest rate prevails when inflation is steady, 
and the economy operates at full employment. The real equilibrium 



List of Articles 

76 

interest rate is adjusted for inflation, measuring the actual cost of 
borrowing or the real return on investments. When the actual interest rate 
is below the real equilibrium rate, it may stimulate economic activity, but 
if it is above, it can potentially slow economic growth.  

The real interest rate is the nominal interest rate adjusted for inflation. 
It reflects the actual purchasing power and the true return on an 
investment after accounting for the impact of inflation. The relationship 
between real and nominal interest rates and the expected inflation rate is 
given by the Fisher equation 1 + 𝑖𝑖 = (1 + 𝑟𝑟)(1 + 𝜋𝜋𝑒𝑒), where 𝑖𝑖 denotes 
nominal interest rate, 𝑟𝑟  denotes real interest rate, and 𝜋𝜋𝑒𝑒  denotes the 
expected inflation rate. If the inflation rate and the nominal interest are 
relatively low, the Fisher equation can be approximated by 𝑟𝑟 = 𝑖𝑖 − 𝜋𝜋𝑒𝑒. 

The replicator equation is a mathematical concept used in evolutionary 
game theory to model the dynamics of strategies in a population of 
individuals or entities engaged in a repeated or continuous game. It 
describes how the frequencies of different strategies change over time 
based on their relative success in the game (Schuster & Sigmund, 1983). 
Strategies with higher payoffs tend to increase in frequency, while those 
with lower payoffs decrease. It is a fundamental tool for studying the 
evolution of strategies in competitive scenarios. 

The Taylor rule is the guideline for a central bank to manipulate interest 
rates. It states that a central bank should set its benchmark interest rate 
based on the deviation of actual inflation from the target inflation rate 
and the output gap (the difference between actual GDP and potential 
GDP). The Taylor rule suggests that the central bank should raise interest 
rates if inflation is above the target or the economy is overheating (i.e. a 
positive output gap; (Taylor, 1993). Conversely, the central bank should 
lower interest rates if inflation is below the target or the economy is in a 
recession (i.e. a negative output gap). 
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The weighted least squares method is a generalization of least squares 
and linear regression in which knowledge of the unequal variance of 
observations (heteroscedasticity) is incorporated into the regression. It 
assigns different weights to the data points based on their level of 
precision or reliability. The idea is to give more importance or weight to 
observations with lower variance or higher weight to observations with 
higher variance or lower reliability. 

Zero-day exploits are a previously unknown vulnerability (Bilge & 
Dumitraş, 2012) that can be highly effective and pose a significant threat 
because no protections are in place when the vulnerability is exploited. 
Cybercriminals often use zero-day exploits to launch attacks on systems, 
compromise security, and potentially gain unauthorized access to 
sensitive information. Discovering and reporting zero-day vulnerabilities 
are crucial for developers and security experts to create patches and 
updates to mitigate the associated risks. 
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Abstract: In a two-period game, Player 1 produces zero-day exploits for immediate deployment or
stockpiles for future deployment. In Period 2, Player 1 produces zero-day exploits for immediate
deployment, supplemented by stockpiled zero-day exploits from Period 1. Player 2 defends in both
periods. The article illuminates how players strike balances between how to exert efforts in the
two periods, depending on asset valuations, asset growth, time discounting, and contest intensities,
and when it is worthwhile for Player 1 to stockpile. Eighteen parameter values are altered to illustrate
sensitivity. Player 1 stockpiles when its unit effort cost of developing zero-day capabilities is lower in
Period 1 than in Period 2, in which case it may accept negative expected utility in Period 1 and when
its zero-day appreciation factor of stockpiled zero-day exploits from Period 1 to Period 2 increases
above one. When the contest intensity in Period 2 increases, the players compete more fiercely with
each other in both periods, but the players only compete more fiercely in Period 1 if the contest
intensity in Period 1 increases.

Keywords: game; cybersecurity; zero-days; stockpiling; production; attack; defense

1. Introduction

1.1. Background

Zero-day attacks are becoming increasingly common. The most well-known attack, utilizing the
Stuxnet worm to exploit four zero-day vulnerabilities, is probably the 2010 attack on the Natanz nuclear
facility in Iran [1]. A so-called zero-day vulnerability means that a defender’s vulnerability in its
computer system is known to the defender for zero days before it is discovered, most commonly through
an attack. Zero-day attacks require resources and are challenging to produce. Once produced, the next
challenge is whether to deploy them immediately or stockpile them for deployment at some suitable
future point in time. Stockpiling can be useful for a player in providing security in the knowledge
that threats posed by an opposing player can be ameliorated or eliminated. A more recent zero-day
attack targeted Microsoft Windows in Eastern Europe in June 2019 [2]. The exploit abused a local
privilege escalation vulnerability in Microsoft Windows pertaining to the NULL pointer dereference
in the win32k.sys component (a NULL pointer dereference is an error causing a segmentation fault,
which occurs when a program tries to read or write to memory with a NULL pointer). For other recent
zero-day attacks, see PhishProtection [3].
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1.2. Contribution

This article intends to capture the general aspects of this phenomenon, which are that a defender
has an asset it seeks to defend, while the attacker seeks to attack the asset over two periods—by
attacking and stockpiling in Period 1, and attacking and utilizing the stockpile in Period 2. A variety of
reasons and justifications for stockpiling are illustrated. A two-player two-period game is analyzed.
Player 1 is equipped with resources in Period 1, which can be utilized for producing zero-day exploits
for immediate deployment in Period 1 or stockpiled for future deployment in Period 2. Player 2 defends
against the attack in Period 1. Zero-day exploits may become more valuable if the stakes involved
in their deployment increase, but this also entails the risk of becoming obsolete, e.g., if knowledge
of their content leaks. We thus assume that Player 1′s stockpiled zero-day exploits may appreciate
or depreciate in value from Period 1 to Period 2, i.e., the stockpiled zero-day exploits may become
more or less valuable. Such changes in value may be due to technological, economic, or societal factors,
market conditions, or the players’ preferences. In Period 2, Player 1 produces new zero-day exploits
for immediate deployment in Period 2 and also deploys its stockpiled zero-day exploits. In Period 2,
the defender defends against the attack, i.e., against both the zero-day exploits produced by Player 1 in
Period 2 and the appreciated or depreciated zero-day exploits stockpiled from Period 1 to Period 2.
The presence of Period 2 enables Player 1 to strike a balance between whether or not to stockpile in
Period 1, and both players strike balances between how to exert efforts in both periods.

The research questions are how the attacking Player 1 allocates its resources between immediate
zero-day attack in Period 1 and stockpiling for attack in Period 2, how the defender defends in both
periods, and how the players’ strategic choices in both periods depend on the model characteristics,
i.e., Player 1′s available resources, the contest intensities in both periods, the zero-day appreciation
factor from Period 1 to Period 2, and both players’ unit costs of effort, asset valuations, and time
discount factors. Players in a cyberwar are always in a contest, regardless of the extent to which
they understand the particulars of the contest, which justifies the use of the widely applied contest
success function. The model in this article is applicable beyond zero-day vulnerabilities, assuming one
attacking player and one defending player over two periods, where the attacking player can stockpile
its capabilities from Period 1 to Period 2.

1.3. Literature

Aside from Hausken and Welburn [4] and, in part, Chen et al. [5], considered in Section 1.3.1,
the literature has not directly considered the research questions in this article but has instead focused
on various indirectly linked research questions, as shown in the subsequent subsections below.
The literature on zero-day attacks is mostly concerned with detecting, mitigating, understanding,
and simulating zero-day attacks. Most of the articles below have been identified by searching for the
two words “zero-day” on the Web of Science database for the most recent years. Regarding zero-day
vulnerabilities and their exploits, see Ablon and Bogart [6].

1.3.1. Game Theoretic Analyses

In earlier research, Hausken and Welburn [4] considered a one-period game theoretic model
of zero-day cyber exploits, incorporating the benefit of stockpiling into the same period as when
production and zero-day attack are determined. They found, for example, that decreasing Cobb
Douglas output elasticity for a player’s stockpiling causes its attack to increase and its expected utility
to eventually reach a maximum, while the opposing player’s expected utility reaches a minimum.
Chen et al. [5] analyzed whether two countries should disclose or not disclose to the vendor the
hardware/software vulnerabilities they discover in a repeated game. Disclosing may benefit the country
if it gets exposed by the vulnerability. Not disclosing may benefit the country’s defense given that the
other country does not discover the vulnerability and is exposed by it. They develop an algorithm and
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find that countries benefit from discovering vulnerabilities quickly and from incurring low costs of
developing exploits.

1.3.2. Detection, Prioritization, Ranking, and Classification

Singh et al. [7] realized the challenge in defending against zero-day attacks. They proposed a
framework for detection and prioritization based on likelihood by identifying the zero-day attack path
and ranking the severity of the vulnerability. [8] developed a detection model for crypto-ransomware
zero-day attacks. The model is based on an anomaly-based estimator, which suffers from high rates of
false alarms, supplemented by behaviorally-based classifiers. Venkatraman and Alazab [9] reviewed
existing visualization techniques for zero-day malware and designed a visualization using a similarity
matrix method for classifying malware.

1.3.3. Detection and Identification by Applying Probability Theory and Statistics

Sun et al. [10] acknowledged the information asymmetry between attackers and defenders and
applied Bayesian networks for identifying zero-day attack paths probabilistically; this is intended to
be superior to targeting individual zero-day exploits. Parrend et al. [11] presented a framework for
characterizing zero-day attacks and multistep attacks and relevant countermeasures. They applied
rule-based and outlier-detection-based statistical solutions and machine learning, which detects behavioral
anomalies and tracks event sequences. Singh et al. [12] proposed a hybrid layered architecture framework
for real-time zero-day attack detection based on statistics, signatures, and behavior techniques.

1.3.4. Detection Applying Learning

Kim et al. [13] proposed a method to detect zero-day malware. The method generates fake malware
and learns to distinguish it from real malware. A deep autoencoder extracts appropriate features and
stabilizes the generative adversarial network training. Gupta and Rani [14] observed that zero-day malware
grows exponentially in terms of volume, variety, and velocity. They proposed a big data framework with
scalable architecture and machine learning for detection.

1.3.5. Mitigation, Robustness, Recovery, and Simulation

Sharma et al. [15] presented a consensus framework for mitigating zero-day attacks, incorporating
context behavior, an alert message protocol, and critical data-sharing protocol for reliable communication.
Haider et al. [16] applied data sets based on the Windows Operating System to evaluate the robustness
of host-based intrusion detection systems to zero-day and stealth attacks. Tran et al. [17] implemented
an epidemiological model to combat zero-day attacks. They proposed a dynamic recovery model to
combat the simulated attack and minimize disruptions. Tidy et al. [18] simulate previous and hypothetical
zero-day worm epidemiology scenarios, accounting for susceptible populous and stealth-like behavior on
the dynamic, heterogeneous internet.

1.3.6. Filtering, Protocol Context, Honeypots, and Signatures

Chowdhury et al. [19] proposed a multilayer hybrid strategy for zero-day filtering of phishing
emails by using training data collected during an earlier time span. Duessel et al. [20] incorporated
protocol context into payload-based anomaly detection of zero-day attacks, integrating syntactic
and sequential features of payloads, thus proceeding beyond analyzing plain byte sequences.
Chamotra et al. [21] suggested baselining high-interaction honeypots, i.e., identifying and whitelisting
legitimate system activities in the honeypot attack surface. Subsequently, captured zero-day attacks are
mapped to the vulnerabilities exposed by the honeypot. Afek et al. [22] presented a tool for extracting
zero-day signatures for high-volume attacks, intended to detect and stop unknown attacks.
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1.3.7. Cyber Security

More generally, for cybersecurity, Baliga et al. [23] identified opportunities for cyber deterrence with
detection and the potential to undermine deterrence. Edwards et al. [24] considered a game theoretic
model of blame, with an attacker and a defender, involving attribution, attack tolerance, and peace
stability. Welburn et al. [25] found that although a cybersecurity defender prefers not to signal truthfully,
the defender can enhance deterrence through signaling, which has implications for cyber deterrence
policies. Nagurney and Shukla [26] considered three models for cybersecurity investment involving
noncooperation, the Nash bargaining theory with information sharing, and system optimization
with cooperation.

1.3.8. Information Security

Within information security, game theoretic research has focused on data survivability versus
security in information systems [27], substitution and interdependence [28–30], returns on information
security investment [31,32], and information sharing to prevent attacks [33–37]. See Do et al. [38],
Hausken and Levitin [39], and Roy et al. [40] for reviews on game theoretic cybersecurity research.

1.4. Article Organization

Section 2 presents the model. Section 3 analyzes the model. Section 4 illustrates the solution.
Section 5 discusses the results. Section 6 concludes.

2. The Model

Consider two players in a simultaneous move two-period game.

2.1. Period 1

Assume that Player 1 in Period 1 gets cyber resources R11 (e.g., capital, manpower, competence)
from a national budget, which is allocated to develop zero-day exploits (zero-days, for short) Z11

deployed in Period 1 to exploit zero-day vulnerabilities for Player 2 at unit cost b11 and develop
zero-day exploits S1 stockpiled for use in Period 2 at unit cost b11. The Nomenclature is shown before
the reference list. Player 1′s upper constraint R11 for resource allocation in Period 1 is

R11 ≥ b11Z11 + b11S1 = R11b (1)

where R11b is the actual amount of resources used by Player 1 in Period 1. Player 2 exerts defense effort
D21 in Period 1 at unit cost a21 to defend its asset, which it values as V2 and Player 1 values as V1.
Figure 1 illustrates Period 1.

We apply the widely used ratio form contest success function [41], which is a plausible and widely
used method for assessing two opposing players’ success. See Hausken and Levitin [42], Hausken [43],
and Congleton et al. [44] for the use of the contest success function. In Period 1, Player 1′s expected
contest success is p11 and Player 2′s expected contest success is p21, i.e.,

p11 =
Zv

11

Zv
11 + Dv

21
, p21 =

Dv
21

Zv
11 + Dv

21
(2)

where v, v ≥ 0, is the contest intensity in Period 1. Expected contest success is usually interpreted
as a probability between 0 and 1. It can also be interpreted as a guaranteed fraction of an asset one
competes to obtain, which presumes that the asset is divisible. When v = 0, the contest is egalitarian,
and efforts do not matter. When v = 1, efforts matter proportionally. When v = ∞, “winner-takes-all,”
so that exerting slightly more effort than one’s opponent guarantees contest success. When 0 < v < 1,
a disproportional advantage exists of investing less than one’s opponent. When v > 1, a disproportional
advantage exists of investing more than one’s opponent. In Equation (2), the ratios have a sum of two
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efforts in the denominator and one of the efforts in the numerator. That gives a number between zero
and one, which specifies contest success.

With these assumptions, Player i’s expected utility in Period 1 is

U11 = p11V1 − b11Z11 − b11S1 =
Zv

11
Zv

11+Dv
21

V1 − b11Z11 − b11S1,

U21 = p21V2 − a21D21 =
Dv

21
Zv

11+Dv
21

V2 − a21D21

(3)

where Equations (1) and (2) have been inserted. Player 1′s two free-choice variables in Period 1 are
Z11 and S1, constrained by Equation (1). Player 1 obtains no utility in Period 1 for allocating S1 to
stockpiling. Player 2′s one free-choice variable in Period 1 is D21, constrained by D21 ≥ 0.
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2.2. Period 2
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have a sum of two efforts in the denominator and one of the efforts in the numerator. That gives a 
number between zero and one, which specifies contest success. 

With these assumptions, Player 𝑖𝑖’s expected utility in Period 1 is 

𝑈𝑈�� = 𝑝𝑝��𝑉𝑉� − 𝑏𝑏��𝑍𝑍�� − 𝑏𝑏��𝑆𝑆� = ����
���� �����

𝑉𝑉� − 𝑏𝑏��𝑍𝑍�� − 𝑏𝑏��𝑆𝑆�, 

𝑈𝑈�� = 𝑝𝑝��𝑉𝑉� − 𝑎𝑎��𝐷𝐷�� =
𝐷𝐷���

𝑍𝑍��� + 𝐷𝐷���
𝑉𝑉� − 𝑎𝑎��𝐷𝐷�� 

(3) 

Equations (1) and (2) have been inserted. Player 1′s two free-choice variables in Period 1 are 𝑍𝑍�� and 
𝑆𝑆�, constrained by Equation (1). Player 1 obtains no utility in Period 1 for allocating 𝑆𝑆� to stockpiling. 
Player 2′s one free-choice variable in Period 1 is 𝐷𝐷��, constrained by 𝐷𝐷�� 𝑣 𝑣. 
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Figure 2. Illustrating Period 2.

In Period 2, Player 1 applies its stockpiled zero-day exploits S1 from Period 1, if it has stockpiled.
Additionally, in Period 2, Player 1 exerts effort Z12 at unit cost b12 to develop zero-day exploits,
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against which Player 2 exerts defense effort D22 at unit cost a22. More specifically, assume that Player 1
in Period 2 applies its stockpiled zero-day exploits S1 from Period 1, either keeping its same value
with no appreciation if δ1 = 1, appreciating in value if δ1 > 1, or depreciating in value if 0 ≤ δ1 ≤ 1.
Appreciation of zero-day exploits over time occurs if technical, economic, or cultural circumstances
change, making zero-day exploits more useful. In contrast, depreciation occurs if some aspects of the
zero-day exploits leak or somehow becomes known or if technological or other developments make
zero-day exploits less valuable over time. For example, increased competence may enable defenders
against zero-day exploits to defend better, even though the nature of the zero-day exploit is unknown.
100% depreciation is expressed as δ1 = 0.

Player 1 in Period 2 exerts effort Z12 at unit cost b12 to develop zero-day exploits deployed in Period
2 to exploit zero-day vulnerabilities for Player 2. Player 2 exerts defense effort D22 in Period 2 at unit

cost a22 to defend its asset, which it values as V′2 =
Dv

21
Zv

11+Dv
21

V2 and Player 1 values as V1
′ =

Zv
11

Zv
11+Dv

21
V1.

In Period 2, Player 1′s expected contest success is p21 and Player 2′s expected contest success is p22, i.e.,

p12 =
(Z12 + δ1S1)

w

(Z12 + δ1S1)
w + Dw

22

, p22 =
Dw

22

(Z12 + δ1S1)
w + Dw

22

(4)

where w, w ≥ 0, is the contest intensity in Period 2, with the same interpretation as v for Period 1,
and S1 is determined by (1).

Assume that Player 2′s asset, valued as Vi by Player i, i = 1, 2, grows with a growth factor gi from
Period 1 to Period 2; gi ≥ 0, with an interpretation similar to that of δ1 for Player 1′s stockpiling S1.
That is, an asset with value Vi grows if gi > 1, keeps its value if gi = 1, and loses value if 0 ≤ gi < 1.
Furthermore, assume that Player 2 in Period 2 gets injected with a new fresh asset valued as Wi by
Player i, i = 1, 2. With these assumptions, Player i’s expected utility in Period 2 is

U12 = p12
(
g1V′1 + W1

)
− b12Z12 =

(Z12+δ1S1)
w

(Z12+δ1S1)
w+Dw

22

(
Zv

11
Zv

11+Dv
21

g1V1 + W1

)
− b12Z12,

U22 = p22(g2V2
′ + W2) − a22D22 =

Dw
22

(Z12+δ1S1)
w+Dw

22

(
Dv

21
Zv

11+Dv
21

g2V2 + W2

)
− a22D22

(5)

Player 1′s one free-choice variable in Period 2 is Z12, constrained by Z12 ≥ 0. Player 2′s one
free-choice variable in Period 2 is D22, constrained by D21 ≥ 0.

For the two-period game as a whole, with time discount factor βi, 0 ≤ βi ≤ 1, Player i’s expected
utility over the two periods is

U1 = Max(0, U11 + β1U12), U2 = U21 + β2U22 (6)

The Max function is used for Player 1 since Player 1 will not use its entire budget R11 if that causes
negative expected utility U1.

3. Solving the Model

In Section 3.1.1, the game is solved with backward induction starting in Period 2. In Section 3.1.1,
Period 1 is solved. Thereafter, various corner solutions have been determined. The 11 solutions
in Table 1 have been identified for the game. All the solutions except Solution 9 have positive
efforts Z11 ≥ 0 and D21 ≥ 0 in Period 1, which is the nature of the ratio form contest success
function in (2) and (3), with simultaneous moves in Period 1. That is, a player may decrease its effort
arbitrarily close to zero, but not to zero. In Solution 9, Player 1 withdraws to avoid negative expected
utility, i.e., to ensure U1 ≥ 0.



Games 2020, 11, 64 7 of 26

Table 1. Characteristics of the 11 solutions. Z11 ≥ 0 and D21 ≥ 0 in Period 1 in all the solutions.

Sol.
Stockpiling Budget Constraint Period 2 Description Section

1 S1 = 0 R11 ≥ R11b Z12 ≥ 0, D22 ≥ 0 Player 1 neither stockpiles nor utilizes
entire budget Section 3.1.2

2 S1 ≥ 0 R11b = R11 Z12 ≥ 0, D22 ≥ 0 Player 1 stockpiles and utilizes
entire budget Section 3.1.2

3 S1 = 0 R11b = R11 Z12 ≥ 0, D22 ≥ 0 Player 1 does not stockpile and utilizes
entire budget Section 3.1.3

4 S1 ≥ 0 R11 ≥ R11b Z12 = D22 = 0 Player 2 is deterred; Player 1
is superior Section 3.2.1

5 S1 ≥ 0 R11b = R11 Z12 = D22 = 0 Player 2 is deterred; Player 1 utilizes
entire budget Section 3.2.2

6 S1 ≥ 0 R11b = R11 Z12 = 0, D22 ≥ 0
∂U1
∂S1

= 0,Z11 =
R11−b11S1

b11
, Player 2 is

not deterred
Section 3.2.3

7 S1 ≥ 0 R11b = R11 Z12 = 0, D22 ≥ 0
∂U1
∂Z11

= 0,S1 =
R11−b11Z11

b11
, Player 2 is

not deterred
Section 3.2.3

8 S1 ≥ 0 R11b ≥ R11 Z12 = 0, D22 ≥ 0 Player 2 is not deterred, though Player
1 is superior Section 3.2.3

9 S1 = 0 R11 ≥ R11b Z11 = 0, D22 ≥ 0 Player 1 withdraws to ensure U1 ≥ 0 Section 3.3

10 S1 = 0 R11 = R11b Z11 = D21, Z12 = D22
Equally matched players;

U1 = U2 = 0 Section 3.4

11 S1 = 0 R11b ≥ R11 Z12 = D22 = 0 Player 2 is deterred; Player 1 does
not stockpile Section 3.5

3.1. Solutions 1, 2, 3 (Z12 ≥ 0, D22 ≥ 0, S1 ≥ 0)

3.1.1. Solving Period 2

Differentiating Player i’s expected utility Ui2 in (5) in Period 2 with respect to its one free-choice
variable, i.e., Z12 for Player 1 and D22 for Player 2, and equating it with zero, gives the first-order conditions

∂U12
∂Z12

=
wDw

22P11(Z12+δ1S1)
w−1

(Zv
11+Dv

21)((Z12+δ1S1)
w+Dw

22)
2 − b12 = 0,

∂U22
∂D22

=
wDw−1

22 Q21(Z12+δ1S1)
w

(Zv
11+Dv

21)((Z12+δ1S1)
w+Dw

22)
2 − a22 = 0,

P11 ≡W1Dv
21 + (g1V1 + W1)Zv

11, Q21 ≡W2Zv
11 + (g2V2 + W2)Dv

21

(7)

which are solved to yield

Z12 =
a22/Q21

b12/P11
D22 − δ1S1, D22 =

wQ21A

a22
(
Zv

11 + Dv
21

)
(1 + A)2

, A ≡
(

a22/Q21

b12/P11

)w
(8)

The second-order conditions are

∂2U12
∂Z2

12
= −wDw

22P11(Z12+δ1S1)
w−2((1+w)(Z12+δ1S1)+(1−w)Dw

22)

(Zv
11+Dv

21)((Z12+δ1S1)
w+Dw

22)
3 ,

∂2U22
∂D2

22
= −wDw−2

22 Q21(Z12+δ1S1)
w((1−w)(Z12+δ1S1)+(1+w)Dw

22)

(Zv
11+Dv

21)((Z12+δ1S1)
w+Dw

22)
3

(9)

which are satisfied as negative when

(1 + w)(Z12 + δ1S1) + (1−w)Dw
22 ≥ 0,

(1−w)(Z12 + δ1S1) + (1 + w)Dw
22 ≥ 0

(10)
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3.1.2. Solving Period 1

Inserting Equations (8) and (3) into Player i’s expected utility in Equation (6) over the two
periods gives

U1 =
Zv

11V1
Zv

11+Dv
21
− b11Z11 − b11S1 +

β1A
1+A

(
Zv

11
Zv

11+Dv
21

g1V1 + W1

)
− β1wP11A

(Zv
11+Dv

21)(1+A)2 + β1b12δ1S1,

U2 =
Dv

21V2

Zv
11+Dv

21
− a21D21 +

β2
1+A

(
Dv

21
Zv

11+Dv
21

g2V2 + W2

)
− β2wQ21A

(Zv
11+Dv

21)(1+A)2

(11)

which is rewritten as

U1 =
Zv

11V1
Zv

11+Dv
21
− b11Z11 +

β1P11(A+1−w)A

(Zv
11+Dv

21)(1+A)2 − (b11 − β1b12δ1)S1,

U2 =
Dv

21V2

Zv
11+Dv

21
− a21D21 +

β2Q21(1+(1−w)A)

(Zv
11+Dv

21)(1+A)2

(12)

which has three unknown variables: S1, Z11, and D21. Using (12), Player 1′s optimal stockpiling is

S1 =


Min
(D22 a22/Q21
δ1 b12/P11

, R11−b11Z11
b11

)
i f b11 ≤ β1b12δ1

0 otherwise,
(13)

where D22a22/Q21
δ1b12/P11

according to (8) is the amount of stockpiling S1 that causes zero effort Z12 for Player

1 in Period 2, and R11−b11Z11
b11

according to (1) is the maximum stockpiling S1 permitted by Player 1′s
budget constraint R11. Player 1 chooses the lowest of these two values since excessive stockpiling
S1 in Period 1, which cannot be utilized in Period 2, is not preferable, since Player 1 cannot exceed
its budget constraint R11. We refer to S1 = 0 in (13) when b11 > β1b12δ1 and R11 ≥ R11b as Solution 1.
If b11 > β1b12δ1, Player 1 does not stockpile in Period 1, i.e., S1 = 0, since its unit cost b11 of stockpiling
exceeds the product of Player 1′s unit cost b12 of exerting effort Z12 in Period 2, Player 1′s time
discount factor β1, and Player 1′s zero-day appreciation factor δ1 from Period 1 to Period 2. We refer to
S1 = R11−b11Z11

b11
in (13) when b11 ≤ β1b12δ1 and R11 = R11b as Solution 2. Then, Player 1 chooses Z11,

optimally, and applies its remaining budget to stockpile S1 ≥ 0.
Differentiating each player’s expected utility in (12) with respect to the two remaining free-choice

variables, i.e., Z11 for Player 1 and D21 for Player 2, and equating it with zero, gives the first-order conditions

∂U1
∂Z11

=
Dv

21vZv−1
11 (Ag2P11V2w(B−Cw)β1+Q21V1(B3+Ag1(B2−Cw2)β1))

B3Q21(Zv
11+Dv

21)
2 − b11 = 0,

∂U2
∂D21

=
Dv−1

21 vZv
11(Ag1Q21V1w(B+Cw)β2+P11V2(B3+g2(B2+CAw2)β2))

B3P11(Zv
11+Dv

21)
2 − a21 = 0,

B ≡ 1 + A, C ≡ 1−A

(14)

which are cumbersome to analyze analytically. Hence, we solve (14) numerically for Z11 and D21 and
use (13) to determine S1, which are both inserted into (8) to determine the free-choice variables Z12 and
D22 in Period 2. We finally insert the result into (12) to determine the players’ expected utilities U1 and
U2 over the two time periods.

3.1.3. Solution 3 (Z11 = R11/b11)

Inserting Z11 = R11/b11 into (1) causes zero stockpiling, S1 = 0. Thus, Player 1 in Period 1 allocates
all its resources to exploit zero-day vulnerabilities for Player 2 and has no resources to stockpile
zero-day exploits for use in Period 2. The solution follows from solving the second first-order condition
in (14) when Z11 = R11/b11 and applying Z11 = R11/b11 instead of the first first-order condition in (14).
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3.2. Solutions 4–8 (Z12 = 0, D22 ≥ 0, R11 ≥ R11b)

When Z12 = 0, Player 1 exerts no effort to develop zero-day capabilities in Period 2; instead, it relies
on the stockpiling S1 from Period 1 to attack Player 2. Solving Player 2′s first-order condition in (7)
when Z12 = 0 gives

Dw
22 −

√
Dw−1

22

√√
wQ21(δ1S1)

w

a22
(
Zv

11 + Dv
21

) + (δ1S1)
w = 0 (15)

which is not analytically solvable for general w (since w appears multiplicatively under a root sign, appears
as an exponent with two different bases, appears as an exponent under a root sign and without a root
sign, and appears as an exponent w− 1 under a root sign), but is, for w = 1, conveniently solved to

D22 =



(√
Q21

a22(Zv
11+Dv

21)
−
√
δ1S1

)√
δ1S1 i f Q21

a22(Zv
11+Dv

21)
> δ1S1

0 otherwise.
(16)

Inserting Z12 = 0, w = 1, and (3) into Player i’s expected utility in (6) gives

U1 =
Zv

11V1
Zv

11+Dv
21
− b11Z11 − b11S1 + β1

δ1S1
δ1S1+D22

(
Zv

11
Zv

11+Dv
21

g1V1 + W1

)

U2 =
Dv

21V2

Zv
11+Dv

21
− a21D21 + β2

(
D22

δ1S1+D22

(
Dv

21
Zv

11+Dv
21

g2V2 + W2

)
− a22D22

) (17)

where D22 follows from (16). Differentiating U1 in (17) with respect to S1 and equating with zero gives

∂U1

∂S1
=

β1
√
δ1
√

a22P11

2
√

S1

√
Zv

11 + Dv
21

√
Q21

− b11 = 0⇒ S1 =
β2

1δ1a22P2
11

4b2
11

(
Zv

11 + Dv
21

)
Q21

(18)

The two remaining unknown variables Z11 and D21 in (17) are determined by solving ∂U1
∂Z11

= 0

and ∂U2
∂D21

= 0 together with (18) for Period 1.

3.2.1. Solution 4 (Z12 = D22 = 0, R11 ≥ R11b)

When Q21
a22(Zv

11+Dv
21)
≤ δ1S1 in (16), Player 2 is deterred from exerting effort in Period 2, i.e., D22 = 0.

Then, Player 1 wins the Period 2 contest since S1 > 0. Inserting Z12 = D22 = 0, w = 1, and (3) into
Player i’s expected utility in (6) gives

U1 =
Zv

11V1
Zv

11+Dv
21
− b11Z11 − b11S1 + β1

(
Zv

11
Zv

11+Dv
21

g1V1 + W1

)
,

U2 =
Dv

21V2

Zv
11+Dv

21
− a21D21

(19)

Differentiating (19) to determine the optimal efforts Z11 and D21 for Players 1 and 2, respectively,
and equating with 0 gives

∂U1
∂Z11

=
vV1Zv−1

11 Dv
21(1+β1 g1)

(Zv
11+Dv

21)
2 − b11 = 0,

∂U2
∂D21

=
vDv−1

21 Zv
11V2

(Zv
11+Dv

21)
2 − a21 = 0

(20)

which are solved to yield
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Z11 =
a21/V2

b11/V1(1 + β1g1)
D21, D21 =

vV2

(
a21/V2

b11/V1(1+β1 g1)

)v

a21

(
1 +
(

a21/V2
b11/V1(1+β1 g1)

)v)2 (21)

The second-order conditions are

∂2U1
∂Z2

11
= − vV1Dv

21Zv−2
11 (1+β1 g1)((1+v)Zv

11+(1−v)Dv
21)

(Zv
11+Dv

21)
3 ,

∂2U2
∂D2

21
= − vV2Dv−2

21 Zv
11((1−v)Zv

11+(1+v)Dv
21)

(Zv
11+Dv

21)
3

(22)

which are satisfied as negative when

(1 + v)Zv
11 + (1− v)Dv

21 ≥ 0,
(1− v)Zv

11 + (1 + v)Dv
21 ≥ 0

(23)

To deter Player 2 in Period 2, Player 1 must choose sufficiently large stockpiling S1 to make Player
2 indifferent between exerting and not exerting effort D22 in Period 2. Inserting Z12 = D22 = 0 and
w = 1 into (3), that implies

D22
δ1S1+D22

(
Dv

21
Zv

11+Dv
21

g2V2 + W2

)
− a22D22 = 0 when D22 = 0

⇔ S1 = 1
δ1a22

(
Dv

21 g2V2

Zv
11+Dv

21
+ W2

) (24)

where Z11 and D21 in (17) are determined in (21).

3.2.2. Solution 5 (Z12 = D22 = 0, R11 = R11b)

The solution for Z11, D21, and S1 in (17) and (24) presupposes that the budget constraint
R11 ≥ b11Z11 + b11S1 = R11b in (1) is not exceeded. If it is exceeded, Player 1 must decrease either the
effort Z11 or the stockpiling S1 that deters Player 2 in Period 2. Let us analyze the event that Player 1
chooses stockpiling S1 to deter, as in (24), and uses the budget constraint R11 in (1) to determine Z11

(which is then lower than the optimal Z11 with no budget constraint in (17)). Applying ∂U2
∂D21

= 0 in
(20), S1 in (24), and the budget constraint in (1) gives the three equations

vDv−1
21 Zv

11V2
(
Zv

11 + Dv
21

)2 = a21, S1 =
1
δ1a22

( Dv
21g2V2

Zv
11 + Dv

21
+ W2

)
, b11Z11 + b11S1 = R11, (25)

which are numerically solvable for Z11, D21, and S1.

3.2.3. Solutions 6–8 (Z12 = 0, D22 ≥ 0, R11 = R11b)

If Player 1 chooses effort Z12 = 0 in Period 2 and Player 1′s budget constraint R11 = R11b prevents
sufficient stockpiling S1 to deter Player 2 in Period 2, Player 2 will choose positive effort D22 ≥ 0
in Period 2. Then, (16) applies for D22 and (17) applies for U1 and U2. Solution 6 follows from
solving ∂U2

∂D21
= 0 in (17) together with S1 in (18) and the budget constraint Z11 = R11−b11S1

b11
. Solution 7

follows from solving ∂U1
∂Z11

= 0 and ∂U2
∂D21

= 0 in (17) together with the budget constraint S1 = R11−b11Z11
b11

.

Solution 8, in which Player 1 does not utilize its entire budget R11 ≥ R11b, follows from solving ∂U1
∂Z11

= 0

and ∂U2
∂D21

= 0 in (17) together with S1 in (18). Solution 8 has not been demonstrated in practice. It is
distinguished from Solutions 6 and 7 in that Player 1 does not utilize its entire budget R11 ≥ R11b,
while still not deterring Player 2. It is also distinguished from Solutions 4 and 5, where Player 2 is
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indeed deterred, either by the player being superior (Solution 4) or by Player 1 utilizing its entire
budget R11 ≥ R11b.

3.3. Solution 9 (S1 = Z11 = 0)

Player 1′s budget constraint R11 ≥ b11Z11 + b11S1 in (1) may prevent Player 1 from an optimal
exertion of efforts. Hence, we require that Player 1 should always receive positive expected utility
U1 ≥ 0 and otherwise assume that Player 1 chooses zero efforts Z11 = Z12 = 0 in both periods and
that Player 2 keeps its asset by exerting arbitrarily small defense efforts D21 = D22 = ε > 0, where ε is
arbitrarily small but strictly positive. Inserting into (3), (5) and (6), the players’ expected utilities are
thus U1 = U11 = U12 = 0, U21 = V2, U22 = g2V2 + W2, U2 = V2 + β2g2V2 + W2.

3.4. Solution 10 (S1 = 0, Z11 = R11/b11 = D21)

A solution is possible, where the players are equally matched (equally advantaged) and Player 1
chooses Period 1 effort Z11 = R11/b11 = D21, which equals Player 2′s Period 1 effort D21. Furthermore,
if the players are equally matched in Period 2 and exert equal and high Period 2 efforts Z12 = D22,
a solution can emerge where they both receive zero expected utilities since their efforts in both periods
outweigh the benefits they receive from the asset values, i.e., U1 = U11 = U12 = U2 = U21 = U22 = 0.

3.5. Solution 11 (Z12 = D22 = S1 = 0)

When Player 2 is deterred in Period 2, D22 = 0, and Player 1 does not stockpile in Period 1, S1 = 0,
what remains for Period 1 is for Player 1 to choose effort Z11 and Player 2 to choose effort D21. In order
to deter Player 2 in Period 1, so that Player 2 chooses zero effort D21 = 0, (19) for Player 2 implies

U2 =
Dv

21V2

Zv
11 + Dv

21
− a21D21 ≤ 0⇔ Z11 ≥


Dv−1

21 (V2 − a21D21)

a21


1/v

(26)

Equation (26) needs to be analyzed for each combination of parameter values to determine
whether Player 1′s budget R11 enables it to choose Z11/b11 to deter Player 2 so that D21 = 0 or whether
deterrence is impossible. Solution 11 has not been demonstrated in practice. It is distinguished from
Solutions 4 and 5, where Player 2 is also deterred, D22 = 0, in Period 2, but Player 1 stockpiles S1 ≥ 0.

4. Illustrating the Solution

Figure 3 illustrates the solution, i.e., the efforts Z11, D21, Z12, D22, stockpiling S1, the actual
amount R11b (dependent variable) of resources used by Player 1 in Period 1, and the expected
utilities U1, U2, U11, U21, U12, U22 for Players 1 and 2 with the 16 benchmark parameter values
R11 = a2 j = b1 j = gi = v = w = δ1 = βi = 1, Vi = 2, Wi = 0, i, j = 1, 2. We have chosen unitary
parameter values whenever possible. We also plot as functions of a21 = a22 and b11 = b12. In each of
the 16 + 2 = 18 double panels, one parameter value varies, while the other parameter values are kept at
their benchmarks. The upper part of each panel shows which solution is plotted for the various ranges
along the horizontal axis. The benchmark solution (which is Solution 1) is Z11 = D21 = R11b = 0.875,
Z12 = D22 = 0.25, S1 = 0, U1 = U2 = 0.375, U11 = U21 = 0.125, U12 = U22 = 0.25.
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Figure 3. Efforts 𝑍𝑍��, 𝐷𝐷��, 𝑍𝑍��, 𝐷𝐷��, stockpiling 𝑆𝑆�, used resources 𝑅𝑅���, and expected utilities 𝑈𝑈�, 𝑈𝑈�, 
𝑈𝑈�� ,𝑈𝑈�� , 𝑈𝑈�� , 𝑈𝑈��  for Players 1 and 2 as functions of 𝑅𝑅��,  𝑎𝑎��, 𝑏𝑏��, 𝑔𝑔�, 𝑣𝑣, 𝑣𝑣, 𝑣𝑣�, 𝛽𝛽� , 𝑉𝑉� , 𝑊𝑊� , 𝑖𝑖, 𝑖𝑖 𝑖 𝑖,𝑖, 
relative to the benchmark parameter values 𝑅𝑅�� 𝑖 𝑎𝑎�� 𝑖 𝑏𝑏�� 𝑖 𝑔𝑔� 𝑖 𝑣𝑣 𝑖 𝑣𝑣 𝑖 𝑣𝑣� 𝑖 𝛽𝛽� 𝑖 𝑖 , 𝑉𝑉� 𝑖 𝑖 , 
𝑊𝑊� 𝑖 0, 𝑖𝑖, 𝑖𝑖 𝑖 𝑖,𝑖. See Table 2 and the text for an explanation of the 18 panels a-a’ to r-r’. 

In Figure 3a,a’, when Player 1′s budget constraint 𝑅𝑅�� exceeds the amount 𝑅𝑅��� of resources 
used at benchmark 𝑅𝑅��� 𝑖 0.875, all variables remain at their benchmarks, as functions of 𝑅𝑅��, since 
Player 1 is not constrained in any way. In contrast, as 𝑅𝑅�� decreases below 𝑅𝑅��� 𝑖 0.875, Player 1 is 
constrained in its effort 𝑍𝑍�� 𝑖 𝑅𝑅�� 𝑏𝑏��⁄ , which decreases linearly to 𝑍𝑍�� 𝑖 0  as 𝑅𝑅��  decreases to 
𝑅𝑅�� 𝑖 0. Player 2′s Period 1 defense effort 𝐷𝐷�� is inverse U-shaped in 𝑅𝑅�� since Player 1 first seeks 
to gain competitive advantage against Player 2 by competing more fiercely as 𝑅𝑅�� decreases below 
𝑅𝑅��� 𝑖 0.875. After 𝐷𝐷�� reaches a maximum, it decreases as Player 2 becomes more advantaged and 
succeeds with lower effort 𝐷𝐷�� due to Player 1′s decreasing budget 𝑅𝑅��. Hence, as 𝑅𝑅�� decreases, 
Player 1′s expected utilities 𝑈𝑈�,𝑈𝑈��,𝑈𝑈�� decrease and Player 2′s expected utilities 𝑈𝑈�,𝑈𝑈��,𝑈𝑈�� increase. 

In Figure 3b,b’, as Player 2′s unit effort cost 𝑎𝑎�� of defense in Period 1 increases above 𝑎𝑎�� 𝑖 𝑖, 
the disadvantaged Player 2′s efforts 𝐷𝐷��  and 𝐷𝐷��  in both periods and its expected utilities 
𝑈𝑈�,𝑈𝑈��,𝑈𝑈�� decrease. Player 1′s efforts 𝑍𝑍�� and 𝑍𝑍�� in both periods are inverse U-shaped in 𝑎𝑎��. 
Initially, as 𝑎𝑎��  increases above 𝑎𝑎�� 𝑖 𝑖 , Player 1 increases 𝑍𝑍��  and 𝑍𝑍��  to compete more 
successfully with Player 2. As 𝑎𝑎�� increases further, Player 1 decreases its efforts 𝑍𝑍�� and 𝑍𝑍�� due 
to strength and being advantaged, as 𝑍𝑍��  and 𝑍𝑍��  are less needed to compete successfully with 
Player 2. As 𝑎𝑎�� increases above 𝑎𝑎�� 𝑖 𝑖, Player 1′s expected utilities 𝑈𝑈�,𝑈𝑈��,𝑈𝑈�� thus increase. For 
the range 𝑖.07 ≤ 𝑎𝑎�� ≤ 𝑖.35, Player 1 reaches its budget constraint 𝑅𝑅�� 𝑖 𝑖 due to competing fiercely 
with Player 2 (and being neither strongly advantaged nor strongly disadvantaged), causing 
maximum Period 1 effort 𝑍𝑍�� 𝑖 𝑖, which depresses Player 1′s expected utility 𝑈𝑈�  and increases 
Player 2′s expected utility 𝑈𝑈� slightly, relative to no budget constraint. In contrast, as 𝑎𝑎�� decreases 
below 𝑎𝑎�� 𝑖 𝑖, the advantaged Player 2 increases its Period 1 defense effort 𝐷𝐷��, while Player 1 
decreases its efforts 𝑍𝑍�� and 𝑍𝑍�� in both periods. Player 2′s defense effort 𝐷𝐷�� in period 2 is inverse 
U-shaped for the same reason as above. As 𝑎𝑎��  approaches 𝑎𝑎�� 𝑖 0 , less need exists for the 
advantaged Player 2 to exert effort 𝐷𝐷�� in Period 2, and the asset fought over is less valuable since 
most of the value was distributes in Period 1. Hence, as 𝑎𝑎�� decreases below 𝑎𝑎�� 𝑖 𝑖, Player 2′s 
expected utilities 𝑈𝑈�,𝑈𝑈��,𝑈𝑈�� increase, and Player 1′s expected utilities 𝑈𝑈�,𝑈𝑈��,𝑈𝑈�� decrease. Player 1 
does not stockpile 𝑆𝑆� 𝑖 0 since its efforts 𝑍𝑍�� and 𝑍𝑍�� are equally costly in both periods, its zero-
day appreciation factor from Period 1 to Period 2 equals 𝑣𝑣� 𝑖 𝑖, and its time discount factor equals 
𝛽𝛽� 𝑖 𝑖. 

In Figure 3c,c’, Player 2′s unit defense costs are assumed equal 𝑎𝑎�� 𝑖 𝑎𝑎�� in both periods. Player 
1 is budget constrained when 𝑖.04 ≤ 𝑎𝑎�� ≤ 𝑖.𝑖8. Panel c-c’ is qualitatively similar to Panel b-b’. The 
main differences are that Player 2 becomes more disadvantaged when 𝑎𝑎�� 𝑖 𝑎𝑎�� increases above 
𝑎𝑎�� 𝑖 𝑎𝑎�� 𝑖 𝑖  and more advantaged when 𝑎𝑎�� 𝑖 𝑎𝑎��  decreases below 𝑎𝑎�� 𝑖 𝑎𝑎�� 𝑖 𝑖  compared 
with Panel b-b’, where only 𝑎𝑎�� varies. Hence, for example, when 𝑎𝑎�� 𝑖 𝑎𝑎�� > 𝑖, the two inverse-U 
shapes for 𝑍𝑍�� and 𝑍𝑍�� are narrower in Panel c-c’ than in Panel d-d’. 

In Figure 3d,d’, Player 2′s unit effort cost 𝑎𝑎��  of defense in Period 2 varies, causing results 
qualitatively similar to Panels b-b’ and c-c’. The main differences are that Player 2 prefers being 

Figure 3. Efforts Z11, D21, Z12, D22, stockpiling S1, used resources R11b, and expected utilities U1, U2,
U11,U21, U12, U22 for Players 1 and 2 as functions of R11, a2 j, b1 j, gi, v, w, δ1, βi, Vi, Wi, i, j = 1, 2,
relative to the benchmark parameter values R11 = a2 j = b1 j = gi = v = w = δ1 = βi = 1, Vi = 2,
Wi = 0, i, j = 1, 2. See Table 2 and the text for an explanation of the 18 panels a,a’ to r,r’.

In Figure 3a,a’, when Player 1′s budget constraint R11 exceeds the amount R11b of resources used
at benchmark R11b = 0.875, all variables remain at their benchmarks, as functions of R11, since Player 1
is not constrained in any way. In contrast, as R11 decreases below R11b = 0.875, Player 1 is constrained
in its effort Z11 = R11/b11, which decreases linearly to Z11 = 0 as R11 decreases to R11 = 0. Player 2′s
Period 1 defense effort D21 is inverse U-shaped in R11 since Player 1 first seeks to gain competitive
advantage against Player 2 by competing more fiercely as R11 decreases below R11b = 0.875. After D21

reaches a maximum, it decreases as Player 2 becomes more advantaged and succeeds with lower effort
D21 due to Player 1′s decreasing budget R11. Hence, as R11 decreases, Player 1′s expected utilities
U1,U11,U12 decrease and Player 2′s expected utilities U2,U21,U22 increase.

In Figure 3b,b’, as Player 2′s unit effort cost a21 of defense in Period 1 increases above a21 = 1,
the disadvantaged Player 2′s efforts D21 and D22 in both periods and its expected utilities U2,U21,U22

decrease. Player 1′s efforts Z11 and Z12 in both periods are inverse U-shaped in a21. Initially, as a21

increases above a21 = 1, Player 1 increases Z11 and Z12 to compete more successfully with Player 2.
As a21 increases further, Player 1 decreases its efforts Z11 and Z12 due to strength and being advantaged,
as Z11 and Z12 are less needed to compete successfully with Player 2. As a21 increases above a21 = 1,
Player 1′s expected utilities U1,U11,U12 thus increase. For the range 1.07 ≤ a21 ≤ 1.35, Player 1 reaches
its budget constraint R11 = 1 due to competing fiercely with Player 2 (and being neither strongly
advantaged nor strongly disadvantaged), causing maximum Period 1 effort Z11 = 1, which depresses
Player 1′s expected utility U1 and increases Player 2′s expected utility U2 slightly, relative to no budget
constraint. In contrast, as a21 decreases below a21 = 1, the advantaged Player 2 increases its Period 1
defense effort D21, while Player 1 decreases its efforts Z11 and Z12 in both periods. Player 2′s defense
effort D22 in period 2 is inverse U-shaped for the same reason as above. As a21 approaches a21 = 0,
less need exists for the advantaged Player 2 to exert effort D22 in Period 2, and the asset fought over
is less valuable since most of the value was distributes in Period 1. Hence, as a21 decreases below
a21 = 1, Player 2′s expected utilities U2,U21,U22 increase, and Player 1′s expected utilities U1,U11,U12

decrease. Player 1 does not stockpile S1 = 0 since its efforts Z11 and Z12 are equally costly in both
periods, its zero-day appreciation factor from Period 1 to Period 2 equals δ1 = 1, and its time discount
factor equals β1 = 1.

In Figure 3c,c’, Player 2′s unit defense costs are assumed equal a21 = a22 in both periods. Player 1
is budget constrained when 1.04 ≤ a21 ≤ 1.28. Panel c,c’ is qualitatively similar to Panel b,b’. The main
differences are that Player 2 becomes more disadvantaged when a21 = a22 increases above a21 = a22 = 1
and more advantaged when a21 = a22 decreases below a21 = a22 = 1 compared with Panel b,b’,
where only a21 varies. Hence, for example, when a21 = a22 > 1, the two inverse-U shapes for Z11 and
Z12 are narrower in Panel c,c’ than in Panel d,d’.

In Figure 3d,d’, Player 2′s unit effort cost a22 of defense in Period 2 varies, causing results
qualitatively similar to Panels b,b’ and c,c’. The main differences are that Player 2 prefers being
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disadvantaged in Period 2, with high a22 in Panel d,d’, rather than being disadvantaged in Period 1,
with high a21 in Panel b,b’, and that Player 2 prefers being advantaged in Period 1 with low a21 in Panel
b,b’ rather than being advantaged in Period 2 with high a22 in Panel b,b’. That is, Player 2 prefers to
be advantaged in the important Period 1. If Player 2 is to be disadvantaged, it prefers to be so in the
less important Period 2, where a less valuable asset is at stake. Player 1 is budget-constrained when
1.10 ≤ a21 ≤ 3.73. The reason for the larger range of being budget-constrained (compared with Panels
b,b’ and c,c’) is that when Player 1 is disadvantaged with a large unit effort cost a21 ≥ 1 = a11 in Period
2, which constrains its Period 2 effort Z12, it becomes more important for Player 1 to compete as fiercely
as possible with Player 2 in Period 1, utilizing the cheaper Period 1 effort Z11.

In Figure 3e,e’, as Player 1′s unit effort cost b11 of developing zero-day capabilities in Period 1
increases above b11 = 1, stockpiling S1 = 0 continues not to occur in Solution 1 and exerting effort Z12

in Period 2 at unit cost b12 = 1 is cheaper. Player 1′s efforts Z11 and Z12 in both periods decrease as b11

increases since Player 1 becomes more disadvantaged, cannot justify the costly efforts, and receives
lower expected utilities U1,U11,U12. Player 2′s defense efforts D21 and D22 in the two periods are inverse
U-shaped as b11 increases above b11 = 1, which is common in such situations. That is, for intermediate
b11 above b11 = 1, the players are similarly advantaged and Player 2 exerts high efforts D21 and D22.
As b11 increases, Player 2 becomes more advantaged and decreases D21 and D22 due to strength since
high expected utilities U2,U21,U22 are obtained even with low efforts. As b11 decreases, Player 2
becomes more disadvantaged and decreases D21 and D22 due to weakness, earning lower expected
utilities U2,U21,U22. In contrast, as b11 decreases below b11 = 1, Player 1 stockpiles S1 ≥ 0 when the
budget R11 permits it and it is beneficial. More specifically, decreasing b11 marginally below b11 = 1
causes Player 1 to replace a maximum part of its Period 2 effort Z12 with stockpiling S1 ≥ 0 until
its budget R11 = 1 is reached, causing Z12 and S1 to be discontinuous through b11 = 1 and causing
Solution 2. As b11 decreases below b11 = 0.94, Solution 3 emerges. Player 1′s unit efforts cost b11 is then
so low that it chooses maximum Period 1 effort Z11 = R11/b11, as permitted by the budget R11 = 1,
and zero stockpiling S1 = 0. This continues with increasing expected utilities U1,U11,U12 for Player
1 and decreasing expected utilities U2,U21,U22 for Player 2, until b11 = 0.74, where Solution 2 again
emerges. The reason is that for b11 < 0.74, Player 1 is sufficiently advantaged compared with Player
2, does not need to increase its Period 1 effort Z11 further, and prefers instead to stockpile to become
more competitive in Period 2. Hence, as b11 decreases from b11 = 0.74 to b11 = 0.63, Player 1′s Period 2
effort Z12 decreases as it is cost effectively replaced with stockpiling S1 ≥ 0. As b11 decreases below
b11 = 0.63, Solution 5 emerges, where, interestingly, Player 1 stockpiles sufficiently with S1 ≥ 0 in
Period 1 to deter Player 2 from defending in Period 2, i.e., D22 = 0. Player 1 exerts no effort Z12 = 0
in Period 2 (at unit cost b12) since stockpiling S1 ≥ 0 at unit cost b11 < 0.63 is more cost effective.
To accomplish the substantial stockpiling S1 ≥ 0 required to deter Player 2 in Period 2, Player 1 must
decrease its Period 1 effort Z11 = R11−b11S1

b11
substantially below its effort Z11 chosen when b11 < 0.63,

as required by its budget constraint R11 = 1. As b11 decreases below b11 = 0.63, within Solution 5,
Player 1 can gradually afford to increase its Period 1 effort Z11, enabling more successful competition
with Player 2 in Period 1, and thus less stockpiling S1 ≥ 0 is required to deter Player 2 in Period
2. This process continues until b11 < 0.61, where Solution 4 emerges. In Solution 4, Player 1 is so
superior that it does not need to utilize its entire budget R11 = 1. Its low unit effort cost b11 < 0.61
in Period 1 enables it to stockpile S1 ≥ 0 sufficiently to deter Player 2 in Period 2 and to sufficiently
avoid having to exert effort in Period 2, i.e., Z12 = 0. Furthermore, as b11 decreases below b11 = 0.61,
Player 1 competes increasingly successfully through increasing effort Z11 with Player 2 in Period
1, which enables decreased stockpiling S1 ≥ 0, increased expected utilities U1,U11,U12 for Player 1,
and decreased expected utilities U2,U21,U22 for Player 2.

In Figure 3f,f’, Player 1′s unit effort costs of developing zero-day capabilities are assumed to be
equal b11 = b12 in both periods. Since Player 1′s zero-days do not appreciate, δ1 = 1, and Player 1 does
not discount time, β1 = 0, Player 1 does not need to stockpile, i.e., S1 = 0 throughout. As b11 = b12

increases above b11 = b12 = 1, the players’ Period 1 efforts Z11 and D21 are qualitatively similar to
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Panel e,e’, i.e., decreasing for Player 1 and inverse U-shaped for Player 2. In Period 2, Player 1 is
more disadvantaged in Panel f,f’ than in Panel e,e’ since its unit effort cost b12 is higher (no longer
b12 = 1). Thus Player 1′s Period 2 effort Z12 decreases more quickly towards zero than in Panel e,e’,
enabling the advantaged Player 2 to also decrease its Period 2 defense effort D22 towards zero more
quickly than in Panel e,e’. In contrast, as b11 = b12 decreases below b11 = b12 = 1, Solution 2 with
stockpiling does not arise as in Panel e,e’. Instead, Solution 1 continues to operate with increased
Period 1 and Period 2 efforts Z11 and Z12 for Player 1 and decreased Period 1 and Period 2 efforts D21

and D22 for Player 2. This continues until b11 = b12 = 0.96, when Player 1 reaches its budget constraint
R11 = 1 and Solution 3 emerges, as in Panel e,e’. Solution 3 is maintained, with increasing advantage
for Player 1, until b11 = b12 = 0.78 when Player 1 is so advantaged that it does not need to utilize its
entire budget R11 = 1. Instead, Solution 1 emerges for b11 = b12 < 0.78, where all the four efforts Z11,
Z12, D21, D22 are positive since stockpiling S1 ≥ 0 does not occur, which would deter Player 2 in Period
2, as in Panel e,e’. As b11 = b12 decreases, Player 1′s Period 1 effort Z11 increases since the unit effort
cost decreases, while Player 1′s Period 2 effort Z12 decreases due to Player 1′s advantage and less of
Player 2′s asset left to compete in Period 2.

In Figure 3g,g’, as Player 1′s unit effort cost b12 of developing zero-day capabilities in Period 2
increases above b12 = 1, to the disadvantage of Player 1, stockpiling S1 ≥ 0 emerges in Solution 2 since
Player 1′s Period 2 effort Z12 becomes increasingly expensive and reaches Z12 = 0 when b12 > 1.05.
As b12 increases from b12 = 1 to b12 = 1.05, Player 1 accepts negative expected utility U11 in Period 1 in
order to earn increasing positive expected utility U12 in Period 2. As b12 increases above b12 = 1.05,
Player 1 exerts zero effort Z12 = 0 in Period 2, stockpiles optimally S1 ≥ 0, and chooses its Period 1
effort Z11 = R11−b11S1

b11
in Solution 6 to satisfy the budget constraint R11 = 1. Player 1 thus offsets its

increasing unit effort cost b12 > 1.05 by stockpiling S1 ≥ 0 in Period 1. In contrast, as b12 decreases
below b12 = 1, stockpiling S1 = 0 continues not to occur in Solution 1 since exerting effort Z12 in Period
2 at unit cost b12 = 1 is cheaper. Player 1′s efforts Z11 and Z12 in both periods increase as b12 decreases
since Player 1 becomes more advantaged and receives higher expected utilities U1, U11,U12. Player 2′s
defense efforts D21 and D22 in the two periods decrease as b12 decreases below b12 = 1 since Player
2 becomes more disadvantaged and receives lower expected utilities U2, U21, U22. This continues
until b12 = 0.91, when Player 1′s Period 1 effort Z11 at unit cost b11 = 1 becomes too costly, Player 1
reaches its budget constraint R11 = 1, and Solution 3 emerges. Solution 3 is maintained as b12 decreases
to b12 = 0.27, enabling Player 1 to increase its Period 2 effort Z12 and earn higher expected utilities
U1,U11,U12. Player 2′s defense efforts D21 and D22 in the two periods decrease as b12 decreases below
b12 = 1, earning lower expected utility U2. As b12 decreases below b12 = 0.27, Player 1′s Period 2
effort Z12 becomes so high and cheap that Player 1 can rely on competing successfully with Player 2
in Period 2. Thus, Player 1 no longer needs to exert high Period 1 effort Z11 and no longer needs to
apply its entire budget R11 = 1. Thus, Solution 1 re-emerges with higher expected utility U1 to Player
1. Interestingly, Player 2 also receives higher expected utility U2 as b12 decreases towards b12 = 0 since
Player 1 still has the unit effort cost b11 = 1 of its Period 1 effort Z11, and, thus, to some extent, Player 2
competes somewhat successfully with Player 1 in Period 1.

In Figure 3h,h’, when Player 1′s valuation V1 of Player 2′s asset increases above the benchmark
V1 = 2, Player 1′s Period 1 effort Z11 increases rapidly from the benchmark Z11 = 0.875 and
reaches the budget constraint Z11 = R11 = 1 when V1 > 2.06. That causes a transition from
Solution 1 to Solution 3. As V1 increases, Player 2′s Period 1 effort D21 decreases, lim

V1−→∞
D21 = 0.41,

determined numerically. That is, although Player 1′s valuation V1 increases arbitrarily, Player 2′s
valuation remains at the benchmark V1 = 2, causing Player 2 to compete to defend its asset in Period
1. In Period 2, this changes. As V1 increases, Player 1 exerts increasing effort Z12, lim

V1−→∞
Z12 = 0.59,

while Player 2 exerts decreasing effort D22, lim
V1−→∞

D22 = 0. As V1 increases, Player 1 receives increasing

expected utilities U1,U11,U12, lim
V1−→∞

U1 = lim
V1−→∞

U11 = lim
V1−→∞

U12 = ∞, while Player 2′s expected

utility U2 decreases, lim
V1−→∞

U2 = lim
V1−→∞

U21 = 0.17, lim
V1−→∞

U22 = 0. In contrast, as V1 decreases below
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the benchmark V1 = 2, the results are qualitatively similar to Player 1′s budget R11, decreasing below
the benchmark R11 = 0.785 in Panel a,a’. That is, Player 1 exerts lower efforts Z11 and Z12 and receives
lower expected utilities U1,U11,U12, while Player 2′s efforts are inverse U-shaped and it receives
increasing expected utilities U2,U21,U22.

In Figure 3i,i’, when Player 2′s valuation V2 of its own asset increases above the benchmark
V2 = 2, Player 2 exerts concavely increasing Period 1 defense effort D21 for its more valuable asset,

lim
V2−→∞

D21 = 2.00. Player 2′s Period 2 defense effort D22 is inverse U-shaped, as it first competes more

fiercely with Player 1 and eventually decreases D22 due to being advantaged lim
V2−→∞

D22 = 0. Player 2′s

expected utilities U2,U21,U22 thus increase, lim
V2−→∞

U2 = lim
V2−→∞

U21 = lim
V2−→∞

U22 = ∞. Player 1 responds

by decreasing its efforts Z11 and Z12 in both periods, lim
V2−→∞

Z11 = lim
V2−→∞

Z12 = 0, receiving decreasing

expected utilities U1,U11,U12, lim
V2−→∞

U1 = lim
V2−→∞

U11 = lim
V2−→∞

U12 = 0. In contrast, as V2 decreases

below the benchmark V2 = 2, Player 1′s Period 1 effort Z11 increases rapidly from the benchmark
Z11 = 0.875 and reaches the budget constraint Z11 = R11 = 1 when V2 < 1.92. That causes a transition
from Solution 1 to Solution 3, but in the opposite direction compared with Panel h,h’. As V2 decreases,
Player 2′s Period 1 effort D21 decreases convexly until V2 < 1.57, causing a transition back to Solution 1
since the advantaged Player 1 no longer needs to utilize its entire budget R11 = 1. Thus, Player 1′s
Period 1 effort Z11 decreases. As V2 decreases below the benchmark V2 = 2, Player 1′s Period 2 effort
Z11 is inverse U-shaped, causing increasing expected utilities U1,U11,U12, while both efforts D21 and
D22 by Player 2 decrease, causing decreasing expected utilities U2,U21,U22.

In Figure 3j,j’, when Player 1′s growth factor g1 of asset V1 from Period 1 to Period 2 increases above
the benchmark g1 = 1, Player 1′s Period 1 effort Z11 increases rapidly from the benchmark Z11 = 0.875,
as in Panel h,h’, and reaches the budget constraint Z11 = R11 = 1 when g1 > 1.04. That causes
a transition from Solution 1 to Solution 3. As g1 increases, the results are qualitatively similar to
V1 increasing in Panel h,h’, since Player 1′s period 1 effort Z11 is locked to the budget constraint
Z11 = R11/b11. The difference is that Player 1′s Period 1 expected utility U11 does not approach infinity,
since the growth factor g1 is confined to Period 2, and, instead, approaches a constant concavely,

lim
g1−→∞

U11 = 0.41. The other limit values are as in Panel h,h’, i.e., lim
g1−→∞

D21 = 0.41, lim
g1−→∞

Z12 = 0.59,

lim
g1−→∞

D22 = 0, lim
g1−→∞

U1 = lim
g1−→∞

U12 = ∞, lim
g1−→∞

U2 = lim
g1−→∞

U21 = 0.17, lim
g1−→∞

U22 = 0. In contrast,

as g1 decreases below the benchmark g1 = 1, Player 1 decreases its Period 2 effort Z12 since the asset
has less value in Period 2, receiving decreasing expected utility U12 in Period 2. Both efforts D21 and
D22 by Player 2 are inverse U-shaped, as in Panel h,h’, when the asset value V1 decreases below the
benchmark V1 = 2. Player 1′s Period 1 effort is slightly U-shaped since the asset still has value V1 for
Player 1 in Period 1. As g1 decreases, Player 2′s expected utilities U2,U21,U22 increase, while Player
1′s expected utilities U1 and U11 are U-shaped. This latter remarkable result is caused by Player 1
focusing more explicitly on Period 1 when the growth factor g1 is very low, while Player 2 focuses on
both periods and strikes a balance between them.

In Figure 3k,k’, when Player 2′s growth factor g2 of asset V2 from Period 1 to Period 2 increases
above the benchmark g2 = 1, Player 2′s Period 1 effort D21 increases rapidly from the benchmark
D21 = 0.875, as in Panel i,i’. Although growth g2 does not manifest until Period 2, Player 2 competes
fiercely in Period 1, knowing that what it can protect in Period 1 grows in Period 2. Thus, Player 2
exerts concavely increasing Period 1 defense effort D21, lim

g2−→∞
D21 = 2.00. As g2 increases, the results

are qualitatively similar to V2 increasing in Panel i,i’. The difference is that Player 2′s Period 1 expected
utility U21 does not approach infinity, since the growth factor g2 is confined to Period 2. Instead,
it is inverse U-shaped and approaches zero, lim

g2−→∞
U21 = 0. The other limit values are as in Panel

i,i’, i.e., lim
g2−→∞

U2 = lim
g2−→∞

U22 = ∞, lim
g2−→∞

D22 = lim
g2−→∞

Z11 = lim
g2−→∞

Z12 = lim
g2−→∞

U1 = lim
g2−→∞

U11 =

lim
g2−→∞

U12 = 0. In contrast, as g2 decreases below the benchmark g2 = 1, Player 2′s Period 1 effort is

slightly U-shaped since the asset still has value V2 for Player 2 in Period 1. Solution 3 arises when
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0.31 ≤ g2 ≤ 0.94. Player 2 decreases its Period 2 effort D22 since the asset has less value in Period 2,
receiving decreasing expected utility U22 in Period 2. Both efforts Z11 and Z12 by Player 1 are inverse
U-shaped, as in Panel i,i’, when the asset value V2 decreases below the benchmark V2 = 2. As g2

decreases, Player 1′s expected utilities U1,U11,U12 increase, while Player 2′s expected utilities U2 and
U21 are U-shaped. This latter remarkable result is caused by Player 2 focusing more explicitly on
Period 1, when the growth factor g2 is very low, while Player 1 focuses on both periods and strikes a
balance between them.

In Figure 3l,l’, when Player 1′s valuation W1 of Player 2′s asset acquired in Period 2 increases
above the benchmark W1 = 0, Player 1′s Period 1 effort Z11 quickly increases to its budget constraint
Z11 = R11/b11, causing transition from Solution 1 to Solution 3 when W1 = 0.07. Player 1′s Period 1
expected utility U11 is thus constrained, increasing concavely to lim

W1−→∞
U11 = 0.41. Player 1′s Period 2

effort Z12 increases concavely, lim
W1−→∞

Z12 = 0.59, and its expected utilities U1 and U12 increase without

bounds, lim
W1−→∞

U1 = lim
W1−→∞

U12 = ∞. In contrast, Player 2′s defense efforts D21 and D22 in the two

periods and its expected utilities U2 and U22 decrease convexly, lim
W1−→∞

D21 = 0.41, lim
W1−→∞

D22 = 0,

lim
W1−→∞

U2 = 0.17, lim
W1−→∞

U22 = 0. Player 2′s Period 1 expected utility U21 increases concavely,

lim
W1−→∞

U21 = 0.17, since Player 1 is budget-constrained in Period 1 and strongly focuses instead on

Period 2 as W1 increases.
In Figure 3m,m’, when Player 2′s valuation W2 of its own asset acquired in Period 2 increases

above the benchmark W2 = 0, Player 2′s Period 1 defense effort D21 and expected utility U21 increase
concavely, lim

W2−→∞
D21 = 1.28, lim

W2−→∞
U21 = 0.32. Player 1′s Period 1 effort Z11 and expected utilities

U1 and U11 decrease concavely, lim
W2−→∞

Z11 = 0.32, lim
W2−→∞

U1 = lim
W2−→∞

U11 = 0.08. Player 2′s Period

2 defense effort D21 also increases concavely, lim
W2−→∞

D22 = 0.4, and Player 2′s expected utilities U2

and U22 increase without bounds, lim
W2−→∞

U2 = lim
W2−→∞

U22 = 0.08. Player 1′s Period 2 effort Z12 and

expected utility U12 decrease convexly, lim
W2−→∞

Z12 = lim
W2−→∞

U12 = 0.

In Figure 3n,n’, when the contest intensity v in Period 1 increases above the benchmark v = 1,
the players compete more fiercely with each other in Period 1, receiving decreasing expected utilities
U1,U11,U2,U21 until Player 1 reaches its budget constraint Z11 = R11/b11 = 1 when v > 1.14.
When v > 1.14, which gives a transition from Solution 1 to Solution 3, Player 2 competes even more
fiercely with increasing Period 1 defense effort D21 while accepting negative Period 1 expected utility U2.
Player 1′s Period 1 expected utility U11 is even more negative. When v > 1.14, the advantaged Player 2
exerts slightly increasing Period 2 effort D22, while Player 1 exerts decreasing effort Z12. That continues
until v > 1.30, when Player 1 starts to receive negative expected utility U1 < 0 over the two periods,
which is unacceptable for Player 1. Hence Solution 9 emerges, where Player 1 withdraws from both
periods and receives zero expected utilities Z11 = Z12 = U1 = U11 = U12 = 0. When v > 1.30, Player 2
exerts a arbitrarily small positive effort and keeps its asset, i.e., D21 = D22 = ε > 0, where ε is arbitrarily
small but positive, and receives expected utilities U2 = U21 = 2, U2 = 4. In contrast, as v decreases
below the benchmark v = 1, both players exert lower Period 1 efforts Z11 and D21 and eventually
zero effort Z11 = D21 = 0 at the limit for an egalitarian contest v = 0, where efforts do not matter.
Concomitantly, both players’ expected utilities U1,U11,U2,U21 increase. The players’ Period 2 efforts
and expected utilities are constant at Z11 = D21 = U12 = U22 = 0.25.

In Figure 3o,o’, when the contest intensity w in Period 2 increases from w = 0 (egalitarian contest)
through to the benchmark w = 1 and to w = 2, the players’ Period 2 efforts Z12 and D22 increase from
Z12 = D22 = 0 through Z12 = D22 = 0.25, and to Z12 = D22 = 0.5. Simultaneously, the players’ Period
1 efforts Z11 and D21 increase from Z11 = D21 = 0.75, when w = 0 (no egalitarian contest in Period
1), through the benchmark Z11 = D21 = 0.875, and to Z11 = D21 = 1 when w = 2. These increases
in the efforts Z12, D22, Z11, D21 depress the players’ expected utilities U1,U11,U12,U2,U21,U22, all of
which decrease after reaching U1 = U11 = U12 = U2 = U21 = U22 = 0 when w = 2. When w > 2,
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causing transition from Solution 1 to Solution 10, we assume that the players choose the equilibrium,
where they both exert the w = 2 efforts Z12 = D22 = 0.5 and Z11 = D21 = 1 and receive zero expected
utilities U1 = U11 = U12 = U2 = U21 = U22 = 0. Increasing the Period 2 contest intensity w is quite
costly for equally matched (equally advantaged) players.

In Figure 3p,p’, when Player 1′s zero-day appreciation factor δ1 of stockpiled zero-day exploits S1

from Period 1 to Period 2 increases above the benchmark δ1 = 1, causing transition from Solution 1 to
Solution 2 in Table 1, Player 1 immediately utilizes its entire Period 1 budget R11 = 1, allocating S1 =
R11−b11Z11

b11
= 0.125 to stockpiling, Z11 = 0.875 to the Period 1 attack, and Z12 = 0.125 to the Period 2

attack. Hence, Player 1 cuts the Period 2 attack in half, from the benchmark Z12 = 0.25 to Z12 = 0.125,
utilizing stockpiling S1 = 0.125 from Period 1 instead as δ1 increases above δ1 = 1. As δ1 increases
above δ1 = 1, Player 1 keeps its stockpiling at S1 = 0.125, as permitted by its budget constraint R11 = 1,
but decreases its Period 2 attack Z12 linearly since stockpiling at S1 gets multiplied with the increasing
δ1 (see δ1S1 in (5)). Player 1′s expected utilities U1 and U2 increase, while its Period 1 expected utility
is zero, U11 = 0, since its stockpiling S1 gives a cost in Period 1 and a benefit in Period 2. Player 2′s
expected utilities U2,U21,U22 remain at their benchmarks when 1 ≤ δ1 ≤ 2 since Player 1′s allocation
from Z12 to S1 is all that happens when 1 ≤ δ1 ≤ 2. As δ1 increases above δ1 = 2, Player 1′s Period 2
attack Z12 decreases to Z12 = 0, as it gets entirely replaced by stockpiling S1. That causes transition
from Solution 2 to Solution 7 in Table 1. As δ1 increases above δ1 = 2, Player 1 decreases its stockpiling
S1, lim
δ1−→∞

S1 = 0, which continues to impact Period 2 due to δ1S1 in (5). That enables Player 1 to increase

its Period 1 attack Z11, within its budget R11 = 1, lim
δ1−→∞

Z11 = 1. Thus, Player 2 decreases its defense

in both periods, lim
δ1−→∞

D21 = 0.66, lim
δ1−→∞

D22 = 0.19. Thus, Player 1′s expected utilities U1,U11,U12

increase concavely, lim
δ1−→∞

U1 = 0.948, lim
δ1−→∞

U11 = 0.203, lim
δ1−→∞

U12 = 0.745, while Player 2′s expected

utilities U2,U21,U22 decrease convexly, lim
δ1−→∞

U2 = 0.25, lim
δ1−→∞

U21 = 0.13, lim
δ1−→∞

U22 = 0.12. In contrast,

when δ1 is less than 1, i.e., 0 ≤ δ1 ≤ 1, which means depreciation, then Player 1 refrains from stockpiling,
S1. Hence, all variables are constant at their benchmark values as functions of δ1 when 0 ≤ δ1 ≤ 1.

In Figure 3q,q’, as Player 1′s time discount factor β1 decreases below the benchmark β1 = 1, so that
Player 1 assigns less weight to the future Period 2, Player 1 exerts decreasing efforts Z11 and Z12 in
both periods, receiving decreasing expected utilities U1 and U12 but increasing expected utility U11 in
Period 1, which is more important than Period 2 for Player 1, while Player 2 assigns equal importance
to both periods. As β1 decreases, Player 2 exerts increasing defense efforts D12 and D22 in both periods,
which eventually decrease slightly, causing inverse U-shapes as β1 approaches β1 = 0. As β1 decreases,
Player 2 becomes more competitive due to weighing both periods equally and receiving increasing
expected utilities U2,U21,U22. When β1 < 1, Player 1 assigns less weight to Period 2 than Period 1,
causing zero stockpiling S1 = 0.

In Figure 3r,r’, as Player 2′s time discount factor β2 decreases below the benchmark β2 = 1, so that
Player 2 assigns less weight to the future Period 2, Player 2 exerts decreasing defense efforts and D22 in
both periods, receiving decreasing expected utilities U2 and U22 but increasing expected utility U21 in
Period 1, which is more important than Period 2 for Player 2, while Player 1 assigns equal importance to
both periods. As β2 decreases, Player 1 exerts increasing efforts Z11 and Z12 in both periods, becoming
more competitive due to weighing both periods equally and receiving increasing expected utilities
U1,U11,U12. As β2 decreases below β2 = 0.80, Player 1 reaches its budget constraint, which constricts
its Period 1 effort Z11 = R11/b11 = 1, causing a transition from Solution 1 to Solution 3.

5. Discussion

Table 2 presents the key findings from Section 4, including the three situations where Player 1
stockpiles in Panels e,e’, g,g’, and p,p’.
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Table 2. Key findings from Section 4, including the three situations where Player 1 stockpiles in Panels
e,e’, g,g’, and p,p’.

Panel Parameter(s) Key Findings

a,a’ R11

As Player 1′s available resources R11 in Period 1 decrease, its efforts in both periods decrease, while Player 2′s
efforts in both periods are inverse U-shaped. Player 2 transitions from being inferior when Player 1 is

resourceful to being competitive when the players are equally matched and being superior when Player 1
lacks resources.

b,b’ a21

As Player 2′s unit effort cost a21 of defense in Period 1 increases, its efforts decrease, while Player 1′s efforts are
inverse U-shaped and resource-constrained. As a21 decreases, Player 2′s Period 1 effort increases, while its

Period 2 effort is inverse U-shaped, and Player 1′s efforts decrease.

c,c’ a21 = a22
As Player 2′s unit defense costs a21 = a22 in both periods increase (decrease), Player 2 becomes more

disadvantaged (advantaged) than when only its unit effort cost a21 of defense in Period 1 increases (decreases).

d,d’ a22

If Player 2 can choose, it prefers being disadvantaged in Period 2 with high unit effort cost a22, when a less
valuable asset is at stake, rather than being disadvantaged in the more important Period 1 with high unit effort
cost a21. Similarly, Player 2 prefers being advantaged in the more important Period 1 with low unit effort cost

a21, rather than being advantaged in Period 2 with high a22.

e,e’ b11

Player 1 may stockpile when its unit effort cost b11 of developing zero-day capabilities in Period 1 decreases,
through three phases, below that of Period 2. First, Player 1 stockpiles as permitted by the budget and cuts

back on the Period 2 effort. Second, Player 1 utilizes its entire budget in Period 1 without stockpiling, to
exploit its advantage competitively over Player 2. Third, Player 1 eventually does not need to utilize its entire
budget, attacks optimally in Period 1, and stockpiles sufficiently in Period 1 to deter Player 2 from defending

in Period 2.

f,f’ b11 = b12

As Player 1′s unit effort costs b11 = b12 of developing zero-day capabilities increase equally in both periods,
Player 1 does not stockpile and becomes more disadvantaged than when only one unit effort cost increases.

As b11 = b12 decrease, Player 1 becomes more advantaged than when only one unit effort cost decreases.

g,g’ b12

As Player 1′s unit effort cost b12 of developing zero-day capabilities in Period 2 increases above that of Period
1, Player 1 stockpiles more to exploit the advantage of the cheaper unit effort cost in Period 1, decreases the
efforts in both periods, and accepts negative expected utility in Period 1 to ensure higher expected utility in
Period 2. This continues until Player 1 can no longer afford to exert effort in Period 2. Player 1 instead focuses

on Period 1 and stockpiles optimally for Period 2, as permitted by the budget constraint.

h,h’ V1

As Player 1′s valuation V1 of Player 2′s asset increases, Player 1 exerts higher efforts and eventually becomes
resource-constrained, while Player 2 exerts lower efforts. As V1 decreases, Player 1 exerts lower efforts and

Player 2′s efforts are inverse U-shaped.

i,i’ V2

As Player 2′s valuation V2 of its own asset increases, Player 2 exerts concavely increasing Period 1 defense
effort and inverse U-shaped Period 2 effort, while Player 1′s efforts decrease. As V2 decreases, Player 2′s

efforts decrease, while Player 1′s efforts are inverse U-shaped and resource-constrained.

j,j’ g1

As Player 1′s growth factor g1 of asset V1 from Period 1 to Period 2 increases, Player 1′s efforts increase,
subject to the resource constraint, while Player 2′s efforts decrease. As V1 decreases, Player 1′s efforts decrease

overall, while Player 2′s efforts are inverse U-shaped.

k,k’ g2

As Player 2′s growth factor g2 of asset V2 from Period 1 to Period 2 increases, Player 2′s Period 1 effort
increases, its Period 2 effort is inverse U-shaped, and Player 1′s efforts decrease. As V2 decreases, Player 2′s

efforts decrease overall, while Player 1′s efforts are inverse U-shaped and resource-constrained.

l,l’ W1
As Player 1′s valuation W1 of Player 2′s asset, acquired in Period 2, increases, Player 1′s efforts increase,

subject to the budget constraint, while Player 2′s efforts decrease.

m,m’ W2
As Player 2′s valuation W2 of its own asset acquired in Period 2 increases, Player 2′s efforts increase concavely,

while Player 1′s efforts decrease convexly.

n,n’ v
As the contest intensity v in Period 1 increases, both players’ Period 1 efforts increase due to more fierce

competition, until Player 1 reaches its budget constraint, after which Player 2 benefits. As v decreases, both
players’ Period 1 efforts decrease, causing higher expected utilities.

o,o’ w As the contest intensity w in Period 2 increases, both players’ efforts in both periods increase until the fiercer
competition causes zero expected utilities to both players, assuming they are equally matched.

p,p’ δ1

As Player 1′s zero-day appreciation factor δ1 of stockpiled zero-day exploits from Period 1 to Period 2
increases above one, Player 1 immediately utilizes its entire Period 1 budget to attack and stockpile, cutting
back on its Period 2 attack. This continues until Player 1′s stockpiling is so large that the Period 2 attack is no
longer cost effective. Thereafter, Player 1 decreases its stockpiling (due to its appreciation) and increases its

Period 1 attack, while Player 2 decreases its defense in both periods.

q,q’ β1

As Player 1′s time discount factor β1 decreases, so that Player 1 assigns less weight to the future Period 2,
Player 1′s efforts decrease, causing lower expected utilities, while Player 2′s efforts increase overall, causing

higher expected utilities.

r,r’ β2

As Player 2′s time discount factor β2 decreases, so that Player 2 assigns less weight to the future Period 2,
Player 2′s efforts decrease, causing lower expected utilities, while Player 1’s efforts increase, subject to the

budget constraint, causing higher expected utilities.

6. Conclusions

The article presents a two-player two-period game between players producing zero-day exploits
for immediate deployment in Period 1 or stockpiles for future deployment in Period 2. In Period 2,
Player 1 produces zero-day exploits for immediate deployment, supplemented by stockpiled zero-day
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exploits from Period 1. Player 2 defends its asset against the attack in both periods. The analysis
implies 11 solutions, where Player 1 may or may not stockpile, may or may not utilize its entire budget,
may or may not attack in Period 2, and may or may not deter Player 2 from defending in Period 2.
Relative to a benchmark solution with no stockpiling, 18 parameter values are altered to understand
the nature of the zero-day phenomenon over two periods. Both players strike balances between how
to exert efforts over the two periods, while Player 1 additionally decides whether to stockpile.

Player 1 may stockpile in three situations. First, as Player 1′s unit effort cost of developing
zero-day capabilities in Period 1 decreases below that of Period 2, it may exploit the Period 1 advantage
for stockpiling and deployment in Period 2. Second, when Player 1′s unit effort cost of developing
zero-day capabilities in Period 2 increases above that of Period 1, it may similarly exploit the Period 1
advantage for stockpiling, potentially even accepting negative expected utility in Period 1 in order
to benefit from subsequent deployment in Period 2. Third, when Player 1′s zero-day appreciation
factor of stockpiled zero-day exploits from Period 1 to Period 2 increases above one, it stockpiles for
utilization in Period 2 until no additional Period 2 attack is required.

When the contest intensity in Period 1 increases, the players compete more fiercely with each
other in Period 1, receiving decreasing expected utilities, until Player 1 reaches its budget constraint.
Thereafter, Player 2 competes more fiercely, and both players receive negative Period 1 expected
utilities. This continues until Player 1 receives negative expected utility over both periods, causing it to
withdraw, while Player 2 keeps its asset. When the contest intensity in Period 2 increases, all efforts
increase until both players receive zero expected utilities, assuming that they are equally advantaged.

If a player’s time discount factor decreases, the player exerts lower efforts in both periods and
receives lower expected utilities except in Period 1. The other player exerts higher efforts overall.
The model confirms many intuitive results. For example, a player exerts more effort if it is cheaper,
if it values the asset more, if the asset has a higher growth factor, and if the asset added in Period 2
is more valuable. If a player’s unit effort costs increase (decrease) equally as much in both periods,
the player becomes more disadvantaged (advantaged) than if the unit effort cost in only one period
increases (decreases). The phenomenon of inversely U-shaped efforts is documented extensively.
Typically, a player competes most fiercely when equally advantaged compared with the other player
and decreases its efforts due to cost-effectiveness when too advantaged (due to superiority) or too
disadvantaged (due to inferiority).

Future research should include more players, outside interference from governments and
nongovernment bodies, regulation, and supervision and account for technological developments of
the various aspects of zero-day exploits. The parameter values should be estimated by considering
zero-day attacks that have occurred. Empirical support should be provided from contemporary and
historical records. More complexity and more than two time periods may also be incorporated.
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Nomenclature

Parameters
R11 Player 1′s cyber resources in Period 1, R11 ≥ 0
a2 j Player 2′s unit effort cost of defense in Period j, j = 1, 2, a2 j ≥ 0
b1 j Player 1′s unit effort cost of developing zero-day capabilities in Period j, j = 1, 2, b1 j ≥ 0
Vi Player i’s valuation of Player 2′s asset, Vi ≥ 0
gi Growth factor of asset Vi from Period 1 to Period 2, gi ≥ 0
Wi Player i’s valuation of Player 2′s asset acquired in Period 2, Wi ≥ 0
v Contest intensity in Period 1, v ≥ 0
w Contest intensity in Period 2, w ≥ 0
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δ1
Player 1′s zero-day appreciation factor of stockpiled zero-day exploits S1 from Period 1 to
Period 2, δ1 ≥ 0

βi Player i’s time discount factor, 0 ≤ βi ≤ 1
Strategic Choice Variables
Z11 Player 1′s effort to develop zero-day capabilities in Period 1, Z11 ≥ 0
D21 Player 2′s defense effort in Period 1, D21 ≥ 0
Z12 Player 1′s effort to develop zero-day capabilities in Period 2, Z12 ≥ 0
D22 Player 2′s defense effort in Period 2, D22 ≥ 0
Dependent Variables
S1 Player 1′s stockpiling of zero-day exploits in Period 1 for use in Period 2, S1 ≥ 0
pij Player i’s expected contest success in Period j, i, j = 1, 2, 0 ≤ pij ≤ 1
Uij Player i’s expected utility in Period j, i, j = 1, 2
Ui Player i’s expected utility over both time periods, i = 1, 2
R11b = b11Z11 + b11S1 ≤ R11 The actual amount of resources used by Player 1 in Period 1
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ABSTRACT

The	article	analyzes	how	conventionalists,	pioneers	and	criminals	choose	between	a	national	
currency	(e.g.	a	central	bank	digital	currency)	and	a	global	currency	(e.g.	a	cryptocurrency	such	
as	Bitcoin)	that	both	have	specific	characteristics	in	an	economy.	Conventionalists	favor	what	is	
traditional	and	historically	common.	They	tend	to	prefer	the	national	currency.	Pioneers	(early	
adopters)	tend	to	break	away	from	tradition,	and	criminals	prefer	not	to	get	caught.	They	both	tend	
to	prefer	the	global	currency.	Each	player	has	a	Cobb-Douglas	utility	with	one	output	elasticity	
for	each	of	the	two	currencies,	comprised	of	backing,	convenience,	confidentiality,	transaction	
efficiency,	financial	 stability,	and	security.	The	 replicator	equation	 is	used	 to	 illustrate	 the	
evolution	of	the	fractions	of	the	three	kinds	of	players	through	time,	and	how	they	choose	among	
the	two	currencies.	Each	player’s	expected	utility	is	inverse	U-shaped	in	the	volume	fraction	
of	transactions	in	each	currency,	skewed	towards	the	national	currency	for	conventionalists,	
and	towards	the	global	currency	for	pioneers	and	criminals.	Conventionalists	on	the	one	hand	
typically	compete	against	pioneers	and	criminals	on	the	other	hand.	Fifteen	parameter	values	are	
altered	to	illustrate	sensitivity.	For	parameter	values	where	conventionalists	go	extinct,	pioneers	
and	criminals	compete	directly	with	each	other.	Players	choose	volume	fractions	of	each	currency	
and	which	kind	of	player	to	be.	Conventionalists	go	extinct	when	criminals	gain	more	from	
criminal	behavior,	and	when	the	parameter	values	in	the	conventionalists’	expected	utility	are	
unfavorable,	causing	competition	between	pioneers	and	criminals.
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1. INTRODUCTION

1.1. Background

This	 article	 considers	 a	 national	 currency	 operational	 within	 a	 country,	 and	 a	 global	
currency	operational	within	the	same	country	and	also	outside	the	country.	We	do	not	model	the	
characteristics	of	more	than	one	country,	but	do	model	the	characteristics	of	the	global	currency	
assumed	operational	beyond	the	country	under	analysis.	We	require	the	two	currencies	to	operate	
as	media	of	exchange	(means	of	payment).	We	do	not	specify	whether	the	two	currencies	are	
non-digital	or	digital,	paper	currencies	combined	with	physical	coins,	etc.	The	comparison	of	
a	national	currency	and	a	global	currency	has	become	more	relevant	with	the	emergence	of	digital	
currencies.	At	the	time	of	writing	this	article	most	countries	still	allow	paper	currencies.	For	
some	countries	most	transactions	are	digital,	conducted	e.g.	through	debit	and	credit	cards,	
electronic	funds	transfers,	etc.	We	expect	currencies	to	become	increasingly	digital	in	the	future,	
to	transform	the	financial	system	in	ways	that	are	still	unclear,	but	with	more	competitors.	Most	
central	banks	are	in	the	process	of	launching	CBDCs	(central	bank	digital	currencies),	e.g.	the	
People’s	Bank	of	China,	the	European	Central	Bank,	the	Bank	of	England,	and	the	US	Federal	
Reserve.	The	transformation	is	partly	impacted	by	the	emergence	of	blockchain	technology	and	
the	cryptocurrency	Bitcoin,	with	a	genesis	block	mined2	on	January	3,	2009	at	18:15:05	UTC.	
Bitcoin	is	increasingly	considered	to	have	value	(Kelleher,	2021).	On	November	22,	2021,	
14,641	cryptocurrencies	contribute	to	a	marketcap	of	$2.5	trillion.	Among	these,	1,039	are	coins	
(not	tokens)	which	are	our	main	interest	in	this	article	(coinmarket.com).

When	the	global	currency	is	conceptualized	as	a	cryptocurrency	such	as	Bitcoin,	which	
allows	5–7	 transactions	per	 second,	we	account	 for	 the	presence	of	Layer	2	 solutions	 for	
scaling	such	as	the	lightning	network	where	transactions	are	faster,	less	costly	and	more	readily	
confirmed	(Frankenfield,	2021).3	The	lightning	network	introduces	off-ledger	transactions,	and	
disintermediates	central	institutions	such	as	banks.	The	off-ledger	transactions	are	updated	on	the	
main	blockchain	on	the	base	Layer	1	only	when	two	parties	open	and	close	a	payment	channel	
on	the	lightning	network.	Two	examples	of	Bitcoin	payments	on	the	lightning	network	are	the	
El	Salvador	Chivo	wallet,	which	on	October	16,	2021	recorded	24,076	remittance	requests,	
which	added	up	to	$3,069,761.05	in	one	day	(Sarkar,	2021),	and	Twitter	tipping	applying	various	
third	party	operators	such	as	the	Strike	Bitcoin	lightning	wallet	service	(Rodriguez,	2021).	
El	Salvador’s	acceptance	of	Bitcoin	as	legal	tender,	and	Tesla’s	on-and-off	acceptance	of	Bitcoin	
for	car	payments	(Zainab	Hussain	&	Balu,	2021)	means	that	goods	and	services	in	principle	can	
be	priced	in	Bitcoin.	Hence,	to	the	extent	the	global	currency	is	a	cryptocurrency	combined	with	
a	Layer	2	solution,	the	global	currency	functions	as	a	medium	of	exchange	and	a	unit	of	account.	
It	may	also	function	as	a	store	of	value	and	a	standard	of	deferred	payments,	which	are	beyond	
the	scope	of	this	article.

A	plethora	of	different	kinds	of	digital	currencies	emerge,	tentatively	classified	into	CBDCs,	
cryptocurrencies,	digital	currencies	issued	by	private	companies	such	as	Meta’s	Diem,	which	is	
a	stablecoin,	digital	currencies	issued	by	political	jurisdictions	such	as	Miami’s	MiamiCoin,	etc.	
As	digital	currencies	become	more	common,	these	can	be	expected	to	compete	with	each	other	
and	with	non-digital	currencies.	Hence	it	becomes	relevant	to	assess	which	factors	affect	the	
market	share	of	each	currency	over	time,	the	implications	of	different	market	shares,	and	which	

2	 Mining	is	how	new	Bitcoins	enter	circulation	and	how	transactions	are	confirmed	by	the	network	on	the	blockchain	ledger.	Bitcoins	are	
awarded	through	mining	to	the	first	computer	to	solve	mathematical	problems	to	verify	blocks	of	transactions,	applying	hardware	and	energy	
known	as	“proof	of	work”	(Hong,	2021).
3	 The	Bitcoin	base	Layer	1	requires	“proof	of	work”	to	ensure	decentralization,	which	costs	energy.	See	Willms	(2021)	regarding	energy	
consumption.	Bitcoin	mining	enables	locating	stranded	energy	sources,	favorable	technology,	politically	favorable	jurisdictions,	and	financially	
favorable	circumstances;	grows	its	network	optimally,	and	operates	optimally	through	space	and	time.	Layer	2	usually	does	not	require	proof,	
which	causes	more	centralization.
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kinds	of	users	apply	the	various	currencies.	Each	currency‘s	market	share	may	depend	on	various	
factors	such	as	backing,	convenience,	confidentiality,	transaction	efficiency,	financial	stability,	
and	security,	as	perceived	by	users,	contributors,	regulators,	governments,	etc.,	and	as	elaborated	
upon	in	this	article.

Competition	between	currencies	implies	different	market	shares	for	the	various	currencies.	
The	implications	of	changes	in	the	shares	of	the	various	currencies,	from	an	economic	point	
of	view,	are	that	the	various	actors	involved	in	the	various	currencies	benefit	differently	and	
incur	different	costs	depending	on	the	success	of	each	currency.	Examples	of	actors	are	currency	
producers,	users,	borrowers,	lenders,	stakers,	and	miners.

For	example,	central	banks	and	their	associated	governments	can	expect	to	benefit	from	the	
success	of	CBDCs.	Users	may	benefit	if	the	CBDC	is	stable	with	low	transaction	costs,	but	may	
experience	a	cost	if	they	value	privacy	and	all	their	transactions	get	centrally	recorded.	The	success	
of	a	cryptocurrency	such	as	Bitcoin	can	be	expected	to	benefit	libertarians	and	actors	preferring	
decentralized	currencies	less	controlled	by	central	actors,	and	not	to	benefit	middlemen	such	as	
banks	and	others	enabling,	facilitating	and	negotiating	transactions.	The	success	of	Meta’s	Diem	
can	be	expected	to	benefit	Meta’s	stakeholders	and	users.	The	success	of	Miami’s	MiamiCoin	can	
be	expected	to	benefit	Miami.

1.2. Contribution

This	article	considers	an	economy	with	a	national	currency	and	a	global	currency.	The	national	
currency	offers	the	most	common	usage,	such	as	buying	goods,	paying	taxes,	etc.	A	global	
currency	may	offer	more	limited	usage,	e.g.	for	buying	goods	and	paying	taxes,	but	may	offer	
other	opportunities	such	as	tax	evasion,	user	autonomy,	etc.	Three	kinds	of	players	are	assumed,	
i.e.	conventionalists,	pioneers,	and	criminals.	These	are	believed,	first,	to	represent	all	societal	
players	and,	second,	to	have	different	preferences	for	the	national	currency	and	a	global	currency.	
Conventionalists	favor	what	is	traditional	and	historically	common,	which	is	often	the	national	
currency.	Pioneers	(early	adopters)	tend	to	depart	from	tradition	and	search	for	new	ways	of	
transacting,	which	may	involve	a	global	currency.	Criminals	search	for	currencies	ensuring	that	
they	do	not	get	detected	and	caught,	which	may	also	involve	a	global	currency.	Conventionalists	
typically	compete	against	pioneers	and	criminals.	When	conditions	for	conventionalists	are	
unfavorable	causing	their	extinction,	pioneers	and	criminals	compete	more	directly	with	each	
other.	All	the	three	kinds	of	players	can	in	principle	choose	some	degree	of	criminal	behavior,	
but	criminals	are	assumed	to	have	preferences	explicitly	focused	on	criminal	behavior.	The	three	
groups	are	assumed	to	be	mutually	exclusive	and	jointly	exhaustive	to	represent	all	possible	kinds	
of	market	participants.	If	a	player	is	empirically	determined	to	fall	somewhere	between	two	kinds	
of	players,	a	choice	has	to	be	made	one	way	or	the	other.	A	player	can	over	time	choose	to	change	
from	being	of	one	kind	to	being	of	another	kind.

Each	player	has	a	Cobb-Douglas	utility	with	one	output	elasticity	for	each	of	the	two	currencies,	
split	into	backing,	convenience,	confidentiality,	transaction	efficiency,	financial	stability,	and	
security,	as	perceived	by	the	player.	Factors	such	as	usability	and	technological	potential	are	
assumed	present	in	most	of	these	six	subelasticities,	perhaps	especially	in	convenience	and	
transaction	efficiency.4	These	six	subelasticities	are	assumed	to	comprise	the	main	concerns	
relevant	for	each	player’s	preferences	regarding	which	of	two	currencies	to	choose.	Each	player	
makes	two	strategic	simultaneous	choices	to	maximize	its	expected	utility	which	is	shown	to	be	
inverse	U-shaped	in	the	volume	fraction	of	transactions	in	each	currency.	The	first	choice	is	the	
volume	fraction	of	its	transactions	in	each	currency.	This	choice	depends	on	what	kind	of	player	
the	player	is,	but	does	not	depend	on	how	many	players	exist	of	this	player’s	kind,	and	hence	does	

4	 A	factor	such	as	investment	profitability	is	more	relevant	for	the	function	of	a	cryptocurrency	as	a	store	of	value	rather	than	a	medium	of	
exchange	and	a	unit	of	account.
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not	depend	on	time.	Each	player’s	second	choice	is	which	kind	of	player	it	should	be	at	each	point	
in	time.	Hence	this	second	choice	depends	on	time,	through	replicator	dynamics.

Applying	replicator	dynamics,	the	research	questions	are	how	the	volume	fractions	of	the	two	
currencies	and	the	fractions	of	the	three	kinds	of	players	evolve	through	time,	and	are	sensitive	
to	various	characteristics.	A	further	research	question	is	to	determine	society’s	expected	utility	to	
account	for	welfare	at	the	societal	level.	Scenarios	are	illustrated	where	the	output	elasticities	and	
other	characteristics	cause	some	of	the	three	kinds	of	players	to	become	dominant	or	inferior	over	
time.	For	the	stationary	solution	after	sufficiently	much	time	has	elapsed,	sensitivity	analysis	is	
conducted	to	show	how	the	fractions	of	the	three	kinds	of	players	depend	on	variation	in	parameter	
values	relative	to	a	benchmark.	Applying	credible	specific	functional	forms,	an	exact	analytical	
solution	is	produced	for	the	fraction	of	each	player’s	transactions	in	the	national	currency	,	and	
replicator	dynamics	becomes	applicable	to	determine	the	fractions	of	how	the	three	kinds	of	
players	evolve.5

The	world	population	is	7.9	billion,	of	which	74%	is	above	15	years	old	(Szmigiera,	2021)	
and	66.8%	is	above	20	years	old	(Ang,	2021).	Assume	that	69.7%	is	above	18	years	old,	i.e.	
5.5	billion.	The	World	Bank	(2017)	estimates	that	1.7	billion	adults	lack	a	bank	account,	which	
is	subtracted	from	5.5	billion	to	give	3.8	billion	adults	with	a	bank	account.	Howarth	(2021)	
estimates	300	million	cryptocurrency	users	on	October	25,	2021,	i.e.	5.5%	of	adults	and	7.9%	
of	adults	with	a	bank	account.	The	authors	expect	these	percentages	to	increase	in	the	future.	
Without	knowing	which	digital	currencies	may	succeed	as	global	currencies,	the	authors	believe	
that	players	may	increasingly	sort	themselves	into	conventionalists,	pioneers,	and	criminals.

1.3. Literature

Limited	literature	exists	on	this	topic.	The	following	literature	review	is	intended	to	cover	
and	extend	beyond	this	article’s	topic,	usefully	divided	into	four	groups	as	an	overview,	i.e.	
competition	between	fiat	currencies	and	cryptocurrencies,	CBDC	and	cryptocurrencies,	the	
cryptocurrency	market,	and	game	theoretic	analyses.

1.3.1. Competition between fiat currencies and cryptocurrencies

The	 following	 articles	 that	 have	 been	 identified	 are	 the	 closest	 relative	 to	 the	 current	
article	and	somehow	consider	competition	between	fiat	currencies	and	cryptocurrencies,	with	
various	implications.	Schilling	and	Uhlig	(2019)	enable	agents	to	choose	between	two	kinds	of	
currencies,	i.e.	a	cryptocurrency	and	a	fiat	currency.	They	explore	how	asymmetry	in	transaction	
costs	and	exchange	fees	decreases	currency	substitution.	This	exploration	corresponds	to	the	
generally	different	transaction	efficiencies	considered	for	the	national	and	global	currencies	in	
the	current	article.	For	payments	of	certain	goods,	cryptocurrencies	are	more	suitable	or	cost	less	
than	fiat	money,	due	to	censorship	resistance,	tax	evasion	and	anonymity.	However,	exchanging	
cryptocurrencies	to	fiat	money	is	costly,	and	some	goods	are	more	easily	purchased	using	fiat	
money.	The	condition	under	which	agents	are	indifferent	between	purchasing	with	Bitcoin	or	
US	dollars	depends	on	the	amount	of	the	value-added	tax	and	transaction	fees	to	miners.	These	
assessments	correspond	to	some	extent	to	different	backing,	convenience,	confidentiality,	financial	
stability,	and	security	for	the	national	and	global	currencies	in	the	current	article.

Fernández-Villaverde	and	Sanches	(2019)	build	a	model	of	competition	among	privately	
issued	fiat	currencies.	Based	on	the	Lagos-Wright	environment,	they	identify	a	price	stable	
equilibrium	for	multiple	currencies,	comparable	to	two	coexisting	currencies	in	the	current	article,	

5	 In	return	for	sacrificing	generality,	a	successful	specification	through	functional	forms	demonstrates	internal	consistency	and	is	illuminating.	
For	example,	the	Cobb-Douglas	function	has	enhanced	our	understanding	of	consumer	preferences.	Functional	forms	facilitate	determining	ranges	
of	parameter	values	within	which	solutions	are	possible.
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and	various	less	desirable	equilibria.	In	the	current	article	society’s	expected	utility	is	a	weighted	
sum,	by	the	fraction	of	players	of	each	kind,	of	each	player’s	expected	utility.

Almosova	(2018)	extends	her	model	by	assuming	that	the	circulation	of	private	currencies	
involves	 costs,	 i.e.	 verification	 of	 transactions,	 mining	 costs,	 etc.	 She	 points	 out	 that	
cryptocurrency	competition	will	not	cause	price	stability.	But	when	the	costs	of	private	currency	
circulation	are	sufficiently	low,	competition	will	impose	a	downward	pressure	on	the	inflation	of	
the	public	currency.

Rahman	(2018)	applies	the	Friedman	rule	to	investigate	the	implications	of	digital	and	fiat	
currency	competition	for	monetary	policy.	He	finds	that	a	monetary	equilibrium	with	a	purely	
private	arrangement	of	digital	currencies	cannot	deliver	a	socially	efficient	allocation.	Rahman’s	
(2018)	article	 is	 linked	to	 the	current	article,	which	considers	society’s	expected	utility	as	
a	weighted	sum	of	the	three	kinds	of	players’	expected	utilities.

Benigno,	Schilling,	and	Uhlig	(2019)	consider	a	two-country	economy	with	complete	markets,	
two	national	currencies	and	a	global	cryptocurrency.	They	propose	that	the	deviation	from	interest	
rate	equality	implies	the	risk	of	approaching	the	zero	lower	bound	or	the	abandonment	of	the	
national	currency,	which	they	call	Crypto-Enforced	Monetary	Policy	Synchronization	(CEMPS).	
Consequently,	the	impossibility	of	simultaneously	ensuring	a	fixed	exchange	rate,	free	capital	
flows	and	an	independent	monetary	policy	(the	classic	Impossible	Trinity)	becomes	even	less	
reconcilable.

Verdier	(2021)	examines	how	issuing	a	digital	currency	impacts	competition	in	the	deposit	
and	lending	markets.	She	assumes	that	a	digital	currency	can	be	issued	or	managed	by	a	central	
bank,	a	regulated	entity,	or	a	non-bank	operator,	and	that	a	digital	currency	issued	by	a	non-
bank	operator	does	not	enable	offering	loans	to	individuals.	This	assumption	gradually	seems	
ready	for	revision	as	decentralized	finance	increasingly	allows	loans,	e.g.	of	cryptocurrencies,	to	
individuals.	Verdier	(2021)	assumes	that	depositors	decide	how	much	money	to	store	in	a	bank	
account	or	in	a	digital	currency	account.	Thus,	issuing	a	digital	currency	generates	a	crowding-out	
effect	on	commercial	deposits.	The	author	concludes	that	the	lending	rate	of	banks	increases	when	
a	digital	currency	crowds	out	a	higher	amount	of	bank	deposits.

1.3.2. CBDCs and cryptocurrencies

The	following	articles	that	have	been	identified	are	the	closest	relative	to	the	current	article	and	
compare	CBDCs	and	cryptocurrencies,	where	we	interpret	CBDC	as	the	national	currency	and	
cryptocurrencies	as	the	global	currency.	Caginalp	and	Caginalp	(2019)	determine	Nash	equilibria	
for	how	players	divide	their	assets	between	a	home	currency	and	a	cryptocurrency,	similarly	to	
the	focus	in	the	current	article.	Additionally	they	assume	that	the	government	seizes	fractions	of	
the	players’	assets	with	certain	probabilities.

Blakstad	and	Allen	(2018)	review	opportunities	for	central	banks	and	individuals	presented	by	
cryptocurrencies	for	central	banks	and	individuals,	together	with	the	risks.	They	assess	possible	
impacts	on	financial	systems	and	structures	which	may	challenge	CBDC	issuance.

Masciandaro	(2018)	proposes	a	function	of	a	store	of	 information	for	cryptocurrencies	
and	central	bank	digital	currencies	as	new	media	of	payments	emerge	over	the	next	years,	
supplementing	a	medium	of	exchange	and	a	store	of	value.	Thus,	the	evolution	of	the	different	
media	of	payments	may	depend	on	individual	preferences.

Benigno	(2021)	points	out	that	the	presence	of	multiple	currencies	can	jeopardize	the	primary	
function	of	central	banking.	In	addition,	in	a	world	of	multiple	competing	currencies	issued	by	
profit-maximizing	agents,	the	nominal	interest	rate	and	inflation	are	both	determined	by	structural	
factors,	i.e.	the	intertemporal	discount	factor,	the	exit	rate	and	the	fixed	cost	of	entry,	and	are	thus	
not	subject	to	manipulation.

Asimakopoulos,	Lorusso,	and	Ravazzolo	(2019)	present	a	Dynamic	Stochastic	General	
Equilibrium	(DSGE)	model	to	evaluate	the	economic	repercussions	of	cryptocurrencies.	They	
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estimate	the	model	with	Bayesian	techniques.	They	document	a	sturdy	substitution	effect	between	
the	real	balances	of	government	currency	and	cryptocurrencies,	in	response	to	technology,	
preferences	and	monetary	policy	shocks.	Similarly,	the	current	article	shows	how	the	three	kinds	
of	players	strike	balances	between	the	two	currencies.

1.3.3. The cryptocurrency market

The	following	articles	analyze	multiple	currencies	in	the	cryptocurrency	market,	which	relates	
to	the	current	article	since	the	two	currencies	may	also	be	two	cryptocurrencies	which	evolve	
over	time	with	fluctuating	volume	fractions	of	transactions.	ElBahrawy,	Alessandretti,	Kandler,	
Pastor-Satorras,	and	Baronchelli	(2017)	assess	the	evolutionary	dynamics	of	the	cryptocurrency	
market.	They	illustrate	the	fluctuating	market	shares	of	1,469	cryptocurrencies	between	April	
2013	and	May	2017,	akin	to	fluctuations.

Caporale,	Gil-Alana,	and	Plastun	(2018)	implement	a	rescaled	range	analysis	and	a	fractional	
integration	method	 to	analyze	 the	persistence	 in	 the	cryptocurrency	market.	They	 identify	
a	positive	correlation	between	cryptocurrencies’	past	and	future	values.

ElBahrawy,	Alessandretti,	 and	Baronchelli	 (2019)	 investigate	 the	 relationship	between	
online	attention	to	digital	currencies	on	Wikipedia	and	market	dynamics	across	multiple	digital	
currencies.

White	(2014)	points	out,	based	on	empirical	observation,	that	as	a	first-mover	monopolist	in	
the	market	for	cryptocurrencies,	Bitcoin	is	surrounded	by	effective	competitors.	The	introduction	
of	various	altcoins,	if	successful,	decreases	Bitcoin’s	market	share.	The	current	article	similarly	
shows	how	the	market	share	of	two	currencies	may	change	over	time.

Sapkota	 and	 Grobys	 (2021)	 analyze	 the	 top	 ten	 cryptocurrencies	 ranked	 by	 market	
capitalization	in	2016–2018.	They	find	that	the	submarket	equilibria	of	privacy	coins	and	the	
submarket	equilibria	of	non-privacy	coins	are	unrelated.	This	contrasts	with	the	current	article	
where	players	strike	balances	between	which	currencies	to	choose,	and	what	kind	of	player	to	be.

Milunovich	(2018)	applies	Granger	causality	tests	to	five	popular	cryptocurrencies	and	
six	major	asset	classes.	He	estimates	weak	connectedness	between	the	two	groups	and	strong	
connectedness	within	each	group.	A	few	exceptions	exist.	Out	of	80	cross-pairs,	six	statistically	
significant	relations	are	shown	from	non-digital	to	digital	assets	(e.g.	from	Monero	to	US$),	and	
two	statistically	significant	relations	are	shown	from	digital	to	non-digital	assets	(e.g.	from	the	
SPGSCI	commodity	index	to	Litecoin).

Gandal	 and	Halaburda	 (2016)	 explore	 how	network	 effects	 impact	 competition	 in	 the	
cryptocurrency	market.	They	identify	no	winner-take-all	effects	in	the	early	stages,	but	strong	
network	effects	and	winner-take-all	dynamics	more	recently.	Similarly,	the	current	article	shows	
how	two	currencies	and	three	kinds	of	players	may	coexist,	and	also	that	one	kind	of	players,	e.g.	
conventionalists,	may	go	extinct.

1.3.4. Game theoretic analyses

The	following	articles	are	game	theoretic	analyses,	which	are	linked	to	this	group	since	the	
three	kinds	of	players,	while	choosing	among	two	currencies,	interact	with	each	other	through	
time	modeled	by	game	theory	and	replicator	dynamics.	Imhof	and	Nowak	(2006)	propose	that	
a	frequency	dependent,	stochastic	Wright-Fisher	process	can	be	used	to	describe	the	evolutionary	
game	dynamics	in	finite	populations	to	determine	which	of	two	strategies	survives.	This	article	
similarly	determines	how	the	fractions	of	the	three	kinds	of	players,	and	the	volume	fraction	of	
transactions	in	each	currency,	evolve	over	time.

Lewenberg,	Bachrach,	Sompolinsky,	Zohar,	and	Rosenschein	(2015)	develop	a	cooperative	
game	theoretic	model	to	explore	the	dynamics	of	pooled	Bitcoin	mining	and	rewards.	They	show	
that	it	is	difficult	or	even	impossible	to	distribute	rewards	in	a	stable	way.	Players	are	always	
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incentivized	to	switch	between	pools.	This	is	partly	linked	to	the	current	article	where	players	
switch	between	which	of	three	kinds	of	players	to	be,	and	which	volume	fraction	of	transactions	
in	each	currency	to	choose.

1.4. Article Organization

Section	2	presents	the	model.	Section	3	analyzes	the	model.	Section	4	explains	the	implications	
of	the	results.	Section	5	concludes.

2. THE MODEL

2.1. Nomenclature

Parameters

j Currency	of	kind j,	j = n, g
n National	currency
g Global	currency
i	 Player	of	kind	i,	i = x, y,	z
x	 Conventionalist	player
y	 Pioneer	player
z	 Criminal	player
bij	 Output	subelasticity	for	backing	of	currency	j	at	time	t	as	perceived	by	player	i,	bij	≥	0
cij	 Output	subelasticity	for	convenience	of	currency	j	at	time	t	as	perceived	by	player	i,	cij	≥	0
dij	 Output	subelasticity	for	confidentiality	of	currency	j	at	time	t	as	perceived	by	player	i,	dij	≥	0
eij	 Output	subelasticity	for	transactional	efficiency	for	currency	j	at	time	t	as	perceived	by		

player	i,	eij	≥	0
fij	 Output	subelasticity	for	financial	stability	of	currency	j	at	time	t	as	perceived	by	player	i,	fij	≥	0
sij	 Output	subelasticity	for	security	of	currency	j	at	time	t	as	perceived	by	player	i,	sij	≥	0
wi	 Fraction	of	player	i’s	transactions	which	is	criminal,	0	≤	wi	≤	1
ki	 Scaling	exponent	for	what	player	i	retains	after	criminal	behavior,	ki	≥	0
ωi	 Probability	that	the	government	detects	and	prosecutes	player	i’s	criminal	behavior,	0	≤	ωi	≤	1
mi	 Scaling	exponent	for	how	player	i	gets	increased/decreased	expected	utility,	-∞	≤	mi	≤	∞
μi	 Scaling	proportionality	parameter	for	how	player	i	gets	increased	expected	utility,	μi	≥	0
αi	 Parameter	for	the	rapidity	of	change	or	sensitivity	of	the	replicator	equation,	αi	>	0
t	 Time,	t	≥	0

Free choice variables

pi	 Volume	fraction	of	player	i’s	transactions	in	currency	n,	0	≤	pi	≤	1,	i = x, y,	z
1–pi	 Volume	fraction	of	player	i’s	transactions	in	currency	g,	0	≤	1	–	pi	≤	1
p	 Volume	fraction	of	all	players’	transactions	in	currency	n,	0	≤	p	≤	1
1–p	 Volume	fraction	of	all	players’	transactions	in	currency	g,	0	≤	1	–	p	≤	1
qi	 Fraction	of	players	of	kind	i,	0	≤	qi	≤	1,	i	=	x,	y,	z,	qx	+	qy	+	qz	=	1
qx	 Fraction	of	conventionalists
qy	 Fraction	of	pioneers
qz	 Fraction	of	criminals,	qz	=	1	–	qx	–	qy

Dependent variables

Ui(pi,	qi)	 Player	i’s	expected	utility,	i	=	x,	y,	z
U	 Society’s	expected	utility
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2.2. Two Currencies n and g

Consider	an	economy	with	two	available	currencies.	The	first	currency	n	is	national	and	offers	
the	most	common	usage,	and	especially	legal	usage,	within	the	economy.	Examples	of	usage	are	
to	make	various	purchases	or	pay	taxes.	For	simplicity,	we	can	think	of	this	currency	as	a	CBDC	
(central	bank	digital	currency).	The	second	currency	g	is	a	global	currency	which	on	the	one	
hand	offers	more	limited	usage	(e.g.	cannot	be	used	for	all	kinds	of	purchases),	but	on	the	other	
hand	offers	other	opportunities,	e.g.	tax	evasion,	payment	on	the	black	market,	user	autonomy,	
discretion,	peer-to-peer	focus,	no	banking	fees,	low	transaction	fees.	For	simplicity,	we	can	think	
of	this	currency	as	a	cryptocurrency	such	as	Bitcoin	or	Monero,	a	privately	issued	currency	such	
as	Meta’s	Diem,	or	some	future	hypothetical	currency	operating	globally.

2.3. Three Kinds of Players x, y, z

Assume	three	kinds	of	players	which	we	can	think	of	as	households,	referred	to	as	player	i,	
i	=	x,	y,	z.	We	can	think	of	the	three	kinds	of	players	as	conventionalists,	pioneers	and	criminals,	
respectively.	Conventionalists	tend	to	do	what	is	traditional	and	historically	common,	and	tend	
to	prefer	the	national	currency	n	more	than	the	global	currency	g.	Pioneers	(early	adopters)	tend	
to	break	away	from	tradition	and	prefer	the	global	currency	g	more	than	the	national	currency	n.	
Criminals	prefer	not	to	get	caught	and	tend	to	prefer	the	global	currency	g	more	than	the	national	
currency	n	if	the	global	currency	g	offers	confidentiality	and	user	autonomy,	e.g.	through	a	privacy	
coin	such	as	Monero.	Assume	that	qi,	0	≤	qi	≤	1	is	the	fraction	of	players	of	kind	i.	We	assume	that	
qx	is	the	fraction	of	conventionalists,	that	qy	is	the	fraction	of	pioneers,	and	that	qz	=	1	–	qx	–	qy	
is	the	fraction	of	criminals.	As	time	progresses,	what	used	to	be	conventional	may	become	old-
fashioned,	and	what	pioneers	do	may	become	conventional.	Hence	qx	and	qy	may	change	over	
time.	All	players	of	the	same	kind	i	are	equivalent.	Player	i	(i.e.	player	of	kind	i)	conducts	a	volume	
fraction	pi,	0	≤	pi	≤	1	of	its	transactions	in	currency	n,	and	the	remaining	volume	fraction	1	–	pi	
of	its	transactions	in	currency	g,	as	shown	in	Figure	1	which	assumes	px	>	py	>	pz,	but	generally		
0	≤	pi	≤	1,	i	=	x,	y,	z.

Figure 1
Three	kinds	of	players.	Player	i	(i.e.	player	of	kind	i),	i	=	x,	y,	z,	conducts	a	volume	fraction	pi	of	its	transactions	
in	currency	n,	and	the	remaining	volume	fraction	1	–	pi	of	its	transactions	in	currency	g,	0	≤	qi	≤	1,	qx	+	qy	+	qz	=	1.	
The	illustration	assumes	px	>	py	>	pz,	but	generally	0	≤	pi	≤	1,	i = x,	y,	z.

Volume	fraction
1	–	px	of	currency	g

Volume	fraction
1	–	py	of	currency	g

Volume	fraction
1	–	pz	of	currency	g

Volume	fraction
px	of	currency	n

Volume	fraction
py	of	currency	n

Volume	fraction
pz	of	currency	n

Fraction	qx	of
players	of	kind	x

Fraction	qy	of
players	of	kind	y

Fraction	qz	of
players	of	kind	z



Guizhou Wang, Kjell Hausken • Journal of Banking and Financial Economics 2(16)2021, 104–133

DOI: 10.7172/2353-6845.jbfe.2021.2.6

112112

© 2021 Authors. This is an open access article distributed under the Creative Commons BY 4.0 license (https://creativecommons.org/licenses/by/4.0/)

2.4. Volume Fraction p of All Players’ Transactions in Currency n

The	volume	fraction	p	of	all	players’	transactions	in	currency	n	is	the	weighted	sum	of	
each	player	i’s	volume	fraction	in	currency	n,	weighted	by	the	fraction	of	each	kind	of	player	i,		
i	=	x,	y,	z,	i.e.

	 p p q
, ,
i i

i x y z

=
=

/ .	 (1)

2.5. Cobb-Douglas Utility With Two Output Elasticities

Assume	that	player	i	has	a	risk-neutral	Cobb-Douglas	utility	in	net	terms,	hereafter	referred	to	
as	utility,	described	by

	 U p p p1iCD i i
b c d e f s

i
b c d e f sin in in in in in ig ig ig ig ig ig= -+ + + + + + + + + +^ ^h h 	 (2)

with	one	output	elasticity	bin	+	cin	+	din	+	ein	+	fin	+	sin	for	the	national	currency	n,	and	one	
corresponding	output	elasticity	big	+	cig	+	dig	+	eig	+	fig	+	sig	for	the	global	currency	g.	Player	i’s	
Cobb-Douglas	utility	UiCD(pi)	in	(2)	is	multiplied	with	a	penalty	described	in	the	next	section	
2.6	if	player	i’s	criminal	behavior	is	detected	and	prosecuted	by	the	government,	and	multiplied	
with	the	impact	of	the	fractions	qx,	qy,	qz	of	the	three	kinds	of	players	in	the	subsequent	section	
2.7.	When	S	=	bin	+	cin	+	din	+	ein	+	fin	+	sin	+	big	+	cig	+	dig	+	eig	+	fig	+	sig	=	1,	S	>	1,	S	<	1,	
(2)	expresses	constant,	increasing,	and	decreasing	returns	to	scale,	respectively.	The	12	output	
subelasticities	aij,	aij	=	bij,	cij,	dij,	eij,	fij,	sij	in	(2),	for	currency	j,	j	=	n,	g,	at	time	t	as	perceived	by	
player	i,	i	=	x,	y,	z,	are	as	follows:

First,	bij expresses	how	currency	j	has	various	forms	of	backing	from	actors,	systems	or	
characteristics	that	users	of	currency	j	respect	and	trust,	as	perceived	by	player	i.	Examples	of	
backing	for	currency	j	are	central	banks	for	CBDCs,	and	various	decentralized	characteristics	
such	as	a	distributed	ledger	technology	for	cryptocurrencies.	The	variable	bij	is	not	objective,	
but	depends	on	player	i’s	subjective	judgment.	The	parameter	bij	expresses	the	weighted	average	
backing	of	currency	j	by	its	users,	i.e.	within	each	of	the	three	kinds	x,	y,	z	of	players.	For	example,	
legitimate	lawful	users	preferring	transparency	and	allegiance	to	a	certain	country,	may	back	
the	CBDC	(central	bank	digital	currency)	of	that	country,	which	may	be	currency	n,	whereas	
illegitimate	users	may	not	back	that	currency,	but	back	the	global	currency	g	instead.	Criminal	
users	may,	for	example,	back	a	privacy	cryptocurrency	such	as	Monero,	which	may	also	be	
backed	by	many	legitimate	users.	Currently,	after	the	gold	standard	collapse	(June	5,	1933	in	
the	US),	no	fiat	currency	is	backed	by	gold.	The	extent	to	which	a	player	backs	currency	j	may	
depend	on	a	variety	of	factors.	For	example,	a	central	bank	may	back	its	CBDC	in	the	hope	of	
obtaining	a	broader	tax	base,	reduced	tax	evasion,	a	backstop	to	the	private	sector	which	may	fail,	
and	enhanced	financial	inclusion.

Second,	cij	expresses	the	convenience	of	using	currency	j	as	perceived	by	player	i.	One	
example	of	convenience	is	ease	of	use,	e.g.	few	and	easily	comprehensible	operations	when	
purchasing	at	the	supermarket	or	online,	when	transferring	funds	nationally	or	globally,	or	when	
incurring	and	paying	back	a	loan.	Other	or	related	examples	are	how	electronic	wallets	operate,	
how	transfers	between	one’s	own	and	other	wallets	operate,	and	how	offline	transactions	are	
processed	when	offline	and	getting	back	online.	Furthermore,	for	some	digital	currencies	users	
may	not	need	to	open	a	bank	account	with	required	identifications,	but	may	instead	install	a	digital	
currency	wallet,	and	transact	and	pay	via	a	digital	currency	address.

Third,	dij	expresses	the	confidentiality	of	using	currency	j,	as	perceived	by	player	i,	which	
expresses	well-known	balances	to	be	struck	between	privacy,	availability	or	accessibility	for	
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oneself	and	various	other	players,	and	discrimination.	For	example,	privacy	cryptocurrencies	
such	as	Monero,	Dash,	and	Zcash6	offer	enhanced	privacy	for	users	since	transactions	are	harder	
to	track,	which	also	may	make	it	harder	to	rectify,	correct,	or	reverse	undesirable	transactions.	
For	example,	paying	ransom	money	in	Monero	may	preserve	the	anonymity	of	the	recipient	and	
the	provider,	but	may	make	it	harder	for	law	enforcement	to	reverse	or	prosecute	the	transaction.	
A	CBDC,	properly	designed,	may	offer	confidentiality	for	player	i	with	respect	to	many	other	
players	if	the	central	bank	can	be	trusted,	but	may	not	offer	confidentiality	for	player	i	if	the	
central	bank	cannot	be	trusted,	or	a	court	orders	the	confidentiality	to	be	broken.	The	output	
subelasticity	dij	thus	also	expresses	discrimination	regarding	in	what	sense	and	for	whom	and	
towards	whom	confidentiality	is	honored.

Fourth,	eij	 expresses	 the	 transaction	efficiency	of	 currency	 j,	 as	perceived	by	player	 i,	
operationalized	as	low	cost,	fast	speed,	affordability,	and	finality.	Fast	speed	refers	to	how	quickly	
the	transaction	is	executed,	which	for	cryptocurrencies	is	impacted	by	how	many	confirmations	
are	needed	for	execution	and	how	quickly	the	miners	can	mine	blocks.	Wire	transfers	have	
historically	had	a	certain	speed,	and	may	be	held	up	over	weekends.	Affordability	refers	to	a	fee	
or	cost	of	executing	the	transaction,	which	is	usually	positively	correlated	with	how	quickly	
the	transaction	is	executed.	Finality	refers	to	the	extent	to	which	the	transaction	is	final,	or	can	
somehow	be	reversed	or	negotiated.	Cryptocurrency	transactions	are	usually	irreversible,	which	
is	the	common	logic	of	smart	contracts	on	the	blockchain.	Non-cryptocurrency	transactions,	
exemplified	by	traditional	wire	transfers	are	usually	reversible,	e.g.	if	a	court	of	law	determines	
that	the	transaction	was	illegal.	Costs	of	transactions	have	historically	varied	substantially	across	
different	kinds	of	transactions.	Affordability	may	depend	on	size,	recipient,	sender,	whether	
the	transaction	is	recurring,	etc.	Costs	may	range	from	the	common	no	costs,	e.g.	for	grocery	
purchases,	to	high	costs	for	international	money	transfers.	Costs	of	transacting	cryptocurrencies	
have	usually	been	low,	and	often	beneficial	when	transacting	high	amounts,	with	variation	across	
different	cryptocurrencies.	Speed	of	transfers	also	vary.	At	the	time	of	writing,	the	speed	of	
CBDC	transactions	is	unknown.	For	Bitcoin	the	average	time	for	mining	one	block	is	10	minutes.	
For	two	confirmations,	the	transaction	may	take	20	minutes.	The	initiator	of	a	cryptocurrency	
transaction	is	usually	requested	to	specify	a	transaction	fee	(e.g.,	low,	medium,	high),	which	
impacts	how	quickly	it	gets	processed	by	the	miners.	For	Ethereum	the	average	time	for	mining	
one	block	is	10–15	seconds,	which	may	cause	one	transaction	after	two	confirmations	to	require	
20–30	seconds.	In	2019	Bitcoin	processes	ca	4.6	transactions	per	second,	while	Visa	processes	ca	
1700	transactions	per	second.	The	lightning	network	may	speed	up	the	transaction	time	for	Bitcoin.	
Credit	card	transactions	typically	require	around	48	hours	to	settle.	The	finality	of	transactions	
also	pertains	to	efficiency.	Some	cryptocurrency	exchanges	may	require	three	confirmations,	six	
confirmations	for	large	transactions,	and	60	confirmations	for	very	large	transactions.	Different	
central	banks	may	develop	different	procedures	for	finality	and	confirmations	depending	on	the	
characteristics	of	transactions,	senders,	recipients,	etc.,	which	impacts	the	efficiency	eij.

Fifth,	fij	expresses	the	financial	stability	of	currency	j,	as	perceived	by	player	i.	The	financial	
stability	of	the	national	currency	n	depends	on	the	conditions	in	the	given	country.	A	variety	of	
indicators	exist	for	the	financial	stability	of	countries	and	currencies.	Some	currencies	such	as	the	
Swiss	franc,	the	Japanese	yen,	and	the	Norwegian	krone	are	relatively	stable	(Protska,	2021b),	
while	some,	such	as	the	Venezuelan	bolivar,	the	Iranian	ria	and	the	Vietnamese	dong	(Protska,	
2021a)	can	be	more	unstable	than	many	cryptocurrencies.	For	CBDCs	the	central	bank	adjusts	
interest	rates	(which	can	be	negative	for	digital	currencies),	and	can	be	expected	to	be	able	to	
adjust	a	variety	of	factors	to	adjust	the	financial	stability	of	currency	j,	within	the	constraints	
of	the	country’s	conditions.	One	hypothetical	possibility	is	to	adjust	the	tax	rate	for	households	
or	individuals	depending	on	their	characteristics	(e.g.	in	understanding	with	tax	authorities	and	

6	 https://www.investopedia.com/tech/five-most-private-cryptocurrencies/,	retrieved	November	22,	2021.
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others)	to	ensure	financial	stability.	Fast	response	time	when	faced	with	crises,	and	activities	to	
curtail	or	prevent	money	laundering	and	terrorist	financing	may	impact	the	financial	stability	of	
currency	j.	Most	cryptocurrencies,	and	especially	altcoins,	have	traditionally	varied	substantially	
in	value,	caused	partly	by	their	novelty	and	limited	usage,	but	also	by	the	absence	of	a	governing	
authority.	One	exception	is	stablecoins,	e.g.	Tether,	USD	Coin,	TrueUSD,	Dai,	Paxos	Standard,	
Binance	USD,	which	have	the	stated	purpose	of	being	stable	in	some	sense.	The	top	ten	list	of	
countries	adopting	Bitcoin	typically	contains	countries	in	the	western	world,	but	also	countries	
which	struggle	to	ensure	financial	stability,	e.g.	Venezuela	(Lanz,	2020).

Sixth,	sij	expresses	the	security	of	currency	j,	as	perceived	by	player	i.	A	variety	of	security	
possibilities	exist	for	digital	currencies,	see	e.g.	Allen	et	al.	(2020)	and	Kiff	et	al.	(2020).	The	
security	of	the	blockchain	supporting	Bitcoin	has	not	collapsed	since	the	first	block	was	mined	
on	January	3,	2009	at	18:15:05,	although	controversies	and	forks	have	occurred.	Considering	that	
7,594	cryptocurrencies	exist	(https://coinmarketcap.com),	51%	attacks	are	relatively	rare.7

Each	of	the	two	output	elasticities	consists	of	six	summed	subelasticities	as	expressed	above.	
Each	of	the	six	output	subelasticities	for	the	national	currency	n	is	of	the	form	 pi

ain ,	where	
pi	is	the	volume	fraction	of	player	i’s	transactions	in	the	national	currency	n.	Each	of	the	six	
corresponding	output	subelasticities	for	the	global	currency	g	is	of	the	form	 p1 i

a ig-^ h ,	where	
1	–	pi	is	the	volume	fraction	of	player	i’s	transactions	in	the	global	currency	g.	The	parameter	aij,		
aij	=	bij,	cij,	dij,	eij,	fij,	sij	is	the	output	subelasticity	in	the	Cobb-Douglas	function,	0	≤	aij	≤	1,	which	
is	a	characteristic	of	currency	j, j = n,	g,	as	perceived	by	player	i.	The	output	subelasticity	aij	may	
sometimes	be	objectively	specified,	and	may	occasionally	be	mutually	agreed	upon	by	the	players	
x,	y,	z,	allowing	the	removal	of	the	subscript	i	from	aij.	Since	objective	specification,	and	mutual	
agreement,	may	not	be	generally	possible,	and	player	i	may	perceive	the	output	subelasticity	aij	
subjectively,	we	keep	the	subscript	i	on	aij.

2.6. Detection and Prosecution of Criminal Behavior

Examples	of	criminal	behavior	are	tax	evasion,	money	laundering,	theft,	terrorist	financing,	
corruption,	 and	financial	 crimes.	Although	we	 expect	 criminals	 to	 be	more	 criminal	 than	
conventionalists	and	pioneers,	all	these	three	kinds	of	players	can	in	principle	engage	in	criminal	
behavior,	through	both	the	national	currency	n	and	the	global	currency	g.	This	reflects	that	in	our	
societies	no	groups	of	citizens	can	be	expected	to	be	100%	non-criminal.	We	thus	assume	that	
a	fraction	wi,	0	≤	wi	≤	1	of	player	i’s	transactions	is	criminal	and	is	detected	and	prosecuted	by	the	
government	with	probability	ωi,	0	≤	ωi	≤	1.	The	product	ωiwi	multiplies	player	i’s	fraction	wi	of	
criminal	behavior	with	its	detection	and	prosecution	probability	ωi.	Hence	1	–	ωiwi	expresses	the	
joint	probability	of	neither	engaging	in	criminal	behavior	nor	being	detected	and	prosecuted.	We	
introduce	a	scaling	exponent	ki,	ki	≥	0,	on	the	fraction	wi	and	express	player	i’s	expected	utility	as

	 U w1iC i i
k i~= - 	 (3)

which	is	a	fraction	between	0	and	1.	When	ki	=	1,	player	i’s	expected	utility	UiC	decreases	linearly	
in	the	fraction	wi	of	player	i’s	transactions	which	is	criminal.	When	ki	>	1,	UiC	decreases	concavely	
in	wi,	which	economically	means	that	a	higher	fraction	wi	(compared	with	when	ki	=	1)	of	player	
i’s	criminal	transactions	is	needed	in	order	to	decrease	player	i’s	expected	utility	UiC.	In	contrast,	
when	0	<	ki	<	1,	UiC	decreases	convexly	in	wi,	which	economically	means	that	a	lower	fraction	wi	
(compared	with	when	ki	=	1)	of	player	i’s	criminal	transactions	is	sufficient	in	order	to	decrease	

7	 The	most	well-known	51%	attacks	among	cryptocurrencies	occurred	for	Verge,	Ethereum	Classic,	Bitcoin	Gold,	Feathercoin,	and	Vertcoin	
(Attah,	2019).	A	51%	attack	means	that	a	majority	of	miners	impact	mining	to	their	advantage,	including	preventing	other	miners	from	completing	
blocks,	and	channeling	funds	from	each	block	to	themselves.	Changing	historical	blocks	is	difficult	due	to	the	hard	coding	of	past	transactions	into	
the	Bitcoin	software.
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player	i’s	expected	utility	UiC.	When	ki	=	1,	UiC	=	1	–	ωi	is	independent	of	wi.	Player	i’s	expected	
utility	UiC	in	(3)	expresses	what	is	probabilistically	retained	for	potential	criminal	behavior,	and	is	
multiplied	with	player	i’s	Cobb-Douglas	utility	UiCD(pi)	in	(2)	to	determine	what	player	i	keeps	of	
its	utility	when	accounting	for	criminal	behavior	being	probabilistically	detected	and	prosecuted.

2.7. How a Fraction qi of Players of Kind i Impacts Expected Utilities

Players	of	kind	i	may	get	increased	or	decreased	expected	utility	if	their	fraction	qi	increases	
or	decreases.	We	operationalize	this	with	the	term	 q1 m

i i
in+ ,	where	μi,	μi	≥	0	is	a	scaling	

proportionality	parameter,	and	mi	is	a	scaling	exponent.	The	term	 q1 m
i i

in+ 	is	multiplied	with	the	
Cobb-Douglas	utility	and	what	is	probabilistically	retained	for	potential	criminal	behavior.

Conventionalists	 prefer	 to	do	what	 others	 do	 and	what	 is	 common,	which	gives	 them	
increased	expected	utility.	Hence	conventionalists	get	increased	expected	utility	if	the	fraction	
qx	of	conventionalists	increases,	i.e.	mx	≥	0.	The	positive	exponent	mx	scales	the	strength	of	how	
conventionalists	get	multiplicatively	increased	expected	utility	when	the	fraction	qx	increases.

In	contrast,	pioneers	prefer	 to	do	what	others	do	not	do,	what	 is	uncommon,	and	what	
breaks	ground	beyond	what	is	conventional,	which	gives	them	increased	expected	utility.	When	
pioneers	become	a	majority,	they	are	no	longer	pioneers,	but	conventionalists.	Hence	pioneers	
get	decreased	expected	utility	if	the	fraction	qy	of	pioneers	increases,	i.e.	my	≤	0.	The	negative	
exponent	my	scales	the	strength	of	how	pioneers	get	multiplicatively	decreased	expected	utility	
when	the	fraction	qy	increases.

Criminals	focus	on	what	is	criminally	lucrative,	what	they	can	get	away	with,	and	what	
does	not	get	detected	and	prosecuted.	Whether	what	they	do	is	common	or	uncommon	may	be	
irrelevant.	What	criminals	have	in	common	with	pioneers	is	that	they	prefer	to	be	few	so	that	
they	can	operate	under	the	radar.	As	criminals	become	more	numerous,	the	benefits	for	each	in	
most	stable	and	relatively	lawful	societies	can	be	expected	to	decrease	since	they	compete	with	
each	other,	and	non-criminals	adapt	to	defending	against	them.	Exceptions,	such	as	the	Italian	
mafia	in	Italy,	or	the	cartels	in	Colombia,	operate	according	to	another	logic	not	considered	in	
this	article,	where	subsections	of	societies	follow	different	norms.	At	the	extreme,	a	society	with	
only	criminals	will	not	function	since	everyone	will	prey	on	everyone	causing	breakdown.	Hence	
criminals,	just	as	pioneers,	get	decreased	expected	utility	if	the	fraction	qz	of	criminals	increases,	
i.e.	mz	≤	0.	The	negative	exponent	mz	scales	the	strength	of	how	criminals	get	multiplicatively	
decreased	expected	utility	when	the	fraction	qz	increases.	

The	three	paragraphs	above	enable	us	to	operationalize	player	i’s	expected	utility	as

	 U q q1 m
iF i i i

in= +^ h 	 (4)

which	is	multiplied	with	player	i’s	Cobb-Douglas	utility	UiCD(pi)	in	(2)	and	player	i’s	expected	
utility	UiC	in	(3).	When	mi	=	1,	player	i’s	expected	utility	UiF(qi)	increases	linearly	in	the	fraction	qi	
of	players	of	kind	i.	When	mi	>	1,	UiF(qi)	increases	convexly	in	qi,	which	economically	means	
that	a	higher	fraction	qi	(compared	with	when	mi	=	1)	of	players	of	kind	i	is	needed	in	order	
to	increase	player	i’s	expected	utility	UiF(qi).	In	contrast,	when	0	<	mi	<	1,	UiF(qi)	increases	
concavely	in	qi,	which	economically	means	that	a	lower	fraction	qi	(compared	with	when	mi	=	1)	
of	players	of	kind	i	is	sufficient	in	order	to	increase	player	i’s	expected	utility	UiF(qi).	When	
mi	=	0,	UiF(qi)	=	1	+	μi	is	independent	of	qi.

Equation	(4)	means	that	player	i’s	expected	utility	UiF(qi)	depends	explicitly	on	the	fraction	
qi	of	players	of	kind	i,	i	=	x,	y,	z,	which	is	a	measure	of	the	number	of	players	of	kind	i.	This	
dependence	of	UiF(qi)	on	qi	implicitly	means	that	UiF(qi)	depends	on	the	fraction	1	–	qi	of	players	
which	is	not	of	kind	i,	since	qx	+	qy	+	qz	=	1.	That	is,	more	players	of	one	kind	mean	fewer	players	
of	the	two	other	kinds.	In	the	next	section	3	on	the	replicator	equation	the	interdependence	of	
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the	numbers	of	players	of	each	kind,	and	thus	the	interaction	between	the	three	kinds	of	players,	
becomes	clearer.

2.8. The Players’ Expected Utilities

This	section	combines	multiplicatively	player	i’s	expected	utilities	UiCD(pi)	in	(2),	UiC in	(3),	
and	UiF(qi)	in	(4),	which	gives	player	i’s	expected	utility	

	 ,U U p q U p U U q p p w q1 1 1i i i i iCD i iC iF i i
b c d e f s

i
b c d e f s

i i
k

i i
min in in in in in ig ig ig ig ig ig i i~ n= = = - - ++ + + + + + + + + +^ ^ ^ ^ _ _h h h h i i

	 	 (5)
	,U U p q U p U U q p p w q1 1 1i i i i iCD i iC iF i i

b c d e f s
i
b c d e f s

i i
k

i i
min in in in in in ig ig ig ig ig ig i i~ n= = = - - ++ + + + + + + + + +^ ^ ^ ^ _ _h h h h i i.

Equation	(5)	assumes	that	player	i	is	risk	neutral	and	abstracts	away	other	factors	such	as	
player	i’s	consumption	preferences	concerning	goods,	and	player	i’s	preference	for	work	versus	
leisure,	which	are	beyond	the	scope	of	this	article.	Such	factors	are	to	some	extent	implicitly	or	
indirectly	present	in	(5).	For	example,	player	i’s	convenience	cij	of	using	currency	j	and	transaction	
efficiency	eij	of	currency	j	may	play	different	roles	for	different	goods,	and	may	impact	player	i’s	
preference	for	work	versus	leisure.

2.9. Society’s Expected Utility

Society’s	expected	utility	U(px,	py,	pz,	qx,	qy)	is	the	weighted	sum	of	each	player’s	expected	
utility	Ui(pi,	qi),	weighted	by	the	fraction	of	players	of	kind	i,	i	=	x,	y,	z,	i.e.

	 , , , , ,U U p p p q q q U p q q q q1
, ,

x y z x y i i i i z x y
i x y z

= = = - -
=

^ ^h h/ ,	, , , , ,U U p p p q q q U p q q q q1
, ,

x y z x y i i i i z x y
i x y z

= = = - -
=

^ ^h h/ .	 (6)

2.10. The Players’ Strategic Choices

Assume	that	player	i	at	time	t	makes	two	strategic	simultaneous	choices	to	maximize	its	
expected	utility	Ui(pi,	qi)	in	(5).	First,	it	chooses	its	volume	fraction	pi	of	its	transactions	in	
currency	n,	causing	the	remaining	volume	fraction	1	–	pi	of	its	transactions	to	be	in	currency	g.	
Player	i’s	choice	of	pi	to	maximize	Ui(pi,	qi)	in	(5)	does	not	depend	on	time	t,	and	does	not	depend	
on	the	fraction	qi	of	player	i	in	the	population,	since	 q1 i i

min+ 	appears	proportionally	in	(5),	
without	impacting	the	shape	of	Ui(pi,	qi)	as	a	function	of	pi,	and	without	impacting	which	value	of	
pi	causes	Ui(pi,	qi)	to	have	its	maximum.	Hence	no	dynamic	considerations	for	player	i’s	choice	
of	volume	fraction	pi	of	its	transactions	in	currency	n	are	needed.	Second,	player	i	chooses	which	
kind	i	of	player	it	should	be,	i	=	x,	y,	z.	That	choice	depends	strongly	on	time	t,	as	described	by	the	
replicator	equation	in	the	next	section.	When	player	i	switches	from	being	of	one	kind	to	another	
kind,	i	=	x,	y,	z,	its	first	choice	of	the	optimal	volume	fraction	pi	of	its	transactions	in	currency	n	
also	changes.	In	other	words,	as	long	as	player	i	remains	of	a	specific	kind,	its	optimal	volume	
fraction	pi	does	not	depend	on	time	t,	which	reflects	real	life,	but	if	it	switches	to	be	of	another	
kind	according	to	the	replicator	equation	described	in	the	next	section,	then	it	also	changes	its	
optimal	volume	fraction	pi	at	time	t	to	what	is	optimal	for	this	new	kind	i,	i	=	x,	y,	z.
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2.11. The Replicator Equation

To	determine	the	evolution	of	the	fraction	qi	of	players	of	kind	i,	i	=	x,	y,	z,	we	consider	the	
replicator	equation	(Taylor	&	Jonker,	1978;	Weibull,	1997)

	 ,
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where	αi,	αi	>	0,	is	the	rapidity	of	change	or	sensitivity	of	the	process.	The	process	is	stable	when	
αi	is	intermediate.	If	αi	is	high,	the	process	changes	rapidly.	If	αi	is	low,	a	negligible	change	
occurs.	The	right	hand	side	of	(7)	multiplies	the	fraction	qi	of	players	of	kind	i	with	the	difference	
Ui(pi,	qi)	–	U	between	player	i’s	expected	utility	Ui(pi,	qi)	and	the	average	expected	utility	U	of	
the	three	kinds	i	=	x,	y,	z	of	players.	If	the	right	hand	side	of	(7)	is	positive	(negative),	player	i’s	
expected	utility	Ui(pi,	qi)	is	higher	(lower)	than	the	average	expected	utility	U,	which	causes	the	
fraction	qi	of	players	of	kind	i	to	increase	(decrease).

The	economic	interpretation	of	(7)	is	that	the	three	kinds	of	players	over	time	continuously	
move	towards	becoming	the	kind	of	player	where	the	expected	utility	Ui,	i.e.	Ux,	Uy,	Uz,	is	highest.	
In	doing	so,	player	i	accounts	for	both	the	income	effect	(i.e.,	the	absolute	value	of	player	i’s	
expected	utility	Ui)	and	the	substitution	effect	(i.e.,	which	kind	of	player	is	optimal	for	player	i	
to	be	or	become).	As	a	player	changes	from	being	of	one	kind	to	becoming	of	another	kind,	the	
fraction	qi	of	players	of	kind	i,	i.e.	the	fractions	qx,	qy,	qz	=	1	–	qx	–	qy,	change.	The	prominent	
presence	of	qi	in	(7)	on	the	left	hand	side,	multiplicatively	on	the	right	hand	side,	and	in	Ui(pi,	qi)		
and	U(px,	py,	pz,	qx,	qy),	means	that	the	replicator	equation	is	quite	sensitive	to	changes	in	qi.	
The	expected	utilities	Ui(pi,	qi)	and	U(px,	py,	pz,	qx,	qy)	also	depend	on	the	volume	fractions	pi	
and	1	–	pi	of	player	i’s	transactions	in	the	currencies	n	and	g,	respectively.	Hence	the	replicator	
equation	reflects	how	the	three	kinds	of	players	perceive	the	two	currencies	n	and	g	as	they	choose	
which	kind	of	player	they	want	to	be	to	maximize	their	expected	utility	Ui(pi,	qi).

The	limiting	behavior	(the	evolutionary	outcome)	of	the	replicator	equation	in	(7)	is	a	Nash	
equilibrium.	We	determine	a	pure-strategy	Nash	equilibrium	where	each	player	i,	i	=	x,	y,	z,	
maximizes	its	expected	utility	Ui(pi,	qi).	This	equilibrium	is	a	set	of	strategies	qi

) 	for	the	three	
players,	i	=	x,	y,	z,	such	that

	 , ,p qU U p q q0 1i i i i i i i6$ # #)^ ^h h ,	i	=	x,	y,	z;	qz	=	1	–	qx	–	qy.	 (8)

For	research	on	the	equilibrium	properties	of	replicator	dynamics	see	(Duong	&	Han,	2020)	
and	the	references	therein.

If	 , , , , ,U p q U p p p q qi i i x z x yyia -^ ^_ h hi	in	(7)	had	been	constant,	(7)	would	have	been	a	linear	
time-invariant	system	for	which	well-known	techniques	illustrated	by	Khalil	(2002,	p.	46),	or	
Laplace	and	Fourier	transforms,	are	applicable.	Since	 , , , , ,U p q U p p p q qi i i x z x yyia -^ ^_ h hi	is	not	
constant,	(7)	is	a	time-variant	system	which	is	more	challenging	to	analyze	theoretically.	We	thus	
proceed	over	to	the	next	sections	to	analyze	(7)	with	simulations.
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3. ANALYZING THE MODEL

3.1. Analyzing As a Function of pi When qi Is Exogenously Fixed

This	section	assumes	that	the	fraction	qi	of	players	of	kind	i	is	fixed,	and	analyzes	how	player	
i	chooses	its	volume	fraction	pi	of	currency	n,	implying	volume	fraction	1	–	pi	for	currency	g.	
Differentiating	player	i’s	expected	utility	Ui(pi,	qi)	in	(5)	with	respect	to	pi	and	equating	with	zero	
gives
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which	is	solved	to	yield
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Property	1.	 p a 0iopt in2 $2 ,	 p a 0iopt gi2 #2 ,	aij	=	bij,	cij,	dij,	eij,	fij,	sij,	j	=	n,	g.

Proof.	Follows	from	differentiating	(10).

Property	1	states	that	the	optimal	fraction	piopt	of	player	i’s	transactions	in	currency	n	increases	in	
the	six	subelasticities	ain	for	currency	n,	and	decreases	in	the	six	subelasticities	aig	for	currency	g.

Inserting	pi	=	piopt	into	the	second	order	derivative	gives
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which	is	satisfied	as	negative,	and	hence	pi	=	piopt	is	a	maximum.

To	illustrate	the	model,	the	following	plausible	benchmark	parameter	values	are	chosen.	If	
the	12	output	subelasticities	aij,	aij	=	bij,	cij,	dij,	eij,	fij,	sij,	for	player	i,	i	=	x,	y,	z,	for	currency	j,	
j	=	n,	g,	were	to	be	given	equal	weight,	assuming	constant	returns	to	scale	as	specified	after	
(2),	each	output	subelasticity	would	get	weight	aij	=	x,	y,	z	=	1/12.8	Table	1a	shows	36	output	
subelasticities	aij,	which	all	satisfy	the	requirement	aij	≥	0,	for	player	i,	i	=	x,	y,	z,	for	currency	j,	
j	=	n,	g.

8	 Since	we	have	no	evidence	to	justify	increasing	or	decreasing	returns	to	scale,	we	make	the	simplest	and	common	assumption	of	constant	
returns	to	scale.
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Table 1
Output	subelasticities	aij	in	three	panels	a,b,c	for	currency	j,	j	=	n,	g,	as	perceived	by	player	i,	i	=	x,	y,	z.	

Player	i i	=	x i	=	y i	=	z

Currency	j	 j	=	n j	=	g j	=	n j	=	g j	=	n j	=	g

Panel	a

bij 1/4 0 0 1/4 0 1/12

cij 1/12 0 0 1/12 0 1/12

dij 1/12 1/12 1/12 1/12 1/12 1/4

eij 1/12 1/12 1/12 1/12 1/12 1/12

fij 1/12 1/12 1/12 1/12 1/12 1/12

sij 1/12 1/12 1/12 1/12 1/12 1/12

Panel	b

bij 1/3 0 0 1/3 0 1/12

cij 1/12 0 0 1/12 0 1/12

dij 1/12 0 0 1/12 0 1/3

eij 1/12 1/12 1/12 1/12 1/12 1/12

fij 1/12 1/12 1/12 1/12 1/12 1/12

sij 1/12 1/12 1/12 1/12 1/12 1/12

Panel	c

bij 1/2 0 0 1/2 0 1/12

cij 1/12 0 0 1/12 0 1/12

dij 1/12 0 0 1/12 0 1/2

eij 1/12 0 0 1/12 0 1/12

fij 1/12 0 0 1/12 0 1/12

sij 1/12 1/12 1/12 1/12 1/12 1/12

Table	1a	assumes	that	player	x	as	a	conventionalist	prefers	at	least	output	subelasticity	aij	=	1/12	
for	all	the	six	output	subelasticities	backing,	convenience,	confidentiality,	transaction	efficiency,	
stability,	and	security	for	the	national	currency	n,	and	three	times	higher	output	subelasticity	
bxn	=	1/4	for	the	backing	of	currency	n,	which	it	respects	and	trusts,	and	justifies	player	x	as	
a	conventionalist.	Table	1a	further	assumes	that	player	x	prefers	at	most	output	subelasticity	
aij	=	1/12	for	the	six	output	subelasticities	for	the	global	currency	g,	and	zero	output	subelasticity	
for	the	backing	bxg	=	0	and	convenience	cxg	=	0	of	currency	g,	which	also	justifies	player	x	
as	a	conventionalist.	Table	1a	assumes	that	player	y	as	a	pioneer	has	the	opposite	preference	
of	player	x,	i.e.	at	least	output	subelasticity	aij	=	1/12	for	all	the	six	output	subelasticities	for	
the	global	currency	g,	and	three	times	higher	output	subelasticity	byg	=	1/4	for	the	backing	of	
currency	g,	at	most	output	subelasticity	aij	=	1/12	for	the	six	output	subelasticities	for	the	national	
currency	n,	and	zero	output	subelasticity	for	the	backing	byn	=	0	and	convenience	cyn	=	0	of	
currency	n.	Table	1a	assumes	that	player	z	as	a	criminal	has	the	same	preference	as	the	pioneer	
player	y,	except	that	its	three	times	higher	preference	is	for	output	subelasticity	dzg	=	1/4	for	the	
confidentiality	of	currency	g.	Hence	it	prefers	output	subelasticity	bzg	=	1/12	for	the	backing	of	
currency	g.
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Table	1b	assumes	that	the	three	kinds	of	players	have	higher	preferences	bxn	=	byg	=	dzg	=	1/3	
for	their	preferred	output	subelasticities,	i.e.	backing	of	currencies	n	and	g	for	players	x	and	y,	
and	confidentiality	of	currency	g	for	player	z.	They	compensate	for	these	higher	preferences	by	
having	no	preferences	dxg	=	dyn	=	dzn	=	0	for	confidentiality,	i.e.	of	currency	g	for	player	x	and	of	
currency	n	for	players	y	and	z.	

Table	 1c	 assumes	 that	 the	 three	 kinds	 of	 players	 have	 even	 higher	 preferences	
bxn	=	byg	=	dzg	=	1/2	for	their	preferred	output	subelasticities,	i.e.	backing	of	currencies	n	and	g	
for	players	x	and	y,	and	confidentiality	of	currency	g	for	player	z.	They	compensate	for	these	
higher	preferences	by	having	no	preferences	exg	=	eyn	=	ezn	=	fxg	=	fyn	=	fzn	=	0	for	transaction	
efficiency	and	financial	stability,	i.e.	of	currency	g	for	player	x	and	of	currency	n	for	players	y	
and	z.	We	alternate	between	applying	Table	1	panels	a,	b,	c,	and	combinations	of	these	for	
players	x,	y,	z,	as	our	benchmark,	as	we	proceed.

The	benchmark	furthermore	assumes	that	the	conventionalist	player	x	and	pioneer	player	y	
choose	a	zero	fraction	wi =	0	of	its	transactions	to	be	criminal,	i	=	x,	y,	which	may	be	a	good	
approximation	for	many	countries,	while	the	criminal	player	z	chooses	a	positive	fraction	wz	=	0.5	
of	its	transactions	to	be	criminal,	assumed	as	a	focal	intermediate	between	wz	=	0.5	and	wz	=	1.	
The	government	is	assumed	to	detect	and	prosecute	criminal	behavior	with	probability	ωi	=	0.5,	
also	assumed	as	a	focal	intermediate	between	wz	=	0.5	and	wz	=	1.	We	assume	scaling	exponent	
ki	=	1	for	what	player	i	retains	after	criminal	behavior,	which	in	(3)	means	that	player	i’s	expected	
utility	decreases	linearly	in	the	fraction	wi	of	player	i’s	transactions	which	is	criminal.	The	authors	
believe	that	a	linear	decrease	is	more	plausible	than	a	convex	or	concave	decrease.	Unitary	values,	
also	assumed	below	to	the	extent	possible,	are	assumed	plausible	focal	points	when	no	particular	
evidence	seems	suitable	for	non-unitary	values.

The	scaling	exponent	for	how	player	i	gets	increased	or	decreased	expected	utility	depending	
on	 the	 fraction	qi	 of	 players	 of	 kind	 i	 is	 assumed	 to	 be	 positive	 and	 unitary,	mx	 =	 1,	 for	
conventionalists,	and	negative	and	unitary,	my	=	mz	=	–1,	for	pioneers	and	criminals.

The	scaling	proportionality	parameter	μi	for	how	player	i	gets	increased	or	decreased	expected	
utility	depending	on	the	fraction	qi	of	players	of	kind	i,	i	=	x,	y,	z,	impacts	the	analysis	crucially.	
We	assume	the	unitary	μx	=	1	as	a	benchmark	for	conventionalists,	which	in	(4)	causes	UxF(qx)	to	
vary	between	UxF(qx)	=	1	when	qx	=	0	and	UxF(qx)	=	2	when	qx	=	1.	For	pioneers	and	criminals	
we	assume	μi	<	1,	since	UiF(qi)	in	(4)	varies	between	UiF(qi)	=	∞	when	qi	=	0	and	UiF(qi)	=	1	+	μi	
when	qi	=	1,	i	=	x,	y,	since	my	=	mz	=	–1.	More	specifically,	we	assume	the	five	times	lower	
μy	=	0.2	for	pioneers	and	the	ten	times	lower	μz	=	0.1	for	criminals.

In	this	section,	where	the	fraction	qi	of	players	of	kind	i	is	exogenous,	we	assume	equally	
large	fractions	qi	=	1/3	of	the	three	kinds	of	players,	i	=	x,	y,	z,	thus	not	giving	eminence	to	one	
kind	of	player	over	another	kind.	The	values	qi	=	1/3	are	needed	to	determine	player	i’s	expected	
utility	Ui(pi,	qi)	in	(5),	due	to	the	last	proportional	term	 q1 i i

min+ ,	but	do	not	impact	the	shape	of	
Ui(pi,	qi)	as	a	function	of	pi	and	for	which	value	of	pi	that	Ui(pi,	qi)	has	its	maximum.

Figure	2	applies	the	above	benchmark,	including	the	exogenous	qi	=	1/3,	and	plots	player	i’s	
expected	utility	Ui	in	(5)	and	society’s	expected	utility	U	in	(6)	as	functions	of	player	i’s	volume	
fraction	pi	of	currency	n,	i	=	x,	y,	z.	The	Mathematica	software	(www.wolfram.com)	is	used	for	
plotting.	Panel	k	assumes	the	output	subelasticities	aij	in	Table	1k,	k	=	a,	b,	c.	The	two	dashed	
vertical	lines	in	each	panel	show	the	values	of	pi	where	at	least	one	expected	utility	Ui	has	its	
maximum	value,	i.e.	px	=	2/3	and	py	=	pz	=	1/3	in	panel	a,	px	=	3/4	and	py	=	pz	=	1/4	in	panel	b,	
and	px	=	11/12	and	py	=	pz	=	1/12	in	panel	c.	In	panel	a,	society’s	expected	utility	U	reaches	its	
maximum	at	pi	=	4/9	which	is	the	weighted	sum	of	the	pi’s	across	the	three	kinds	of	players.	If	
the	weights	change	from	qi	=1/3,	e.g.	such	that	qz	increases	and	qx	and	qy	decrease,	the	value	pi	
changes	from	pi	=	4/9	≈	0.44	towards	pi	=	2/3.	In	panels	b	and	c,	society’s	expected	utility	U	
reaches	their	maxima	at	pi	=	5/12	≈	0.42	and	pi	=	9/25	=	0.36,	calculated	analogously.
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Figure 2
Player	i’s	expected	utility	Ui	as	a	function	of	its	volume	fraction	pi	of	currency	n	when	qi	=	1/3,	i	=	x,	y,	z.	Panel	k	
assumes	the	output	subelasticities	aij	in	Table	1k,	k	=	a,	b,	c.
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In	all	the	three	panels	in	Figure	2	the	conventionalist	player	x’s	inverse	U-shaped	expected	
utility	Ux	is	skewed	towards	the	right	since	it	values	the	national	currency	n	more	than	the	global	
currency	g.	When	the	volume	fraction	px	of	the	conventionalist	player	x’s	transactions	in	the	
national	currency	n	is	low,	the	conventionalist	player	x’s	expected	utility	Ux	is	intuitively	low.	As	
the	fraction	px	increases,	its	expected	utility	Ux	increases	to	its	maximum	when	px	=	2/3,	px	=	3/4,	
px	=	11/12,	in	panels	a,	b,	c,	and	thereafter	decreases,	as	player	x	also	assigns	some,	although	low,	
output	subelasticities	to	currency	g.

In	contrast,	in	all	the	three	panels	in	Figure	2	the	pioneer	player	y’s	and	criminal	player	z’s	
inverse	U-shaped	expected	utilities	Ui	are	skewed	towards	the	left	since	they	value	the	global	
currency	g	more	than	the	national	currency	n,	and	thus	prefer	pi	<	1/2.	As	the	fraction	pi	increases,	
its	expected	utility	Ui	increases	to	its	maximum	when	pi	=	1/3,	pi	=	1/4,	pi	=	1/12,	in	panels	a,	b,	c,	
respectively,	i	=	x,	y.	As	pi	increases	further,	Ui	decreases.	The	criminal’s	expected	utility	Uz	is	
lower	than	the	pioneer’s	expected	utility	Uy	since	its	fraction	wz	=	0.5	of	transactions	is	criminal,	
detected	and	prosecuted	by	the	government	with	probability	ωi	=	0.5.

3.2. Analysis Applying the Replicator Equation

This	section	applies	the	replicator	equation	in	(7)	to	determine	the	fraction	qi	of	players	of	
kind	i	endogenously,	while	player	i	determines	the	volume	fraction	pi	of	currency	n	by	maximizing	
its	expected	utility	Ui	in	(5),	i	=	x,	y,	z.	Figure	3	applies	the	output	subelasticities	in	Table	1	and	
the	benchmark	parameter	values	in	section	3.1,	i.e.	wx	=	wy	=	0,	wz	=	0.5,	ωi	=	0.5,	ki	=	1,	mx	=	1,	
my	=	mz	=	–1,	μx	=	1,	μy	=	0.2,	μz	=	0.1,	i	=	x,	y,	z.	Player	i	chooses	its	volume	fraction	pi	of	
currency	n	optimally	to	maximize	its	expected	utility	Ui,	i	=	x,	y,	z.	Assuming	rapidity	αi	=	1	of	
change	or	sensitivity	of	the	replicator	equation,	i	=	x,	y,	z,	(7)	is	used	to	determine	the	fraction	qi	
of	players	of	kind	i,	i	=	x,	y,	z.	Figure	3	plots	these	fractions	qx,	qy,	qz	=	1	–	qx	–	qy,	and	the	volume	
fraction	p	of	all	players’	transactions	in	the	national	currency	n	from	(1),	as	functions	of	time	t.
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Figure 3
Fraction	qi	of	players	of	kind	i,	i	=	x,	y,	z,	and	the	volume	fraction	p	of	all	players’	transactions	in	currency	n,	
as	a	function	of	time	t	for	the	benchmark	parameter	values	in	Table	1,	wx	=	wy	=	0,	wz	=	0.5,	ωi	=	0.5,	ki	=	1,		
mx	=	1,	my	=	mz	=	–1,	μx	=	1,	μy	=	0.2,	μz	=	0.1,	αi	=	1,	i	=	x,	y,	z.	Panel	a:	Table	1a.	Panel	b:	Table	1b.	Panel	c:		
Table	1c.	Panel	d:	Table	1a	for	player	x	and	Table	1c	for	players	y	and	z.	Panel	e:	Table	1c	for	player	x	and		
Table	1a	for	players	y	and	z. 2 
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Figure	3	assumes	initial	conditions	at	time	t	=	0	equal	to	qx(0)	=	0.8	and	qy(0)	=	qz(0)	=	0.1,	
which	means	that	conventionalists	initially	are	in	the	majority	at	80%,	while	pioneers	and	
criminals	are	in	the	minority,	each	at	10%.	

Figure	3a	assumes	the	36	output	subelasticities	in	Table	1a,	which	according	to	Figure	2a	
gives	the	optimal	volume	fractions	px	=	2/3	for	conventionalists	and	py	=	pz	=	1/3	for	pioneers	and	
criminals,	for	player	i’s	transactions	in	currency	n.	The	fraction	qx	of	conventionalists	decreases	
convexly	from	qx(0)	=	0.8	to	limt →	∞	qx	=	0.5,	hereafter	referred	to	as	the	stationary	solution,	after	
sufficiently	much	time	t	has	elapsed.	All	limit	values	are	determined	numerically.	The	fraction	qy	
of	pioneers	increases	concavely	from	qy(0)	=	0.1	to	limt →	∞	qy	=	0.4.	The	fraction	qz	of	criminals	
first	decreases	marginally	and	briefly	from	qz(0)	=	0.1,	as	the	fraction	qy	of	pioneers	increases	
rapidly.	Thereafter	qz	increases	concavely	back	up	towards	limt →	∞	qz	=	0.1.	Hence	the	volume	
fraction	p	of	all	players’	transactions	in	the	national	currency	n	decreases	towards	limt →	∞	p	=	0.5.
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Figure	3b	assumes	the	36	output	subelasticities	in	Table	1b,	which	according	to	Figure	2b	gives	
the	higher	optimal	volume	fractions	px	=	0.75	for	conventionalists	and	the	lower	py	=	pz	=	0.25	for	
pioneers	and	criminals,	for	player	i’s	transactions	in	currency	n.	The	evolution	of	the	fractions	qx,	
qy,	qz	is	qualitatively	similar	to	Figure	3a,	with	the	same	limit	values	limt →	∞	qx	=	limt →	∞	p =	0.5,		
limt →	∞	qy	=	0.4,	limt →	∞	qz	=	0.1.	The	reason	for	the	similar	result	is	that	the	increase	in	the	
optimum	from	px	=	2/3	to	px	=	3/4	for	conventionalists	equals	the	decrease	in	the	optimum	from	
py	=	pz	=	1/3	to	py	=	pz	=	1/4	for	pioneers	and	criminals.	These	changes	are	in	the	opposite	
direction	and	equal	3/4	–	2/3	=	1/3	–	1/4	=	1/12.	Furthermore,	at	the	limit	when	t →	∞,	the	fraction	
qx	of	conventionalists	equals	the	sum	of	the	fractions	qy	and	qz	of	pioneers	and	criminals,	i.e.		
limt →	∞	qx	=	0.5	=	limt →	∞	qy	=	0.4	+	limt →	∞	qz	=	0.1,	which	means	that	the	impact	in	the	opposite	
direction	when	determining	qx,	qy,	qz	in	(7)	is	equally	strong.

Figure	3c	assumes	the	36	output	subelasticities	in	Table	1c,	which	according	to	Figure	2c	gives	
the	higher	optimal	volume	fractions	px	=	0.92	for	conventionalists	and	the	lower	py	=	pz	=	0.08	
for	pioneers	and	criminals,	for	player	i’s	transactions	in	currency	n.	Also	here	the	evolution	of	the	
fractions	qx,	qy,	qz	is	qualitatively	similar	to	Figure	3a	and	Figure	3b,	with	the	same	limit	values	
limt →	∞	qx	=	limt →	∞	p	=	0.5,	limt →	∞	qy	=	0.4,	limt →	∞	qz	=	0.1.	The	reason	for	the	similar	result	
is	again	that	the	increase	in	the	optimum	from	px	=	2/3	to	px	=	11/12	for	conventionalists	equals	
the	decrease	in	the	optimum	from	py	=	pz	=	1/3	to	py	=	pz	=	0.08	for	pioneers	and	criminals.	These	
changes	are	in	the	opposite	direction	and	equal	11/12	–	2/3	=	1/3	–	1/12	=	1/4.	At	the	limit	when	
t →	∞,	the	fraction	qx	of	conventionalists	equals	the	sum	of	the	fractions	qy	and	qz	of	pioneers	
and	criminals,	i.e.	limt →	∞	qx	=	0.5	=	limt →	∞	qy	+	limt →	∞	qz,	which	means	that	the	impact	in	the	
opposite	direction	when	determining	qx,	qy,	qz	in	(7)	is	equally	strong.

To	illustrate	results	different	from	Figure	3a,	b,	c,	we	consider	two	extreme	combinations	
of	output	subelasticities	from	Table	1,	one	favoring	pioneers	and	criminals,	and	one	favoring	
conventionalists.	Figure	3d	assumes	the	12	output	subelasticities	in	Table	1a	for	the	conventionalist	
player	x,	which	gives	the	minimum	optimal	volume	fraction	px	=	2/3,	and	assumes	the	24	output	
subelasticities	in	Table	1c	for	the	pioneer	and	criminal	players	y	and	z,	which	gives	the	minimum	
optimal	volume	fractions	py	=	pz	=	1/12.	That	both	px	=	2/3	and	py	=	pz	=	1/12	are	minimum	
optimum	values	for	the	respective	players,	among	the	alternatives	in	Table	1,	chosen	by	the	three	
kinds	of	players	maximizing	their	expected	utilities	Ux,	Uy,	Uz	in	(5),	means	that	all	the	three	kinds	
of	players	choose	currency	n	with	minimum	volume	fractions	px,	py,	pz.	That	favors	pioneers	and	
criminals,	who	to	a	lower	extent	back	and	favor	currency	n.	Consequently,	the	fractions	qy	
and	qz	of	pioneers	and	criminals	increase	concavely	and	quickly	from	qy(0)	=	qz(0)	=	0.1	toward	
limt →	∞	qy	=	0.85	and	limt →	∞	qz	=	0.15,	while	the	fraction	qx	of	conventionalist	decreases	convexly	
and	quickly	from	qx(0)	=	0.8	toward	limt →	∞	qx	=	0,	thus	going	extinct.	This	shows	how	a	change	in	
the	output	subelasticities	among	the	alternatives	in	Table	1	may	tilt	the	balance	from	emphasis	on	
the	national	currency	n	towards	emphasis	on	the	global	currency	g.	Hence	the	volume	fraction	p	
of	all	players’	transactions	in	the	national	currency	n	decreases	towards	limt →	∞	p	=	1/12.

Figure	3e	assumes	the	12	output	subelasticities	in	Table	1c	for	the	conventionalist	player	x,	
which	gives	the	maximum	optimal	volume	fraction	px	=	11/12,	and	assumes	the	24	output	
subelasticities	in	Table	1a	for	the	pioneer	and	criminal	players	y	and	z,	which	gives	the	maximum	
optimal	volume	fractions	py	=	pz	=	1/3.	That	both	px	=	11/12	and	py	=	pz	=	1/3	are	maximum	
optimum	values	for	the	respective	players,	among	the	alternatives	in	Table	1,	means	that	all	
the	three	kinds	of	players	choose	currency	n	with	maximum	volume	fractions	px,	py,	pz.	That	
favors	conventionalists,	who	to	a	higher	extent	back	and	favor	currency	n.	Consequently,	the	
fraction	qx	of	conventionalists	increases	concavely,	quickly	and	marginally	from	qx(0)	=	0.8	
toward	limt →	∞	qx	=	0.835.	The	fraction	qy	of	pioneers	increases	concavely,	quickly	and	marginally	
from	qy(0)	=	0.1	toward	limt →	∞	qy	=	0.125.	The	fraction	qz	of	criminals	decreases	convexly	
and	quickly	from	qz(0)	=	0.1	toward	limt →	∞	qz	=	0.040.	This	shows	how	a	different	change	in	
the	output	subelasticities	among	the	alternatives	in	Table	1	may	preserve	the	emphasis	on	the	
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national	currency	n,	rather	than	tilting	the	balance	towards	the	global	currency	g.	The	volume	
fraction	p	of	all	players’	transactions	in	the	national	currency	n	increases	marginally	towards	
limt →	∞	p	=	0.820.

3.3. Sensitivity Analysis

The	previous	section	3.2	implies	a	stationary	solution	after	sufficiently	much	time	t	has	
elapsed,	i.e.	at	the	limit	when	t	→	∞.	This	section	3.3	determines	the	sensitivity	of	that	stationary	
solution	relative	to	the	output	subelasticities	in	Table	1b	and	the	15	benchmark	parameter	values	
in	section	3.1,	i.e.	wx	=	wy	=	0,	wz	=	0.5,	ωi	=	0.5,	ki	=	1,	mx	=	1,	my	=	mz	=	–1,	μx	=	1,	μy	=	0.2,	
μz	=	0.1,	i	=	x,	y,	z.	We	choose	Table	1b	which	has	intermediate,	compared	with	Table	1	panels	a	
and	c,	optimal	volume	fractions	px	=	0.75	for	conventionalists	and	py	=	pz	=	0.25	for	pioneers	and	
criminals,	for	player	i’s	transactions	in	currency	n.	In	Figure	4	each	of	the	15	parameter	values	
is	altered	from	its	benchmark,	while	the	other	14	parameter	values	are	kept	at	their	benchmarks.

Figure 4
Fraction	qi	of	players	of	kind	i,	i	=	x,	y,	z,	as	a	function	of	the	15	parameters	wx,	wy,	wz,	ωi,	ki,	mx,	my,	mz,	μx,	μy,	μz,	
relative	to	the	benchmark	parameter	values	in	Table	1b,	wx	=	wy	=	0,	wz	=	0.5,	ωi	=	0.5,	ki	=	1,	mx	=	1,	my	=	mz	=	–1,	
μx	=	1,	μy	=	0.2,	μz	=	0.1,	i	=	x,	y,	z,	assuming	the	stationary	solution,	i.e.	after	sufficiently	much	time	t	has	elapsed,	
in	section	3.2. 3 
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In	our	benchmark	from	the	previous	section	3.2,	Figure	3b	based	on	Table	1b	determines	
the	stationary	solution	limt →	∞	qx	=	0.5	for	conventionalists,	limt →	∞	qy	=	0.4	for	pioneers,	and	
limt →	∞	qz	=	0.1	for	criminals,	after	sufficiently	much	time	t	has	elapsed,	depicted	with	a	dashed	
vertical	line	in	the	15	panels	in	Figure	4.	As	each	parameter	value	varies,	the	stationary	solution,	
hereafter	for	simplicity	referred	to	as	qx,	qy,	qz,	varies	from	qx =	0.5,	qy	=	0.4,	qz	=	0.1	to	some	
other	values.

In	Figure	4a,	as	the	fraction	wx	of	conventionalists’	transactions	which	is	criminal	increases	
above	the	benchmark	wx	=	0,	causing	conventionalists	 to	risk	detection	and	prosecution	if	
transacting	criminally,	the	fraction	qx	of	conventionalists	decreases	from	qx =	0.5	to	qy =	0,	which	
means	extinction,	due	to	lower	expected	utility.	Pioneers	and	criminals	benefit	from	increasing	wx.	
As	wx	increases	above	wx	=	0,	the	fraction	qx	of	pioneers	increases	from	qy	=	0.4	to	qy	=	0.85,	and	
the	fraction	qz	of	criminals	increases	from	qz	=	0.1	to	qz	=	0.15,	due	to	higher	expected	utilities.	
The	fractions	qx,	qy,	qz,	remain	constant	for	0	<	wx	≤	1	since	wx	impacts	only	conventionalists’	
expected	utility,	and	not	pioneers’	and	criminals’	expected	utilities.

In	Figure	4b,	as	the	fraction	wy	of	pioneers’	transactions	which	is	criminal	increases	above	the	
benchmark	wy	=	0,	causing	pioneers	to	risk	detection	and	prosecution	if	transacting	criminally,	
the	fraction	qy	of	pioneers	decreases	convexly	from	qy	=	0.4	to	qy	=	0.07	when	wy	=	1,	while	the	
fraction	qz	of	criminals	decreases	marginally	and	convexly	from	qz	=	0.1	to	qz	=	0.07	when	wy	=	1.	
Conventionalists	benefit	from	increasing	wy.	As	wy	increases	above	wy	=	0,	the	fraction	qx	of	
conventionalists	increases	concavely	from	qx =	0.5	to	qx =	0.86	when	wy	=	1.

In	Figure	4c,	as	the	fraction	wz	of	criminals’	transactions	which	is	criminal	increases	above	
the	benchmark	wz	=	0.5,	the	fraction	qz	of	criminals	decreases	convexly	from	qz	=	0.1	to	qz	=	0.04	
when	wz	=	1,	while	the	fraction	qy	of	pioneers	decreases	convexly	from	qy	=	0.4	to	qy	=	0.31	
when	wy	=	1.	That	is	because	criminals	and	pioneers	do	not	benefit	when	they	or	their	criminal	
transactions	become	more	numerous,	cf	(4)	when	my	=	mz	=	–1	and	mx	=	1.	Conventionalists	
benefit	from	increasing	wz,	while	criminals	and	pioneers	do	not.	As	wz	increases	above	wz	=	0.5,	
the	fraction	qx	of	conventionalists	increases	concavely	from	qx =	0.5	to	qx =	0.65	when	wz	=	1.	
In	contrast,	as	wz	decreases	below	wz	=	0.5,	criminals	benefit	from	their	criminal	transactions	
becoming	less	numerous.	That	causes	the	expected	utility	Ux	for	conventionalists	to	be	lower	
than	Uy	and	Uz	for	pioneers	and	criminals,	Ux	<	Uy	and	Ux	<	Uz,	regardless	of	the	fraction	qx	of	
conventionalists.	That	is	economically	detrimental	for	conventionalists.	In	such	circumstances	no	
one	wants	to	be	a	conventionalist.	Hence	qx =	0	when	wz	<	0.5.	That	gives	a	sudden	downward	
jump	in	qx,	and	hence	upward	jumps	in	qy	and	qz	as	all	the	three	kinds	of	players	adapt	to	the	
disappearance	of	conventionalists	who	cannot	justify	their	low	expected	utility	Ux.	Hence,	when	
wz	<	0.5,	the	replicator	equation	in	(7)	strikes	a	balance	between	the	fractions	qy	and	qz	of	pioneers	
and	criminals,	which	are	qy	=	0.85	and	qz	=	0.15	when	wz	=	0.5	–	ε,	where	ε	>	0	is	arbitrarily	small	
but	positive,	thus	excluding	conventionalists.	As	wz	decreases	below	wz	=	0.5,	the	fraction	qz	of	
criminals	increases	convexly	from	qz	=	0.15	to	qz	=	0.33	when	wz	=	0,	while	the	fraction	qz	of	
pioneers	decreases	concavely	from	qy	=	0.85	to	qy	=	0.67	when	wz	=	0.

In	Figure	4d,	as	the	probability	ωx	that	the	government	detects	and	prosecutes	conventionalists’	
criminal	behavior	changes	from	the	benchmark	ωx	=	0.5,	the	fractions	qx =	0.5,	qy	=	0.4,	qz	=	0.1	
of	conventionalists,	pioneers	and	criminals	remain	constant	and	unchanged	since	ωx	in	(5)	is	
multiplied	with	the	benchmark	fraction	wx	=	0	of	conventionalists’	transactions	which	is	criminal.	
Since	wx	=	0,	ωx	has	no	impact.

In	Figure	4e,	analogously,	as	the	probability	ωy	that	the	government	detects	and	prosecutes	
pioneers’	criminal	behavior	changes	from	the	benchmark	ωy	=	0.5,	the	fractions	qx =	0.5,	qy	=	0.4,	
qz	=	0.1	of	conventionalists,	pioneers	and	criminals	remain	constant	and	unchanged	since	ωy	
in	(5)	is	multiplied	with	the	benchmark	fraction	wy	=	0	of	pioneers’	transactions	which	is	criminal.	
Since	wy	=	0,	ωy	has	no	impact.
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Figure	4f,	where	the	probability	ωz	that	the	government	detects	and	prosecutes	the	criminals’	
criminal	behavior	varies,	is	equivalent	to	Figure	4c	since	kz	=	1	in	(5),	and	thus	varying	ωz	has	
the	same	impact	as	varying	the	fraction	wz	of	the	criminals’	transactions	which	is	criminal,	
acknowledging	that	both	parameters	are	restricted	to	the	same	interval,	0	≤	ωz,	wz	≤	1	and	have	
the	same	benchmark	values	ωz	=	wz	=	0.5.	As	in	Figure	4c,	as	wz	<	0.5	so	that	the	fraction	wz	of	the	
criminals’	transactions	which	is	criminal	decreases	below	the	benchmark	wz	=	0.5,	conventionalists	
cannot	justify	their	existence	due	to	their	low	utility	Ux	<	Uy	and	Ux	<	Uz,	and	hence	qx	=	0.

In	Figure	4g,	as	the	scaling	exponent	kx	for	what	conventionalists	retain	after	criminal	behavior	
changes	from	the	benchmark	kx	=	1,	the	fractions	qx =	0.5,	qy	=	0.4,	qz	=	0.1	of	conventionalists,	
pioneers	and	criminals	remain	constant	and	unchanged	since	kx	in	(5)	is	an	exponent	where	the	
base	wx	=	0	of	the	conventionalists’	transactions	which	is	criminal.	Since	wx	=	0,	kx	has	no	impact.

In	Figure	4h,	as	the	scaling	exponent	ky	for	what	pioneers	retain	after	criminal	behavior	
changes	from	the	benchmark	ky	=	1,	the	fractions	qx =	0.5,	qy	=	0.4,	qz	=	0.1	of	conventionalists,	
pioneers	and	criminals	remain	constant	and	unchanged	since	ky	in	(5)	is	an	exponent	with	base	
wy	=	0	which	expresses	the	fraction	of	the	pioneers’	transactions	which	is	criminal.	That	is,	
since	wy	=	0,	ky	has	no	impact.

In	Figure	4i,	as	the	scaling	exponent	kz	for	what	criminals	retain	after	criminal	behavior	
increases	above	the	benchmark	kz	=	1,	the	expected	utility	Ux	for	conventionalists	becomes	lower	
than	Uy	and	Uz	for	pioneers	and	criminals,	regardless	of	the	fraction	qx	of	conventionalists,	and	
hence	qx =	0	when	kz	>	1.	Hence	conventionalists	cannot	justify	their	existence	due	to	Ux	<	Uy	and	
Ux	<	Uz,	just	as	when	wz	<	0.5	in	Figure	4c	and	Figure	4f.	That	causes	the	replicator	equation	in	
(7)	to	strike	a	balance	between	the	fractions	qy	and	qz	of	pioneers	and	criminals.	As	kz	increases,	
the	fraction	qy	of	pioneers	increases	from	qy	=	0.4	when	kz	=	1	to	qy	=	0.85	when	kz	>	1,	and	
thereafter	decreases	convexly	towards	the	same	value	as	when	wz	=	0	in	Figure	4c,	or	when	ωz	=	0	
in	Figure	4f,	i.e.	 0.67lim qy

z

=
k "3

,t"3 .	The	fraction	qz	of	criminals	increases	from	qz	=	0.1	when	

kz	=	1	to	qz	=	0.15	when	kz	>	1,	due	to	the	disappearance	of	conventionalists,	and	thereafter	
increases	concavely,	due	to	successful	competition	with	pioneers	as	kz	increases,	eventually	
reaching	the	same	value	as	when	wz	=	0	in	Figure	4c,	or	when	ωz	=	0	in	Figure	4f,	in	accordance	
with	the	term	 wz z

kz~ 	in	(5),	 0.lim q 33z
z

=
k "3

,t"3 .	In	contrast,	as	kz	decreases	below	kz	=	1,	the	

fraction	qx	of	conventionalists	increases	concavely,	competing	successfully	against	pioneers	and	
criminals,	eventually	reaching	qz	=	0.65	when	kz	=	0.	As	kz	decreases	below	kz	=	1,	the	fractions	qy	
and	qz	of	pioneers	and	criminals	decrease	convexly	towards	qy	=	0.31	and	qz	=	0.04	when	kz	=	0.

In	Figure	4j,	as	the	scaling	exponent	mx	for	how	conventionalists	get	increased	(since	mx	≥	0)	
expected	utility	increases	above	the	benchmark	mx	=	1,	the	expected	utility	Ux	for	conventionalists	
becomes	lower	 than	Uy	and	Uz	 for	pioneers	and	criminals,	 regardless	of	 the	fraction	qx	of	
conventionalists,	and	hence	qx	=	0	when	mx	=	1.	Hence	conventionalists	cannot	justify	their	
existence,	just	as	when	wz	<	0.5	in	Figure	4c	and	Figure	4f	and	kz	>	1	in	Figure	4i.	This	follows	
mathematically	from	(5)	where	qxmx 	decreases	as	mx	increases	when	0	<	qx	<	1.	That	causes	the	
replicator	equation	in	(7)	to	strike	a	balance	between	the	fractions	qy	and	qz	of	pioneers	and	
criminals.	Since	mx	does	not	impact	that	balance,	the	fractions	qy	and	qz	of	pioneers	and	criminals	
are	constant	at	qy	=	0.95	and	qz	=	0.15	when	mx	>	1.	In	contrast,	as	mx	decreases	below	mx	=	1,	the	
fraction	qx	of	conventionalists	increases	concavely,	competing	successfully	against	pioneers	and	
criminals,	eventually	reaching	qx	=	0.74	when	mx	=	0.	This	also	follows	mathematically	from	(5)	
where	qxmx 	increases	as	mx	decreases	when	0	<	qx	<	1.	As	mx	decreases	below	mx	=	1,	the	fractions	
qy	and	qz	of	pioneers	and	criminals	decrease	convexly,	eventually	reaching,	qy	=	0.2	and	qz	=	0.06	
when	mx	=	0.

In	Figure	4k,	as	the	scaling	exponent	my	for	how	pioneers	get	decreased	(since	my	≤	0)	
expected	utility	increases	above	the	benchmark	my	=	–1,	the	fraction	qy	of	pioneers	decreases	
convexly,	eventually	going	extinct,	i.e.	qy	=	0	when	my	=	0.	This	follows	mathematically	from	
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(5)	where	qm
y
y 	decreases	as	my	increases	when	0	<	qy	<	1.	As	my	increases	above	my	=	–1,	the	

fraction	qx	of	conventionalists	increases	concavely,	competing	successfully	with	pioneers	and	
criminals,	eventually	reaching	qx	=	0.94	when	my	=	0,	while	the	fraction	qz	of	criminals	decreases	
convexly,	eventually	reaching	qz	=	0.06	when	my	=	0.	In	contrast,	as	my	decreases	below	my	=	–1,	
the	expected	utility	Ux	for	conventionalists	is	lower	than	Uy	and	Uz	for	pioneers	and	criminals,	
regardless	of	the	fraction	qx	of	conventionalists,	and	hence	qx	=	0	when	my	<	–1.	Conventionalists	
then	vanish,	as	in	several	of	the	panels	above.	That	causes	the	replicator	equation	in	(7)	to	strike	
a	balance	between	the	fractions	qy	and	qz	of	pioneers	and	criminals,	which	are	qy	=	0.85	and	
qz	=	0.15	when	my	=	–1	–	ε,	where	ε	>	0	is	arbitrarily	small	but	positive.	As	my	decreases	below	
my	=	–1	–	ε,	the	fraction	qy	of	pioneers	increases	concavely,	eventually	outcompeting	criminals,	
i.e.	 lim q 1

m
y

y

=
" 3-
,t"3 ,	while	the	fraction	qz	of	criminals	decreases	convexly,	eventually	going	

extinct,	i.e.	lim q 0
m

z
y

=
" 3-
,t"3 .	This	follows	mathematically	from	(5)	where	qmy y 	increases	without	

bounds	as	my	decreases	towards	minus	infinity	when	0	<	qy	<	1.
In	Figure	4l,	as	the	scaling	exponent	mz	for	how	criminals	get	decreased	(since	mz	≤	0)	

expected	utility	increases	above	the	benchmark	mz	=	–1,	the	fraction	qz	of	criminals	decreases	
convexly,	eventually	going	extinct,	i.e.	qz	=	0	when	mz	=	0.	This	follows	mathematically	from	(5)	
where	qmz z 	decreases	as	mz	increases	when	0	<	qz	<	1.	As	mz	increases	above	mz	=	–1,	the	fraction	
qx	of	conventionalists	increases	concavely,	competing	successfully	with	pioneers	and	criminals,	
eventually	reaching	qx	=	0.72	when	mz	=	0,	while	the	fraction	qy	of	pioneers	decreases	convexly,	
eventually	reaching	qy	=	0.28	when	mz	=	0.	In	contrast,	as	mz	decreases	below	mz	=	–1,	the	
expected	utility	Ux	for	conventionalists	is	lower	than	Uy	and	Uz	for	pioneers	and	criminals,	
regardless	of	the	fraction	qx	of	conventionalists,	and	hence	qx	=	0	when	mz	<	–1.	Conventionalists	
then	vanish,	as	in	several	of	the	panels	above.	That	causes	the	replicator	equation	in	(7)	to	strike	
a	balance	between	the	fractions	qy	and	qz	of	pioneers	and	criminals,	which	are	qy	=	0.85	and	
qz	=	0.15	when	mz	=	–1	–	ε,	where	ε	>	0	is	arbitrarily	small	but	positive.	As	mz	decreases	below	
mz	=	–1	–	ε,	the	fraction	qz	of	criminals	increases	concavely,	eventually	outcompeting	pioneers,	i.e.	
lim q 1

m
z

z

=
" 3-
,t"3 ,	while	the	fraction	qy	of	pioneers	decreases	convexly,	eventually	going	extinct,	

i.e.	lim q 0
m

y
z

=
" 3-
,t"3 .	This	follows	mathematically	from	(5)	where	qmz z 	increases	without	bounds	

as	mz	decreases	towards	minus	infinity	when	0	<	qz	<	1.
In	Figure	4m,	as	 the	scaling	proportionality	parameter	μx	 for	how	conventionalists	get	

increased	(since	mx	=	1)	expected	utility	increases	above	the	benchmark	μx	=	1,	the	fraction	qx	
of	conventionalists	increases	concavely,	eventually	outcompeting	pioneers	and	criminals,	i.e.	
lim q 1x

x

=
n "3

,t"3 .	Thus	the	fractions	qy	and	qz	decrease	concavely,	lim limq q 0y z
xx

= =
nn " "3 3

, ,t t" "3 3 .	

In	contrast,	as	μx	decreases	below	μx	=	1,	the	expected	utility	Ux	for	conventionalists	is	lower	than	
Uy	and	Uz	for	pioneers	and	criminals,	regardless	of	the	fraction	qx	of	conventionalists,	and	hence	
qx	=	0	when	μx	<	1.	Conventionalists	then	vanish,	as	in	several	of	the	panels	above.	That	causes	
the	replicator	equation	in	(7)	to	strike	a	balance	between	the	fractions	qy	and	qz	of	pioneers	and	
criminals,	which	are	qy	=	0.85	and	qz	=	0.15	when	μx	<	1.

In	Figure	4n,	as	the	scaling	proportionality	parameter	μy	for	how	pioneers	get	decreased	
(since	my	=	–1)	expected	utility	increases	above	the	benchmark	μy	=	0.2,	the	expected	utility	Ux	
for	conventionalists	becomes	lower	than	Uy	and	Uz	for	pioneers	and	criminals,	regardless	of	the	
fraction	qx	of	conventionalists,	and	hence	qx	=	0	when	μy	>	0.2.	Conventionalists	then	vanish,	as	in	
several	of	the	panels	above.	That	causes	the	replicator	equation	in	(7)	to	strike	a	balance	between	
the	fractions	qy	and	qz	of	pioneers	and	criminals.	As	μy	increases,	the	fraction	qy	of	pioneers	
increases	from	qy	=	0.4	when	μy	=	0.2	to	qy	=	0.85	when	μy	>	0.2,	and	thereafter	increases	concavely,	
eventually	outcompeting	criminals,	 lim q 1y

y

=
n "3

,t"3 .	The	fraction	qz	of	criminals	increases	
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from	qz	=	0.1	when	μy	=	0.2	to	qz	=	0.15	when	μy	>	0.2,	due	to	the	disappearance	of	conventionalists,	
and	thereafter	decreases	convexly,	due	to	unsuccessful	competition	with	pioneers,	eventually	
going	extinct,	 lim q 0z

y

=
n "3

,t"3 .	In	contrast,	as	μy	decreases	below	μy	=	0.2,	the	fraction	qx	of	

conventionalists	increases	concavely,	competing	successfully	against	pioneers	and	criminals,	
eventually	reaching	qy	=	0.94	when	μy	=	0.	As	μy	decreases	below	μy	=	0.2,	the	fractions	qy	and	
qz	of	pioneers	and	criminals	decrease	convexly,	pioneers	eventually	going	extinct,	qy	=	0	when	
μy	=	0,	while	criminals	enjoy	some	presence,	i.e.	qz	=	0.06	when	μy	=	0.

In	Figure	4o,	as	the	scaling	proportionality	parameter	μz	for	how	criminals	get	decreased	
(since	mz	=	–1)	expected	utility	increases	above	the	benchmark	μz	=	0.1,	the	expected	utility	Ux	
for	conventionalists	becomes	lower	than	Uy	and	Uz	for	pioneers	and	criminals,	regardless	of	the	
fraction	qx	of	conventionalists,	and	hence	qx	=	0	when	μz	>	0.1.	Conventionalists	then	vanish,	as	in	
several	of	the	panels	above.	That	causes	the	replicator	equation	in	(7)	to	strike	a	balance	between	
the	fractions	qy	and	qz	of	pioneers	and	criminals.	As	μz	increases,	the	fraction	qy	of	pioneers	
increases	from	qy	=	0.4	when	μz	=	0.1	to	qy	=	0.85	when	μz	>	0.1,	and	thereafter	decreases	convexly,	
eventually	being	outcompeted	by	criminals	and	going	extinct,	lim q 0y

z

=
n "3

,t"3 .	The	fraction	qz	of	

criminals	increases	from	qz	=	0.1	when	μz	=	0.1	to	qz	=	0.15	when	μz	>	0.1,	due	to	the	disappearance	
of	conventionalists,	and	thereafter	increases	concavely,	due	to	successful	competition	with	
pioneers,	eventually	becoming	dominant	and	excluding	pioneers,	lim q 1z

z

=
n "3

,t"3 .	In	contrast,	as	

μz	decreases	below	μz	=	0.1,	the	fraction	qx	of	conventionalists	increases	concavely,	competing	
successfully	against	pioneers	and	criminals,	eventually	reaching	qz	=	0.72	when	μz	=	0.	As	μz	
decreases	below	μz	=	0.1,	the	fractions	qy	and	qz	of	pioneers	and	criminals	decrease	convexly,	
criminals	eventually	going	extinct,	qz	=	0	when	μz	=	0,	while	pioneers	are	present	at	qy	=	0.28	
when	μz	=	0.

4. EXPLAINING THE IMPLICATIONS OF THE RESULTS

With	the	emergence	of	new	currencies,	each	player’s	first	choice	of	which	volume	fractions	
of	its	transactions	should	be	in	the	national	currency	and	the	global	currency	can	be	expected	
to	become	more	significant.	The	player’s	choice	impacts	both	its	utility,	society’s	utility,	which	
currencies	gain	traction,	and	which	institutions	and	parts	of	society	benefit	from	which	currencies	
gain	traction.	These	factors	in	turn	can	be	expected	to	impact	finance,	business,	markets	and	
probably	monetary	policy,	especially	 if	no	single	currency	is	or	becomes	dominant	within	
a	given	country.	

Each	player’s	second	choice	of	whether	to	be	a	conventionalist,	pioneer	or	criminal	also	
impacts	its	utility,	and	impacts	how	society	becomes	composed	of	these	three	kinds	of	players.	
If	conventionalists	become	less	numerous,	as	illustrated	for	several	combinations	of	parameter	
values	in	the	previous	section,	society	may	evolve	to	become	less	conventional,	with	competition	
between	pioneers	and	criminals.

The	finding	that	each	player’s	expected	utility	is	inverse	U-shaped	as	a	function	of	the	
volume	fraction	of	its	transactions	in	each	currency	challenges	each	player	to	assess	its	identity	
as	a	conventionalist,	pioneer	or	criminal.	Each	player	is	furthermore	challenged	to	determine	
the	impact	of	the	subelasticities	labeled	as	backing,	convenience,	confidentiality,	transaction	
efficiency,	financial	stability,	and	security	on	in	its	Cobb-Douglas	expected	utility	for	the	two	
currencies.	This	amounts	to	determining	whether	the	inverse	U-shape	is	skewed	with	a	maximum	
towards	the	left	or	the	right,	and	hence	which	currency	should	be	chosen	for	the	highest	fraction	
of	transactions,	which	may	give	fluctuations	in	currency	markets.
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5. CONCLUSION

This	article	analyzes	conventionalists,	pioneers	and	criminals	choosing	between	a	national	
currency,	e.g.	a	CBDC	(central	bank	digital	currency)	or	another	currency	common	within	
a	nation,	and	a	global	currency,	e.g.	Bitcoin	or	Meta’s	Diem,	which	may	have	limited	usage	
within	a	nation	(e.g.	for	purchases	and	tax	payments),	but	may	offer	other	possibilities	such	
as	application	across	nations	and	user	autonomy.	Conventionalists	tend	to	prefer	the	national	
currency,	pioneers	(early	adopters)	tend	to	prefer	the	global	currency,	and	criminals	tend	to	prefer	
the	global	currency	if	it	contributes	(e.g.	through	confidentiality)	to	not	getting	caught.

Each	player	has	a	Cobb-Douglas	utility	with	one	output	 elasticity	 for	 each	of	 the	 two	
currencies.	Each	output	elasticity	is	comprised	of	six	subelasticities,	i.e.	which	kind	of	backing	
a	currency	has	from	trustworthy	actors	or	systems	(e.g.	central	banks	for	CBDCs	and	distributed	
ledger	technology	for	cryptocurrencies),	convenience	(e.g.	user	friendliness),	confidentiality	
(balancing	privacy,	availability,	accessibility,	and	discrimination),	transaction	efficiency	(low	
cost,	fast	speed,	affordability,	finality),	financial	stability	(e.g.	resilience	during	crises	and	shocks),	
and	security	(e.g.	whether	funds	are	safe	and	not	subject	to	51%	attacks).	Each	player’s	expected	
utility	is	expanded	to	account	negatively	for	detection	and	prosecution	of	criminal	behavior,	and	
accounts	for	the	fractions	of	the	three	kinds	of	players.	Conventionalists	benefit	from	the	presence	
of	many	conventionalists.	Pioneers	and	criminals	benefit	from	the	presence	of	few	pioneers	and	
criminals,	respectively.

Each	player	makes	two	strategic	choices	to	maximize	its	expected	utility,	i.e.	which	volume	
fraction	of	its	transactions	should	be	in	the	national	currency	(causing	the	remaining	fraction	to	
be	in	the	global	currency),	and	what	kind	of	player	it	should	be,	i.e.	a	conventionalist,	pioneer	or	
criminal.	The	first	choice	becomes	increasingly	relevant	in	today’s	world	as	we	expect	players	
to	have	easier	access	to	more	than	one	currency.	Hence	the	market	share	of	two	currencies	may	
change	over	time,	as	illustrated	in	this	article.	The	first	choice	depends	on	which	kind	of	player	
the	player	is,	but	does	not	depend	on	the	number	of	players	of	this	kind,	and	hence	does	not	
depend	on	time.	Each	player’s	second	choice	is	what	kind	of	player	it	should	be	through	time.	
Hence	this	second	choice	depends	on	time,	through	replicator	dynamics.

Each	player’s	expected	utility	is	inverse	U-shaped	as	a	function	of	the	volume	fraction	of	its	
transactions	in	the	national	currency.	Hence	each	player	prefers	not	to	rely	exclusively	on	one	
currency.	The	expected	utility	is	skewed	towards	the	right	(high	fraction)	for	conventionalists,	
who	prefer	the	national	currency,	and	more	so	if	the	conventionalists’	six	output	subelasticities	for	
the	national	currency	are	high.	The	expected	utility	is	skewed	towards	the	left	(low	fraction)	for	
pioneers	and	criminals,	who	prefer	the	global	currency,	and	more	so	if	the	pioneers’	and	criminals’	
six	output	subelasticities	for	the	global	currency	are	high.	Three	examples	are	considered	for	the	
degree	of	skewness	towards	the	right	and	left.	Today’s	financial	system	increasingly	seems	to	
require	players	to	assess	whether	the	various	available	currencies	are	characterized	by	inverse	
U-shaped	expected	utilities	skewed	towards	the	right	or	the	left.	Players	more	able	to	assess	these	
inverse	U-shapes	as	functions	of	volume	fractions,	and	more	able	to	assess	whether	they	are	
conventionalists,	pioneers	and	criminals,	can	expect	to	earn	higher	expected	utilities.	Society’s	
expected	utility	is	the	weighted	sum	of	each	player’s	expected	utility	weighted	by	the	fraction	of	
players	of	each	kind.

The	replicator	equation	is	used	to	illustrate	the	evolution	of	the	fractions	of	the	three	kinds	
of	players	through	time,	assuming	initial	conditions	with	conventionalists	in	the	majority,	and	
pioneers	and	criminals	in	the	minority.	We	illustrate	how	conventionalists	may	become	more	
dominant	and	criminals	less	dominant	through	time	if	all	the	three	kinds	of	players’	expected	
utilities	are	skewed	towards	the	right	(i.e.	prefer	the	national	currency).	In	contrast,	pioneers	and	
criminals	may	become	more	dominant	and	conventionalists	may	go	extinct	if	all	the	three	kinds	
of	players’	expected	utilities	are	skewed	towards	the	left	(i.e.	prefer	the	global	currency).
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Considering	the	stationary	solution	after	sufficiently	much	time	has	elapsed,	the	model’s	
sensitivity	with	respect	to	15	parameter	values	is	analyzed.	The	analysis	shows	that,	typically,	
conventionalists	(which	prefer	to	be	in	the	majority)	tend	to	compete	against	pioneers	and	
criminals	(which	prefer	to	be	in	the	minority).	Hence	if	a	change	in	a	parameter	value	causes	the	
fraction	of	conventionalists	to	increase	(decrease),	the	fractions	of	both	pioneers	and	criminals	
may	decrease	(increase).	The	exception	is,	of	course,	when	conventionalists	are	extinct,	which	
is	caused	by	their	expected	utility	being	too	low,	in	which	case	pioneers	and	criminals	compete	
directly	with	each	other,	so	an	increasing	(decreasing)	fraction	of	pioneers	causes	a	decreasing	
(increasing)	fraction	of	criminals.	

As	 the	 fraction	of	a	player’s	 transactions	which	 is	criminal,	or	 the	probability	 that	 the	
government	detects	and	prosecutes	the	player’s	criminal	behavior,	increases,	the	fraction	of	that	
kind	of	players	in	the	population	decreases,	causing	the	fraction	of	at	least	one	of	the	other	kinds	
of	players	to	increase.	Each	player	thus	responds	to	incentives,	ceasing	to	be	a	kind	of	player	with	
many	criminal	transactions,	and	ceasing	criminal	transactions	if	these	are	detected	and	prosecuted.

As	the	scaling	exponent	for	what	criminals	retain	after	criminal	behavior	increases,	their	
fraction	in	the	population	increases.	That	also	causes	the	fraction	of	pioneers	to	increase,	and	
the	fraction	of	conventionalists	to	decrease,	except	when	conventionalists	are	extinct,	which	
occurs	when	the	scaling	exponent	is	high,	in	which	case	the	fraction	of	pioneers	decreases	due	to	
competition	with	criminals.

As	the	positive	scaling	exponent	for	how	the	conventionalists	get	increased	expected	utility	
increases,	their	expected	utility	decreases	causing	their	fraction	in	the	population	to	decrease	and	
eventually	go	extinct.	That	causes	the	fractions	of	pioneers	and	criminals	to	increase.	As	the	negative	
scaling	exponents	for	how	pioneers	and	criminals	get	decreased	expected	utilities	increase,	their	
expected	utilities	decrease	causing	their	fractions	in	the	population	to	decrease	and	eventually	go	
extinct.	That	causes	the	fraction	of	conventionalists	to	transition	from	extinction	to	increase.	This	
illustrates	how	economic	incentives	for	conventionalists	can	make	them	more	numerous.

As	the	scaling	proportionality	parameter	for	how	conventionalists	get	increased	expected	
utility	increases,	their	fraction	increases,	as	they	respond	to	economic	incentives,	causing	the	
fractions	of	pioneers	and	criminals	to	decrease.	As	the	scaling	proportionality	parameters	for	
how	pioneers	and	criminals	get	increased	expected	utility	increase,	both	their	fractions	increase,	
also	responding	to	economic	incentives,	causing	the	fraction	of	conventionalists	to	decrease.	
Eventually,	 conventionalists	go	extinct,	 causing	more	pioneers	 and	 fewer	 criminals	 if	 the	
pioneers’	scaling	proportionality	parameter	increases,	and	more	criminals	and	fewer	pioneers	if	
the	criminals’	scaling	proportionality	parameter	increases.

Future	research	should	compile	and	assess	empirical	support	for	the	six	kinds	of	output	
subelasticities	for	national	and	global	currencies,	the	relevance	of	each	output	subelasticity,	
whether	other	output	subelasticities	can	be	envisioned,	or	whether	the	focus	should	be	on	fewer	
output	subelasticities.	Such	empirical	support	should	be	assessed	against	which	volume	fractions	
players	choose	for	national	and	global	currencies,	and	which	fractions	of	players	choose	to	be	
conventionalists,	pioneers,	and	criminals.	These	assessments	should	be	made	over	various	time	
periods	to	determine	which	factors	impact	which	national	and	global	currencies	spread	and	
become	dominant,	and	which	currencies	decline	in	relevance	and	go	extinct.	For	a	more	extensive	
dynamic	analysis,	the	parameters	such	as	the	12	output	subelasticities	may	be	allowed	to	depend	
on	time.	Various	alternatives	to	the	players’	expected	utilities	may	be	evaluated,	with	different	risk	
attitudes,	and	more	than	three	kinds	of	players	may	be	modeled.	Each	kind	may	have	different	
time	horizons	and	different	exchange	and	trading	strategies,	e.g.	many	exchanges	per	day	versus	
few	exchanges	per	decade.	More	than	one	national	currency	may	be	analyzed,	with	competition	
between	multiple	national	and	global	currencies	which	may	be	generalized	to	national	and	global	
assets	(e.g.	cryptoassets).	The	impact	of	competition	on	inflation,	interest	rates,	etc.,	may	be	
assessed,	and	other	players	such	as	regulators	and	governments	may	be	incorporated.
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The evolution of fixed-supply and variable-supply
currencies
Guizhou Wang1,2 & Kjell Hausken 1,2✉

Competition is analyzed between a fixed-supply currency (e.g. Bitcoin) and a variable-supply

currency (e.g. a fiat currency). Two kinds of players support the currencies differently and

choose their volume fractions of transactions in each currency. The variable-supply currency

enables money printing/withdrawal and inflation/deflation, which counteract each other in

each player’s utility. The exponentially increasing 1959–2021 US M2 money supply and the

positive inflation cause this utility to increase over time with high weight assigned to money

printing/withdrawal, and decrease otherwise. Three replicator equations determine each

player’s volume fraction of transactions in each currency, and which kind of player each

player prefers to be. High weight assigned to money supply relative to inflation induces

players to prefer the variable-supply currency. A player’s utility of transacting in each cur-

rency is proportional to the player’s support of that currency, the volume fraction of all

players’ transactions in that currency, and the fraction of players of the same kind as the

given player. A player’s utility of transacting in the variable-supply currency is additionally

proportional to two ratios. The first is the initial money supply plus the accumulative money

printing/withdrawal divided by the initial money supply. The second is the inverse of the

accumulative inflation/deflation. The players’ fractions of transactions in each currency may

be inverse U shaped or U shaped before typically converging towards preferring one or the

other currency. If each player can choose which kind of player to be, it may choose to be the

kind with the highest support of a given currency. If a player’s utility of transacting in a given

currency depends more on the fraction of players being of one kind than the other kind, the

player prefers to be of the first kind, thus assigning less weight to its support of that currency

and the volume fractions of transactions in that currency.
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Introduction
Background. Humans have used cash currencies for 40,000 years,
which evolved from natural objects to coins to paper to digital
versions (Kusimba, 2017). The Mesopotamian shekel emerged
nearly 5000 years ago, and silver and gold mints emerged in Asia
Minor 650–600 B.C, expanding to lead and copper coins in the
first millennium A.D. Currencies commonly have a central
authority and usually emerged for certain geographic areas and
nations. Sometimes the expansion is global, e.g. as a world reserve
currency. Fiat currencies have more recently expanded to also
become digital. Digital currencies such as Bitcoin have no central
authority and easily expand globally. Nakamoto (2008) shows
how a decentralized currency such as Bitcoin can be built on a
blockchain. He applies the proof of work technology to secure the
ledger and avoid the double spending problem. Today 17,834
cryptocurrencies exist with a market cap of $1.8 trillion (https://
coinmarketcap.com/, retrieved February 26, 2022). These vary
substantially regarding fixed versus variable supply, consensus
mechanisms (e.g. proof of stake), degree of decentralization,
ownership, regulation, confirmation of transactions, etc. New
digital currencies suggest competition between these and con-
ventional currencies. Understanding this competition can be
expected to be essential in the coming years.

Contribution. This article’s purpose, motivation, objectives,
research hypotheses, and research questions are as follows: First,
competition between one fixed-supply and one variable-supply
currency is analyzed to determine the evolutionary dynamics of
each currency and which currency survives. Second, each player
maximizes its utility by choosing which volume fraction of
transactions to conduct in each currency, and which of two kinds
of player to be, depending on various preferences. Third, the
variable-supply currency enables money printing/withdrawal
which impacts inflation/deflation which impacts each player’s
utility and strategic choices and thus how each currency evolves.
Being a certain kind of player means supporting one or the

other currency to a certain extent. Such support is expressed by a
currency’s backing, convenience, confidentiality, transaction
efficiency, financial stability, and security. A player’s utility of
transacting in the fixed-supply currency depends on the player’s
support of that currency, the volume fraction of all players’
transactions in that currency, and the fraction of players of the
same kind as the given player. A player’s utility of transacting in
the variable-supply currency depends on the same kinds of
factors, and additionally depends on the variable money supply
and inflation/deflation. That latter dependence is expressed on
the Cobb Douglas form multiplying two ratios, i.e. the initial
supply plus the accumulative money printing/withdrawal divided
by the initial supply, and the inverse of accumulative inflation/
deflation. If both ratios are valued equally and multiply to 1,
money printing/withdrawal and inflation/deflation counteract
each other. A product higher (lower) than 1 suggests higher
(lower) weight to money printing/withdrawal.
Fixed-supply currencies have been historically uncommon.

Gold viewed as a currency (Mitchell, 2021) is the best example,
with 1.5% additional gold mined in 2020 (197,576 metric tons has
been mined (gold.org, 2022). 3030 metric tons were produced in
2020 (Basov, 2022)). As a comparison, as of January 2022, 18.9
million Bitcoin out of 21 million coins have been mined, i.e. 90%
(Hayes, 2022). The process will continue at a decreasing speed
until approximately 2140. Both gold and Bitcoin are durable and
fungible (Learn, 2021). Gold has more established history, with
more entrenchment in cultures, central banks, and institutions,
but falls short of Bitcoin on portability, divisibility, censorship
resistance, verifiability, and scarcity (Ikkurty, 2019).

Whereas fixed-supply currencies eliminate inflation/deflation
caused by money printing/withdrawal, variable-supply currencies
do not. Variable-supply currencies offer added flexibility and
possibilities not possible for fixed-supply currencies, e.g. funding
wars and critical events, and Roosewelt’s 1933–1939 New Deal for
economic recovery. Money printing during such events suggests
subsequent contraction to avoid inflation. Many economies have
not exhibited the sufficient fiscal discipline. Even a traditionally
fiscally responsible economy like the US has experienced that $1
in 2022 buys 1.22% of what it would buy in 1695.
Using the 1959–2021 US M2 money supply and inflation data,

we show how a player’s utility of exchanging in the fixed-supply
currency is constant over time. The player’s utility of exchanging
in the variable-supply currency increases over time if more weight
is assigned to money printing/withdrawal, and otherwise
decreases over time.
One replicator equation expresses each kind of player’s

transaction volume in each currency. A third replicator equation
expresses how each player prefers to be of one or the other kind.
Each player’s fractions of transactions in each currency may be
inverse U shaped or U shaped before converging towards
preferring one or the other currency, depending on the player’s
support of each currency. If a player can choose which kind of
player to be, thus changing its support for a certain currency, it
may choose to be of the kind which supports a certain currency
highly. If a player is additionally impacted by how many players
exist of each kind, it may choose to be of the kind that is most
common.
Understanding how players choose between competing

currencies is useful for consumers, traders, policy makers,
regulators, institutions designing and issuing currencies, and
institutions adjusting and impacting money supply and inflation/
deflation.

Literature. Four groups of literature have been identified, i.e.
competition between fiat currencies and cryptocurrencies, central
bank digital currencies and cryptocurrencies, the cryptocurrency
market, and game theoretic analyses.

Competition between fiat currencies and cryptocurrencies. Schil-
ling and Uhlig (2019) evaluate how agents choose between a
cryptocurrency and a fiat currency. Cryptocurrencies may enable
tax evasion, anonymity, and censorship resistance, impacted by
transaction fees to miners. Fiat currencies are currently useful for
most purchases, impacted by value-added-taxes. They argue that
substitution decreases as the asymmetry in exchange fees and
transaction costs increase. This finding relates to how players in
the current article choose volume fractions of transactions in two
currencies, depending on their support for each currency which
in turn depends on each currency’s transaction efficiency, and
depending on other factors.
Fernández-Villaverde and Sanches (2019) specify a price stable

equilibrium, and some less desirable equilibria, for multiple
competing privately issued fiat currencies in a Lagos-Wright
environment. Their approach has a linkage to the analysis of two
coexisting currencies in the current article.
Almosova (2018) evaluates costly circulation of private

currencies, impacted by verification of transactions, mining costs,
etc. She finds that sufficiently low costs of private currency
circulation (mining costs) are needed to put downward pressure
on the inflation for the public currency. Cryptocurrency
competition may not cause price stability. These insights relate
to the current article where players may choose a fixed-supply
currency to avoid the inflation in the variable-supply currency.
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Benigno et al. (2019) evaluate a global cryptocurrency and two
national currencies. They find that different interest rates may
cause the national currency to be abandoned or the zero lower
bound may be approached. They argue that ensuring an
independent monetary policy, free capital flows, and a fixed
exchange rate may become even less possible. As a comparison,
the current article evaluates various other conditions that may
cause a currency to be abandoned.
Rahman (2018) considers how monetary policy is impacted by

fiat and digital currency competition. He argues that a purely
private arrangement of digital currencies cannot cause socially
efficient allocation, and that optimal monetary policy at the
Friedman rule will be socially inefficient. These insights suggest
the need to understand the nature of currency competition.
Verdier (2021) analyzes how competition in the deposit and

lending markets is impacted by a digital currency. She finds that
the digital currency crowds out bank deposits causing increasing
bank lending rates. That insight furthermore illustrates how
currency competition can cause substantial disruption, which
suggests a need to understand the evolutionary dynamics.

Central bank digital currencies and cryptocurrencies. Caginalp and
Caginalp (2019) analyze how the wealthy divide their assets
between a cryptocurrency and a home currency, similarly to how
the current article analyzes players choosing how to transact in
two currencies. Additionally they evaluate how a government can
confiscate some of the players’ assets.

Blakstad and Allen (2018) evaluate various conditions for
issuing central bank digital currencies, and risks and possibilities
associated with cryptocurrencies. Their analysis relates to the
current article where two currencies may be supported differently,
and the variable-supply currency may be designed with different
characteristics related to facilitating money printing/withdrawal
and inflation/deflation.

Masciandaro (2018) analyzes the evolution of different media
of payments depending on individual preferences, similarly to
this article modeling this evolution. They assess the implications
for monetary policy, addressing the zero lower bound constraint
for interest rates, and banking policy, e.g. risks of bank
disintermediation when the opportunity-cost discrepancies
between currencies decrease. That latter focus is partly or
indirectly present in the current article in the sense that the
abandonment of a variable-supply currency may cause banks to
change how they operate.
Benigno (2021) argues that competing currencies may cause

central banks to lose control of the nominal interest rate and
inflation which depend on structural factors. Cryptocurrencies may
set lower bounds on interest rates and inflation. The implication of
that insight may be the kind of coexistence of two currencies, or
one currency going extinct, as analyzed in the current article.
Asimakopoulos et al. (2019) evaluate substitution between a

government currency and a cryptocurrency, depending on
preferences, technology and monetary policy shocks, akin to
how the current article considers players’ substitution between
currencies.

The cryptocurrency market. ElBahrawy et al. (2017) analyze the
2013–2017 evolutionary dynamics of market shares of crypto-
currencies. They find several stable statistical properties, e.g. the
market share distribution, turnover, and number of active cryp-
tocurrencies. The current article confines attention to the evolu-
tionary dynamics of two currencies.
Caporale et al. (2018) find that cryptocurrencies’ past and

future values are positively correlated, with changing degree over
time. They argue that this constitutes market inefficiency,
enabling the generation of abnormal profits. Partly related, the

current article shows how players’ utilities change over time
depending on how they transact in two currencies.
ElBahrawy et al. (2019) evaluate the interplay between online

Wikipedia attention and market performance of cryptocurrencies.
They find that tightly knit editors impact Wikipedia and that
trading based on Wikipedia views mostly performs better than
baseline strategies, apart from buying and holding during
explosive market expansion. This also illustrates how players’
utilities change over time depending on various strategies, and
analyzed in this article.
White (2014) evaluates the market shares of Bitcoin and

altcoins, similarly to this article evaluating players’ volume
fractions of transactions in two currencies.
Sapkota and Grobys (2021) identify market inefficiency where

privacy coins exhibit market equilibrium unrelated to non-
privacy coins. They suggest that the result may be due to
criminals preferring non-privacy coins with high liquidity and
anonymity. Their approach shows how players consciously
choose between currencies with different properties, as in the
current article.
Milunovich (2018) determines weak connectedness between six

major asset classes and five cryptocurrencies, and mostly strong
connectedness within each of these two groups. If such weak
connectedness proves to be common for multiple currencies, that
suggests the need to understand how players choose between
multiple currencies with different characteristics, as in the current
article.
Gandal and Halaburda (2016) characterize recent cryptocur-

rency competition as winner-take-all, and early competition as no
winner-take-all. That more recent insight may reflect the finding
in this article of players gradually moving towards favoring one or
the other currency.

Game theoretic analyses. Imhof and Nowak (2006) consider a
stochastic frequency dependent Wright–Fisher process to deter-
mine the survival of two strategies. They specify two absorbing
states for the Markov process, where homogeneous populations
choose either strategy A or strategy B. Players typically abandon a
strategy occurring less frequently than 1/3 in an unstable equili-
brium. That corresponds partly to this article’s finding of players
often preferring one or the other currency.
Lewenberg et al. (2015) apply cooperative game theory to

determine that Bitcoin mining pools may find it challenging to
distribute rewards in a stable way, causing players to switch pools
frequently. That, in turn, may cause fluctuations which suggests
the importance of applying evolutionary dynamics to assess
players preferences over time.

Article organization. Section “The model” presents the model.
Section “Analyzing the model” analyzes the model. Section
“Discussion and future research” discusses the results. Section
“Conclusion” concludes.

The model
Nomenclature. Parameters
g Fixed-supply currency
n Variable-supply fiat currency
t0 Initial time, t0 ≥ 0
T Final time, T ≥ t0
j Time counting variable, t0 ≤ j ≤ T
i Player of kind i,i= 1,2
sit Player i’s support of currency g relative to currency n at

time t, 0 ≤ sit ≤ 1
μi Scaling proportionality parameter in player i’s

utilities uigt and uint, μi ≥ 0
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mi Scaling exponent in player i’s utilities uigt and uint, mi ≥ 0
Sj Supply at discrete time j of the variable-supply fiat currency

n, Sj 2 R
πj Inflation at time j, πj 2 R
αi Player i’s Cobb Douglas elasticity for money supply Sj,

0 ≤ αi ≤ 1
ki Player i’s process sensitivity for the fraction pit in the

replicator equation, ki ≥ 0
h Process sensitivity for the fraction q1t in the replicator

equation, h ≥ 0
Independent variables
t Time, t ≥ t0
pit Volume fraction of player i’s transactions in currency g at

time t, 0 ≤ pit ≤ 1
qit Fraction qit of players of kind i at time t, 0 ≤ qit ≤ 1,

q1t= 1−q2t
Dependent variables
pt Volume fraction of all players’ transactions in currency g at

time t, 0≤ pt ≤ 1
uigt Player i’s utility of transacting in the fixed-supply currency

g at time t, uigt ≥ 0
uint Player i’s utility of transacting in the variable-supply

currency n, uint ≥ 0
uit Player i’s weighted utility of transacting in both currencies,

uit ≥ 0
ut Society’s utility weighing the utilities of all players of both

kinds, ut ≥ 0

Overview of the model. Section “Simplified player utilities”
presents the simplified player utilities where two kinds of players
receive a fixed utility depending on their support of a fixed-supply
currency to two different extents. They also receive a variable
utility of transacting in the variable-supply currency depending
on money printing/withdrawal of that currency and inflation/
deflation. Section “More realistic player utilities” generalizes so
that the two kinds of players’ utilities also depend on their sup-
port of a given currency, the volume fraction of all players’ (of
both kinds) transactions in the given currency, and the fraction of
players of the same kind as the player being analyzed. Section
“Replicator dynamics” introduces three replicator equations
specifying each player’s volume fraction of transactions in each
currency, and which kind of player each player prefers to be.

Simplified player utilities. Consider two kinds of players referred
to as kind i; i ¼ 1; 2. Assume that player i (i.e. player of kind i)
earns a simplified utility uigst of transacting in the fixed-supply
currency g proportional to player i’s support sit , 0 ≤ sit ≤ 1, of
currency g relative to currency n at time t, i.e.

uigst ¼ 0:5sit ð1Þ
where the scaling 0.5 is chosen to ensure comparison with the
generalization in the next section. Assume further that player i’s
utility uinst of transacting in the variable-supply currency n is
proportional to its support 1� sit of currency n. Player i’s utility
uinst also depends on the variable money supply Sj and inflation/
deflation πj expressed on the Cobb Douglas form with elasticities
αi and 1� αi, respectively, 0≤ αi ≤ 1. We assume money supply
Sj, Sj 2 R, at the discrete times j ¼ t0; t0 þ 1; ¼ ;T , where t0 ≥ 0
is the initial time and T is the final time. Any time interval of
length 1 applies, e.g. year, month, week, day, etc. Thus Sjþ1 � Sj is

the changed supply from time j to time jþ 1,∑t�1
j¼ t0

Sjþ1 � Sj
� �

is

the changed supply from j ¼ t0 to j ¼ t � 1, and
St0þ∑t�1

j¼ t0
Sjþ1�Sjð Þ

St0
is the supply at time t divided by the supply at time t0 which

expresses player i’s purchasing power at time t relative to its
purchasing power at time t0 without inflation. With inflation πj,
πj 2 R, at time j ¼ t0; ¼ ;T , an asset valued as 1 at time j ¼ t0 is
valued as 1Qt

j¼ t0þ1
1þπjð Þ at time j ¼ t, thus degrading the asset

value due to accumulative inflation if
Qt

j¼ t0þ1 1þ πj

� �
>1, and

increasing the asset value otherwise. Thus player i’s simplified
utility of transacting in the variable-supply currency n is

uinst ¼ 0:5 1� sit
� � St0 þ∑t�1

j¼ t0
Sjþ1 � Sj

� �

St0

0
@

1
A

αi

1
Qt

j¼ t0þ1 1þ πj

� �
0
@

1
A

1�αi

ð2Þ
If αi > 0:5, player i assigns more weight to purchasing power than
to inflation/deflation, and conversely if αi < 0:5. Equal weights
αi ¼ 0:5 can theoretically be conceptualized as equating the two
last Cobb Douglas terms in Eq. (2) with 1 where player i’s
adjusted purchasing power from adjusted money supply Sjþ1 � Sj
is exactly offset by inflation/deflation πj through time.

More realistic player utilities. A fraction qit of the players are of
kind i at time t, where q1t ¼ 1� q2t , 0≤ q1t ≤ 1. Player i chooses a
volume fraction pit of its transactions in currency g, and the
remaining volume fraction 1� pit of its transactions in currency
n, see Fig. 1 which exemplifies with p1t>p2t and q1t<q2t , but
generally 0≤ pit ≤ 1, 0≤ qit ≤ 1; i ¼ 1; 2.
Hence the volume fraction pt at time t of all players’

transactions in currency g is the weighted sum of each player
i’s volume fraction pit in currency g, weighted by the fraction qit
of each kind of player i; i ¼ 1; 2, i.e.

pt ¼ p1tq1t þ p2tq2t ð3Þ
More realistically than the previous section “Simplified player

utilities”, assume that player i earns a utility uigt of transacting in
the fixed-supply currency g proportional to three factors, i.e. its
support sit of currency g relative to currency n, the volume
fraction pt of all players’ (of both kinds) transactions in currency
g, and the fraction qit of players of kind i. We operationalize the
latter as 1þ μiq

mi
it , where μi, μi ≥ 0 is a scaling proportionality

parameter, and mi, mi ≥ 0, is a scaling exponent. Thus a negligible
fraction qit � 0 causes the proportionality parameter � 1, and a
dominant fraction qit ¼ 1 causes the proportionality parameter
1þ μi. Generalizing Eq. (1), player i’s utility of transacting in the
fixed-supply currency g is

uigt ¼ sit p1tq1t þ p2tq2t
� �

1þ μiq
mi
it

� �
ð4Þ

Analogously, player i’s utility of transacting in the variable-
supply currency n is proportional to the same three factors, i.e. its
support 1� sit of currency n, the volume fraction 1� pt of all

Fig. 1 Volume fractions p1t and p2t of transactions in currencies g and n
for two kinds of players of different fractions q1t and q2t. Player i, i ¼ 1; 2,
chooses a volume fraction pit of its transactions in currency g, and 1� pit in
currency n, 0 � pit � 1, 0 � qit � 1, q1t þ q2t ¼ 1, i ¼ 1; 2.
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players’ transactions in currency n, and 1þ μiq
mi
it . Generalizing

Eq. (2), player i’s utility of transacting in the variable-supply
currency n is

uint ¼ 1� sit
� �

1� p1tq1t � p2tq2t
� �

1þ μiq
mi
it

� �

´
St0þ∑t�1

j¼t0
Sjþ1�Sjð Þ

St0

� �αi
1Qt

j¼t0þ1
1þπjð Þ

 !1�αi ð5Þ

Equations (4), (5) simplify to Eqs. (1), (2) when pit ¼ qit ¼ 0:5
and μi ¼ 0. Player i’s utility at time t is the weighted combination
of its volume fraction pit of transactions in the fixed-supply
currency g, and its remaining volume fraction 1� pit in the
variable-supply currency n, i.e.

uit ¼ pituigt þ 1� pit
� �

uint ð6Þ
Society’s utility, comprising all players of both kinds, is

ut ¼ q1u1t þ 1� q1
� �

u2t ð7Þ

Replicator dynamics
Player i’s volume of transactions in the fixed-supply currency g. To
analyze the evolution of the fraction pit of player i’s volume of
transactions in the fixed-supply currency g, causing 1� pit to be
in currency n, the replicator equation (Taylor and Jonker, 1978;
Weibull, 1997)

∂pit
∂t

¼ kipit uigt � uit
� �

¼ kipit 1� pit
� �

uigt � uint
� �

ð8Þ

is applied, inserting Eq. (6), where ki > 0 is the process sensitivity,
i.e. how rapidly the fraction pit changes. Intermediate ki causes a
stable process, while high and low pit give quick and slow
changes, respectively. The right-hand side of Eq. (8) is propor-
tional to the difference uigt � uit between player i’s utility of
transacting in the fixed-supply currency g and the weighted
combination of both utilities in Eq. (6), and also proportional to
the difference uigt � uint between player i’s utility of transacting in
the fixed-supply currency g and the variable-supply currency n.
When uigt exceeds uit or uint , the fraction pit increases, and
decreases otherwise. The right-hand side of Eq. (8) is furthermore
proportional to pnt 1� pnt

� �
which is inverse U shaped with a

maximum at pit ¼ 0:5 and minima at pit ¼ 0 and pit ¼ 1. The
fractions pit and 1� pit change most quickly when equally large,
and most slowly when one fraction dominates the other.

The fraction q1t of players of kind 1. If we allow each player of
kind 1 to change its preferences so as to be of kind 2, and each
player of kind 2 to be of kind 1, we can analyze the analogous
evolution of the fraction q1t of players of kind 1, causing q2t ¼
1� q1t to be of kind 2, i.e.

∂q1t
∂t

¼ hq1t u1t � ut
� � ¼ hq1t 1� q1t

� �
u1t � u2t
� � ð9Þ

where Eq. (7) is inserted and the process sensitivity h > 0 is
interpreted analogously to ki>0 in Eq. (8).

Analyzing the model
The US 1659–2021. Figure 2a, b plots the US M2 money supply
Sj (Federal Reserve, 2022) and the US inflation πi (CPI Inflation
Calculator, 2022) from time t0 ¼ 1959 to time T ¼ 2021. Figure
2c uses Eqs. (4), (5) and the empirics in Fig. 2a, b to plot player i’s
utilities uigt and uint of transacting in both currencies, assuming
support sit ¼ 0:5, equal volume fractions pit ¼ 0:5 of transactions
in both currencies, equal fractions qit ¼ 0:5 of both kinds of
players, scaling proportionality parameter μi ¼ 0, and Cobb

Douglas elasticities αi ¼ 0:6; 0:5; 0:35; 0:2. Player i’s utility is
constant at uigt ¼ 0:25 since currency g has no changes in supply
and no inflation. High and intermediate weights αi ¼ 0:6 and
αi ¼ 0:5 for changes in money supply Sj causes player i’s utility
uint to increase. Low weight αi ¼ 0:35 causes uint to oscillate
slightly above and below uint ¼ 0:25. Very low weight αi ¼ 0:2
causes uint to decrease overall. Figure 2c uses Eqs. (6) and (7) to
plot player i’s weighted utility uiAt of transacting in both cur-
rencies and society’s utility uAt weighing the utilities of all players
of both kinds. These two utilities uiAt ¼ uAt are equal since
pit ¼ qit ¼ 0:5. Since uigt ¼ 0:25, the weighted utilities uiAt ¼ uAt
increase less for αi ¼ 0:6 and αi ¼ 0:5 and decrease less for
αi ¼ 0:2.

Replicator dynamics with simplified utilities uigst and uinst in
Eqs. (1) and (2). Figure 3 applies the simplified utilities uigst and
uinst in Eqs. (1), (2) and the replicator equation in Eq. (8) to plot
player i’s fraction pit 1959–2021 with the same assumptions as in
Fig. 2, i.e. qit ¼ 0:5, μi ¼ 0, and 0:01≤ sit ≤ 0:99. Player i’s process
sensitivity and initial condition are ki ¼ pit0 ¼ 0:5. Figure 3a
assumes the high weight αi ¼ 0:6 for money supply Sj. With low
support sit ≤ 0:5 for the fixed-supply currency g relative to the
variable-supply currency n, the fraction pit of transactions in
currency g decreases towards zero. With higher support sit ¼ 0:6,
the fraction increases to a maximum pit ¼ 0:59 in 1972, and
thereafter decreases towards lim

t!T
pit � 0. That eventual decrease

occurs because of the high weight αi ¼ 0:6 assigned to money
supply Sj, which for the US 1959–2021 has meant preferable
money printing, which is impossible for the fixed-supply currency
g. With higher support sit ¼ 0:7, the fraction increases to a
maximum pit ¼ 0:84 in 1990, and thereafter decreases. With very
high support sit ¼ 0:99, the fraction increases towards
lim
t!T

pit � 1. Hence sufficiently high support sit for currency g can

cause player i to prefer it even with high weight assigned to
money supply Sj. Figure 3b assumes the low weight αi ¼ 0:2 for
money supply Sj. High support sit ≥ 0:6 then causes the fraction
pit to quickly increase towards lim

t!T
pit � 1. Intermediate support

sit ¼ 0:5 causes the fraction pit to decrease marginally to pit ¼
0:498 in 1968, and thereafter increase towards lim

t!T
pit � 1. Sup-

port sit ¼ 0:4 causes pit to decrease to pit ¼ 0:32 in 1979, and
thereafter to increase. Support sit ¼ 0:3 causes pit to decrease to
pit ¼ 0:115 in 2000, and thereafter to increase marginally to pit ¼
0:126 in 2021. Negligible support sit ¼ 0:01 causes pit to decrease
quickly to lim

t!T
pit � 0.

Figure 3c, d makes the same assumptions as Fig. 3a, b except
that the process sensitivity is 10 times higher, i.e. ki ¼ 5. That
causes pit to approach lim

t!T
pit � 0 more quickly when sit ≤ 0:3 and

approach lim
t!T

pit � 1 more quickly when sit ≥ 0:99. In Fig. 3c

where αi ¼ 0:6, pit when sit ¼ 0:6 reaches a higher maximum
pit ¼ 0:59 than in Fig. 3a, but in the same year 1972. Also in Fig.
3c, pit when sit ¼ 0:7 reaches a maximum extremely close to 1
(determined numerically as pit ¼ 0:9999999314), which is higher
than in Fig. 3a, and in the same year 1990, and thereafter
decreases towards lim

t!T
pit � 0. Similarly in Fig. 3d where αi ¼ 0:2,

pit when sit ¼ 0:5 reaches a lower minimum pit ¼ 0:476 than in
Fig. 3b, and in the same year 1968, and thereafter increases
towards lim

t!T
pit � 1. Also in Fig. 3d, pit when sit ¼ 0:4 reaches a

minimum extremely close to 0 (determined numerically as
pit ¼ 0:000429), which is lower than in Fig. 3b, and in the same
year 1979, and thereafter increases towards lim

t!T
pit � 1.
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Replicator dynamics with the utilities uigt and uint in Eqs. (4)
and (5). Figure 4 applies the utilities uigt and uint in Eqs. (4), (5),
and Eq. (8) to plot pit with the same assumptions as in Fig. 3, i.e.
qit ¼ pit0 ¼ ki ¼ 0:5, μi ¼ 0, and 0:01≤ sit ≤ 0:99. Accounting for
pit in the utilities uigt and uint causes pit to approach lim

t!T
pit � 0

or lim
t!T

pit � 1 more quickly than in Fig. 3. With high weight

αi ¼ 0:6 assigned to money supply Sj, two curves that approach
lim
t!T

pit � 0 or eventually decrease favoring currency n in Fig. 3a,

approach lim
t!T

pit � 1 in Fig. 4a so that player i prefers currency g

instead. First, with high support sit ¼ 0:7 for currency g, pit>0:5
until 2019 in Fig. 3a which positively impacts player i’s utility uigt

Fig. 2 US M2 money supply, US inflation, player utilities and society’s utility. a US M2 money supply Sj 1959–2021 in $billion. b US inflation πi
1959–2021. c and d Player i’s utilities uigt, uint, uit, ut as functions of time t when sit ¼ pit ¼ qit ¼ 0:5, μi ¼ 0 and αi ¼ 0:6;0:5;0:35;0:2.

Fig. 3 The volume fraction pit of player i’s transactions in currency g at time t 1959–2021 with simplified utilities uigst and uinst in Eqs. (1) and (2) when
pit0 ¼ 0:5, μi = 0, and 0:01 � sit � 0:99. a αi ¼ 0:6, k ¼ 0:5, b αi ¼ 0:2, k ¼ 0:5, c αi ¼ 0:6, k ¼ 5 and d αi ¼ 0:2, k ¼ 5.
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causing player i to favor currency g in Fig. 4a. Second, with
slightly lower support sit ¼ 0:6 for currency g, pit>0:5 until 1985
in Fig. 3a which is sufficient for player i to quickly favor currency
g in Fig. 4a, contrary to Fig. 3a. With low weight αi ¼ 0:2
assigned to money supply Sj, only one curve that eventually
increases in Fig. 3b, with support sit ¼ 0:4, quickly decreases in
Fig. 4b. That curve eventually increases in Fig. 3b since player i’s
utility uigt does not depend on pit . That enables player i to favor
currency g since low weight αi ¼ 0:2 assigned to money supply Sj
causes player i to prefer to avoid the inflation associated with
currency n. The opposite result follow in Fig. 4b since pit<0:5
until 2008, causing pit to quickly decrease towards lim

t!T
pit � 0

where currency n is preferred.

Replicator dynamics when players support currency g differ-
ently with s1t≠s2t . This section assumes that the two kinds of
players support currency g differently with s1t ≠ s2t . Figure 5
applies Eq. (8) to plot the volume fractions p1t and p2t of player i’s
transactions, i ¼ 1; 2, in currency g with the same assumptions as
in Fig. 4, i.e. qit ¼ pit0 ¼ ki ¼ 0:5, μi ¼ 0, and 0:01≤ sit ≤ 0:99.
Additionally, s1t ≠ s2t . With high weight αi ¼ 0:6 assigned to
money supply Sj, negligible support s1t ¼ 0:01 by player 1 and
more support s2t ≤ 0:7 by player 2 cause both volume fractions to
eventually approach lim

t!T
pit � 0 favoring currency n, though p2t

initially experiences an inverse U shape. Although the high sup-
port s1t ¼ s2t ¼ 0:7 comfortably enables both players to even-
tually transact exclusively in currency g in Fig. 4a, lim

t!T
p2t � 1, the

opposite result follows in Fig. 5a since player 1 supports currency
g much less at s1t ¼ 0:01. Negligible support s1t ¼ 0:01 by player
1 and overwhelming support s2t ¼ 0:99 by player 2 cause oppo-
site results for the two players, i.e. lim

t!T
p1t � 0 for player 1 and

lim
t!T

p2t � 1 for player 2. Support s1t ¼ 0:3 by player 1 and more

support s2t ¼ 0:7 by player 2 cause both volume fractions to
eventually approach lim

t!T
pit � 0 favoring currency n, though p2t

initially experiences a higher inverse U shape than when
s1t ¼ 0:01. Support s1t ¼ 0:3 by player 1 and overwhelming
support s2t ¼ 0:99 by player 2 also cause opposite results for the
two players, although player 1’s volume fraction p1t approaches
lim
t!T

p1t � 0 more slowly than when s1t ¼ 0:01, lim
t!T

p2t � 1.

Support s1t ¼ 0:4 by player 1 and more support s2t ¼ 0:7 by
player 2 cause both volume fractions to eventually approach
lim
t!T

pit � 0 favoring currency n, though p2t initially experiences a

higher inverse U shape than when s1t ¼ 0:3. Support s1t ¼ 0:4 by
player 1 and overwhelming support s2t ¼ 0:99 by player 2
interestingly cause both volume fractions to eventually approach

lim
t!T

pit � 0 favoring currency g. Although support s1t ¼ s2t ¼ 0:4

causes both players to eventually transact exclusively in currency
n in Fig. 4a, lim

t!T
p2t � 0, the opposite result follows in Fig. 5b

since player 2 supports currency g much more at s1t ¼ 0:99,
which enables player 1 to also eventually support currency g.
Support s1t ¼ 0:5 by player 1 and more support s2t ¼ 0:6 by
player 2 cause both volume fractions to eventually approach
lim
t!T

pit � 0 favoring currency n. Both fractions approach

lim
t!T

pit � 0 slowly, and p2t initially experiences an inverse U

shape. Support s1t ¼ 0:5 by player 1 and more support s2t ≥ 0:7 by
player 2 cause both volume fractions to eventually approach
lim
t!T

pit � 1 favoring currency g. This interesting result shows that

when s1t ¼ 0:5 for player 1, merely increasing player 2’s support
from s2t ¼ 0:6 to s2t ¼ 0:7 causes both players to eventually
change their preferences from currency n to currency g.

With low weight αi ¼ 0:2 assigned to money supply Sj, both
players generally prefer currency gmore easily. Negligible support
s1t ¼ 0:01 by player 1 and more support s2t ¼ 0:6 by player 2
cause both volume fractions to eventually approach lim

t!T
pit � 0

favoring currency n, though p2t in Fig. 5c initially experiences a
lower inverse U shape than in Fig. 5a. Negligible support s1t ¼
0:01 by player 1 and more support s2t ≥ 0:7 by player 2 cause
opposite results for the two players, i.e. lim

t!T
p1t � 0 for player 1

and lim
t!T

p2t � 1 for player 2, so that player 2 eventually prefers

currency g. This result in Fig. 5c differs from Fig. 5a when s2t ¼
0:7 where s2t ¼ 0:7 causes both players to eventually prefer
currency n. Support s1t ¼ 0:3 by player 1 and more support s2t ¼
0:5 by player 2 cause both volume fractions to eventually
approach lim

t!T
pit � 0 favoring currency n. Support s1t ¼ 0:3 by

player 1 and even more support s2t ¼ 0:6 by player 2 cause the
fraction p1t for player 1 to decrease towards limt!T

p1t � 0, while the

fraction p2t for player 2 increases overall extremely slowly
towards lim

t!T
p2t � 0:89 in 2021, in major support of currency g.

Support s1t ¼ 0:3 by player 1 and yet more support s2t ¼ 0:7 by
player 2 cause player 2’s fraction p2t to increase quickly towards
lim
t!T

p2t � 1. Player 1’s fraction p1t is U shaped towards a

minimum, and thereafter increases slowly towards lim
t!T

p1t � 0:30

in 2021. Although player 1 supports currency g modestly at
s1t ¼ 0:3, player 2’s higher support s2t ¼ 0:7 causes player 1 to
choose currency g to some modest extent. Support s1t ¼ 0:3 by
player 1 and overwhelming support s2t ¼ 0:99 by player 2 cause
player 2’s fraction p2t to increase quickly towards lim

t!T
p2t � 1.

Player 1’s fraction p1t is first U shaped towards a minimum that is

Fig. 4 The volume fraction pit of player i’s transactions in currency g at time t 1959–2021 with the utilities uigt and uint in Eqs. (4) and (5) when
qit ¼ pit0 ¼ ki ¼ 0:5, μi ¼ 0, and 0:01 � sit � 0:99. a αi ¼ 0:6 and b αi ¼ 0:2.
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higher than when s2t ¼ 0:7, and thereafter increases logistically
towards lim

t!T
p1t � 0:98. Despite low support s1t ¼ 0:3, player 1

eventually supports currency g substantially. Support s1t ¼ 0:4 by
player 1 and more support s2t ¼ 0:5 by player 2 cause both
volume fractions to slowly and eventually approach lim

t!T
pit � 0

favoring currency n. Support s1t ¼ 0:4 by player 1 and more
support s2t ≥ 0:6 by player 2 cause player 2’s fraction p2t to
increase towards lim

t!T
p2t � 1, while player 1’s fraction p1t is U

shaped towards a minimum (when s2t ¼ 0:6) and thereafter
increases towards lim

t!T
p1t � 1.

Replicator dynamics when the fraction qit of players of kind i
changes. This section assumes that the fraction qit of players of
kind i changes through time. Figure 6 applies Eqs. (8), (9) to plot
the volume fractions p1t and p2t of player i’s transactions, i ¼ 1; 2,
in currency g and the fraction q1t of players of kind 1 with the
same assumptions as in Fig. 5 except that q1t varies instead of
qit ¼ 0:5, i.e. pit0 ¼ ki ¼ 0:5, μi ¼ 0, 0:01≤ sit ≤ 0:99, s1t ≠ s2t .
Additionally, we assume the process sensitivity h ¼ 0:5 for the
fraction q1t and initial condition q1t0 ¼ 0:5
With high weight αi ¼ 0:6 assigned to money supply Sj, the

first three combinations of curves in Fig. 5 with support s1t ; s2t
� �

equal to 0:01; 0:7ð Þ, 0:01; 0:99ð Þ, 0:3; 0:7ð Þ eventually implying
lim
t!T

p1t � 0, cause the fraction q1t of players of kind 1 to increase

towards 1. According to Eq. (9), the players prefer to be of kind 1
when u1t ≥ u2t , i.e. when p1tu1gt þ 1� p1t

� �
u1nt ≥ p2tu2gt þ

1� p2t
� �

u2nt according to Eq. (6), which approaches u1nt ≥ u2nt
when lim

t!T
p1t � 0. The three support combinations 0:01; 0:7ð Þ,

0:01; 0:99ð Þ, 0:3; 0:7ð Þ satisfy s1t ≤ s2t , 1� s1t ≥ 1� s2t which is
inserted into Eq. (5) to give u1nt ≥ u2nt when lim

t!T
p1t � 0. Non-

mathematically, players prefer to be of kind 1 since they prefer
currency n which gives higher utility u1nt ≥ u2nt when s1t ≤ s2t .

That is, the players converge towards transacting in currency n
compatibly with kind 1 supporting currency n much more than
currency g. With support s1t ; s2t

� � ¼ 0:3; 0:99ð Þ, player 2’s
volume fraction p2t of transactions in currency g approaches
lim
t!T

p2t � 1 in Fig. 5, and in Fig. 6 lim
t!T

pit � 1, which causes the

opposite result where players prefer to be of kind 2. That is,
u1t ≤ u2t implies p1tu1gt þ 1� p1t

� �
u1nt ≤ p2tu2gt þ 1� p2t

� �
u2nt

approaches u1gt ≤ u2gt when lim
t!T

pit � 1. Support s1t ; s2t
� � ¼

0:3; 0:99ð Þ means that s1t ≤ s2t which is inserted into Eq. (4) to
give u1gt ≤ u2gt when lim

t!T
pit � 1. Non-mathematically, players

prefer to be of kind 2 since they prefer currency g which gives
higher utility u2gt ≥ u1gt when s2t ≥ s1t . That is, the players
converge towards transacting in currency g compatibly with kind
2 supporting currency g much more than currency n.

With this insight the interpretations of the subsequent panels
in Fig. 6 is straightforward. That is, lim

t!T
pit � 0 so that players

eventually prefer to transact in currency n implies that players
prefer to be of kind 1 which gives higher utility u1nt ≥ u2nt when
s1t ≤ s2t . In contrast, lim

t!T
pit � 1 so that players eventually prefer

to transact in currency g implies that players prefer to be of kind 2
which gives higher utility u2gt ≥ u1gt when s2t ≥ s1t .

Replicator dynamics with positive scaling proportionality
parameter μi. This section assumes that the scaling proportion-
ality parameter μi in player i’s utilities uigt and uint is positive.
When μi increases, player i’s utilities uigt and uint in Eqs. (4) and
(5) of transacting in both currencies g and n increase equally
much. The increase is proportional to the fraction qit of players of
kind i at time t raised to the parameter mi. If both μ1 and μ2
increase equally much, both uigt and uint increase which in the
replicator Eq. (8) can be interpreted as increasing the process
sensitivity ki, which means quicker changes which are otherwise
qualitatively similar to Fig. 6. Figure 7 makes the same

Fig. 5 The volume fractions p1t and p2t of the two kinds of players’ transactions in currency g at time t 1959–2021 with different support s1t≠s2t when
qit ¼ pit0 ¼ ki ¼ 0:5, μi ¼ 0, and 0:01 � sit � 0:99. a and b αi ¼ 0:6. c and d αi ¼ 0:2.
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assumptions as in Fig. 6 except that μ2 ¼ 1 and μ1 ¼ 0, i.e.
q1t0 ¼ pit0 ¼ ki ¼ h ¼ 0:5, μi ¼ 0, 0:01≤ sit ≤ 0:99, s1t ≠ s2t . The
higher μ2 ¼ 1> μ1 ¼ 0 means that players to a higher extent than
in Fig. 6 tend to prefer to be of kind 2 which gives higher utilities
u2gt and u2nt . Hence Fig. 7 shows three, four, two, four curves
(summing to 13 curves out of 16 possible curves) for the fraction
q1t of players of kind 1 at time t approaching lim

t!T
q1t � 0, as

compared with one, two, zero, three curves (summing to only six
curves), respectively, approaching lim

t!T
q1t � 0 in Fig. 6. In Fig.

7a1 the low support s1t ¼ 0:01 of player 1 for currency g causes
both players to eventually not transact in currency g when
s2t ¼ 0:7, as explained for Fig. 6, which implies that players prefer
to be of kind 1 since they prefer currency n which gives higher
utility u1nt ≥ u2nt when s1t ≤ s2t . The corresponding curve q1t in
Fig. 7a2 gives lim

t!T
q1t � 1, while the other three curves with

higher support s1t þ s2t give lim
t!T

q1t � 0 so that the players prefer

to be of kind 2. Fig. 7b1, b2 with higher support s1t þ s2t shows a
clearer trend where lim

t!T
pit � 0 and lim

t!T
q1t � 0 so that players

Fig. 6 The fractions p1t, p2t, q1t at time t 1959–2021 with different support s1t≠s2t when qit0 ¼ pit0 ¼ ki ¼ h ¼ 0:5, μi ¼ 0, and 0:01 � sit � 0:99. a1, a2,
b1, b2 αi ¼ 0:6. c1, c2, d1, d2 αi ¼ 0:2.
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prefer to be of kind 2. Figure 7c2 shows two curves, with support
s1t ; s2t
� �

equal to 0:3; 0:5ð Þ, 0:3; 0:6ð Þ, eventually approaching
lim
t!T

q1t � 0 so that players prefer to be of kind 2, in contrast to

Fig. 6c2 which has no such curves. Figure 7d2 shows how all the
four curves eventually approach lim

t!T
q1t � 0 so that players prefer

to be of kind 2. Figure 7d2 also shows how it is possible for both
players to eventually prefer no transactions in currency g,
lim
t!T

pit � 1, while at the same time the fraction q1t of players of

kind 1 slowly decreases.

Discussion and future research
New currencies, especially these in digital format, may induce
more currency competition. The competition may become
especially fierce between fixed-supply and variable-supply cur-
rencies. Fixed-supply currencies rigidly avoids inflation/defla-
tion which would otherwise be induced by altering the money
supply. Variable-supply currencies allow more flexibility by
allowing money printing during critical events (e.g. wars and
recession), but requires fiscal discipline thereafter to avoid
inflation.

Fig. 7 The fractions p1t, p2t, q1t at time t 1959–2021 with different support s1t≠s2t when qit0 ¼ pit0 ¼ ki ¼ h ¼ 0:5, μ2 ¼ 1, μ1 ¼ 0, and
0:01 � sit � 0:99. a1, a2, b1, b2 αi ¼ 0:6. c1, c2, d1, d2 αi ¼ 0:2.
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To understand the competition, a player is assumed to earn a
utility depending on its support of and volume of transactions in
a given currency, and the fraction of players of the same kind as
itself. A player may be any individual or collective unit. Essential
in the article is how a player values money printing/withdrawal
on the one hand versus inflation/deflation on the other hand. A
time delay usually exists from the former to the latter. Batini
(2006), Batini and Nelson (2001) and Friedman and Schwartz
(1982) suggest that it takes over one year from money printing
until inflation. Hence temptation may exist to increase money
supply in the short run and postpone worrying about the sub-
sequent inflation. The 1959–2021 US money supply and inflation
data suggest that money printing and inflation indeed occur.

With high weight assigned to money supply relative to infla-
tion, this article finds that players are more inclined to prefer the
variable-supply currency. They thereby benefit from the tem-
porarily increased purchasing power enabled by the increased
money supply. Such players may not have excessively large time
horizons, since then they might value the future negative con-
sequences of inflation. This assumes that the player itself indeed
can access the increased money supply. In contrast, low weight
assigned to money supply relative to inflation induces players to
be more inclined to prefer the fixed-supply currency, to avoid the
negative impact of inflation.

When two kinds of players support two currencies differently,
the players’ fractions of transactions in the two currencies may
exhibit substantial variation, e.g. be inverse U shaped or U shaped
before converging towards preferring one or the other currency.
This relates to earlier studies of how players choose between mul-
tiple currencies, see e.g. Schilling and Uhlig (2019), Fernández-
Villaverde and Sanches (2019), Almosova (2018), Benigno et al.
(2019). For example, assume high weight assigned to money supply,
and that one player supports the fixed-supply currency much less
than the other player. The first player may quickly abandon the
fixed-supply currency which fails to offer additional money supply.
The second player may initially support the fixed-supply currency
increasingly, but may thereafter be influenced by the first player and
also abandon the fixed-supply currency, thus potentially being
negatively impacted by inflation. In contrast, assume low weight
assigned to money supply, and that one player supports the fixed-
supply currency much more than the other player. The first player
may prefer the fixed-supply currency which provides a hedge
against inflation. The second player may initially support the
variable-supply currency increasingly, but may thereafter be influ-
enced by the first player and also prefer the fixed-supply currency,
thus potentially not benefitting from the increased money supply.
The two currencies may obtain different market shares, as also
analyzed ElBahrawy et al. (2017) and Imhof and Nowak (2006).
These results indicate how countries or societies through various
evolutionary dynamics may transform themselves into using one or
another currency, or a combination of several currencies, potentially
for different purposes. This in turn may impact a country’s financial
markets, monetary policy, and interaction with other countries.
We next allow players to choose which kind of player they can

be. That can be realistic when a player prefers to transact in
currencies that many other players transact in, thus being less
influenced by how the player individually supports each currency
independently of the other players. The analysis shows that
players may choose to be of a kind supporting a given currency if
that support is much higher than the other kind’s support of the
same currency. The first kind of player may thus become more
common, while the second kind player becomes less common.
We finally enable a player’s utility of transacting in a given

currency to be proportional to the fraction of players of the same
kind as the given player. Thus players not only choose what kind of
player they want to be, but they may receive higher utility for being

of one kind rather than of another kind, regardless of the players’
support for each currency and their volume fractions of transac-
tions in each currency. When the proportional impact of being a
certain kind of player increases equally for both kinds of players,
the players’ fractions of transactions in each currency change more
quickly, as if the process sensitivity in the replicator equation
increases. When the proportional impact increases more for one
kind of player, players increasingly prefer to be of that kind.
Future research, which implicitly indicates limitations of the

current article, may extend the analysis to more features than
money supply and inflation. More than two currencies and more
than two kinds of players may be analyzed. Each kind of player’s
utility may depend on further features related to each currency’s
backing, convenience, confidentiality, transaction efficiency,
financial stability, and security. Players may be assumed to apply
different currencies for different purposes. Different kinds of
players gaining different access to increased money supply, or
suffering differently from money contraction, may be analyzed.
Alternative player risk attitudes and time preferences may be
evaluated. Empirics from other world regions may be incorpo-
rated. Additional players may be analyzed, e.g. players in different
countries accessing different currencies, private versus public
players, governmental agencies imposing regulation and taxation,
and currency competition between countries.

Conclusion
This article builds a model of two kinds of players who can choose
between two currencies, i.e. a fixed-supply currency (e.g. Bitcoin)
and a variable-supply currency (e.g. a fiat currency or a central
bank digital currency). A player may be any individual or col-
lective unit. A variable-supply currency enables money printing or
money withdrawal, and may be associated with inflation or
deflation. Comparing fixed-supply and variable-supply currencies
has become relevant due to new currencies emerging which
incorporate supply, ownership, decentralization, regulation, con-
firmation of transactions, geographical extension, etc. differently.
A player’s utility of transacting in a given currency is pro-

portional to three factors, i.e. the player’s support of that cur-
rency, the volume fraction of all players’ (of both kinds)
transactions in that currency, and the fraction of players of the
same kind as the given player. A currency’s support depends on
its financial stability, transaction efficiency, backing, convenience,
confidentiality, and security. Additionally, a player’s utility of
transacting in the variable-supply currency is proportional to a
Cobb Douglas utility of two factors. The first factor is the initial
money supply plus the accumulative money printing (positive)
and money withdrawal (negative) in the numerator, divided by
the initial money supply in the denominator. The second factor is
the inverse of the accumulative inflation (positive) and deflation
(negative when measured as a percentage). If the output elasticity
for the first ratio is high, money printing/withdrawal is highly
valued relative to inflation/deflation, and conversely if the output
elasticity for the second ratio is high.
The players’ utility of transacting in the variable-supply cur-

rency is illustrated for various output elasticities for 1959–2021.
The exponentially increasing US M2 money supply and the
positive inflation cause this utility to increase over time with high
output elasticity, and decrease with low output elasticity. Such
changing utilities over time constitute policy tools for how to
adjust money supply/withdrawal and inflation/deflation.

Three replicator equations are developed based on the players’
utilities. Two of these model each kind of player’s volume frac-
tions of transactions in each currency over time. The third models
the evolution of the fraction of each kind of player over time, i.e.
how players choose to be of one or the other kind.
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High weight assigned to money supply relative to inflation causes
players to more likely prefer the variable-supply currency, to gain
from the increased money supply, and conversely prefer the fixed-
supply currency given low weight assigned to money supply. When
the two kinds of players support the two currencies differently, the
players’ fractions of transactions in the two currencies may be inverse
U shaped or U shaped before converging towards preferring one or
the other currency. When players can choose which kind of player to
be, players may choose to be of a kind supporting a given currency if
that support is especially high. When a player’s utility of transacting
in a given currency is proportional to the fraction of players of the
same kind as the given player, and the proportional impact is higher
for one kind of player, players tend to prefer to be of that kind.

Data availability
The article contains no associated data. All data generated or
analyzed during this study are included in this published article.
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Abstract: For one variable–supply currency in isolation, one player’s Cobb–Douglas utility depends
on the current supply divided by the initial supply, multiplied by the inverse of the accumulative
inflation/deflation. With equal weight assigned to both factors, money printing outweighs inflation,
and money withdrawal outweighs deflation. The study design is to analyze how competition between
one variable–supply and one fixed–supply currency impacts the player’s choice of currency. Applying
the 1959–2021 US M2 money supply data and the 1635–2021 US inflation data, the player’s utility
increases over time when assigning high weight to money printing/withdrawal and increases less or
decreases overall when assigning high weight to inflation/deflation. With different player support for
the two currencies, depending on each currency’s backing, convenience, confidentiality, transaction
efficiency, financial stability, and security, replicator dynamics is used to determine the player’s
volume fraction of transactions in each currency. Low, high, increasing, and decreasing support of a
currency are analyzed. Each fraction may increase, decrease, be inverse U–shaped, U–shaped, and
approach low or high levels over time. For example, high weight assigned to money printing may
cause the player to eventually prefer the variable–supply currency unless the player supports the
fixed–supply currency highly and increasingly.

Keywords: digital currencies; currency competition; money supply; inflation; replicator dynamics;
cryptocurrencies; central bank digital currencies

1. Introduction
1.1. Background

The emergence of new digital currencies raises questions about how these will compete
depending on their characteristics. Historically, currencies have been associated with
nations, such as the USD, CNY, EUR, etc. Nakamoto (2008) demonstrated successfully how
a decentralized currency (Bitcoin) can be successfully built on a blockchain by applying
proof of work technology with no centralized authority. Thereafter 20,178 cryptocurrencies
have emerged (with a market cap of USD 915 billion) with great variation in the degree of
decentralization, consensus mechanisms (e.g., proof of stake), supply, burning of coins, etc.1

The introduction of such currencies, combined with central banks expanding their digital
currencies, changes the nature of currency competition. Currencies can have all kinds of
characteristics related to supply, ownership, decentralization, regulation, confirmation of
transactions, geographical extension, etc.

The Federal Reserve Bank of Boston has conducted payment surveys since 2008.
According to the latest 2020 Survey of Consumer Payment Choice (Foster et al. 2021), in
2020, consumers in the US, on average, made 68 payments per month. The top three
payment methods are debit cards (23 payments) and credit cards (18 payments), followed
by cash (14 payments). These three payment methods account for 80% of all payments by
numbers (Greene and Stavins 2021). In 2020, cash accounts for 19% of all payments, a drop
of 7% from 2019. This illustrates how payment methods can evolve within fiat currencies.
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1.2. Contribution

This article analyzes currency competition focusing explicitly on supply and inflation.
One variable–supply currency is considered where money can be printed and withdrawn
and be subject to inflation or deflation. Both these two concerns have historically been
important. Money printing enabled by a variable–supply currency offers additional options
not available for a fixed–supply currency. One example is Roosewelt’s 1933–1939 New Deal
to recover the economy. Another example is war funding, e.g., World War I and World
War II. The additional options may cause disadvantages. For example, USD 1 in 2022 buys
1.22% of what it would buy in 1695, which is a poor store of value for this time period.
Variable–supply currencies have historically not implemented mechanics to ensure that one
unit of a currency generates the same purchasing power on average over certain periods
of time. Theoretically, such mechanics would enable financing a New Deal or a war with
money printing if corresponding money withdrawals were implemented thereafter. A
variable–supply currency with such mechanics would be a better store of value.

As a benchmark competitor, a fixed–supply currency is considered where money print-
ing/withdrawal and inflation/deflation are impossible. Such a currency may be a good
store of value and may potentially compete with a variable–supply currency which may
lose its purchasing power over time. Historically, a fixed–supply currency has been close
to impossible. The closest has been gold, which scores higher than Bitcoin on established
history, and scores lower than Bitcoin on portability, divisibility, censorship resistance,
verifiability, and scarcity (Ikkurty 2019). Both gold and Bitcoin score high on durability
and fungibility (BYBIT Learn 2021). Gold, which is a currency under the current system
(Mitchell 2021), has historically approximated fixed supply, with 1.5% additional gold
mined in 2020.2 Bitcoin has a fixed supply of 21 million coins. As of January 2022, 18.9 mil-
lion Bitcoin have been mined, i.e., 90% (Hayes 2022). The remaining 2.1 million Bitcoin will
be mined until approximately 2140.

First, a variable–supply currency is analyzed in isolation. A player’s Cobb–Douglas
utility is a product of two ratios. The first ratio is the initial supply plus accumulative
money printing/withdrawal in the numerator, divided by the initial supply. The second
ratio equals the inverse of accumulative inflation/deflation. With equal weight to both
ratios, a utility of 1 constitutes a benchmark that is exceeded by assigning more weight to
money printing, which can be useful to recover or boost the economy. The utility is less
than 1 when assigning more weight to inflation, which is useful when seeking to cool down
the economy. The US M2 money supply since 1959 and US inflation since 1635 are used to
show how a player’s utility increases or decreases over time depending on the player’s
preferences.

Thereafter competition between a variable–supply currency and a fixed–supply cur-
rency is analyzed. The two currencies may have different support depending on their
backing, convenience, confidentiality, transaction efficiency, financial stability, and security.
Replicator dynamics is used to analyze how the player’s fractions of transacting in each
currency evolve over time depending on the weights assigned to money printing and
inflation and whether the support for each currency is constant, increases or decreases
over time. Such insight is useful for policy makers and others seeking to determine how to
adjust money printing, inflation, and support for various currencies.

2. Literature

The limited literature on this topic is divided into five groups, i.e., currency competi-
tion, competition between fiat currencies and cryptocurrencies, CBDCs (central bank digital
currencies) and cryptocurrencies, the cryptocurrency market, and game theoretic analyses
and decision models.

2.1. Currency Competition

Dowd and Greenaway (1993) develop a framework to analyze currency competition
focused on network effects and switching costs. They find that network effects and switch-
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ing costs seem to make it optimal for an agent to adopt only one currency. The agent
is often reluctant to abandon the existing currency even if it is manifestly inferior to a
new currency. They argue that parallel currencies are relatively uncommon. Camera et al.
(2004) explore the competition between one safe foreign fiat currency, such as the US dollar,
and one risky home fiat currency in a decentralized trading environment. They find that
traders normally prefer safe foreign currency unless the trade frictions are high. A risky
home currency in a poorly functioning economy is prone to dollarization. Dollarization
can be reduced by adopting policies aimed at reducing currency risk and enhancing the
trading environment. Gawthorpe (2017) adopts the money in utility function approach
to explore the competition between a fiat currency and alternative currencies. They show
that competition may cause a lower inflation rate compared with only one fiat currency.
Wang and Hausken (2021) investigate the competition between a national currency and a
global currency among three types of players, i.e., conventionalists, pioneers, and criminals.
They consider six utility features of a currency, i.e., backing, convenience, confidentiality,
transaction efficiency, financial stability, and security. They also apply replicator dynamics
to analyze the evolution of the fractions of the three kinds of players and how they choose
among the two currencies.

This article contributes to this literature by considering the competition between a
variable–supply currency and a fixed–supply currency. The article focuses mainly on two
variable–supply currency features, i.e., money printing/withdrawal and inflation/deflation.
Other features, such as backing, convenience, safety, privacy, etc., are also implicitly em-
bedded in the model.

2.2. Competition between Fiat Currencies and Cryptocurrencies

Wang and Hausken (2022b) analyze the evolution of fixed–supply and variable–supply
currencies. The latter enable money printing/withdrawal and inflation/deflation. They
find that a player’s utility of transacting in each currency is proportional to how the
player supports that currency, the volume fraction of all the players’ transactions in that
currency, and the fraction of players of the same kind as the given player. The current article
contributes three advances over Wang and Hausken (2022b). First, if inflation empirics are
unavailable, we estimate inflation from money printing by assuming a time lag. Second,
if money printing empirics are unavailable, we estimate money printing from inflation
by assuming a time lag in the opposite time direction. Third, this article purifies the
analysis of how one kind of player supports one currency relative to the other currency,
while Wang and Hausken (2022b) consider how two kinds of players support one currency
relative to the other currency differently. The analysis of one kind of player enables focusing
explicitly on how one typical or average player reacts to money printing/withdrawal and
inflation/deflation depending on supporting the two currencies equivalently or differently.

Schilling and Uhlig (2019) analyze agents choosing between a fiat currency and a
cryptocurrency. For example, fiat currencies are currently useful for most purchases, while
cryptocurrencies may enable tax evasion, anonymity, and censorship resistance. Value–
added tax and transaction fees to miners also play a role. They find that substitution
decreases with asymmetry in exchange fees and transaction costs. Their analysis cor-
responds to the different support for the two currencies analyzed in this article, which
depends on the currencies’ transaction efficiencies.

Fernández-Villaverde and Sanches (2019) consider competition between privately
issued fiat currencies. They determine a price stable equilibrium for multiple currencies in
a Lagos–Wright environment, corresponding to two coexisting currencies in the current
article and various less desirable equilibria. Almosova (2018) supplements their model
by assuming costly circulation of private currencies due to mining costs, verification of
transactions, etc. Although cryptocurrency competition will not cause price stability, with
less costly private currency circulation, competition will cause downward pressure on the
inflation of the public currency. Rahman (2018) investigates how fiat and digital currency
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competition impact monetary policy. He finds that a socially efficient allocation cannot
follow from a purely private arrangement of digital currencies.

Lagos and Wright (2005) propose a framework for policy analysis based on the fric-
tions that are essential for money. They allow the agents to interact periodically in both
decentralized and centralized markets. Their model estimates that the welfare cost of
inflation equals 3–5% of consumption. The framework can be used to analyze how the
different regimes, such as one currency versus two currencies, cause different outcomes.
Benigno et al. (2022) analyze two national currencies and a global cryptocurrency. They
find that deviating from interest rate equality may imply approaching the zero lower bound
or abandoning the national currency. They conclude that simultaneously ensuring a fixed
exchange rate, free capital flows, and an independent monetary policy becomes even less
possible. Verdier (2021) analyzes how a digital currency impacts competition in the deposit
and lending markets. She finds increasing bank lending rates as a consequence of the
digital currency crowding out bank deposits.

Hong et al. (2018) investigate the potential crowding out effect in a regime consisting
of a fiat currency and a digital currency. The crowding–out effect occurs only under
extreme conditions, i.e., high costs for one currency and low costs for the other currency.
Obu and Ukpere (2022) investigate the impact of cryptocurrencies on the effectiveness of
the fiscal policy. They find that government purchases decrease with households’ adoption
of cryptocurrencies. Sissoko (2021) explores the conceptual world where currencies are
convertible into the numeraire consumption goods at a fixed rate. Then nobody wants to
hold money over time. He points out that it is possible to establish a banking system in
such an environment. The ability to increase the money supply according to societal needs
is essential for the banking system’s efficiency.

This article contributes to this literature by considering how a variable–supply fiat
currency competes with a fixed–supply currency such as Bitcoin. Changing supply and
inflation/deflation for the variable–supply fiat currency is explored, together with how the
player chooses between a variable–supply currency and a fixed–supply currency over time.
The replicator equation is applied to show the dynamic evolution of the volume fractions
of the two currencies.

2.3. CBDCs and Cryptocurrencies

Caginalp and Caginalp (2019) analyze asset allocation between a home currency and a cryp-
tocurrency when the government confiscates some of the players’ assets. Blakstad and Allen
(2018) evaluate which possibilities and risks cryptocurrencies offer for central banks and
individuals and the challenges of issuing CBDCs. Masciandaro (2018) assess how different
media of payments may evolve depending on individual preferences, akin to how the two
currencies in the current article may evolve over time. Belke and Beretta (2020) suggest
that central banks need to embrace the technology underlying cryptocurrencies. They
suggest that central banks issuing cryptocurrencies may be subject to the disadvantages
of cryptocurrencies and few benefits. Benigno (2021) reasons that currency competition
causes the nominal interest rate and inflation to be determined by the time discount fac-
tor, the exit rate, and the fixed cost of entry, which can challenge the function of central
banking. Asimakopoulos et al. (2019) find a substitution effect between the real balances of
government currency and cryptocurrencies as a consequence of preferences, technology,
and monetary policy shocks. This article relates to this literature by assessing CBDCs
and cryptocurrencies from the supply perspective. A CBDC is usually a variable–supply
currency. A cryptocurrency such as Bitcoin is a fixed–supply currency. The article presents
a model that shows the competition and evolution of a variable–supply currency and a
fixed–supply currency.

2.4. The Cryptocurrency Market

ElBahrawy et al. (2017) evaluate the fluctuating evolution of market shares of 1469
cryptocurrencies between April 2013 and May 2017. Caporale et al. (2018) determine a
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positive correlation between cryptocurrencies’ past and future values. ElBahrawy et al.
(2019) assess the linkage between online attention towards digital currencies on Wikipedia
and market dynamics for digital currencies. White (2014) assesses the different market
shares of Bitcoin and altcoins, akin to the current article assessing the volume fractions of
transactions for two currencies. Sapkota and Grobys (2021) find no relation between the
submarket equilibria of privacy coins and non–privacy coins for the top ten cryptocurren-
cies in 2016–2018. Milunovich (2018) estimates weak connectedness between five popular
cryptocurrencies as one group and six major asset classes as a second group, and strong
connectedness within each group, with a few exceptions. Gandal and Halaburda (2016) de-
termine no winner–take–all effects in early cryptocurrency competition and strong network
effects and winner–take–all dynamics more recently. The best well–known cryptocurrency
is Bitcoin. It has a limited supply of 21 million coins. This article relates to this literature by
assessing the competition between a variable–supply currency, such as fiat money, and a
fixed–supply cryptocurrency, such as Bitcoin. The market share of the two currencies is
captured by the volume fractions of the two currencies. The model shows the dynamic
evolution of the market shares of the two currencies.

2.5. Game Theoretic Analyses and Decision Models

Imhof and Nowak (2006) analyze a stochastic frequency–dependent Wright–Fisher
process to specify which of two strategies survive. They find that the Markov process has
two absorbing states corresponding to homogeneous populations choosing either strategy
A or strategy B. Lewenberg et al. (2015) find that it is difficult or impossible to distribute
rewards in a stable way for a pooled Bitcoin mining and rewards cooperative game and
that players continuously prefer to switch pools. Wang and Hausken (2022a) present
a two–period decision model between a central bank and a household. They analyze
the household’s asset portfolio choice among production, consumption, CBDC, and non–
CBDC, such as Bitcoin. This article related to this literature by considering a player’s choice
between a variable–supply currency and a fixed–supply currency and how this choice is
made over time.

2.6. Literature Summary and Additions to the Literature Gap

The literature commonly analyzes the competition between currencies and focuses on
different currencies’ features, i.e., network effects and switching costs (Dowd and Greenaway
1993), safety, risk, and trade frictions (Camera et al. 2004), switching costs, inflation and
network externalities (Gawthorpe 2017), six utility features of a national currency and a
global currency (Wang and Hausken 2021), etc. This is one of the first articles that focuses
on two essential features of currencies, which are supply and inflation/deflation. Thus, this
article adds to this literature gap by exploring currency competition from the supply and
inflation/deflation perspective.

Recent literature explores the competition between fiat currencies and cryptocurrencies,
e.g., the substitution effects under asymmetry in transaction costs (Asimakopoulos et al.
2019; Schilling and Uhlig 2019), the coexistence and equilibrium of multiple currencies
(Fernández-Villaverde and Sanches 2019), the impact on monetary policy and fiscal policy
(Benigno et al. 2022; Obu and Ukpere 2022; Rahman 2018), the impact on the deposit and
lending market (Verdier 2021), and the crowding out effects under a multiple currencies
regime (Bian et al. 2021; Hong et al. 2018). In addition, the literature commonly investigates
the relationship between CBDCs and cryptocurrencies (Belke and Beretta 2020; Benigno
2021; Blakstad and Allen 2018). The existing literature barely explores the player’s choice
between two currencies with respect to the supply and inflation/deflation features. This
article adds to this literature gap by demonstrating the evolution of a player’s choice
between a variable–supply currency and a fixed–supply currency over time. The analysis
mainly focuses on the supply and inflation/deflation features and incorporates how the
player supports one currency relative to the other currency.
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The literature furthermore evaluates the cryptocurrency market, e.g., the market shares of
Bitcoin and altcoins (White 2014), the evolution of cryptocurrencies’ market shares (ElBahrawy
et al. 2017), and the equilibria of the cryptocurrency market (Sapkota and Grobys 2021;
Yi et al. 2022). This article fills this literature gap by investigating how the market share
of a fixed–supply cryptocurrency such as Bitcoin evolves over time in competition with a
variable–supply currency. The market share is represented by the currency’s transaction
volume. Game theoretic models and decision models are widely used in academic research
(Hausken and Welburn 2022; Imhof and Nowak 2006; Prat and Walter 2021; Wang and
Hausken 2022a). This article adds to this literature by demonstrating a player’s choice of a
variable–supply currency versus a fixed–supply currency and the dynamic evolution of the
volume fractions of the two currencies over time.

3. The Model

The article models one player receiving different Cobb–Douglas utilities depending
on its choice of either a variable–supply fiat currency or a fixed–supply currency. The
player mainly considers the two features of a currency, i.e., printing/withdrawal and
inflation/deflation. Additional factors, i.e., transaction efficiency, banking, anonymity,
security, confidentiality, finality, and stability, are comprised of one parameter, which
expresses the player’s support of a variable–supply currency relative to a fixed–supply
currency.

The six dependent or outcome variables are the player’s Cobb–Douglas utility of
holding a fixed–supply currency, the player’s Cobb–Douglas utility of holding a fixed–
supply currency when the variable–supply currency is subject to money printing, the
player’s Cobb–Douglas utility of holding a fixed–supply currency when the variable–
supply currency is subject to inflation, the player’s Cobb–Douglas utility of holding a
fixed–supply currency when a variable–supply currency is available, the player’s Cobb–
Douglas utility of holding a variable–supply currency, and the player’s Cobb–Douglas
utility of holding both a variable–supply currency and a fixed–supply currency in a certain
weighted combination. The dynamic competition between a fixed–supply currency and
a variable–supply currency is presented by the evolution of the volume fraction of the
player’s transactions in the variable–supply fiat currency using the replicator equation.
The model demonstrates how a variable–supply currency competes with a fixed–supply
currency over time.

3.1. One Variable–Supply Fiat Currency n

Consider a fiat currency, which may be a national currency with variable supply si
at the discrete times i = t0, t0 + 1, t0 + 2, . . . , T, where t0 ≥ 0 and any time interval of
length 1 applies, e.g., year, month, week, day, etc., and T is the final time. Hence si+1 − si
is the amount printed (if positive) or withdrawn (if negative) from time i to time i + 1.
Summing up, ∑t−1

i=t0
(si+1 − si) is the amount printed or withdrawn from time i = t0 to

time i = t − 1. Hence
st0+∑t−1

i=t0
(si+1−si)

st0
is the money supply at time t divided by the money

supply at time t0, which can be considered as a player’s purchasing power at time t relative
to the purchasing power at time t0 without inflation.

Assume inflation πi at time i = t0, t0 + 1, . . . , T. Hence an asset valued at 1 at time
i = t0 is valued as 1

1+πt0+1
at time i = t0 + 1, 1

(1+πt0+1)(1+πt0+2)
at time i = t0 + 2, . . . , and

1
∏t

i=t0+1(1+πi)
at time i = t, which is the degraded asset value due to accumulative inflation

from time t0 to time t. The terms
st0+∑t−1

i=t0
(si+1−si)

st0
and 1

∏t
i=t0+1(1+πi)

are not stationary.

Instead, they are affected by the currency supply st and the inflation πt. Thus, both terms
evolve over time.
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Multiplying
st0+∑t−1

i=t0
(si+1−si)

st0
raised to the Cobb–Douglas elasticity α, 0 ≤ α ≤ 1, with

the degraded asset value 1
∏t

i=t0+1(1+πi)
raised to the Cobb–Douglas elasticity 1 − α gives the

player’s Cobb–Douglas utility

unt =

(
st0 + ∑t−1

i=t0
(si+1 − si)

st0

)α(
1

∏t
i=t0+1(1 + πi)

)1−α

(1)

at time t for holding a fiat currency n subject to variable money supply st and inflation πt
at time t, t ≥ t0. If α > 0.5, the player assigns more weight to advantageous purchasing
power than to disadvantageous inflation, and conversely if α < 0.5. The player weighs the
two considerations against each other. Equal weights α = 0.5 is an especially interesting
benchmark since the constant utility unt = 1 can be envisioned where the player’s increased
purchasing power from money printing si+1 − si is exactly offset by inflation πi through
time, or money withdrawal si+1 − si is exactly offset by deflation πi through time. If
inflation πt is strictly positive in the long run (i.e., π∞ > 0), then the utility unt converges
to zero, i.e., lim

t→∞
unt = 0. This property holds only when inflation πt is sufficiently high

through time t, i.e., when the impact of inflation πt is greater than the impact of the currency
supply st. In the long run, the evolution of the utility unt depends on the currency supply
st and the inflation πt.

Overall, (1) expresses the player’s Cobb–Douglas utility from the currency supply st
and inflation πt. This conception captures reality to some extent. For the player, a higher
inflation πt means currency devaluation. Thus, the player’s utility unt decreases with
inflation πt. This article adopts the money–in–the–utility approach as in (1). It is one of the
fundamental approaches in academic research, especially in economics and finance. The
money–in–the–utility approach has a long history and is an important tool in economic
research. The idea is that the utility function measures the player’s preferences on a basket
of goods and services. As an early pioneer, Ramsey (1928) assumes that the representative
agent makes decisions by maximizing its utility. Sidrauski (1967) similarly conceptualizes
a money–in–the–utility function. More recent examples are Block and Heineke (1975);
Chen and Guo (2014); Ganelli and Tervala (2010); Mian et al. (2021); Obstfeld (1981);
Wachter and Yogo (2010).

If inflation empirics are unavailable, and money printing empirics prior to time t0
are unavailable or ignored, inflation can be estimated from money printing. Assume that
money printing at time i gives inflation at time i + τ, τ ≥ 0. Hence, when t − t0 > τ, we
invert the ratio for the player’s purchasing power at time t relative to the purchasing power
at time t0 without inflation, and account for the time delay of τ by summing from i = t0 + τ
to i = t − 1, instead of summing from i = t0 to i = t − 1. Hence, no inflation occurs from
time t0 to time t0 + τ. Equation (1) is thus replaced by

unMt =




(
st0+∑t−1

i=t0
(si+1−si)

st0

)α

i f t − t0 ≤ τ
(

st0+∑t−1
i=t0

(si+1−si)

st0

)α(
st0

st0+∑t−1
i=t0+τ(si+1−si)

)1−α

i f t − t0 > τ

(2)

where, evidently, the inflation term vanishes when t − t0 ≤ τ.
If money printing empirics are unavailable, and inflation empirics prior to time t0

are unavailable or ignored, money printing can be estimated from inflation. Assume that
inflation at time i + τ is due to money printing at time i. For the inflation term, we sum
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from i = t0 + 1 + τ to i = t instead of summing from i = t0 + 1 to i = t. Hence, no inflation
occurs from time t0 to time t0 + τ. Equation (1) is thus replaced by

unIt =




(
t

∏
i=t0+1

(1 + πi)

)α

i f t − t0 ≤ τ

(
t

∏
i=t0+1

(1 + πi)

)α(
1

∏t
i=t0+1+τ(1+πi)

)1−α

i f t − t0 > τ

(3)

3.2. One Variable–Supply Fiat Currency n Competing with One Fixed–Supply Currency g

Assume that a variable–supply fiat currency n competes with a fixed–supply currency
g, which may be a global currency, e.g., Bitcoin, which eventually (in ca. year 2140) has a
fixed supply of 21 million coins. A player comparing which of two currencies to use will
account for additional factors beyond money printing and inflation. We comprise these
factors into one parameter ht, 0 ≤ ht ≤ 1, at time t, which expresses the player’s support
of the fixed–supply currency g relative to the variable–supply currency n at time t. The
player supports currency g more than currency n when 0.5 < ht ≤ 1, supports currency
n more than currency g when 0 ≤ ht < 0.5, supports exclusively currency g when ht = 1,
supports the currencies equally much when ht = 0.5, and supports exclusively currency n
when ht = 0.3 Multiplying 1 − ht with (1) gives the player’s utility

ungt =

(
st0 + ∑t−1

i=t0
(si+1 − si)

st0

)α(
1

∏t
i=t0+1(1 + πi)

)1−α

(1 − ht) (4)

for transacting with the fiat currency n.
Conversely, since currency g is not subject to money printing and inflation, the two

first terms in (4) disappear. Hence, the player’s utility for transacting with the fixed–supply
currency g is

ugnt = ht (5)

Assume that the player at time t chooses a volume fraction pnt of its transactions to be
in the variable–supply fiat currency n, and the remaining volume fraction 1 − pnt to be in
the fixed–supply currency g. The player’s utility at time t is thus the weighted combination

ut = pntungt + (1 − pnt)ugnt (6)

One interesting aspect of the money–in–the–utility approach arises when multiple
currencies may potentially coexist simultaneously. This article incorporates two curren-
cies, i.e., a variable–supply currency n and a fixed–supply currency g, assigned different
weights or probabilities pnt and 1 − pnt. Thus, (6) captures the player’s weighted utility ut,
accounting for two currencies.

3.3. Replicator Dynamics

To determine the evolution of the fraction pnt of the player’s transactions in the
variable–supply fiat currency n, we apply the replicator equation (Taylor and Jonker 1978;
Weibull 1997, p. 69)

∂pnt

∂t
= kpnt

(
ungt − ut

)
= kpnt(1 − pnt)

(
ungt − ugnt

)
(7)

where (6) has been inserted. In (7), k > 0 is the sensitivity or rapidity of change of the
process. When k is intermediate, the process is stable. The process changes rapidly when
k is high, and slowly when k is low. The right–hand side of (7) is proportional to the
difference ungt − ut between the player’s utility of using the variable–supply fiat currency n
and the weighted combination of both utilities in (6), and also proportional to the difference
ungt − ugnt between the player’s utility of using the variable–supply fiat currency n and



Economies 2022, 10, 270 9 of 20

the utility of using the fixed–supply currency g. Hence, when the former exceeds the latter,
the fraction pnt increases and conversely decreases when the former is lower than the latter.
The right–hand side of (7) is also proportional to the product pnt(1 − pnt) of both fractions,
which is inverse U–shaped with a maximum at pnt = 0.5 and minima when pnt = 0 and
pnt = 1. Hence, the fractions pnt and 1 − pnt change most rapidly when they are equally
large, which means that the player chooses equal volume fractions pnt = 1 − pnt = 0.5 for
the two currencies. The evolution of the fraction pnt of the player’s volume of transactions
in currency n at time t depends on the Cobb–Douglas elasticity α and the currency support
parameter ht. In the long run, only one currency survives. Specifically, the process always
evolves toward one or the other currency, eventually surviving exclusionarily, which may
take some time, dependent on the initial conditions, the sensitivity parameter k, and the
model parameters.

4. Analyzing the Model
4.1. The US 1635–2021

Figure 1a shows the US M2 money supply si at time i, i.e., 1959–2021, interpreted as M2,
which includes currency, and certain deposit and money market accounts, increasing from
USD 289.8 billion in January 1959 referred to as time t0 to USD 21,425.9 billion in November
2021 referred to as time T (Federal Reserve 2022). Figure 1b shows the US inflation πi
at time i, i.e., 1959–2021, with a maximum 13% in 1980 and a minimum of 0% in 2009
and 2015 (CPI Inflation Calculator 2022). Figure 1c,d, with different time scales, insert the
empirics in Figure 1a,b into (1) and plot the player’s utility unt for the five Cobb–Douglas
elasticities α = 0.6, 0.5, 0.4, 0.3, 0.2. More weight α = 0.6 to money printing than inflation
causes unt to increase overall. The intermediate elasticity α = 0.5, discussed after (1), is
especially interesting. Equal weights assigned to money printing and inflation causes the
player’s utility unt to increase overall from 1959 to 2021. When α = 0.4, i.e., less weight is
assigned to advantageous money printing than to disadvantageous inflation, the player’s
utility remains above utility unt = 1 throughout, reaching minima of unt = 1.01 in 1981 and
1996. When α = 0.3, i.e., even less weight assigned to money printing than to inflation, the
player’s utility is initially inverse U–shaped and crosses below unt = 1 in 1974, remaining
below unt = 1 thereafter. When α = 0.2, the player’s utility is unt = 1.00 in 1959 and 1960
(rising briefly to unt = 1.01 halfway through 1959). Thereafter unt is inverse U–shaped,
reaches unt = 1 in 1967, increases briefly to unt = 1.02 through 1967, and finally crosses
below unt = 1 in 1968, where it remains thereafter.

Figure 1e assumes the time lag τ = 2 years from money printing to inflation and insert
the money printing empirics in Figure 1a into (2) and plot the player’s utility unt for the five
Cobb–Douglas elasticities α = 0.6, 0.5, 0.4, 0.3, 0.2, thus not applying the inflation empirics.
Batini (2006), Batini and Nelson (2001) and Friedman and Schwartz (1982) find that it takes
more than one year from money printing until inflation. Figure 1e gives overall lower
player utility than Figure 1c, possibly because inflation estimated from money printing may
cause more estimated inflation than the empirical inflation in Figure 1b. The benchmark
elasticity α = 0.5, i.e., equal weights assigned to money printing and inflation, causes the
player’s utility unt to increase marginally to unt = 1.05 in 1961 due to the time lag τ = 2
years from money printing to inflation, with subsequent asymptotic decrease towards
lim
t→T

unt = 1.00065 at time T. That illustrates a short–term temptation to print money even

with equal weights assigned to money printing and inflation.
Figure 1f assumes the time lag τ = 2 years from money printing to inflation and

inserts the inflation empirics in Figure 1b into (3) and plots the player’s utility unt for the
five Cobb–Douglas elasticities α = 0.6, 0.5, 0.4, 0.3, 0.2, thus not applying the money
printing empirics. Figure 1f also gives overall lower player utility than Figure 1c, possibly
because money printing estimated from inflation may cause less estimated money printing
than the empirical money printing in Figure 1a. The benchmark elasticity α = 0.5, i.e.,
equal weights assigned to money printing and inflation, causes the player’s utility unt to
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increase marginally from unt = 1 in 1959 to unt = 1.00995 in 1960, unt = 1.01499 in 1961,
where it remains thereafter.
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Figure 1g replicates Figure 1f for 1635–2021. High weight α = 0.2 assigned to inflation
causes the player’s utility unt to be inverse U–shaped and remain above unt = 1 until 1864.
That occurs because of the substantial deflation, especially in 1635–1650 (CPI Inflation
Calculator 2022). Hence, in contrast, high weight α = 0.6 assigned to money printing
causes the player’s utility unt to be U–shaped and with minima unt = 0.99 in 1693 and 1695.
After 1917, this gets reversed due to less deflation and more consistent inflation. Overall,
USD 1 in 2022 buys 2.98% of what it would buy in 1635 (CPI Inflation Calculator 2022).

Figure 1h replicates Figure 1g,f for 1695–2021. The year 1695 is chosen since USD 1 in
2022 buys 1.22% of what it would buy in 1695, which is the lowest percentage for 1635–2021
(CPI Inflation Calculator 2022). Eliminating the 1635–1695 deflation causes Figure 1h to be
more reminiscent of Figure 1c–f.

4.2. Analysis Applying Replicator Dynamics

Money printing and inflation generally proceed such that the evolution of the fraction
pt of the player’s volume of transactions in the variable–supply fiat currency n has no
analytical solution.4 Hence we illustrate the replicator equation in (7) with simulations.
Figure 2 applies the same empirics and makes the same assumptions as in Figure 1c, with
sensitivity k = 0.5, initial condition pnt0 = 0.5, and seven different parameters ht for the
player’s support of currency g relative to currency n at time t.

Figure 2a assumes the Cobb–Douglas elasticity α = 0.6, which causes the rapidly
increasing player’s utility unt in Figure 1c due to the high weight α = 0.6 assigned to money
printing. With negligible support ht = 0.01 for the fixed–supply currency g, the fraction
pnt of the player’s volume of transactions in currency n at time t increases rapidly and
asymptotically towards lim

t→2021
pnt ≈ 1 determined numerically. With increasing support

ht = 0.3, ht = 0.4, ht = 0.5 for currency g, the fraction pnt increases more slowly towards
lim
t→T

pnt ≈ 1. When ht = 0.6, which means more support for currency g than for the

variable–supply currency n at time t, the fraction pnt first decreases towards a minimum
pnt = 0.33 in 1972 since the player’s utility unt in Figure 1c is still too low, and thereafter
increases towards lim

t→2021
pnt ≈ 1 as the player’s utility unt in Figure 1c increases. When

ht = 0.7, the same, but more pronounced logic applies. The difference is that pnt fails to
approach lim

t→T
pnt ≈ 1 approximatively by 2021, but can be expected to do so beyond 2021.

Finally, with overwhelming support ht = 0.99 for currency g, the high player’s utility unt
in Figure 1c is too low when multiplied with 1 − ht in (4). Hence the fraction pnt of the
player’s volume of transactions in currency n at time t decreases rapidly and asymptotically
towards lim

t→2021
pnt ≈ 0 determined numerically.

Figure 2b assumes the lower Cobb–Douglas elasticity α = 0.2, which initially causes
an inverse U–shaped, and thereafter overall decreasing, player utility unt in Figure 1c due
to the low weight α = 0.2 assigned to money printing. With low support ht = 0.01 and
ht = 0.3 for currency g, the fraction pnt increases asymptotically towards lim

t→T
pnt ≈ 1, but

more slowly than in Figure 2a. With higher support ht = 0.4 for the fixed–supply currency
g, the fraction pnt first increases towards a maximum pnt = 0.82 in 1980 since the player’s
utility unt in Figure 1c is still too high and thereafter decreases, causing the majority of the
volume of transactions in currency g, not quite reaching lim

t→T
pnt ≈ 0 by 2021, but can be

expected to do so beyond 2021. With equal support ht = 0.5 for both currencies, the fraction
pnt first increases marginally towards a maximum pnt = 0.505 in 1967, and thereafter
decreases towards lim

t→T
pnt ≈ 0 with all transactions in currency g. With higher support

ht = 0.5 for both currencies, ht = 0.6, ht = 0.7, ht = 0.99 for currency g, the fraction pnt
decreases more quickly towards lim

t→T
pnt ≈ 0.
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Figure 2. The fraction pnt of the player’s volume of transactions in currency n at time t 1959–2021
when k = pnt0 = 0.5, applying the empirics in Figure 1c. Panels (a,c,e): α = 0.6. Panels (b,d,f):
α = 0.2. Panels (a,b): Seven constant support parameters between ht = 0.01 and ht = 0.99. Panels
(c,d): Seven linearly increasing support parameters ht. Panels (e,f): Seven linearly decreasing support
parameters ht.

Figure 2c,d assume linearly increasing support ht for currency g, adjusted to equal the
support ht in Figure 2a,b at the midway point t = t0 + (T − t0)/2 ≈ 1990, constrained to
be not less than ht = 0 at the initial time t = t0, and constrained to be maximally ht = 1 at
the final time t = T. Low initial support ht for currency g means high initial support 1 − ht
for the variable–supply currency c. Hence the low initial support ht for the five first linear
equations in Figure 2c for α = 0.6 causes a more rapid increase in the fraction pnt towards
lim
t→T

pnt ≈ 1 than in Figure 2a. When ht = 0.4 + 0.6(t − t0)/(T − t0), which gives ht = 0.7



Economies 2022, 10, 270 13 of 20

at the midway point t ≈ 1990, the remarkable situation arises where the fraction pnt is
initially U–shaped towards the maximum pnt = 0.5007 in 1990, and thereafter decreases
reaching lim

t→T
pnt ≈ 0.01 in 2021. This result is the opposite of the result in Figure 2a and

arises since the linearly increasing support ht exceeds ht = 0.7 after 1990, which means
more support for the fixed–supply currency g. Hence, although currency c before 1990
enjoys more support in Figure 2c than in Figure 2a, after 1990, the reverse is the case. For
the final curve, the results are similar except that the fraction pnt initially decreases more
slowly towards lim

t→T
pnt ≈ 0 than in Figure 2a.

Figure 2d, with the lower Cobb–Douglas elasticity α = 0.2, causes more slow asymp-
totic increase in the fraction pnt towards lim

t→T
pnt ≈ 1 for the first two linear equations

compared with α = 0.6 in Figure 2c. Already for the third linear equation with support
ht = 0.8(t − t0)/(T − t0), which gives ht = 04 at the midway point t ≈ 1990, asymptotic
increase towards lim

t→T
pnt ≈ 1 cannot be sustained because of the low weight α = 0.2 as-

signed to money printing. After a maximum pnt = 0.985 in 1982, the fraction pnt decreases
towards pnt = 0.60 in 2021. For the fourth linear equation ht the maximum pnt = 0.95 is
reached in 1978, with a subsequent decrease towards lim

t→T
pnt ≈ 0.01 in 2021. For the fifth

linear equation ht the maximum pnt = 0.67 is reached in 1971, with subsequent decrease
towards lim

t→T
pnt ≈ 0 in 2021. For the two final linear equations for ht the fraction pnt of the

player’s volume of transactions in currency n at time t decreases relatively rapidly towards
lim
t→T

pnt ≈ 0.

Figure 2e,f assume linearly decreasing support ht for currency g, adjusted to equal
the support ht in Figure 2a,b at the midway point t = t0 + (T − t0)/2 ≈ 1990, constrained
to be maximally ht = 1 at the initial time t = t0, and constrained to be not less than
ht = 0 at t = T. High initial support ht for currency g means low initial support 1 − ht for
the variable–supply currency c. Hence the high initial support ht for the two first linear
equations in Figure 2e for α = 0.6 causes more slow increase in the fraction pnt towards
lim
t→T

pnt ≈ 1 than in Figure 2a. For the linear equations number 3, 4, 5, 6 the fraction pnt

reaches minima pnt = 0.39, 0.068, 0.014, 0.0014 in 1967, 1977, 1983, 1990, respectively, before
increasing towards lim

t→T
pnt ≈ 1 and exhaustive support of the fixed–supply currency c.

This result arises because the support ht of the variable–supply currency g is too low and
decreasing after 1990. For the final curve, the results are similar except that the fraction pnt
initially decreases more rapidly towards lim

t→T
pnt ≈ 0 than in Figure 2a.

Figure 2f, with the lower Cobb–Douglas elasticity α = 0.2, causes a slower asymptotic
increase in the fraction pnt towards lim

t→T
pnt ≈ 1 for the first linear equation compared with

α = 0.6 in Figure 2e. For the second linear equation the increase is slower. The fraction pnt
of the player’s volume of transactions in currency n at time t only reaches lim

t→T
pnt ≈ 0.94 in

2021. Already for the third linear equation an increasing fraction pnt cannot be sustained.
Instead, the fraction pnt decreases towards lim

t→T
pnt ≈ 0.06 in 2021. For the remaining linear

equations, the fraction pnt decreases rapidly towards lim
t→T

pnt ≈ 0 in 2021.

5. Summarizing the Results

The article first analyzes the variable–supply currency in isolation. A ratio is estab-
lished with the initial supply in the denominator and the initial supply plus accumulative
money printing (positive) and money withdrawal (negative) in the numerator. A second
ratio is established with 1 in the numerator and accumulative inflation (positive) and
deflation (negative when measured as a percentage) in the denominator. A Cobb–Douglas
utility is established for a player with one output elasticity for each of the two ratios, which
are multiplied with each other. The player may be a consumer, firm, organization, or any
individual or collective actor conceptualizing a utility for money supply subject to money
printing/withdrawal and inflation/deflation. If the output elasticity for the first ratio is
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high, money printing/withdrawal is assigned a high weight relative to inflation/deflation,
and conversely, if the output elasticity for the second ratio is high. When the two output
elasticities are equal, and money printing is outweighed by inflation, or money withdrawal
is outweighed by deflation, the product of the two ratios equals 1. When inflation empirics
are unavailable, a second utility is developed where inflation is calculated from money
printing accounting for a time delay. When money printing empirics are unavailable, a
third utility is developed where money printing is calculated from inflation accounting for
a time delay.

The article shows how the US M2 money supply has increased exponentially since
1959 and how the US inflation has changed since 1635. These empirical data are used to
plot the player’s utility since 1959 for five different output elasticities. With high output
elasticity for money printing, the player’s utility has increased overall exponentially since
1959. With lower output elasticity for money printing, the player’s utility increases less and
eventually decreases overall when money printing is assigned a low weight, which means
that inflation is assigned a high weight. Curves such as these provide policy tools for how
to weigh the challenging and partly opposing concerns of money printing and inflation
against each other. Similar curves are plotted assuming that inflation and money printing
empirics, respectively, are unavailable.

The inflation data since 1635 are used to plot the player’s utility for the five output
elasticities. The strong deflationary periods 1635–1695 imply high utility for assigning
high weight to inflation/deflation and thus low weight to money printing (estimated
from inflation). Applying the inflation data since 1695 causes the player’s utility to be
qualitatively similar to the player’s utility since 1959. The reason is that USD 1 in 2022 buys
1.22% of what it would buy in 1695, which is the lowest percentage since 1635.

The article next analyzes one variable–supply fiat currency competing with one fixed–
supply currency. The latter is assumed to have a certain support that expresses the utility of
transacting in it. That support ranges from 0 to 1 and may change over time. A currency’s
support depends on its backing, convenience, confidentiality, transaction efficiency, finan-
cial stability, and security. The Cobb–Douglas utility of the variable–supply fiat currency
is multiplied by 1 minus the support of the fixed–supply currency. A player’s utility of
transacting in both currencies is a weighted sum of the two utilities, weighted by the
volume fraction of transactions in each currency. With this conceptualization, the replicator
dynamics can be used to determine how the fraction of a player’s volume of transactions in
each currency evolves over time. The player continuously changes the fraction to maximize
its utility.

We first assume a high weight assigned to money printing. With low support for the
fixed–supply currency, the fraction of a player’s volume of transactions in the variable–
supply currency quickly approaches 1. With higher support of the fixed–supply currency,
the fraction may temporarily decrease but will eventually increase, except for very high
support for the fixed–supply currency.

We thereafter assume a low weight assigned to money printing. Then very low support
for the fixed–supply currency still causes the fraction of a player’s volume of transactions
in the variable–supply currency to approach 1. With higher support of the fixed–supply
currency, the fraction may temporarily increase but will eventually decrease, especially for
very high support for the fixed–supply currency, in which case the decrease is rapid.

We next consider linearly increasing support for the fixed–supply currency over time.
With high weight assigned to money printing and low but linearly increasing support for
the fixed–supply currency, the fraction of a player’s volume of transactions in the variable–
supply currency approaches 1 quickly. With higher and linearly increasing support for
the fixed–supply currency, the fraction may increase temporarily and eventually decrease.
Conducting the same analysis with a low weight assigned to money printing may cause
the fraction to increase temporarily and thereafter decrease.

We finally analyze linearly decreasing support for the fixed–supply currency over
time. With high weight assigned to money printing and low or intermediate, and linearly
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decreasing support for the fixed–supply currency, the fraction of a player’s volume of
transactions in the variable–supply currency may decrease temporarily and thereafter
increase towards 1. Conducting the same analysis with a low weight assigned to money
printing may cause the fraction to increase for low and decreasing support for the fixed–
supply currency and to decrease with slightly higher and decreasing support for the
fixed–supply currency.

6. Discussion, Policy Implications, Limitations, and Future Research

Research on cryptocurrencies has increased in recent years. Examples of foci are
how cryptocurrencies, such as, e.g., Bitcoin compete with fiat currencies such as CBDCs,
and the impact of cryptocurrencies on monetary policy, fiscal policy, welfare, and disin-
termediation of commercial banks. In this context, this article’s analysis builds intuition
on some aspects of the currency competition between a variable–supply currency and a
fixed–supply currency.

First, the article provides insight for policymakers by focusing on two features of
competing currencies, i.e., supply and inflation/deflation. A player’s support of one
currency relative to the other currency is analyzed. A poorly supported currency is prone to
decreasing prevalence in the long run. The findings provide useful insights for central banks
and governments seeking to adjust the money supply, inflation rate, and the currency’s
support in the presence of multiple currencies.

Second, the replicator equation presents the evolution of the volume fractions of the
two competing currencies. The Cobb–Douglas elasticity for money printing, the Cobb–
Douglas elasticity for inflation, and the player’s support for one currency relative to the
other currency determine the player’s volume fraction of transactions in each currency
evolutionarily. Therefore, in addition to the money supply and inflation/deflation, policy
makers may account for the support of a currency when setting monetary policy.

Third, considering the importance of support for a currency by many different actors
beyond the one player modeled in this article, central banks may analyze the sources
of support for various currencies, e.g., backing, convenience, confidentiality, transaction
fees, transaction efficiency, financial stability, security, purchasing power risk, privacy, etc.
The central bank may thereafter choose measures to improve the support of its own fiat
currency, in daily use, for borrowing and saving, for cross–border payments, etc.

Fourth, financial investors, individuals, and cryptocurrency developers may find it
beneficial to understand the backing of the various currencies when making decisions.

Fifth, the findings provide insights for policy analysis based on money printing/
withdrawal, inflation/deflation, and currency support, which determine the volume frac-
tions of transactions in the various currencies. The different degrees of money print-
ing/withdrawal, inflation/deflation, and currency support cause various outcomes.

Sixth, in this digitalized era, central banks around the world are embracing CBDCs.5

At the time of writing, 105 countries, representing over 95 percent of global GDP, explore
CBDCs. Eleven countries have already launched CBDCs. CBDCs may face various chal-
lenges, perhaps especially from various cryptocurrencies such as Bitcoin. Central banks
may enhance CBDCs’ competitiveness by implementing policies aimed at improving the
backing of CBDCs, reducing transaction frictions, limiting inflation, and improving the
payment environment.

Seventh, the results indicate how a player may transform into using one variable–
supply currency and one fixed–supply currency or a combination of two currencies through
evolutionary dynamics. This, in turn, may affect the financial markets, monetary policy,
fiscal policy, taxes, cross–border payments, etc. Therefore, central banks may pay more
attention to the independence and effectiveness of the monetary policy and fiscal policy
when facing currency competition. The evolution and adoption of a non–fiat cryptocurrency
might potentially undermine the effectiveness of the current monetary policy. This article
intends to shed light on how this evolution may play out.
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Overall, the article provides policy implications on how to weigh the challenges
deriving from money printing, inflation/deflation, and the relative support of variable–
supply and fixed–supply currencies.

The two currencies case is the simplest case for multiple currencies. This article
seeks to capture the essentials of the phenomenon by focusing on the simple case of
competition between two currencies, assuming that one currency has a variable supply
while the other currency has a fixed supply. Analyzing only two currencies is also a
limitation since today’s world has more than two currencies. The evolution and potential
stationary coexistence of multiple currencies may be explored in future research. To
address further limitations, future research may analyze currency competition accounting
for characteristics other than supply and inflation and alternatives to the money–in–the–
utility function. Different time preferences and risk attitudes may be assessed. Empirics
from countries other than the US may be considered. Different kinds of players with
different preferences may be incorporated. Governmental regulation and taxation may
be included. Other approaches for incorporating multiple currencies may be assessed,
e.g., substitution, individual preferences, switching costs, and fractions of prevalence for
various currencies.

7. Conclusions

This article analyzes variable–supply and fixed–supply currencies and competition be-
tween digital currencies. This involves money printing, money withdrawal, inflation, and
deflation. Competition between currencies may become more common as digital currencies
emerge with different characteristics pertaining to supply, ownership, decentralization,
regulation, confirmation of transactions, geographical extension, etc. This article analyzes
competition between two currencies focusing explicitly on supply and inflation/deflation.
One currency has variable supply, which has been historically the most common. Variable
supply means that money can be printed or withdrawn from circulation. Money with-
drawal is sometimes referred to as burning money. The other currency has a fixed supply,
which means that money can neither be printed nor withdrawn from circulation.

A Cobb–Douglas utility is developed for a player accounting for money printing/
withdrawal and inflation/deflation. The article shows how the player weighs these con-
cerns against each other, first for one variable–supply currency in isolation and thereafter in
competition with a fixed–supply currency. Empirics are the US M2 money supply 1959–2021
and the US inflation data 1635–2021.

The player’s utility is generalized to account for a weighted combination of a variable–
supply fiat currency and a fixed–supply currency, accounting for each currency’s support
which depends on its backing, convenience, confidentiality, transaction efficiency, finan-
cial stability, and security. Replicator dynamics illustrate how the player’s volume of
transactions in each currency evolves over time.

With high weight assigned to money printing, the player eventually prefers the
variable–supply currency, which takes longer with moderately higher support of the fixed–
supply currency. With low weight assigned to money printing, the same result follows
with low support of the fixed–supply currency. However, with higher support for the
fixed–supply currency, the player eventually prefers the fixed–supply currency.

With high weight assigned to money printing and low but linearly increasing support
for the fixed–supply currency, the player eventually prefers the variable–supply currency.
With higher and linearly increasing support for the fixed–supply currency, the player
eventually prefers the fixed–supply currency.

With high weight assigned to money printing and low or intermediate, and linearly
decreasing support for the fixed–supply currency, the player may temporarily prefer the
fixed–supply currency but will eventually prefer the variable–supply currency.

Finally, low weight is assigned to money printing. Then low and decreasing support
for the fixed–supply currency may cause the player to eventually prefer the variable–supply
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currency, while slightly higher and decreasing support for the fixed–supply currency may
cause the player to eventually prefer the fixed–supply currency.
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Nomenclature

Parameters
n Variable–supply fiat currency
g Fixed–supply currency
t0 Initial time, t0 ≥ 0
T Final time, T ≥ t0
i Time counting variable, t0 ≤ i ≤ T
τ Time lag from money printing to inflation, τ ≥ 0
si Supply at discrete time i of the variable–supply fiat currency n, si ∈ R
πi Inflation at time i, πi ∈ R
α Cobb–Douglas elasticity expressing weight assigned to money printing, 0 ≤ α ≤ 1
ht The player’s support of currency g relative to currency n at time t, 0 ≤ ht ≤ 1
k Parameter for the sensitivity or rapidity of change of the replicator equation, k > 0
Independent variables
t Time, t ≥ t0
pnt Volume fraction of the player’s transactions in currency n at time t, 0 ≤ pt ≤ 1
Dependent variables
unt Player’s Cobb–Douglas utility of holding currency n at time t, unt ≥ 0
unMt Player’s utility of holding currency n at time t based on money printing, unMt ≥ 0
unIt Player’s utility of holding currency n at time t based on inflation, unIt ≥ 0
ungt Player’s utility of holding currency n at time t when currency g is available, ungt ≥ 0
ugnt Player’s utility of holding currency g at time t when currency n is available, ugnt ≥ 0
ut Player’s utility of holding currencies n and g at time t, ut ≥ 0

Notes
1 https://coinmarketcap.com/, retrieved 11 July 2022.
2 In total, 197,576 metric tons have been mined (gold.org 2022), and 3030 metric tons were produced in 2020 (Basov 2022).
3 We may operationalize ht as comprising six factors, i.e., backing (of currency n relative to currency g) by actors, systems, or

characteristics that users respect and trust; convenience, e.g., few and easily understood operations when purchasing goods and
services; confidentiality, striking balances between privacy, availability, accessibility, and discrimination; transaction efficiency,
i.e., low cost, fast speed, affordability, and finality in terms of how many confirmations are needed for transactional approval;
financial stability, which usually depends on conditions in the given country; and security, see, e.g., Allen et al. (2020) and
Kiff et al. (2020) for the security of blockchain–based currencies.

4 For the special case that k
(
ungt − ugnt

)
= Ktm where K and m are parameters, which depend on time t in a special manner

and depend on time t when m = 0, the solution of (7) is pt =
1

1+
(

1
pt0

−1
)

e−
K

1+m (t1+m−t1+m
0 )

, where 1
pt0

− 1 > 0 when 0 ≤ pt0 < 1,

lim
t→∞

e−
K

1+m (t1+m−t1+m
0 ) = 0 causing lim

t→∞
pt = 1 when K

1+m > 0, lim
t→∞

e−
K

1+m (t1+m−t1+m
0 ) = ∞ causing lim

t→∞
pt = 0 when K

1+m < 0, and

lim
t→∞

pt = pt0 when K
1+m = 0. Hence, either one currency excludes the other currency, or the fraction pt equals the initial fraction

pt0 at time t0.
5 https://www.atlanticcouncil.org/cbdctracker/, retrieved 12 October 2022.
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A B S T R A C T   

The purpose is to determine whether a borrower prefers to borrow hard and fiat money from a 
bank to buy other assets from a seller, whether the seller wants to sell, how the nontraders are 
impacted, and whether the bank prefers to lend money and print or withdraw fiat money. The 
method is to compare the agents’ and bank’s Cobb Douglas utilities over two periods. The con-
clusions are that the bank prefers to print fiat money to a certain extent. Fiat money printing 
benefits the borrower/buyer which prefers inflation, benefits the bank if not excessive, and hurts 
the seller and nontraders. The seller and nontraders prefer a hard money economy or a fiat 
economy where the bank withdraws money to ensure deflation. More nontraders decrease 
inflation since the bank’s money printing gets spread across more agents. The article provides 
further results illustrated by varying 64 parameters relative to a benchmark.   

1. Introduction 

This article introduces hard money and fiat money in a two-period economy. The big general idea in the article is to model three 
kinds of agents and a bank intended to capture a major part of what occurs in today’s economies. The three kinds of agents are an agent 
which is a borrower and buyer, an agent which is a seller, and nontrading agents. The borrower borrows hard money and fiat money 
from the bank and buys other assets from the seller. The seller and nontrading agents hold hard money, fiat money and other assets. An 
agent’s Cobb Douglas utility depends on its asset portfolio, that is, on whether the agent holds hard money, fiat money, other assets, 
loans in hard money, or loans in fiat money. The bank, which also has a Cobb Douglas utility, can lend hard money and fiat money to 
the borrower, earning interest, and can print and withdraw fiat money which may cause inflation or deflation which impacts the 
agents. In the model, the bank is a unified actor that represents a central bank and one or several commercial banks. 

The article’s research question and purpose are to determine how the three kinds of agents and bank are impacted in their Cobb 
Douglas utilities over two time periods when operating as specified, i.e. borrowing, selling, holding money and assets, printing and 
withdrawing fiat money, etc. For example, does the borrower prefer to borrow hard money or fiat money excessively or to a limited 
extent to acquire other assets? Does the seller want to sell other assets? How are the nontrading agents impacted by holding money and 
assets? How is the bank impacted by lending hard money and fiat money? Does the bank want to print or withdraw fiat money? The 
economic approach in the article, with three kinds of agents and one bank, is designed with the intention of being especially well 
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equipped to match and answer these questions. 
For hard money printing, withdrawal, inflation, and deflation are assumed to be infeasible. Gold does not have a fixed supply, i.e. 

the global gold supply increased by approximately 2% per year on average since 2013 (World Gold Council, 2023). The current annual 
growth rate of the Bitcoin supply is approximately 1.64% (Money Printer, 2023), which gradually decreases to zero over time until the 
maximum supply of 21 million Bitcoins is reached in ca 2140. Although the supply of gold and Bitcoin are currently not fixed, they are 
considered as two approximate examples of hard money. The opposite is assumed for fiat money. The US dollar is not hard money, but 
fiat money, per this article’s definition. 

A model is formulated to analyze the coexistence of hard and fiat money. Agent 1 borrows hard and fiat money from the bank and 
buys other assets from a seller. Agent 2 sells some of its other assets to agent 1 and does not borrow from the bank. Agent i, as a 
nontrading agent, i = 3,…,n, does not borrow, lend, buy, or sell. Its asset portfolio remains unchanged over the two periods. The article 
introduces a theoretical model for studying the competition between hard and fiat money, analyzing the effects on agents and one bank 
of printing and withdrawing fiat money. It examines the implications on inflation and deflation of borrowing, lending, buying and 
selling. 

Inflation, i.e. the rate at which the average price of goods or services increases over time, generally depends on the money supply 
(Gorton, 2023) and various other factors such as production, the logistics of making goods or services available, and consumer 
preferences. In this article’s model, the adjustment of the money supply gets linked to other assets through the borrower/buyer buying 
other assets from the seller at a certain value, and through the nontraders holding other assets with a certain valuation. Hence in the 
agents’ utilities, the price or value of these other assets changes depending on the adjustment of the money supply which causes 
inflation or deflation. 

The impact of printing and withdrawing fiat money for the bank and the agents is examined. Comparisons are drawn between 
borrowing hard and fiat money. The article demonstrates how the utilities of the bank, of the agent which is a borrower and a buyer, of 
the agent which is a seller, and of the nontrading agents change as the values of the parameters for hard and fiat money vary. The 
resultant insights may enable central banks and individuals to develop a superior understanding of borrowing, buying, lending, selling, 
inflation, deflation, money printing, and withdrawal in a fiat economy and in a hard money economy. 

The article analyzes inflation and deflation resulting from printing and withdrawing fiat money, abstracting away demand and 
supply shocks which require more extensive modeling. The nontrading agents are shown to be vulnerable in a fiat economy with 
money printing. A borrower and buyer benefit from borrowing fiat money. A seller benefits when the bank withdraws fiat money. The 
bank benefits from printing fiat money to a certain extent. The article explores hard and fiat money in a two-period economy. Inflation 
caused by fiat money printing or deflation caused by fiat money withdrawal are part of the article’s research topic. The article analyzes 
the effects on one unified bank and multiple agents of printing and withdrawing fiat money. It compares the impacts of borrowing hard 
money versus fiat money. The article illustrates how the utilities of the bank, borrowing agents, buying agents, selling agents, and 
nontrading agents change with varying parameter values for hard and fiat money. It highlights the vulnerability of nontrading agents 
in an economy that employs fiat money printing. Advantages are discussed of borrowing fiat money for borrowers and buyers, while 
sellers benefit when the bank withdraws fiat money. The article posits that a bank within certain limits can derive benefits from 
printing fiat money. 

The article more generally demonstrates how the bank, the borrower and buyer, the seller, and the nontrading agents get impacted 
by changes in parameter values. Features of hard money are illustrated, i.e. limited supply and outside the bank’s control. Borrowing 
hard and fiat money is shown to have different impacts. The existence of hard money decreases the impact of inflation caused by 
printing fiat money. The article presents a benchmark where the bank prefers to lend hard money and fiat money to agent 1, agent 1 
prefers to borrow hard and fiat money from the bank to buy other assets from agent 2, and agent 2 prefers to sell some of its assets to 
agent 1. The article illustrates how changing each of 64 parameter values relative to the benchmark impacts the preferences of the bank 
and the three kinds of agents. The article offers insights into questions such as the impacts of borrowing, buying, lending, selling, 
inflation, deflation, money printing, and withdrawal in both hard and fiat money economies on the bank’s and agents’ utilities. This 
article supplements the almost nonexistent analyses of the interaction between hard and fiat money. Overall, the article sheds light on 
the coexistence of hard and fiat money, providing valuable insights into their dynamics. 

Section 2 presents the background. Section 3 reviews the literature. Section 4 presents the model. Section 5 analyzes the model. 
Section 6 illustrates the model. Section 7 provides an interpretation. Section 8 covers policy implications. Section 9 discusses the 
results. Section 10 covers limitations and avenues for future research. Section 11 concludes. 

2. Background 

Bitcoin (Nakamoto, 2008) is a decentralized digital currency which operates on a peer-to-peer network. It is not backed by any 
physical asset, government, or central authority. Historically, hard money approximated by gold, has been adopted widely. Bitcoin, 
without centralized parties or intermediaries, has different potential than physical gold related to censorship resistance, verifiability, 
portability, divisibility, convenience, and scarcity (Ikkurty, 2019). Central banks explore CBDCs (central bank digital currencies) to 
build efficient fiat payment systems and compete with cryptocurrencies. Hard money has real value and commands broad acceptance 
as a medium of exchange. Hard money is scarce, decentralized, has fixed supply, is difficult to counterfeit or manipulate, and cannot be 
printed. One further example is representative money (Nicholson, 1888; Steiner, 1941) that is backed by and redeemable for gold. 
Bitcoin’s status as a hard currency is being debated. Although both gold and Bitcoin resemble hard money, current empirics illustrate 
differences. Long et al. (2021) apply the nonlinear autoregressive distributed lag model to show that gold can, while Bitcoin cannot, 
hedge against uncertainties to varying degrees. Wen et al. (2022) show during the Covid-19 pandemic that gold is, while Bitcoin is not, 
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a safe haven for oil and stock markets. Some of this may be related to gold’s market capitalization at ca $13 trillion3 compared against 
Bitcoin’s $0.6 trillion.4 Boissay et al. (2022) describe the blockchain scalability and how high fees may fragment the crypto landscape, 
implying that, at least for now, cryptocurrencies cannot be a substitutive form of fiat money. This may change as the Lightning network 
and other innovations emerge. 

Hard money has been used as a medium of exchange and as a store of value throughout history, partly because it is valuable and 
scarce. Precious metals, such as gold and silver, were adopted as money by historical civilizations around the world. Coins were 
frequently produced from metals, e.g. gold, silver, copper, which simplified transactions and promoted trading between various 
communities. Hard money is still recognized as a store of value in modern society, particularly during times of economic crises, 
because hard money is thought to retain value better than fiat money, which is susceptible to inflation. Hard money encompasses a 
form of currency or monetary system that relies on a commodity, i.e. a fixed asset with intrinsic value or decentralized consensus. Two 
approximate examples are Bitcoin and gold. Hard money is characterized by a fixed or limited supply, which sets it apart from fiat 
money which lacks physical asset backing and derives its value solely from trust in the government. Hard money provides a perceived 
sense of stability and limits the potential for inflation or devaluation, as the supply is constrained. In contrast, fiat money relies on trust 
in the government and central banks. Its value typically decreases over time due to fiat money printing or inflation. 

The supply of Bitcoin is fixed at ca. 21 million. Bitcoin can be viewed as a form of hard money and is legal tender in two countries, i. 
e. El Salvador and the Central African Republic. More countries may adopt Bitcoin as legal tender in the future. Iwamura et al. (2019) 
discuss the potential competition between Bitcoin and central bank-issued fiat money. Ammous (2018) suggests a Bitcoin standard for 
nations. 

Central banks are responsible for the issuance and governance of fiat money. Central banks can vary the supply of fiat money supply 
by printing it, for example by buying bonds and securities from the open market, or by withdrawing it, e.g. selling bonds and securities 
to the open market and thus destroying or burning the earned fiat money. However, central banks cannot print hard money since the 
supply of hard money is fixed. Hard money has the advantage of being a more reliable store of value than fiat money, which is not 
backed by tangible goods. Hard money is less vulnerable to inflation than fiat money due to its limited supply. Hard money thus 
provides stability for individuals and companies. 

If fiat money is printed excessively, inflation and a decrease in the purchasing power of the currency may follow, which can 
disproportionately affect those who hold it, particularly those on fixed incomes or with savings in cash. Borrowers may benefit from 
expansions of the money supply if it causes lower interest rates and easier access to credit, but this can also contribute to inflation and a 
devaluation of the currency. The Cantillon effect (Murphy, 1986) is that the distribution of newly created money reaches different 
kinds of agents at different points in time which can affect the relative prices of goods and services disproportionately, also impacted by 
production and consumption patterns, market competition, and government policies. The withdrawal of fiat money from the economy 
may make it more expensive for borrowers to service their loans, but it can also lead to deflation and a decrease in economic activity, 
which can harm both borrowers and savers. 

Printing fiat money may not necessarily entail confiscation or violation of property rights if done responsibly to maintain the 
stability and value of the currency. Obtaining such stability can be challenging and depends on supply, demand and other factors. With 
certain assumptions, printing fiat money does entail confiscation and violation of the property rights of those who hold it. Then 
borrowers benefit from expansions of the money supply, and withdrawing fiat money benefits savers and makes it more expensive for 
borrowers to service their pre-existing loans. Table 1 illustrates the negative ↓ and positive ↑ impact of printing and withdrawing fiat 
money on fiat money holders and borrowers. Since money printing dilutes the monetary value, fiat holders and borrowers are 
negatively and positively impacted, respectively. Money withdrawal has the opposite impact. 

3. Literature 

The limited literature on this topic covers five topics, namely hard money, competition between fiat currencies, competition be-
tween cryptocurrencies and fiat currencies, cryptocurrencies and CBDCs, inflation and currencies, and gametheoretic analyses. 

3.1. Hard money 

Fisher (1920) warns that “irredeemable paper money has almost invariably proved a curse to the country employing it.” The world 
will experience unstoppable inflation unless the leading nations implement commodity or hard money standards. Cooper et al. (1982) 

Table 1 
How printing and withdrawing fiat money impacts fiat money holders and borrowers. Downward arrow ↓ means 
negative impact. Upward arrow ↑ means positive impact.   

Fiat money holder Fiat money borrower 

Printing fiat money ↓ ↑ 
Withdrawing fiat money ↑ ↓  

3 https://8marketcap.com/metals/, retrieved August 7, 2023.  
4 https://coinmarketcap.com/, retrieved August 7, 2023. 
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point out that the primary motivation for reviving the gold standard is to eliminate inflation and to maintain a stable noninflationary 
environment. They propose a commodity standard that goes beyond gold. In their view, such a standard would stabilize general price 
levels. Friedman and Schwartz (1986) summarize the main pillars of monetary reform, namely the government monopoly on money 
creation, free banking, and the determination of units of account. They point out that Austrian economists support hard money and 
oppose discretionary money management. Ammous (2018) points out that individuals will gradually migrate from national money to 
hard money, which preserves value more effectively. Examples include seashells, glass beads, iron, copper, and other primitive forms 
of money, which were eventually replaced by gold and silver. Ammous and D’Andrea (2022) investigate the link between time 
preferences, money, and hard money. They point out that fiat money is expected to lose value over time due to inflation, which in-
creases uncertainty, thus disincentivizing saving. However, forms of hard money such as Bitcoin are expected to maintain their value 
and purchasing power over time. Therefore, hard money reduces uncertainty and encourages savings. A hard money standard can lead 
to higher levels of social development. This article contributes to this literature by exploring the different impact of loans in hard and 
fiat money on various agents. Bibi (2023) explores the nature of money, focusing on cryptocurrencies such as Bitcoin and their po-
tential impact on monetary systems. The author argues that state acceptance and citizens’ adoption are crucial for Bitcoin to become 
money. The article highlights the potential influence of factors on the success and sustainability of Bitcoin, e.g. institutional pressures, 
convenience, environmental concerns, and the emergence of CBDCs. This article focuses mainly on the incentive of the bank to offer 
hard and fiat money loans and on the agents’ incentives to apply for loans of the two kinds. The bank cannot print hard money, but it 
can create fiat money. 

3.2. Competition between fiat currencies 

Fernández-Villaverde and Sanches (2019) develop a model of competition between privately issued fiat currencies. They introduce 
entrepreneurs who can issue private currencies in a Lagos-Wright environment. They found that competing private currencies can 
coexist, but their coexistence does not necessarily result in efficiency or stability. Dowd and Greenaway (1993) analyze currency 
competition. They discover that network effects and switching costs cause agents to favor the use of a single currency. Mafi (2003) 
investigates the relationship between currency competition and inflation. She finds that countries in which citizens are legally allowed 
to hold foreign currencies tend to have lower average inflation rates. This result suggests that currency competition could lead to lower 
inflation. Eichengreen (2005) adopt a historical approach to competition between reserve currencies. He points out that competition 
for reserve-currency status is not a winner-takes-all game. Instead, it is likely that multiple currencies will continue to hold that status 
in the future. He predicts that the dollar and the euro will likely remain the dominant reserve currencies for the foreseeable future. 
Martin and Schreft (2006) challenge the traditional view that currencies cannot coexist. They demonstrate the existence of equilibria in 
which outside money is issued competitively. The findings show that it is unclear whether competing currency issuers can produce 
allocations superior to those that result from a monopolist issuer. Gawthorpe (2017) also shows that currency competition can lead to 
lower inflation rates than the exclusive use of a single fiat currency. Wang and Hausken (2021a) investigate competition between a 
national currency and a global currency across three different groups of agents, namely conventionalists, pioneers, and criminals. 
Currency features such as backing, convenience, confidentiality, transaction efficiency, financial stability, and security are represented 
in the model. The authors show how the three kinds of agents choose between the two currencies. Ron and Valeonti (2023) show 
during the US Civil War how more democratic governing institutions in the North impacted the legitimacy of tax policies and enabled 
more effective backing of the currency to cause moderate inflation, as opposed to the South which experienced hyperinflation. This 
article contributes to this literature by investigating competition between hard and fiat money. The bank can print and withdraw fiat 
money, causing increased inflation. The supply of hard money is fixed. The article shows how printing and withdrawing fiat money 
affects borrowers, non-borrowers, buyers, and sellers in an economy. 

3.3. Competition between cryptocurrencies and fiat currencies 

Almosova (2018) considers the calculation costs that private currencies entail, such as the expenses associated with mining and 
transaction verification. She finds that currency competition does not lead to price stability. However, the circulation of less costly 
private currencies exerts downward pressure on inflation. Schilling and Uhlig (2019) examine competition between a fiat currency that 
is used for daily payments and a cryptocurrency that can be used to avoid taxes, to maintain anonymity, and to resist repression. The 
results show that the substitution effect between fiat currencies and cryptocurrencies declines as asymmetries in trading costs and 
exchange fees become more pronounced. Senner and Sornette (2019) think that forms of fixed-supply money such as Bitcoin are 
negatively affected by their speculative and deflationary designs. The supply of stablecoins such as Tether can be varied. However, 
neither Bitcoin nor stablecoins are backed by governments or central banks. The authors contend that existing cryptocurrencies cannot 
replace fiat money. Jumde and Cho (2020) explore whether cryptocurrencies could eventually overtake fiat money. They employ the 
analytic hierarchy process method. Nine factors, namely accessibility, constant utility, value-common assets, stability, convertibility, 
divisibility, liquidity, volatility, and possibility of speculation, are introduced to analyze the performance of cryptocurrencies and fiat 
money. The findings show that fiat money is preferred to cryptocurrencies. Levulytė and ̌Sapkauskienė (2021) explore the connections 
between cryptocurrencies and fiat money from the perspective of the three functions of money, i.e. medium of exchange, a unit of 
account, and store of value. They point out that cryptocurrencies such as Bitcoin and Ethereum are useful for cross-border transactions. 

G. Wang and K. Hausken                                                                                                                                                                                            



Research in International Business and Finance 67 (2024) 102115

5

The results also show that fluctuations in cryptocurrency prices are affected by fluctuations in the prices of fiat currencies. Sissoko 
(2021) discusses the hypothetical scenario in which agents can buy goods at fixed rates by using various currencies. He emphasizes that 
a financial system can be established accordingly. The effectiveness of the banking system depends on its capacity to increase the 
money supply in response to societal needs. Wang and Hausken (2022a) explore how competition between a variable-supply currency, 
such as fiat money, and a fixed-supply currency, such as Bitcoin, impacts agents’ choices of currency. They rely on a money-in-utility 
approach. They consider money printing and withdrawal, and an agent’s support of money, i.e. backing, convenience, transaction 
efficiency, financial stability, confidentiality, and security. They analyze the dynamic volume fractions of transactions in two cur-
rencies over time. Yu (2023) adopts a search theoretic model to explore the conditions under which fiat money and cryptocurrencies 
coexist. For cryptocurrencies to exist, the inflation rate in a stationary monetary equilibrium must be zero. The growth rate of the 
money stock determines the inflation rate for fiat currencies. The findings show that cryptocurrencies can coexist with fiat money. In 
addition, under the zero-inflation equilibrium, bans on cryptocurrency may decrease social welfare due to the inflation tax. Helmi et al. 
(2023) apply a time-varying vector autoregressive model to examine the impact of CBDC news on financial and cryptocurrency 
markets. They find that CBDC uncertainty and volatility index shocks contribute significantly to cryptocurrency uncertainty and 
Bitcoin return shocks. This article considers competition between variable-supply fiat money and forms of fixed-supply hard money, 
such as Bitcoin. Agents gain utility by holding hard money, fiat money, other assets, and by borrowing. The article studies how the 
bank can lend hard or fiat money to the agents and the impact of that lending on the bank and the agents. 

3.4. Cryptocurrencies and central bank digital currencies (CBDCs) 

Belke and Beretta (2020) recommend that central banks accept the technology that powers cryptocurrency, and develop a 
well-regulated two-tier system by engaging in innovation in the domain of payment infrastructures. Nabilou (2020) points out that 
cryptocurrencies such as Bitcoin may pose risks to the monopoly of central banks over the issuance of money, to price stability, to the 
smooth operation of payment systems, to the execution of monetary policy, and to the stability of financial institutions. Accordingly, 
central banks explore CBDCs. He notes that the European Central Bank must overcome several legal challenges before introducing 
CBDCs at the Eurozone level. Laboure et al. (2021) summarize the evolution of cryptocurrencies and CBDCs. They predict that 
cryptocurrencies and fiat money will coexist in the near future. They also note that numerous concerns, including ones that have to do 
with energy efficiency, transaction speed, identity problems, and regulation, must be addressed before cryptocurrencies can be 
accepted widely. Scharnowski (2022) explores market reactions to speeches on CBDCs from the perspective of cryptocurrency in-
vestors. He finds that cryptocurrency prices tend to react more strongly to positive speeches, while negative CBDC sentiment has a 
slight amplifying effect. The findings indicate that investors do not view CBDCs as a threat to cryptocurrencies. Benigno et al. (2022) 
examine competition between national currencies such as CBDCs and global cryptocurrencies such as Bitcoin in a two-country 
economy with complete markets. They conclude that national nominal interest rates must be equal in the two countries at the time 
when a global cryptocurrency is adopted. Deviations from interest rate equality indicate that there is a risk of the national currency 
being abandoned. They call this feature of the model “crypto-enforced monetary policy synchronization.” Adrian and Mancini-Griffoli 
(2021) consider benefits and risks of digital money compared with traditional money, and assess digital money backed with central 
bank reserves as a private-public partnership. Ayadi et al. (2023) employ a Cross-Quantilogram model. They reveal a negative as-
sociation between the CBDC uncertainty index and the returns of cryptocurrencies and stablecoins. This article adds to the literature by 
evaluating competition between forms of hard money approximated by Bitcoin, which are supported by a proof-of-work consensus 
mechanism, and forms of fiat money exemplified by CBDCs, paper money, and coins. CBDCs are one form of fiat money that central 
banks issue, support and supervise. Hard currencies, conversely, typically have a fixed supply because they are backed by assets such as 
commodities and gold or by consensus algorithms. This article contains a model that illustrates the effects of hard and fiat money 
lending and borrowing on the economy. It also discusses the conditions under which a bank is prepared to lend and those under which 
agents are willing to borrow from the bank to buy assets from other agents. 

3.5. Inflation and currencies 

Sakurai and Kurosaki (2023) find that major cryptocurrencies become slightly better inflation hedges after the reopening after the 
Covid-19 pandemic, regardless of whether they have a maximum supply cap. Xin and Jiang (2023) develop a dynamic stochastic 
general equilibrium model to show that CBDCs can stabilize the economic fluctuations caused by a negative interest rate policy 
implemented by interest rate adjustment to reach various economic objectives such as monetary stimulation, stable exchange rates, 
and desired inflation levels. Feres (2021) analyzes how the US Federal Reserve handles crises associated with fiat, debt and inflation. 
He recommends a transition to a monetary system backed by a finite commodity. Messay (2023) develops an idealized model as a 
thought experiment to show that an international fiat currency issued by one or several core countries is a main factor impacting 
national economic development, and that seigniorage accrued to developed countries by consuming more than they produce is at the 
expense of the developing countries in the Global South. This article analyzes how inflation relates to the coexistence of hard money 
and fiat money. 
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3.6. Gametheoretic analyses 

Welburn and Hausken (2017) explore economic crises from a gametheoretic perspective. They introduce six kinds of agents, i.e. 
countries, central banks, intergovernmental financial organizations, banks, firms, and households. These agents can adopt various 
strategies, such as setting interest rates, lending, borrowing, and consuming. The authors use the model to illustrate the European debt 
crisis. Hart (2020) models the positive input consumption and the negative input pollution with a constant elasticity-of-substitution 
function. Since pollution has a negative impact, the corresponding exponent, which is the elasticity of the Cobb Douglas utility, is 
negative. This article uses a similar approach—loans are raised to a negative exponent in the borrower’s Cobb Douglas utility because 
the borrower must pay interest to the bank. Mou et al. (2021) develop two gametheoretic models of CBDC adoption in different 
countries. The findings indicate that each country should issue a CBDC, regardless of the choices of other countries. The leading 
country needs to issue a CBDC to maintain its status. Other countries must also introduce a CBDC in order to avoid losing ground in the 
digital realm. Wang and Hausken (2022b) establish a game between a central bank and a household choosing between a CBDC, a 
non-CBDC such as Bitcoin, and consumption. The central bank determines the CBDC interest rate, which can be negative. The 
household chooses its portfolio while accounting for backing, transaction efficiencies, and costs. They demonstrate how the bank and 
the household choose their strategies. The outcome is determined analytically and illustrated numerically. This article relates to this 
literature by considering the interactions between a bank and the agents. A bank may choose to lend or not to lend hard or fiat money 
to an agent. An agent may choose to borrow or not to borrow hard or fiat money from the bank. The other agents may choose to sell or 
retain their assets or do nothing. The article shows the impact of these strategies. 

4. The model 

This section develops the model for n agents in Section 4.1, the one bank in Section 4.2, and the inflation rates in Section 4.3. The 
model is chosen to be minimally complex while simultaneously capturing reality. The model features one bank as a unitary actor, along 
with n agents consisting of one borrower and buyer, one seller, and n�2 nontraders over the two periods. The article establishes the 
Cobb Douglas utility function (objective function) for both the bank and the agents, following a step-by-step process as outlined in this 
section. The article employs a money-in-utility approach, where utility is derived from the possession of money or assets. This 
approach is commonly utilized in economic and financial research. The underlying conception is that the utility function captures an 
individual’s preferences regarding a range of goods and services. Various studies have applied the money-in-utility approach, e.g. 
Ramsey (1928) and Sidrauski (1967). Recent examples include the research by Chen and Guo (2014), Mian et al. (2021), and Ferrari 
Minesso et al. (2022). The homogeneity of asset classes is determined by their Cobb Douglas utility elasticities. Appendix A shows the 
nomenclature. 

4.1. The n agents 

Subsection 4.1.1 considers period 1 for the three kinds of agents. Subsection 4.1.2 considers period 2 for the three kinds of agents. 
Agent i, i = 1,…,n, has a Cobb Douglas utility Uit with multiple inputs in period t, t = 1,2. Agent i can be a household, or any agent, e. 
g. firm, institution, organization. In period t, agent i holds maximum three kinds of assets with value jit , jit ≥ 0, j = q,m,o. The article 
employs a Cobb Douglas utility function and includes assets within the utility function. Other examples applying this approach are 
Ferrari Minesso et al. (2022); Syarifuddin and Bakhtiar (2022); Wachter and Yogo (2010). The agents assess their utilities across two 
periods and opt for trading in period 2 if the utility in that period surpasses the utility in period 1. That is a realistic description of an 
economy to some extent. Therefore, an intertemporal optimization approach is not employed in the article. These assets are hard 
money qit and fiat money mit deposited in the open market (e.g. in the stock, bond or decentralized finance markets), and other assets 
oit . Examples of other assets oit are anti-inflationary investments, non-fungible tokens, bonds, stocks, other financial assets, real estate, 
physical assets, and illegal assets. Holding asset jit earns interest rate Ijt, Ijt ∈ R, j = q,m,o, from the open market, as determined by the 
open market. Each Cobb Douglas input is raised to the Cobb Douglas elasticity αijt , αijt ≥ 0, j = q,m, o, which accounts for asset j’s 
liquidity, backing, convenience, confidentiality, transaction efficiency, financial stability, and security. 

4.1.1. Period 1 

4.1.1.1. Agent 1. Assume, without loss of generality in choice of agent, that agent 1 in period 1 borrows L1q1 in hard money and L1m1 in 
fiat money from the bank and buys an asset valued as L1q1 + L1m1. Agent 1’s borrowing interest rate is rj1, rj1 ∈ R,j = q,m. Multiplying 
agent 1’s loan L1j1 with 1+rj1 to account for the interest rate rj1, and inverting since a loan L1j1 with interest rate rj1 is costly for agent 1 
causing negative impact on agent 1’s utility U11 (just as pollution is costly in Hart’s, 2020 model, see Section 3.6), gives the input (

1
(1+rj1)L1j1

)α1jL1

=
��

1 + rj1
)
L1j1

)�α1jL1 , j = q, m, assuming the Cobb Douglas elasticity αijL1 ≥ 0. Agent 1 uses its entire borrowing 

L1q1 +L1m1 to buy other assets. For simplicity, assume that the borrower buys other asset o11 in period 1. Adding agent 1’s loan 
L1q1 +L1m1 to its other assets o11 gives o11 +L1q1 +L1m1 which is multiplied with 1+Io1 to account for the interest rate Io1, and raised to 
the Cobb Douglas elasticity α1o1 which gives the input 

�
(1 + Io1)

�
o11 + L1q1 + L1m1

) )α1o1 . Agent 1 holds neither hard money q nor fiat 
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money m in period 1, i.e. q11 = m11 = 0. Requiring constant returns to scale gives α1o1+α1qL1+α1mL1 = 1. Applying the Max(1, •)
function for agent 1’s loan L1j1, j = q,m, agent 1’s period 1 utility is 

U11 =
�
(1 + Io1)

�
o11 + L1q1 + L1m1

) )α1o1  

�
Max

�
1,
�
1 + rq1

)
L1q1

) )�α1qL1 (Max(1, (1 + rm1)L1m1 ) )�α1mL1 (1)  

4.1.1.2. Agents 2,…,n. Assume that agent i,i = 2,…,n, in period 1 does not borrow, i.e. Lij1 = 0,j = q,m, does not sell its other assets 
oi1, and holds assets with value ji1, j = q,m,o. Multiplying agent i’s asset ji1 with 1+Ij1 to account for the interest rate Ij1, and raising to 
the Cobb Douglas elasticity αij1 gives the input 

��
1 + Ij1

)
ji1

)αij1 . Requiring constant returns to scale gives αiq1 + αim1 + αio1 = 1. Hence 
agent i’s period 1 utility is 

Ui1 =
��

1 + Iq1
)
qi1

)αiq1 ((1 + Im1)mi1 )αim1 ((1 + Io1)oi1 )αio1 , i = 2,…, n (2)  

4.1.2. Period 2 

4.1.2.1. Agent 1. In period 2 agent 1 borrows L1q2 in hard money and L1m2 in fiat money from the bank and buys an asset valued as 
L1q2 +L1m2 from agent 2, without loss of generality. The assets are traded based on their value, regardless of whether they are traded in 
hard money or fiat money. Agent 1 retains its loans L1q1 and L1m1 from period 1 to period 2. Adding L1q2 +L1m2 to agent 1’s other assets, 
adding L1q2 and L1m2 to agent 1’s loans, and applying the Max(1, •) function for agent 1’s loans L1j1 + L1j2, j = q,m, agent 1’s period 2 
utility is 

U12 =
�
(1 + Io2)

�
o11 + L1q1 + L1m1 + L1q2 + L1m2

) )α1o2  

(
Max

(
1,
�
1 + rq2

)(
L1q1 + L1q2

)))�α1qL2  

(Max(1, (1 + rm2)(L1m1 + L1m2) ) )�α1mL2

(1 + π2)�α1mL2 (3) 

Division with (1 + π2)�α1mL2 for agent 1’s fiat money loan L1m1 +L1m2 is to account for the inflation rate π2, π2 ∈ R. The inflation rate 
is positive if π2 > 0, nonexistent if π2 = 0, and negative, i.e. deflation if π2 < 0. The negative signs on the Cobb Douglas elasticities α1jL2 

correspond to the negative signs on α1jL1 in (1), due to inverting the base in the function since the loans L1q1 and L1m1 are costly. 
Requiring constant returns to scale gives α1o2+α1qL2+α1mL2 = 1. 

4.1.2.2. Agent 2. In period 2 agent 2 sells other assets valued at L1q2 +L1m2 to agent 1, retaining o21 � L1q2 � L1m2. Multiplying with 
1+Io2 to account for the interest rate Io2, and raising to the Cobb Douglas elasticity α2o2 gives the input �
(1 + Io2)

�
o21 � L1q2 � L1m2

) )α2o2 . Agent 2’s sale causes its hard money holding to increase from q21 to q21 +L1q2 which is multiplied 
with 1+Iq2 to account for the interest rate Iq2, and raised to the Cobb Douglas elasticity α2q2 which gives the input 
��

1 + Iq2
)�

q21 + L1q2
) )α2q2 . Agent 2’s sale causes its fiat money holding to increase from m21 to m21 +L1m2 which is multiplied with 

1+Im2 to account for the interest rate Im2, raised to the Cobb Douglas elasticity α2m2, and divided with (1 + π2)α2m2 to account for the 
inflation rate π2, which gives the input ((1+Im2)(m21+L1m2) )α2m2

(1+π2)α2m2 . Agent 2 neither buys nor borrows. Requiring constant returns to scale gives 
α2q2 + α2m2 + α2o2 = 1. Multiplying the three inputs, agent 2’s period 2 utility is 

U22 =
��

1 + Iq2
)�

q21 + L1q2
) )α2q2 ((1 + Im2)(m21 + L1m2) )α2m2

(1 + π2)α2m2  

�
(1 + Io2)

�
o21 � L1q2 � L1m2

) )α2o2 (4)  

4.1.2.3. Agents 3,…,n. Assume that agent i,i = 3,…,n, in period 2 neither borrows nor buys nor sells. That is, agent i does nothing, but 
is subject to the inflation rate π2. Hence agent i’s fiat money holding input is ((1+Im2)mi2 )αim2

(1+π2)αim2 , and agent i’s period 2 utility is 

Ui2 =
��

1 + Iq2
)
qi2

)αiq2 ((1 + Im2)mi2 )αim2

(1 + π2)αim2 ((1 + Io2)oi2 )αio2 , i = 3,…, n (5) 

Requiring constant returns to scale gives αiq2 + αim2 + αio2 = 1. 
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4.2. The bank 

Three examples of articles assuming that the bank and central banks are one unitary actor are Chen et al. (2017); Gertler and 
Kiyotaki (2015); Wang and Hausken (2021b). The article employs a similar approach and assumes that the bank and central bank are 
one unitary actor, which holds an amount of asset jt , and can lend L1jt to agent 1, j = q,m, t = 1,2. The bank holds no other assets. 
Therefore, the central bank’s role is embedded by the bank actor. Banks have multifarious revenue streams. The bank earns an interest 
rate Ijt ,Ijt ∈ R, from the open market, analogously to the n agents. We exclude deposits by the n agents from the bank’s utility since the n 
agents deposit their assets in the open market. Since the bank and the n agents earn the same interest rate Ijt in the open market, we may 
interpret the n agents as depositing their assets in the bank, which further deposits in the open market. The bank’s utility Ut in period t,t 
= 1, 2, has two multiplicative inputs pertaining to holding asset jt, j = q,m, and two multiplicative inputs pertaining to earning interest 
from lending L1jt to agent 1, j = q,m. Four other examples of articles assuming that the bank has a Cobb Douglas utility function are 
Goodfriend and McCallum (2007); Mullineaux (1978); Tsai (2013); Wang and Hausken (2022b). 

4.2.1. Period 1 
In period 1 the bank holds q1 in hard money and m1 in fiat money. The bank provides loans L1q1 in hard money and L1m1 in fiat 

money to agent 1. After providing the loans, the bank holds j1 �L1j1 in asset j, j = q,m, which is multiplied with 1+Ij1 to account for the 
interest rate Ij1, and raised to the Cobb Douglas elasticity βj1, βj1 ≥ 0, which gives the input 

��
1 + Ij1

)�
j1 � L1j1

) )βj1 . The bank does not 
print fiat money in period 1. Lending L1j1 to agent 1 gives an interest rate rj1. Assume that when the bank lends L1j1 to agent 1, the bank 
retains the utility of the amount it lends out. Hence L1j1 is multiplied with 1 + rj1 instead of rj1, j = q,m, and raised to the Cobb Douglas 
elasticity βjL1, βjL1 ≥ 0, j = q,m. Requiring constant returns to scale gives βq1 + βm1 + βqL1 + βmL1 = 1. Multiplying the four inputs, and 
applying the Max(1, •) function for the loans L1q1 and L1m1, the bank’s period 1 utility is 

U1 =
��

1 + Iq1
)�

q1 � L1q1
) )βq1 ((1 + Im1)(m1 � L1m1) )βm1  

�
Max

�
1,
�
1 + rq1

)
L1q1

) )βqL1 (Max(1, (1 + rm1)L1m1 ) )βmL1 (6)  

4.2.2. Period 2 
In period 2 the bank provides loans L1q2 in hard money and L1m2 in fiat money to agent 1. The bank continues in period 2 to hold the 

loans L1q1 and L1m1 that agent 1 incurred in period 1. The fiat money loan L1m2 is provided by money printing. After lending hard 
money L1q2 to agent 1, the bank holds q1 �L1q1 �L1q2 in hard money, which is multiplied with 1+Iq2 to account for the interest rate Iq2, 
and raised to the Cobb Douglas elasticity βq2, βq2 ≥ 0, which gives the input 

��
1 + Iq2

)�
q1 � L1q1 � L1q2

) )βq2 . After printing and lending 
fiat money L1m2 to agent 1, printing an amount Pm2, Pm2 ≥ 0, of fiat money, and withdrawing an amount Wm2, Wm2 ≥ 0, of fiat money, 
the bank holds m1 �L1m1 +Pm2 �Wm2 in fiat money, which is multiplied with 1+Im2 to account for the interest rate Im2, raised to the 
Cobb Douglas elasticity βm2, βm2 ≥ 0, and divided with (1 + π2)βm2 to account for the inflation rate π2, which gives the input 
((1+Im2)(m1�L1m1+Pm2�Wm2) )βm2

(1+π2)βm2 . The fiat money loan L1m2 to agent 1 is not subtracted in the previous expression since the bank prints the fiat 

money. Lending hard money L1q2 to agent 1 gives an interest rate rq2. Adding agent 1’s retained loan L1q1 from period 1, L1q1 +L1q2 is 
multiplied with 1 + rq2 and raised to the Cobb Douglas elasticity βqL2, βqL2 ≥ 0, which gives the input 

��
1 + rq2

)�
L1q1 + L1q2

) )βqL2 . 
Lending fiat money L1m2 to agent 1 gives an interest rate rm2. Adding agent 1’s retained loan L1m1 from period 1, L1m1 +L1m2 is 
multiplied with 1 + rm2 and raised to the Cobb Douglas elasticity βmL2, βmL2 ≥ 0, and divided with (1 + π2)βm2 to account for the 

inflation rate π2, which gives the input ((1+rm2)(L1m1+L1m2) )βmL2

(1+π2)βmL2 . βq2 + βm2 + βqL2 + βmL2 = 1. Multiplying the four inputs, the bank’s period 

2 utility is 

U2 =
��

1 + Iq2
)�

q1 � L1q1 � L1q2
) )βq2  

((1 + Im2)(m1 � L1m1 + Pm2 � Wm2) )βm2

(1 + π2)βm2  

��
1 + rq2

)�
L1q1 + L1q2

) )βqL2 ((1 + rm2)(L1m1 + L1m2) )βmL2

(1 + π2)βmL2
(7)  

4.3. The inflation rates π1 and π2 

The bank cannot print hard money q. Hence no inflation exists for hard money q. To create a reference standard with zero inflation 
rate π1 = 0 in period 1, assume that the bank does not print fiat money m in period 1. Instead, the bank uses its fiat money holding for 
lending L1m1 to agent 1 in period 1. The inflation rate π2 in period 2 equals a ratio. The numerator is the net increase from period 1 to 
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period 2 in the amounts of hard money q and fiat money m. Since the amount of hard money q does not increase, which is the nature of 
hard money, the net increase from period 1 to period 2 is L1m2 + Pm2 � Wm2, where L1m2 is what the bank prints to lend to agent 1, Pm2 
is what the bank prints to increase the fiat money circulating amount, and Wm2 is what the bank withdraws to decrease the fiat money 
circulating amount. The denominator in the ratio is the amount 

∑n
i=1qi1 +q1 of circulating hard money q in period 1 plus the amount 

∑n
i=1mi1 +m1 of circulating fiat money m in period 1. Thus, the amount of hard money also impacts the inflation rate π2 in period 2. 

Hence the inflation rate in period 2 is 

π2 =
L1m2 + Pm2 � Wm2

∑n

i=1
qi1 + q1 +

∑n

i=1
mi1 + m1

(8)  

5. Analyzing the model 

The model conceptualizes one unitary bank and three kinds of agents, whose behaviors are driven by their respective utilities. The 
article assumes that the bank and agents act in a manner that maximizes their utilities and compares their utilities over the two periods. 
Factors that drive the bank’s and agents’ behavior include holdings of hard money, fiat money, and other assets, and borrowing in hard 
and fiat money. The bank’s behavior is impacted by its holdings of hard money and fiat money, borrowing interest rates in hard money 
and fiat money, its fiat money printing and fiat money withdrawal. 

5.1. Comparing periods 1 and 2 

See Appendix B. 

Property 1. Agents 1 and 2 prefer to trade if (13) and (14) are satisfied. Agent i,i = 3,…,n, prefers the trade between agents 1 and 2 if 
(15) is satisfied. The bank prefers to lend to agent 1 if (16) is satisfied. 

Proof: Eq. (13) implies that agent 1’s utility U12 in period 2 is higher than its utility U11 in period 1, i.e. U11 < U12. Thus, agent 1 
prefers to buy other assets valued as L1q2 +L1m2 from agent 2 in period 2. Analogously, (14) implies that agent 2’s utility U22 in period 2 
is higher than its utility U21 in period 1, i.e. U21 < U12. Thus, agent 2 prefers to sell other assets valued as L1q2 +L1m2 to agent 1 in period 
2. It follows from (15) that agent i,i = 3,…,n, prefers the trade between agents 1 and 2 since its utility Ui2 in period 2 is higher than its 
utility Ui1 in period 1, i.e. Ui1 < Ui2. Agent i,i = 3,…,n, is unaffected if Ui1 = Ui2. Eq. (16) implies that the bank’s utility U2 in period 2 
is higher than its utility U1 in period 1, i.e. U1 < U2. Thus, the bank prefers to lend L1q2 +L1m2 to agent 1 in period 2. 

Property 1 states that agent 1 prefers to borrow L1q2 +L1m2 from the bank and buy other assets from agent 2 when U11 < U12. Agent 
2 prefers to sell other assets L1q2 +L1m2 to agent 1 when U21 < U22. The bank prefers to lend L1q2 +L1m2 to agent 1 when U1 < U2. Agent 
i,i = 3,…,n, prefers the trade between agents 1 and 2 when Ui1 < Ui2. Hence agent i is unaffected by the trade between agents 1 and 2 
when Ui1 = Ui2. 

6. Illustrating the model 

To illustrate the solution in Section 5, this section alters the model’s 64 parameter values relative to the following plausible 
benchmark parameter values intended to capture the specificities of the context and how the three kinds of agents and bank operate 
within this context. The benchmark parameter values, and the ranges for the parameter values in the analysis, are chosen carefully 
with the following objectives in mind: 1. The analysis should capture the most interesting phenomena involved for the three kinds of 
agents and the bank. 2. The borrower should or should not prefer to borrow hard money and fiat money from the bank in order to buy 
other assets from the seller. 3. The seller should or should not prefer to sell other assets to the buyer. 4. The nontraders should or should 
not prefer the trade between the buyer and seller, and should or should not prefer the bank to lend to the borrower and print or 
withdraw fiat money, though without being able to impact the borrower, seller and bank. 5. The bank should or should not prefer to 
lend hard money and fiat money to the borrower, and should or should not prefer to print or withdraw fiat money. The analysis is 
intended to generate valuable insights shown below and believed not to be easily captured by alternative analyses. 

Assume that agent 1 has no hard money and no fiat money in the two periods, i.e. q11 = q12 = m11 = m12 = $0. Agent 1 also has no 
other assets before borrowing and buying other assets, i.e. o11 = $0. This choice is made to test whether agent 1 may be willing to incur 
loans from the bank to acquire other assets. For agent 1 assume the loans L1q1 = L1m1 = $10 in period 1, to enable buying other assets 
L1q1 +L1m1 = $20 from agent 2, and the loans L1q2 = L1m2 = $15 in period 2 to enable buying other assets L1q2 +L1m2 = $30 from agent 
2. Thus, agent 1 holds other assets o11 +L1q1 +L1m1 = $20 after borrowing and buying in period 1, which equals the amount o12 = $20 
of other assets agent 1 holds before borrowing and buying other assets in period 2. Agent 1 holds other assets o12 +L1q2 +L1m2 

= o11 +L1q1 +L1m1 +L1q2 +L1m2 = $50 after borrowing and buying in period 2. 
Assume that agent 2 in period 1 has hard money q21 = $100 and fiat money m21 = $100, after receiving payments L1q1 = L1m1 =

$10 from agent 1. Agent 2 in period 2 has hard money q21 +L1q2 = $100+$15 = $115 and fiat money m21 +L1m2 = $100+$15 = $115 
after receiving payments L1q2 = L1m2 = $15 from agent 1. Agent 2 in period 1 has other assets o21 = $400 after selling L1q1 +L1m1 = $20 
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to agent 1, chosen to be high to ensure that agent 2 may be willing to sell some of its other assets to agent 1. Agent 2 in period 2 has 
other assets o21 �L1q2 �L1m2 = $400�$15�$15 = $370 after selling other assets L1q2 +L1m2 = $30 to agent 1. 

For agent i, i = 3,…,n, assume the benchmark n = 3 so that only one agent exists aside from agents 1 and 2, and qi1 = qi2 = mi1 =
mi2 = $100, oi1 = oi2 = $400 so that agent 3 largely resembles agent 2. The differences are that agent 3 does not sell other assets, which 
agent 2 does, and does not buy other assets, as agent 1 does. Agent 3 is introduced to analyze how an agent can be impacted without 
buying and selling. 

Assume for the benchmark that the bank’s period 1 holding of hard money q1 is the sum of the n agents’ holding of hard money, i.e. 
q1 =

∑n
i=1qi1 = (n�1)qi1 = $200, i = 2,…,n. Analogously, the bank’s period 1 holding of fiat money m1 is the sum of the n agents’ 

holding of fiat money, i.e. m1 =
∑n

i=1mi1 = (n�1)mi1 = $200, i = 2,…,n. Since the bank in period 1 lends L1q1 = $10 in hard money 
and L1m1 = $10 in fiat money to agent 1, the bank’s hard money holding in period 1 is q1 � L1q1 = $200 � $10 = $190. Since the bank 
in period 1 does not print fiat money, and uses its fiat money holding for lending, the bank’s fiat money holding in period 1 is m1 � L1m1 
= $200 � $10 = $190. Analogously, Since the bank in period 2 lends L1q2 = $15 in hard money and L1m2 = $15 in fiat money to agent 
1, the bank’s hard money holding in period 2 is q1 � L1q1 � L1q2 = $200 � $10 � $15 = $175. Assume the benchmark where the bank 
in period 2 prints L1m2 = $15 in fiat money to furnish the loan to agent 1. The bank does not otherwise print money, i.e. Pm2 = $0, and 
does not withdraw money, i.e. Wm2 = $0. Hence the bank’s fiat money holding in period 2 is m1 � L1m1 + Pm2 � Wm2 = $200 � $10 �
$0 � $0 = $190. 

Agent i, i = 1,…,n, has the same Cobb Douglas elasticity for holding other assets in both periods, i.e. αio1 = αio2 = 1/2. Agent 1’s 
Cobb Douglas elasticities of loans in hard money and fiat money are α1qL1 = α1qL2 = α1mL1 = α1mL2 = 1/4. Agent i, i = 2,…, n has the 
same Cobb Douglas elasticities for holding hard money and fiat money in both periods, i.e. αiq1 = αiq2 = αim1 = αim2 = 1/4. The bank 
has the same Cobb Douglas elasticities for holding hard money, fiat money, hard money lending, and fiat money lending, in both 
periods, i.e. βj1 = βj2 = βjL1 = βjL2 = 1/4, j = q,m. The inflation rate benchmark is π2 = 1.875% based on (8), which is close to the 
common inflation rate target 2% in many fiat economies. The interest rates Ijt, j = q,m,o, t = 1,2, for three kinds of assets determined 
by the open market in the two periods are equivalent, i.e. Iq1 = Iq2 = Im1 = Im2 = Io1 = Io2 = 2%. The borrowing interest rates rjt, j = q,
m, t = 1, 2, for hard money q and fiat money m, determined by the bank in the two periods are also equivalent, i.e. rq1 = rq2 = rm1 = rm2 

= 5%. With these benchmark parameter values the benchmark solution is U11 = 1.39, U12 = 1.40, U21 = 204.00, U22 = 209.43, Ui1 =
204.00, Ui2 = 203.06, U1 = 45.11, U2 = 69.23, π2 = 1.875%. In the benchmark agents 1 and 2 and the bank prefer period 2 rather 
than period 1, while agent i prefers period 1 rather than period 2. 

Figure 1 illustrates the agents’ and the bank’s utilities in response to variations in the 64 parameter values, relative to the plausible 
benchmark parameter values. The x-axis in each panel represents the labeled parameter, displaying the corresponding parameter 
values. The y-axis represents the utilities of both the agents and the bank. In Figure 1 each of the 64 parameter values is altered from its 
benchmark marked with vertical dashed lines in each panel, while the other 63 parameter values are kept at their benchmarks. 
Multiplication of π2 with 104 and 102, and multiplication of U11 and U12 with 200, 20 and 10 are for scaling purposes. The 17 most 
interesting panels are interpreted in this section. The remaining 47 panels are interpreted in Appendix C. 

In Figure 1a, as the number n of agents increases, which is intuitively beneficial for the bank, the bank’s utilities U1 and U2 increase 
concavely toward infinity. Agent 1’s utility U12 decreases slightly since the inflation rate π2 decreases slightly, which hurts agent 1 
because of agent 1’s fiat money loans L1m1 and L1m2. In contrast, agents 2 and i’s utilities U22 and Ui2 increase slightly because the 
inflation rate π2 decreases slightly, which benefits agents 2 and i because of their fiat money holdings m22 and mi2. The utilities U11, 
U21, Ui1 remain constant since neither the number n of agents nor the inflation rate π2 play a role in period 1. The inflation rate π2 
decreases convexly and asymptotically toward zero due to division with n in (8). The inflation impact of the bank’s fiat money printing 
L1m2 to provide agent 1’s loan L1m2 is spread across more agents. As the number n of agents increases, each agent and the bank 
experience a lower inflation rate π2 according to (8). 

In Figure 1d, as agent 1’s borrowing L1q2 in hard money in period 2 increases, the bank’s utility U2 is inverse U shaped. That is, the 
bank prefers to lend an optimal amount L1q2 of hard money to agent 1. The maximum of U2 is 85.12 when L1q2 = $90. The bank’s 
utility U2 decreases concavely toward zero after the maximum. The bank prefers to lend hard money to agent 1 when 
$0 ≤ L1q2 < $185.98. When $185.98< L1q2 ≤ $190.00, the bank’s utility U2 is less than U1. That follows from the nature of the bank’s 
inverse U shaped Cobb Douglas utility U2, which is low when the bank lends excessively or minimally. Agent 2’s utility U22 is also 
inverse U shaped. Agent 2 prefers to sell an optimal amount L1q2 +L1m2 of its other assets o21 �L1q1 �L1m1 to agent 1 in period 2. That 
follows from the nature of agent 2’s inverse U shaped Cobb Douglas utility U22, which is low when agent 2 sells its other assets 
excessively or minimally. The maximum of U22 is 213.18 when L1q2 = $61.67. Agent 2’s utility U22 decreases concavely after the 
maximum. Agent 2 wants to sell its other assets L1q2 +L1m2 to agent 1 when $0 ≤ L1m2 < $143.96. Hence, agent 2 prefers not to sell too 
much other assets to agent 1 in period 2. Agent 1’s utility U12 increases since agent 1 benefits from buying other assets L1q2 +L1m2 

using its borrowing L1q2 in hard money. The utilities Ui1, U1, and U11 are constant since agent 1’s borrowing L1q2 in hard money plays 
no role in period 1. Agent i’s utility Ui2 is constant since L1q2 has no impact on agent i in period 2. The inflation rate π2 remains constant 
since L1q2 plays no role in (8). 

In Figure 1f, as agent 1’s borrowing L1m2 in fiat money in period 2 increases, the inflation rate π2 increases because L1m2 is added to 
the numerator in (8). Thus, the bank’s utility U2 increases concavely since it prints fiat money for lending in period 2. This implies that 
the benefit of printing L1m2 fiat money for lending overrides the negative impact of holding m1 �L1m1 +Pm2 �Wm2 of fiat money from 
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the increasing inflation rate π2. The bank always prefers to lend fiat money to agent 1 in period 2 since U2 > U1. Agent 1’s utility U12 
increases since the inflation rate π2 increases, which benefits agent 1 because of agent 1’s fiat money loans L1m1 and L1m2. Agent 2’s 
utility U22 is inverse U shaped since it prefers to sell an optimal amount L1m2 of its other assets o22 to agent 1. The maximum of U22 is 
210.83 when L1m2 = $42.36. Agent 2’s utility U22 decreases concavely toward zero after the maximum. Agent 2 wants to sell other 
assets L1q2 +L1m2 to agent 1 when $0 ≤ L1m2 < $110.96. Agent 2 prefers not to sell too much other assets to agent 1 in period 2. Agent 
i’s utility Ui2 decreases from Ui2 = 204.00 when L1m2 = $0, to Ui2 = 203.06 when L1m2 = $15, and thereafter decreases further, 
because the inflation rate π2 increases, which hurts agent i because of its fiat money holdings mi2. Thus, agent i suffers from agent 1’s 
borrowing in fiat money L1m2 in period 2 without doing anything. The utilities U11, U21, Ui1, and U1 remain constant since neither agent 
1’s borrowing L1m2 in fiat money nor the inflation rate π2 play a role in period 1. 

In Figure 1s, as the bank’s fiat money printing Pm2 in period 2 increases, the inflation rate π2 increases since Pm2 is added to the 
numerator in (8). Interestingly, the bank’s utility U2 is inverse U shaped. It first increases toward a maximum U2 = 75.28 when Pm2 
= $435 and then decreases convexly and asymptotically toward zero. This implies that, before the maximum, the benefit of printing 
L1m2 +Pm2 fiat money overrides the negative impact of holding m1 �L1m1 +Pm2 �Wm2 of fiat money due to the increasing inflation rate 
π2. After the maximum, the negative impact of holding m1 �L1m1 +Pm2 �Wm2 of fiat money due to the increasing inflation rate π2 
overrides the benefit of printing L1m2 +Pm2 fiat money. Hence the bank prefers to print an optimal amount of fiat money. When 
$0 ≤ Pm2 < $17929.02, U2 > U1. The bank prefers not to print more fiat money than $17929.02 since U2 < U1 when Pm2 > $17929.02 
in period 2. Agent 1’s utility U12 increases concavely since the inflation rate π2 increases, which benefits agent 1 because of its fiat 
money loans L1m1 and L1m2. Agents 2 and i’s utilities U22 and Ui2 decrease convexly toward zero. Agents 2 and i are hurt by the 
increasing inflation rate π2 due to their holdings m22 and mi2 of fiat money. Agents 2 and i suffer from the bank’s fiat money printing 
L1m2 +Pm2 in period 2, without agent i doing anything. The utilities U11, U21, Ui1, and U1 remain constant since neither the bank’s fiat 
money printing L1m2 +Pm2 nor the inflation rate π2 play a role in period 1. 

In Figure 1t, conversely, as the bank’s fiat money withdrawing Wm2 in period 2 increases, the inflation rate π2 decreases and 
becomes negative when Wm2 > $15, caused by Wm2 being subtracted from the numerator in (8). Interestingly, the bank’s utility U2 
decreases concavely toward zero. It implies that the negative impact of withdrawing money overrides the benefits of holding 
m1 �L1m1 +Pm2 �Wm2 of fiat money due to the decreasing inflation rate π2. The bank prefers not to withdraw more fiat money than Wm2 
= $168.44 since U2 < U1 when Pm2 > $168.44 in period 2. Agent 1’s utility U12 decreases sightly since the inflation rate π2 decreases, 
which hurts agent 1 because of its fiat money loans L1m1 and L1m2. Agents 2 and i’s utilities U22 and Ui2 increase. Thus, agents 2 and i 
benefit in period 2 from the decreasing inflation rate π2 due to their holdings m22 and mi2 of fiat money. That is, agents 2 and i benefit 
from the bank’s fiat money withdrawal Wm2 in period 2, without agent i doing anything. More specifically, agent i’s period 2 utility 
increases from Ui2 = 203.06 when Wm2 = $0 to Ui2 = Ui1 = 204.00 when Wm2 = $15, which exactly matches the bank’s money 
printing L1m2 = $15. Thereafter agent i’s period 2 utility increases to Ui2 = 216.99 when Wm2 = $190. The utilities U11, U21, Ui1, and 
U1 remain constant since neither the bank’s fiat money printing L1m2 +Pm2 nor the inflation rate π2 play a role in period 1. 

In Figure 1w and Figure 1z, as the interest rate Ij1 for holding money j,j = q,m, in period 1 increases, which is intuitively beneficial 
to the bank and agent i, i = 2,…n, the three utilities U1, U21, and Ui1 increase concavely toward infinity. The bank only wants to lend 
money L1q2 +L1m2 to agent 1 in period 2 when 0 ≤ Ij1 < 4.66 in period 2. If the interest rate is too high, Ij1 > 4.66, the bank prefers to 
hold money j rather than lending it out. The inflation rate π2 is constant since Ij1 plays no role in (8). Agent 1’s utilities U11 and U12 are 
constant since agent 1 holds no money j in the two periods. The utilities U2, U22, and Ui2 remain constant since Ij1 plays no role in 
period 2. 

In Figure 1af and Figure 1ai, as the borrowing interest rate rj1 for money j, j = q,m in period 1 increases, which is intuitively 
beneficial to the bank, the bank’s utility U1 increases concavely toward infinity. The bank only wants to lend money L1j2 to agent 1 in 
period 2 when rj1 is sufficiently low, i.e. 0 ≤ rj1 < 4.82. Agent 1’s utility U11 decreases convexly toward zero since a higher borrowing 
interest rate rj1 for money j is costly. The inflation rate π2 is constant since rj1 plays no role in (8). The utilities U21 and Ui1 are constant 
since agents 2 and i do not borrow money j in period 1. The utilities U2, U12, U22, and Ui2 remain constant since rj1 plays no role in 
period 2. 

In Figure 1am, as agent 1’s Cobb Douglas elasticity α1o2 for holding o11 +L1q1 +L1m1 +L1q2 +L1m2 of the other assets in period 2 
increases, which is intuitively beneficial to agent 1, the utility U12 increases concavely. Agent 1 wants to borrow L1q2 +L1m2 from the 
bank in period 2 when α1o2 is not too low, i.e. 0.5 < α1o2 ≤ 1. The inflation rate π2 is constant since α1o2 plays no role in (8). Agent 1’s 
utility U11 is constant since α1o2 plays no role in period 1. The utilities U1, U2, U21, U22, Ui1, and Ui2 remain constant since α1o2 has no 
impact on the bank, agents 2 and i. 

In Figure 1as and Figure 1av, as agent 2’s Cobb Douglas elasticity α2j2 for holding money j21 + L1j2, j = q,m in period 2 increases, its 
utility U22 in period 2 decreases convexly because holding other assets o21 �L1q2 �L1m2 becomes less beneficial for agent 1 with 
decreasing Cobb Douglas elasticity α2o2 = 1 � α2q2 � α2m2. Hence, in contrast to Figure 1as and Figure 1av, agent 2 wants to sell its 
other assets valued as L1q2 +L1m2 when α2j2 is sufficiently low, i.e. 0 ≤ α2j2 ≤ 0.27, j = q,m. The eight variables U11, U12, U21, Ui1, Ui2, 
U1, U2, π2 remain constant. 

In Figure 1ay and Figure 1bb, as agent i’s Cobb Douglas elasticity αij2 for holding money ji2, j = q,m in period 2 increases, its utility 
Ui2 in period 2 decreases convexly because holding other assets oi2 becomes less beneficial for agent 1 with decreasing Cobb Douglas 
elasticity αio2 = 1 � αiq2 � αim2. Agent i prefers the trade between agents 1 and 2 when αij1 is sufficiently high, i.e. 0.25 ≤ αiq2 ≤ 1, j =
q,m. The eight variables U11, U12, U21, U22, Ui2, U1, U2, π2 remain constant. 
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Table 2 
Comparing this article’s approach and results with those in the literature.  

Literature Comparing this article’s approach and results with those in the literature 

Adrian and Mancini-Griffoli (2021) They assess the benefits and risks of digital money compared with traditional money. 
Almosova (2018) She proposes that private currencies exert downward pressure on inflation. 
Ammous (2018) He argues that hard money will eventually replace fiat money while this article assesses coexistence. 
Ammous and D’Andrea (2022) They suggest that hard money maintains value over time and that a hard money standard fosters higher levels of social 

development. 
Ayadi et al. (2023) They show that the CBDC uncertainty index impacts the return on cryptocurrencies negatively. 
Belke and Beretta (2020) They argue that central banks should embrace the technology of hard money. 
Benchimol and Fourçans (2012) They separate central banks and commercial banks as different players. 
Benigno et al. (2022) They propose a crypto-enforced monetary policy synchronization when hard money and fiat money coexist. 
Boissay et al. (2022) They suggest that hard money currently cannot substitute fiat money, while this article allows coexistence. 
Chen et al. (2017) They assume that the commercial banks and central banks are one unitary actor. 
Chen and Guo (2014) They adopt a money-in-utility approach, as this article also does, where utility is obtained from holding assets. 
Cooper et al. (1982) They propose that a hard money standard aims to reduce inflation, consistently with this article. 
Dowd and Greenaway (1993) They argue that network effects and switching costs are driving forces for players to use one currency. 
Eichengreen (2005) He suggests that multiple reserve currencies will continue to coexist. 
Feres (2021) He proposes a hard money based monetary system. 
Fernández-Villaverde and Sanches 

(2019) 
They point out that competing private currencies can coexist. 

Ferrari Minesso et al. (2022) They adopt a money-in-utility approach, as this article also does, where utility is obtained from holding assets. 
Fisher (1920) He suggests a hard money standard to control the unstoppable inflation associated with a fiat money standard, which is a 

finding compatible with this article. 
Friedman and Schwartz (1986) They support hard money standards and oppose the government monopoly on fiat money creation. 
Gawthorpe (2017) He suggests that currency competition causes lower inflation rates. 
Gertler and Kiyotaki (2015) They assume that the commercial banks and central banks are one unitary actor. 
Goodfriend and McCallum (2007) They assume that banks have Cobb Douglas utility functions, which this article also assumes. 
Gorton (2023) He argues that inflation generally depends on the fiat money supply, consistently with this article. 
Hart (2020) He proposes a negative exponent for the elasticity of the Cobb Douglas utility for pollution as a negative impact factor, 

which this article also does for the borrower’s hard money and fiat money loans. 
Helmi et al. (2023) They find that CBDC uncertainty and volatility index shocks significantly impact the volatility of hard money approximated 

by Bitcoin. 
Engelhardt (1996) He considers the resource constraints for the players and banks. 
Iacoviello (2005) He assesses the resource constraints for the players and banks. 
Ikkurty (2019) He argues that hard money approximated by Bitcoin has features such as censorship resistance, verifiability, portability, 

divisibility, convenience, and scarcity. 
Iwamura et al. (2019) They believe that hard money is unlikely to replace fiat money such CBDC, which to some extent differs from this article 

which illustrates coexistence. 
Jumde and Cho (2020) They suggest that hard money will eventually overtake fiat money. 
Kadiyala (1972) He suggests that a Cobb Douglas utility is appropriate for even distributions of multiple assets. 
Laboure et al. (2021) They claim that cryptocurrencies and fiat money will coexist. 
Levulytė and Šapkauskienė (2021) They highlight that hard money is advantageous for international transactions. 
Long et al. (2021) He contends that hard money approximated by gold can, while hard money approximated by Bitcoin cannot hedge against 

uncertainties to varying degrees. 
Mafi (2003) She argues that currency competition causes lower inflation. 
Messay (2023) She suggests that an international currency issued by one or several major countries is the driving factor that impacts 

national economic development at the expense of the Global South. 
Martin and Schreft (2006) They demonstrate the existence of competing currencies. 
Mian et al. (2021) They adopt a money-in-utility approach, as this article also does, where utility is obtained from holding assets. 
Mou et al. (2021) They argue that central banks need to issue their fiat money as CBDCs. 
Mullineaux (1978) He assumes that banks have Cobb Douglas utility functions. 
Murphy (1986) He proposes that the Cantillon effect, i.e. the uneven distribution of wealth and purchasing power that occurs as a result of 

changes in the fiat money supply, benefits those who receive the new money first at the expense of others. 
Nabilou (2020) He argues that hard money approximated by Bitcoin poses risks to fiat money. 
Nakamoto (2008) He/she/they propose a hard money currency. 
Nicholson (1888) He studies examples of hard money approximated by representative money, which is backed by and redeemable for gold. 
Ramsey (1928) They adopt a money-in-utility approach, which this article also does, where utility is obtained from holding assets. 
Ron and Valeonti (2023) They point out that democratic governing institutions tend to have moderate inflation with fiat money. 
Sakurai and Kurosaki (2023) They find that major cryptocurrencies become slightly more effective safeguards against inflation after the Covid-19 

pandemic. 
Scharnowski (2022) He suggests that investors do not view fiat money CBDCs as a threat to cryptocurrencies. 
Schilling and Uhlig (2019) They reveal that as trading cost and exchange fee disparities increase, the substitution effect between fiat money and hard 

money diminishes. 
Schuster and Sigmund (1983) They propose a replicator dynamics model. 
Senner and Sornette (2019) They argue that hard money cannot replace fiat money. 
Sidrauski (1967) He uses a money-in-utility approach, where utility is obtained from holding assets. 
Sissoko (2021) He suggests that a financial system can be established based on competing currencies, which is compatible with this article. 
Steiner (1941) He studies examples of hard money approximated by representative money, which is backed by and redeemable for gold. 
Syarifuddin and Bakhtiar (2022) They employ a Cobb Douglas utility function for holding assets. 
Tsai (2013) He assumes that banks have Cobb Douglas utility functions, which this article also assumes. 

(continued on next page) 
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In Figure 1be and Figure 1bh, as the bank’s Cobb Douglas elasticity βj2 for holding money j1 � L1j1, j = q,m in period 2 increases, 
its utility U2 in period 2 increases convexly because holding hard money q1 �L1q1 �L1q2 and fiat money m1 �L1m1 +Pm2 �Wm2 becomes 
more beneficial for the bank with increasing Cobb Douglas elasticity βj2, which overrides the negative impact of decreasing Cobb 
Douglas elasticity βmL2 = 1�βq2 �βm2 �βqL2 for fiat money loans. The bank always wants to give money loans L1q2 +L1m2 to agent 1 in 
period 2 since U1 < U2 for Figure 1be and Figure 1bh. The eight variables U11, U12, U21, U22, Ui1, Ui2, U1, π2 remain constant. 

In Figure 1bk, as the bank’s Cobb Douglas elasticity βqL2 for hard money lending L1q2 in period 2 increases, its utility U2 increases 
slightly. The reasons are as follows. According to (7), the borrowing interest rates rq2 = rm2 for hard money and fiat money are the same 
in period 2, but the bank’s loans L1m1 +L1m2 in fiat money are impacted by the positive inflation rate π2 = 1.875% in period 2. Thus, the 
increase in the bank’s utility U2 from holding the hard money loan L1q1 +L1q2 is higher than the decrease from holding the fiat money 
loan L1m1 +L1m2 in period 2 due to the decreasing Cobb Douglas elasticity βmL2 = 1 � βq2 � βm2 � βqL2. The bank always wants to lend 
fiat money L1q2 +L1m2 to agent 1 in period 2 since U1 < U2. The eight variables U11, U12, U21, U22, Ui1, Ui2, U1, π2 remain constant. 

In Figure 1bl, as the bank’s Cobb Douglas elasticity βqL1 = βqL2 for hard money lending L1q1 and L1q1 +L1q2 in the two periods 
increases, its utility U2 increases slightly. The net impact of increasing βqL1 = βqL2 is different for the bank in periods 1 and 2. In period 
1, according to (6), the bank’s decreasing utility from hard money lending L1q1 is offset by the bank’s increasing utility U1 from fiat 
money lending L1m1 due to the decreasing Cobb Douglas elasticity βmL1 = 1�βq1 �βm1 �βqL1 for fiat money lending L1m1. Thus, the 
bank’s utility U1 remains constant. In contrast, in period 2 according to (7), the borrowing interest rates rq2 = rm2 for hard money and 
fiat money are equivalent, but the bank’s fiat money loans L1m1 +L1m2 are impacted by the positive inflation rate π2 = 1.875%. Thus, 
the bank’s increasing utility U2 from holding the hard money loan L1q1 +L1q2 is higher than the decrease from holding the fiat money 
loan L1m1 +L1m2 due to the decreasing Cobb Douglas elasticity βmL2 = 1 � βq2 � βm2 � βqL2. Thus, the bank’s utility U2 increases 
slightly. The bank always wants to lend fiat money L1q2 +L1m2 to agent 1 in period 2 since U1 < U2. The eight variables U11, U12, U21, 
U22, Ui1, Ui2, U1, π2 remain constant. 

Table 2 compares this article’s approach and results with those in the literature. 

7. Interpreting the model 

The authors have identified 24 insights in the previous section.  

1. More agents benefit the bank and cause less inflation since the bank’s money printing to provide agent 1’s loans gets spread 
across more agents. That causes lower utility for agent 1 which borrows and buys and prefers high inflation, higher utility for 
agent 2 which sells and prefers low inflation, and higher utility for the nontrading agent i, i = 3,…, n which prefers low 
inflation.  

2. As agent 1’s borrowing of hard money increases in period 1, agent 1 benefits from buying other assets. The bank’s utility is 
inverse U shaped. The bank prefers to lend to a certain degree to benefit from agent 1’s interest rate payment, but prefers not to 
lend excessively which depletes its hard money holding.  

3. As agent 1’s borrowing of hard money increases in period 2, it benefits from buying other assets. The selling agent 2’s period 2 
utility is inverse U shaped, because it prefers to sell some of its other assets, which are abundant, without, however, depleting its 
stock. The utility is inverse U shaped as in the previous point.  

4. As agent 1’s borrowing of fiat money in period 1 increases, it benefits from buying other assets. Analogously to the case of hard 
money, the bank’s utility is inverse U shaped. The bank prefers to lend to a certain degree to benefit from agent 1’s interest 
payments, but prefers not to lend excessively which depletes its holdings of fiat money.  

5. As agent 1’s borrowing of fiat money increases in period 2, it benefits from buying other assets. The bank’s utility increases 
concavely because it prints fiat money for lending and because it benefits from agent 1’s interest payments. The utility of agent 
2, a seller, in period 2 takes the shape of an inverted U, as described in point 3. The bank prints fiat money for lending which 
hurts the nontrading agent i. 

Table 2 (continued ) 

Literature Comparing this article’s approach and results with those in the literature 

Wachter and Yogo (2010) They employ a Cobb Douglas utility function for holding assets. 
Wang and Hausken (2021a) They show how conventionalists, pioneers, and criminals choose between two currencies. 
Wang and Hausken (2021b) They assume that the commercial banks and central banks are one unitary actor. 
Wang and Hausken (2022a) They explore competition between hard money and fiat money, focusing on money printing and withdrawal, accounting for 

how an agent supports the two kinds of money. 
Wang and Hausken (2022b) They assume that banks have Cobb Douglas utility functions. 
Welburn and Hausken (2017) They analyze financial crises assuming fiat money. 
Wen et al. (2022) They argue that hard money approximated by gold serves as a safe haven for oil and stock markets, while hard money 

approximated by Bitcoin does not provide the same level of safety. 
Xin and Jiang (2023) They argue that fiat money such as CBDC can stabilize economic fluctuations arising from a negative interest rate policy. 
Yu (2023) He suggests that fiat money and cryptocurrencies can coexist, which is compatible with this article.  
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6. As the bank prints more fiat money in period 2, its utility is inverse U shaped. The bank prefers to print to a certain degree to 
benefit from holdings, but prefers not to print excessively which causes extremely high inflation. Agent 1 benefits from buying 
other assets and prefers high inflation. However, the selling agent 2’s utility decreases because it prefers low inflation. Anal-
ogously, the nontrading agent i’s utility decreases because it suffers from high inflation.  

7. Conversely, as the bank’s withdrawal of fiat money increases in period 2, the inflation rate decreases, and the bank’s utility 
decreases concavely. Interestingly, the bank prefers to withdraw fiat money to a certain degree to benefit from the decrease in 
inflation due to its fiat money holding. However, it also strives to avoid excessive withdrawal, which may cause extremely low 
inflation. Agent 1 suffers a detriment because it buys other assets and thus prefers high inflation. The utilities of the selling agent 
2 and the nontrading agent i increase because they prefer low inflation.  

8. As the interest rate for hard and fiat money increases in period 1, agents 2, i, and the bank benefit from holding money. The bank 
prefers not to lend money to agent 1 in period 2 if the interest rate for holding money in period 1 is excessively high. That is so 
because the bank benefits from holding money in period 1. Thus, the bank is uninterested in lending in period 2.  

9. As the borrowing interest rate for hard or fiat money increases in period 1, the bank’s utility increases concavely. The bank 
prefers not to lend money to agent 1 in period 2 when the borrowing interest rate in period 1 is too high because it benefits from 
lending in period 1. Thus the bank is uninterested in lending in period 2. Agent 1 intuitively suffers from a high borrowing 
interest rate.  

10. As agent 1’s Cobb Douglas elasticity of holding other assets increases in period 1, it benefits from buying other assets. Agent 1 
wants to borrow money from the bank in period 2 when its Cobb Douglas elasticity of holding other assets is low, because it 
benefits from buying other assets in period 1. Hence agent 1 prefers not to buy other assets in period 2.  

11. As agent 1’s Cobb Douglas elasticity of holding other assets increases in period 2, it benefits from buying other assets. Agent 1 
wants to borrow money from the bank in period 2 when its Cobb Douglas elasticity of holding other assets is not low. 

12. As agent 2’s Cobb Douglas elasticity for holding hard or fiat money in period 1 increases, its utility decreases due to the cor-
responding decrease in the Cobb Douglas elasticity of holding other assets. Agent 2 wants to sell its other assets when its Cobb 
Douglas elasticity of holding moneyis sufficiently high.  

13. As agent 2’s Cobb Douglas elasticity of holding hard or fiat money increases in period 2, its utility decreases due to the decrease 
in the Cobb Douglas elasticity of holding other assets. In contrast to the previous point, agent 2 wants to sell its other assets when 
its Cobb Douglas elasticity of holding money is sufficiently low.  

14. As agent 2’s Cobb Douglas elasticity of holding hard money increases over the two periods, agent 2’s utilities decrease convexly, 
as described in the previous two points. Agent 2 wants to sell other assets when its Cobb Douglas elasticity of holding hard 
money over the two periods is sufficiently high.  

15. As agent 2’s Cobb Douglas elasticity of holding fiat money over the two periods increases, agent 2’s utilities in the two periods 
decrease convexly, as in points 11 and 12. Analogously to the previous point, agent 2 wants to sell other assets when its Cobb 
Douglas elasticity of holding fiat money is sufficiently high.  

16. As agent i’s Cobb Douglas elasticity of holding hard or fiat money increases in period 1, its utility decreases due to the decrease 
in the Cobb Douglas elasticity of holding other assets. Interestingly, agent i prefers the trade between agents 1 and 2 when its 
Cobb Douglas elasticity of holding money is sufficiently high.  

17. As agent i’s Cobb Douglas elasticity of holding hard or fiat money in period 2 increases, its utility decreases convexly, as in the 
previous point. Agent i prefers the trade between agents 1 and 2 when its Cobb Douglas elasticity of holding money is suffi-
ciently high.  

18. As the bank’s Cobb Douglas elasticity of holding hard or fiat money in period 1 increases, its utility increases convexly. That 
follows since the bank benefits more from holding money than from lending it due to the decrease in the Cobb Douglas elasticity 
of money loans. The bank prefers to lend to agent 1 in period 2 when its Cobb Douglas elasticity of holding money is sufficiently 
low.  

19. As the bank’s Cobb Douglas elasticity of holding money in period 2 increases, its utility in period 2 increases convexly, as in the 
previous point. The bank always wants to lend money to agent 1 in period 2.  

20. As the bank’s Cobb Douglas elasticity of holding hard money over the two periods increases, its utilities increase convexly, as in 
point 17. The bank wants to provide money loans to agent 1 in period 2 when its Cobb Douglas elasticity of holding hard money 
is sufficiently low.  

21. As the bank’s Cobb Douglas elasticity of holding fiat money increases over the two periods, its utilities increase convexly, as in 
the previous point. The bank wants to give money loans to agent 1 in period 2 when its Cobb Douglas elasticity of holding fiat 
money is sufficiently low.  

22. As the bank’s Cobb Douglas elasticity of lending money in period 1 increases, its utility remains constant. Thus, the bank’s 
benefit from the increase in the Cobb Douglas elasticity of holding hard money is offset by the decrease in the Cobb Douglas 
elasticity of lending hard money in period 1. The bank always wants to lend fiat money to agent 1 in period 2.  

23. As the bank’s Cobb Douglas elasticity of lending hard money in period 2 increases, its utility increases slightly. That follows 
since the bank then benefits more from lending hard money than from lending fiat money.  

24. As the bank’s Cobb Douglas elasticity of lending hard money increases over the two periods, its utility in period 1 remains 
constant as in point 21, and its utility in period 2 increases slightly, as in point 22. 
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8. Policy implications 

Money plays an essential role in an economy by serving as a medium of exchange, as a unit of account, and as a store of value. 
Modern society cannot operate without money. This article investigates an economy with both hard and fiat money. The findings offer 
insights to traders, such as borrowers and sellers, nontraders, policymakers, central banks, and others. 

The model incorporates certain aspects of monetary policy, e.g. fiat money printing, borrowing interest rates, and deposit interest 
rates. First, the article contains insights that may be useful to central banks adjusting the money supply, monetary policy, and the 
inflation rate. Central banks are commonly responsible for issuing and managing fiat money. Central banks fully control fiat money, 
but do not control the supply of hard money. 

Second, the fixed supply of hard money means that inflation and deflation cannot be manipulated by varying its supply. Thus, the 
effectiveness of monetary policy in the context of hard money is limited. It is beneficial for central banks to account for the existence of 
hard money when they design monetary policies. 

Third, the results have potential implications for understanding the impact of borrowing hard and fiat money. Borrowers benefit 
from borrowing both hard and fiat money. Notably, borrowing hard money has no impact on nontrading agents. Fiat money borrowing 
harms nontrading agents due to inflation following money printing. 

Fourth, printing fiat money might boost the economy and increase the amount of fiat money that is available for lending, buying, 
and other financial activities. The analysis shows that central banks benefit from printing fiat money. However, its utility decreases 
when printing too much fiat money. Therefore, it is reasonable for central banks to limit the supply of fiat money to a certain degree. 

Fifth, the inflation that the printing of fiat money causes is spread across all nontrading agents. The impact of inflation diminishes as 
the number of nontrading agents increases. Thus, in an economy with many agents, central banks can print more fiat money without 
causing excessive inflation. 

Sixth, central banks benefit from withdrawing fiat money to a limited degree since it decreases causes decreasing inflation. 
Reducing the amount of fiat money in circulation curbs inflation. However, withdrawal discourages borrowing, buying, selling, and 
other financial activities. As a whole, withdrawing fiat money is not conducive to economic growth. Prudent implementation is 
recommended when implementing deflationary monetary policies such as withdrawing fiat money. 

Seventh, nontrading agents suffer as a result of fiat money printing, and benefit from fiat money withdrawal. Therefore, as inflation 
increases, it becomes more sensible for nontrading agents to consider becoming borrowers and buyers of other assets. 

Eighth, the findings provide insights to the spread effect of money printing, withdrawal, borrowing, lending, buying, selling, 
inflation, and deflation, which account for most of the financial activities that unfold in an economy. 

Nineth, researchers, individuals, firms, financial analysts, investors, business owners, and others may find the findings informative 
as they attempt to understand hard money, fiat money, borrowing, buying, and selling. 

9. Discussion 

The bank’s withdrawal of fiat money in period 2 is the only scenario in which the nontrading agent i, i = 3,…, n prefers period 2 
over period 1. This shows how vulnerable agent i is or can be in a fiat economy. More generally, the model shows how agent i is 
negatively affected by changes in parameter values. The negative impact decreases with the number of nontrading agents. In contrast, 
agent i is unaffected in a hard money economy. That agent 1 borrows hard money does not influence agent i’s utility. In a hard money 
economy, financial activities, e.g. borrowing, lending, buying, and selling, only affect agents as a result of trading. Inflation has no 
influence on them. 

Agent 2, as a seller, also benefits from the bank’s withdrawal of fiat money. Analogous to agent i, agent 2 suffers from fiat money 
printing. In contrast, agent 1, being a borrower and a buyer, prefers the bank to print fiat money and not to withdraw it. The bank 
favors printing over withdrawal. Specifically, since the bank prints fiat money to lend to agent 1 in period 2, its utility is higher in 
period 2 than in period 1 except if it prints or withdraws fiat money excessively. 

For simplicity, while retaining the key ingredients, the article assumes only one agent which borrows and buys, i.e. agent 1, only 
one seller, i.e. agent 2, and arbitrarily many nontrading agents, i.e. agent i, i = 3,…,n. The notional agent 1 can represent an aggregate 
of many borrowers and buyers. The seller can be an aggregate of many sellers. 

In a fiat economy, the impact of the inflation that printing fiat money causes is split across all agents. Specifically, agent 1 benefits 
and agent 2 suffers. Agent i, which does not borrow, lend, buy, or sell, also experiences the undesirable impacts of the printing of fiat 
money. Its asset holdings depreciate as inflation increases. Beyond agent 1, the bank, as an issuer and controller, also benefits from 
printing fiat money. That benefit stems from the inflation costs that are borne by sellers and nontrading agents. However, the benefit of 
printing fiat money is limited. The bank cannot increase its utility by printing fiat money continuously, which may cause hyperinflation 
and harm both the bank and the economy. 

In a hard money economy, the bank cannot print hard money to lend to agent 1. Lending and borrowing thus have no impact on 
inflation, and the utilities of the nontrading agents remain unchanged. Hence the bank cannot transfer costs through inflation like in a 
fiat economy. The impact of fluctuations in the fiat money supply, which results in inflation or deflation, is diminished by the existence 
of hard money. 
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The bank benefits from lending both hard and fiat money because it receives interest payments from agent 1. However, the utility 
curve of the bank takes the shape of an inverted U, which indicates that the bank prefers to lend to agent 1, up to a certain point. The 
excessive lending of hard money causes the holdings of the bank to decrease significantly. The excessive lending of fiat money causes 
hyperinflation. Both affect the utility of the bank adversely. 

Agent 1 holds no money or assets before borrowing from the bank and buying assets from agent 2. Therefore, agent 1 is a poor agent 
compared with agents 2 and i. Agent 1 benefits from buying other assets using its borrowing from the bank. That follows both for hard 
and fiat money. Agent 1, as a borrower, prefers high inflation, which results in lower interest payments. However, only borrowing fiat 
money can cause inflation to increase if the bank prints fiat money. Agent 1 prefers fiat money to hard money. Fiat money is favored by 
borrowers and buyers, but it harms sellers and nontrading agents. Agent 2 possesses abundant other assets and benefits from selling 
some of its other assets in exchange for hard or fiat money. However, agent 2’s willingness to sell its other assets is limited. Therefore, 
the agent 2’s utility takes the shape of the letter U. 

When the bank and agents 2 and i suddenly become rich in period 1, i.e. their holdings of hard or fiat money increase in period 1, 
intuitively, their utilities increase. Therefore, a money airdrop in period 1 is beneficial to the economy. In addition, the inflation rate 
decreases in period 2 if such an airdrop has occurred in period 1. The foregoing indicates that an increase in holdings of hard and fiat 
money in period 1 diminishes the inflation in period 2. The impact of a money airdrop in period 1 is analogous to that of an increase in 
the number of agents in an economy. An other-asset airdrop in period 1 also benefits the economy, but it has no impact on inflation in 
period 2. 

When the bank benefits excessively in period 1, which may occur as a result of an increase in the deposit interest rate, in the 
borrowing interest rate, or in the Cobb Douglas elasticities of holding or lending hard or fiat money, the bank loses interest in lending to 
agent 1 in period 2. That follows because the bank benefits significantly in period 1. Analogously, when agent 1 benefits excessively in 
period 1, for instance due to a dramatic increase in its Cobb Douglas elasticity of holding other assets, it loses interest in borrowing and 
in buying other assets in period 2. 

10. Limitations and future research 

One limitation of this article pertains to the nature of a Cobb Douglas utility. Limited amounts of one kind of assets combined with 
abundant amounts of another kind of assets causes low utility. Kadiyala (1972) suggests that a Cobb Douglas utility is more suitable for 
even distributions of multiple assets. In the present article, the issue is mitigated by introducing a Max function. Future studies may 
identify and formulate alternative utility functions to account for other phenomena. The proposed model provides some mathematical 
development followed by Property 1. Mathematical development, e.g. in the sense of equilibrium determination, is not analyzed in the 
article. Future research may adopt a gametheoretic approach and examine the equilibrium between the bank and the agents. Future 
research may explore extensions to the model concerning hard money, e.g. where the hard money supply increases, but the growth rate 
decreases over time, or the burning of hard money causing a decreased available amount of money. Future research may incorporate 
real-world data as a supplementary source to verify the model’s findings. Another potential limitation is that the article does not 
examine the agents’ and bank’s resource constraints (Engelhardt, 1996; Iacoviello, 2005). Future studies may introduce wages, limits 
on borrowing and selling, maximum lending amounts, capital adequacy requirements, and other regulatory prescriptions. Future 
research may reduce the number of nontraders and assume that each buyer, seller, and nontrader are represented by a [0, 
1]-continuum, formulating a representative agent’s problem for each type. In addition, future research may combine models and 
incorporate more structure on preferences and constraints of the agents’ problem, e.g. a Lagos-Wright monetary model, a 
money-in-utility function mode, and a cash-in-advance-constraint model (Benigno et al., 2022). Another limitation is that inflation is 
solely attributed to changes in the fiat money supply. Future research may enhance the modeling of inflation by incorporating other 
relevant factors, e.g. the money velocity, quantity of produced goods, and transaction efficiency. It would be valuable to explore the 
influence of agents’ expectations, such as how a seller’s willingness to sell debt in fiat money may be driven by its expectations 
regarding central banks’ fiat money printing. 

While hard money is less susceptible to inflation due to its limited supply, the lack of flexibility in adjusting the money supply can 
cause economic instability and crises. In a fixed supply hard money economy, demand and supply shocks can cause price fluctuations, 
creating economic instability. This suggests that fiat money economies may continue to exist, since they allow for greater flexibility in 
managing the money supply to support economic growth and stability. The model accounts for this by modeling how the agents and 
bank weigh hard money against fiat money in their Cobb Douglas utility functions. Future research can analyze how demand and 
supply shocks impact inflation, and how governmental agencies and central banks can regulate. Future research may explore the issue 
of pricing in trading assets and analyze how the prices of assets are determined. 

Future research may also introduce multiple borrowers, buyers, and sellers with different preferences and beliefs, which may 
enable more robust analyses, and generalize this article’s aggregation of agents into the specific agent kinds assumed in this article. The 
bank may be split into a central bank and commercial banks. Several banks and governments may be introduced. Risk averse agents 
and banks may be modeled, see e.g. Benchimol and Fourçans (2012). This article divides agents into three kinds, i.e. borrower and 
buyer, seller, and nontrader. In the real world, an agent may choose to borrow, to buy, and to sell. Restricting the analysis to hard 
money, fiat money, and other assets is a limitation because other assets have different characteristics, e.g. stocks, bonds, and financial 
derivatives. There are also different kinds of hard money, approximated by e.g. Bitcoin and gold, and different kinds of fiat money, e.g. 
paper money, coins, CBDCs. Future research may analyze portfolios and competition between multiple kinds of assets. Future research 
may expand the model to cover more than two time periods. Techniques such as replicator dynamics (Schuster and Sigmund, 1983) 
may be applied to capture dynamic evolutionary patterns and determine the potential of the stationary coexistence of hard money and 
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fiat money. A more sophisticated analysis of the competition between hard and fiat money would account for factors other than supply 
and inflation, e.g. transaction efficiency, convenience, security, and monetary policy. Empirical analyses can be employed to support 
the theoretical and simulation results. 

11. Conclusion 

A two-period economy is analyzed with one borrower/buyer (which can be an aggregate of many borrowers/buyers), one seller 
(which can be an aggregate of many sellers), and arbitrarily many nontraders. The article focuses on the actions of one unitary bank 
and multiple agents, comparing their utilities over the two periods. They choose their actions, e.g. borrow, buy, sell, lend, to maximize 
their utilities. Period 1 is a benchmark where the bank neither prints nor withdraws fiat money, causing ceteris paribus neither 
inflation nor deflation. In period 2 the bank prints fiat money to lend to the borrower/buyer, which causes inflation, and it can 
additionally print and withdraw fiat money. That impacts the fiat money supply causing inflation or deflation. The adjustment of the 
money supply gets linked to other assets through the borrower/buyer buying other assets from the seller at a certain value, and through 
the nontraders holding other assets with a certain valuation, which causes inflation or deflation and impacts the agents’ utilities. The 
bank cannot print or withdraw hard money. Periods 1 and 2 are compared to analyze the impact on the agents and the bank. Instead of 
determining equilibria gametheoretically through maximizing behavior, the article assesses and compares the agents’ and the bank’s 
utilities in the two periods. If an agent’s or the bank’s utility in period 2 exceeds the agent’s or the bank’s utility in period 1, the agent 
or the bank prefers trading based on the higher utility in period 2. 

Fiat money printing benefits the borrower/buyer which prefers inflation, benefits the bank if not excessive, and hurts the seller and 
nontraders. Sellers and nontraders bear the costs of inflation. The seller and the nontraders prefer fiat money withdrawal which causes 
deflation. Fiat money borrowing causes inflation because the bank prints to lend. The nontraders are vulnerable in a fiat economy with 
money printing, but unaffected in a hard money economy. More nontraders decrease inflation since the bank’s money printing gets 
distributed across more agents. That benefits the seller, nontraders and the bank, and hurts the borrower/buyer. A hard or fiat money 
airdrop in period 1 decreases the inflation in period 2. The bank prefers not to lend to the borrower/buyer in period 2 if it benefits 
excessively in period 1. The borrower/buyer prefers not to borrow and buy other assets in period 2 if it benefits excessively in period 1. 

In a fiat economy, inflation and deflation impact all agents. In a hard money economy the bank cannot transfer the costs of inflation 
to the agents. In a hard money economy with borrowing and lending, ceteris paribus, neither inflation nor deflation occur. Hence the 
nontraders holding hard money and other assets are not impacted. The borrower/buyer, the seller, and the bank are impacted in a hard 
money economy by their portfolio changes between hard money, other assets, loans, and the associated interest rates. 

The borrower/buyer benefits from buying other assets using its hard and fiat money borrowing from the bank if two conditions are 
met. First, the borrower/buyer must value other assets more than the interest payment of the loan. Second, the borrower/buyer must 
ensure that the fiat money loan is sufficiently high compared with the hard money loan so that the borrower/buyer benefits sufficiently 
from the inflation caused by the bank’s money printing to provide the loan. 

The seller benefits from selling some of its other assets for hard and fiat money if two conditions are met. First, the seller must value 
hard and fiat money more than the other assets that it sells. Second, the seller must ensure that it receives sufficiently little fiat money 
relative to hard money for the other assets that it sells so that it does not suffer excessively from the inflation caused by the bank’s fiat 
money printing to provide the loan to the borrower/buyer of the other assets. 

As lending increases, the borrower/buyer’s, the seller’s and the bank’s utilities take the shape of an inverted U. Excessive lending of 
hard or fiat money does not benefit the bank which prefers a balanced portfolio between money holdings and lending which earns 
interest payment from the borrower/buyer. The borrower/buyer prefers a balanced portfolio between other assets earning interest and 
loans incurring interest payments. The seller prefers a balanced portfolio between money holdings and other assets. The seller and 
nontraders prefer not to be hurt by inflation. Thus they prefer a hard money economy or a fiat economy where the bank withdraws 
money to ensure deflation. The article provides further results illustrated by varying 64 parameters relative to a benchmark. Sup-
plementing the general understanding of debtors desiring inflation to reduce the value of their debt and creditors being averse to 
inflation, the article provides a more nuanced analysis and sheds light on specific aspects of this relationship. By examining the dy-
namics and interplay between debtors, creditors, and banks, the article contributes to the existing literature by providing empirical 
evidence and a deeper understanding of how inflation expectations impact their decision-making processes. The findings provide 
insights into the complex motivations and strategic considerations of these actors, which have implications for policymaking and risk 
management in the financial sector. 
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Appendix A. Nomenclature 

General parameters 
n Number of agents, n ≥ 1. 
t Time period, t = 1,2. 
q Hard money, q ≥ 0. 
m Fiat money, m ≥ 0. 
o Other assets, o ≥ 0. 
Ijt Interest rate for asset j determined by the open market in period t, j = q,m,o, Ijt ∈ R. 

Parameters for agent 1 
α1jLt Agent 1’s Cobb Douglas elasticity for borrowing Ljt of asset j in period t, j = q,m, α1jLt ≥ 0. 

Parameters for agent i, i=1,…,n 
αijt Agent i’s Cobb Douglas elasticity for holding jit of asset j in period t, j = q,m, o, αij ≥ 0. 

Parameters for the bank 
βjt The bank’s Cobb Douglas elasticity for holding jt of asset j in period t, j = q,m, t = 1,2,βjt ≥ 0. 
βjLt The bank’s Cobb Douglas elasticity for lending L1jt to the agent 1 in period t, j = q,m, βjLt ≥ 0. 

Agent 1’s parameter or free choice variable 
L1jt Agent 1’s borrowing of hard or fiat money j in period t, j = q,m, L1jt ≥ 0. 

Agent i’s parameter or free choice variable i, i=1,…,n 
jit Agent i’s holding of three kinds of assets in period t, j = q,m,o, jit ≥ 0. 

The bank’s parameters or free choice variables 
jt The bank’s holding of two kinds of assets j in period t, j = q,m, jt ≥ 0. 
rjt The n agents’ borrowing interest rate for hard money and fiat money j in period t, j = q,m, rjt ∈ R. 
Pm2 The bank’s printing of fiat money m in period 2, Pm2 ≥ 0. 
Wm2 The bank’s destruction of fiat money m in period 2, Wm2 ≥ 0. 

Dependent variable 
πt Inflation rate in period t, πt ≥ 0. 

Agent i’s dependent variable i, i=1,…,n 
Uit Agent i’s Cobb Douglas utility in period t, Uit ≥ 0. 

The bank’s dependent variable 
Ut The bank’s Cobb Douglas utility in period t, Ut ≥ 0. 

Appendix B. Comparing periods 1 and 2 

Dividing (3) by (1), agent 1 prefers to borrow L1q2 +L1m2 if 
�
(1 + Io2)

�
o11 + L1q1 + L1m1 + L1m2 + L1q2

) )α1o2

�
(1 + Io1)

�
o11 + L1q1 + L1m1

) )α1o1  

(�
1 + rq2

)(
L1q1 + L1q2

))�α1qL2
((1 + rm2)(L1m1 + L1m2) )�α1mL2

��
1 + rq1

)
L1q1

)�α1qL1 ((1 + rm1)L1m1 )�α1mL1 (1 + π2)�α1mL2
> 1 (9) 

Dividing (4) by (2), agent 2 prefers to sell an amount L1q2 +L1m2 = o21 �o22 of its other assets if 
��

1 + Iq2
)�

q21 + L1q2
) )α2q2 ((1 + Im2)(m21 + L1m2) )α2m2

��
1 + Iq1

)
q21

)α2q1 ((1 + Im1)m21 )α2m1 (1 + π2)α2m2  

�
(1 + Io2)

�
o21 � L1q2 � L1m2

) )α2o2

((1 + Io1)o21 )α2o1 > 1 (10) 

Dividing (5) by (2), agents 3,…, n prefer the trade between agents 1 and 2 if 
��

1 + Iq2
)�

qi1 + Liq2
) )αiq2 ((1 + Im2)mi2 )αim2 ((1 + Io2)oi2 )αio2

��
1 + Iq1

)
qi1

)αiq1 ((1 + Im1)mi1 )αim1 (1 + π2)αim2 ((1 + Io1)oi1 )αio1
> 1 (11) 
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Dividing (7) by (6), the bank prefers to lend L1q2 +L1m2 to agent 1 if 
��

1 + Iq2
)�

q1 � L1q1 � L1q2
) )βq2 ((1 + Im2)(m1 � L1m1 + Pm2 � Wm2) )βm2

��
1 + Iq1

)�
q1 � L1q1

) )βq1 ((1 + Im1)(m1 � L1m1) )βm1 (1 + π2)βm2  

��
1 + rq2

)�
L1q1 + L1q2

) )βqL2 ((1 + rm2)(L1m1 + L1m2) )βmL2

��
1 + rq1

)
L1q1

)βqL1 ((1 + rm1)L1m1 )βmL1 (1 + π2)βmL2
> 1 (12) 

Since agent1 has the same three inputs in periods 1 and 2, we set α1j1 = α1j2, j = o,qL,mL. Thus, (9) is simplified as 
(
(1 + Io2)

�
o11 + L1q1 + L1m1 + L1m2 + L1q2

)

(1 + Io1)
�
o11 + L1q1 + L1m1

)
)α1o2  

⎛

⎝
�
1 + rq2

)(
L1q1 + L1q2

)

�
1 + rq1

)
L1q1

⎞

⎠

�α1qL2(
(1 + rm2)(L1m1 + L1m2)
(1 + rm1)L1m1(1 + π2)

)�α1mL2

> 1 (13) 

Since agent 2 has the same three inputs in periods 1 and 2, we set α2j1 = α2j2, j = q,m,o. Thus, (10) is simplified as 
(�

1 + Iq2
)�

q21 + L1q2
)

�
1 + Iq1

)
q21

)α2q2(
(1 + Im2)(m21 + L1m2)
(1 + Im1)m21(1 + π2)

)α2m2  

(
(1 + Io2)

�
o21 � L1q2 � L1m2

)

(1 + Io1)o21

)α2o2

> 1 (14) 

Since agent i, i = 3,…, n have the same three inputs in periods 1 and 2, we set αij1 = αij2, j = q,m,o. Thus, (11) is simplified as 
(�

1 + Iq2
)�

qi1 + Liq2
)

�
1 + Iq1

)
qi1

)αiq2(
1 + Im2

(1 + Im1)(1 + π2)

)αim2
(

1 + Io2

1 + Io1

)αio2

> 1 (15) 

Since the bank has the same four inputs in periods 1 and 2, we set βj1 = βj2, j = q,m,qL,mL. Thus, (12) is simplified as 
(�

1 + Iq2
)�

q1 � L1q1 � L1q2
)

�
1 + Iq1

)�
q1 � L1q1

)
)βq2((1 + Im2)(m1 � L1m1 + Pm2 � Wm2)

(1 + Im1)(m1 � L1m1)(1 + π2)

)βm2  

(�
1 + rq2

)��
L1q1 + L1q2

) )
�
1 + rq1

)
L1q1

)βqL2((1 + rm2)(L1m1 + L1m2)
(1 + rm1)L1m1(1 + π2)

)βqL2

> 1 (16)  

Appendix C. Interpretation of 41 of the panels in Figure 1 

In Figure 1b, as agent 1’s holding o11 of other assets in period 1 increases, its utilities U11 and U12 increase concavely toward 
infinity. Agent 1 prefers not to borrow L1q2 +L1m2 of money from the bank since U12 > U11. The utilities U21, U22, Ui1, Ui2, U1, and U2 

remain constant since agent 1’s holding o11 of other assets has no impact on agents 2 and i, and the bank. The inflation rate π2 is 
constant since o11 plays no role in (8). 

In Figure 1c, as agent 1’s borrowing L1q1 in hard money in period 1 increases, the bank’s utilities U1 and U2 are inverse U shaped. 
The bank prefers to lend an optimal amount L1q1 of hard money to agent 1 in period 1. The maximum of U2 is 85.12 when L1q1 = $85. 
The maximum of U1 is 68.33 when L1q1 = $100. The bank’s utilities U1 and U2 decrease concavely toward zero after the maximum. 
The bank prefers to lend hard money L1q2 to agent 1 when $0 ≤ L1q1 < $175.71. The bank prefers not to lend too much hard money L1q1 

to agent 1 in period 1, since then it has a limited amount of hard money q1 � L1q1 available for lending in period 2. The nature of the 
bank’s Cobb Douglas utility is such that if it lends excessively in both periods, its utility U2 is low. Agent 1’s utilities U11 and U12 
increase with L1q1 since agent 1 benefits from buying other assets using its borrowing L1q1. Agents 2 and i’s utilities U21, U22, Ui1, and 
Ui2 are constant since agent 1’s borrowing L1q1 in hard money has no impact on agents 2 and i. The inflation rate π2 is constant since 
L1q1 plays no role in (8). 

In Figure 1e, as agent 1’s borrowing L1m1 in fiat money in period 1 increases, the bank’s utilities U1 and U2 are inverse U shaped. 
That is, the bank prefers to lend an optimal amount of fiat money to agent 1 in period 1. The maximum of U2 is 86.46 when L1q1 =
$92.50. The maximum of U1 is 68.33 when L1q1 = $100. The bank’s utilities U1 and U2 decrease concavely after their maxima. Agent 
1’s utilities U11 and U12 increase with L1m1 since agent 1 benefits from borrowing L1m1 in fiat money. Agent 1 prefers not to borrow 
L1q2 +L1m2 from the bank since U12 > U11. Agent 2 and i’s utilities U21, U22, Ui1, and Ui2 are constant since agent 1’s borrowing L1m1 in 
fiat money has no impact on agent 2 and agent i. The inflation rate π2 is constant since L1m1 plays no role in (8). 
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In Figure 1g, Figure 1h, and Figure 1i, as agent 2’s assets holdings j21, j = q,m,o, in period 1 increases, its utilities U21 and U22 
increase toward infinity. The inflation rate π2 decreases convexly and asymptotically toward zero due to division with j21 in (8). Agent 
1’s utility U12 decreases slightly since the inflation rate π2 decreases slightly, which hurts agent 1 because of agent 1’s fiat money loans 
L1m1 and L1m2. In contrast, agent i’s utility Ui2 increases slightly because the inflation rate π2 decreases slightly, which benefits agent i 
because of its fiat money holding mi2. The bank’s utility U2 increases slightly since the inflation rate π2 decreases slightly, which 
benefits the bank because the benefit of the bank’s fiat money holding m1 �L1m1 +Pm2 �Wm2 of from the decreasing inflation rate π2 
overrides the negative impact of fiat money lending L1m2 from the decreasing inflation rate π2. The utilities U1, U11, U21, and Ui1 remain 
constant since the inflation rate π2 plays no role in period 1. 

In Figure 1j and Figure 1m, as agent i’s money holding ji1, j = q,m, in period 1 increases, its utility Ui1 increases concavely toward 
infinity. The inflation rate π2 decreases convexly and asymptotically toward zero due to division with ji1 in (8). Agent i’s utility Ui2 
increases slightly since agent i benefits from the decreasing inflation rate π2. Agent 1’s utility U12 decreases slightly since the inflation 
rate π2 decreases slightly, which hurts agent 1 because of its fiat money loans L1m1 and L1m2. In contrast, agent 2’s utility U22 increases 
slightly because the inflation rate π2 decreases slightly, which benefits agent 2 because of its fiat money holdings m22. The bank’s utility 
U2 increases slightly since the inflation rate π2 decreases slightly, which benefits the bank because the benefits of the bank’s fiat money 
holding of m1 �L1m1 +Pm2 �Wm2 from the decreasing inflation rate π2 override the negative impact of fiat money lending L1m2 from the 
decreasing inflation rate π2. The utilities U1, U11, and U21 remain constant since the inflation rate π2 plays no role in period 1. 

In Figure 1k and Figure 1n, as agent i’s period 2 money holding ji2, j = q,m, increases above the benchmark ji2 = $100, its period 2 
utility Ui2 increases concavely from Ui2 = 203.06, reaching Ui2 = Ui1 = 204 when ji2 = $101.88, and proceeds concavely toward 
infinity. The inflation rate π2 is constant since ji2 plays no role in (8). The utilities U1, U2, U11, U21, and Ui1 remain constant since agent 
i’s money holding ji2 of plays no role in period 1. The utility U2 remains constant since the inflation rate π2 is constant in period 2. 

In Figure 1l and Figure 1o, analogously to Figure 1j and Figure 1m, as agent i’s money holding ji1 = ji2, j = q,m, in the two periods 
increases, its utilities U21 and U22 increase concavely toward infinity. The inflation rate π2 decreases convexly and asymptotically 
toward zero due to division with ji1 in (8). Agent 1’s utility U12 decreases slightly since the inflation rate π2 decreases slightly, which 
hurts agent 1 because of its fiat money loans L1m1 and L1m2. In contrast, agent 2’s utility U22 increases slightly because the inflation rate 
π2 decreases slightly, which benefits agent 2 because of its fiat money holdings m22. The bank’s utility U2 increases slightly since the 
inflation rate π2 decreases slightly, overriding the negative impact of fiat money lending L1m2, which benefits the bank because of its 
fiat money holding m1 � L1m1 + Pm2 � Wm2. The utilities U1, U11, U21, and Ui1 remain constant since the inflation rate π2 plays no role 
in period 1. 

In Figure 1p, as agent i’s holding oi1 of other assets in period 1 increases, its utility Ui1 increases concavely toward infinity. The 
inflation rate π2 is constant since oi1 plays no role in (8). The utilities U1, U11, and U21 remain constant since agent i’s holding oi1 of 
other assets has no impact on the bank and agents 2 and i. The utility Ui2 is constant since agent i’s holding oi2 of other assets is constant 
in period 2. The utility U2 remains constant since the inflation rate π2 is constant in period 2. 

In Figure 1q, analogously, as agent i’s holding oi2 of other assets in period 2 increases, its utility Ui2 increases concavely toward 
infinity. The inflation rate π2 is constant since oi2 plays no role in (8). The utilities U1, U11, U21, and Ui1 remain constant since agent i’s 
holding oi2 of other assets plays no role in period 1. The utility U2 remains constant since the inflation rate π2 is constant in period 2. 

In Figure 1r, analogously, as agent i’s holding oi1 = oi2 of other assets in the two periods increase, its utilities Ui1 and Ui2 increase 
concavely toward infinity. The inflation rate π2 is constant since oi1 and oi2 play no role in (8). The utilities U1, U11, and U21 remain 
constant since agent i’s holding oi1 = oi2 of other assets plays no role in period 1. The bank’s utility U2 remains constant since the 
inflation rate π2 is constant in period 2. 

In Figure 1u and Figure 1v, as the bank’s money holding j1, j = q,m in period 1 increases, its utilities U1 and U2 increase concavely 
to infinity. The period 2 inflation rate π2 decreases convexly and asymptotically toward zero due to division with j1 in (8). Agent 1’s 
utility U12 decreases slightly since the inflation rate π2 decreases slightly, which hurts agent 1 because of its fiat money loans L1m1 and 
L1m2. In contrast, the utilities U22 and Ui2 increase slightly because the inflation rate π2 decreases slightly, which benefits agents 2 and i 
because of their fiat money holdings m22 and mi2. More specifically, agent i’s utility Ui2 approaches Ui1 asymptotically from below as j1 
approaches infinity, i.e. lim

q1⟶∞
Ui2 = Ui1 = 204.00. The utilities U11, U21, and Ui1 remain constant since neither q1 nor the inflation rate 

π2 impact agents 1, 2 and i in period 1. 
In Figure 1x and Figure 1aa, as the interest rate Ij2 for holding money j,j = q,m, in period 2 increases, which is intuitively beneficial 

to the bank and agent i,i = 2,…n, the three utilities U2, U22, and Ui2 increase concavely toward infinity. The inflation rate π2 is constant 
since Ij2 plays no role in (8). Agent 1’s utilities U11 and U12 are constant since agent 1 holds no money j in the two periods. The utilities 
U1, U21, and Ui1 remain constant since Ij2 plays no role in period 1. 

In Figure 1y and Figure 1ab, as the interest rate Ij1 = Ij2 for holding money j, j = q, m, in the two periods increases, which is 
intuitively beneficial to the bank and agent i,i = 2,…n, the six utilities U1 U2, U21, U22, Ui1, andUi2 increase concavely toward infinity, 
equivalently to the three concave increases in Figure 1w and the three concave increases in Figure 1x. The inflation rate π2 is constant 
since Ij1 and Ij2 play no role in (8). Agent 1’s utilities U11 and U12 are constant since agent 1 holds no money j in the two periods. 

In Figure 1ac, as the interest rate Io1 for holding other assets o in period 1 increases, which is intuitively beneficial to all the agents, 
the utilities U21, U21, and Ui1 increase concavely toward infinity. The inflation rate π2 is constant since Io1 plays no role in (8). The 
bank’s utilities U1 and U2 are constant since the bank holds no other assets o in the two periods. The utilities U2, U22, and Ui2 remain 
constant since Io1 plays no role in period 2. 

In Figure 1ad, as the interest rate Io2 for holding other assets o in period 2 increases, which is intuitively beneficial to all the agents, 
the utilities U12, U22, and Ui2 increase concavely toward infinity. The inflation rate π2 is constant since Io2 plays no role in (8). The 
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bank’s utilities U1 and U2 are constant since the bank holds no other assets o in the two periods. The utilities U1, U11, U21, and Ui1 
remain constant since Io2 plays no role in period 1. 

In Figure 1ae, as the interest rate Io1 = Io2 for holding other assets o in the two periods increases, which is intuitively beneficial to all 
the agents, the utilities U11, U12, U21, U22, Ui1, and Ui2 increase concavely toward infinity. The inflation rate π2 is constant since Io1 
and Io2 play no role in (8). The bank’s utilities U1 and U2 are constant since it holds no other assets in the two periods. 

In Figure 1ag and Figure 1aj, as the borrowing interest rate rj2 for money j, j = q,m in period 2 increases, which is intuitively 
beneficial to the bank, the bank’s utility U2 increases concavely toward infinity. Agent 1’s utility U12 decreases convexly toward zero 
since a higher borrowing interest rate rj2 for money j is costly. The inflation rate π2 is constant since rj2 plays no role in (8). The utilities 
U22 and Ui2 are constant since agents 2 and i do not borrow money j in period 2. The utilities U1, U11, U21, and Ui1 remain constant since 
rj2 plays no role in period 2. 

In Figure 1ah and Figure 1ak, as the borrowing interest rate rj1 = rj2 for money j, j = q,m in the two periods increases, which is 
intuitively beneficial to the bank, the bank’s utilities U1 and U2 increase concavely toward infinity. These two concave increases are 
equivalent to the concave increases in Figure 1af, Figure 1ai, Figure 1ag and Figure 1aj. Agent 1’s utilities U11 and U12 decrease 
convexly toward zero since higher borrowing interest rate rj1 = rj2 for money j is costly. These two convex decreases are equivalent to 
the convex decreases in Figure 1af, Figure 1ai, Figure 1ag and Figure 1aj. The inflation rate π2 is constant since rj1 and rj2 play no role in 
(8). The utilities U21, U22, Ui1 and Ui2 are constant since agents 2 and i do not borrow money j in the two periods. Thus, rj1 and rj2 play 
no role for agents 2 and i. 

In Figure 1al, as agent 1’s Cobb Douglas elasticity α1o1 for holding o11 +L1q1 +L1m1 of other assets in period 1 increases, which is 
intuitively beneficial to agent 1, its utility U11 increases concavely. Agent 1 wants to borrow L1q2 +L1m2 from the bank in period 2 when 
α1o1 is sufficiently low, i.e. 0 ≤ α1o1 < 0.50. The inflation rate π2 is constant since α1o1 plays no role in (8). Agent 1’s utility U12 is 
constant since α1o1 plays no role in period 2. The utilities U1, U2, U21, U22, Ui1, and Ui2 remain constant since α1o1 has no impact on the 
bank, agents 2 and i. 

In Figure 1an, as agent 1’s Cobb Douglas elasticity α1o1 = α1o2 for holding o11 +L1q1 +L1m1 and o11 +L1q1 +L1m1 +L1q2 +L1m2 of 
other assets in the two periods increases, its utilities U11 and U12 increase concavely, and equivalently to the concave increases in 
Figure 1al and Figure 1am. Agent 1 wants to borrow L1q2 +L1m2 from the bank in period 2 when α1o1 = α1o2 is not too low, i.e. 
0.5 ≤ α1o1 = α1o2 < 1. The inflation rate π2 is constant since α1o1 and α1o2 play no role in (8). The utilities U1, U2, U21, U22, Ui1, and Ui2 
remain constant since α1o1 and α1o2 have no impact on the bank, agents 2 and i. 

In Figure 1ao, as agent 1’s Cobb Douglas elasticity α1qL1 for borrowing L1q1 in hard money in period 1 increases, its utility U11 in 
period 1 is constant since the bank does not print money to lend L1m1 to agent 1. Hence decreasing Cobb Douglas elasticity α1mL1 
= 1�α1o1 �α1qL1 due to increasing Cobb Douglas elasticity α1qL1 has no impact since L1q1 = L1m1 = $10. The nine variables U11, U12, 
U21, U22, Ui1, Ui2, U1, U2, π2 remain constant. 

In Figure 1ap, as agent 1’s Cobb Douglas elasticity α1qL2 for borrowing L1q2 in hard money in period 2 increases, its utility U12 in 
period 2 decreases slightly because the positive inflation rate π2 = 1.875% becomes less beneficial for agent 1 when lower Cobb 
Douglas elasticity α1mL2 = 1�α1o2 �α1qL2 is assigned to borrowing L1m1 + L1m2 in fiat money. The eight variables U11, U21, U22, Ui1, Ui2, 
U1, U2, π2 remain constant. 

In Figure 1aq, as agent 1’s Cobb Douglas elasticity α1qL1 = α1qL2 for borrowing L1q1 and L1q2 in hard money in the two periods 
increases, the results are as in Figure 1ap where only α1qL2 changes while α1qL1 is constant. The reason follows from Figure 1ao where 
the changing Cobb Douglas elasticity α1qL1 does not impact the nine variables. 

In Figure 1ar and Figure 1au, as agent 2’s Cobb Douglas elasticity α2j1 for holding money j21, j = q,m in period 1 increases, which 
means decreasing Cobb Douglas elasticity α2o1 = 1�α2q1 �α2m1 for holding other assets o21, agent 2’s utility U21 in period 1 decreases 
because holding other assets o21 becomes less beneficial. Hence agent 2 prefers period 1 when α2j1 < 0.23 and prefers period 2 when 
0.23 ≤ α2j1 ≤ 1. That is, agent 2 wants to sell its other assets valued as L1q2 +L1m2 when α2j1 is sufficiently high, i.e. 0.23 ≤ α2j1 ≤ 1, j 
= q,m. The eight variables U11, U12, U22, Ui1, Ui2, U1, U2, π2 remain constant. 

In Figure 1at, as agent 2’s Cobb Douglas elasticity α2q1 = α2q2 for holding hard money q21 and q21 +L1q2 in the two periods in-
creases, its utilities U21 and U22 decrease convexly, and equivalently to the convex decreases in Figure 1ar and Figure 1as. Agent 2 
wants to sell other assets valued as L1q2 +L1m2 when α2q1 = α2q2 is sufficiently high, i.e. 0.13 ≤ α2q1 = α2q2 ≤ 1. The seven variables 
U11, U12, Ui1, Ui2, U1, U2, π2 remain constant. 

In Figure 1aw, as agent 2’s Cobb Douglas elasticity α2m1 = α2m2 for holding fiat money m21 and m21 +L1m2 in the two periods 
increases, its utilities U21 and U22 decrease convexly, and equivalently to the convex decreases in Figure 1au and Figure 1av. Agent 2 
wants to sell other assets valued as L1q2 +L1m2 when α2m1 = α2m2 is sufficiently high, i.e. 0.12 ≤ α2m1 = α2m2 ≤ 1. The seven variables 
U11, U12, Ui1, Ui2, U1, U2, π2 remain constant. 

In Figure 1ax and Figure 1ba, as agent i’s Cobb Douglas elasticity αij1 for holding money ji1, j = q,m in period 1 increases, its 
utility Ui1 in period 1 decreases convexly because holding other assets oi1 becomes less beneficial for agent i with decreasing Cobb 
Douglas elasticity αio1 = 1 � αiq1 � αim1. Agent i prefers the trade between agents 1 and 2 when αij1 is sufficiently high, i.e. 
0.25 ≤ αiq1 ≤ 1, j = q,m. The eight variables U11, U12, U21, U22, Ui2, U1, U2, π2 remain constant. 

In Figure 1az and Figure 1bc, as agent i’s Cobb Douglas elasticity αij1 = αij2 for holding money jit, j = q,m, t = 1, 2 in the two 
periods increases, its utilities Ui1 and Ui2 decrease convexly, and equivalently to the convex decreases in Figure 1ax and Figure 1ay, 
Figure 1ba and Figure 1bb. Agent i does not prefer the trade between agents 1 and 2 since Ui2 < Ui1 holds for Figure 1az and Figure 1bc. 
The seven variables U11, U12, U21, U22, U1, U2, π2 remain constant. 

In Figure 1bd and Figure 1bg, as the bank’s Cobb Douglas elasticity βj1 for holding money j1 � L1j1, j = q,m in period 1 increases, 
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its utility U1 in period 1 increases convexly because holding money j1 �L1j1 becomes more beneficial for the bank with increasing Cobb 
Douglas elasticity βj1, which overrides the negative impact of the decreasing Cobb Douglas elasticity βmL1 = 1�βq1 �βm1 �βqL1 for fiat 
money loans. The bank wants to give money loans L1q2 +L1m2 to agent 1 in period 2 when βj1 is sufficiently low, i.e. 0 ≤ βj1 ≤ 0.4, j = q,
m. The eight variables U11, U12, U21, U22, Ui1, Ui2, U2, π2 remain constant. 

In Figure 1bf, as the bank’s Cobb Douglas elasticity βq1 = βq2 for holding hard money q1 �L1q1 and q1 �L1q1 �L1q2 in the two 
periods increases, its utilities U1 and U2 in the two periods increase convexly because holding money q1 �L1q1 and q1 �L1q1 �L1q2 

becomes more beneficial for the bank with increasing Cobb Douglas elasticity βq1 = βq2, which overrides the negative impact of the 
decreasing Cobb Douglas elasticity βmL1 = 1�βq1 �βm1 �βqL1 = βmL2 = 1�βq2 �βm2 �βqL2 for fiat money loans. The bank wants to give 
money loans L1q2 +L1m2 to agent 1 in period 2 when βq1 = βq2 is sufficiently low, i.e. 0 ≤ βq1 = βq2 ≤ 0.69. The seven variables U11, 
U12, U21, U22, Ui1, Ui2, π2 remain constant. 

In Figure 1bi, as the bank’s Cobb Douglas elasticity βm1 = βm2 for holding fiat money m1 �L1m1 and m1 �L1m1 +Pm2 �Wm2 in the 
two periods increases, its utilities U1 and U2 in the two periods increase convexly because holding money m1 �L1m1 and 
m1 �L1m1 +Pm2 �Wm2 become more beneficial for the bank with increasing Cobb Douglas elasticity βm1 = βm2, which overrides the 
negative impact of decreasing Cobb Douglas elasticity βmL1 = 1�βq1 �βm1 �βqL1 = βmL2 = 1�βq2 �βm2 �βqL2 for fiat money loans. The 
bank wants to give money loans L1q2 +L1m2 to agent 1 in period 2 when βm1 = βm2 is sufficiently low, i.e. 0 ≤ βm1 = βm2 ≤ 0.72. The 
seven variables U11, U12, U21, U22, Ui1, Ui2, π2 remain constant. 

In Figure 1bj, as the bank’s Cobb Douglas elasticity βqL1 for hard money lending L1q1 in period 1 increases, its utility U1 remains 
constant because the benefit of increasing Cobb Douglas elasticity βqL1 is offset by the negative impact of decreasing Cobb Douglas 
elasticity βmL1 = 1 � βq1 � βm1 � βqL1. The bank benefits from lending money L1q2 +L1m2 to agent 1 in period 2 because rj2 > Ij2, j = q,
m. The bank always wants to lend fiat money L1q2 +L1m2 to agent 1 in period 2 since U1 < U2. The nine variables U11, U12, U21, U22, Ui1, 
Ui2, U1, U2, π2 remain constant.     

Fig. 1. Agent 1’s utilities U11 and U12, agent 2’s utilities U21 and U22, agent i’s utilities Ui1 and Ui2, the bank’s utilities U1 and U2, and the inflation 
rate π2, respectively, relative to the benchmark parameter values q11 = q12 = m11 = m12 = o11 = $0, L1q1 = L1m1 = $10, L1q2 = L1m2 = $15, q21 =
m21 = $100, n = 3, qi1 = qi2 = mi1 = mi2 = $100, oi1 = oi2 = $400, q1 = m1 = $200, Pm2 = Wm2 = $0, αio1 = αio2 = 1/2, i = 1, ..., n, α1qL1 =
α1qL2 = α1mL1 = α1mL2 = 1/4, αiq1 = αiq2 = αim1 = αim2 = 1/4, βq1 = βq2 = βqL1 = βqL2 = 1/4, βm1 = βm2 = βmL1 = βmL2 = 1/4, π2 = 1.875%, Iq1 

= Iq2 = Im1 = Im2 = Io1 = Io2 = 2%, rq1 = rq2 = rm1 = rm2 = 5%. 
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Fig. 1. (continued). 
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Fig. 1. (continued). 
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Fig. 1. (continued). 
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Fig. 1. (continued). 
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Fig. 1. (continued). 
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Fig. 1. (continued).  
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A Bitcoin price prediction model assuming 
oscillatory growth and lengthening cycles
Guizhou Wang1 and Kjell Hausken1*

Abstract:  This article’s motivation is to understand the volatile Bitcoin price increase. 
The objective is to develop price estimation methods. The methodology is to present 
five differential equation models estimated against the 23 July 2010–21 June 2021 
Bitcoin data. The findings are that Gompertz growth fits the damped oscillations and 
lengthening cycles well, and tracks the early data better with the weighted least 
squares method. Gompertz growth combined with charged capacitor growth tracks 
the early data even better. Logistic growth is too slow to track the early data. Logistic 
growth combined with charged capacitor growth to some extent tracks the early 
data. Pure charged capacitor growth is unrealistic. The dates for the future bull 
market maxima depend to a low degree on the growth model carrying capacity 
approached asymptotically, assumed to match gold at $10 trillion, and to be 50 
times higher. The implications for traders are to focus on the large standard devia-
tions. Investors should understand the growth potential compared with other asset 
classes. Regulators should ensure financial stability by focusing on the fluctuations. 
Central banks should adjust the money supply while acknowledging. Bitcoin competi-
tion. Collective units should understand Bitcoin growth models to determine whether 
to accept Bitcoin transactions.
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1. Introduction

1.1. Background
Since the genesis block was mined on 3 January 2009 at 18:15:05 UTC, the Bitcoin price has 
increased above 100% per year subject to fluctuations. Understanding the nature of the growth 
and fluctuations is of paramount importance. A variety of opinions emerge on how the Bitcoin 
price evolves into the future. Skeptics believe the Bitcoin price is in a bubble and will collapse. 
Others see Bitcoin, accompanied with layer 2 solutions for scaling (e.g., the Lightning Network) and 
layer 3 solutions for interoperability, as the future dominant means of payment, measure of value, 
medium of exchange, basis of credit, standard of postponed payment, store of value, and possibly 
unit of account. Other cryptocurrencies may contribute. The decentralized nature of Bitcoin, where 
anyone can run a node which stores the entire blockchain, emerges as a competitor to traditional 
media of exchange and stores of value which require an intermediary. Thus for example El 
Salvador on 7 September 2021 and the Central African Republic on 27 April 2022 accepted 
Bitcoin as legal tender. Cryptocurrencies and their underlying ledger technologies currently impact 
how most central banks develop digital currencies. These developments can be expected to 
reshape the financial system.

1.2. Contribution
This article’s motivation, objectives, research hypotheses, and research questions are as follows. First, 
the Bitcoin price has increased apparently unpredictably since 3 January 2009, which suggests a need 
both to understand the evolution so far and to predict the future evolution. Second, applying Bitcoin’s 
price data since 23 July 2010, methods are developed to estimate and understand this price evolution 
as accurately as possible. The Bitcoin empirics are such that the methods involve growth models, while 
accounting for oscillations and lengthening cycles. Third, two different Bitcoin carrying capacities are 
considered, assumed to express reasonable outer limits for what can be expected over the next 
decades. Fourth, five differential equation models are compared against each other to determine 
which is best, applying the least squares method and the weighted least squares method. Fifth, the 
methods are used to predict the future Bitcoin price and future bull marked maxima.

More specifically, first, a generalized logistic growth model is presented, which depicts the 
Bitcoin price’s growth with four characteristics: logistic growth, damped oscillation, retracement 
in bear markets, and lengthening cycles. Second, a generalized charged capacitor growth is 
introduced with damped oscillation, retracement in bear markets, and lengthening cycles. Third, 
the article introduces what the authors believe are two hitherto unknown theoretical combinations 
of growth models, i.e., logistic growth combined with charged capacitor growth, and Gompertz 
growth combined with charged capacitor growth. This gives five models which are solved analy-
tically and analyzed numerically.

The least squares method is applied to estimate the models’ parameters. Supplementation is 
made with the weighted least squares method since the Bitcoin price variance increases over time, 
exhibiting heteroscedasticity. Based on the three bull market local maxima and three bear market 
local minima during the period 23 July 2010–21 June 2021, the scaling of the inverse of the cycle 
length of the sine oscillations, and the scaling of the inverse of the degree of lengthening of each 
subsequent cycle, are estimated. The amplitude of the oscillations, and the start time adjustment 
parameter for the sine oscillations, are estimated to predict the future bull market local maxima 
and bear market local minima.
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The article outperforms other alternative approaches and adds to our knowledge in various 
ways. First, the dynamic nature of the Bitcoin price is such that differential time equations are 
especially well suited. Such differential equations do exist in the literature, but are perhaps in the 
minority. Second, the Bitcoin price is not only characterized by dynamics, but by dynamic growth. 
Hence this article focuses explicitly on growth models. Third, the Bitcoin price is characterized by 
dynamic oscillatory growth with lengthening cycles, which is explicitly incorporated into the 
analysis.

1.3. Literature
The existing literature predicts the Bitcoin price applying various methods, occasionally using 
differential equations, and more generally accounting for statistics, econometrics, machine learn-
ing, neural network, deep learning, etc. The literature is divided into five groups, i.e., 1. Differential 
equations, 2. Bitcoin price dynamics, 3. Gompertz growth and Metcalfe’s Law, 4. Machine learning, 
and 5. Neural network, deep learning and memory models. This article correlates most with the 
first two groups, while introducing growth with damped oscillatory and lengthening cycles. The last 
three groups are included for broader positioning.

1.3.1. Differential equations
Relatively few studies apply differential equations to predict the Bitcoin price. K. S. Chen and Huang 
(2020) adopt a stochastic differential equation to capture the evolution of the Bitcoin price 2015– 
2018. Their differential equation considers the instantaneous expected return, the instantaneous 
volatility, and jumps focusing explicitly on the crash after the 17 December 2017 and Brownian 
motion. They focus on the jump risk distribution of the Bitcoin price and Bitcoin options pricing and 
hedging. Such a focus on jumps is implicitly present in the current article which determines moves 
back and forth between bull market maxima and bear market minima. Jalali and Heidari (2020) 
adopt grey system theory and propose a first order differential equation to predict the Bitcoin 
price. The approach requires an appropriate time frame. They focus explicitly on five-day predic-
tions. That differs from the current article which predicts over any future time horizon. Wang and 
Wang (2020) introduce a partial differential equation model to predict the Bitcoin price January 1– 
31 December 2017. They incorporate the daily Bitcoin transaction volumes and google trends 
index, and the spatial heterogeneity of chainlet clusters, which proceeds beyond this article’s 
focus. This article differs from these other articles applying differential equations by focusing 
explicitly on the Bitcoin price growth patterns. That is, the differential equations consider the 
Bitcoin price, two different Bitcoin carrying capacities, damped oscillations, lengthening cycles, 
and bull market maxima and bear market minima for five different growth models.

1.3.2. Bitcoin price dynamics
The following articles pertain to Bitcoin price dynamics, but with a different focus and applying 
other models than in the current article, thus implicitly illustrating a gap in the literature. Statistics 
and econometrics are widely used methods to forecast the Bitcoin price. Begusic et al. (2018) 
demonstrate slowly decaying tails in the distributions of Bitcoin returns, and a power law with 2 
< α < 2.5, which means heavier tails than for stocks with alpha around 3. Such slowly decaying tails 
seem consistent with damped oscillations, and heavy tails seem consistent with the substantial 
fluctuations between maxima and minima, found in the current article.

Caporale et al. (2019) apply statistical methods for 2013–2018. They find that the frequency of 
price overreactions is informative about Bitcoin price movements and the Bitcoin price exhibits no 
seasonality. Their approach constitutes an alternative way of assessing the drive towards bull 
market maxima and bear market minima.

Roy et al. (2018) apply 2013–2017 data and present an autoregressive integrated moving 
average model which predicts the Bitcoin price volatility with 90% accuracy, thus also capturing 
fluctuations between maxima and minima.
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Indera et al. (2017) apply 2012–2017 data and develop a multi-layer perceptron-based non- 
linear autoregressive model to predict the Bitcoin price with good accuracy. They generate moving 
averages, account for input and output lags, and apply regression analysis, validation and fitting 
tests. They focus less on the timing and magnitudes of the maxima and minima than the current 
article.

Cretarola and Figa-Talamanca (2021) apply a continuous time stochastic model to determine 
how bubbles in the Bitcoin price in 2012–2013 and in 2017 are linked to the correlation between 
the market attention to Bitcoin and the Bitcoin return being above a threshold, known as market 
exuberance. Such bubbles are yet another way of assessing bull market maxima. Jana et al. (2021) 
apply 2013–2019 data to forecast the Bitcoin price through a differential evolution-based regres-
sion framework, shown to be superior to six advanced predictive modeling algorithms. Instead of 
differential equations, they apply polynomial regression on time series.

Further studies consider market attention, market sentiment, active addresses, etc. for Bitcoin 
price prediction, which is a broader focus than in the current article. Sabalionis et al. (2021) found 
that the amount of active addresses impacts the Bitcoin and Ethereum prices more than other 
factors such as google search interest and number of tweets. Haffar and Le Fur (2021) applied 
a structural vector error correction model to determine that the Bitcoin price in the short run is 
influenced positively by Asian emerging countries and negatively by North America. In the long 
run, the influence is negative from all countries in Asia and the Pacific, and positive from Europe. 
This article adopts a wider range of Bitcoin price data than the above articles, applying growth 
models to explain and predict the Bitcoin price.

1.3.3. Gompertz growth and Metcalfe’s Law
The quick initial increase in Gompertz growth (commonly used for e.g. tumor growth; see Yorke et al. 
(1993)) is found to be descriptive in the current article. Two other articles have also identified Gompertz 
growth as descriptive. Peterson (2018) applies the Gompertz curve to capture the inflationary impacts of 
the creation of new Bitcoin, shown to follow Metcalfe’s Law. Patel et al. (2020) found that the price of 
cryptocurrencies follows a Gompertz growth function, which links the traditional time-value-of-money 
concepts to Metcalfe’s law, and that the growth rate of users impacts the Bitcoin price. This article 
extends this focus to other growth models, i.e., logistic growth, charged capacitor growth, and combina-
tions of growth models, accounting for damped oscillation and lengthening cycles.

1.3.4. Machine learning
Several studies apply machine learning methods to explain and predict the Bitcoin price. Chevallier 
et al. (2021) applied six machine learning algorithms to parameterize and disentangle the non- 
stationary behavior of the Bitcoin price data, as an alternative to classical parameter models. They 
suggest that machine learning does not teach how to trade due to the substantial Bitcoin price 
variability, and that long term holding may be preferable. Such a suggestion seems compatible 
with the current article which determines overall 2010–2021 growth, interrupted by substantial 
downturns towards bear market minima. Dutta et al. (2020) present a framework of machine 
learning forecasting methods to predict the Bitcoin’s price. They compare various approaches, 
arguing that the gated recurring unit model with a recurrent dropout performs best. Z. Chen et al. 
(2020) predict the Bitcoin price with various frequencies data via machine learning techniques. 
They also incorporate high-dimension features like property and network, trading and market, 
attention, etc. They show that statistical methods perform better than machine learning algo-
rithms, reaching accuracy of 66% and 65.3%, respectively.

Some articles combine machine learning and econometrics. Mudassir et al. (2020) developed high- 
performance machine learning-based classification and regression models to predict the Bitcoin price. 
The models have accuracy of 65% and 64% for next-day forecast and seventh–ninetieth-day forecast, 
respectively. Gupta and Nain (2021) use time series involving moving averages, autoregressive inte-
grated moving averages, and multiple machine learning approaches including Support Vector Machine, 
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Long Short Term Memory and Gated Recurrent Unit. They compare these models to determine their 
accuracy. The machine learning approach is challenging since it requires appropriate data input. Long 
term forecasting is challenging. Instead of machine learning, this article applies differential equations 
and least squares methods which more directly cause price explanation and prediction.

1.3.5. Neural network, deep learning and memory models
Recent articles adopt neural networks and deep learning to predict the Bitcoin price, which enables 
the analysis of instructed data including documents, images, and texts. Ji et al. (2019) explored the 
performance of a deep neural network model, a Long Short-Term Memory model, and 
a Convolutional Neural Network model, to predict the Bitcoin price. They show that the deep 
neural network model predicts price increases and decreases nicely, and that classification models 
are more effective than regression models. Patel et al. (2020) present a Long Short Term Memory 
and Gated Recurrent Unit based hybrid cryptocurrency prediction model to predict the price of 
Litecoin and Monero. They found that the model accurately predicts the prices.

Hua (2020) compares the accuracy of predicting the Bitcoin price via Long Short Term Memory 
model and an Autoregressive Integrated Moving Average model. He finds that the former performs 
better, but requires more time to train the neural network. Cocco et al. (2021) compared several 
approaches to predict the Bitcoin price. They show that two-stage frameworks usually outperform 
one-stage frameworks, except for one-stage Bayesian Neural Network. Jaquart et al. (2021) 
proposed a stochastic neural network model based on random walk to predict the price of 
cryptocurrencies. The approach induces a layer-wise randomness into the neural networks to 
capture market volatility. Using multi-layer perceptron and Long Short Term memory models, 
they found that the proposed models perform well compared with deterministic models.

Chkili (2021) applies a long memory model and a Markov switching model to determine the 
Bitcoin price volatility, which relates to the focus in the current article of assessing fluctuations 
between maxima and minima. A common challenge faced by the deep learning approach is 
finding the optimal network hyperparameters. That contrasts with the current article which applies 
least squares methods to estimate the parameters.

1.4 Article organization
Section 2 presents the materials and methods. Section 3 analyzes the model and presents the 
results. Section 4 discusses the results. Section 5 concludes.

2. Materials and methods
This section identifies and develops the differential equations believed to capture the Bitcoin price 
evolution most accurately.

2.1. Nomenclature
Parameters

k Growth rate, k 2 R
K Carrying capacity, K � 0
ν Parameter for generalized logistic growth impacting near which asymptote maximum  

growth occurs, ν � 0
λ Adjustment parameter for combined generalized logistic and charged capacitor  

growth, λ 2 R
α Oscillation amplitude, expressing strength of bull and bear markets, α 2 R
ω Scaling of the inverse of the cycle length of the sine oscillations, ω 2 R
γ Scaling of the inverse of the degree of lengthening of each subsequent cycle, γ 2 R
δ Start time adjustment parameter relative to time t ¼ t0 for the oscillation of the Sin  

function, γ 2 R
t0 Initial time t

Wang & Hausken, Cogent Economics & Finance (2022), 10: 2087287                                                                                                                                
https://doi.org/10.1080/23322039.2022.2087287                                                                                                                                                       

Page 5 of 29



T Final time t
p0 Initial price p at time t ¼ t0

Independent variable
t Time

Dependent variable
p Price

2.2. Generalized logistic growth
This section generalizes Richards’ (1959) model for growth modeling to 

@p
@t ¼ k þ αSin ω t � t0ð Þγ þ δð Þð Þp 1 � p

K
� �v

� �

) p ¼ K

1þ K
p0
�1

� �ν

e� kþQð Þν t�t0ð Þ
� �1=ν ; lim

t!1
p ¼ K;

Q; iα
2γ eiδ �

1

1
eiω t�t0ð Þγq

q
γ�1

γ
dq � e�iδ �

1

1
e�iω t�t0ð Þγq

q
γ�1

γ
dq

� �
; i;

ffiffiffiffiffiffiffi
�1

p
(1) 

where @ means partial differentiation, t means time, t0 is the start time, k 2 R is the growth rate 
which expresses how quickly the price p changes, and K � 0 is the carrying capacity, defined as the 
maximum sustainable price p. Equation (1) expresses that the price p changes logistically from p0, 
p0 � 0, at the initial time t ¼ t0 towards p ¼ K as time t approaches infinity. The parameter ν, ν � 0, 
impacts near which asymptote maximum growth occurs.

Whereas Richards (1959) assumes a constant growth rate, (1) supplements the growth rate k 
with a Sin function and four additional parameters. The Sin function oscillates between +1 and −1 
to reflect bull markets with increased growth rate when the Sin function is positive, and bear 
markets with decreased growth rate when the Sin function is negative.

The parameter α 2 R expresses the strength of the bull and bear markets, and thus the size of 
the positive and negative amplitudes in the oscillations. Equation (1) simplifies to Richards' (1959) 
model when α ¼ 0 which eliminates the sine oscillations causing Q ¼ 0.

The parameter ω 2 R scales the inverse of the cycle length of the sine oscillations. Higher ω gives 
shorter cycle length, since ω is multiplied with time t, and higher ω means that each cycle with 
length 2π gets completed more quickly.

The parameter γ 2 R scales the inverse of the degree of lengthening of each subsequent 
cycle as time t progresses. Lower γ gives more lengthening of each subsequent cycle as time t 
progresses. Mathematically, if we consider γ ¼ 1 as a common benchmark giving linear oscilla-
tory progression through time t, decreasing gamma below 1 causes ω t � t0ð Þγ<ω t � t0ð Þ, and 
hence more time t is needed for each subsequent cycle with length 2π to be completed. In 
contrast, increasing gamma above 1 causes ω t � t0ð Þγ>ω t � t0ð Þ, and hence less time t is 
needed for each subsequent cycle with length 2π to be completed. Equation (1) also simplifies 
to Richards’ (1959) model at the limit when lim

γ1
Q ¼ 0, since each subsequent cycle gets 

completed immediately and thus the sine oscillations have no impact.

The parameter δ 2 R adjusts the start time at time t ¼ 0 for the oscillation of the Sin function. 
For example, if δ ¼ 0, Sin ωtγ þ δð Þ ¼ 0 when t ¼ 0, which gives zero amplitude and thus no impact 
of the Sin function at time t ¼ 0.
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2.2.1. Conventional logistic growth
Inserting ν ¼ 1 into (1) gives conventional logistic growth (Lotka, 1924; Verhulst, 1845) with 
oscillation, retracement in bear markets, and lengthening cycles, where both the initial value 
asymptote t ¼ t0 and the future value asymptote t ! 1 are approached symmetrically.

2.2.2 Gompertz growth
Inserting the limit ν � >0þ into (1) gives conventional Gompertz (1825, p. 518) logistic growth with 
oscillation, retracement in bear markets, and lengthening cycles, i.e., 

@p
@t ¼ k þ αSin ω t � t0ð Þγ þ δð Þð ÞpLn K

p

� �
) p ¼ K p0
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e
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q

1
γ�1e�qdq � 1

 !

0

BBBB@

1

CCCCA
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where Ln is the natural logarithm, and the initial value asymptote t ¼ t0 is approached more 
quickly than the future value asymptote t ! 1. Equation (2) simplifies to Richards’ (1959) model 
when R ¼ 0.

2.3. Generalized charged capacitor growth
This section assumes generalized charged capacitor growth with damped oscillation, retracement 
in bear markets, and lengthening cycles, with growth rate k þ αSin ω t � t0ð Þγ þ δð Þð Þ, i.e., 

@p
@t ¼ k þ αSin ω t � t0ð Þγ þ δð Þð Þ 1 � p
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K
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where Q is defined in (1), which simplifies to 

@p
@t ¼ k þ αSin ω t � t0ð Þγ þ δð Þð Þ 1 � p

K
� �

) p ¼ K � K � p0ð Þe� kþQð Þ t�t0ð Þ=K; lim
t!1

p ¼ K (4) 

when ν ¼ 1, and simplifies to @p
@t ¼ 0 ) p ¼ p0, i.e., no growth, when ν ¼ 0. The function 

2F1 a; b; c; zð Þ is hypergeometric with power series assuming zj j<1. The Mathematica (www. 
wolfram.com) notation in (3) is as follows: InverseFunction f½ � is the inverse of the function f , 
defined so that InverseFunction f½ � y½ � gives the value of x for which f x½ � ¼ y. The symbol # is 
the first argument supplied to a pure function, so that f #½ �& x½ � evaluates to f x½ �. The symbol & 
expresses the end of the argument. Charged capacitor growth expresses a quick initial price 
increase, due to the high value of the right-hand side of the differential Equation (3) when p0 

is low.

2.4. Combined generalized logistic and charged capacitor growth
Combining (3) and (1) gives 

@p
@t ¼ k þ αSin ω t � t0ð Þγ þ δð Þð Þpλ 1 � p

K
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) p ¼ InverseFunction �#1�λ
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K
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(5) 
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where the price p is raised to an exponent λ, λ 2 R , and 2F1 a; b; c; zð Þ is defined in (3). The 
adjustment parameter λ can be thought of as weighing generalized logistic growth (conventional 
logistic growth and Gompertz growth) and charged capacitor growth against each other. Equation 
(5) simplifies to generalized logistic growth in (1) when λ ¼ 1, simplifies to Gompertz growth in (2) 
when λ ¼ 1 at the limit v ! 0þ, and simplifies to generalized charged capacitor growth in (3) when 
λ ¼ 0. Hence 0<λ<1 enables growth intermediate between quick generalized charged capacitor 
growth when λ ¼ 0, and slower generalized logistic growth when λ ¼ 1. Compared with generalized 
logistic growth in (4) when λ>1, initial growth when the price p is low is damped since pλ in (5) is 
comparatively low, and eventual growth is amplified more when the price p is high since pλ in (5) is 
comparatively high.

2.4.1 Combined logistic and charged capacitor growth
Inserting ν ¼ 1 into (5) gives combined conventional logistic growth and generalized charged 
capacitor growth expressed as 
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2.4.2 Combined Gompertz and charged capacitor growth
Inserting the limit v ! 0þ into (5) gives combined Gompertz growth and generalized charged 
capacitor growth expressed as 
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3. Results
The results are presented over seven subsections. Sections 3.1 and 3.2 assume no oscillation and 
estimate and predict the Bitcoin price with the various methods developed in the previous section. 
Sections 3.3 and 3.4 generate results needed to account for oscillation. These results pertain to 
Bitcoin price maxima and minima, cycle length and cycle lengthening. Sections 3.5 and 3.6 allow 
for oscillation and predict the Bitcoin price with the various methods. Section 3.7 estimates future 
bull market maxima.

More specifically, section 3.1 estimates the Bitcoin price assuming no oscillation amplitude α = 0 
and the Bitcoin carrying capacity K = $476,190 which corresponds to Bitcoin eventually approach-
ing the market capitalization of gold estimated at $10 trillion. Section 3.2 repeats the exercise for 
the 50 times higher Bitcoin carrying capacity K = $23,809,524 which corresponds to Bitcoin 
eventually approaching a market capitalization of $500 trillion. Section 3.3 determines the three 
bull market local maxima and the three bear market local minima which have been established at 
the writing of this article. Section 3.4 estimates the scaling ω of the inverse of the cycle length of 
the sine oscillations and the scaling γ of the inverse of the degree of lengthening of each 
subsequent cycle. Section 3.5 allows for oscillation amplitude α ≥ 0 as determined by the previous 
two subsections, and estimates the Bitcoin price assuming the carrying capacity K = $476,190. 
Section 3.6 repeats the exercise for the 50 times higher Bitcoin carrying capacity K = $23,809,524. 
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Section 3.7 estimates bull market local maxima 4,5,6,7,8 assuming the carrying capacities 
K = $476,190 and K = $23,809,524.

3.1. Bitcoin carrying capacity k=$476,190 and no oscillation amplitude α=0
The Bitcoin carrying capacity K is estimated as the maximum sustainable market capitalization 
divided by the circulating supply. The Bitcoin circulating supply is capped at 21 million coins, 
expected to be mined by ca year 2140. Estimating Bitcoin’s maximum sustainable market capita-
lization is extremely uncertain. This section assumes that Bitcoin approaches a maximum sustain-
able market capitalization of $10 trillion, which is similar to the market capitalization of gold.1 The 
comparison with gold is made since it would constitute a major milestone if Bitcoin were to reach 
it. Dividing $10 trillion with 21 million coins gives the Bitcoin carrying capacity K ¼ $476;190. Using 
daily midnight 11:59.99 pm UTC closing time Bitcoin data,2 the initial Bitcoin price at the initial time 
23 July 2010 is p0 ¼ $0:04951. Figure 1 shows the empirical price pE for the period 23 July 2010– 
21 June 2021, which increases overall, with intermittent decreases.3

The subsequent seven curves in each panel in Figure 1 assume α ¼ 0, K ¼ $476;190 and p0 ¼
$0:04951 and estimate the growth rate k, and the two parameters λ and β, for the models in 
section 2.2. These seven curves increase strictly, in contrast to the empirical price pE, due to the 
nature of growth models. In sections 3.5 and 3.6 oscillatory growth is modeled.

3.1.1. Least squares method
Applying the least squares method, Figure 1(a) shows the historical estimates. Figure 1(b) predicts 
until 1 January 2100. Using data over ca 11 years to predict ca 79 more years into the future, i.e., 
a ratio 79/11 ≈ 7.2, entails some uncertainty for the more distant future.

The curve pL estimates the growth rate k ¼ 1:28 by assuming logistic growth in (1) for ν ¼ 1, 
approaching K ¼ $476;190 more quickly than the other six curves. The curve pL appears almost 
linear on a logarithmic plot with base 10.

The curve pG estimates the growth rate k ¼ 0:16 by assuming Gompertz growth in (2). The curve 
pG is concave to reflect that the future value asymptote t ! 1 is approached more gradually than 

Figure 1. Assuming no oscilla-
tion amplitude α ¼ 0, the 
empirical price pE , logistic 
growth pL, Gompertz growth pG, 
charged capacitor growth pC , 
combined logistic and charged 
capacitor growth pLC and pLCλ, 
and combined Gompertz and 
charged capacitor growth pGC 

and pGCλ, for 23 July 2010– 
21 June 2021 (panels a and c) 
and until 1 January 2100 
(panels b and d), K ¼ $476; 190. 
Panels a and b apply the least 
squares method. Panels c and 
d apply the weighted least 
squares method.

Wang & Hausken, Cogent Economics & Finance (2022), 10: 2087287                                                                                                                                
https://doi.org/10.1080/23322039.2022.2087287                                                                                                                                                       

Page 9 of 29



the initial value asymptote t ¼ t0. That is, initial growth is quick, and K ¼ $476;190 is approached 
more slowly.

The curve pC estimates the growth rate k ¼ 1178 by assuming charged capacitor growth in (4). 
The curve pC is extremely concave. It initially increases more quickly than the other six curves, and 
eventually approaches K ¼ $476;190 more slowly than the other six curves.

The curve pLC estimates the growth rate k ¼ 1:21 and adjustment parameter λ ¼ 1:02 by 
assuming combined logistic and charged capacitor growth in (6). Since λ>1, initial growth for the 
curve pLC is slower than for the curve pL for logistic growth, see section 2.4.

The curve pLCλ is intermediate between the curve pL for logistic growth and pC for charged 
capacitor growth. This is obtained by assuming λ ¼ 0:88 and using the least squares method 
to optimize the growth rate k which gives k ¼ 2:18. The curve pLCλ is similar to Gompertz 
growth pG.

The curve pGC estimates the growth rate k ¼ 0:08 and adjustment parameter λ ¼ 1:17 by 
assuming combined Gompertz and charged capacitor growth in (7). Since λ>1, initial growth for 
the curve pGC is slower than for the curve pG for Gompertz growth, see section 2.4.

The curve pGCλ is intermediate between the curve pG for Gompertz growth and pC for charged 
capacitor growth. This is obtained by assuming λ ¼ 0:88 and using the least squares method to 
optimize the growth rate k which gives k ¼ 0:32. The curve pGCλ initially increases more quickly than 
all the other curves except the curve pC for charged capacitor growth.

3.1.2. Weighted least squares method
Applying the weighted least squares method, Figure 1(c) shows the historical estimates. Figure 1(d) 
predicts until 1 January 2100. The Bitcoin data exhibits heteroscedasticity so that the variance 
increases over time. That is, the Bitcoin price was $0.04951 on 23 July, 2010, with a few cents 
variation over the subsequent months until $1 was exceeded on 17 February 2011. In contrast, the 
Bitcoin price was $32,950 on 21 June 2021, with several thousand US$ variation over the preceding 
months until $1 was exceeded 17 February 2011. Hence the least squares method is more 
influenced by recent data than early data. This section assigns more weight to the earlier data 
by dividing each squared difference (between the model prediction and the data) at each time t 
with the 20-week moving variance in the data, i.e., the variance over 140 days from time t to time 
t þ 139. The variance calculation is constrained by the final time T so that at time T � 1 the 
variance over only the two final days at T � 1 and T is determined.

The two curves pL for logistic growth and pG for Gompertz growth have the same and slightly 
lower growth rates k ¼ 1:28 and k ¼ 0:15 as Figure 1(a) in section 3.1.1.

The curve pC for charged capacitor growth has the much lower growth rate k ¼ 4:32. That is 
because the early data is weighed more heavily, and more recent data is discounted. Hence the 
model prediction is worse for the more recent data, and the curve pC needs more time to approach 
the carrying capacity K ¼ $476;190.

The curve pLC for combined logistic and charged capacitor growth estimates the higher growth 
rate k ¼ 2:33 and lower adjustment parameter λ ¼ 0:85, compared with Figure 1(a). Weighing the 
early data more heavily causes more rapid initial growth.

The curve pLCλ for combined logistic and charged capacitor growth when λ ¼ 0:88 has the lower 
growth rate k ¼ 2:10 compared with Figure 1(a), since it becomes less important to adjust to the recent 
data.
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The curve pGC for combined Gompertz and charged capacitor growth estimates the higher 
growth rate k ¼ 0:17 and lower adjustment parameter λ ¼ 0:97, compared with Figure 1a. 
Weighing the early data more heavily causes more rapid initial growth.

The curve pGCλ for combined Gompertz and charged capacitor growth when λ ¼ 0:88 has the 
lower growth rate k ¼ 0:22 compared with Figure 1(a), since it becomes less important to adjust to 
the recent data.

3.2. Bitcoin carrying capacity K=$23,809,524 and no oscillation amplitude α=0
As an alternative, assume that Bitcoin in the future eradicates all or most other digital currencies, 
overtakes gold, bonds, and most other assets except physical real estate and various other 
physical assets. That may suggest a maximum sustainable market capitalization of $500 trillion, 
which may account for future inflation of the US$. Dividing $500 trillion with 21 million coins gives 
the Bitcoin carrying capacity K ¼ $23;809;524. Figure 2 replicates Figure 1 for K ¼ $23; 809;524.

The subsequent seven curves in each panel in Figure 1 assume α ¼ 0, K ¼ $23;809;524 and p0 ¼
$0:04951 and estimate the growth rate k, and the two parameters λ and β, for the models in 
section 2.2, using the least squares method. Figure 1(a) shows the historical estimates. Figure 1(b) 
predicts until 1 January 2100.

3.2.1. Least squares method
Applying the least squares method, Figure 2(a) shows the historical estimates. Figure 2(b) predicts 
until 1 January 2100. Figure 2 gives similar parameter estimates to those in Figure 1.

The curve pL estimates slightly lower growth rate k ¼ 1:27 compared with Figure 1 for logistic 
growth in (1) for ν ¼ 1.

The curve pG estimates lower growth rate k ¼ 0:10 compared with Figure 1 for Gompertz growth 
in (2).

The curve pC estimates slightly lower growth rate k ¼ 1171 compared with Figure 1 for charged 
capacitor growth in (4).

The curve pLC estimates slightly higher growth rate k ¼ 1:23 and slightly lower adjustment para-
meter λ ¼ 1:01, compared with Figure 1 for combined logistic and charged capacitor growth in (6).

The curve pLCλ estimates slightly lower growth rate k ¼ 2:17 when assuming the same adjust-
ment parameter λ ¼ 0:88, compared with Figure 1 for combined logistic and charged capacitor 
growth in (6).

The curve pGC estimates higher growth rate k ¼ 0:14 and lower adjustment parameter λ ¼ 0:94 
compared with Figure 1 for combined Gompertz and charged capacitor growth in (7).

The curve pGCλ estimates lower growth rate k ¼ 0:20 compared with Figure 1 when assuming 
adjustment parameter λ ¼ 0:88, for combined Gompertz and charged capacitor growth in (7).

3.2.2. Weighted least squares method
Applying the same weighted least squares method as in section 3.1.2, Figure 2(c) shows the 
historical estimates. Figure 2(d) predicts until 1 January 2100.

The two curves pL for logistic growth and pG for Gompertz growth have the same and slightly 
higher growth rates k ¼ 1:28 and k ¼ 0:11 compared with Figure 2(a) in section 3.2.1.
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The curve pC for charged capacitor growth has the much lower growth rate k ¼ 4:32. That is 
because the early data is weighed more heavily, and more recent data is discounted. Hence the 
model prediction is worse for the more recent data, and the curve pC needs more time to approach 
the carrying capacity K ¼ $23;809;524.

The curve pLC for combined logistic and charged capacitor growth estimates the higher growth 
rate k ¼ 2:33 and lower adjustment parameter λ ¼ 0:85, compared with Figure 2(a). Weighing the 
early data more heavily causes more rapid initial growth.

The curve pLCλ for combined logistic and charged capacitor growth when λ ¼ 0:88 has the lower 
growth rate k ¼ 2:10 compared with Figure 2(a), since it becomes less important to adjust to the recent 
data.

The curve pGC for combined Gompertz and charged capacitor growth estimates slightly lower 
growth rate k ¼ 0:13 and the same adjustment parameter λ ¼ 0:94, compared with Figure 2(a).

The curve pGCλ for combined Gompertz and charged capacitor growth when λ ¼ 0:88 has the 
lower growth rate k ¼ 0:15 compared with Figure 2(a), since it becomes less important to adjust to 
the recent data.
3.3. Determining the three bull market local maxima and the three bear market local 
minima
The three bull market local maxima since 23 July 2010, are as follows:

$29.6 on 14 June, 2011, expressed as t1max ¼ 2011:449315, i.e., 327 days after the start date 
23 July 2010 which is day 1.

$1131.992853 on 29 November, 2013 expressed as t2max ¼ 2013:909589, i.e., 1226 days after 
the start date 23 July 2010 which is day 1.

$19,378.35059 on 16 December, 2017 expressed as t3max ¼ 2017:956164, i.e., 2704 days after 
the start date 23 July 2010 which is day 1.

This gives 1226–327 = 899 days, i.e., 2.46027 years, from bull market local maximum 1 to bull 
market local maximum 2, and 2704–1226 = 1478 days, i.e., 4.04657 years, from bull market local 
maximum 2 to bull market local maximum 3.

The three bear market local minima since 23 July 2010 are as follows:

$2.2 on 20 November, 2011, expressed as t1min ¼ 2011:884932, i.e., 486 days after the start date 
23 July 2010 which is day 1.

$178.712075 on 14 January, 2015 expressed as t2min ¼ 2015:035616, i.e., 1637 days after the 
start date 23 July 2010 which is day 1.

$3226.92952 on 14 December, 2018 expressed as t3min ¼ 2018:950685, i.e., 3067 days after the 
start date 23 July 2010 which is day 1.

This gives 1637–486 = 1151 days, i.e., 3:15068 years, from bear market local minimum 1 to bear 
market local minimum 2, and 3067–1637 = 1430 days, i.e., 3:915069 years, from bear market local 
minimum 2 to bear market local minimum 3.

The modeling assumes oscillations in the sense that a maximum is followed by a minimum, then 
a new maximum, etc.
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3.4. Estimating the scaling ω of the inverse of the cycle length of the sine oscillations and 
the scaling γ of the inverse of the degree of lengthening of each subsequent cycle
This section estimates the scaling ω of the inverse of the cycle length of the sine oscillations, and 
the scaling γ of the inverse of the degree of lengthening of each subsequent cycle. The oscillatory 
growth rate with damped oscillation, retracement in bear markets, and lengthening cycles in all 
the equations in section 2 contain the sine of ω t � t0ð Þγ þ δ. One cycle has time length 2π. Hence 
the two equations 

ω t2max � t0ð Þγ þ δð Þ � ω t1max � t0ð Þγ þ δð Þ ¼ 2π; ω t3max � t0ð Þγ þ δð Þ � ω t2max � t0ð Þγ þ δð Þ ¼ 2π
(8) 

express the time length from bull market local maximum 1 to bull market local maximum 2, and 
the time length from bull market local maximum 2 to bull market local maximum 3, respectively. 
Solving (8) by using t1max, t2max, t3max from section 3.3 gives ωmax ¼ 7:05885 and γmax ¼ 0:499872.

Analogously, the two equations 

ω t2min � t0ð Þγ þ δð Þ � ω t1min � t0ð Þγ þ δð Þ ¼ 2π; ω t3min � t0ð Þγ þ δð Þ � ω t2min � t0ð Þγ þ δð Þ ¼ 2π (9) 

express the time length from bear market local minimum 1 to bear market local minimum 2, and 
the time length from bear market local minimum 2 to bear market local minimum 3, respectively. 
Solving (9) by using t1min, t2min, t3min from section 3.3 gives ωmin ¼ 3:45348 and γmin ¼ 0:744082. 
The average of ωmax and ωmin is ω ¼ 5:25616. The average of γmax and γmin is γ ¼ 0:621977.

3.5. Bitcoin carrying capacity K=$476,190 and oscillation amplitude α>0
This section assumes positive oscillation amplitude α � 0 and assumes the same k, γ, and β as 
when α ¼ 0. Since ω ¼ 5:25616 and γ ¼ 0:621977 are estimated in the previous section, we only 
have to estimate α and δ. Figure 3 shows the empirical price pE for the period 23 July 2010– 
21 June 2021.

3.5.1. Least squares method
Applying the least squares method, Figure 3(a) shows the historical estimates. Figure 3(b) predicts 
until 1 January 2040.

Figure 3. Assuming oscillation 
amplitude α � 0, the empirical 
price pE , logistic growth pL, 
Gompertz growth pG, charged 
capacitor growth pC , combined 
logistic and charged capacitor 
growth pLC and pLCλ, and com-
bined Gompertz and charged 
capacitor growth pGC and pGCλ, 
for 23 July 2010–21 June 2021 
(panels a and c) and until 
1 January 2040 (panels b and 
d), K ¼ $476; 190. Panels a and 
b apply the least squares 
method. Panels c and d apply 
the weighted least squares 
method.
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The curve pL estimates the oscillation amplitude α ¼ 0:48 and start time adjustment parameter 
δ ¼ 3:90 for logistic growth in (1) for ν ¼ 1 and k ¼ 1:28. The oscillation amplitude α is moderate 
relative to the almost linear curve in Figure 1.

The curve pG estimates the oscillation amplitude α ¼ 0:37 and start time adjustment parameter 
δ ¼ 4:29 for Gompertz growth in (2) when k ¼ 0:16. The oscillation amplitude α is higher than for 
the curve pL, and conforms with the bull and bear markets.

The curve pC estimates the oscillation amplitude α ¼ 7209 and start time adjustment parameter 
δ ¼ 5:03 for charged capacitor growth in (4) when k ¼ 1178. The curve pC starts with extreme 
concavity, thereafter oscillates according to the bull and bear markets, and eventually approaches 
K ¼ $476;190 slowly.

The curve pLC estimates the oscillation amplitude α ¼ 0:39 and start time adjustment parameter 
δ ¼ 3:05 for combined logistic and charged capacitor growth in (6) when k ¼ 1:21 and λ ¼ 1:02. 
The curve pLC oscillates similarly to Gompertz growth pG.

The curve pLCλ estimates the oscillation amplitude α ¼ 3:93 and start time adjustment para-
meter δ ¼ 4:12 for combined logistic and charged capacitor growth in (6) when k ¼ 2:18 and 
λ ¼ 0:88. The curve pLCλ oscillates similarly to Gompertz growth pG.

The curve pGC estimates the oscillation amplitude α ¼ 0:04 and start time adjustment parameter 
δ ¼ 5:05 for combined logistic and charged capacitor growth in (6) when k ¼ 0:08 and λ ¼ 1:17 . 
The curve pGC initially grows slower than all the other curves.

The curve pGCλ estimates the oscillation amplitude α ¼ 0:91 and start time adjustment para-
meter δ ¼ 4:55 for combined Gompertz and charged capacitor growth in (7) when k ¼ 0:32 and 
λ ¼ 0:88. The curve is intermediate between Gompertz growth pG and combined logistic and 
charged capacitor growth pLC on the one hand, and charged capacitor growth pC on the other 
hand. The curve pGC conforms with the bull and bear markets.

3.5.2. Weighted least squares method
Applying the weighted least squares method, Figure 3(c) shows the historical estimates. Figure 3(d) 
predicts until 1 January 2040.

The curve pL estimates the oscillation amplitude α ¼ 1:42 and start time adjustment parameter 
δ ¼ 2:31 for logistic growth in (1) for ν ¼ 1 and k ¼ 1:28. The oscillation amplitude α is higher and 
the start time adjustment parameter δ is lower compared with Figure 3(a).

The curve pG estimates the oscillation amplitude α ¼ 0:08 and start time adjustment parameter 
δ ¼ 2:48 for Gompertz growth in (2) when k ¼ 0:15. Both the oscillation amplitude α and the start 
time adjustment parameter δ are lower compared with Figure 3(a).

The curve pC estimates the oscillation amplitude α ¼ 3:13 and start time adjustment parameter 
δ ¼ 4:28 for charged capacitor growth in (4) when k ¼ 4:32. The oscillation amplitude α is sub-
stantially lower, impacted by the much lower growth rate k ¼ 4:32, and the start time adjustment 
parameter δ is lower, compared with Figure 3(a). The curve pC eventually approaches K ¼ $476;190 
slowly.

The curve pLC estimates the oscillation amplitude α ¼ 1:88 and start time adjustment parameter 
δ ¼ 3:24 for combined logistic and charged capacitor growth in (6) when k ¼ 2:33 and λ ¼ 0:85. 
Both the oscillation amplitude α and the start time adjustment parameter δ are higher compared 
with Figure 3(a). The curve pLC oscillates similarly to Gompertz growth pG.
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The curve pLCλ estimates the oscillation amplitude α ¼ 1:65 and start time adjustment para-
meter δ ¼ 3:02 for combined logistic and charged capacitor growth in (6) when k ¼ 2:10 and 
λ ¼ 0:88. Both the oscillation amplitude α and the start time adjustment parameter δ are lower 
compared with Figure 3(a). The curve pLCλ also oscillates similarly to Gompertz growth pG.

The curve pGC estimates the oscillation amplitude α ¼ 0:15 and start time adjustment parameter 
δ ¼ 3:26 for combined logistic and charged capacitor growth in (6) when k ¼ 0:17 and λ ¼ 0:97 . 
The oscillation amplitude α is higher and the start time adjustment parameter δ is lower compared 
with Figure 3(a). The curve pGC also oscillates similarly to Gompertz growth pG.

The curve pGCλ estimates the oscillation amplitude α ¼ 0:20 and start time adjustment para-
meter δ ¼ 3:93 for combined Gompertz and charged capacitor growth in (7) when k ¼ 0:22 and 
λ ¼ 0:88. Both the oscillation amplitude α and the start time adjustment parameter δ are lower 
compared with Figure 3(a). The curve pGCλ initially oscillates around higher values than the other 
curves except charged capacitor growth pC.

3.6. Bitcoin carrying capacity K=$23,809,524 and oscillation amplitude α>0
This section replicates the previous section with the higher Bitcoin carrying capacity 
K ¼ $23;809;524. Figure 4 replicates Figure 3 for K ¼ $23;809;524.

3.6.1. Least squares method
Applying the least squares method, Figure 4(a) shows the historical estimates. Figure 4(b) predicts 
until 1 January 2040. Figure (4) gives similar parameter estimates to those in Figure 3.

The curve pL estimates lower oscillation amplitude α ¼ 0:34 and slightly higher start time 
adjustment parameter δ ¼ 4:00 for logistic growth compared with Figure 3, assuming ν ¼ 1 
and k ¼ 1:27.

The curve pG estimates lower oscillation amplitude α ¼ 0:17 and slightly higher start time 
adjustment parameter δ ¼ 4:34 for Gompertz growth compared with Figure 3, assuming k ¼ 0:10.

Figure 4. Assuming oscillations 
α � 0, the empirical price pE , 
logistic growth pL, Gompertz 
growth pG, charged capacitor 
growth pC , combined logistic 
and charged capacitor growth 
pLC and pLCλ, and combined 
Gompertz and charged capaci-
tor growth pGC and pGCλ, for 
23 July 2010–21 June 2021 
(panels a and c) and until 
1 January 2040 (panels b and 
d), K ¼ $23; 809; 524. Panels 
a and b apply the least squares 
method. Panels c and d apply 
the weighted least squares 
method.
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The curve pC estimates slightly lower oscillation amplitude α ¼ 7200 and slightly lower start time 
adjustment parameter δ ¼ 5:00 for charged capacitor growth compared with Figure 3, assum-
ing k ¼ 1171.

The curve pLC estimates lower oscillation amplitude α ¼ 0:22 and higher start time adjustment 
parameter δ ¼ 3:69 for combined logistic and charged capacitor growth compared with Figure 3, 
assuming k ¼ 1:23 and λ ¼ 1:01.

The curve pLCλ estimates lower oscillation amplitude α ¼ 3:58 and lower start time adjustment 
parameter δ ¼ 4:08 for combined logistic and charged capacitor growth compared with Figure 3, 
assuming k ¼ 2:17 and λ ¼ 0:88.

The curve pGC estimates substantially higher oscillation amplitude α ¼ 0:29 and lower start time 
adjustment parameter δ ¼ 4:22 for combined logistic and charged capacitor growth compared 
with Figure 3, assuming k ¼ 0:14 and λ ¼ 0:94.

The curve pGCλ estimates the same oscillation amplitude α ¼ 0:91 and the same start time 
adjustment parameter δ ¼ 4:55 for combined Gompertz and charged capacitor growth compared 
with Figure 3, assuming k ¼ 0:2 and λ ¼ 0:88.

3.6.2. Weighted least squares method
Applying the weighted least squares method, Figure 4(c) shows the historical estimates. Figure 4(d) 
predicts until 1 January 2040.

The curve pL estimates substantially higher oscillation amplitude α ¼ 1:53 and lower start time 
adjustment parameter δ ¼ 2:38 compared with Figure 4(a) for logistic growth, assuming ν ¼ 1 and 
k ¼ 1:27 as in Figure 2.

The curve pG estimates lower oscillation amplitude α ¼ 0:11 and lower start time adjustment 
parameter δ ¼ 3:40 compared with Figure 4(a) for Gompertz growth, assuming k ¼ 0:11 as in 
Figure 2.

The curve pC estimates substantially lower oscillation amplitude α ¼ 3:13 and lower start time 
adjustment parameter δ ¼ 4:28 compared with Figure 4(a) for charged capacitor growth, assuming 
k ¼ 4:32 as in Figure 2. The difference between Figure 4(c) and Figure 4(a) is similar to the 
difference between Figure 2(c) and Figure 2(a).

The curve pLC estimates substantially higher oscillation amplitude α ¼ 1:66 and lower start time 
adjustment parameter δ ¼ 3:23 compared with Figure 4(a) for combined logistic and charged 
capacitor growth, assuming k ¼ 2:33 and λ ¼ 0:85 as in Figure (2).

The curve pLCλ estimates lower oscillation amplitude α ¼ 1:65 and lower start time adjustment 
parameter δ ¼ 3:00 compared with Figure 4(a) for combined logistic and charged capacitor 
growth, assuming k ¼ 2:10 and λ ¼ 0:88 as in Figure 2.

The curve pGC estimates lower oscillation amplitude α ¼ 0:15 and start time adjustment para-
meter δ ¼ 3:5 compared with Figure 4(a) for combined logistic and charged capacitor growth, 
assuming k ¼ 0:13 and λ ¼ 0:94 as in Figure 2.

The curve pGCλ estimates the much lower oscillation amplitude α ¼ 0:20 and lower start time 
adjustment parameter δ ¼ 3:93 compared with Figure 4(a) for combined Gompertz and charged 
capacitor growth, assuming k ¼ 0:15 and λ ¼ 0:88 as in Figure 2.
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Table 2. Dates and magnitudes of bear market local minima 4,5,6,7,8 when K ¼ $476; 190 and 
K ¼ $23; 809; 524, predicted until year 2050
Bear market 
local minima 4 5 6 7 8
Logistic growth 
pL

Asymptotic. 
04/09/25; 
428,795. 

Asymptotic. 
05/01/25; 
2,898,043.

Asymptotic. 
12/07/30; 
476,150. 

Asymptotic. 
01/01/31; 

23,669,932.

Asymptotic. 
Asymptotic. 
Asymptotic. 
05/05/37; 

23,809,475.

Asymptotic. 
Asymptotic. 
Asymptotic. 
Asymptotic.

Asymptotic. 
Asymptotic. 
Asymptotic. 
Asymptotic.

Gompertz 
growth pG

03/05/24; 
45,736. 

Asymptotic. 
12/28/23; 
73,350. 

Asymptotic.

09/10/29; 
174,196. 

Asymptotic. 
06/24/29; 
802,142. 

Asymptotic.

11/22/35; 
323,674. 

Asymptotic. 
08/27/35; 
3,725,750. 

Asymptotic.

09/22/42; 
416,631. 

Asymptotic. 
06/19/42; 
9,196,504. 

Asymptotic.

02/27/50; 
456,629. 

Asymptotic. 
11/16/49; 

15,043,891. 
Asymptotic.

Charged 
capacitor 
growth pC

10/24/23; 
9,710. 

Asymptotic. 
11/01/23; 

9,743. 
Asymptotic.

04/12/29; 
15,198. 

Asymptotic. 
04/21/29; 
15,342. 

Asymptotic.

06/07/35; 
21,449. 

Asymptotic. 
06/16/35; 
21,799. 

Asymptotic.

03/21/42; 
28,365. 

Asymptotic. 
04/01/42; 
29,046. 

Asymptotic.

08/11/49; 
35,866. 

Asymptotic. 
08/22/49; 
37,031. 

Asymptotic.

Combined 
logistic and 
charged 
capacitor 
growth pLC

Asymptotic. 
Asymptotic. 
Asymptotic. 
Asymptotic.

Asymptotic. 
Asymptotic. 
Asymptotic. 
Asymptotic.

Asymptotic. 
Asymptotic. 
Asymptotic. 
Asymptotic.

Asymptotic. 
Asymptotic. 
Asymptotic. 
Asymptotic.

Asymptotic. 
Asymptotic. 
Asymptotic. 
Asymptotic.

Combined 
logistic and 
charged 
capacitor 
growth pLCλ

03/17/24; 
78,327. 

Asymptotic. 
03/09/24; 
95,424. 

Asymptotic.

09/24/29; 
355,689. 

Asymptotic. 
09/14/29; 
1,139,873. 

Asymptotic.

12/07/35; 
466,389. 

Asymptotic. 
11/27/35; 
7,376,641. 

Asymptotic.

10/08/42; 
475,712. 

Asymptotic. 
09/27/42; 

18,476,294. 
Asymptotic.

03/16/50; 
476,173. 

Asymptotic. 
03/04/50; 

22,992,469. 
Asymptotic.

Combined 
Gompertz and 
charged 
capacitor 
growth pGC

Asymptotic. 
Asymptotic. 
03/11/24; 
57,377. 

05/03/24; 
62,860.

Asymptotic. 
Asymptotic. 
09/17/29; 
360,351. 
11/16/29; 
358,295.

Asymptotic. 
Asymptotic. 
11/29/35; 
1,334,243. 
02/04/36; 
1,263,066.

Asymptotic. 
Asymptotic. 
09/30/42; 
3,371,727. 
12/12/42; 
3,128,527.

Asymptotic. 
Asymptotic. 
03/07/50; 
6,458,819. 
05/25/50; 
5,975,591.

Combined 
Gompertz and 
charged 
capacitor 
growth pGCλ

01/17/24; 
27,008. 

Asymptotic. 
01/14/24; 
45,585. 

Asymptotic.

07/18/29; 
77,314. 

Asymptotic. 
07/13/29; 
196,739. 

Asymptotic.

09/22/35; 
152,541. 

Asymptotic. 
09/18/35; 
587,238. 

Asymptotic.

07/17/42; 
236,548. 

Asymptotic. 
07/12/42; 
1,354,016. 

Asymptotic.

12/16/49; 
312,871. 

Asymptotic. 
12/11/49; 
2,585,103. 

Asymptotic.

(Continued)
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3.7. Estimating bull market local maxima 4,5,6,7,8 when K=$476,190 and K=$23,809,524
Table 1 predicts the dates and magnitudes of the five future Bitcoin bull market local price 
maxima, assuming K ¼ $476; 190 and K ¼ $23;809;524, and assuming logistic growth pL, 
Gompertz growth pG, charged capacitor growth pC, combined logistic and charged capacitor 
growth pLC and pLCλ, and combined Gompertz and charged capacitor growth pGC and pGCλ.

Table 2 analogously predicts the dates and magnitudes of the five future Bitcoin bear market 
local price minima, assuming K ¼ $476;190 and K ¼ $23;809;524, and assuming logistic growth 
pL, Gompertz growth pG, charged capacitor growth pC, combined logistic and charged capacitor 
growth pLC and pLCλ, and combined Gompertz and charged capacitor growth pGC and pGCλ.

3.7.1. Bitcoin carrying capacity K=$476,190
Assuming the Bitcoin carrying capacity K ¼ $476;190, for logistic growth pL no local maxima exist 
with the least squares method, which means that the Bitcoin price p increases monotonically and 
asymptotically towards K ¼ $476;190 with no local maxima. The absence of local maxima is due 
to logistic growth pL approaching K ¼ $476;190 more quickly than the other six curves (see 
Figure 1), and also due to logistic growth pL exhibiting limited oscillation, thus not tracking the 
empirics very well. Two local maxima exist with the weighted least squares method, after which 
the Bitcoin price p increases monotonically towards K ¼ $476;190. The presence of two local 
maxima is intermediate between no local maxima and five local maxima, reflecting more oscilla-
tion due to more weight being assigned to the early data, and better tracking of the early empirics. 
Since logistic growth pL approaches K ¼ $476;190 more quickly than the other six curves, both 
local maxima are above $431,785, at 7/6/24 and 1/28/30.

For Gompertz growth pG, five local maxima exist with the least squares method, starting with 
$75,506 at 5/22/22, and ending with $462,526 at 6/11/47. These lower local maxima, compared 
with logistic growth pL, arise since Gompertz growth pG approaches the Bitcoin carrying capacity 
K ¼ $476;190 more slowly. No local maxima exist with the weighted least squares method, 
reflecting less oscillation than with the least squares method.

Bear market 
local minima 4 5 6 7 8
Date and local 
minima 
expected value 
� standard 
deviation

05/17/24 
� 182. 

06/04/24 
� 208. 

02/22/24 � 32. 
04/09/25 � 0. 
05/06/24 �

182. 
02/06/24 � 38. 

10/31/24 �
257. 

144,966 �
190,403. 
50,357 
� 25; 970. 

428,795 � 0. 
538,773 

� 1; 155; 924. 
67,934 
� 21; 571. 
1,480,452 
� 2; 004; 777.

12/02/29 
� 206. 

12/22/29 
� 235. 

08/27/29 � 36. 
12/07/30 � 0. 
11/18/29 �

207. 
08/09/29 � 43. 

06/09/30 �
291. 

270,837 �
179,019. 
202,400 
� 141; 314. 

476,150 � 0. 
4,421,222 
� 9; 436; 336. 

624,776 
� 428; 143. 

12,014,113 
� 16; 483; 817.

01/07/36 
� 188. 

11/06/35 � 40. 
11/06/35 � 40. 

Asymptotic. 
02/07/36 
� 229. 

10/18/35 � 48. 
09/19/36 
� 322. 

314,201 
� 157; 138. 
314,201 
� 157; 138. 

Asymptotic. 
6,349,402 
� 8; 910; 871. 
3,255,968 
� 3; 055; 912. 
12,536,271 
� 15; 942; 719.

09/06/42 � 58. 
09/05/42 � 44. 
09/05/42 � 44. 

Asymptotic. 
09/07/42 � 70. 
08/14/42 � 53. 
12/12/42 � 0. 

376,297 
� 124; 579. 
376,297 
� 124; 579. 

Asymptotic. 
7,105,414 
� 7; 008; 998. 
8,099,635 
� 7; 675; 386. 

3,128,527 � 0.

02/09/50 � 63. 
02/08/50 � 48. 
02/08/50 � 48. 

Asymptotic. 
02/10/50 � 76. 
01/16/50 � 57. 
05/25/50 � 0. 

415,224 
� 89; 177. 
415,224 
� 89; 177. 

Asymptotic. 
10,611,175 
� 8; 308; 037. 
11,770,071 
� 9; 114; 698. 

5,975,591 � 0.

The structure is the same as for Table 1, but applies for local minima instead of local maxima. 

Wang & Hausken, Cogent Economics & Finance (2022), 10: 2087287                                                                                                                                
https://doi.org/10.1080/23322039.2022.2087287                                                                                                                                                       

Page 21 of 29



For charged capacitor growth pC five local maxima exist with the least squares method. Since 
charged capacitor growth pC approaches the Bitcoin carrying capacity K ¼ $476;190 slowly (see 
Figure 1), the local maxima are low, ranging from $18,032 at 8/8/21 to $47,827 at 3/25/46. No local 
maxima exist with the weighted least squares method, reflecting the much lower growth rate 
k ¼ 4:32, and inability to track the empirical oscillations.

For combined logistic and charged capacitor growth pLC, no local maxima exist with the least 
squares method and the weighted least squares method. This result is influenced by no local 
maxima existing for logistic growth pL with the least squares method, and no local maxima 
existing for charged capacitor growth pC with the weighted least squares method.

For combined logistic and charged capacitor growth pLCλ, five local maxima exist with the least 
squares method, starting with $113,012 at 8/19/22, and ending with $476,180 at 10/26/47. No 
local maxima exist with the weighted least squares method, reflecting less oscillation.

For combined Gompertz and charged capacitor growth pGC, no local maxima exist with the least 
squares method and the weighted least squares method, due to less oscillation.

For combined Gompertz and charged capacitor growth pGCλ, five local maxima exist with the 
least squares method, starting with $46,652 at 2/12/22, and ending with $342,930 at 1/10/47. No 
local maxima exist with the weighted least squares method, reflecting less oscillation.

3.7.2. Bitcoin carrying capacity K=$23,809,524
Assuming the Bitcoin carrying capacity K ¼ $23;809;524, the results are remarkably similar to 
when K ¼ $476;190. The local maxima mostly occur at the similar time t, but are naturally higher. 
For logistic growth pL, no local maxima exist with the least squares method, while three local 
maxima exist with the weighted least squares method. These range from $3,360,314 at 5/5/24 to 
$23,809,485 at 2/6/36.

For Gompertz growth pG the five local maxima with the least squares method range from 
$107,064 at 6/29/22 to $15,732,787 at 8/9/47, i.e., lower than for logistic growth pL. No local 
maxima exist with the weighted least squares method.

For charged capacitor growth pC the five local maxima with the least squares method only slightly 
exceed the local maxima when K ¼ $476;190, and almost at the same time, ranging from $18,317 
at 8/15/21 to $50,127 at 4/4/46. No local maxima exist with the weighted least squares method.

For combined logistic and charged capacitor growth pLC, no local maxima exist with the least 
squares method and the weighted least squares method.

For combined logistic and charged capacitor growth pLCλ, five local maxima exist with the least 
squares method, starting with $133,710 at 9/16/22, and ending with $23,181,174 at 12/8/47. No 
local maxima exist with the weighted least squares method.

For combined Gompertz and charged capacitor growth pGC, local maxima exist with both the 
least squares method and the weighted least squares method, contrary to when K ¼ $476;190. 
With the least squares method the five local maxima range from $94,049 at 6/26/22 to $7,301,533 
at 8/4/47. With the weighted least squares method the five local maxima range from the lower 
$65,062 at 6/26/22 to the lower $6,030,620 at 2/12/49.

For combined Gompertz and charged capacitor growth pGCλ, five local maxima exist with the 
least squares method, starting with $68,116 at 4/28/22, and ending with $2,960,784 at 5/6/47. No 
local maxima exist with the weighted least squares method.
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4. Discussion
Ten results in the previous section are noteworthy. First, based on the current market capitalization 
of gold at approximately $10 trillion, the Bitcoin carrying capacity is estimated as K ¼ $476;190. 
Using the least squares method, without modeling oscillations, logistic growth pL appears nearly 
linear with growth rate k ¼ 1:28 on a logarithmic plot with base 10. It initially increases more 
slowly, and eventually approaches K ¼ $476;190 more quickly. Gompertz growth pG with growth 
rate k ¼ 0:16 is fast at the beginning and approaches K ¼ $476;190 slowly. Charged capacitor 
growth pC initially grows much faster than the other six curves, with growth rate k ¼ 1178, and 
approaches K ¼ $476;190 much slower than the other six curves. Combined logistic and charged 
capacitor growth pLC is slower than logistic growth pL but faster than combined Gompertz and 
charged capacitor growth pGC. The curve pLC estimates the growth rate k ¼ 1:21 and adjustment 
parameter λ ¼ 1:02. Assuming λ ¼ 0:88; the curve pLCλ with growth rate k ¼ 2:18 is intermediate 
between pL for logistic growth and pC for charged capacitor growth. Combined Gompertz and 
charged capacitor growth pGC displays initial slow growth rate k ¼ 0:08, but eventually approaches 
K ¼ $476;190 quickly. Assuming λ ¼ 0:88; the curve pGCλ with growth rate k ¼ 0:32 is intermediate 
between pG for Gompertz growth and pC for charged capacitor growth, and grows as the second 
fastest among the six curves. Summing up impressionistically, the curves pGCλ, pLCλ and pG in 
Figure 1(a) fit the data relatively well.

Second, applying the weighted least squares method when K ¼ $476;190, early data (with low 
price fluctuations measured in US$) is weighed more heavily than late data (with high price 
fluctuations measured in US$), which eliminates or ameliorates the impact of heteroscedasticity 
since more equal weight is assigned over the period 23 July 2010–21 June 2021, causing some 
similar and some different results. Logistic growth pL estimates the same growth rate k ¼ 1:28. 
Gompertz growth pG has the higher growth rate k ¼ 0:15. Charged capacitor growth pC has the 
much lower growth rate k ¼ 4:32, and approaches K ¼ $476;190 more slowly than with the least 
squares method. Combined logistic and charged capacitor growth pLC has higher growth rate k ¼
2:33 and lower adjustment parameter λ ¼ 0:85. Assuming λ ¼ 0:88, the curve pLCλ estimates the 
lower growth rate k ¼ 2:10. Combined Gompertz and charged capacitor growth pGC has higher 
growth rate k ¼ 0:17 and lower adjustment parameter λ ¼ 0:97. Assuming λ ¼ 0:88; the curve pGCλ 

has lower growth rate k ¼ 0:22. Summing up, the curves pG; pGC, pGCλ, pLC and pLCλ in Figure 1(c) are 
relatively similar with seemingly good fit to the data.

Third, based on a Bitcoin market capitalization of $500 trillion, the Bitcoin carrying capacity is 
estimated as K ¼ $23;809;524, i.e., 50 times higher than K ¼ $476;190. The results and especially 
the dates of the local maxima are similar, but the local maxima are higher. Using the least squares 
method, without modeling oscillations, logistic growth pL is slightly lower at k ¼ 1:27. Gompertz 
growth pG is lower at k ¼ 0:10. Charged capacitor growth pC is slightly lower at k ¼ 1171. Combined 
logistic and charged capacitor growth pLC and pLCλ are similar at k ¼ 1:23 and k ¼ 2:17. Combined 
Gompertz and charged capacitor growth pGC and pGCλ (assuming λ ¼ 0:88) are higher at k ¼ 0:14 
and lower at k ¼ 0:20, respectively. Summing up, the curves pG, pGC, pLCλ, pGCλ in Figure 2(a) seem to 
fit the data well.

Fourth, applying the weighted least squares method when K ¼ $23;809;524, logistic growth pL 

and Gompertz growth pG are similar at k ¼ 1:27 and k ¼ 0:11. Charged capacitor growth pC is much 
lower than with the least squares method, at k ¼ 4:32 (due to weighing early data more heavily). 
Combined logistic and charged capacitor growth pLC and pLCλ are higher at k ¼ 2:33 and lower at 
k ¼ 2:10, respectively. Combined Gompertz and charged capacitor growth pGC and pGCλ are slightly 
lower at k ¼ 0:13 and lower at k ¼ 0:15, respectively. Summing up, the curves pG, pGC, pLC, pLCλ, pGCλ 

in Figure 2(c) seem to fit the data well.

Fifth, the three bull market local maxima during the period 23 July 2010–21 June 2021 are used 
to estimate the scaling of the inverse of the cycle length of the sine oscillations as ωmax ¼ 7:05885, 
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and the inverse of the degree of lengthening of each subsequent cycle as γmax ¼ 0:499872. The 
three bear market local minima during the period 23 July 2010–21 June 2021 are analogously used 
to estimate ωmin ¼ 3:45348 and γmin ¼ 0:744082. Taking the average, ω ¼ 5:25616 as the scaling 
of the inverse of the cycle length of the sine oscillations, and γ ¼ 0:621977 as the inverse of the 
degree of lengthening of each subsequent cycle, are used in the remainder of the article.

Sixth, applying the same growth rate k and adjustment parameter λ as estimated without 
assuming oscillations (i.e., when α ¼ 0), and applying ω ¼ 5:25616 and γ ¼ 0:621977, the oscilla-
tion amplitude α and the start time adjustment parameter δ are estimated to model oscillatory 
growth for the models. With Bitcoin carrying capacity K ¼ $476;190 and applying the least squares 
method, logistic growth pL oscillates minimally at the amplitude α ¼ 0:48. Gompertz growth pG 

oscillates more at α ¼ 0:37. Charged capacitor growth pC oscillates moderately at α ¼ 7209. 
Combined logistic and charged capacitor growth pLC oscillates similarly to logistic growth pL at 
α ¼ 0:39. The curve pLCλ oscillates similarly to Gompertz growth pG at α ¼ 3:93. Combined 
Gompertz and charged capacitor growth pGC oscillates minimally at α ¼ 0:04. The curve pGCλ 

oscillates at α ¼ 0:91. Summing up, the curves pG, pGC, pLCλ, pGCλ in Figure 3(a) seemingly oscillate 
nicely according to the data.

Seventh, applying the weighted least squares method when K ¼ $476;190, logistic growth pL 

oscillates more at α ¼ 1:42. Gompertz growth pG oscillates less at α ¼ 0:08. Charged capacitor 
growth pC oscillates minimally at α ¼ 3:13. Combined logistic and charged capacitor growth pLC 

and pLCλ oscillate similarly to Gompertz growth pG at α ¼ 1:88 and α ¼ 1:65. Combined Gompertz 
and charged capacitor growth pGC oscillates at α ¼ 0:15. The curve pGCλ oscillates at α ¼ 0:20. 
Summing up, the curves pG, pGC, pLC, pLCλ, pGCλ in Figure 3(c) seem to oscillate according to the data.

Eighth, with Bitcoin carrying capacity K ¼ $23; 809;524 and applying the least squares method, 
logistic growth pL and combined logistic and charged capacitor growth pLC oscillate similarly and 
minimally at α ¼ 0:34 and α ¼ 0:22. Gompertz growth pG oscillates at α ¼ 0:17. Charged capacitor 
growth pC oscillates moderately at α ¼ 7200. The curve pLCλ oscillates similarly to Gompertz growth 
pG at α ¼ 3:58. Combined Gompertz and charged capacitor pGC oscillates at α ¼ 0:29. The curve 
pGCλ oscillates at α ¼ 0:91. Summing up, the curves pG, pGC, pLCλ, pGCλ in Figure 4(a) seemingly 
oscillate according to the data.

Ninth, applying the weighted least squares method when K ¼ $23; 809;524, logistic growth pL 

again oscillates more at α ¼ 1:53. Gompertz growth pG and combined logistic and charged capa-
citor growth pLC and pLCλ oscillate similarly at α ¼ 0:11, α ¼ 1:66, and α ¼ 1:65. Charged capacitor 
growth pC oscillates at α ¼ 3:13. Combined Gompertz and charged capacitor growth pGC and pGCλ 

oscillate at α ¼ 0:15 and α ¼ 0:20. Summing up, the curves pG, pGC, pLC, pLCλ, pGCλ in Figure 4(c) 
seem to oscillate according to the data.

Tenth, applying the two Bitcoin carrying capacities K ¼ $476; 190 and K ¼ $23;809;524, the bull 
market local maxima 4,5,6,7,8 and bear market local minima 4,5,6,7,8 are estimated until 2050. 
These dates depend to a low degree on the growth model carrying capacity K. The magnitudes of 
the local maxima and local minima of course depend on K, assumed to vary broadly to assess the 
implications.

If the Bitcoin price evolves until the year 2100 as predicted in this article, that has substantial 
implications for today’s financial system. First, Bitcoin may become a more dominant investment 
class competing with today’s classes, i.e., stocks, bonds, real estate, money market instruments, 
non-inflationary instruments (minerals, art, etc.), etc. Second, if Bitcoin layer 2 solutions become 
common, as in El Salvador, such solutions may spread to more countries, and likely first to the 
world’s countries with the weakest currencies or countries without their own currency. The insights 
in this article may be useful for all humans, i.e., consumers choosing between Bitcoin layer 2 
solutions and alternative payment rails, investors, politicians and regulators choosing how to 
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regulate Bitcoin, regulators and developers of asset classes competing with Bitcoin, financial 
institutions competing with Bitcoin or developing Bitcoin-based instruments, and central banks 
developing digital currencies.

5. Conclusion
The motivation for this article is the apparently unpredictable Bitcoin price evolution since 
3 January 2009, and the need for methods to understand the evolution so far and predict the 
future evolution. The methods are differential equation growth models incorporating oscillation 
and lengthening cycles. The analysis is interesting for traders (with time horizons from microse-
conds to months or years) exchanging Bitcoin with other cryptocurrencies, fiat currencies and 
asset classes, and savers and investors choosing Bitcoin as a mid term or long term store of value. 
The article is also relevant for regulators, central banks administering and developing competing 
currencies with specifically designed characteristics, banks offering competing financial products, 
collective units assessing whether to offer Bitcoin transactions, and countries assessing whether to 
accept/reject Bitcoin mining and trading, and whether to accept/reject Bitcoin as legal tender. 
Regulators want to understand Bitcoin to determine where and how Bitcoin trading and investing 
can occur, which Bitcoin-related financial products can be developed, how Bitcoin can interact and 
operate within the existing financial system, and which risk factors are involved. The study is 
unique in that a minority of other studies account for the dynamics of the Bitcoin price evolution 
with differential time equations. Further uniqueness consists in incorporating oscillation and 
lengthening cycles into growth models.

One of the main contributions of this article is to explain the Bitcoin price and predict its future 
evolution. The past evolution has been embedded within a structure of growth subject to damped 
oscillations and lengthening cycles. Future bull market maxima and bear market minima are 
predicted. Earlier studies mostly apply other methods to predict the Bitcoin price, or compare 
the accuracy of different prediction models, see e.g., Jana et al. (2021); Roy et al. (2018). This 
article develops differential equations which is uncommon in the literature. Differential time 
equations enable a different kind of dynamic understanding and explanation, which furthermore 
enable prediction. The differential equations assume Bitcoin price growth towards two different 
carrying capacities, subject to damped oscillations and lengthening cycles. Existing studies, e.g., 
K. S. Chen and Huang (2020); Wang and Wang (2020), capture some aspects of differential 
equations such as volatility, Bitcoin trading volume, market sentiment, etc. This article additionally 
incorporates oscillations which express the strength of past and future bull and bear markets, 
overall approaching one of two different Bitcoin carrying capacities. The authors believe that past 
studies unsatisfactorily, or at least differently, predict the Bitcoin price in future bull and bear 
markets. Acknowledging that the Bitcoin price, according to the best models developed in this 
article, is more influenced by recent data than early data, this article also adopts the weighted 
least squares method to estimate the parameters. Other studies incorporate the volatility in the 
models, see e.g., K. S. Chen and Huang (2020); Jaquart et al. (2021). This article furthermore uses 
a wider time range of the past Bitcoin prices to identify the optimum model parameters, i.e., 
23 July 2010–21 June 2021, than has been common elsewhere in the literature, benefiting from 
more time having elapsed since Bitcoin’s emergence. Earlier studies mostly apply shorter data time 
ranges, see e.g., Caporale et al. (2019); Cocco et al. (2021); Cretarola and Figa-Talamanca (2021); 
Gupta and Nain (2021).

The parameters in the differential equation growth models are estimated with the least squares 
method against the 23 July 2010–21 June 2021 empirical data. The weighted least squares 
method is applied to account for heteroscedasticity. Logistic growth, Gompertz growth, charged 
capacitor growth, and two hitherto unknown combinations of these are merged with oscillation 
and damped lengthening cycles for increased realism.

For each of the five models the growth rate is estimated. Logistic growth is initially slow and 
eventually quick towards the asymptote. Gompertz growth is initially quick and thereafter slow. 

Wang & Hausken, Cogent Economics & Finance (2022), 10: 2087287                                                                                                                                
https://doi.org/10.1080/23322039.2022.2087287                                                                                                                                                       

Page 25 of 29



Charged capacitor growth is initially too quick and thereafter too slow. As theoretically novel 
contributions, logistic and Gompertz growth combined with charged capacitor growth exhibit 
intermediate growth rates, depending on an additional adjustment parameter which weighs the 
combination. This parameter is determined optimally (using the least squares method and the 
weighted least squares method) and by assumption, yielding seven growth curves in addition to 
the empirical curve.

The three bull market local maxima and the three bear market local minima in the available 
empirics are used to estimate the scaling of the inverse of the cycle length of the sine oscillations, 
and the scaling of the inverse of the degree of lengthening of each subsequent cycle. Two 
additional parameters are estimated, i.e., the oscillation amplitude, which expresses the strength 
of the bull and bear markets, and the start time adjustment parameter for the sine oscillations.

Gompertz growth tracks the growth and oscillations in the empirical data quite well, and tracks 
the early data better with the weighted least squares method which weighs the early data more 
heavily. Gompertz growth combined with charged capacitor growth tracks the early data even 
better since initial growth is quicker. Logistic growth is too slow to track the early empirical data, 
even when applying the weighted least squares method. Logistic growth combined with charged 
capacitor growth to some extent tracks the early data. Pure charged capacitor growth is judged to 
be least realistic.

Six of the curves (abandoning pure charged capacitor growth) are used to estimate the expected 
value � the standard deviation of the dates of the future bull market local maxima and bear 
market local minima. These dates depend to a low degree on the growth model carrying capa-
cities, approached asymptotically. The magnitudes of the bull market local maxima depend indeed 
on the two carrying capacities. When the carrying capacity is $476; 190 to reflect the current 
market capitalization $10 trillion of gold, the future bull market local maxima and bear market 
local minima are lower than when the carrying capacity is $23;809;524 to reflect a $500 trillion 
market capitalization. The large standard deviations in the estimates are common for new assets 
in their early stages, and reflect the different predictions of the various models.

Modeling the Bitcoin price as oscillatory growth does not mean that the Bitcoin price can be 
expected to eventually stabilize towards a horizontal asymptote in the long run. The authors 
expect growth models to describe the Bitcoin price over the next few bull market local maxima 
towards various hypothetical carrying capacities. As cryptocurrency markets mature, at some point 
growth models will become less descriptive. Then alternative models may come into play. 
Examples of other kinds of evolution are the price fluctuations of more mature asset classes 
such as gold, stocks, bonds and real estate over the last centuries. Competition with other asset 
classes and means of exchange, and governmental policies, may increasingly impact the future 
Bitcoin price.

The implications of the study for all market participants are to be especially cognizant of 
Gompertz growth combined with charged capacitor growth of the Bitcoin price, and to realize 
that no growth is unlimited forever. Short term traders should focus on the large standard 
deviations which may indicate where to impose stop loss orders. Long term investors can focus 
less on the standard deviations and more on the Bitcoin price Gompertz growth compared with the 
potential growth of competing asset classes. Regulators focus on the stability and legality of the 
financial system which suggests a focus on the standard deviations and the fluctuations between 
the bull market maxima and bear market minima. Central banks focus on financial stability, which 
relates to inflation, unemployment, interest rates, and exchange rates. They should adjust the 
money supply of a fiat currency or a specifically designed central bank digital currency while 
acknowledging potential competition from a fixed supply and highly volatile cryptocurrency. Banks 
should adjust their competing financial products to account for the volatility and potential growth 
of the Bitcoin price. Collective units such as firms, institutions, governmental units (e.g., tax 
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authorities), and countries need to account for the standard deviations and fluctuations of the 
Bitcoin price in order to determine whether to accept or reject Bitcoin transactions. For example, El 
Salvador addresses this by pricing goods and services in US$ while accepting Bitcoin transactions.

Future research may extend the analysis to other cryptocurrencies (e.g., Ethereum, Cardano, 
Polkadot, Chainlink) or other phenomena exhibiting growth. Other aspects to include are Bitcoin’s 
hash rate, mining difficulty, network value to transactions, active addresses and new addresses, on 
chain transaction volume, Bitcoin’s electricity consumption, renewable energy consumption, insti-
tutional investors, and other assets such bonds and stocks. The five models in this article may be 
generalized to include more parameters, and may be merged with other models, e.g., the stock-to- 
flow model, machine learning, neural networks, deep learning, and econometrics. The models may 
incorporate regulatory intervention, the policies and attitudes of various countries, and competi-
tion with other currencies and asset classes. Further extensions can be made to extreme value 
theory and stochastic analysis with probability distributions.
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Abstract: A game between a representative household and a government was analyzed. The
household chose which fractions of two currencies to hold, e.g., a national currency such as a Central
Bank Digital Currency (CBDC) and a global currency such as Bitcoin or Facebook’s Diem, and
chose the tax evasion probability for each currency. The government chose, for each currency, the
probability of detecting and prosecuting tax evasion, the tax rate, and the penalty factor imposed
on the household when tax evasion was successfully detected and prosecuted. The household′s
fraction of the national currency, the government’s monitoring probability of the national currency,
and the penalty factor imposed on the global currency, increased in the household′s Cobb Douglas
output elasticity for the national currency. The household′s probabilities of tax evasion on both
currencies increased in the government’s Cobb Douglas output elasticity for the national currency.
The government’s taxation on both currencies decreased in the output elasticity for the national
currency. High output elasticity for the national currency eventually induced the government to tax
that currency more than the global currency. The household′s probability of tax evasion on the global
currency increased in the government’s output elasticity for that currency. The household was less
(more) likely to tax evade on the national (global) currency if the government valued taxation and
penalty on the national (global) currency. The results are illustrated numerically where each of the
eight parameter values was varied relative to a benchmark.

Keywords: digital currency; cryptocurrency; CBDC; Bitcoin; game theory; taxation; household;
government

JEL Classification: C72; H26

1. Introduction
1.1. Background

Digital currencies are receiving increasing attention as central banks launch Cen-
tral Bank Digital Currencies (CBDCs) (https://cbdctracker.org/, retrieved 7 April 2021),
companies develop currencies (e.g., Facebook’s Diem), and individuals, institutions, and
others (e.g., Tesla, Grayscale, MicroStrategy, Square) buy Bitcoin and other cryptocurren-
cies. As of 7 April 2021, 9162 cryptocurrencies contributed to a market cap of $1.9 trillion
(https://coinmarketcap.com/, retrieved 7 April 2021).

Cryptocurrencies work via the distributed ledger technology or blockchain. Blockchain
is a decentralized technology spread across many nodes that manage and record transac-
tions. The transactions are stored in multiple nodes that are permanent, verifiable, and
unchangeable. Cryptocurrencies have no physical form, are typically not issued by a central
authority, and are controlled through networks with varying degrees of decentralization.
The first cryptocurrency was Bitcoin that emerged through the genesis block 3 January
2009 at 18:15:05 UTC.

Advantages of cryptocurrency included typical avoidance of inflation (e.g., through
a fixed limited supply for Bitcoin or burning coins for the Binance coin), self-governance,
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disintermediation (no central party), security, privacy, cost-effective transaction modes
(especially for cross borders payments), instant or quick, and 24/7/365 accessibility, etc.
Disadvantages of cryptocurrencies include possible use for illegal transactions (e.g., by
applying privacy coins such as Monero), challenges of market fluctuations, no security or
remedy in case of loss, limited scalability for some cryptocurrencies, etc.

Cryptocurrencies, and especially privacy coins like Monero, Verge, Zcash, etc., might
enable tax evasion, which challenges regulators. Households might correctly or incorrectly
assess and compare governments’ abilities to monitor storage and transactions and enforce
regulations for cryptocurrencies and government-issued currencies. Marian [1] suggests
that cryptocurrencies could replace tax havens as the weapon-of-choice for tax-evaders.

These developments induce households to determine what fractions of each currency
to hold, how to evade tax on each currency, and induce governments to determine how to
tax, monitor tax evasion, and punish tax evasion, on each currency.

1.2. Contribution

This article models a game between a representative household and a government.
The household chooses three strategies, i.e., the fractions to hold and the probabilities of
tax evasion for two currencies. The government chooses six strategies, i.e., tax rates, tax
monitoring, and punishments for tax evasion, for two currencies. The national currency
offers the most common usage within a nation, e.g., purchasing and selling goods and
services, paying taxes, and saving for retirement. The global currency generally offers
opportunities beyond the national borders, e.g., user autonomy, discretion, peer-to-peer
focus, and tax evasion.

The players’ choices cause the household to assess four fractions for each currency;
i.e., legally permitted for the household to keep, successful tax evasion, unsuccessful tax
evasion, and the tax fraction paid voluntarily. The household has a Cobb Douglas expected
utility with one output elasticity for each currency. The government has a Cobb Douglas
expected utility with four output elasticities, i.e., one output elasticity for each currency
reflecting its identification with the household, and one output elasticity for each currency
reflecting its preference for taxation and penalties on unsuccessful tax evasion.

This article proposes a new way to formulate the government’s utility. The government
represents its households. Hence, the government is to some extent assumed to identify
with each household, and benefits when the household benefits. The government also
benefits from the household paying taxes, and benefits from the household paying a penalty
when the government successfully monitors, and thus detects and prosecutes tax evasion.

The article analytically determines how eight parameters, intended to capture the
phenomenon, impact the players’ nine strategies and two expected utilities. Sensitivity
analysis shows the variation in the government’s monitoring probabilities, tax rates, penalty
factors, and expected utility, and the household′s fractions of the two currencies and
the probability of tax evasion for each currency, as each parameter value varies relative
to a benchmark. The results are discussed in terms of economic intuition and policy
implications. The article contributes to all four areas of the literature reviewed in the
next section.

1.3. Literature

The literature is divided into four areas, i.e., CBDC and cryptocurrencies, currency
competition, game theory analyses, and governmental taxation.

1.3.1. CBDC and Cryptocurrencies

This article relates to this literature by considering one national currency that can
be interpreted to be a CBDC and one global currency that can be interpreted to be a
cryptocurrency.

Blakstad and Allen [2] summarized the possibilities and risks offered by cryptocurren-
cies for central banks and individuals.
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Brunnermeier and Niepelt [3] developed a generic framework of money, liquidity,
seignories rents, and financial frictions. They provided sufficient conditions for the equiva-
lence of monetary systems. They proposed that the introduction of CBDC could reduce
run risk on banks, rather than increasing it.

Asimakopoulos et al. [4] developed a Dynamic Stochastic General Equilibrium (DSGE)
model to assess the economic consequences of cryptocurrencies. Applying Bayesian
techniques using US and crypto markets monthly data for the period 2013:M6-2019:M3,
they found a strong substitution effect between the real balances of government currency
and the real balances of cryptocurrency.

Sapkota and Grobys [5] divided cryptocurrencies into privacy and non-privacy coins.
They explored whether asset market equilibria exist in the cryptocurrency markets. By
analyzing ten cryptocurrencies with the highest market capitalization in each submarket in
the 2016–2018 period, they found that privacy coins and non-privacy coins expressed two
distinct unrelated market equilibria.

Allen et al. [6] enumerated the fundamental technical design challenges facing CBDC
designers, with a particular focus on performance, privacy, and security. They summa-
rized the main potential benefits of CBDC, namely, efficiency, a broader tax base, flexible
monetary policy, payment backstop, and financial inclusion.

1.3.2. Currency Competition

This article relates to this literature by considering competition between one national
currency and one global currency, in the sense that each household chooses optimally how
much to hold of each.

Gandal and Halaburda [7] evaluated the impact of network effects on competition in
the cryptocurrency market. They found no winner-take-all effects in the early period since
November 2013 (when data collection started) until April 2014, but strong network effects
and winner-take-all dynamics from April 2014 until February 2016.

Benigno [8] stated that multiple currencies could compromise the primary function
of a central bank. Additionally, they found that with many competing currencies issued
by profit-maximizing actors, both the nominal interest rate and the inflation could not be
manipulated, but were instead determined by structural factors, such as the intertemporal
discount factor, the exit rate, and the fixed entry cost.

Fernández-Villaverde and Sanches [9] considered competition between privately is-
sued fiat currencies. They found that an equilibrium existed in which price stability was
consistent with competing private monies, and also, that a continuum of equilibrium tra-
jectories existed with the property, such that the value of private currencies monotonically
converged to zero.

Benigno et al. [10] evaluated a two-country economy with complete markets, two
national currencies, and a global cryptocurrency. They suggest that deviating from interest
rate equality might imply approaching the zero lower bound or the abandonment of
the national currency, referred to as Crypto-Enforced Monetary Policy Synchronization
(CEMPS). Hence, the impossibility of jointly ensuring a fixed exchange rate, free capital
flows, and an independent monetary policy (the classic Impossible Trinity) becomes even
less reconcilable.

1.3.3. Game Theory Analyses

This article relates to this literature by considering a game between a government and
a representative household.

Wang [11] set up a game theory model to analyze the implications of tax evasion for
the optimal design of CBDC. He discussed several scenarios where CBDC had different
anonymity compared to cash. For example, if CBDC offered less anonymity than cash,
introducing CBDC would decrease tax evasion. If CBDC provided a high level of anonymity
but low interest rate, then it would decrease the agents’ output. However, if CBDC
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offered low anonymity and a high interest rate, it would increase the output and aggregate
the welfare.

Zhang et al. [12] assessed the tax preferences of enterprise income for comprehensive
utilization of resources. They theoretically explored the game tax preference policy for
energy conservation and emission reduction. They found that increasing camouflage cost
and expected cost of risk could effectively prevent the generation of enterprise frauds.

Caginalp and Caginalp [13] determined the game theory equilibria for cryptocurren-
cies. The players divided their assets between the home currency and the cryptocurrency.
The government decided the probability of seizing a fraction of the players’ assets. The
conditions for existence and uniqueness of Nash equilibria were established.

Wang and Hausken [14] analyzed competition between a national currency and a
global currency, both of which had specific characteristics in an economy. The replicator
equation was used to illustrate how conventionalists (which prefer to be in the majority)
tend to compete against the pioneers and criminals (which prefer to be in the minority),
under various conditions.

Welburn and Hausken [15,16] theoretically analyzed the economic crises game, as-
suming six kinds of players, i.e., countries, central banks, banks, firms, households, and
financial inter-governmental organizations. Players have strategies such as setting inter-
est rates, lending, borrowing, producing, consuming, investing, importing, exporting,
defaulting, and penalizing default.

1.3.4. Taxation

This article related to this literature by considering how a government taxes, moni-
tors, and punishes tax evasion, and how a representative household might evade tax on
two currencies.

Reviews

Alm [17] reviewed how to measure, explain, and control tax evasion. The exam-
ples were to analyze shadow economies, experimental methods, survey evidence, assess
currency demand, and trace evasion in transactions financed by currencies.

Andreoni et al. [18] theoretically and empirically reviewed the literature on tax com-
pliance. They pointed out that the theoretical models only served as rough guides for
empirical research. They recommended more work on exploring the psychological, moral,
and social impacts on tax compliance activities, more attention to the dynamic and com-
plex institutional framework of tax compliance, and more empirical research outside the
USA jurisdiction.

Governmental Taxation

Brito et al. [19] analyzed the optimal income tax problem when consumers work
for many periods. The results indicated that when the government commits to future
tax schedules, intertemporal nonstationary tax schedules could relax the self-selection
constraints and lead to Pareto improvements.

Lai and Liao [20] investigated the optimal capital income taxation in heterogeneous
agent economies, featuring endogenous government spending. They pointed out that the
long-run optimal capital tax rate should not be zero when the competitive equilibrium
risk-free interest rate differed from the subjective time discount rate. The results could be
extended to a wide range of model economies.

Liu [21] explored how government preferences affected the choices of capital tax
rates in the presence of tax competition. The article suggests that countries emphasizing
economic development tend to choose lower corporate income tax rates than countries
emphasizing regional equality.

Raurich [22] developed an endogenous growth model with an endogenous labor
supply. He pointed out that the dynamic equilibrium might exhibit local indeterminacy
when labor income is heavily taxed.
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Economides et al. [23] presented a general equilibrium model of endogenous growth
with productive and non-productive public goods and services. They solved for Ramsey
second-best optimal policy. The findings differed from the benchmark case of the social
planner’s first-best allocation and depended crucially on whether public goods and services
were subject to congestion.

Chen and Guo [24] explored the theoretical interrelations between progressive income
taxation and macroeconomic (in)stability. The results showed that progressive taxation
operated like an automatic destabilizer that generated equilibrium indeterminacy and
belief-driven fluctuations in the economy, which differed from traditional Keynesian-type
stabilization policies.

Bacchetta and Perazzi [25] discussed a monetary reform in Switzerland. Based on
a simple infinite-horizon open-economy model, they pointed out that a tradeoff existed
between a reduction in distortionary labor taxes and an increase in the opportunity cost of
holding money.

Tax Evasion and Punishment

Becker [26] and Hausken and Moxnes [27] recommended optimal public and private
policies to combat illegal behavior. They showed that optimal enforcement depended on
the cost of catching and convicting offenders, the nature of punishments, and the responses
of offenders to changes in enforcement. Similarly, this article showed how households
responded to punishments for tax evasion.

Allingham and Sandmo [28] explored static and dynamic aspects of the taxpayer’s
decisions on tax evasion. In the static model, they found that the penalty rate and the prob-
ability of detection were substitutes for each other. In the dynamic analysis, they showed
that consistent rational individuals always declared more taxes than myopic short-sighted
tax-evading individuals. Extending Allingham and Sandmo’s [28] work, Yitzhaki [29]
showed that if a penalty was imposed on the evaded tax, no contradiction existed be-
tween an income and a substitution effect. Furthermore, if the taxpayer had absolute risk
aversion, which decreased with income, increased taxation causes decreased tax evasion.
This article supported the finding, when varying how the government identified with the
household′s output elasticity for the national currency (see Section 4) and when varying
the government’s elasticity for the national currency, when valuing taxation and penalty
on unsuccessful tax evasion (see Section 4), and otherwise supported the opposite result or
that one variable did not vary when the other variable varied.

Myles and Naylor [30] set out a model of tax evasion that captured a benefit of
conforming with non-evaders and of adhering to the social custom of non-evasion. They
showed that both equilibria with no evasion and with taxpayers choosing to evade could
exist. Similarly, this article showed how households might respond differently to the
government’s taxation, monitoring, and punishment.

Slemrod and Yitzhaki [31] presented theoretical models that integrate tax avoid-
ance and evasion into the overall decision problem faced by taxpayers. They also de-
veloped a taxonomy of efficiency costs and introduced a general theory of optimal tax
systems. They found that when the tax structure changed, individuals might change their
consumption basket.

Experimental Work on Tax Evasion

Torgler [32] summarized experimental findings on tax morale and tax compliance,
focusing on personal income tax morale, and social and institutional factors. He argued for
the infeasibility of testing the predictions of the level of tax compliance models. In addition,
social and institutional factors were important factors on tax compliance.

Kleven et al. [33] presented a tax enforcement field experiment in Denmark. They
found that tax evasion was near zero for income subject to third-party reporting, and was
much higher for self-reported income. In addition, marginal tax rates impacted tax evasion
positively for self-reported income, but the effect was small compared to legal avoidance



Games 2021, 12, 34 6 of 24

and behavioral responses. Additionally, prior audits and threat-of-audit letters significantly
impacted self-reported income, but did not impact third-party reported income.

Empirical Work on Tax Evasion

Ariyo and William [34] estimated that for 1975–2010, 42.54–79.32% of the Nigerian un-
derground economy and tax evasion constituted 2.09–6.75% of the Gross Domestic Product.

Bittencourt et al. [35] found for 150 cases that less (more) financial development and a
more (less) inflation caused a bigger (smaller) shadow economy with related tax evasion,
during 1980–2009.

Hanlon et al. [36] assessed “round tripping” tax evasion where funds in offshore
tax havens were invested in U.S. securities markets. They found that the incentives to
evade U.S. taxation and expected costs of evasion detection affected the amount of foreign
portfolio investment in U.S. debt and equity markets.

Tax Morale and Alternatives to Expected Utility Theory

Luttmer and Singhal [37] pointed out that apart from tax tools like tax rate, detection
probality, and penalties imposed if evasion was detected, tax morale including nonpe-
cuniary motivations were important factors in tax compliance decisions. Drawing on
evidence from experiments, they demonstrated that tax morale operated through many
underlying mechanisms.

Dhami and al-Nowaihi [38] contended that the expected utility theory failed to explain
tax evasion activities. They found that the cumulative prospect theory provided a much
more satisfactory explanation of tax evasion.

1.4. Article Organization

Section 2 presents the model. Section 3 analyzes the model. Section 4 illustrates
the solution. Section 5 discusses the results and provides economic intuition and policy
implications. Section 6 concludes.

2. The Model
2.1. Two Currencies n and g

Appendix A shows the nomenclature. Consider an economy with two available
currencies. The first currency n is national and offers the most common usage, and
especially legal usage, within the economy. Examples of usage were for making various
purchases or paying taxes. The government has complete control and dominance over the
national currency n, e.g., by adjusting tax rates and inflation. We can think of the currency
n as a CBDC. The second currency g is global and outside the control of the government.
It offers more limited usage, e.g., cannot be used for all kinds of purchases, but offers
other opportunities, e.g., user autonomy, discretion, peer-to-peer focus, no banking fees,
tax evasion, black market payments, criminal activities, and a potentially high return. We
might think of currency g as a cryptocurrency such as Bitcoin, Zcash, or Facebook’s Diem.

The household pays taxes for holding the two currencies, and can choose tax evasion
with a probability for each currency. If tax evasion is detected and prosecuted by the gov-
ernment, the household has to pay a penalty. Owing to the features of the two currencies,
the probabilities of tax evasion, tax rates, probabilities of detecting tax evasion, and penalty
factors if tax evasion is detected, generally differ. Figure 1 illustrates the two currencies n
and g.



Games 2021, 12, 34 7 of 24

Games 2021, 12, x FOR PEER REVIEW 7 of 26 
 

 

evasion, black market payments, criminal activities, and a potentially high return. We 
might think of currency 𝑔𝑔𝑔as a cryptocurrency such as Bitcoin, Zcash, or Facebook’s Diem. 

The household pays taxes for holding the two currencies, and can choose tax evasion 
with a probability for each currency. If tax evasion is detected and prosecuted by the gov-
ernment, the household has to pay a penalty. Owing to the features of the two currencies, 
the probabilities of tax evasion, tax rates, probabilities of detecting tax evasion, and pen-
alty factors if tax evasion is detected, generally differ. Figure 1 illustrates the two curren-
cies 𝑛𝑛 and 𝑔𝑔. 

 
Figure 1. An economy with two currencies 𝑛𝑛 and 𝑔𝑔. 

2.2. Two Kinds of Players: Households and One Government 
Consider an economy with a representative household and a government. The 

household chooses the fraction to hold currency 𝑛𝑛, causing the remaining fraction to be 
held in currency 𝑔𝑔, and chooses the tax evasion probability for each currency. The gov-
ernment is the second player. It completely controls the national currency 𝑛𝑛, but has no 
control of the global currency𝑔𝑔𝑔. However, the government can set the tax rates, the prob-
abilities of detecting tax evasion, and the penalty factors if tax evasion is detected, for both 
currencies. We consider a non-cooperative one-period game. The households and govern-
ment choose their strategies simultaneously and independently. The players are inter-
linked as in Figure 2. 

 
Figure 2. The government and a representative household involved in a national currency 𝑛𝑛 and a global currency 𝑔𝑔. 

  

Figure 1. An economy with two currencies n and g.

2.2. Two Kinds of Players: Households and One Government

Consider an economy with a representative household and a government. The house-
hold chooses the fraction to hold currency n, causing the remaining fraction to be held in
currency g, and chooses the tax evasion probability for each currency. The government
is the second player. It completely controls the national currency n, but has no control of
the global currency g. However, the government can set the tax rates, the probabilities of
detecting tax evasion, and the penalty factors if tax evasion is detected, for both curren-
cies. We consider a non-cooperative one-period game. The households and government
choose their strategies simultaneously and independently. The players are interlinked as in
Figure 2.
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Figure 2. The government and a representative household involved in a national currency n and a global currency g.

2.3. The Players’ Strategic Choices

The representative household simultaneously chooses three strategies to maximize its
expected utility U. It chooses its fraction x, 0 ≤ x ≤ 1 of currency n, causing the remaining
fraction 1 − x to be held in currency g. Additionally, it chooses the tax evasion probability
pj, 0 ≤ pj ≤ 1, for currency j, j = n, g.

The government chooses six strategies simultaneously to maximize its expected utility
u. It chooses the probability mj, 0 ≤ mj ≤ 1 of detecting and prosecuting tax evasion on
currency j. Additionally, it chooses the tax rate τj, τj ≥ 0 for currency j. Finally, it chooses
the penalty factor Pj, Pj ≥ 0, imposed on each household when tax evasion is successfully
detected and prosecuted on currency j, j = n, g. Table 1 shows the players’ strategies
descriptions and strategy sets.
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Table 1. Player descriptions and strategy sets.

Player Strategies Description Strategy Set

A representative household

Chooses its fraction x, 0 < x ≤ 1, of currency n, causing the
remaining fraction 1 − x, to be held in currency g.
Chooses the tax evasion probability pn for currency n and tax evasion
probability pg for currency g.

{
x, pn, pg

}

Government

Chooses the probability mj,0 ≤ mj ≤ 1, of detecting and prosecuting
tax evasion on currency j.
Chooses the tax rate τj, τj ≥ 0, for currency j.
Chooses the penalty factor Pj, Pj ≥ 0, imposed on each household
when tax evasion is successfully detected and prosecuted on currency
j, j = n, g.

{
mn, mg, τn,

τg, Pn, Pg

}

2.4. The Household’s Strategies and Expected Utility

Assume that a representative household evades taxes on currency j with probability pj,
0 ≤ pj ≤ 1, j = n, g, which is detected and prosecuted by the government with probability
mj, 0 ≤ mj ≤ 1. With a tax rate τj, 0 ≤ τj ≤ 1, for currency j, the household’s expected
tax payment fraction on currency j is

(
1 − pj

)
τj, paid voluntarily. With zero government

detection mj = 0, the household’s expected income fraction from tax evasion on currency j
is pjτj. With 100% government detection and prosecution mj = 1, the household’s expected
income fraction from tax evasion on currency j is 0. Generally, the household’s expected
income fraction from tax evasion on currency j is

(
1 − mj

)
pjτj, i.e., successful tax evasion.

Hence, the household’s expected expense fraction without penalty from unsuccessful tax
evasion on currency j is mj pjτj. We assume that the government penalizes unsuccessful
tax evasion by adjusting mj pjτj in two ways. First, mj pjτj is multiplied with a penalty
factor Pj, Pj ≥ 0, chosen by the government as a free choice variable. Second, Pjmj pjτj is
assumed to depend on the representative household’s tax evasion probability pj in a more

flexible manner by replacing pj with p
λj
j , where pj is a parameter, which gives mjτjPj p

λj
j

as the household’s expense from unsuccessful tax evasion. We require λj ≥ 0 since the
household’s expected expense for tax evasion should increase as the household’s tax

evasion probability increases, ∂
(

mjτjPj p
λj
j

)
/pj ≥ 0. Tax evasion should not be beneficial.

We might interpret Pj p
λj−1
j as the government’s penalty, which is multiplied with the

household’s expected expense fraction mj pjτj from unsuccessful tax evasion on currency j,

to give mjτjPj p
λj
j . Hence, the household keeps a fraction

fj = 1 −
(
1 − pj

)
τj − mjτjPj p

λj
j (1)

of currency j, which is multiplied with the fraction x of currency n, and multiplied with
the fraction 1 − x of currency g, to determine how much of the two currencies n and g the

household owns. The fraction f j is positive when Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, and is otherwise negative.

We apply the Cobb Douglas expected utility for both players, since it is widely used
within economics and since it explicitly captures tradeoff players strike between multiple
conflicting or partly conflicting objectives. For the household that includes which currencies
to hold and with which probabilities to tax evade, assume that the household has a Cobb
Douglas expected utility with output elasticity α, 0 ≤ α ≤ 1, associated with currency n,
and 1 − α associated with currency g, i.e.,
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U =




((
1 − (1 − pn)τn − mnτnPn pλn

n

)
x
)α

×
((

1 −
(
1 − pg

)
τg − mgτgPg p

λg
g

)
(1 − x)

)1−α

i f Pj ≤
1−(1−pj)τj

mjτj p
λj+1

j

, j = n, g

0 otherwise

(2)

where U = 0 means that the penalty factor Pj is so high that the household goes into debt.
This is illustrated in Figure 3. The household’s three free choice variables are its fraction x
of currency n, which causes the remaining fraction 1 − x to be held in currency g, and its
tax evasion probability pj for currency j, j = n, g.
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(
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)
pjτj as successful tax evasion, mj pjτj as unsuccessful tax evasion,

and
(

1 − pj

)
τj as the tax fraction paid voluntarily, j = n, g.

The output elasticities α and 1 − α for the two currencies n and g account in a deep
sense for the benefits and costs of holding, acquiring, and transacting with the two cur-
rencies. Cryptocurrencies are freely available. Once acquired, no costs exist of holding
them, and interest might be earned. If we think of currency g as Bitcoin, these benefits and
costs changed since the genesis block in 2009. The early Bitcoin adopters operated in a seg-
mented market, possessing competence beyond the majority of households. Over the last
years, the market has broadened, become less segmented, is more easily accessible through
multiple entry points, and is more user-friendly. Users learned to use crypto wallets, which
are of five types—mobile, desktop, paper, hardware, online, and mobile wallets. Users
operate on platforms and exchanges such as ImToken, Metamask, TrustWallet, TokenPlus,
Binance, OKEx, Huobi, Coinbase, etc. Users download apps such as Abra from the internet
on their cellphone, and create their own cryptocurrency addresses, where they buy, sell,
exchange, and earn interest on cryptocurrencies. Buying cryptocurrencies has become simi-
lar to buying stocks and is almost costless. Cryptocurrencies are gradually incorporated
into the conventional financial system, exemplified with Paypal, which currently offers
Bitcoin, Bitcoin Cash, Ethereum, and Litecoin. To the extent the representative household
perceives holding a global currency g such as Bitcoin as less straightforward than holding a
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government-issued national currency n, the household assigns lower output elasticity 1− α
to the global currency g, and thus higher output elasticity α to the national currency n.

2.5. The Government’s Strategies and Expected Utility

The challenge in modeling the government is that it cannot identify 100% with each
household individually, because of the collective action dilemma, including the objective of
maximizing the expected utility or welfare of all households. The government also cannot
minimize the expected utility of each household since then it will not be reelected. Hence,
we assume that the government to some extent identifies with and represents each house-
hold, and benefits when the household benefits. A straightforward way of accomplishing
that objective is to incorporate the household’s expected utility U in Equation (2) into
the government’s expected utility u. That implicitly means that the government to some
extent, as determined by the parameters and the players’ strategic choices, internalizes all
advantages of the household, including the advantage of evading taxes for the household.
Since internalizing that advantage cannot be taken too far, we assume that the government
also benefits from the household paying taxes, and benefits from the household paying
a penalty when the government successfully monitors, and thus detects and prosecutes
tax evasion. The government finally has a cost expenditure of choosing the monitoring
probability mj, j = n, g. These multiple conflicting or partly conflicting objectives of the
government are obtained by assuming a more extensive Cobb Douglas expected utility for
the government, expressed per household as

U =




((
1 − (1 − pn)τn − mnτnPn pλn

n

)
x
)βn

×
((

1 −
(
1 − pg

)
τg − mgτgPg p

λg
g

)
(1 − x)

)βg

×
((

(1 − pn)τn + mnτnPn pλn
n

)
x − anmn

)γn

×
(((

1 − pg
)
τg + mgτgPg p

λg
g

)
(1 − x)− agmg

)1−βn−βg−γn

i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise

(3)

which has four multiplicative terms. The first two terms in Equation (3) are equivalent
to the two terms in Equation (2), except that α and 1 − α are replaced with βn and βg,
respectively, 0 ≤ βn, βg ≤ 1. That replacement means that although the government
identifies with the household, the government is enabled to prioritize differently and
have other output elasticities for the two currencies n and g than the household. For the
special case when the government has the same ratio α/(1 − α) = βn/βg between the two
currencies n and g as the household, we get

α

1 − α
=

βn

βg
⇔ α =

βn

βn + βg
(4)

which we do not require the government to adhere to. The third and fourth terms in
Equation (3), for currencies n and g, respectively, express that the government maximizes
the sum of two terms and a subtracted third term raised to the output elasticities γn and
1− βn − βg −γn, respectively, 0 ≤ γn ≤ 1, 0 ≤ 1− βn − βg −γn ≤ 1, for currencies n and g.
Term 1 is the household’s tax fraction paid voluntarily, multiplied with the currency fraction,
i.e., (1 − pn)τnx and

(
1 − pg

)
τg(1 − x), for currencies n and g, respectively. Term 2 is the

household’s unsuccessful tax evasion multiplied with the penalty and currency fraction,

i.e., mnτnPn pλn
n x and mgτgPg p

λg
g (1 − x), for currencies n and g, respectively. Term 3 is the

household’s unit cost aj, aj ≥ 0, of choosing the monitoring probability mj, multiplied with
mj, j = n, g. Since mj is a probability, the unit cost aj has to be scaled so that 0 ≤ mj ≤ 1.
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The government’s six free choice variables are its probability mj of detecting and
prosecuting tax evasion on currency j, the tax rate τj on currency j, and the penalty factor Pj
imposed on each household when tax evasion is successfully detected and prosecuted on
currency j, j = n, g. The government and each household choose their free choice variables
simultaneously and independently. Analyzing such a stationary situation reflects reality in
the sense that governments in general, and households over time, adapt their preferences
and strategies to each other, making it difficult to state that one player chooses a strategy
over some other player.

3. Analyzing the Model
3.1. Analyzing the Household

Appendix B shows that the household chooses to hold the fraction

x =




α i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

undetermined otherwise
(5)

of currency n, and thus the remaining fraction 1− x of currency g, and chooses the probability

pj =




1

(mjPjλj)
1/(λj−1) i f Pj ≤

1−(1−pj)τj

mjτj p
λj
j

and 0 ≤ pj ≤ 1, j = n, g

undetermined or 1 otherwise
(6)

of tax evasion on currency j, j = n, g.

3.2. Analyzing the Government

Appendix C shows that the government chooses the free choice variables
mn = x

an
, mg = 1−x

ag
, τn = γn

(1−pn)(βn+γn)
, τg =

1−βn−βg−γn

(1−pg)(1−βn−γn)
,

Pn = an(1−pn)βn

pλn
n xγn

, Pg =
ag(1−pg)βg

p
λg
g (1−x)(1−βn−βg−γn)

,

0 ≤ mn ≤ 1 ⇔ an ≥ x , 0 ≤ mg ≤ 1 ⇔ ag ≥ 1 − x , 0 ≤ τn ≤ 1 ⇔ 0 ≤ pn ≤ βn
βn+γn

,

0 ≤ τg ≤ 1 ⇔ 0 ≤ pg ≤ βg
1−βn−γn

(7)

3.3. Analyzing the Household and Government Together

Property 1. The household’s and the government’s strategies are

x = α, pn = λn βn
λn βn+γn

, pg =
λg βg

1−βn−γn−(1−λg)βg
,

mn = α
an

, mg = 1−α
ag

, τn = λn βn+γn
βn+γn

, τg =
1−βn−γn−(1−λg)βg

1−βn−γn
,

Pn = an
λnα

(
λn βn

λn βn+γn

)1−λn
, Pg =

ag
λg(1−α)

(
λg βg

1−βn−γn−(1−λg)βg

)1−λg

,

U = u = 0, an ≥ α, ag ≥ 1 − α, 0 ≤ λj ≤ 1, j = n, g

(8)

Proof. Appendix D. �

Property 2. (1): ∂x
∂α ≥ 0, ∂(1−x)

∂α ≤ 0, ∂mn
∂α ≥ 0, ∂mg

∂α ≤ 0, ∂Pn
∂α ≤ 0, ∂2Pn

∂α2 ≥ 0, ∂Pg
∂α ≥ 0, ∂2Pg

∂α2 ≥
0, ∂pn

∂α =
∂pg
∂α = ∂τn

∂α =
∂τg
∂α = 0. (2): ∂pn

∂λn
≥ 0, ∂2 pn

∂λ2
n

≥ 0, ∂τn
∂λn

≥ 0, ∂x
∂λn

= ∂(1−x)
∂λn

=
∂pg
∂λn

=

∂mn
∂λn

=
∂mg
∂λn

=
∂τg
∂λn

=
∂Pg
∂λn

= 0. (3): ∂pg
∂λg

≥ 0, ∂2 pg

∂β2
g
≥ 0, ∂τg

∂λg
≥ 0, ∂x

∂λg
= ∂(1−x)

∂λg
= ∂pn

∂λg
= ∂mn

∂λg
=

∂mg
∂λg

= ∂τn
∂λg

= ∂Pn
∂λg

= 0. (4): ∂pn
∂βn

≥ 0, ∂2 pn
∂β2

n
≤ 0, ∂pg

∂βn
≥ 0, ∂2 pg

∂β2
n
≥ 0, ∂τn

∂βn
≤ 0, ∂2τn

∂β2
n
≥ 0, ∂τg

∂βn
≤ 0,

∂2τg

∂β2
n
≤ 0, ∂Pn

∂βn
≥ 0, ∂2Pn

∂β2
n
≤ 0, ∂Pg

∂βn
≥ 0, ∂x

∂βn
= ∂(1−x)

∂βn
= ∂mn

∂βn
=

∂mg
∂βn

= 0. (5): ∂pg
∂βg

≥ 0, ∂2 pg

∂β2
g

≥
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0, ∂τg
∂βg

≤ 0, ∂Pg
∂βg

≥ 0, ∂x
∂βg

= ∂(1−x)
∂βg

= ∂pn
∂βg

= ∂mn
∂βg

=
∂mg
∂βg

= ∂τn
∂βg

= ∂Pn
∂βg

= 0. (6):
∂pn
∂γn

≤ 0, ∂2 pn
∂γ2

n
≥ 0, ∂pg

∂γn
≥ 0, ∂2 pg

∂γ2
n
≥ 0, ∂τn

∂γn
≥ 0, ∂2τn

∂γ2
n
≤ 0, ∂τg

∂γn
≤ 0, ∂2τg

∂γ2
n
≤ 0, ∂Pn

∂γn
≤ 0, ∂2Pn

∂γ2
n
≥ 0,

∂Pg
∂γn

≥ 0, ∂2Pg

∂γ2
n
≥ 0, ∂x

∂γn
= ∂(1−x)

∂γn
= ∂mn

∂γn
=

∂mg
∂γn

= 0. (7): ∂mn
∂an

≤ 0, ∂2mn
∂a2

n
≥ 0, ∂Pn

∂an
≥ 0, ∂x

∂an
=

∂(1−x)
∂an

= ∂pn
∂an

=
∂pg
∂an

=
∂mg
∂an

= ∂τn
∂an

=
∂τg
∂an

=
∂Pg
∂an

= 0. (8): ∂mg
∂ag

≤ 0, ∂2mg

∂a2
g

≥ 0, ∂Pg
∂ag

≥ 0, ∂x
∂ag

=

∂(1−x)
∂ag

= ∂pn
∂ag

=
∂pg
∂ag

= ∂mn
∂ag

= ∂τn
∂ag

=
∂τg
∂ag

= ∂Pn
∂ag

= 0.

Proof. Follows from Equations (A12)–(A19) in Appendix E. �

Property 2 states that, first, the household’s fraction x of currency n, the government’s
monitoring probability mn of currency n, and the government’s penalty factor Pg imposed
on each household’s holding of currency g, increase linearly, linearly, and convexly in the
household’s output elasticity α for currency n. Conversely, the household’s fraction 1 − x
of currency g, the government’s monitoring probability mg of currency g, and the govern-
ment’s penalty factor Pn imposed on each household’s holding of currency n, decrease
linearly, linearly, and convexly in α. The remaining variables are independent of α.

Second and third, the household’s probability pj of tax evasion on currency j and the
government’s taxation τj on currency j increase concavely and linearly, respectively, in the
exponential tax evasion parameter λj. The remaining variables except Pj are independent
of λj, j = n, g.

Fourth, the household’s probabilities pn and pg of tax evasion on currencies n and g
increase linearly and convexly in the government’s output elasticity βn for currency n. The
government’s taxation τn and τg on currencies n and g decrease concavely and convexly
in βn. This decrease follows since increasing βn causes the government to identify more
strongly with the household in Equation (3), and the household prefers low taxation. That
the decrease is concave versus convex follows since high output elasticity βn for currency
n eventually induces the government to tax currency n more than currency g. Furthermore,
higher βn means lower output elasticity 1 − βn − βg − γn for the fourth term in Equation
(3), which expresses lower government weight assigned to income from taxation and
penalty on tax evasion associated with currency g. The government’s penalty factors Pn
and Pg imposed on each household’s holding of currencies n and g increase concavely and
convexly in βn. The remaining variables are independent of βn.

Fifth, the household’s probability pg of tax evasion on currency g increases convexly in
the government’s output elasticity βg for the same currency g, as currency g becomes more
valuable for the household. The government’s taxation τg on currency g decreases linearly
in βg, as the government identifies more strongly with the household and thus prefers
to impose fewer costs on the household. The government’s penalty factor Pg imposed
on each household’s holding of currency g increases convexly in βg, as the government
seeks to curtail the household’s probability pg of tax evasion on currency g. The remaining
variables are independent of βg.

Sixth, the household’s probabilities pn and pg of tax evasion on currencies n and g
decreases concavely and increases convexly in the government’s output elasticity γn for
currency n when valuing taxation τn and valuing penalty Pn on unsuccessful tax evasion
on currency n. Thus, the household is less (more) likely to evade tax on currency n (g) if
the government values taxation τn (τg) and penalty Pn (Pg). The government’s taxation
τn and τg on currencies n and g increases concavely and decreases convexly in γn. The
increase follows since increasing γn causes the government to identify less strongly with the
household’s preference for low taxation τn on currency n, and instead to value taxation τn
and penalty Pn. The decrease follows, conversely, since the government’s higher valuation
of taxation τn and penalty Pn on currency n implies a lower valuation of taxation τg
and penalty Pg on currency g. The government’s penalty factors Pn and Pg imposed on
each household’s holding of currencies n and g which decreases concavely and increases
convexly in γn. The remaining variables are independent of γn.
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Seventh and eighth, the government’s monitoring probability mj of currency j de-
creases concavely in the unit cost aj of choosing mj, while the government’s penalty factor
Pj imposed on each household’s holding of currency j increases linearly. The remaining
variables are independent of aj. The remaining variables are independent of aj, j = n, g.

4. Illustrating the Solution

To illustrate the solution in Property 1 in Section 3.3, this section alters the eight param-
eter values α,λn, λg,βn, γn,βg,an, ag relative to the benchmark parameter values α = 4/5,
λn = λg = 1/5, βn = γn = 2/5, βg = 1/10, an = ag = 1.

First, α = 4/5 reflects that the national currency n might be more common than
the global currency g, in this illustration, four times more common. Second and third,

λn = λg = 1/5 express that the household’s expense mjτjPj p
λj
j from unsuccessful tax

evasion increases concavely in the representative household’s tax evasion probability pj.
Fourth, fifth, and sixth, βn = γn = 2/5 = α/2 and βg = (1 − α)/2 = 1/10 preserve
the same ratio α/(1 − α) = βn/βg = γn/

(
1 − βn − βg − γn

)
= 4 for how the household

and government assign output elasticities to the national currency n versus the global
currency g. That is, both the household and the government assign a four times higher
output elasticity to currency n than to currency g in their Cobb Douglas expected utilities
U and u, and the government does so for both first terms in Equation (3) pertaining to its
identification with the household, and for the last two terms in Equation (3) pertaining
to how the government benefits from taxation income and income from the household’s
penalty payment from unsuccessful tax evasion. Seventh and eighth, the government’s
unit effort costs an = ag = 1 of choosing the monitoring probability mj are the simplest
possible benchmarks that satisfy an ≥ α and ag ≥ 1 − α. In Figure 4, each of the eight
parameter values is altered from its benchmark, while the other seven parameter values
are kept at their benchmarks. Division of Pj with 20 is for scaling purposes.
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Figure 4. The government’s monitoring probability 𝑚𝑚� , taxation 𝜏𝜏� , penalty factor 𝑃𝑃� , and expected utility 𝑢𝑢, and the 
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𝛼𝛼 𝛼 𝛼 𝛼⁄ , 𝜆𝜆� 𝛼 𝜆𝜆� 𝛼 1 𝛼⁄ , 𝛽𝛽� 𝛼 𝛾𝛾� 𝛼 2 𝛼⁄ , 𝛽𝛽� 𝛼 1 10⁄ , 𝑎𝑎� 𝛼 𝑎𝑎� 𝛼 1 . The eight double panels, for the eight parameters 
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In Figure 4a,a′, as the household’s output elasticity α for currency n increases, the
household’s fraction x of currency n increases linearly, the government’s monitoring proba-
bility mn of currency n increases linearly, and the government’s penalty factor Pg imposed
on each household’s holding of currency g increases convexly; while the household’s
fraction 1 − x of currency g decreases linearly, the government’s monitoring probability
mg of currency g decreases linearly, and the government’s penalty factor Pn imposed on
each household’s holding of currency n decreases convexly; and the remaining variables
are constant.

In Figure 4b,b′,c,c′, as the exponential tax evasion parameter λj increases, the house-
hold’s probability pj of tax evasion on currency j increases concavely, and the government’s
taxation τj on currency j increases linearly; the government’s penalty factor Pj imposed on
each household’s holding of currency j is relatively constant, and the remaining variables
are constant, j = n, g.

In Figure 4d,d′, as the government’s output elasticity βn for currency n increases, the
household’s probabilities pn and pg of tax evasion on currencies n and g increase linearly
and convexly, and the government’s taxation τn and τg on currencies n and g decrease
concavely and convexly. That causes taxation τg to be quite low when βn is high, since
the government then taxes currency n more than currency g. Furthermore, increasing βn
causes the government’s penalty factors Pn and Pg imposed on each household’s holding
of currencies n and g to increase concavely and convexly, and the remaining variables
are constant.

In Figure 4e,e′, as the government’s output elasticity βg for currency g increases, the
household’s probability pg of tax evasion on currency g increases convexly, the govern-
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ment’s taxation τg on currency g decreases linearly, and the government’s penalty factor
Pg imposed on each household’s holding of currency g increases convexly. The remaining
variables are constant.

In Figure 4f,f′, as the government’s output elasticity γn for currency n when valuing
taxation τn and valuing penalty Pn on unsuccessful tax evasion on currency n increases, the
household’s probabilities pn and pg of tax evasion on currencies n and g decreases concavely
and increases convexly. Furthermore, as γn increases, the government’s taxation τn and
τg on currencies n and g increases concavely and decreases convexly, the government’s
penalty factors Pn and Pg imposed on each household’s holding of currencies n and g
decreases concavely and increases convexly, and the remaining variables are constant.

In Figure 4g,g′,4h,h′, as the government’s unit cost aj of choosing the monitoring prob-
ability mj of currency j increases, the government’s monitoring probability mj of currency
j decreases concavely, the government’s penalty factor Pj imposed on each household’s
holding of currency j increases linearly, and the remaining variables are constant, j = n, g.

5. Discussion, Economic Intuition, and Policy Implications

Eight results in the previous section are particularly noteworthy. First, the household’s
fraction x of the national currency n, the government’s monitoring probability mn of the
national currency n, and the penalty factor Pg imposed on holding the global currency
g, increase linearly, linearly, and convexly in the household’s output elasticity α for the
national currency n. It is assumed that as one currency becomes more important, valuable,
and useful for the household, it holds more of it, which causes the government to monitor
it more thoroughly. More extensive monitoring of one currency is accompanied with a
lower penalty factor for that currency, and a higher penalty factor for the other currency.
This inverse correlation between monitoring mj and the penalty factor Pj, shown in
mboxfigfig:games-1159039-f004a,a′, causes the household to choose a constant probability
pj of tax evasion on currency j. The policy implication is that governments should be
cognizant of this inverse correlation between monitoring mj and the penalty factor Pj,
which can be implemented in laws and procedures. For example, increased monitoring mj
without decreasing the penalty factor Pj as shown in Figure 4a,a′ cannot be expected to
cause the household to choose a constant probability pj of tax evasion on currency j, but
can instead cause the household to choose a lower probability pj of tax evasion on currency
j since the penalty factor Pj is too high.

Second and third, the household’s probability pj of tax evasion and the government’s
taxation τj increase concavely and linearly, respectively, in the exponential tax evasion
parameter λj for each currency j. The mathematical reason can be seen from Equation (2)

where higher λj causes lower p
λj
j , since 0 ≤ pj ≤ 1, which dilutes the impact of monitoring

mj and the penalty factor Pj through the term mjτjPj p
λj
j , causing higher probability pj of

tax evasion. The government’s natural response is to tax more, which is expressed with
higher τj. The intuition is that if the government’s structure of monitoring and penalties
becomes more lenient, expressed with higher λj, the household will evade tax more, and
will face higher taxation. The policy implication is that governments should holistically
recognize the relationship between monitoring, penalties, the amount of taxation, and how
households evade tax under these conditions.

Fourth, the household’s probabilities pn and pg of tax evasion on both currencies n and
g increase in the government’s output elasticity βn for the national currency n. Furthermore,
the government’s taxation τj on both currencies decrease, and the penalty factor Pj increase,
in βn. Additionally, a high βn eventually induces the government to tax that currency n
more than the global currency g. Since higher βn means that the government identifies more
with the household, and thus becomes more altruistic, it is assumed that the household
exploits the government’s altruism through more tax evasion. Additionally, the household
enjoys less taxation, although the government eventually taxes currency n, which it values,
more than currency g, and eventually suffers higher penalties. The policy implication is
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that governments should realize that identifying too much with households, by becoming
more altruistic, and lowering taxes, with a possible objective of appeasing citizens and
ensuring reelection, might cause the households to exploit the situation by evading tax
even more.

Fifth, and similarly fourth, the household’s probability pg of tax evasion on currency
g increases in the government’s output elasticity βg. The government’s taxation τg on
currency g decreases in βg, as the government identifies more strongly with the household.
The government’s penalty factor Pg imposed on each household’s holding of currency g
increases in βg. The intuition is again that the household exploits the government’s altruism
through more tax evasion, enjoys less taxation, although eventually there is more taxation
on the currency that the government values most, and eventually suffers higher penalties.
The policy implication is again that governments should recognize the relationship between
being altruistic, being exploited through different probabilities of tax evasion on the two
currencies, and imposing adequate taxes and penalties.

Sixth, the household’s probabilities pn and pg of tax evasion on currencies n and g
decreases and increases in the government’s output elasticity γn for currency n, which
values taxation τn and penalty Pn on unsuccessful tax evasion on currency n. Furthermore,
the household is less likely to evade tax on the national currency n if the government values
taxation τn and penalty Pn, expressed with γn, on the national currency n. The results are
opposite for currency g, as shown in Sections 3 and 4. The intuition is that a higher γn,
which implies valuing taxation and penalties for tax evasion, causes the government to
be less altruistic towards the household regarding the national currency n, which causes
more taxation with a lower associated penalty factor, and less tax evasion. Intuitively,
higher γn has the opposite impact for the global currency g. The policy implication is that
governments should assess how they value taxation and penalties for tax evasion, which
impacts how households evade tax differently on national and global currencies.

Seventh and eighth, the government’s monitoring probability mj of each currency j
decreases in the unit cost aj of monitoring, counteracted by the penalty factor Pj imposed
on each household’s holding of each currency increase. This causes the tax rates τn and τg
and the household’s probabilities pn and pg of tax evasion to be constant. The intuition is
that the government compensates for a low (high) monitoring probability mj, as regulated
by the unit cost aj of monitoring, by choosing a high (low) penalty factor Pj. The model thus
predicts, for example, that if the government is less able to monitor transactions and enforce
regulations in cryptocurrencies, expressed by a high unit costs of monitoring, then it should
impose higher penalties on each household’s holding of cryptocurrencies when taxes are
evaded. Whether that happens in practice is an interesting empirical question that should
be analyzed in future research. For example, if the government’s unit cost ag of monitoring
in Figure 4g,g′ is extremely high causing the monitoring probability mg to be extremely low,
then a variety of consequences are possible. For example, the government might not be able
to impose and enforce payment of sufficiently high penalties as predicted by the model,
due to laws, regulations, and customs placing upper bounds on penalties, or households
being unable to pay excessive penalties, for example. Alternatively, households might in
practice not follow the expected utility theory when facing an extremely low monitoring
probability mg of being detected and prosecuted for tax evasion, and might choose to
ignore the probability of being monitored. The policy implication is that governments
should be cognizant of the relationship between how they choose monitoring efforts and
penalties for tax evasion, and how this relationship impacts their own taxation and the
households’ tax evasion.

6. Conclusions

This article presents a game between a government and a representative household
holding two currencies, which can generally be any two assets, subject to taxation. The two
currencies are a national currency, e.g., a CBDC and a global currency, e.g., Bitcoin, Zcash,
or Facebook’s Diem, which might have limited usage within a nation. The global currency
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might offer other opportunities, e.g., tax evasion, user autonomy, discretion, peer-to-peer
focus, no banking fees, payment on the black market, criminal activities, and potential return.

The household makes three strategic choices to maximize its Cobb Douglas expected
utility with two output elasticities associated with the two currencies. Due to the different
opportunities, usage, values, etc. provided by the two currencies, the household chooses to
hold one fraction in the national currency, and the remaining fraction in the global currency.
Additionally, the household chooses the tax evasion probability on each currency.

The government makes six strategic choices, i.e., the probability of detecting and
prosecuting tax evasion on each currency, the tax rate on each currency, and the penalty
factor imposed on each household when tax evasion is successfully detected and prosecuted
for each currency. The government has a Cobb Douglas expected utility with four output
elasticities, minus costs of choosing the monitoring probabilities. Two output elasticities
are associated with the two currencies as the government identifies with the household.
The two remaining output elasticities are due to the government benefitting from taxes and
penalties. The government incurs a cost of choosing the monitoring probability.

The article analytically determines the players’ nine strategic choices and expected
utilities. Many results are in line with logic. Some results illustrate aspects that the
governments and households should be cognizant of. The household prefers low taxation.
The government identifies partly with each household, since it is either elected by the
households or needs support from the households, but also needs income from taxation
and might receive penalty payments for detecting tax evasion. The players’ strategic
choices are closely related to their output elasticities for the two currencies, and to the
government’s output elasticities that value taxation and penalties for tax evasion.

The household’s fraction of the national currency, the government’s monitoring prob-
ability of the national currency, and the penalty factor imposed on the global currency,
increase the household’s output elasticity for the national currency. The household’s proba-
bility of tax evasion and the government’s taxation increase in the exponential tax evasion
parameter for each currency. The household’s probabilities of tax evasion on both currencies
increase in the government’s output elasticity for the national currency. The government’s
taxation on both currencies decrease in the output elasticity for the national currency.

High output elasticity for the national currency eventually induces the government to
tax that currency more than the global currency. The household’s probability of tax evasion
on the global currency increases in the government’s output elasticity for that currency.
The household is less (more) likely to tax evade on the national (global) currency if the
government values taxation and penalty on the national (global) currency. The govern-
ment’s monitoring probability of each currency decreases in the unit cost of monitoring.
The government’s penalty factor imposed on each household’s holding of each currency
increases in the unit cost of monitoring. The results are illustrated numerically where each
of eight parameter values are varied relative to a benchmark.

Future research should compile and assess empirical support for how households
and governments choose strategies for national and global currencies, and assess common
output elasticities in Cobb Douglas expected utilities for currencies. Such empirical support
should be assessed against the fractions that a representative household chooses for each
currency, and the probabilities the households choose for tax evasion on currencies. The
government’s probability of detecting and prosecuting tax evasion, the tax rate, and the
penalty factor imposed on each household when tax evasion is successfully detected and
prosecuted, should be empirically assessed for each currency.

Future research might also model more than two currencies, and additional players
such as firms, multiple governments in multiple countries, central banks, banks, and inter-
national financial institutions. Various alternatives to the players’ expected utilities might
be evaluated, i.e., backing, convenience, confidentiality, transaction efficiency, financial
stability, and security, as perceived by each player. More complexity and multiple time
periods might also be incorporated.
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Appendix A. Nomenclature

Appendix A.1. Parameters

j Currency of kind j, j = n, g.
n National currency.
g Global currency.
α The household’s output elasticity for currency n, 0 ≤ α ≤ 1.
1 − α The household’s output elasticity for currency g, 0 ≤ α ≤ 1.
λj Exponential tax evasion parameter, 0 ≤ λj ≤ ∞, j = n, g.
βn The government’s output elasticity for currency n when identifying with the

household, 0 ≤ βn ≤ 1.
βg The government’s output elasticity for currency g when identifying with the

household, 0 ≤ α ≤ 1.
γn The government’s output elasticity for currency n when valuing taxation τn and

valuing penalty Pn on unsuccessful tax evasion on currency n, 0 ≤ γn ≤ 1.
1 − βn − βg − γn The government’s output elasticity for currency g when valuing

taxation and valuing penalties on unsuccessful tax evasion, of currency g, 0 ≤ 1 − βn −
βg − γn ≤ 1.

aj Unit cost of choosing the monitoring probability nj, aj ≥ 0, j = n, g.

Appendix A.2. Household’s Free Choice Variables

pj Household’s probability of tax evasion on currency j, j = n, g, 0 ≤ pj ≤ 1.
x Household’s fraction of currency n, 0 ≤ x ≤ 1.

Appendix A.3. Government’s Free Choice Variables

mj Government’s probability of monitoring and thus detecting and prosecuting tax
evasion on currency j, 0 ≤ mj ≤ 1, j = n, g.

τj Household’s tax rate on currency j, 0 ≤ τj ≤ 1, j = n, g.
Pj Government’s penalty factor imposed on each household’s holding of currency j

when tax evasion is successfully detected and prosecuted, j = n, g.

Appendix A.4. Dependent Variables

U Household’s expected utility.
u Government’s expected utility per household.
1 − x Household’s fraction of currency g, 0 ≤ x ≤ 1.
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Appendix B. Determining the Household’s Free Choice Variables

Differentiating the household’s expected utility U in Equation (2) with respect to its
free choice variable x gives

∂U
∂x

=




(
1 − (1 − pn)τn − mnτnPn pλn

n

)α(
1 −

(
1 − pg

)
τg − mgτgPg p

λg
g

)1−α

× (α−x)xα−1

(1−x)α i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise

(A1)

which is equated with zero and solved to yield Equation (5). The second order conditions,
inserting x = α, are satisfied as negative, i.e.,

∂2U
∂x2

∣∣∣∣
x=α

=




−
(

1 − (1 − pn)τn − mnτnPn pλn
n

)α(
1 −

(
1 − pg

)
τg − mgτgPg p

λg
g

)1−α

× αα−1

(1−α)α i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise
(A2)

Differentiating the household’s expected utility U in Equation (2) with respect to its
free choice variables pj, j = n, g, gives

∂U
∂pn

=




ατn

(
1 − mnPnλn pλn−1

n

)(
1 − (1 − pn)τn − mnτnPn pλn

n

)α−1

×
(

1 −
(
1 − pg

)
τg − mgτgPg p

λg
g

)1−α
xα(1 − x)1−α

i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise

(A3)

and

∂U
∂pg

=




(1 − α)τg

(
1 − mgPgλg p

λg−1
g

)(
1 − (1 − pn)τn − mnτnPn pλn

n

)α

×
(

1 −
(
1 − pg

)
τg − mgτgPg p

λg
g

)−α
xα(1 − x)1−α

i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise

(A4)

which are equated with zero and solved to yield Equation (6). The second order condition
for pn is satisfied as negative, i.e.,

∂2U
∂p2

n
=





−
(

1 − (1 − pn)τn − mnτnPn pλn
n

)α−2(
1 −

(
1 − pg

)
τg − mgτgPg p

λg
g

)1−α

×ατn(1 − x)1−αxα
(

mnPn pλn−2
n (λn − 1)λn

(
1 − (1 − pn)τn − mnτnPn pλn

n

)

+(1 − α)τn

(
1 − mnPnλn pλn−1

n

)2
)

i f Pn ≤ 1−(1−pn)τn

mnτn pλn
n

0 otherwise

(A5)

The second order condition for pg is analogous.
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Appendix C. Determining the Government’s Free Choice Variables

Differentiating the government’s expected utility u in Equation (3) with respect to its
six free choice variables mj, τj, Pj, j = n, g, gives

N ≡
(

1 − pn + mnPn pλn
n

)
τnx, G ≡

(
1 − pg − mgPg p

λg
g

)
τg(1 − x),

∂u
∂mn

=




−x(1 − x − G)βg
(
G − agmg

)1−βn−βg−γn(x − N)βn−1(N − anmn)
γn−1

×
(

mn p2λn
n P2

n x(βn + γn)τ2
n + anγn(1 + (−1 + pn)τn)

−pλn
n Pnτn(anmn(βn + γn) + x(γn + (−1 + pn)(βn + γn)τn))

)

i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise

(A6)

and

∂u
∂mg

=




(−1 + x)(1 − x − G)βg−1(G − agmg
)−βn−βg−γn(x − N)βn(N − anmn)

γn

×(agmg p
λg
g Pg(−1 + βn + γn)τg − ag

(
−1 + βg + βn + γn

)

×
(
1 +

(
−1 + pg

)
τg
)
+ p

λg
g Pg(−1 + x)τg(−βg

+(−1 + βn + γn)(−1 + τg + pg(−1 + mg p
λg−1
g Pg)τg)))

i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise

(A7)

and

∂u
∂τn

=




−(1 + pn

(
−1 + mn pλn−1

n Pn

)
x(1 − x − G)βg(x − N)βn−1

×
(
G − agmg

)1−βn−βg−γn(N − anmn)
γn−1(−anmnβn − xγn

+
(

1 + pn

(
−1 + mn pλn−1

n Pn

))
x(βn + γn)τn))

i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise

(A8)

and

∂u
∂τg

=




(
1 + pg

(
−1 + mg p

λg−1
g Pg

))
(−1 + x)(1 − x − G)βg−1(G − agmg

)−βn−βg−γn

×(βg − agmgβg − xβg − (−1 + βn + γn)(−1 + τg + pg(−1+

mg p
λg−1
g Pg)τg) + x(−1 + βn + γn)(−1 + τg

+pg

(
−1 + mg p

λg−1
g Pg

)
τg))(x − N)βn(N − anmn)

γn

i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise
(A9)

and

∂u
∂Pn

=




−(1 − x − G)βg
(
G − agmg

)1−βn−βg−γn(x − N)βn−1(N − anmn)
γn−1

×mn pλn
n xτn

(
−anmnβn − xγn +

(
1 + pn

(
−1 + mn pλn−1

n Pn

))
x(βn + γn)τn

)

i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise

(A10)
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and

∂u
∂Pg

=




mg p
λg
g (−1 + x)τg(1 − x − G)βg−1(G − agmg

)−βn−βg−γn(βg − agmgβg

−xβg − (−1 + βn + γn)
(
−1 + τg + pg

(
−1 + mg p

λg−1
g Pg

)
τg

)
+ x(−1 + βn+

γn)(−1 + τg + pg(−1 + mg p
λg−1
g Pg)τg))(x − N)βn(N − anmn)

γn

i f Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g

0 otherwise

(A11)

Equating the first order conditions in Equations (A6)–(A11) with zero and solving
gives Equation (7), which are valid when the inequalities are satisfied. The if-test Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j = n, g, is omitted in Equation (7) since it is always satisfied. It can be shown

that the second order conditions are satisfied as negative.

Appendix D. Proof of Property 1

Equations (5)–(7) constitute nine equations with the nine unknown variables x, pj, mj,

τj, Pj, j = n, g, which are solved to yield Equation (8). Just as the if-test Pj ≤
1−(1−pj)τj

mjτj p
λj
j

, j =

n, g, is omitted in Equation (7) since it is always satisfied, it is also omitted for x, pn and pg
in Equation (8) since it is always satisfied. The inequalities an ≥ α and ag ≥ 1 − α follow
from Equation (7) when x = α. The inequality 0 ≤ λj ≤ 1, j = n, g, follows since λj > 1
would cause taxation τn > 1 in Equation (8), which is not meaningful.

Appendix E. First Order and Second Order Derivatives for Property 2

Differentiating Equation (8) when an ≥ α, ag ≥ 1 − α, 0 ≤ λj ≤ 1, j = n, g, gives

∂x
∂α = 1, ∂(1−x)

∂α = −1, ∂pn
∂α =

∂pg
∂α = ∂τn

∂α =
∂τg
∂α = 0, ∂mn

∂α = 1
an

, ∂mg
∂α = −1

ag
,

∂Pn
∂α = −an

λnα2

(
λn βn

λn βn+γn

)1−λn
, ∂2Pn

∂α2 = 2an
λnα3

(
λn βn

λn βn+γn

)1−λn
,

∂Pg
∂α =

ag

λg(1−α)2

(
λg βg

1−βn−γn−(1−λg)βg

)1−λg

,

∂2Pg
∂α2 =

2ag

λg(1−α)3

(
λg βg

1−βn−γn−(1−λg)βg

)1−λg

(A12)

∂x
∂λn

= ∂(1−x)
∂λn

=
∂pg
∂λn

= ∂mn
∂λn

=
∂mg
∂λn

=
∂τg
∂λn

=
∂Pg
∂λn

= 0,
∂pn
∂λn

= βnγn

(λn βn+γn)
2 , ∂2 pn

∂λ2
n
= −2β2

nγn

(λn βn+γn)
3 , ∂τn

∂λn
= βn

βn+γn
,

∂Pn
∂λn

= −an βn

α(λn βn+γn)
2

(
λn βn

λn βn+γn

)−λn(
βn + γn + (λnβn + γn)Ln

(
λn βn

λn βn+γn

)) (A13)

∂x
∂λg

= ∂(1−x)
∂λg

= ∂pn
∂λg

= ∂mn
∂λg

=
∂mg
∂λg

= ∂τn
∂λg

= ∂Pn
∂λg

= 0,
∂pg
∂λg

=
βg(1−βn−βg−γn)

(1−βn−γn−(1−λg)βg)
2 , ∂2 pg

∂β2
g
=

2β2
g(1−βn−βg−γn)

(1−βn−γn−(1−λg)βg)
3 ,

∂τg
∂λg

=
βg

1−βn−γn
,

∂Pg
∂λg

=
ag βg

(1−α)(1−βn−γn−(1−λg)βg)
2

(
λg βg

1−βn−γn−(1−λg)βg

)−λg

×
(

1 − βn − γn +
(
1 − βn − γn −

(
1 − λg

)
βg

)
Ln

(
λg βg

1−βn−γn−(1−λg)βg

))

(A14)
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∂x
∂βn

= ∂(1−x)
∂βn

= ∂mn
∂βn

=
∂mg
∂βn

= 0, ∂pn
∂βn

= λnγn

(λn βn+γn)
2 , ∂2 pn

∂β2
n
= −2λ2

nγn

(λn βn+γn)
3 ,

∂pg
∂βn

=
λg βg

(1−βn−γn−(1−λg)βg)
2 , ∂2 pg

∂β2
n
=

2λg βg

(1−βn−γn−(1−λg)βg)
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A game between central banks and households 
involving central bank digital currencies, other 
digital currencies and negative interest rates
Guizhou Wang1 and Kjell Hausken1*

Abstract:  Central Bank Digital Currencies (CBDCs) enable negative interest rates. A game 
is analyzed between a central bank (accounting for the government’s interest) and 
a representative household choosing to consume, hold CBDC, or hold non-CBDC. The 
central bank chooses negative interest rate when it realizes that the household is willing 
to pay the central bank for holding CBDC. The household pays the negative interest rate 
because of its Cobb Douglas preferences whereby it values holding CBDC while simulta-
neously holding the competitive non-CBDC with a given interest rate, consuming with 
various output elasticities, and accounting for transaction efficiencies and costs. More 
explicitly, intuition and how the players benefit are provided for the following results: The 
central bank chooses more negative interest rate when the household’s output elasticity 
for consumption increases, the household’s output elasticity for holding CBDC decreases, 
the CBDC and non-CBDC transaction efficiencies increase, the household’s transaction 
efficiency for consumption decreases, the household’s scaling of the transaction cost 
increases, the scaling parameter for the central bank’s profit per household decreases, 
the household’s monetary energy decreases, and the non-CBDC interest rate decreases. 
The results are determined analytically and illustrated numerically where each of nine 
parameter values is varied relative to a benchmark.

Subjects: Public Finance; Corporate Finance; Banking 

Keywords: central bank; central bank digital currency; digital currency; negative interest 
rates; cryptocurrency; game theory; household; government

JEL Classification Numbers: C72; H26

1. Introduction

1.1. Background
The digitization of currency revolutionizes mankind’s use of currencies. Increasingly many 
central banks research Central Bank Digital Currencies (CBDCs), or have progressed to proof of 
concept or pilots, or have launched CBDCs (https://cbdctracker.org/). Commonly stated reasons 
are to promote financial inclusion and simplify the implementation of monetary and fiscal 
policy. CBDC developments are enabled and incentivized by new technological opportunities, 
potentially or partly as a countermovement, competitor or alternative to cryptocurrencies 
controlled by algorithms or actors (https://coinmarketcap.com). One early and essential crypto-
currency is Nakamoto’s (2008) “proof of work” blockchain based electronic cash system labeled 
Bitcoin.1 Whereas CBDCs are digital currencies developed by central banks (which are 
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centralized authorities), cryptocurrencies are digital currencies where transactions are recorded 
and verified through cryptography by a decentralized system. Less common cash usage incen-
tivizes central banks to popularize more acceptable and easily applicable electronic currencies. 
Some central banks and their associated governments may prefer CBDCs designed to record and 
possibly control households’ transactions. In recent years credit and debit cards, wire transfers 
and various other forms of payments have gradually replaced cash. CBDCs may continue such 
replacements of cash. A survey by the Bank for International Settlements shows that currently, 
central banks representing a fifth of the world’s population are likely to issue a general purpose 
CBDC in the next three years (Boar & Wehrli, 2021). Households in countries adopting CBDCs as 
legal tender, and prohibiting all alternatives as legal tender, are forced to adopt their country’s 
CBDC (unless they can function through commodity exchange). Countries can more commonly 
be expected to accept alternatives to CBDCs so that households can choose among alternatives. 
10 July 2022, 20,172 cryptocurrencies contribute to a market cap of $931 billion.2 The crypto 
fields of decentralized finance (DeFi) and non-fungible Tokens (NFT) develop rapidly.

Digital currencies give rise to new possibilities, including differences across currencies regarding 
transaction efficiencies, convenience, universal accessibility, confidentiality, financial stability, 
monetary policy, security, privacy, etc. Meanwhile, it also brings various challenges such as new 
infrastructures, new household behaviors, potentially more efficient and flexible monetary policies, 
and new functions or disintermediation for banks. Specifically, CBDCs enable central banks to 
implement negative interests.

Traditionally, the zero-lower bound on interest rate has been a challenge for central banks with 
paper money. The reasons are multifarious, i.e. the store of value of money requires a non- 
negative return, potentially adverse implications for bank profitability, and a potentially weak 
monetary transmission mechanism as the interest rate decreases towards zero.3 Under various 
accommodative policy regimes, various regions and countries such as the Euro area, Denmark, 
Sweden, Japan, and Switzerland have implemented negative interest rates.

1.2. Contribution
This article develops a game model between a representative household and a central bank which 
includes the government’s interest. This approach grounded in game theory, which has earned 18 
Nobel prizes from 1970 to 2017, constitutes the theoretical underpinning of the study. The house-
hold converts its resources or monetary energy strategically into consumption, holding of CBDC 
issued by the central bank with a given interest rate, and holding of non-CBDC which earns an 
interest rate and can be any asset not issued by and not controlled by a central bank. Each 
household’s allocation highlights the potential relation between CBDC and non-CBDC, and further-
more the relation to consumption. Each household’s allocation impacts the central bank’s mone-
tary policy, which in turn may impact how non-CBDCs evolve. The central bank chooses the CBDC 
interest rate, which can be negative or positive. The household has a Cobb Douglas utility with 
three elasticities, accounting for its strategic choices. The central bank identifies partly with each 
household, but additionally pays interest to each household when it is positive.

The emergence of digital currencies (CBDCs or non-CBDC) makes it easier to implement negative 
interest rates, which incentivize consumption rather than saving. CBDC holders subject to negative 
interest rates are easily subtracted what they owe on the ledger, whereas holders of physical cash not 
recorded on a ledger must actively provide through some channel cash they possess as interest 
payment. When a household experiences a negative interest rate, it pays a storage charge instead of 
earning positive interest. A central bank may have multiple reasons for choosing negative interest 
rates, e.g., to avoid recession, stimulate economic activity, and avoid deflation. An actor controlling 
a non-CBDC may choose negative interest rates for similar reasons, and to compete with CBDCs.

This article’s research question and objective are to determine how a household earns utility and 
allocates monetary energy between consumption, holding CBDC and holding non-CBDC depending 
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on the interest rate of CBDC chosen by the central bank and the non-CBDC interest rate (both of 
which may be positive or negative), and depending on various preferences, transaction efficiencies 
and other factors.

The household’s utility accounts for consumption, CBDC and non-CBDC having different transac-
tion efficiencies. A transaction efficiency function is presented which increases with holding CBDC 
and non-CBDC, and decreases with consumption. The model illustrates how different transaction 
efficiencies and interest rates of CBDC and non-CBDC impact the players’ strategic choices.

The impact of nine parameters is analyzed analytically and numerically. These are the house-
hold’s monetary energy; output elasticities for consumption and CBDC (which implicitly determines 
the elasticity for non-CBDC); and transaction efficiencies for CBDC, non-CBDC and consumption; the 
scaling of the household’s transaction cost; the scaling of the central bank’s profit, and the non- 
CBDC interest rate. These parameters are interesting to study since they impact the players’ 
strategies, utility and profit. Each parameter has an independent impact on the model, which is 
essential since it enables identifying which specific ingredients of the model has which specific 
impact. Numerical analysis illustrates variation of each parameter value relative to a benchmark. 
The article contributes to all the four areas of the literature reviewed in the next section.

1.3. Literature
The literature is divided into four groups, i.e., CBDC design and economy; game theoretic analyses; 
negative interest rates; and CBDC, monetary policy and policy implications. These four groups are 
interconnected and relevant as follows. Since the central bank is one of the two players in the 
article, the first group is about CBDC design and the economy, which provides a foundation for the 
central bank as a player and crucially impacts how the central bank operates. The second group, 
naturally, is game theoretic analysis, to illustrate the linkage to the current article which applies 
game theory as a tool. The third group is about negative interest rates, which some central banks 
have already started to explore. CBDCs contain the unique feature of being technologically able to 
implement negative interest rates, which may potentially become important in the future. The 
fourth group is CBDC, monetary policy and policy implications, which extends from the other three 
groups into the real economy through policy implications.

1.3.1. CBDC design and economy
Kiff et al. (2020) explore the issuance considerations of retail CBDC which the general public has 
access to it. They review CBDC research, and summarize the operating models, design considera-
tions and risk management of issuing CBDC. Similarly, Allen et al. (2020) show that CBDC brings 
a range of new possibilities, but also causes many challenges. They investigate the technical 
challenges facing CBDC designers, focusing on performance, privacy, and security. They summarize 
the main potential benefits of CBDC, i.e. efficiency, a broader tax base, flexible monetary policy, 
payment backstop, and financial inclusion. Ozili (2022) reviews the literature, points out that the 
motivation of a CBDC is to improve the monetary policy, enhance digital payment efficiency, and 
increase financial inclusion. He points out limitations of CBDC design, and challenges in meeting 
multiple competing goals. He finds that a CBDC has cash-like attributes and is a liability of the 
issuing central bank. Carapella and Flemming (2020) also review the literature, and assess how 
CBDCs impact commercial banks, monetary policy and financial stability. Oh and Zhang (2020) 
analyze a CBDC in a two-sector monetary model with a formal and an informal economy. They 
show that tax reduction and a positive CBDC interest rate are useful to enhance CBDC adoption 
and improve its effectiveness. This article contributes to this literature by considering how 
a representative household chooses strategies impacted by the CBDC interest rate, impacted by 
the non-CBDC interest rate, consumption and various transaction efficiencies.

1.3.2. Game theoretic analyses
This article contributes to this literature by considering a game between the central bank choosing 
the CBDC interest rate and a representative household choosing consumption, holding CBDC and 
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holding non-CBDC. Wijsman (2021) analyzes households which can earn positive or negative 
interest rate at one bank, can switch to another bank subject to switching costs, or can invest 
alternatively. His approach relates to the current article where households also have two possibi-
lities for saving (CBDC and non-CBDC), and have an alternative which is consumption instead of 
investment. His switching costs have some linkage to transaction costs in the current article. 
Wijsman (2021) finds that banks may decrease their interest rates if switching costs are higher 
and alternative household investments are less attractive. He also finds that high switching costs 
prevent banks from attracting savers from competitors, and less attractive alternatives for house-
holds may cause expensive wars of attrition between banks.

Wang and Hausken (2021) consider a game between a representative household choosing to 
hold a national currency and a global currency, and a government choosing how to tax the two 
currencies, and how to detect, prosecute and impose penalties for tax evasion. Jia (2020) develops 
an overlapping generations model to explore the macroeconomic impact of negative interest rates 
on CBDC. He finds that a negative CBDC interest rate induces agents to save less and consume 
more, which in turn leads to a decrease in capital investment and output. This article presents 
related results for how a household saves CBDC or non-CBDC with negative CBDC interest rates. 
George et al. (2020) evaluate the macroeconomic implications of a CBDC with an adjustable 
interest rate. They extend the analysis to an open-economy context with foreign capital flows. 
The study shows that a CBDC with an adjustable interest rate is welfare-improving, and that 
a quantity rule delivers the best welfare outcome for society.

Welburn and Hausken (2015, 2017) adopt game theory to explore economic crises. They analyze 
six kinds of players, i.e., countries, central banks, banks, firms, households, and financial inter- 
governmental organizations. Players have various strategies such as setting interest rates, lending, 
borrowing, producing, consuming, investing, defaulting, etc. This article considers only two players, 
i.e. a representative household and the central bank, with specific strategies and utilities for each.

1.3.3. Negative interest rates
This article contributes to this literature by considering how a central bank may choose a negative 
interest rate impacting, and being impacted by a representative household’s consumption, holding of 
CBDC and non-CBDC, and transaction efficiencies. Davoodalhosseini et al. (2020) argue that an 
interest-bearing CBDC could be a versatile instrument, which may enhance monetary policy thea-
trically, i.e., break below the effective lower bound of interest rates, enable non-linear transfer, reduce 
incentives to adopt alternative means of payments, etc. But in practice the expected benefits might 
be small. Partly related, the current article shows how an interest-bearing CBDC can operate in 
conjunction with an interest-bearing non-CBDC for a household which also consumes.

Rognlie (2016) explores monetary policy with negative interest rates. He finds that gains from 
negative interest rates depend inversely on the level and elasticity of currency demand, that 
negative interest rates stabilize aggregate demand, but inefficiently subsidize the paper currency.

Altavilla et al. (2019) apply confidential data from the euro area to show that well-performed 
banks can pass negative rates on to their corporate depositors without experiencing decreased 
funding. Additionally, a negative interest rate policy can provide further stimulus to the economy 
via firms’ asset rebalancing. The findings challenge the view that conventional monetary policy 
becomes ineffective when policy rates reach the zero-lower bound.

Assenmacher and Krogstrup (2018) think that cash prevents central banks from cutting interest 
rates much below zero. They analyze the practical feasibility of adopting electronic money, which 
could remove the lower bound constraint on monetary policy. The result is feasible electronic 
money fully restoring the monetary policy space with negative interest rates.
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Grasselli and Lipton (2019) point out that CBDC can overcome the lower bound for interest rates 
imposed by physical cash. They construct a stock-flow macroeconomic model to investigate the 
theoretical effectiveness of negative interest rates. They find that negative interest rates can be an 
effective tool for macroeconomic stabilization.

David-Pur et al. (2020) provide experimental evidence on how zero and negative interest rates 
impact investments. They show that a zero-interest rate is more efficient than a negative interest 
rate in terms of the impact on people’s willingness to borrow money and take risks. But there is no 
impact of the difference between a positive and a negative interest rate on the change in the 
allocation of risky assets in investment portfolios.

1.3.4. CBDC, monetary policy and policy implications
This article contributes to this literature by allowing positive and negative CBDC interest rates. 
Bordo and Levin (2017) analyze how digital cash enhances the effectiveness of monetary policy. 
They argue that a CBDC may potentially facilitate many aspects of monetary policy, thus poten-
tially improving the stability of the financial system. Asimakopoulos et al. (2019) set up a dynamic 
stochastic general equilibrium model to evaluate the economic consequences of cryptocurrencies. 
Using US and crypto markets monthly data for the period 2013:M6-2019:M3, a substitution effect is 
found between the real balances of government currency and cryptocurrency.

Beniak (2019) explores hypothetical challenges of CBDC implementation for monetary policy, 
and the impact on the broader economy. Based on an overview of the literature, he concludes that 
CBDC impacts central bank interest rates, monetary policy implementation and the transmission 
mechanism. The scale of these effects depends on the design and demand for this new form of 
money.

Kim and Kwon (2019) apply a monetary general equilibrium model to explore the implications of 
CBDC on financial stability. The study shows that deposits in CBDC accounts decrease the supply of 
private credit by commercial banks, which has a negative effect on financial stability via increasing 
the likelihood of a bank panic. However, once the central bank can lend all the deposits in CBDC 
account to commercial banks, an increase in the quantity of CBDC can enhance financial stability.

Bindseil (2020) reviews the CBDC advantages, i.e. efficient payments, anti-illegal activities, 
strengthened monetary policy (negative interest rates are possible), higher seigniories income, 
etc. Possible risks are structural disintermediation of banks, systemic runs on banks, centralization 
of the credit allocation process within the central bank, etc. They propose a two-tier remuneration 
of CBDC as a solution.

Bindseil and Fabio (2020) point out that a two-tier remuneration system for the CBDC would be 
an efficient solution to issues like bank disintermediation, negative interest rate policy, financial 
stability, etc. A tiered remuneration of CBDC would achieve four key objectives, namely, offering 
attractive CBDC as a means of payment to households, offering CBDC in a quantitatively uncon-
strained manner to any holder (not just citizens), controlling the risks of structural or cyclical bank 
disintermediation, and enabling negative interest rates.

1.4. Article organization
Section 2 presents the model. Section 3 analyzes the model. Section 4 illustrates the solution. 
Section 5 discusses the results and provides economic intuition and policy implications. Section 6 
presents shortcomings and future research. Section 7 concludes.

2. The model
A non-cooperative static simultaneous-move one-period game is played between a representative 
household and a unitary player comprising the interests and capabilities of a central bank and 
a government, referred to as the central bank, for simplicity. The household and central bank 
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choose their strategies simultaneously and independently. The static analysis is assumed to 
represent a stationary situation through time where the players adapt optimally to each other in 
a manner that can be expressed at one point in time. The stationary situation implicitly accounts 
for the nature of interest rates where resources usually have to be held for a certain amount of 
time in order for interest to be earned. Mathematically this amount of time can be made arbitrarily 
small. Hence, in a stationary situation, interest can be assumed earned at the same point in time in 
which the players choose their strategies and earn their utilities. Appendix A shows the 
nomenclature.

2.1. The household’s strategic choices and utility
The representative household has available monetary energy r, which also can be interpreted as 
resources, converted at unit cost 1 into consumption c, CBDC (Central Bank Digital Currency) m, 
and some non-CBDC q, i.e. 

r ¼ c þ m þ q (1) 

where c;m; q are scaled equivalently on some appropriate scale, which may be any scale, e.g., of 
monetary nature. Hence, since c;m;q are scaled equivalently in (1), we assume no coefficients 
before c;m;q, which means that the coefficients equal 1. Equation (1) means that the household 
accepts and adopts both CBDC m and non-CBDC q. The household demands optimal amounts of 
CBDC m and non-CBDC q, and weighs these demands against its consumption c to maximize its 
utility U developed below.

A CBDC m is in this model interpreted as any currency issued by the central bank with an interest 
rate Im, Im 2 R , where R is the set of all real numbers, which includes e.g., the Chinese e-CNY. 
A non-CBDC q is interpreted as any asset earning an interest rate Iq, Iq 2 R , and which is not issued 
by and not controlled by a central bank. We may think of the non-CBDC q as a cryptocurrency such 
as Bitcoin. Both interest rates Im and Iq can be positive or negative. That means that the non-CBDC 
q can earn a higher or lower interest rate than the CBDC m, as illustrated e.g., in Figure 1 panel 
i. The broad definitions of CBDC m and non-CBDC q in (1) work fine for the purpose of this article, 
where the household allocates its monetary energy r into the three destinations consumption c, 
CBDC m with interest rate Im, and some non-CBDC q with interest rate Iq.

We develop the household’s Cobb Douglas utility in four steps. First, the household has a Cobb 
Douglas utility with three output elasticities α; β;1 � α � β, 0 � α � 1, 0 � β � 1, 0 � 1 � α � β � 1, 
for consumption c, CBDC m, and some non-CBDC q, i.e. 

U1 ¼ cαmβq1�α�β (2) 

which expresses constant returns to scale, since the three exponents sum to 1. Second, the 
household earns interest Im, Im 2 R , on CBDC m, and earns interest Iq, Iq 2 R , on the non-CBDC 
q. Interest rates are usually positive, but can for digital currencies, and especially for CBDC m, be 
negative. Earning interest rates Im and Iq on CBDC m and non-CBDC q means multiplying m and q 
with 1 þ Im and 1 þ Iq, respectively. Incorporating these multiplications into (2) gives 

U2 ¼ cα m 1 þ Imð Þð Þβ q 1 þ Iq
� �� �1�α�β (3) 

Third, a simultaneous-move game is analyzed which can be interpreted as a stationary situation 
where time plays no role. Equation (1) is interpreted so that the household converts its resources 
r into consumption c, CBDC m, and non-CBDC q. This conversion involves transaction costs which 
impacts the household’s utility. In order to transact between consumption c, CBDC m, and non- 
CBDC q, the household seeks to obtain high transaction efficiency, which means that it has to pay 
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transaction costs. Transactions are never free. Costs are always involved when transacting. With 
other conditions unchanged, a high transaction efficiency means a lower transaction cost. We 
define the household’s transaction efficiency E to increase with holding CBDC m and holding non- 
CBDC q, and decrease with consumption c, i.e. 

Figure 1. The household’s con-
sumption c, holding of CBDC m, 
holding of non-CBDC q, and utility 
U, and the central bank’s interest 
rate Im and profit u, as functions of 
the nine parameter values 
α; λn; λg; βn; γn;βg; an; ag relative to 
the benchmark parameter values 
α ¼ η ¼ 1=5; β ¼ μ ¼ 2=5; λ ¼ 1=10;
θ ¼ r ¼ 1; σ ¼ 5; Iq ¼ 0. Division of 
Im with 5 and u with 3 is for scaling 
purposes.
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E ¼
mμqη

θcλ (4) 

where μ, μ � 0, is the household’s transaction efficiency for CBDC m; η, η � 0, is the household’s 
transaction efficiency for non-CBDC q. The parameter λ is the household’s transaction efficiency for 
consumption c, and 1=θ; θ � 0, scales the degree or level of the household’s transaction efficiency. 
We require 0 � λ � α so that the household benefits positively from consumption, expressed as cα 

in (3), despite the transaction cost 1=cλ in (4). We also assume η � λ, so that the household’s 
transaction efficiency η for non-CBDC q is higher than or equal to the household’s transaction 
efficiency λ for consumption c.

The transaction efficiency E in (4) satisfies @E
@c � 0; @E

@m � 0; @E
@q � 0; @2E

@c2 � 0;
@2E
@m2 � 0 when μ � 1; @2E

@q2 � 0 when η � 1; @2E
@c@m � 0; @2E

@c@q � 0, see Appendix B. Thus E decreases convexly 

in consumption c, and increases in the CBDC m and the non-CBDC q. For related accounts of the transaction 
efficiency E, usually conceptualized as the transaction cost 1=E, see, Feenstra (1986), Bougheas (1994), and 
Saygılı (2012).

The literature usually considers the inverse 1=E of (4) interpreted as the transaction cost, where θ 
scales the transaction cost. Higher transaction efficiency for CBDC m than for non-CBDC q, to 
sustain negative interest rates Im<0 on CBDC m, requires μ>η, which we generally do not require 
since we in principle can envision even more negative interest rates Iq<Im<0 for non-CBDC q. 
Multiplying (4) with (3) gives the household’s utility 

U3 ¼ cα m 1 þ Imð Þð Þβ q 1 þ Iq
� �� �1�α�β mμqη

θcλ (5) 

Fourth, the household’s resource constraint in (1) expresses that the household has two free 
choice variables, i.e. consumption c and CBDC m, where non-CBDC q ¼ r � c � m follows from 
solving (1) with respect to q. Inserting q ¼ r � c � m into (5) gives 

U ¼ cα m 1 þ Imð Þð Þβ r � c � mð Þ 1 þ Iq
� �� �1�α�β mμ r � c � mð Þη

θcλ (6) 

which has two strategic choice variables c and m, and which is the household’s utility U which we 
analyze in the remainder of the article.

2.2. The central bank’s strategic choice and profit
We consider the central bank and the government as one unitary player, referred to as the central 
bank for simplicity, with the ability to choose the CBDC interest rate Im, Im 2 R . Common objectives 
for central banks usually include financial stability including price stability, and controlling infla-
tion, unemployment, interest rates, or exchange rates. To obtain these objectives central banks are 
often assumed to choose discretionary policies. Some literature, e.g., Taylor (1993), assumes that 
central banks follow certain rules, without evidence of specific rules actually being applied. One 
may hypothesize that central banks follow certain norms, e.g., as philosophically expounded by 
Kant (1785) for which evidence is also not apparent. Given the common presence of maximizing 
behavior for players tasked with reaching objectives, this article assumes that also the central bank 
maximizes to reach its stated objectives. Although the literature agrees that central banks have 
objectives, the literature does not agree on what central banks actually maximize to reach these 
objectives. One might assume that central banks minimize deviations from specified targets 
related to financial stability including price stability, inflation, unemployment, interest rates, or 
exchange rates. One problem with that approach is that it is not directly linked to what each 
household may perceive as its objectives. Each household may not agree with the specified 
targets, may not agree with which of the many objectives the central bank seeks to reach, or 
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may consider the central bank’s objectives as too abstract. As outlined in the previous section 2.1, 
each household may find it easier to focus more concretely on its resource allocation into 
consumption, holding CBDC and holding non-CBDC, instead of somehow conceptualizing the 
general price level or some of the other central bank’s objectives. To formalize how the central 
bank maximizes to reach objectives, this article assumes that the central bank identifies partly 
with each household, with the utility in (6). That assumption is made by reasoning that the central 
bank’s wide-ranging objectives listed above are compatible with creating an environment within 
which each household can flourish in the sense of maximizing its utility. That the central bank’s 
profit per household function is linear in the household’s utility is assumed to be a suitable first 
approximation. Future research may explore whether various kinds of nonlinear relationships may 
be appropriate. Additionally, the central bank pays interest mIm to each household, which is 
subtracted from (6) to yield the central bank’s profit per household 

u ¼ σcα m 1 þ Imð Þð Þβ r � c � mð Þ 1 þ Iq
� �� �1�α�β mμ r � c � mð Þη

θcλ � mIm (7) 

where the parameter σ, σ>0, is multiplied with the first term for scaling purposes. That is, the 
subtracted term mIm is measured along some monetary scale, and σ enables the first term to be 
measured along the same monetary scale, and hence we refer to u as profit. Equation (7) 
expresses that the central bank identifies partly with each household, weighted with the para-
meter σ, and subtracting the interest mIm paid to each household.

2.3. Methodology
The article applies non-cooperative game theory (Fujiwara-Greve, 2015; Von Neumann & 
Morgenstern, 1944) assuming two players, i.e. a representative household and a central bank. 
Each player is fully rational and has complete information about the game and all parameter 
values. The players choose their strategies simultaneously and independently to maximize their 
utilities. For the household the utility is a Cobb Douglas utility multiplied with a transaction 
efficiency E. For the central bank the utility is a profit function defined as a benefit minus a cost 
mIm. Both players’ utilities depend on the two players’ three strategic choice variables c, m and Im. 
The game is a so-called variable sum game which means that the sum of the players’ utilities 
depend on their strategies. The game’s solution amounts to determining a Nash equilibrium Nash 
(1951) from which no player prefers to deviate unilaterally when choosing its strategy.

3. Analyzing the model

3.1. Analyzing the household

Lemma 1. The household’s consumption c, holding of CBDC m, and holding of non-CBDC q are 

c ¼
r α � λð Þ

1 þ η � λ þ μ
;m ¼

r β þ μð Þ
1 þ η � λ þ μ

;q ¼
r 1 � α � β þ ηð Þ

1 þ η � λ þ μ
(8) 

with characteristics shown in and discussed after the Proposition.

Proof. Appendix C.

3.2. Analyzing the central bank

Lemma 2. The central bank’s CBDC interest rate Im for the household’s holding of CBDC m is 
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Im ¼
θ β þ μð Þ1�β�μ

σβ α � λð Þα�λ
r

1 þ η � λ þ μ

� �λ�μ�η

1 þ η � α � βð Þαþβ�η�1 1 þ Iq
� �αþβ�1

 ! 1
β�1

� 1 (9) 

with characteristics shown in and discussed after the Proposition.

Proof. Appendix D.

3.3. Analyzing the household and the central bank

Lemma 3. The household’s utility U and the central bank’s profit per household u are 

U ¼ 1 þ Iq
� �1� α

1�βr
1�βþη�λþμ

1�β β
β

1�β 1 � α � β þ ηð Þ1�α�η
1�β θ

�1
1�β α � λð Þ

α�λ
1�β β þ μð Þ

μ
1�β 1 þ η � λ þ μð Þ

� 1�βþη�λþμð Þ
1�β σ

β
1�β

(10)  

u ¼ 1 þ Iq
� �1� α

1�βr
1�βþη�λþμ

1�β β
β

1�β 1 � α � β þ ηð Þ1�α�η
1�βθ

�1
1�β α � λð Þ

α�λ
1�β β þ μð Þ

μ
1�β

1 þ η � λ þ μð Þ
� 1�βþη�λþμð Þ

1�β σ
1

1�β þ
1

1 þ η � λ þ μ
rðβ þ μ

� 1 þ Iq
� �1� α

1�βr
η�λþμ

1�β β
1

1�β 1 � α � β þ ηð Þ
1�α�βþη

1�β θ
�1
1�β α � λð Þ

α�λ
1�β β þ μð Þ

μ
1�β 1 þ η � λ þ μð Þ

λ�μ�η
1�β σ

1
1�βÞ

(11) 

with characteristics shown in and discussed after the Proposition.

Proof. Follows from inserting (8) and (9) into (6) and (7). 

Proposition 
@c
@α

� 0;
@c
@β

¼ 0;
@c
@μ

¼
@c
@η

� 0;
@2c
@μ2 ¼

@2c
@η2 � 0;

@c
@λ

� 0;
@2c
@λ2 � 0;

@c
@θ

¼
@c
@σ

¼
@c
@Iq

¼ 0;

@c
@r

� 0;
@m
@α

¼ 0;
@m
@β

� 0;
@m
@μ

� 0;
@2m
@μ2 � 0;

@m
@η

¼ �
@m
@λ

� 0;
@2m
@η2 ¼

@2m
@λ2 � 0;

@m
@θ

¼
@m
@σ

¼

@m
@Iq

¼ 0;
@m
@r

� 0;
@q
@α

� 0;
@q
@β

� 0;
@q
@μ

¼ �
@q
@λ

� 0;
@2q
@μ2 ¼

@2q
@λ2 � 0;

@q
@η

� 0;
@2q
@η2 � 0;

@q
@θ

¼
@q
@σ

¼

@q
@Iq

¼ 0;
@q
@r

� 0;
@Im

@α
/ �Ln 1 þ Iq

� �
� Ln 1 þ η � α � βð Þ þ Ln α � λð Þ;

@Im

@θ
� 0;

@2Im

@θ2 � 0;

@Im

@σ
� 0;

@2Im

@σ2 � 0;
@Im

@r
� 0 when η � λ þ μ � 0;

@2Im

@r2 � 0 when η � λ þ μð Þ �1 þ β þ η � λ þ μð Þ

� 0;
@Im

@Iq
� 0;

@2Im

@I2
q

� 0;
@U
@α

/ �Ln 1 þ Iq
� �

� Ln 1 þ η � α � βð Þ þ Ln α � λð Þ;

@U
@θ

� 0;
@2U
@θ2 � 0;

@U
@σ

� 0;
@2U
@σ2 � 0 when 2β � 1;

@U
@r

� 0 when 1 � β þ η � λ þ μ � 0;

@2U
@r2 when η � λ þ μ � 0;

@U
@Iq

� 0;
@2U
@I2

q
� 0

Proof. Follows from (22), (23), (24), (25) in Appendix E, where α � λ implies 1 þ η � λ þ μ � 0 
since 1 � α.

The Proposition states, first, that the household’s consumption c, holding of CBDC m, and holding 
of non-CBDC q, increases, is independent, and decreases in its output elasticity α for consumption 
c. That is, as consumption becomes more important, the household consumes more and holds less 
non-CBDC q. When � Ln 1 þ Iq

� �
� Ln 1 þ η � α � βð Þ þ Ln α � λð Þ � 0, which is satisfied when α is 
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not too high, increasing α causes the central bank to decrease its interest rate Im, which is 
consistent with higher consumption c, and causes lower household’s utility U, consistently with 
the lower interest rate Im.

Second, the household’s consumption c, holding of CBDC m, and holding of non-CBDC q, is 
independent, increases, and decreases in its output elasticity β for holding CBDC m. That is, as 
holding CBDC m becomes more important, the household holds more CBDC m, and holds less non- 
CBDC q.

Third, the household’s consumption c, holding of CBDC m, and holding of non-CBDC q, decreases 
convexly, increases concavely, and decreases convexly, in its transaction efficiency μ for CBDC m. 
That is, as CBDC m transactions become more efficient, the household holds more CBDC m, 
consumes less, and holds less non-CBDC q.

Fourth, the household’s consumption c, holding of CBDC m, and holding of non-CBDC q, 
decreases convexly, decreases convexly, and increases concavely, in its transaction efficiency η 
for non-CBDC q. That is, as non-CBDC transactions become more efficient, the household holds 
more non-CBDC q, consumes less, and holds less CBDC m.

Fifth, the household’s consumption c, holding of CBDC m, and holding of non-CBDC q, decreases 
concavely, increases convexly, and increases convexly, in its transaction efficiency λ for consump-
tion c. That is, as consumption c transactions become more efficient, which in (6) implies less 
weight to consumption c due to the term cα�λ, the household consumes less, and holds more CBDC 
m and more non-CBDC q.

Sixth, the household’s consumption c, holding of CBDC m, and holding of non-CBDC q, are 
independent of the household’s scaling θ of the transaction cost. The central bank’s interest rate 
Im and the household’s utility U decrease convexly in θ. That is, higher transaction cost θ is costly 
for the household. That cost is to some extent experienced by the central bank in (7) which 
compensates by choosing lower interest rate Im which makes the second cost term � mIm 

lower in absolute value, and positive if the interest rate Im is negative.

Seventh, the household’s consumption c, holding of CBDC m, and holding of non-CBDC q, are 
independent of the scaling parameter σ for the central bank’s profit. The central bank’s interest 
rate Im increases convexly in σ, which according to (7) enables the central bank to profit substan-
tially. The household’s utility U increases concavely in σ when 2β � 1, and otherwise increases 
convexly, as the household benefits from the higher interest rate Im.

Eighth, the household’s consumption c, holding of CBDC m, and holding of non-CBDC q, increase 
linearly in the household’s monetary energy, or resources, r. When η � λ þ μ � 0, the central bank’s 
interest rate Im increases in r, as the central bank identifies partly with the household’s utility in (6), 
and pays higher interest rate Im on the household’s increased holding of CBDC m. When 
1 � β þ η � λ þ μ � 0, the household’s utility U increases in r, as the household benefits from the 
higher interest rate Im on its increased holding of CBDC m.

Ninth, the household’s consumption c, holding of CBDC m, and holding of non-CBDC q, are 
independent of the non-CBDC’s interest rate Iq. The central bank’s interest rate Im and the house-
hold’s utility U increase concavely in Iq. That is, the household benefits from the higher interest 
rate Iq on its holding of non-CBDC q, which induces the central bank competitively to increase its 
interest rate Im to prevent the household from changing its holding from CBDC m to non-CBDC q.

Table 1 summarizes the main results in the Proposition with an upward arrow " , sideways 
arrow ! , or downward arrow # , respectively, depending on whether the first order derivative 
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(listed first) and second order derivative (listed second) are positive, zero or negative. The deriva-
tives are for the variable in the row with respect to the parameter in the column. Empty cells 
means that the signs of the derivatives contain if-conditions as expressed in the Proposition and 
Appendix E. Only one sideways arrow ! is listed if the first order derivative and all higher order 
derivatives equal zero. Only the upward arrow " is listed for @U

@σ � 0 since @2U
@σ2 � 0 when 2β � 1.

4. Illustrating the solution
To illustrate the solution in section 3, this section alters the nine parameter values α; β; μ; η; λ; θ; σ; r; Iq relative 
to the benchmark parameter values α ¼ η ¼ 1=5; β ¼ μ ¼ 2=5; λ ¼ 1=10; θ ¼ r ¼ 1; σ ¼ 5; Iq ¼ 0. First, 
α ¼ 1=5 expresses relatively low weight or elasticity for consumption c. Second, β ¼ 1 � α � β ¼ 2=5 reflects 
equal and higher weight or elasticity for CBDC m and non-CBDC q. Third, η ¼ 1=5 reflects intermediate 
transaction efficiency for non-CBDC q. Fourth, μ ¼ 2=5 reflects twice as high transaction efficiency for CBDC 
m. Fifth, λ ¼ 1=10 reflects low transaction efficiency for consumption c. Sixth, Iq ¼ 0 expresses zero interest 
rate for non-CBDC q, as a plausible benchmark relative to which the CBDC interest rate Im may be higher or 
lower. Seventh, σ ¼ 5 is chosen so that the CBDC interest rate Im ¼ 0 at the benchmark. Eighth, θ ¼ r ¼ 1 are 
chosen due to simplicity and since the value 1 seems plausible when no other value may appear more 
plausible. With these benchmark parameter values the benchmark solution is 
c ¼ 1=15 � 0:067;m ¼ 8=15 � 0:53; q ¼ 2=5 ¼ 0:4; Im=5 ¼ 0:00;U ¼ 0:27; u=3 ¼ 0:44. In Figure 1 
each of the nine parameter values is altered from its benchmark, while the other eight parameter values 
are kept at their benchmarks. Division of Im with 5 and u with 3 is for scaling purposes.

In Figure 1a, as the household’s output elasticity α for consumption c increases, its consumption 
c, holding of CBDC m, and holding of non-CBDC q, increases, is independent, and decreases. When 
α is high, the household values consumption c more and non-CBDC q less. Except when α is very 
high, as α increases, the central bank’s interest rate Im decreases and becomes negative when 
α>1=5. Furthermore, the household’s utility U decreases since it earns less interest on its holding of 
CBDC m, and the central bank’s profit per household u decreases since it identifies partly with the 
household as expressed in (7) compared with (6).

In Figure 1b, as the household’s output elasticity β for CBDC m increases, its consumption c, 
holding of CBDC m, and holding of non-CBDC q, is independent, increases, and decreases. When β is 
high, the household values CBDC m more and non-CBDC q less. Valuing CBDC m more is consistent 
with higher CBDC interest rate Im, which eventually causes higher household’s utility U and higher 
central bank’s profit per household u.

In Figure 1c as the household’s output transaction efficiency μ for CBDC m increases, its 
consumption c, holding of CBDC m, and holding of non-CBDC q, decreases convexly, increases 
concavely, and decreases convexly. More efficient CBDC m transactions cause the household to 
hold more CBDC m, consume less, and hold less non-CBDC q. That the household holds more CBDC 
m is costly for the central bank, as expressed with � mIm in (7), which is negative when Im � 0. 
Hence, as μ increases, the central bank decreases its interest rate Im which eventually becomes 
negative. That’s costly for the household which receives decreasing utility U, and costly for the 
central bank which identifies partly with the household and receives decreasing profit u.

In Figure 1d, as the household’s transaction efficiency η for non-CBDC q increases, its consump-
tion c, holding of CBDC m, and holding of non-CBDC q, decreases convexly, decreases convexly, and 
increases concavely. More efficient non-CBDC q transactions cause the household to hold less 
CBDC m, consume less, and hold more non-CBDC q. With the specified parameter values, that 
causes the central bank to decrease its interest rate Im marginally, causing the household’s utility 
U and the central bank’s profit per household u to decrease.

In Figure 1e, as the household’s transaction efficiency λ for consumption c increases, its 
consumption c, holding of CBDC m, and holding of non-CBDC q, decreases concavely, increases 
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convexly, and increases convexly. More efficient consumption c transactions enable the household 
to hold more CBDC m and more non-CBDC q, and consume less. The central bank responds by 
increasing its CBDC interest rate Im, which causes higher household’s utility U and higher central 
bank’s profit per household u.

In Figure 1f, as the household’s scaling θ of the transaction cost increases, its consumption c, 
holding of CBDC m, and holding of non-CBDC q, do not change. The higher cost θ has to be born by 
someone, so the central bank decreases its interest rate Im which becomes negative, and the 
household’s utility U and the central bank’s profit per household u decrease.

In Figure 1g, as the scaling parameter σ for the central bank’s profit per household increases, the 
household’s consumption c, holding of CBDC m, and holding of non-CBDC q, do not change. In 
contrast to higher θ which is a cost, higher σ is a benefit, and thus the central bank increases its 
interest rate Im, and the household’s utility U and the central bank’s profit per household u increase.

In Figure 1h, as the household’s monetary energy, or resources, r, increases, its consumption c, 
holding of CBDC m, and holding of non-CBDC q, increase. That’s beneficial for both players causing 
the central bank’s interest rate Im and profit u, and the household’s utility U, to increase.

In Figure 1i, as the non-CBDC interest rate Iq increases, the household’s consumption c, holding 
of CBDC m, and holding of non-CBDC q, do not change. Higher Iq causes the central bank to 
increase its CBDC interest rate Im, which causes the central bank’s interest rate Im and profit u, and 
the household’s utility U, to increase.

5. Discussion, economic intuition and policy implications
Nine results in the previous section are noteworthy. First, as the household’s output elasticity α 
for consumption increases, it consumes more, holds the same amount of CBDC m, and holds 
less non-CBDC q. Except when α is high, the central bank’s interest rate Im and the players’ 
utility U and profit u decrease. The intuition is that higher household consumption causes the 
household to decrease holding something. It chooses to hold less non-CBDC q. The central 
bank’s decreased benefit from the positive term in (7) induces it to strike a different tradeoff or 
balance between benefit and cost expressed with the negative term in (7), causing decreased 
and negative CBDC interest rate Im. As α increases from the low value α ¼ 1=10, we get the 
conventional relationship where the household responds to decreasing CBDC interest rate Im by 
consuming more. Interestingly, as α increases above α ¼ 1=5 and the central bank’s interest rate 
Im becomes negative, the household pays the central bank for holding its CBDC m. That is 
possible according to the Cobb Douglas logic in (6) since the household values holding CBDC m, 
despite having to pay for it, in combination with the other ingredients of (6). Naturally, a limit 
exists for how much the household is willing to pay the central bank. Hence the central bank’s 
negative interest rate Im levels out and starts increasing from a minimum Im ¼ �0:057 when 
α ¼ 0:45. The increasing Im in principle curtails the household’s consumption c, which never-
theless continues to increase since α as the household’s output elasticity α for consumption c 
constitutes a stronger force and has higher impact. The policy implication is that the household 
and central bank should be conscious about how they impact each other. Negative CBDC 
interest rate Im can indeed be associated with increased consumption c. The central bank 
needs to assess the household’s Cobb Douglas preferences broadly within the economy, to 
determine how negative the CBDC interest rate Im can be allowed to be.

Second, and as a contrast, as the household’s output elasticity β for holding CBDC m increases, it 
holds more CBDC m and less non-CBDC q, the CBDC interest rate Im increases, and the players’ utility U 
and profit u eventually increase. The intuition is that the household chooses to hold CBDC m or non- 
CBDC q depending on what it considers most valuable. Furthermore, if holding CBDC m is sufficiently 
valuable for the household, the central bank increases its interest rate Im from negative to positive. 
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The household benefits in terms of the interest payment. The central bank benefits due to identifying 
partly with the household, which offsets its cost of the interest payment to the household. The policy 
implication is to be conscious of how a household assesses the value of holding CBDC m relative to 
holding non-CBDC q, which impacts the household’s strategies choices and the CBDC interest rate Im.

Third, the household’s consumption c, holding of CBDC m, and holding of non-CBDC q, decreases, 
increases, and decreases, in its transaction efficiency μ for CBDC m. The CBDC interest rate Im 

decreases and becomes negative, and the players’ utility U and profit u decrease. The intuition is 
that more efficient CBDC m transactions encourage the household to consume less, hold more 
CBDC m, and hold less non-CBDC q. That the household holds more CBDC m is costly for the central 
bank unless it decreases its interest rate Im to become negative so that it receives interest 
payment from the household for holding CBDC m. The household receives decreasing utility U 
due to paying increased interest rate to the central bank. The central bank receives decreased 
profit u due to identifying partly with the household. The policy implication is to realize the 
implications of increased CBDC transaction efficiency μ, eventually causing negative CBDC interest 
rate Im because of the household’s increased holding of CBDC m.

Fourth, the household’s consumption c, holding of CBDC m, and holding of non-CBDC q, 
decreases, decreases, and increases, in its transaction efficiency η for non-CBDC q. The CBDC 
interest rate Im decreases and becomes negative, and the players’ utility U and profit u decrease. 
The intuition is that more efficient non-CBDC q transactions encourage the household to consume 
less, hold less CBDC m, and hold more non-CBDC q. That’s costly for the central bank which has to 
pay more in interest to the household. These results are qualitatively in the same direction as for 
the third result when the transaction efficiency μ for CBDC m increases, except that the house-
hold’s holding of CBDC m and holding of non-CBDC q, intuitively, move in the opposite direction. 
The explanation is that both the transaction efficiencies μ and η appear in the numerator in (4), 
which both have the opposite impact compared with the impact of the household’s transaction 
efficiency λ for consumption c, which appears in the denominator in (4). The policy implication is to 
realize the implications of increased non-CBDC transaction efficiency η, eventually causing nega-
tive CBDC interest rate Im because of the household’s increased holding of non-CBDC q.

Fifth, as the household’s transaction efficiency λ for consumption c increases, its consumption c, 
holding of CBDC m, and holding of non-CBDC q, decreases, increases, and increases. The central 
bank increases its interest rate Im, and the players’ utility U and profit u increase. The intuition is 
that more efficient consumption c transactions enable the household to consume less, and hold 
more CBDC m and more non-CBDC q. The central bank appreciates this decreased consumption 
and responds by increasing its CBDC interest rate Im, which is the opposite of results 3 and 4 where 
the CBDC interest rate Im decreases. The policy implication is to realize that increasing the house-
hold’s transaction efficiency λ for consumption c eventually causes positive CBDC interest rate Im, 
contrary to results 3 and 4 where increasing transaction efficiencies μ and η for CBDC m and non- 
CBDC q eventually cause negative CBDC interest rate Im.

Sixth, the CBDC interest rate Im and the players’ utility U and profit u decrease in the household’s 
scaling θ of the transaction cost. The intuition is that a higher transaction cost θ is expensive for 
the household, which is partly experienced by the central bank, and compensated by choosing 
lower and negative CBDC interest rate Im. The policy implication is to be conscious about the 
scaling θ of the household’s transaction cost, which dysfunctionally can cause negative CBDC 
interest rate Im and low players’ utility U and profit u.

Seventh, and in contrast to the sixth result, the CBDC interest rate Im and the players’ utility U 
and profit u increase in the scaling parameter σ for the central bank’s profit per household u. The 
intuition is that higher σ benefits the central bank, enabling it to pay higher and eventually positive 
CBDC interest rate Im to the household, incurred as a cost mIm in (7), which in turn benefits the 
central bank which identifies partly with the household. The policy implication is to realize which 
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factors constitute a benefit for the central bank, which is weighed against the central bank’s 
potential cost of paying interest to the household for holding CBDC m.

Eighth, as the household’s monetary energy, or resources, r, increases, the players’ three free 
choice variables c;m,Im, and the three dependent variables q;U; u, increase. The intuition is that 
a more resourceful household can consume more and hold more CBDC m and more non-CBDC q, 
which benefits the household and the central bank which identifies partly with the household. This 
in turn enables the central bank to pay more interest to the household for holding CBDC m. The 
policy implication is to assess how each household can be made more resourceful, which causes 
all the variables to increase.

Ninth, the CBDC interest rate Im and the players’ utility U and profit u increase in the non-CBDC 
interest rate Iq. The intuition is that the central bank faces the competition from the higher non-CBDC 
interest rate Iq by increasing its own CBDC interest rate Im. The household benefits from holding non- 
CBDC q due to the higher non-CBDC interest rate Iq, which causes the central bank to benefit due to 
identifying partly with the household. This in turn enables the central bank to pay higher CBDC interest 
rate Im to ensure that the household keeps holding CBDC m. Hence a reinforcing virtuous circle (the 
opposite of a vicious circle) arises which benefits everyone. The policy implication is to realize the 
positive relationship between the CBDC interest rate Iq and the non-CBDC interest rate Iq.

6. Shortcomings and future research
Future research, which implicitly specifies shortcomings of the current research, should consider 
several CBDCs and non-CBDCs, including other assets such as bonds, stocks, etc. Additional players 
can be introduced, such as distinguishing between the central banks and governments, modeling 
commercial banks, firms, financial institutions, accounting for different kinds of households, etc. 
Alternative functional forms may be explored. Non-functional forms may also be explored, which 
may enable more generality, but fewer analytical solutions. Empirical evidence should be compiled 
for how households choose consumption, holding of CBDC and non-CBDC, with positive and 
negative CBDC interest rates. Households with different characteristics can be incorporated. The 
players may be assigned different risk attitudes. The players’ Cobb Douglas utilities may account 
for additional factors beyond transaction efficiency, such as privacy, convenience, security, taxes. 
The players’ strategy sets may be extended. For example, each potentially different household 
may be allowed to choose production and leisure in addition to consumption. The analysis may be 
generalized to account for more than one time period, and allow players to move in various 
sequences or simultaneously in repeated games. Digital currencies are a relatively new innovation 
with markets that may be subject to rapid price swings, fluctuations and uncertainty. The sensi-
tivity analysis in the current article accounts for substantial variation in nine parameter values, 
which may change with arbitrary rapidity in the sense that the time dimension is not present in the 
current model. A dynamic analysis accounting for the time dimension may capture the implica-
tions over time of price swings, fluctuations, uncertainty, etc. from multiple angles.

7. Conclusion
This article presents a game model between a representative household and a central bank 
assumed to incorporate the interests of a government. The household has resources converted 
into consumption, holding of CBDC (Central Bank Digital Currency) controlled by a central bank, and 
holding of non-CBDC which can be any asset not issued by and not controlled by a central bank. 
The central bank determines its interest rate. The non-CBDC also has an interest rate. Both these 
two interest rates can be positive or negative. A Cobb Douglas utility with three elasticities for the 
household is developed, which represents consumption, holding of CBDC, and holding of non-CBDC. 
This conceptualization is assumed to be realistic for how households operate in the real world, i.e. 
choosing to consume while also choosing to hold two currencies with different interest rates and 
transaction efficiencies. The central bank identifies partly with each household, and pays interest 
to each household, which is subtracted to yield the central bank profit per household.
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The article determines the household’s consumption and holding of CBDC and the central 
bank’s interest rate analytically, from which the dependent variables follow. Various interesting 
results follow. First, as the household’s output elasticity for consumption increases, it consumes 
more and holds less non-CBDC, while the CBDC interest rate decreases and becomes negative. 
The central bank eventually imposes negative CBDC interest rate on the household since it 
identifies partly with the household which substitutes from holding non-CBDC and into 
consumption.

Second, as the household’s output elasticity for holding CBDC increases, it holds more CBDC and 
less non-CBDC. Hence in contrast, the central bank eventually imposes positive CBDC interest rate 
on the household since it identifies partly with the household which substitutes from holding non- 
CBDC and into holding CBDC.

Third and fourth, the household’s consumption, holding of CBDC, and holding of non-CBDC, 
decreases, increases (decreases), and decreases (increases), in its transaction efficiency for CBDC 
(non-CBDC). Increasing both the CBDC and non-CBDC transaction efficiencies eventually induces 
the central bank to choose negative interest rate, since it otherwise either must pay the household 
too much in interest or must identify with the household’s decreased utility from consuming less 
and holding less CBDC.

Fifth, as the household’s transaction efficiency for consumption increases, it consumes less, and 
holds more CBDC and more non-CBDC. In contrast to the third and fourth results, that encourages the 
central bank to increase its interest rate which becomes positive. The central bank pays more interest 
to the household, but identifies with the household and benefits from the household’s benefit.

Sixth, the CBDC interest rate and the players’ utility and profit decrease in the household’s 
transaction cost, which is detrimental for both players, causing the central bank to burden the 
household with negative interest rates.

Seventh, and in contrast to the sixth result, the CBDC interest rate and the players’ utility and 
profit increase in the scaling parameter for the central bank’s profit, which benefits both players.

Eighth, as the household’s monetary energy, or resources, increases, the household consumes 
more and holds more CBDC and non-CBDC, and the central bank increases its interest rate.

Ninth, the CBDC interest rate and the players’ utility and profit increase in the non-CBDC interest 
rate. A higher non-CBDC interest rate induces the central bank competitively to increase the CBDC 
interest rate, to prevent the household from changing its holding from CBDC to non-CBDC.

The results are illustrated numerically, varying nine parameter values relative to a benchmark.
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Notes
1. The Bitcoin White Paper was published by Satoshi 

Nakamoto on metzdowd.com's Cryptography Mailing 
List on October 31, 2008. It was subsequenctly pub-
lished in Decentralized Business Review; https://www. 
debr.io/article/21260.

2. https://coinmarketcap.com/, retrieved 10 July 2022.
3. Other drawbacks of paper currencies are that they are less 

easily tracked, need to be replaced, can be lost and 
counterfeited, and can be cumbersome to transport.
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Appendix A Nomenclature

Appendix B The derivatives for the transaction efficiency E
Differentiating the transaction efficiency E in (4) with respect to c, m and q gives 

@E
@c

¼ �
c�1�λmμqηλ

θ
� 0;

@E
@m

¼
c�λm�1þμqημ

θ
� 0;

@E
@q

¼
c�λmμq�1þηη

θ
� 0 (12) 

The second derivatives of the transaction efficiency E in (4) with respect to c, m and q gives 

@2E
@c2 ¼ c�2�λmμqηλ 1þλð Þ

θ � 0;

@2E
@m2 ¼ c�λm�2þμqη �1þμð Þμ

θ � 0 when μ � 1;

@2E
@q2 ¼ c�λmμq�2þη �1þηð Þη

θ � 0 when μ � 1;

@2E
@c@m ¼ � c�1�λm�1þμqηλμ

θ � 0;

@2E
@c@m ¼ � c�1�λm�1þμqηλμ

θ � 0

(13) 

Parameters

r Household’s monetary energy, or resources, r � 0

α Household’s output elasticity for consumption c, λ � α � 1

β Household’s output elasticity for CBDC m, 0 � β � 1

1� α � β Household’s output elasticity for non-CBDC q, 0 � 1� α � β � 1

Iq Interest rate, Iq 2 R

μ Household’s transaction efficiency for CBDC m, μ � 0

η Household’s transaction efficiency for non-CBDC q, η � λ

λ Household’s transaction efficiency for consumption c, 0 � λ � α

θ Scaling or degree or level of the household’s transaction cost, θ ≥ 0

σ Scaling parameter for the central bank’s profit, σ > 0

Household’s free choice variables

c Household’s consumption, 0 � c � r

m Household’s holding of CBDC, 0 � m � r

Central bank’s free choice variable

Im CBDC interest rate for the household’s holding of CBDC m, Im 2 R

Dependent variables

U Household’s utility

u Central bank’s profit per household

q ¼ r �m� c Household’s holding of non-CBDC, 0 � q ¼ r �m� c � r

E Household’s transaction efficiency
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Appendix C Proof of Lemma 1
Differentiating the household’s utility U in (6) with respect to its free choice variables c and m gives 

@U
@c

¼
1
θ

cα�λ�1 1 þ Imð Þβ 1 þ Iq
� �1�α�βmβþμ r � c � mð Þη�α�β

� r � mð Þ α � λð Þ � c 1 � β þ η � λð Þð (14)  

@U
@m

¼ �
1
θ

cα�λ 1 þ Imð Þβ 1 þ Iq
� �1�α�βm�1þβþμ r � c � mð Þ�α�βþη c � rð Þ β þ μð Þð

þ m 1 � α þ η þ μð ÞÞ (15) 

which are equated with zero and solved to yield c and m in (10). The dependent variable q follows from 
solving (1) with respect to q and inserting c and m. The second order conditions, inserting (15) and (10), are 

@2U
@c2 ¼ �

β þ μð Þ 1 � β þ η � λð Þ
θ α � λð Þ

1 þ Imð Þβ 1 þ Iq
� �1�α�βq�α�βþηcα�λm�1þβþμ � 0;

@2U
@m2 ¼ �

1 � α þ η þ μð Þ
θ

1 þ Imð Þβ 1 þ Iq
� �1�α�βq�α�βþηcα�λm�1þβþμ � 0

(16) 

The term 1 � β þ η � λ in (16) equals η � λ when β has its maximum β ¼ 1. Hence @2U
@c2 � 0 when 

η � λ. Since the household has two decision variables c and m, we determine the Hessian matrix 

H ¼ H11 H12
H21 H22

� �
¼

@2U
@m2

@2U
@mc

@2U
@cm

@2U
@c2

" #

(17)  

¼
� 1 þ Imð Þβ 1 þ Iq

� �1�α�β

θqαþβ�ηc�αþλm1�β�μ

1 � α þ η þ μ β þ μ
β þ μ βþμð Þ 1�βþη�λð Þ

α�λð Þ

� �

To show that H in (17) is negative semi-definite, it is sufficient to show that (1) H11j j � 0 

and (2) H11 H12
H21 H22

����

���� � 0 hold. Condition 1 obviously holds since 

H11j j ¼ H11 ¼ � 1�αþηþμð Þ
θ 1 þ Imð Þβ 1 þ Iq

� �1�α�βq�α�βþηcα�λm�1þβþμ � 0. Condition 2 also holds, 
H11 H12
H21 H22

����

���� ¼
r α�λð Þ βþμð Þ

θ2 1 þ Imð Þ2β 1 þ Iq
� ��2 �1þαþβð Þq1�2 αþβ�ηð Þc2 �1þα�λð Þm2 �1þβþμð Þ � 0, since α � λ.

Appendix D Proof of Lemma 2
Differentiating the central bank’s profit per household u in (7) with respect to its free choice 
variable Im gives 

@u
@Im

¼ σcαmβ r � c � mð Þ 1 þ Iq
� �� �1�α�β mμ r � c � mð Þη

θcλ β 1 þ Imð Þβ�1 � m (18) 

which is equated with zero and solved to yield 

Im ¼
θ

σβ
cλ�αm1�β�μ r � c � mð Þαþβ�η�1 1 þ Iq

� �αþβ�1
� � 1

β�1

� 1 (19) 

The second order conditions, inserting (15), are satisfied as negative, i.e. 
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@2u
@I2m

¼
β � 1ð Þβσ

θ
cα�λ 1 þ Imð Þ�2þβ 1 þ Iq

� �1�α�βmβþμ �c�mþ rð Þ1�α�βþη � 0 (20) 

Inserting (8) into (19) gives (9).

Appendix E Proof of the Proposition
Differentiating (8) for c;m; q, differentiating (9) for Im, and differentiating (6) (inserting (8) and (9)) 
for U, give 

@c
@α

¼
r

1 þ η � λ þ μ
;
@c
@β

¼ 0;
@c
@μ

¼
@c
@η

¼
�r α � λð Þ

1 þ η � λ þ μð Þ2 ;
@2c
@μ2 ¼

@2c
@η2 ¼

2r α � λð Þ
1 þ η � λ þ μð Þ3 ;

@c
@λ

¼
�r 1 � α þ η þ μð Þ

1 þ η � λ þ μð Þ2 ;
@2c
@λ2 ¼

�2r 1 � α þ η þ μð Þ
1 þ η � λ þ μð Þ3 ;

@c
@θ

¼
@c
@σ

¼
@c
@Iq

¼ 0;
@c
@r

¼
α � λ

1 þ η � λ þ μ

(21) 

@m
@α

¼ 0;
@m
@β

¼
r

1 þ η � λ þ μ
;
@m
@μ

¼
r 1 þ η � λ � βð Þ
1 þ η � λ þ μð Þ2 ;

@2m
@μ2 ¼

�2r 1 þ η � λ � βð Þ
1 þ η � λ þ μð Þ3 ;

@m
@η

¼ �
@m
@λ

¼
�r β þ μð Þ

1 þ η � λ þ μð Þ2 ;
@2m
@η2 ¼

@2m
@λ2 ¼

2r β þ μð Þ
1 þ η � λ þ μð Þ3 ;

@m
@θ

¼
@m
@σ

¼
@m
@Iq

¼ 0;

@m
@r

¼
β þ μ

1 þ η � λ þ μ
(22)  

@q
@α

¼
�r

1 þ η � λ þ μ
;
@q
@β

¼
�r

1 þ η � λ þ μ
;
@q
@μ

¼ �
@q
@λ

¼
�r 1 þ η � α � βð Þ

1 þ η � λ þ μð Þ2 ;

@2q
@μ2 ¼

@2q
@λ2 ¼

2r 1 þ η � α � βð Þ
1 þ η � λ þ μð Þ3 ;

@q
@η

¼
r α þ β � λ þ μð Þ
1 þ η � λ þ μð Þ2 ;

@2q
@η2 ¼

�2r α þ β � λ þ μð Þ
1 þ η � λ þ μð Þ3 ;

@q
@θ

¼
@q
@σ

¼
@q
@Iq

¼ 0;
@q
@r

¼
1 � α � β þ η
1 þ η � λ þ μ

(23)  

@Im
@α

/ �Ln 1 þ Iq
� �

� Ln 1 þ η � α � βð Þ þ Ln α � λð Þ;
@Im
@θ

/ �1 þ β;
@2Im
@θ2 /

2 � β
1 � βð Þ2 ;

@Im
@σ

/
1

1 � β
;
@2Im
@σ2 /

β
1 � βð Þ2 ;

@Im
@r

/
η � λ þ μ

1 � β
;
@2Im
@r2

/
η � λ þ μð Þ �1 þ β þ η � λ þ μð Þ

1 � βð Þ2 ;

@Im
@Iq

/
1 � α � β

1 � β
;
@2Im
@I2q

/
�1 þ α þ β

1 � βð Þ2

(24)  
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@U
@α

/ �Ln 1 þ Iq
� �

� Ln 1 þ η � α � βð Þ þ Ln α � λð Þ;
@U
@θ

/ �1 þ β;
@2U
@θ2 /

2 � β
1 � βð Þ2 ;

@U
@σ

/
1

1 � β
;
@2U
@σ2 /

�1 þ 2β
1 � βð Þ2 ;

@U
@r

/
1 � β þ η � λ þ μ

1 � β
;
@2U
@r2

/
η � λ þ μð Þ 1 � β þ η � λ þ μð Þ

1 � βð Þ2 ;

@U
@Iq

/
1 � α � β

1 � β
;
@2U
@I2q

/
�1 þ α þ β

1 � βð Þ2

(25) 

where / means proportional to.
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A B S T R A C T 

Central bank digital currencies (CBDCs) give rise to many possibilities including those of negative 
interest rates. A two-period decision model is presented between one central bank and one 
representative household. The central bank applies the Taylor (1993) rule to choose its interest rate. 
The household allocates its resources strategically to production, consumption, CBDC holding, and 
non-CBDC holding. The results are determined analytically and illustrated numerically by varying 19 
parameter values. Interesting novelties of the article are that the central bank may choose negative 
CBDC interest rates when the household holds far more CBDC than non-CBDC, for low inflation 
rates, low real interest rates, low household’s potential production, low weight assigned to inflation in 
the Taylor (1993) rule, high target inflation rate, and high household’s production parameter. That 
usually causes the household to decrease its CBDC holding and increase its non-CBDC holding, 
production and consumption. The central bank may increase its CBDC interest rate to compete with 
an increasing non-CBDC interest rate if the household’s transaction efficiencies for CBDC and non-
CBDC increase, or the household’s transaction efficiency for consumption decreases. Shocks to 
production, inflation and interest rates are analyzed. 

© 2022 by the authors. Licensee SSBFNET, Istanbul, Turkey. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/).   
  

 

 
Introduction 
Background 

Technological developments in cryptography and blockchain have made digital currencies worldwide accessible. Central banks 
increasingly explore and develop CBDCs (central bank digital currencies). The Bank for International Settlements predicts that 
central banks for 20% of 7.9 billion people can be expected to issue CBDCs within three years (Boar & Wehrli, 2021). New 
cryptocurrencies emerge every day. December 30, 2021, 16,211 cryptocurrencies contribute to a market cap of $1.8 trillion.1.  G. 
Wang, Zhang, Yu, and Ning (2021) provide a holistic picture of cryptocurrencies and blockchain research. Bhimani, Hausken, and 
Arif (2022) assess cryptocurrency adoption. 

Digital currencies provide new possibilities that include higher transaction efficiencies, universal accessibility, confidentiality and 
privacy, flexible monetary policy, etc. Theoretically, low or negative interest rates can stimulate production and consumption. Some 
countries currently choose negative interest rates. For example, Blanke and Krogstrup (2016) cite the negative interest rates -0.75% 
for Switzerland, -0.5% for Denmark, and -0.1% for Japan. CBDSc make a negative interest policy more widely feasible, which can 
impact the economy substantially. That suggests a need for thorough analysis. 

 

 

 
1 https://coinmarketcap.com/, retrieved April 28, 2022. 
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Contribution 

This article is the first in a series of two articles. This first article builds the decision model involving the central bank applying the 
Taylor (1993) rule and a representative household choosing strategically and compares with a benchmark solution assumed to be 
common in practice. The second article, G. Wang and Hausken (2022), compares with the empirics for the US, China and Russia. 

The objective and research question intended to fill the current research gap are to explore the relationship between positive and 
negative CBDC interest rates and a household’s production, consumption, CBDC holding and non-CBDC holding. A CBDC in this 
article can be interpreted as money supply M2 issued by the central bank. A two-period decision model is developed involving a 
central bank and a representative household. The central bank applies the Taylor (1993) rule to determine its positive or negative 
CBDC interest rate. A Cobb Douglas utility with four elasticities for the household accounts for the household allocating its resources 
strategically to production, consumption, CBDC holding, and non-CBDC holding. 

A central bank fully controls its monetary policy and applies a variety of policy instruments, sometimes referred to as discretionary 
policy. Although no central bank officially uses the Taylor (1993) rule, the rule is frequently used as indicative of what a central bank 
does or may do. Even for central banks occasionally or more permanently applying a fixed exchange rate strategy, the rule may be 
indicative if economic conditions are comparable to other countries. The rule was proposed by Taylor (1993) in 1992 to stabilize 
economic policy by determining an interest rate based on inflation and production. 

The four elasticities are adjusted by the CBDC and non-CBDC interest rates, and the household’s transaction efficiency which 
increases with the household’s CBDC and non-CBDC holdings and decreases with consumption. Solutions are provided analytically 
and numerically relative to a benchmark for how 19 parameters impact the central bank’s application of the Taylor (1993) rule and 
the household’s strategies. The impacts are analyzed of shocks to production, inflation, and the CBDC, non-CBDC, and real interest 
rates. 

Article organization 

Section 2 provides a literature review. Section 3 develops the methodology and the model. Section 4 examines the model. Section 5 
shows and exemplifies the solution. Section 6 analyzes shocks to production, inflation, the CBDC interest rate, the non-CBDC interest 
rate, and the real interest rate. Section 7 discusses the results with economic interpretation. Section 8 concludes. 

Literature Review  
The literature has four categories. First, CBDCs enable central banks to implement negative interest rates which may become an 
important policy. Second, the central bank, one of the two actors in the article, provide and design the CBDC, and assess its impact. 
The third part presents decision theoretic analyses. The fourth part is about CBDCs and policy implications. 

Negative interest rates 

The article explores how a negative CBDC interest rate is connected to a household’s allocations into production, consumption, and 
holding CBDC and non-CBDC. Grasselli and Lipton (2019) think that CBDCs enable the central bank to overcome any lower interest 
rate bound. They build a stock-flow macroeconomic model to explore the theoretical effectiveness of negative interest rates. They 
show that negative interest rates have lower impact on consumption than on investment. In contrast, we show that negative interests 
greatly and positively impacts both production and consumption. 

Czudaj (2020) evaluates the effectiveness of negative interest rates based on expectations data from surveys for 44 economies 2002-
2017. He finds reduced expectations for 10-year government bond yields and 3-month money market interest rates, and positive 
impact on GDP growth and preventing deflation, consistently with the current article. 

Jia (2020) presents a model to investigate the macroeconomic impact of negative interest rates on CBDC. He shows that negative 
interest rates compel agents to save less and consume more, which in turn leads to declining capital investment and output. In the 
current article agents also save less CBDC and consume more. In contrast, the current article finds that agents save more non-CBDC 
and produce more. 

M. Davoodalhosseini, Rivadeneyra, and Zhu (2020) suggest that an interest-bearing CBDC is a versatile instrument for a central 
bank. Theoretically, it may boost monetary policy. For instance, it can impose a negative interest rate, carry out non-linear transfers, 
decrease incentives to use alternative means of payments like cash, etc. That partly relates to the current article’s finding that a 
household’s CBDC holding is typically the opposite of its non-CBDC holding. 

Assenmacher and Krogstrup (2021) think that digital money removes how monetary policy is constrained by a lower bound. They 
investigate how a central bank may construct and run a negative interest rate system. They show that without the lower bound 
constraint, the central bank can stabilize the economy by applying conventional policies. With low to intermediate real interest rates, 
the central bank can make deflationary spirals and the length of business cycle downturns less likely. That partly relates to the current 
article’s finding of how the CBDC interest greatly impacts each household. 
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Meaning, Dyson, Barker, and Claytona (2021) point out that central banks may pay positive, zero or negative interest rates, and may 
impose different rates on different CBDC holders. This flexibility could be an important monetary policy instrument, to stabilize 
inflation and output, and regulate demand. That issue can be explored in a future extension of the current article by assuming 
households with different characteristics. 

Mooij (2021) explores the legal framework in the Eurozone, including whether CBDCs could be classified as legal tender, and used 
as a monetary policy instrument. He concludes that the ECB mandate legally permits using CBDCs. He suggests that a CBDC 
enabling interest can decrease the negative lower bound to near zero, and that negative CBDC interest rates may cause capital flows 
into cryptocurrencies. That is consistent with the current article’s finding that a household’s CBDC holding is usually the opposite 
of its non-CBDC holding. 

Some research has focused on pre-commitment rules, dynamic consistency and optimal policy related to negative interest rate. For 
example, Borio and Zabai (2018) find that various unconventional policies including negative interest rates in varying degrees 
influence financial conditions. They suggest that the policies are exceptional, for use in specific circumstances, and that the cost-
benefit balance is likely to deteriorate over time. They criticize prevailing analyses of helicopter money and explore the risks 
associated with negative nominal interest rates. Ferrero and Neri (2017) assess reasons for historically low interest rates, including 
structural factors and cyclical and financial phenomena. They frame their assessment around a so-called natural interest rate and a 
transmission mechanism for money. They attempt to specify possible policy changes that may follow. 

Decision theoretic analyses 

The article considers a decision model involving the central bank choosing the CBDC interest rate and a representative household 
choosing production, consumption, holding CBDC and holding non-CBDC. G. Wang and Hausken (2021) build a model involving 
a representative household selecting a cryptocurrency or a national currency, analogously to the current article where a household 
chooses whether to hold CBDC or non-CBDC, and selects the probability of tax evasion for each currency. The government decides 
how to tax the two currencies, and how to detect and impose penalties for tax evasion. Welburn and Hausken (2015, 2017) investigate 
economic crises. Six kinds of players are included. These are countries, central banks, firms, banks, households, and financial inter-
governmental organizations. Each player has multiple strategies, i.e. choosing interest rate, borrowing, lending, producing, 
consuming, investing, defaulting, etc. 

CBDC design and the economy 

The article considers the features of CBDC, i.e., higher transaction efficiencies for consumption, compared to non-CBDCs (including 
Bitcoin, bonds, stocks, etc.) and flexible monetary policies that include negative interest rates. Kiff et al. (2020) review the literature 
on central bank experiments, present main considerations on retail CBDCs, and provide a structured framework for CBDC issuance. 
Allen et al. (2020) argues that CBDCs may achieve a broad range of new capabilities, e.g., frictionless payments, new financial 
instruments, direct disbursements, broader tax bases, financial inclusion, the overcoming of technological vulnerabilities, etc. But 
CBDCs also lead to various challenges related to privacy, security, disintermediation of the banking system, etc. They summarize 
the basic technical design choices of CBDCs, especially as they relate to privacy, security, and performance. Auer and Böhme (2020) 
focus on retail CBDCs. They depict the CBDC pyramid that maps consumer needs into the CBDC design choice of central banks. 
They argue that the retail CBDC design needs to make tradeoffs between being secure, accessible, convenient and the safeguarding 
of privacy. Additional assessments addressed in the current article are how a household compares CBDC against non-CBDC, 
production and consumption. 

Agur, Ari, and Dell’Ariccia (2021) present an optimal CBDC design, where each agent holds cash, CBDCs and bank deposits. The 
agent chooses based on its preference for anonymity and security. They find that the optimal CBDC design entails a tradeoff between 
bank intermediation and the maintenance of various payment instruments. H. Wang and Gao (2021) investigate various types of 
CBDCs and their implications on regulation and global financial networks. They suggest that the optimal CBDC networks will be 
decentralized, and cause monetary policy diffusion without regulatory convergence. Lee, Yan, and Wang (2021) explore how a 
CBDC structure can keep a balance between benefits and risks. Advantages of CBDC include inclusiveness, cost-saving, managed 
anonymity, lower cross-border payments, transaction efficiency, security, and more. The risks of CBDCs include bank 
disintermediation, blockchain-based technology vulnerabilities, and the regulation of shadow and derivate markets of CBDCs. They 
conclude that CBDCs will become the primary tools of the digital economy. 

Urbinati et al. (2021) present the status quo of CBDC-related work worldwide. They illustrate a potential digital euro solution that 
will combine an account-based platform and distributed ledger technology. Based on the experiments, they find that this combination 
may provide a sound solution for regulations and retail demand. Choi, Henry, Lehar, Reardon, and Safavi-Naini (2021) introduce a 
hypothetical retail CBDC design for the Bank of Canada. They think that the design is sound and feasible because it is scalable, 
resilient, privacy-centric, and universally accessible. Boar and Wehrli (2021) survey worldwide CBDC developments. They find that 
central banks for 20% of 7.9 billion people can be expected to issue CBDCs within three years. 
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CBDCs and policy implications 

This article relates to this literature by exploring positive and negative CBDC interest rates, and transaction efficiencies. Böser and 
Gersbach (2020) examine the impact of an interest-bearing CBDC on bank activities and monetary policy. They point out that setting 
appropriate collateral requirements will boost aggregate productivity. However, if households hold massive amounts of CBDCs, 
policy with restrictive collateral requirements is risky for banks related to liquidity. That may induce the central bank to abandon 
these policies. This illustrates the dilemmas faced by central banks when issuing CBDCs. S. M. Davoodalhosseini (2021) explores 
the optimal monetary policy when an agent chooses between cash and a CBDC. He finds that only a CBDC may be used if its cost 
is limited, since more efficient allocations can be achieved. 

Beniak (2019) discusses potential challenges of CBDC implementation for monetary policy. He points out that CBDCs will impact 
the interest rates of the central bank, implementation of policy, and the mechanism for transmission. These impacts depend on the 
design of, and the demand for, CBDC. Bindseil (2020) summarizes the advantages of CBDCs, which include efficient payments, 
anti-illegal activities, flexible monetary policy with a negative interest rate, etc. The potential risks of CBDCs are bank 
disintermediation, systemic runs on banks, possible centralization within the central bank, etc. He introduces a two-tier remuneration 
of CBDC as a solution. Bindseil and Fabio (2020) think that a two-tier CBDC provides a sound solution to issues like bank 
disintermediation, negative interest rate policy, financial stability, etc. The CBDC with tiered remuneration has four key objectives, 
including being an attractive means of payment, being universally accessible, depressing the risks of structural bank 
disintermediation, and providing negative interest rates. 

Methodology: The model  
This section specifies how the central bank determines the interest rate through the Taylor (1993) rule. The household’s resource 
constraint for production, consumption, CBDC holding and non-CBDC holding, is specified. The household’s utility is built up 
gradually over four steps. Appendix A shows the nomenclature. 

The central bank’s Taylor (1993) rule application 

The central bank applies in period 1 the Taylor (1993) rule to determine the interest rate 

𝐼𝐼𝑚𝑚 = max {𝜋𝜋 + 𝐼𝐼𝑟𝑟 + 𝑎𝑎𝜋𝜋(𝜋𝜋 − 𝜋𝜋∗) + 𝑎𝑎𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 (
𝑝𝑝ℎ
�̅�𝑝ℎ) , 𝑧𝑧} (1) 

where 𝐼𝐼𝑟𝑟, 𝐼𝐼𝑟𝑟 ∈ ℝ, is the equilibrium real interest rate, where ℝ is the set of all real numbers; 𝜋𝜋, 𝜋𝜋 ∈ ℝ, is the inflation rate (which can 
be positive or negative); 𝜋𝜋∗, 𝜋𝜋∗ ∈ ℝ, is the desired inflation rate; 𝑝𝑝ℎ, 𝑝𝑝 ≥ 0, is the representative household’s production; ℎ is a 
production parameter; �̅�𝑝ℎ, �̅�𝑝 ≥ 0, is the household’s potential production (which can be sustained over the long term); 𝐿𝐿𝐿𝐿𝐿𝐿 is the 
logarithm with base ten; 𝑎𝑎𝜋𝜋, 𝑎𝑎𝜋𝜋 ≥ 0, is the weight assigned to inflation; 𝑎𝑎𝑝𝑝, 𝑎𝑎𝑝𝑝 ≥ 0, is the weight assigned to production; and 𝑧𝑧, 𝑧𝑧 ≤
0, is the negative lower bound on the interest rate 𝐼𝐼𝑚𝑚. 

The household’s strategic choices and utility 

The representative household has resources 𝑟𝑟 which comprise labor capacity and convertible assets. The resources 𝑟𝑟 are in period 2 
converted at unit cost 𝑎𝑎 into production 𝑝𝑝, and converted at unit cost 1 into consumption 𝑐𝑐, CBDC (Central Bank Digital Currency) 
𝑚𝑚, and non-CBDC 𝑞𝑞, i.e. 

𝑟𝑟 = 𝑎𝑎𝑝𝑝 + 𝑐𝑐 + 𝑚𝑚 + 𝑞𝑞 (2) 

where 𝑐𝑐,𝑚𝑚, 𝑞𝑞 are equivalently scaled on a suitable scale, e.g. US$. As CBDCs are not widely available at the time of writing this 
article, we may interpret CBDC as money supply M2 that the central bank issues, made available to the household. The household’s 
production 𝑝𝑝 follows from applying its labor capacity which may generate a salary or useful products. The non-CBDC 𝑞𝑞 can be a 
cryptocurrency such as Bitcoin, a CBDC from another central bank, or any asset. The CBDC 𝑚𝑚 and non-CBDC 𝑞𝑞 are money demands 
which in (2) have the same interpretation as resource allocation into any asset. The household’s production 𝑝𝑝 causes productive 
output 𝑝𝑝ℎ, where ℎ = 1 means linear production, ℎ > 1 means convex production, 0 < ℎ < 1 means concave production, and ℎ = 0 
means no production. 

The household’s Cobb Douglas utility is advanced in four steps. First, the household’s Cobb Douglas utility has four output 
elasticities. The first is 𝛼𝛼 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞 for production, 0 ≤ 𝛼𝛼 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞 ≤ 1, where 𝛼𝛼 is the basic elasticity from which the 
CBDC interest rate 𝐼𝐼𝑚𝑚 and the non-CBDC interest rate 𝐼𝐼𝑞𝑞, with weights 𝑀𝑀 and 𝑄𝑄, are subtracted. The reasoning is that when the 
interest rates 𝐼𝐼𝑚𝑚 and 𝐼𝐼𝑞𝑞 increase, production decreases as is commonly observed, and is thus assigned lower elasticity or weight. 

The second elasticity is 𝛽𝛽 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞  for consumption, 0 ≤ 𝛽𝛽 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞 ≤ 1, where, analogously, 𝛽𝛽 is the basic elasticity 
from which the CBDC interest rate 𝐼𝐼𝑚𝑚 and the non-CBDC interest rate 𝐼𝐼𝑞𝑞, with weights 𝑀𝑀 and 𝑄𝑄, are subtracted. The reasoning is 
that when the interest rates 𝐼𝐼𝑚𝑚 and 𝐼𝐼𝑞𝑞 increase, consumption decreases as is commonly observed, and is thus assigned lower elasticity 
or weight. 
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The third elasticity is 𝛾𝛾 + 2𝑀𝑀𝐼𝐼𝑚𝑚 for saving CBDC 𝑚𝑚, 0 ≤ 𝛾𝛾 + 2𝑀𝑀𝐼𝐼𝑚𝑚 ≤ 1, where 𝛾𝛾 is the basic elasticity to which the CBDC interest 
rate 𝐼𝐼𝑚𝑚, with weight 2𝑀𝑀, is added. The reasoning is that when the interest rate 𝐼𝐼𝑚𝑚 increases, the household assigns higher elasticity 
or weight to saving CBDC 𝑚𝑚. The weight 2𝑀𝑀 is chosen to ensure that the four elasticities sum to 1. 

The fourth elasticity is 1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 2𝑄𝑄𝐼𝐼𝑞𝑞  for saving non-CBDC 𝑞𝑞, 0 ≤ 1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 2𝑄𝑄𝐼𝐼𝑞𝑞 ≤ 1, where 1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 is 
the basic elasticity to which the non-CBDC interest rate 𝐼𝐼𝑞𝑞, with weight 2𝑄𝑄, is added. The reasoning is that when the interest rate 𝐼𝐼𝑞𝑞 
increases, the household assigns higher elasticity or weight to saving non-CBDC 𝑞𝑞. The weight 2𝑄𝑄 is chosen to ensure that the four 
elasticities sum to 1. The household’s utility is thus 

𝑈𝑈1 = 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)𝑐𝑐𝛽𝛽−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞𝑚𝑚𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚𝑞𝑞1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞 (3) 

which manifests constant returns to scale. Since the Cobb Douglas elasticities sum to 1, increasing one elasticity means that at least 
one other elasticity must decrease. For example, if 𝛼𝛼 and 𝛽𝛽 increase, assigning higher weight to production 𝑝𝑝 and consumption 𝑐𝑐,  
The four exponents sum to 1. Second, the household earns interest 𝐼𝐼𝑚𝑚 on CBDC 𝑚𝑚, and earns interest 𝐼𝐼𝑞𝑞, 𝐼𝐼𝑞𝑞 ∈ ℝ, on the non-CBDC 
𝑞𝑞. Interest rates are, at least historically, mostly positive. For digital currencies, including CBDC 𝑚𝑚 and non-CBDC 𝑞𝑞, interest rates 
can be negative. Hence, we multiply 𝑚𝑚 and 𝑞𝑞 with 1 + 𝐼𝐼𝑚𝑚 and 1 + 𝐼𝐼𝑞𝑞, respectively, to denote how interest rates are earned. Absorbing 
these multiplications into (3) gives  

𝑈𝑈2 = 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)𝑐𝑐𝛽𝛽−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(𝑚𝑚(1 + 𝐼𝐼𝑚𝑚))𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚 (𝑞𝑞(1 + 𝐼𝐼𝑞𝑞))
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞

 (4) 

Third, to transact between consumption 𝑐𝑐, CBDC 𝑚𝑚, and non-CBDC 𝑞𝑞, the household has to pay transaction costs. The household 
prefers high transaction efficiency, which ceteris paribus expresses lower transaction cost. The household’s transaction efficiency 𝐸𝐸 
is modeled to increase with holding CBDC 𝑚𝑚 and holding non-CBDC 𝑞𝑞, and decrease with consumption 𝑐𝑐, i.e. 

𝐸𝐸 = 𝑚𝑚𝜇𝜇𝑞𝑞𝜂𝜂

𝜃𝜃𝑐𝑐𝜆𝜆  (5) 

where 𝜇𝜇, 𝜇𝜇 ≥ 0, is the household’s transaction efficiency for CBDC 𝑚𝑚; 𝜂𝜂, 𝜂𝜂 ≥ 0, is the household’s transaction efficiency for non-
CBDC 𝑞𝑞. The parameter 𝜆𝜆 is the household’s transaction efficiency for consumption 𝑐𝑐, and 1 𝜃𝜃⁄ ,  𝜃𝜃 ≥ 0, scales the degree or level 
of the household’s transaction efficiency. The requirement 0 ≤ 𝜆𝜆 ≤ 𝛽𝛽 ≤ 1 expresses that the household prefers consumption, shown 
as 𝑐𝑐𝛽𝛽  in (4), although incurring the transaction cost 1 𝑐𝑐𝜆𝜆⁄  in (5). The assumption 𝜂𝜂 ≥ 𝜆𝜆 ensures that the household’s transaction 
efficiency 𝜂𝜂 for non-CBDC 𝑞𝑞 is higher than or equal to the household’s transaction efficiency 𝜆𝜆 for consumption 𝑐𝑐. 

In (5) the transaction efficiency 𝐸𝐸 satisfies 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ≤ 0, 𝜕𝜕𝜕𝜕

𝜕𝜕𝑚𝑚 ≥ 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞 ≥ 0, 𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕2 ≥ 0, 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑚𝑚2 ≤ 0 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜇𝜇 ≤ 1, 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑞𝑞2 ≤ 0 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜂𝜂 ≤ 1, 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝑚𝑚 ≤

0, 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝑞𝑞 ≤ 0, see Appendix B. Hence 𝐸𝐸 decreases convexly in consumption 𝑐𝑐, and increases in the CBDC 𝑚𝑚 and the non-CBDC 𝑞𝑞. 

For other accounts of the transaction efficiency 𝐸𝐸, often expressed as the transaction cost 1 𝐸𝐸⁄ , see Feenstra (1986), Bougheas (1994), 
and Saygılı (2012). 

The inverse 1 𝐸𝐸⁄  of 𝐸𝐸 in (5), interpreted as the transaction cost, is commonly analyzed in the literature, where 𝜃𝜃 scales the transaction 
cost. Higher transaction efficiency for CBDC 𝑚𝑚 than for non-CBDC 𝑞𝑞, to enable negative interest rates 𝐼𝐼𝑚𝑚 < 0 on CBDC 𝑚𝑚, requires 
𝜇𝜇 > 𝜂𝜂. This article does not impose that requirement since we may have even more negative interest rates 𝐼𝐼𝑞𝑞 < 𝐼𝐼𝑚𝑚 < 0 for non-
CBDC 𝑞𝑞. Multiplying (5) with (4) gives the household’s utility 

𝑈𝑈3 = 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)𝑐𝑐𝛽𝛽−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(𝑚𝑚(1 + 𝐼𝐼𝑚𝑚))𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚 (𝑞𝑞(1 + 𝐼𝐼𝑞𝑞))
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞 𝑚𝑚𝜇𝜇𝑞𝑞𝜂𝜂

𝜃𝜃𝑐𝑐𝜆𝜆  (6) 

Fourth, the household’s resource constraint in (2) shows that the household has three free choice variables, i.e. production 𝑝𝑝, 
consumption 𝑐𝑐 and CBDC 𝑚𝑚, where non-CBDC 𝑞𝑞 = 𝑟𝑟 − 𝑎𝑎𝑝𝑝 − 𝑐𝑐 − 𝑚𝑚 follows from solving (2) with respect to 𝑞𝑞. Inserting 𝑞𝑞 = 𝑟𝑟 −
𝑎𝑎𝑝𝑝 − 𝑐𝑐 − 𝑚𝑚 into (6) gives the household’s utility 

𝑈𝑈 = 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)𝑐𝑐𝛽𝛽−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(𝑚𝑚(1 + 𝐼𝐼𝑚𝑚))𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚  

× ((𝑟𝑟 − 𝑎𝑎𝑝𝑝 − 𝑐𝑐 − 𝑚𝑚)(1 + 𝐼𝐼𝑞𝑞))
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞 𝑚𝑚𝜇𝜇(𝑟𝑟 − 𝑎𝑎𝑝𝑝 − 𝑐𝑐 − 𝑚𝑚)𝜂𝜂

𝜃𝜃𝑐𝑐𝜆𝜆  
(7) 

which has three strategic choice variables 𝑝𝑝, 𝑐𝑐 and 𝑚𝑚, and which is the household’s utility 𝑈𝑈 which we now proceed to analyze. 

We analyze a two-period decision model. In period 1 the central bank applies the Taylor (1993) rule to determine its interest rate 𝐼𝐼𝑚𝑚. 
In period 2 the household makes three strategic choices, i.e., production 𝑝𝑝, consumption 𝑐𝑐, and its holding 𝑚𝑚 of CBDC. Applying (1) 
gives the household’s holding 𝑞𝑞 of non-CBDC. 
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Analyzing the model 
This section determines the household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, and utility 𝑈𝑈. An 
implicit solution is presented for the CBDC interest rate 𝐼𝐼𝑚𝑚. The signs of the first and second order derivatives of the variables are 
determined. Further analysis is provided when the CBDC interest rate 𝐼𝐼𝑚𝑚 is a parameter. 

Analyzing the household 

Assumption 1. 

{𝑝𝑝 ≥ 0, 𝑐𝑐 ≥ 0,𝑚𝑚 ≥ 0, 𝑞𝑞 ≥ 0,𝑈𝑈 ≥ 0} ⇔

{
 
 

 
 0 ≤ 𝛼𝛼 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞 ≤ 1,

𝛽𝛽 − 𝜆𝜆 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞 ≥ 0,
𝛾𝛾 + 2𝑀𝑀𝐼𝐼𝑚𝑚 + 𝜇𝜇 ≥ 0,

1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞 ≥ 0,
1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇 ≥ 0}

 
 

 
 

 (8) 

 

Property 1. When Assumption 1 holds, the household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, and 
utility 𝑈𝑈, are 

𝑝𝑝 =
𝑟𝑟ℎ(𝛼𝛼 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

𝑎𝑎(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)
, 

𝑐𝑐 =
𝑟𝑟(𝛽𝛽 − 𝜆𝜆 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇
, 

𝑚𝑚 = 𝑟𝑟(𝛾𝛾 + 2𝑀𝑀𝐼𝐼𝑚𝑚 + 𝜇𝜇)
1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇

, 

𝑞𝑞 =
𝑟𝑟(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)

1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇
, 

𝑈𝑈 =
(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)
𝜃𝜃(𝛽𝛽 − 𝜆𝜆 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞 

× (
−𝑟𝑟ℎ(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

𝑎𝑎 ((1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝜂𝜂 + 𝜆𝜆 − 𝜇𝜇 − 1)
)
ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)

 

× (
−𝑟𝑟(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)

(1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝜂𝜂 + 𝜆𝜆 − 𝜇𝜇 − 1
)
−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞

 

× (
−𝑟𝑟(𝛽𝛽 − 𝜆𝜆 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

(1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝜂𝜂 + 𝜆𝜆 − 𝜇𝜇 − 1
)
1+𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞

 

× ( −𝑟𝑟(𝛾𝛾 + 2𝑀𝑀𝐼𝐼𝑚𝑚 + 𝜇𝜇)
(1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝜂𝜂 + 𝜆𝜆 − 𝜇𝜇 − 1

)
𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇

 

(9) 

 

Proof. Appendix C. ∎ 

Analyzing the central bank 

Property 2. When Assumption 1 holds, the central bank’s CBDC interest rate 𝐼𝐼𝑚𝑚 for the household’s CBDC holding 𝑚𝑚 is 

𝐼𝐼𝑚𝑚 = max {𝜋𝜋 + 𝐼𝐼𝑟𝑟 + 𝑎𝑎𝜋𝜋(𝜋𝜋 − 𝜋𝜋∗) + 𝑎𝑎𝑝𝑝ℎ𝐿𝐿𝐿𝐿𝐿𝐿(
𝑟𝑟ℎ(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

𝑎𝑎(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)�̅�𝑝
) , 𝑧𝑧} (10) 

 

Proof. Follows from inserting 𝑝𝑝 in (9) into (1). ∎ 

Since the CBDC interest rate 𝐼𝐼𝑚𝑚 appears on the left-hand side and twice inside the logarithm 𝐿𝐿𝐿𝐿𝐿𝐿 with base ten in (10), 𝐼𝐼𝑚𝑚 has no 
analytical solution and is determined numerically. 
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Analyzing the household and the central bank 

The CBDC interest rate 𝐼𝐼𝑚𝑚 in (10) depends on 𝑟𝑟,𝑎𝑎,𝛼𝛼,𝑀𝑀,𝑄𝑄,𝐼𝐼𝑞𝑞,𝜇𝜇,𝜂𝜂,𝜆𝜆,𝐼𝐼𝑟𝑟,𝜋𝜋,𝜋𝜋∗,ℎ,�̅�𝑝,𝑎𝑎𝜋𝜋,𝑎𝑎𝑝𝑝,z, and hence does not depend on 𝛽𝛽,𝛾𝛾,𝜃𝜃. Assume 

that �̅�𝑝 = 𝑘𝑘𝑟𝑟
𝑎𝑎 , which means that the household’s potential production �̅�𝑝 is a fraction 𝑘𝑘, 0 ≤ 𝑘𝑘 ≤ 1, where 𝑘𝑘 is a parameter, of the 

maximum possible production 𝑝𝑝 = 𝑟𝑟
𝑎𝑎 obtained when 𝑐𝑐 = 𝑚𝑚 = 𝑞𝑞 = 0 in (2). Then 𝐼𝐼𝑚𝑚 in (10) also does not depend on 𝑟𝑟 and 𝑎𝑎. Hence 

Property 3 determines the derivatives of 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈 with respect to 𝛽𝛽, 𝛾𝛾, 𝜃𝜃, 𝑟𝑟, 𝑎𝑎 when �̅�𝑝 = 𝑘𝑘𝑟𝑟/𝑎𝑎. 

Property 3. When Assumption 1 holds, 𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 = 𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕 = 𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 = 0, 𝜕𝜕2𝑝𝑝

𝜕𝜕𝜕𝜕2 = 𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2 = 𝜕𝜕2𝑝𝑝

𝜕𝜕𝜕𝜕2 = 0, 𝜕𝜕𝑝𝑝
𝜕𝜕𝑟𝑟 ≥ 0, 𝜕𝜕2𝑝𝑝

𝜕𝜕𝑟𝑟2 = 0, 𝜕𝜕𝑝𝑝
𝜕𝜕𝑎𝑎 ≤ 0, 𝜕𝜕2𝑝𝑝

𝜕𝜕𝑎𝑎2 ≥ 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ≥ 0, 𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕2 =

0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕2 = 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕2 = 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟 ≥ 0, 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑟𝑟2 = 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎 = 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑎𝑎2 = 0, 𝜕𝜕𝑚𝑚
𝜕𝜕𝜕𝜕 = 𝜕𝜕2𝑚𝑚

𝜕𝜕𝜕𝜕2 = 0, 𝜕𝜕𝑚𝑚
𝜕𝜕𝜕𝜕 ≥ 0, 𝜕𝜕2𝑚𝑚

𝜕𝜕𝜕𝜕2 = 0, 𝜕𝜕𝑚𝑚
𝜕𝜕𝜕𝜕 = 𝜕𝜕2𝑚𝑚

𝜕𝜕𝜕𝜕2 = 0, 𝜕𝜕𝑚𝑚
𝜕𝜕𝑟𝑟 ≥ 0, 𝜕𝜕2𝑚𝑚

𝜕𝜕𝑟𝑟2 =

0, 𝜕𝜕𝑚𝑚
𝜕𝜕𝑎𝑎 = 𝜕𝜕2𝑚𝑚

𝜕𝜕𝑎𝑎2 = 0, 𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕 ≤ 0, 𝜕𝜕𝑞𝑞

𝜕𝜕𝜕𝜕 ≤ 0, 𝜕𝜕2𝑞𝑞
𝜕𝜕𝜕𝜕2 = 𝜕𝜕2𝑞𝑞

𝜕𝜕𝜕𝜕2 = 0, 𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕 = 𝜕𝜕2𝑞𝑞

𝜕𝜕𝜕𝜕2 = 0, 𝜕𝜕𝑞𝑞
𝜕𝜕𝑟𝑟 ≥ 0, 𝜕𝜕2𝑞𝑞

𝜕𝜕𝑟𝑟2 = 0, 𝜕𝜕𝑞𝑞
𝜕𝜕𝑎𝑎 = 𝜕𝜕2𝑞𝑞

𝜕𝜕𝑎𝑎2 = 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⋚ 0, 𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕2 > 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⋚ 0, 𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕2 >

0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 < 0, 𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕2 > 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟 > 0, 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑟𝑟2 ⋚ 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎 < 0, 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑎𝑎2 ⋚ 0. 

Proof. Follows from (19), (20), (21), (22), (23) in Appendix D. ∎ 

Property 3 states, first, that the household’s consumption 𝑐𝑐 increases linearly, while its non-CBDC holding 𝑞𝑞 decreases linearly, in 
its output elasticity 𝛽𝛽 for consumption 𝑐𝑐. As 𝛽𝛽 increases, the household values consumption 𝑐𝑐 more and values non-CBDC 𝑞𝑞 less. 
The household’s production 𝑝𝑝 and CBDC holding 𝑚𝑚 are independent of 𝛽𝛽. The household’s utility 𝑈𝑈 can increase or decrease in 𝛽𝛽. 

Second, the household’s CBDC holding 𝑚𝑚 increases linearly, while its non-CBDC holding 𝑞𝑞 decreases linearly, in its output elasticity 
𝛾𝛾 for holding CBDC 𝑚𝑚. As 𝛾𝛾 increases, the household values CBDC 𝑚𝑚 more and values non-CBDC 𝑞𝑞 less. The household’s 
production 𝑝𝑝 and CBDC holding 𝑚𝑚 are independent of 𝛾𝛾. Also, here the household’s utility 𝑈𝑈 can increase or decrease in 𝛾𝛾. 

Third, the household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, and non-CBDC holding 𝑞𝑞, are independent of the household’s 
scaling 𝜃𝜃 of the transaction cost. That’s because 𝜃𝜃 appears only in the denominator in (7), and hence does not impact the household’s 
strategic choices. However, a high 𝜃𝜃 is costly and impacts the household’s utility 𝑈𝑈 which decreases convexly. 

Fourth, the household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, and non-CBDC holding 𝑞𝑞, increase linearly in the 
household’s resources 𝑟𝑟. That’s because more resources are beneficial for the household. Hence the household’s utility 𝑈𝑈 also 
increases in 𝑟𝑟. 

Fifth, the household’s production 𝑝𝑝 decreases convexly, causing the household’s utility U also to decrease, in the household’s unit 
production cost 𝑎𝑎. The household’s consumption 𝑐𝑐, CBDC holding 𝑚𝑚, and non-CBDC holding 𝑞𝑞 are independent of 𝑎𝑎. 

Analyzing the household when 𝑰𝑰𝒎𝒎 is a parameter 

Property 4. Assume that Assumption 1 holds, and that 𝐼𝐼𝑚𝑚 is a parameter. 

𝜕𝜕𝑝𝑝
𝜕𝜕𝐼𝐼𝑚𝑚

≤ 0, 𝜕𝜕
2𝑞𝑞

𝜕𝜕𝐼𝐼𝑚𝑚
2 ≥ 0, 𝜕𝜕𝑚𝑚

𝜕𝜕𝐼𝐼𝑚𝑚
⋚ 0, 𝜕𝜕2𝑚𝑚

𝜕𝜕𝐼𝐼𝑚𝑚
2 ⋚ 0. 

If 0 ≤ ℎ ≤ 1, 𝜕𝜕
2𝑝𝑝

𝜕𝜕𝐼𝐼𝑚𝑚
2 ≥ 0, 𝜕𝜕𝜕𝜕

𝜕𝜕𝐼𝐼𝑚𝑚
≤ 0, 𝜕𝜕2𝜕𝜕

𝜕𝜕𝐼𝐼𝑚𝑚
2 ≥ 0, 𝜕𝜕𝑞𝑞

𝜕𝜕𝐼𝐼𝑚𝑚
≤ 0. 

If ℎ ≥ 1, 𝜕𝜕
2𝑝𝑝

𝜕𝜕𝐼𝐼𝑚𝑚
2 ≤ 0, 𝜕𝜕𝑞𝑞

𝜕𝜕𝐼𝐼𝑚𝑚
≥ 0. 

If ℎ ≫ 1, 𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼𝑚𝑚

≥ 0, 𝜕𝜕2𝜕𝜕
𝜕𝜕𝐼𝐼𝑚𝑚

2 ≥ 0. 

Proof. Follows from (24) in Appendix E. ∎ 

Property 4 states, first, that the household’s production 𝑝𝑝 decreases in the CBDC interest rate 𝐼𝐼𝑚𝑚, since the subtraction of 𝑀𝑀𝐼𝐼𝑚𝑚 in the 
numerator in (9) has higher impact than the role of 𝑀𝑀𝐼𝐼𝑚𝑚 in the denominator in (9).2 

Second, the household’s consumption 𝑐𝑐 decreases convexly in 𝐼𝐼𝑚𝑚 if 0 ≤ ℎ < 1, and decreases linearly in 𝐼𝐼𝑚𝑚 if ℎ = 1. The 
household’s consumption 𝑐𝑐 can increase in 𝐼𝐼𝑚𝑚 if ℎ is sufficiently above 1 as specified in (24). 

Third, the household’s non-CBDC holding 𝑞𝑞 decreases convexly in 𝐼𝐼𝑚𝑚 if 0 ≤ ℎ ≤ 1, due to the competing CBDC 𝑚𝑚 offering more 
favorable interest rate 𝐼𝐼𝑚𝑚, and otherwise increases concavely due to the high household’s production parameter ℎ > 1. 

Fourth, the household’s CBDC holding 𝑚𝑚 usually increases in 𝐼𝐼𝑚𝑚, 𝜕𝜕𝑚𝑚
𝜕𝜕𝐼𝐼𝑚𝑚

≥ 0, which tends to make holding CBDC 𝑚𝑚 more attractive.3 

 
2 If ℎ > 1, the production 𝑝𝑝 decreases concavely. If 0 ≤ ℎ < 1, the production 𝑝𝑝 decreases convexly. If ℎ = 1, the production 𝑝𝑝 decreases linearly. 
3 However, numerical simulation has shown that extreme parameter values, such as negative non-CBDC interest rate 𝐼𝐼𝑞𝑞, low ℎ, high 𝛼𝛼, low 𝜇𝜇 and 
high 𝜆𝜆, may cause the household’s CBDC holding 𝑚𝑚 to decrease in 𝐼𝐼𝑚𝑚. 
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Illustrating the solution 
This section varies the parameter values 𝑟𝑟, 𝑎𝑎, 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, 𝑀𝑀, 𝑄𝑄, 𝑀𝑀 = 𝑄𝑄, 𝐼𝐼𝑞𝑞, 𝜇𝜇, 𝜂𝜂, 𝜆𝜆, 𝜃𝜃, 𝐼𝐼𝑟𝑟, 𝜋𝜋, 𝜋𝜋∗, ℎ, �̅�𝑝, 𝑎𝑎𝜋𝜋, 𝑎𝑎𝑝𝑝 relative to a benchmark. The 

benchmark values are 𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 1
4 , 𝑟𝑟 = 𝑎𝑎 = 𝑀𝑀 = 𝑄𝑄 = 1, 𝐼𝐼𝑞𝑞 = 𝐼𝐼𝑟𝑟 = 2%, 𝜂𝜂 = 1

5 , 𝜇𝜇 = 2
5 , 𝜆𝜆 = 1

10 , 𝜋𝜋 = 3%, 𝜋𝜋∗ = 2%, ℎ = 1
10 , �̅�𝑝 =

1
2 , 𝑎𝑎𝜋𝜋 = 𝑎𝑎𝑝𝑝 = 1

2 , 𝑧𝑧 = −5%. The benchmark is chosen to be realistic in practice. First, 𝛼𝛼 = 𝛽𝛽 = 1
4 expresses equal weight or elasticity 

for production 𝑝𝑝, consumption 𝑐𝑐, respectively. Second, 𝛾𝛾 = 1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 = 1/4 reflects identical weight or elasticity for CBDC 
𝑚𝑚 and non-CBDC 𝑞𝑞. Third, 𝜂𝜂 = 1

5 depicts a middle-level transaction efficiency for non-CBDC. Fourth, 𝜇𝜇 = 2
5 expresses a higher 

transaction efficiency or lower cost for CBDC 𝑚𝑚. Fifth, 𝜆𝜆 = 1
10 expresses low transaction efficiency for consumption 𝑐𝑐. Sixth, 𝐼𝐼𝑞𝑞 =

2% reflects an intermediate interest rate for non-CBDC. 𝐼𝐼𝑟𝑟 = 2% expresses a desired or equilibrium real interest rate. Seventh, 𝑟𝑟 =
𝑎𝑎 = 𝑀𝑀 = 𝑄𝑄 = 1 are chosen for the sake of simplicity, and value one is also plausible. Eighth, 𝜋𝜋 = 3% presents the inflation rate. 
Nineth, 𝜋𝜋∗ = 2% reflects a desired inflation rate. Tenth, �̅�𝑝 = 𝑟𝑟

2𝑎𝑎 = 1
2 expresses the potential production, which is 50% of what can be 

produced if the entire resource 𝑟𝑟 is allocated to production. Eleventh, ℎ = 1
10 reflects a concave production function for the household. 

Twelfth, 𝑎𝑎𝜋𝜋 = 𝑎𝑎𝑝𝑝 = 1
2 expresses the common equal weight assigned to inflation and production in the Taylor (1993) rule. Thirteenth, 

𝑧𝑧 = −5% is the negative lower bound on the CBDC interest rate 𝐼𝐼𝑚𝑚. With these benchmark parameter values, the benchmark solution 
is 𝐼𝐼𝑚𝑚 = 2.16%, 𝑝𝑝 = 0.0159, 𝑐𝑐 = 0.0826, 𝑚𝑚 = 0.5282, 𝑞𝑞 = 0.373, 𝑈𝑈 = 0.281. In Figure 1 each of the 20 parameters values is 
changed from its benchmark, as illustrated with labels along the horizontal axis, while the other 19 parameter values remain at their 
benchmarks. The Wolfram Mathematica 13 software package (wolfram.com) has been used. Multiplication of 𝑝𝑝 and 𝐼𝐼𝑚𝑚 with 10 is 
for scaling purposes. 

 

  

  

  



Wang and Hausken, International Journal of Finance & Banking Studies 11(2) (2022), 49-68 

 57 

  

  

  

  

  



Wang and Hausken, International Journal of Finance & Banking Studies 11(2) (2022), 49-68 

 58 

  

  

 

 

Figure 1: The household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, and utility 𝑈𝑈, and the CBDC 
interest rate 𝐼𝐼𝑚𝑚, as functions of 𝑟𝑟, 𝑎𝑎, 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, 𝑀𝑀, 𝑄𝑄, 𝑀𝑀 = 𝑄𝑄, 𝐼𝐼𝑞𝑞, 𝜇𝜇, 𝜂𝜂, 𝜆𝜆, 𝜃𝜃, 𝐼𝐼𝑟𝑟, 𝜋𝜋, 𝜋𝜋∗, ℎ, �̅�𝑝, 𝑎𝑎𝜋𝜋, 𝑎𝑎𝑝𝑝 relative to the benchmark parameter values 
𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 1

4 , 𝑟𝑟 = 𝑎𝑎 = 𝑀𝑀 = 𝑄𝑄 = 1, 𝐼𝐼𝑞𝑞 = 𝐼𝐼𝑟𝑟 = 2%, 𝜂𝜂 = 1
5 , 𝜇𝜇 = 2

5 , 𝜆𝜆 = 1
10 , 𝜋𝜋 = 3%, 𝜋𝜋∗ = 2%, ℎ = 1

10 , �̅�𝑝 = 1
2 , 𝑎𝑎𝜋𝜋 = 𝑎𝑎𝑝𝑝 = 1

2 , 𝑧𝑧 =
−5%. Multiplication of 𝑝𝑝 and 𝐼𝐼𝑚𝑚 with 10 is to ensure proper scaling. 
 

In Figure 1a, if the household’s resources 𝑟𝑟 increases, which is intuitively beneficial, its production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 
𝑚𝑚, and non-CBDC holding 𝑞𝑞, increase linearly according to (9). The central bank’s CBDC interest rate 𝐼𝐼𝑚𝑚 remains constant, since 
resources 𝑟𝑟 are abbreviated in the Taylor (1993) rule in (10) since �̅�𝑝 = 𝑟𝑟

2𝑎𝑎. The household’s utility 𝑈𝑈 increases convexly according to 
(9). Specifically, production 𝑝𝑝 increases slowly, while CBDC holding 𝑚𝑚 increases rapidly. 

In Figure 1b, if the household’s unit production cost 𝑎𝑎 increases, its production 𝑝𝑝 and utility 𝑈𝑈 intuitively decrease convexly. The 
other variables remain constant, and 𝑎𝑎 is abbreviated in (10). The household intuitively benefits from the unit cost 𝑎𝑎 approaching 
zero, which causes the production 𝑝𝑝 and expected utility 𝑈𝑈 to approach infinity.  

In Figure 1c, if the household’s output elasticity 𝛼𝛼 for production 𝑝𝑝 increases from 𝛼𝛼 = 0.06, its production 𝑝𝑝, consumption 𝑐𝑐, CBDC 
holding 𝑚𝑚, and the household’s utility 𝑈𝑈, increase convexly, while non-CBDC holding 𝑞𝑞 decreases convexly reaching 𝑞𝑞 = 0 when 
𝛼𝛼 > 0.74, since the output elasticity 1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 2𝑄𝑄𝐼𝐼𝑞𝑞  in (7) decreases. When 𝛼𝛼 < 0.06, no production 𝑝𝑝 occurs due to 
subtraction of 𝑀𝑀𝐼𝐼𝑚𝑚 + 𝑄𝑄𝐼𝐼𝑞𝑞 in (9), where the CBDC interest rate 𝐼𝐼𝑚𝑚 is high to induce the household to save in CBDC 𝑚𝑚 rather than 
non-CBDC 𝑞𝑞. The CBDC interest rate 𝐼𝐼𝑚𝑚 decreases and becomes negative when 𝛼𝛼 > 0.61, since the household then saves far more 
in CBDC 𝑚𝑚 than in non-CBDC 𝑞𝑞, and the central bank can charge the household for saving in CBDC 𝑚𝑚. When 𝐼𝐼𝑚𝑚 becomes negative, 
subtraction of 𝑀𝑀𝐼𝐼𝑚𝑚 for production 𝑝𝑝 and consumption 𝑐𝑐 in (9) causes addition of −𝑀𝑀𝐼𝐼𝑚𝑚 which is positive. When 𝛼𝛼 > 0.61, the 
household values consumption 𝑐𝑐 more than non-CBDC 𝑞𝑞. 

In Figure 1d, if the household’s elasticity 𝛽𝛽 for consumption 𝑐𝑐 increases from 𝛽𝛽 = 0.14, its consumption 𝑐𝑐 increases linearly. The 
CBDC interest rate 𝐼𝐼𝑚𝑚 in (10) is independent of 𝛽𝛽, and hence production 𝑝𝑝 and CBDC holding 𝑚𝑚 in (9) are also independent of 𝛽𝛽. 
The household’s non-CBDC holding 𝑞𝑞 decreases linearly reaching 𝑞𝑞 = 0 when 𝛽𝛽 > 0.74, since the output elasticity 1 − 𝛼𝛼 − 𝛽𝛽 −
𝛾𝛾 + 2𝑄𝑄𝐼𝐼𝑞𝑞 in (7) decreases. Interestingly, the household’s utility 𝑈𝑈 is U shaped. That’s because holding non-CBDC 𝑞𝑞 causes high 
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utility 𝑈𝑈 when 𝛽𝛽 is low, choosing high consumption 𝑐𝑐 causes high utility 𝑈𝑈 when 𝛽𝛽 is high, and 𝑈𝑈 is intermediate when 𝑞𝑞 and 𝑐𝑐 are 
intermediate at the intermediate 𝛽𝛽 = 0.44. When 𝛽𝛽 < 0.14, no consumption 𝑐𝑐 occurs due to subtraction of 𝑀𝑀𝐼𝐼𝑚𝑚 + 𝑄𝑄𝐼𝐼𝑞𝑞 − 𝜆𝜆 in (9). 

In Figure 1e, if the household’s output elasticity 𝛾𝛾 for holding CBDC 𝑚𝑚 increases, its CBDC holding 𝑚𝑚 intuitively increases, and its 
non-CBDC holding 𝑞𝑞 decreases reaching 𝑞𝑞 = 0 when 𝛾𝛾 > 0.74, according to (9). When 𝛾𝛾 > 0.15, the household values CBDC 𝑚𝑚 
more than non-CBDC 𝑞𝑞. The CBDC interest rate 𝐼𝐼𝑚𝑚 in (10) is independent of 𝛾𝛾, and hence production 𝑝𝑝 and consumption 𝑐𝑐 in (9) 
are also independent of 𝛾𝛾. The household’s utility 𝑈𝑈 is U shaped, but less symmetric than in Figure 1d. That’s because 𝑚𝑚 crosses 𝑞𝑞 
at the low value 𝛾𝛾 = 0.15, causing high utility 𝑈𝑈 when 𝑚𝑚 is high, while 𝑐𝑐 crosses 𝑞𝑞 at the intermediate 𝛽𝛽 = 0.44 in Figure 1d. 

In Figure 1f, if the household’s weight 𝑀𝑀 of the CBDC interest rate 𝐼𝐼𝑚𝑚 in its output elasticities increases, its CBDC holding 𝑚𝑚 
increases, while its non-CBDC holding 𝑞𝑞 decreases. Subtracting 𝑀𝑀𝐼𝐼𝑚𝑚 in the household’s output elasticity for production 𝑝𝑝 and 
consumption 𝑐𝑐 in (7), as also shown in the numerator for 𝑝𝑝 and 𝑐𝑐 in (9), causes production 𝑝𝑝 and consumption 𝑐𝑐 to decrease. 
Consumption 𝑐𝑐 eventually decreases to 𝑐𝑐 = 0 when 𝑀𝑀 > 4.65. Interestingly, the CBDC interest rate 𝐼𝐼𝑚𝑚 increases, which is not 
intuitively obvious. It illustrates the multiple tradeoffs that the central bank has to make. The household benefits more from holding 
CBDC 𝑚𝑚 at an increasing CBDC interest rate 𝐼𝐼𝑚𝑚, than the costs of decreasing 𝑞𝑞, 𝑝𝑝, 𝑐𝑐. Its utility 𝑈𝑈 thus increases. 

In Figure 1g, if the household’s weight 𝑄𝑄 of the non-CBDC interest rate 𝐼𝐼𝑞𝑞 in its output elasticities increases, its non-CBDC holding 
𝑞𝑞 increases, while its CBDC holding 𝑚𝑚 decreases. That intuitively stands in contrast to Figure 1f. The other four curves are 
qualitatively similar to Figure 1f, since the household merely shifts its interest from CBDC 𝑚𝑚 to non-CBDC 𝑞𝑞. That is, subtracting 
𝑄𝑄𝐼𝐼𝑞𝑞 in the household’s output elasticity for production 𝑝𝑝 and consumption 𝑐𝑐 in (7) causes production 𝑝𝑝 and consumption 𝑐𝑐 to decrease. 
Consumption 𝑐𝑐 eventually decreases to 𝑐𝑐 = 0 when 𝑄𝑄 > 6.10. The CBDC interest rate 𝐼𝐼𝑚𝑚 and the household’s utility 𝑈𝑈 increase. 

In Figure 1h, if the household’s equal weights 𝑀𝑀 = 𝑄𝑄 of the CBDC and non-CBDC interest rates 𝐼𝐼𝑚𝑚 and 𝐼𝐼𝑞𝑞 in its output elasticities 
increase, its holding of both CBDC 𝑚𝑚 and non-CBDC 𝑞𝑞 increase. That follows since 2𝑀𝑀𝐼𝐼𝑚𝑚 and 2𝑄𝑄𝐼𝐼𝑞𝑞 are added to the output 
elasticities in (7). In contrast, 𝑀𝑀𝐼𝐼𝑚𝑚 and 𝑄𝑄𝐼𝐼𝑞𝑞 are subtracted from the output elasticities for production 𝑝𝑝 and consumption 𝑐𝑐 in (7), 
causing these to decrease. Consumption 𝑐𝑐 eventually decreases to 𝑐𝑐 = 0 when 𝑀𝑀 = 𝑄𝑄 > 3.13, which is a lower value than in Figure 
1f and Figure 1g. As in Figure 1f and Figure 1g, and for the same reason, the CBDC interest rate 𝐼𝐼𝑚𝑚 and the household’s utility 𝑈𝑈 
increase. 

In Figure 1i, if the non-CBDC interest rate 𝐼𝐼𝑞𝑞 increases, the household’s non-CBDC holding 𝑞𝑞 increases, while its CBDC holding 𝑚𝑚 
decreases. The six variables are qualitatively similar to Figure 1g as functions of 𝑄𝑄. That’s intuitive since 𝑄𝑄𝐼𝐼𝑞𝑞 always appear 
multiplicatively together in (9) and (10), and never separately alone. Hence production p decreases, and consumption 𝑐𝑐 decreases 
reaching 𝑐𝑐 = 0 when 𝐼𝐼𝑞𝑞 > 12%. That is, the household stops consuming when the non-CBDC interest rate 𝐼𝐼𝑞𝑞 is high, and saves non-
CBDC 𝑞𝑞 instead. The CBDC interest rate 𝐼𝐼𝑚𝑚 increases to compete with the increasing 𝐼𝐼𝑞𝑞, and the household’s utility 𝑈𝑈 increases 
convexly. 

In Figure 1j, if the household’s transaction efficiency 𝜇𝜇 for CBDC 𝑚𝑚 increases, its CBDC holding 𝑚𝑚 increases concavely, while its 
production 𝑝𝑝, consumption 𝑐𝑐, non-CBDC holding 𝑞𝑞, and utility 𝑈𝑈 decrease convexly. When 𝜇𝜇 > 0.20, the household values CBDC 
𝑚𝑚 more than non-CBDC 𝑞𝑞. The central bank increases its CBDC interest rate 𝐼𝐼𝑚𝑚. 

In Figure 1k, if the household’s transaction efficiency 𝜂𝜂 for non-CBDC 𝑞𝑞 increases, its non-CBDC holding 𝑞𝑞 increases concavely, 
while its production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, and utility 𝑈𝑈 decrease convexly. Hence the CBDC 𝑚𝑚 and non-CBDC 𝑞𝑞 
have switched roles compared to Figure 1j, and 𝑝𝑝, 𝑐𝑐, 𝑈𝑈 are qualitatively similar. When 𝜂𝜂 > 0.41, the household values non-CBDC 𝑞𝑞 
more than CBDC 𝑚𝑚. Interestingly, the central bank increases its CBDC interest rate 𝐼𝐼𝑚𝑚. 

In Figure 1l, if the household’s transaction efficiency 𝜆𝜆 for consumption 𝑐𝑐 increases, its consumption 𝑐𝑐 decreases according to (9), 
eventually reaching 𝑐𝑐 = 0 when 𝜆𝜆 > 0.21. In contrast, it saves more. Hence both its CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 
increase. The household’s production 𝑝𝑝 increases marginally, and its utility increases convexly. The central bank decreases its CBDC 
interest rate 𝐼𝐼𝑚𝑚. 

In Figure 1m, if the household’s scaling 𝜃𝜃 of the transaction cost increases, causing the transaction efficiency 𝐸𝐸 in (5) to decrease, 
only its utility 𝑈𝑈 is affected and decreases convexly. The other variables, i.e., production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-
CBDC holding 𝑞𝑞, and the CBDC interest rate 𝐼𝐼𝑚𝑚, remain unchanged. 

In Figure 1n, if the equilibrium real interest rate 𝐼𝐼𝑟𝑟 increases, the CBDC interest rate 𝐼𝐼𝑚𝑚 increases according to (10). That induces the 
household to increase its CBDC holding 𝑚𝑚, decrease its non-CBDC holding 𝑞𝑞, and decrease its production 𝑝𝑝 and consumption 𝑐𝑐 
which decreases to 𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > 12%. The household’s utility 𝑈𝑈 increases.  

In Figure 1o, if the inflation rate 𝜋𝜋 increases, the impact is qualitatively similar to Figure 1n, except that the CBDC interest rate 𝐼𝐼𝑚𝑚 
becomes negative when the inflation rate 𝜋𝜋 decreases below 𝜋𝜋 = 1.6%. That’s because 𝜋𝜋 appears twice on the right hand side of 
(10), and 𝜋𝜋 − 𝜋𝜋∗ is negative when 𝜋𝜋 decreases below the desired inflation rate 𝜋𝜋∗ = 2%. The central bank thus combats low and 
decreasing inflation 𝜋𝜋 below the target inflation 𝜋𝜋∗ by choosing negative CBDC interest rate 𝐼𝐼𝑚𝑚, thus inducing the household to 
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increase its consumption 𝑐𝑐, production 𝑝𝑝, and non-CBDC holding 𝑞𝑞, and decrease its CBDC holding 𝑚𝑚, which causes convexly 
decreasing utility 𝑈𝑈. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋 > 9.80%. 

In Figure 1p, if the desired inflation rate 𝜋𝜋∗ increases, the impact is opposite that of Figure 1o. All the variables move in the opposite 
direction. That follows from the term 𝜋𝜋 − 𝜋𝜋∗ in (10) and the minus sign before 𝜋𝜋∗. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative 
when the desired inflation rate 𝜋𝜋∗ increases above 𝜋𝜋∗ = 6.1%. When 𝜋𝜋∗ increases above 𝜋𝜋∗ = 15.6%, the CBDC interest rate 𝐼𝐼𝑚𝑚 
decreases to its negative lower bound 𝑧𝑧 = −5%, causing all the six variables to remain constant when 𝜋𝜋∗ > 15.58%. As 𝜋𝜋∗ increases, 
the household’s consumption 𝑐𝑐, production 𝑝𝑝, and non-CBDC holding 𝑞𝑞 increase, while its CBDC holding 𝑚𝑚 and its utility 𝑈𝑈 
decrease.  

In Figure 1q, if the household’s production parameter ℎ increases, so that it produces more effectively, its production 𝑝𝑝, 
consumption 𝑐𝑐, and non-CBDC holding 𝑞𝑞 increase, while its CBDC holding 𝑚𝑚 and utility 𝑈𝑈 decrease. The CBDC interest rate 𝐼𝐼𝑚𝑚 
becomes negative when ℎ increases above ℎ = 0.143. When ℎ increases above ℎ = 0.215, the CBDC interest rate 𝐼𝐼𝑚𝑚 decreases to 
its negative lower bound 𝑧𝑧 = −5%, causing all the six variables to remain constant. 

Figure 1r replicates Figure 1q with no lower bound 𝑧𝑧 = −∞ on the interest rate 𝐼𝐼𝑚𝑚. Then the interest rate 𝐼𝐼𝑚𝑚 decreases to 𝐼𝐼𝑚𝑚 =
−32.5% when the household eliminates its CBDC holding 𝑚𝑚 to 𝑚𝑚 = 0 when ℎ > 0.353. As ℎ increases to ℎ = 0.353, the other 
four variables increase. That is, the household’s production 𝑝𝑝, consumption 𝑐𝑐, and non-CBDC holding 𝑞𝑞 increase, and the utility 𝑈𝑈 
is U shaped with a minimum at ℎ = 0.296 and thereafter increases. The situation when ℎ > 0.353 models a world with no central 
bank where, with these parameter values, the household benefits from high utility 𝑈𝑈. 

In Figure 1s, if the household’s potential production �̅�𝑝 increases to its maximum �̅�𝑝 = 𝑟𝑟/𝑎𝑎 = 1, the central bank increases its CBDC 
interest rate to 𝐼𝐼𝑚𝑚 = 2.74%. Applying (9), that causes the household to increase its CBDC holding 𝑚𝑚, which increases its utility 𝑈𝑈, 
and decrease its production 𝑝𝑝, consumption 𝑐𝑐, and non-CBDC holding 𝑞𝑞. As �̅�𝑝 decreases, the CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative 
when �̅�𝑝 < 0.144, and decreases to the negative lower bound 𝑧𝑧 = −5% when �̅�𝑝 = 0.067. 

In Figure 1t, if the weight assigned to inflation 𝑎𝑎𝜋𝜋 in the Taylor (1993) rule increases, the impact is qualitatively similar to Figure 1o 
where the inflation rate 𝜋𝜋 increases. That can be seen mathematically from the term 𝑎𝑎𝜋𝜋(𝜋𝜋 − 𝜋𝜋∗) in (10). The CBDC interest rate 𝐼𝐼𝑚𝑚 
becomes negative when 𝑎𝑎𝜋𝜋 decreases below 𝑎𝑎𝜋𝜋 = 0.241. Since inflation then is assigned low weight 𝑎𝑎𝜋𝜋, and production is assigned 
higher weight 𝑎𝑎𝑝𝑝 = 1 − 𝑎𝑎𝜋𝜋, the household chooses lower CBDC holding 𝑚𝑚, and chooses higher production 𝑝𝑝, consumption 𝑐𝑐, and 
non-CBDC holding 𝑞𝑞, which causes lower utility 𝑈𝑈. 

In Figure 1u, if the weight assigned to production 𝑎𝑎𝑝𝑝 in the Taylor (1993) rule increases, the impact is opposite that of Figure 1s, 
since 𝑎𝑎𝑝𝑝 = 1 − 𝑎𝑎𝜋𝜋. Thus the CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝑎𝑎𝑝𝑝 increases above 𝑎𝑎𝑝𝑝 = 0.759. Furthermore, the 
household chooses lower CBDC holding 𝑚𝑚, and chooses higher production 𝑝𝑝, consumption 𝑐𝑐, and non-CBDC holding 𝑞𝑞, which 
causes lower utility 𝑈𝑈. 

Shocks to production, inflation, interest rates of CBDC and non-CBDC, and real interest rate 

Shocks to production 𝒑𝒑 
The household’s production is characterized by its unit cost 𝑎𝑎 of production considered in Figure 1b, and its production parameter ℎ 
considered in Figure 1q and Figure 1r. Figure 1b shows increased household production 𝑝𝑝 and household utility 𝑈𝑈, and the other 
variables are constant, as 𝑎𝑎 decreases. Figure 1q and Figure 1r show increased household production 𝑝𝑝, consumption 𝑐𝑐, and non-
CBDC holding 𝑞𝑞, and decreased CBDC holding 𝑚𝑚 and CBDC interest rate 𝐼𝐼𝑚𝑚, and decreased utility 𝑈𝑈, up to a certain point, as ℎ 
increases. 

Shocks to inflation 𝝅𝝅 and target inflation 𝝅𝝅∗ 
Inflation is characterized by the inflation rate 𝜋𝜋 considered in Figure 1o, and the desired or target inflation rate 𝜋𝜋∗ considered in 
Figure 1p. Figure 1o shows decreased household production 𝑝𝑝, consumption 𝑐𝑐 and non-CBDC holding 𝑞𝑞, and increased CBDC 
holding 𝑚𝑚, utility 𝑈𝑈 and CBDC interest rate 𝐼𝐼𝑚𝑚, as 𝜋𝜋 increases. Figure 1p shows all the variables moving in the opposite direction. 
Hence the household prefers high inflation rate 𝜋𝜋 and low target inflation rate 𝜋𝜋∗. 

Shocks to the CBDC interest rate 𝑰𝑰𝒎𝒎 
The CBDC interest rate 𝐼𝐼𝑚𝑚 is the central bank’s free choice variable. Shocks to 𝐼𝐼𝑚𝑚 may occur if the central bank were to depart from 
the optimal solution analyzed in the previous sections. Considering 𝐼𝐼𝑚𝑚 as a parameter, Figure 2 plots the household’s production 𝑝𝑝, 
consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, and utility 𝑈𝑈, as functions of 𝐼𝐼𝑚𝑚 ranging from 𝐼𝐼𝑚𝑚 = −20% to 𝐼𝐼𝑚𝑚 = 20%.  
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Figure 2: The household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, and utility 𝑈𝑈 as functions of the 
CBDC interest rate 𝐼𝐼𝑚𝑚 as a parameter relative to the benchmark 𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 1

4 , 𝑟𝑟 = 𝑎𝑎 = 𝑀𝑀 = 𝑄𝑄 = 1, 𝐼𝐼𝑞𝑞 = 𝐼𝐼𝑟𝑟 = 2%, 𝜂𝜂 = 1
5 , 𝜇𝜇 =

2
5 , 𝜆𝜆 = 1

10 , 𝜋𝜋 = 3%, 𝜋𝜋∗ =  ℎ = 2%, 1
10 , �̅�𝑝 = 1

2 , 𝑎𝑎𝜋𝜋 = 𝑎𝑎𝑝𝑝 = 1
2 , 𝑧𝑧 = −5%. Multiplication of 𝑝𝑝 with 10 is for scaling purposes. 

 

In Figure 2, if the CBDC interest rate 𝐼𝐼𝑚𝑚 increases, the five variables change as follows: First, and intuitively, the household’s CBDC 
holding 𝑚𝑚 increases. When 𝐼𝐼𝑚𝑚 > −0.8%, the household holds more CBDC 𝑚𝑚 than non-CBDC 𝑞𝑞. Second, the household’s non-
CBDC holding 𝑞𝑞 decreases due to the substitution effect between CBDC 𝑚𝑚 and non-CBDC 𝑞𝑞. Third and fourth, holding more CBDC 
𝑚𝑚 induces the household to decrease its production 𝑝𝑝 and consumption 𝑐𝑐. The household’s consumption 𝑐𝑐 eventually decreases to 
𝑐𝑐 = 0 when 𝐼𝐼𝑚𝑚 > 13%. Fifth, the household’s utility 𝑈𝑈 is U shaped, reaching a minimum of approximately 0.25 when the CBDC 
interest rate 𝐼𝐼𝑚𝑚 = −0.94%. Hence the household prefers 𝐼𝐼𝑚𝑚 to be low or high. When 𝐼𝐼𝑚𝑚 is low, the household derives moderately 
high utility 𝑈𝑈 due to high production 𝑝𝑝 and consumption 𝑐𝑐, and substantial non-CBDC holding 𝑞𝑞. When 𝐼𝐼𝑚𝑚 is high, the household 
derives high utility 𝑈𝑈 due to substantial CBDC holding 𝑚𝑚 at a high CBDC interest rate 𝐼𝐼𝑚𝑚. 

Shocks to the non-CBDC interest rate 𝑰𝑰𝒒𝒒 
Shocks to the non-CBDC interest rate 𝐼𝐼𝑞𝑞 is considered in Figure 1i which shows decreased household production 𝑝𝑝, consumption 𝑐𝑐, 
and CBDC holding 𝑚𝑚, and increased non-CBDC holding 𝑞𝑞, utility 𝑈𝑈, and CBDC interest rate 𝐼𝐼𝑚𝑚, as 𝐼𝐼𝑞𝑞 increases. That benefits the 
household. The central bank needs to increase its interest rate 𝐼𝐼𝑚𝑚 to compete. 

Shocks to the real interest rate 𝑰𝑰𝒓𝒓 
Shocks to the real interest rate 𝐼𝐼𝑟𝑟 is considered in Figure 1n which shows decreased household production 𝑝𝑝, consumption 𝑐𝑐, and 
non-CBDC holding 𝑞𝑞, and increased CBDC holding 𝑚𝑚, utility 𝑈𝑈, and CBDC interest rate 𝐼𝐼𝑚𝑚, as 𝐼𝐼𝑟𝑟 increases. Again, that benefits the 
household, and the central bank increases its interest rate 𝐼𝐼𝑚𝑚 to compete. 

Discussion and economic interpretation 
The following results in the previous sections are noteworthy, related to varying 19 parameter values relative to a benchmark. 

The household’s production, consumption, CBDC holding and non-CBDC holding increase as its resources increase. The intuition 
is that it is beneficial to have more resources. Thus, as resources increase, the household’s utility increases. 

If the household’s unit production cost increases, it intuitively decreases its production, which decreases the household’s utility. The 
household’s consumption, CBDC holding, and non-CBDC holding remain constant if the unit production cost changes. 

If the household’s output elasticity for production increases, it increases its production, consumption, and CBDC holding. However, 
the non-CBDC holding decreases since the output elasticities sum to one and higher elasticity assigned to production means lower 
elasticity assigned to non-CBDC holding. The CBDC interest rate becomes negative when the household holds far more CBDC than 
non-CBDC. Since the household saves substantially in CBDC, the central bank sees no reason to encourage further saving. 

If the household’s elasticity for consumption increases, it increases its consumption, but decreases its non-CBDC holding since higher 
elasticity assigned to consumption means lower elasticity assigned to non-CBDC holding. The CBDC interest rate, production, and 
CBDC holding remain constant since the CBDC interest rate is independent of the elasticity for consumption. The household’s utility 
is U shaped in the elasticity for consumption. That is, it prefers either high or low elasticity for consumption. 

If the household’s output elasticity for holding CBDC increases, it increases its CBDC holding, but decreases its non-CBDC holding. 
The CBDC interest rate is independent of the output elasticity for holding CBDC. Thus, the household’s production and consumption 
remain constant. 

If the household’s weight of the CBDC interest rate in its elasticities increases, it increases its CBDC holding and decreases its non-
CBDC holding. This is similar to the increase of the output elasticity for holding CBDC. The increase of the CBDC interest rate 
shows the multiple tradeoffs that the central bank strikes. The household’s utility increases from holding more CBDC if the CBDC 
interest rate increases, which offsets the decrease in production, consumption, and non-CBDC holding. 
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Intuitively and in contrast to the previous point, if the household’s weight of the non-CBDC interest rate in its output elasticities 
increases, it increases its non-CBDC holding and decreases its CBDC holding. 

We consider the case when the weight of the CBDC interest rate in the output elasticities equals the weight of the non-CBDC interest 
rate. If the household’s equal weights increase, the household increases both its CBDC holding and its non-CBDC holding, and the 
central bank increases its CBDC interest rate. Since the weights are subtracted from production and consumption, production and 
consumption decrease. 

If the non-CBDC interest rate increases, the household increases its non-CBDC holding and decreases its CBDC holding. This is 
because holding non-CBDC becomes more attractive since the household benefits from gaining higher interest from non-CBDC. The 
central bank chooses to increase the CBDC interest rate to compete with the non-CBDC. Hence a household’s CBDC holding is 
typically the opposite of its non-CBDC holding, as found by Mooij (2021) and partly found by M. Davoodalhosseini et al. (2020). 

If the household’s transaction efficiency for CBDC increases, it intuitively increases its CBDC holding, and decreases its non-CBDC 
holding. The central bank increases its CBDC interest rate to support the household’s CBDC holding. 

In contrast to the previous point, if the household’s transaction efficiency for non-CBDC increases, it increases its non-CBDC 
holding, and decreases its CBDC holding. Interestingly, also here the central bank increases its CBDC interest rate, to compete with 
the non-CBDC. 

If the household’s transaction efficiency for consumption increases, its consumption decreases since transactions become more costly. 
However, the household increases its CBDC holding and non-CBDC holding, and the central bank decreases its CBDC interest rate. 

If the household’s scaling of the transaction efficiency increases, the transaction efficiency decreases accordingly. Only the 
household’s utility is impacted, and it decreases. 

If the real interest rate increases, the CBDC interest rate increases, in accordance with the Taylor (1993) rule. Thus, if the real interest 
rate increases, the household holds more CBDC and less non-CBDC. Meanwhile, the household’s production and consumption 
decrease. 

Similarly to the previous point, if the inflation rate increases, the CBDC interest rate increases, encouraging more CBDC saving and 
less non-CBDC saving. The central bank combats low inflation via a negative CBDC interest rate. 

In contrast to the previous point, if the target inflation rate increases, the CBDC interest rate decreases. The central bank combats a 
high target inflation rate through a negative CBDC interest rate. That, in turn, induces agents to save less CBDC and consume more, 
as also found by Jia (2020). 

If the household’s production parameter increases, it increases its production, consumption, and non-CBDC holding, but decreases 
its CBDC holding. This is because the household produces more effectively. The central bank decreases its CBDC interest rate, 
which also enhances the household’s production and consumption. 

If the household’s potential production increases, the central bank increases its CBDC interest rate. Thus, the household increases its 
CBDC holding, and decreases its production, consumption, and non-CBDC holding. 

If the weight assigned to inflation in the Taylor (1993) rule increases, the impact is similar to increasing the inflation rate. The central 
bank chooses negative interest rate when inflation is assigned low weight. Since a higher weight assigned to inflation means a lower 
weight assigned to production, the household’s production and consumption decrease. In contrast, Grasselli and Lipton (2019) show 
that negative interest rates have lower impact on consumption than on investment. 

The following further results are noteworthy, related to analyzing the impacts of shocks to production, inflation, the CBDC interest 
rate, the non-CBDC interest rate, and the real interest rate.  

Production shocks are captured by the unit cost of production and production parameter. If the unit cost decreases, the household’s 
production increases, and the other variables remain constant. If the production parameter increases, the household’s production, 
consumption, and non-CBDC holding increase, while the household’s CBDC holding and utility, and the CBDC interest rate, 
decrease. 

Inflation shocks are characterized by changes to the inflation rate and the target inflation rate. If the inflation rate increases, the 
household’s production, consumption, and non-CBDC holding decrease, and the CBDC interest rate, CBDC holding and utility 
increase. 

If the CBDC interest rate increases, the household increases its CBDC holding, and decreases its non-CBDC holding. The household 
decreases its production and consumption. Its utility is U shaped. When the CBDC interest rate is low, the household gains utility 
from production, consumption, and non-CBDC holding. When the CBDC interest rate is high, the household gains utility from 
holding CBDC with high CBDC interest return. 
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The non-CBDC interest shock shows that if the non-CBDC interest rate increases, the household decreases its production, 
consumption, and CBDC holding, increases its non-CBDC holding, and eventually earns higher utility. 

The real interest rate shock shows that if the real interest rate increases, the household decreases its production, consumption, and 
non-CBDC holding, and increases its CBDC holding, while the central bank increases its CBDC interest rate. 

Conclusion 
The article explores a two-period decision model between a central bank and a representative household. The central bank applies 
the Taylor (1993) rule to choose a positive or negative interest rate. The representative household owns resources or energy allocated 
into production, consumption, CBDC (central bank digital currency) holding, and non-CBDC holding. The non-CBDC holding can 
be various cryptocurrencies like Bitcoin, Ethereum, etc., or stocks, bonds, real estate, etc. A Cobb Douglas utility with elasticities for 
the household’s allocations is presented, and adjusted by the CBDC interest rate, the non-CBDC interest rate, and the transaction 
efficiency. In period 1, the central bank chooses its interest rate. In period 2, the household determines its production, consumption, 
CBDC holding and non-CBDC holding. 

The article shows that if the household’s output elasticities for production, consumption, CBDC holding, and non-CBDC holding 
change, the household’s strategies change as expected. The central bank chooses negative interest rate when the household holds far 
more CBDC than non-CBDC, to discourage further saving. Increasing the non-CBDC interest rate, which causes the household to 
hold more non-CBDC and less CBDC, induces the central bank to increase its CBDC interest rate to compete with the threat from 
the attractive non-CBDC interest rate. Increasing the household’s transaction efficiencies for CBDC and non-CBDC cause the central 
bank to increase its CBDC interest rate, to support the household’s holding of CBDC and compete with the non-CBDC, respectively. 
However, increasing the household’s transaction efficiency for consumption has the opposite impact of decreasing the CBDC interest 
rate. Decreasing the real interest rate or the inflation rate or the household’s potential production or the weight assigned to inflation 
in the Taylor (1993) rule, or increasing the target inflation rate or the household’s production parameter, causes lower and eventually 
negative CBDC interest rate, which induces the household to hold less CBDC, more non-CBDC, produce and consume more, and 
earn lower utility. 

Positive shocks to production cause lower and eventually negative CBDC interest rate. The household holds less CBDC and earns 
lower utility, but produces and consumes more and holds more non-CBDC. Positive inflation shocks cause the household to hold 
more CBDC and earn higher utility due to a higher CBDC interest rate, while the production, consumption, and non-CBDC holding 
decrease. Positive shocks to the CBDC interest rate cause the household to hold more CBDC and less non-CBDC, and conversely 
for positive shocks to the non-CBDC interest rate. Both these two shocks cause the household to produce and consume less and 
eventually earn higher utility. Positive shocks to the real interest rate cause higher CBDC interest rate. 

Future research, which implicitly illustrates limitations of the article, should consider the interactions of several CBDCs and non-
CBDCs. More players can be introduced, e.g. governments, commercial banks, firms, etc. Various negative interest rate bounds, and 
corner solutions can be analyzed. In addition, the burning and issuance of CBDCs and non-CBDCs should be analyzed. Expansion 
should be made to heterogeneous households. Each household’s Cobb Douglas utility should be expanded to account for additional 
factors such as safety, convenience, taxes, etc. The analysis can also be generalized to allow each household and one or multiple 
central banks to choose their strategies simultaneously or sequentially in one-period or repeated games. More extensive empirical 
research should be conducted. 

Appendix A Nomenclature 
Parameters 
𝑟𝑟 Household’s monetary energy, or resources, 𝑟𝑟 ≥ 0 
𝑎𝑎 Household’s unit cost of production, 𝑎𝑎 ≥ 0 
𝛼𝛼 Household’s output elasticity for production 𝑝𝑝, 0 ≤ 𝛼𝛼 ≤ 1 
𝛽𝛽 Household’s output elasticity for consumption 𝑐𝑐, 0 ≤ 𝜆𝜆 ≤ 𝛽𝛽 ≤ 1 
𝛾𝛾 Household’s output elasticity for CBDC 𝑚𝑚, 0 ≤ 𝛾𝛾 ≤ 1 
𝑀𝑀 Household’s weight of the CBDC interest rate 𝐼𝐼𝑚𝑚 in its output elasticities, 𝑀𝑀 ≥ 0 
𝑄𝑄 Household’s weight of the non-CBDC interest rate 𝐼𝐼𝑞𝑞 in its output elasticities, 𝑄𝑄 ≥ 0 
1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 2𝑄𝑄𝐼𝐼𝑞𝑞Household’s output elasticity for non-CBDC 𝑞𝑞, 0 ≤ 1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 2𝑄𝑄𝐼𝐼𝑞𝑞 ≤ 1 
𝐼𝐼𝑞𝑞 Non-CBDC interest rate, 𝐼𝐼𝑞𝑞 ∈ ℝ 
𝜇𝜇 Household’s transaction efficiency for CBDC 𝑚𝑚, 𝜇𝜇 ≥ 0 
𝜂𝜂 Household’s transaction efficiency for non-CBDC 𝑞𝑞, 𝜂𝜂 ≥ 𝜆𝜆 
𝜆𝜆 Household’s transaction efficiency for consumption 𝑐𝑐, 0 ≤ 𝜆𝜆 ≤ 𝛽𝛽 ≤ 1  
𝜃𝜃 Scaling or degree or level of the household’s transaction cost, 𝜃𝜃 ≥ 0. 
𝐼𝐼𝑟𝑟 The equilibrium real interest rate, 𝐼𝐼𝑟𝑟 ∈ ℝ 
𝜋𝜋 The inflation rate, 𝜋𝜋 ∈ ℝ 
𝜋𝜋∗ The desired or target inflation rate, 𝜋𝜋∗ ∈ ℝ 
ℎ The household’s production parameter, ℎ ≥ 0 
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�̅�𝑝ℎ The household’s potential production, 0 ≤ �̅�𝑝 ≤ 𝑟𝑟/𝑎𝑎 
𝑎𝑎𝜋𝜋 The weight assigned to inflation in the Taylor (1993) rule, 0 ≤ 𝑎𝑎𝜋𝜋 ≤ 1 
𝑎𝑎𝑝𝑝 = 1 − 𝑎𝑎𝜋𝜋The weight assigned to production in the Taylor (1993) rule, 0 ≤ 𝑎𝑎𝑝𝑝 ≤ 1 
z The negative lower bound on the interest rate 𝐼𝐼𝑚𝑚, 𝑧𝑧 ≤ 0 
 
Household’s free choice variables 
𝑝𝑝 Household’s production, 0 ≤ 𝑝𝑝 ≤ 𝑟𝑟/𝑎𝑎 
𝑐𝑐 Household’s consumption, 0 ≤ 𝑐𝑐 ≤ 𝑟𝑟 
𝑚𝑚 Household’s CBDC holding, 0 ≤ 𝑚𝑚 ≤ 𝑟𝑟 
 
Dependent variables 
𝐼𝐼𝑚𝑚 CBDC interest rate for the household’s CBDC holding 𝑚𝑚, 𝐼𝐼𝑚𝑚 ∈ ℝ 
𝑈𝑈 Household’s utility 
𝑞𝑞 = 𝑟𝑟 − 𝑎𝑎𝑝𝑝 − 𝑐𝑐 − 𝑚𝑚Household’s non-CBDC holding, 0 ≤ 𝑞𝑞 = 𝑟𝑟 − 𝑎𝑎𝑝𝑝 − 𝑐𝑐 − 𝑚𝑚 ≤ 𝑟𝑟 
𝐸𝐸 Household’s transaction efficiency 

Appendix B The derivatives for the transaction efficiency 𝑬𝑬 
Differentiating the transaction efficiency 𝐸𝐸 in (5) with respect to 𝑐𝑐, 𝑚𝑚 and 𝑞𝑞 gives 

𝜕𝜕𝐸𝐸
𝜕𝜕𝑐𝑐 = − 𝑐𝑐−1−𝜆𝜆𝑚𝑚𝜇𝜇𝑞𝑞𝜂𝜂𝜆𝜆

𝜃𝜃 ≤ 0, 𝜕𝜕𝐸𝐸
𝜕𝜕𝑚𝑚 = 𝑐𝑐−𝜆𝜆𝑚𝑚−1+𝜇𝜇𝑞𝑞𝜂𝜂𝜇𝜇

𝜃𝜃 ≥ 0, 𝜕𝜕𝐸𝐸
𝜕𝜕𝑞𝑞 = 𝑐𝑐−𝜆𝜆𝑚𝑚𝜇𝜇𝑞𝑞−1+𝜂𝜂𝜂𝜂

𝜃𝜃 ≥ 0 (11) 

The second derivatives of the transaction efficiency 𝐸𝐸 in (5) with respect to 𝑐𝑐, 𝑚𝑚 and 𝑞𝑞 gives 

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑐𝑐2 = 𝑐𝑐−2−𝜆𝜆𝑚𝑚𝜇𝜇𝑞𝑞𝜂𝜂𝜆𝜆(1 + 𝜆𝜆)

𝜃𝜃 ≥ 0, 
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑚𝑚2 = 𝑐𝑐−𝜆𝜆𝑚𝑚−2+𝜇𝜇𝑞𝑞𝜂𝜂(−1 + 𝜇𝜇)𝜇𝜇

𝜃𝜃 ≤ 0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜇𝜇 ≤ 1, 
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑞𝑞2 = 𝑐𝑐−𝜆𝜆𝑚𝑚𝜇𝜇𝑞𝑞−2+𝜂𝜂(−1 + 𝜂𝜂)𝜂𝜂

𝜃𝜃 ≤ 0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜇𝜇 ≤ 1, 
𝜕𝜕2𝐸𝐸

𝜕𝜕𝑐𝑐𝜕𝜕𝑚𝑚 = − 𝑐𝑐−1−𝜆𝜆𝑚𝑚−1+𝜇𝜇𝑞𝑞𝜂𝜂𝜆𝜆𝜇𝜇
𝜃𝜃 ≤ 0, 

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑐𝑐𝜕𝜕𝑞𝑞 = − 𝑐𝑐−1−𝜆𝜆𝑚𝑚𝜇𝜇𝑞𝑞−1+𝜂𝜂𝜂𝜂𝜆𝜆

𝜃𝜃 ≤ 0 

(12) 

Appendix C Proof of Property 1 
Calculating the defivative of the household’s utility 𝑈𝑈 in (7) with respect to its free choice variables 𝑝𝑝, 𝑐𝑐 and 𝑚𝑚, and equating to zero, 
gives 

𝜕𝜕𝑈𝑈
𝜕𝜕𝑝𝑝 = 1

𝜃𝜃 𝑐𝑐𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞  

× 𝑚𝑚𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇𝑝𝑝−1+ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝)−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞  
× (ℎ(𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝑎𝑎𝑝𝑝(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)) = 0, 
 

(13) 

𝜕𝜕𝑈𝑈
𝜕𝜕𝑐𝑐 = 1

𝜃𝜃 𝑐𝑐−1+𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞 

× 𝑚𝑚𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝)−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞 
× ((𝑟𝑟 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝)(𝛽𝛽 − 𝜆𝜆 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝑐𝑐(1 − 𝑀𝑀𝐼𝐼𝑚𝑚 + 𝑄𝑄𝐼𝐼𝑞𝑞 − 𝛼𝛼 − 𝛾𝛾 + 𝜂𝜂 − 𝜆𝜆)) = 0, 
 

(14) 

𝜕𝜕𝑈𝑈
𝜕𝜕𝑚𝑚 = 1

𝜃𝜃 𝑐𝑐𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞  

× 𝑚𝑚−1+𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝)−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞  
× ((𝑟𝑟 − 𝑐𝑐 − 𝑎𝑎𝑝𝑝)(𝛾𝛾 + 2𝑀𝑀𝐼𝐼𝑚𝑚 + 𝜇𝜇) − 𝑚𝑚(1 − 𝛼𝛼 − 𝛽𝛽 + 𝜂𝜂 + 𝜇𝜇 + 2𝑀𝑀𝐼𝐼𝑚𝑚 + 2𝐼𝐼𝑞𝑞𝑄𝑄)) = 0, 
 

(15) 

which are solved to yield 𝑝𝑝, 𝑐𝑐 and 𝑚𝑚 in (9). The dependent variable 𝑞𝑞 follows from solving (2) with respect to 𝑞𝑞 and inserting 𝑝𝑝, 𝑐𝑐 
and 𝑚𝑚. The second order conditions, inserting (14) to (14), are 

𝜕𝜕2𝑈𝑈
𝜕𝜕𝑝𝑝2 = − 1

𝜃𝜃 𝑐𝑐𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞 

× 𝑚𝑚𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝)−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞 
(16) 
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× (
2𝑎𝑎ℎ(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)

𝑝𝑝

+
ℎ(𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝) (1 − ℎ(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)) (𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

𝑝𝑝2

+
𝑎𝑎2(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 − 𝜂𝜂 − 2𝑄𝑄𝐼𝐼𝑞𝑞)(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)

𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝 ), 

 

𝜕𝜕2𝑈𝑈
𝜕𝜕𝑐𝑐2 = − 1

𝜃𝜃 𝑐𝑐𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞 

× 𝑚𝑚𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝)−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞 

× (
2(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)(𝛽𝛽 − 𝜆𝜆 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑚𝑚)

𝑐𝑐

+
(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 − 𝜂𝜂 − 2𝑄𝑄𝐼𝐼𝑞𝑞)(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)

𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝

+
(𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝)(𝛽𝛽 − 𝜆𝜆 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑚𝑚)(1 − 𝛽𝛽 + 𝜆𝜆 + 𝑀𝑀𝐼𝐼𝑚𝑚 + 𝑄𝑄𝐼𝐼𝑞𝑞)

𝑐𝑐2 ), 

(17) 

 

𝜕𝜕2𝑈𝑈
𝜕𝜕𝑚𝑚2 = − 1

𝜃𝜃 𝑐𝑐𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞  

× 𝑚𝑚𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝)−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞 

× (
2(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝐼𝐼𝑞𝑞𝑄𝑄)(𝛾𝛾 + 2𝑀𝑀𝐼𝐼𝑚𝑚 + 𝜇𝜇)

𝑚𝑚

+
(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 − 𝜂𝜂 − 2𝑄𝑄𝐼𝐼𝑞𝑞)(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)

𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝
+

(𝑟𝑟 − 𝑐𝑐 − 𝑚𝑚 − 𝑎𝑎𝑝𝑝)(1 − 𝛾𝛾 − 𝜇𝜇 − 2𝑀𝑀𝐼𝐼𝑚𝑚)(𝛾𝛾 + 2𝑀𝑀𝐼𝐼𝑚𝑚 + 𝜇𝜇)
𝑚𝑚2 ) 

(18) 

Appendix D Proof of Property 3 
Differentiating (9) gives 

𝜕𝜕𝑝𝑝
𝜕𝜕𝛽𝛽 = 𝜕𝜕𝑝𝑝

𝜕𝜕𝛾𝛾 = 𝜕𝜕𝑝𝑝
𝜕𝜕𝜃𝜃 = 0, 𝜕𝜕2𝑝𝑝

𝜕𝜕𝛽𝛽2 = 𝜕𝜕2𝑝𝑝
𝜕𝜕𝛾𝛾2 = 𝜕𝜕2𝑝𝑝

𝜕𝜕𝜃𝜃2 = 0, 
𝜕𝜕𝑝𝑝
𝜕𝜕𝑟𝑟 =

ℎ(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)
𝑎𝑎(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇) , 𝜕𝜕2𝑝𝑝

𝜕𝜕𝑟𝑟2 = 0, 

𝜕𝜕𝑝𝑝
𝜕𝜕𝑎𝑎 =

−ℎ𝑟𝑟(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)
𝑎𝑎2(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇), 

𝜕𝜕2𝑝𝑝
𝜕𝜕𝑎𝑎2 =

2ℎ𝑟𝑟(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)
𝑎𝑎3(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇) 

(19) 

 
𝜕𝜕𝑐𝑐
𝜕𝜕𝛽𝛽 = 𝑟𝑟

1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇 , 𝜕𝜕2𝑐𝑐
𝜕𝜕𝛽𝛽2 = 0, 

𝜕𝜕𝑐𝑐
𝜕𝜕𝛾𝛾 = 𝜕𝜕𝑐𝑐

𝜕𝜕𝛾𝛾2 = 0, 𝜕𝜕𝑐𝑐
𝜕𝜕𝜃𝜃 = 𝜕𝜕𝑐𝑐

𝜕𝜕𝜃𝜃2 = 0, 
𝜕𝜕𝑐𝑐
𝜕𝜕𝑟𝑟 =

𝛽𝛽 − 𝜆𝜆 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞
1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇 , 𝜕𝜕2𝑐𝑐

𝜕𝜕𝑟𝑟2 = 0, 

𝜕𝜕𝑐𝑐
𝜕𝜕𝑎𝑎 = 𝜕𝜕2𝑐𝑐

𝜕𝜕𝑎𝑎2 = 0 

(20) 

 
𝜕𝜕𝑚𝑚
𝜕𝜕𝛽𝛽 = 𝜕𝜕2𝑚𝑚

𝜕𝜕𝛽𝛽2 = 0, 
𝜕𝜕𝑚𝑚
𝜕𝜕𝛾𝛾 = 𝑟𝑟

1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇 , 𝜕𝜕2𝑚𝑚
𝜕𝜕𝛾𝛾2 = 0, 

 𝜕𝜕𝑚𝑚
𝜕𝜕𝜃𝜃 = 𝜕𝜕2𝑚𝑚

𝜕𝜕𝜃𝜃2 = 0, 

(21) 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟 = 𝑟𝑟

1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇 ,
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2 = 0, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎 = 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑎𝑎2 = 0 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝛾𝛾 =

−𝑟𝑟
1 − (1 − ℎ)(𝛼𝛼 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇 ,

𝜕𝜕2𝜕𝜕
𝜕𝜕𝛽𝛽2 =

𝜕𝜕2𝜕𝜕
𝜕𝜕𝛾𝛾2 = 0, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃 =

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜃𝜃2 = 0, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟 =

1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑚𝑚
1 − (1 − ℎ)(𝛼𝛼 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇 ,

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2 = 0, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎 =

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑎𝑎2 = 0 

(22) 

 
𝜕𝜕𝑈𝑈
𝜕𝜕𝛽𝛽 = 1

𝜃𝜃 𝑐𝑐
𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)

1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞𝜕𝜕𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇 

× 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝜕𝜕 − 𝑎𝑎𝑝𝑝)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞𝐿𝐿𝐿𝐿𝐿𝐿 ( 𝑐𝑐
(1 + 𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝜕𝜕 − 𝑎𝑎𝑝𝑝)), 

𝜕𝜕2𝑈𝑈
𝜕𝜕𝛽𝛽2 =

1
𝜃𝜃 𝑐𝑐

𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞𝜕𝜕𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇

× 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝜕𝜕 − 𝑎𝑎𝑝𝑝)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞 

× (𝐿𝐿𝐿𝐿𝐿𝐿 (
(1 + 𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 −𝜕𝜕 − 𝑎𝑎𝑝𝑝)

𝑐𝑐 ))
2

, 

𝜕𝜕𝑈𝑈
𝜕𝜕𝛾𝛾 =

1
𝜃𝜃 𝑐𝑐

𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞𝜕𝜕𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇 

× 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝜕𝜕 − 𝑎𝑎𝑝𝑝)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞𝐿𝐿𝐿𝐿𝐿𝐿 ( 𝜕𝜕(1 + 𝐼𝐼𝑚𝑚)
(1 + 𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 −𝜕𝜕 − 𝑎𝑎𝑝𝑝)), 

𝜕𝜕2𝑈𝑈
𝜕𝜕𝛾𝛾2 =

1
𝜃𝜃 𝑐𝑐

𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞  

×𝜕𝜕𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝜕𝜕 − 𝑎𝑎𝑝𝑝)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞 

× (𝐿𝐿𝐿𝐿𝐿𝐿 ( 𝜕𝜕(1 + 𝐼𝐼𝑚𝑚)
(1 + 𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 −𝜕𝜕 − 𝑎𝑎𝑝𝑝)))

2

, 

𝜕𝜕𝑈𝑈
𝜕𝜕𝜃𝜃 = − 1

𝜃𝜃2 𝑐𝑐
𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)

1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞𝜕𝜕𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇 

× 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝜕𝜕 − 𝑎𝑎𝑝𝑝)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞, 
𝜕𝜕2𝑈𝑈
𝜕𝜕𝜃𝜃2 =

2
𝜃𝜃3 𝑐𝑐

𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞𝜕𝜕𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇 

× 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝜕𝜕 − 𝑎𝑎𝑝𝑝)1−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞, 
𝜕𝜕𝑈𝑈
𝜕𝜕𝑟𝑟 =

1
𝜃𝜃 𝑐𝑐

𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞𝜕𝜕𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇 

× 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝜕𝜕 − 𝑎𝑎𝑝𝑝)−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞), 
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑟𝑟2 =

1
𝜃𝜃 𝑐𝑐

𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞𝜕𝜕𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇 

× 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝜕𝜕 − 𝑎𝑎𝑝𝑝)−1−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞) 
× (−𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞), 
𝜕𝜕𝑈𝑈
𝜕𝜕𝑎𝑎 = −1

𝜃𝜃 𝑐𝑐
𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)

1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞𝜕𝜕𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇 

× 𝑝𝑝1+ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 −𝜕𝜕 − 𝑎𝑎𝑝𝑝)−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞), 
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑎𝑎2 =

1
𝜃𝜃 𝑐𝑐

𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞𝜕𝜕𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇 

× 𝑝𝑝2+ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)(𝑟𝑟 − 𝑐𝑐 − 𝜕𝜕 − 𝑎𝑎𝑝𝑝)−1−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞) 
× (−𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞) 

(23) 

Appendix E Proof of Property 4 
Differentiating (9) when 𝐼𝐼𝑚𝑚 is a parameter gives 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼𝑚𝑚

= − 𝑟𝑟ℎ𝑀𝑀(1 + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)
𝑎𝑎(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)2

, 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝐼𝐼𝑚𝑚2

= 2𝑟𝑟ℎ𝑀𝑀2(1 − ℎ)(1 + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)
𝑎𝑎(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)3

, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼𝑚𝑚

= − 𝑟𝑟𝑀𝑀(1 + (1 − ℎ)(𝛽𝛽 − 𝛼𝛼 − 𝜆𝜆) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)
(1 − (1 − ℎ)(𝛼𝛼 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)2

, 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝐼𝐼𝑚𝑚2

= 2𝑟𝑟𝑀𝑀2(1 − ℎ)(1 + (1 − ℎ)(𝛽𝛽 − 𝛼𝛼 − 𝜆𝜆) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)
(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)3

, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼𝑚𝑚

=
𝑟𝑟𝑀𝑀(2 − 2 ((1 − ℎ)(𝛼𝛼 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝜂𝜂 + 𝜆𝜆) − (1 − ℎ)𝛾𝛾 + (1 + ℎ)𝜇𝜇)

(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)2
, 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝐼𝐼𝑚𝑚2

= −
𝑟𝑟𝑀𝑀2(1 − ℎ) (2 − 2 ((1 − ℎ)𝑄𝑄𝐼𝐼𝑞𝑞 + 𝛼𝛼 − 𝜂𝜂 + 𝜆𝜆) − 𝛾𝛾 + 𝜇𝜇 + ℎ(2𝛼𝛼 + 𝛾𝛾 + 𝜇𝜇))

(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)3
, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼𝑚𝑚

= −
(1 − ℎ)𝑀𝑀𝑟𝑟(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)

(1 − (1 − ℎ)(𝛼𝛼 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)2
, 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝐼𝐼𝑚𝑚2

=
2𝑟𝑟𝑀𝑀2(1 − ℎ)2(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)
(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)3

 

(24) 

Combining 0 ≤ 𝛼𝛼 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞 ≤ 1 and 𝛽𝛽 − 𝜆𝜆 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞 ≥ 0 gives 𝛽𝛽 − 𝛼𝛼 − 𝜆𝜆 ≥ 𝑀𝑀𝐼𝐼𝑚𝑚 + 𝑄𝑄𝐼𝐼𝑞𝑞 − 𝛼𝛼 ≥ −1. Hence 1 +
(1 − ℎ)(𝛽𝛽 − 𝛼𝛼 − 𝜆𝜆) ≥ 0 if 0 ≤ ℎ < 1, causing 𝜕𝜕𝜕𝜕𝜕𝜕𝐼𝐼𝑚𝑚

< 0 and 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝐼𝐼𝑚𝑚2
> 0. 
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A B S T R A C T 

In a two-period decision model, a central bank chooses a CBDC (central bank digital currency) interest 
rate and a representative household allocates resources into production, consumption, CBDC holding, 
and non-CBDC holding. The model’s analytical results and a plausible benchmark are compared with 
the empirics for the US, China and Russia. Interesting novelties of the article are that the model 
predicts that the US in 2021/2022 should choose 7.56% rather than 0.125% CBDC interest to combat 
its high October 2021 empirical inflation of 6.2%. That would induce households to hold more CBDC, 
hold less non-CBDC, and produce and consume less. In contrast, the model predicts that China should 
choose a low 2.99% rather than 3.85% CBDC interest rate. That would decrease each household’s 
CBDC holding and increase the low inflation. The model predicts that Russia should choose 6.82% 
rather than 6.75% CBDC interest rate. Russia’s strategy is remarkably consistent with the model’s 
predictions. The model predicts that the central bank should choose negative CBDC interest rate when 
the inflation and real interest rate are low, and the inflation target is high. The article shows how 
extremely high inflation, which increases the CBDC interest rate, makes production and consumption 
nearly impossible, unless the real interest rate is extremely negative. 

© 2022 by the authors. Licensee SSBFNET, Istanbul, Turkey. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license 
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Introduction 
Central banks investigate CBDCs (central bank digital currencies) (Boar & Wehrli, 2021; Urbinati et al., 2021), and cryptocurrencies 
continue to be adopted (Bhimani, Hausken, & Arif, 2022; G. Wang, Zhang, Yu, & Ning, 2021). This article is the second in a series 
of two articles. The first article, G. Wang and Hausken (2022), builds a decision model with a central bank applying the Taylor (1993) 
rule and a representative household choosing strategically, and compares with a plausible benchmark solution. This second article 
compares with the empirics for the US, China and Russia. 

This article briefly summarizes the model and results of G. Wang and Hausken (2022). Compared with the benchmark solution in G. 
Wang and Hausken (2022), the article explores the empirical data of the US, China and Russia. The model recommends that the US 
in 2021/2022 should choose a CBDC interest rate far above its 0.125% empirical interest rate. The CBDC can be interpreted as 
money suppy M2 issued by the central bank. China should choose a lower CBDC interest rate than its 3.85% empirical interest rate. 
Russia should choose a CBDC interest rate slightly above its 6.75% empirical interest rate. The article shows how the central bank 
should choose negative CBDC interest rate when the inflation and real interest rate are low, and the inflation target is high. The article 
explores the implications of increased inflation rates. Extremely high inflation, which increases the CBDC interest rate, makes 
production and consumption nearly impossible, unless the real interest rate is extremely negative. 

Negative interest rates have already occurred in Switzerland, Denmark, and Japan (Blanke & Krogstrup, 2016), and may become 
easier to implement with CBDCs which may potentially enable universal accessibility, flexible policy, confidentiality and privacy 
and higher transaction efficiencies. Whereas Grasselli and Lipton (2019) find that negative interest rates impact consumption less 
than investment, this article shows high and positive impact of negative interests on both production and consumption. While Jia 
(2020) finds that negative interest rates induce agents to consume more and save less, this article finds that agents produce more and 
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save more non-CBDC. Both Mooij (2021) and this article find that negative CBDC interest rates may cause the agents to hold more 
CBDCs. 

Just as this article considers the decisions of central banks and households, G. Wang and Hausken (2021) consider a household 
choosing between a cryptocurrency or a national currency. Welburn and Hausken (2015, 2017) extend beyond these two players, to 
countries, firms, banks, and financial inter-governmental organizations. 

Regarding CBDC design, see Agur, Ari, and Dell’Ariccia (2021). Kiff et al. (2020), Auer and Böhme (2020) and Choi, Henry, Lehar, 
Reardon, and Safavi-Naini (2021) evaluate retail CBDCs and structured frameworks for CBDC issuance, and Allen et al. (2020) 
assess capabilities and challenges for CBDCs. H. Wang and Gao (2021) focus more on the types of CBDCs and how they impact 
regulation and global financial networks, while Lee, Yan, and Wang (2021) assess benefits and risks of CBDCs.  

Böser and Gersbach (2020) assess how an interest-bearing CBDC impact bank activities and policy, and Davoodalhosseini (2021) 
investigates the suitable policy when choosing between cash and a CBDC. Beniak (2019) evaluates how CBDCs may impact policy. 
Bindseil (2020) and Bindseil and Fabio (2020) assesses benefits and risks of CBDCs. They recommend a two-tier remuneration 
which enables payment, universal accessibility, possible avoidance of bank disintermediation, and the possibility of negative interest 
rates. 

Article organization 
Section 2 presents the model. Section 3 analyzes the model. Section 4 compares the empirical data of the US, China and Russia. 
Section 5 assesses the impact of high inflation and hyperinflation. Section 6 discusses the results and concludes. 

Methodology: The model 
In period 1 the central bank uses the Taylor (1993) rule to determine its interest rate 

𝐼𝐼𝑚𝑚 = max {𝜋𝜋 + 𝐼𝐼𝑟𝑟 + 𝑎𝑎𝜋𝜋(𝜋𝜋 − 𝜋𝜋∗) + 𝑎𝑎𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 (
𝑝𝑝ℎ
�̅�𝑝ℎ) , 𝑧𝑧} (1) 

where 𝐼𝐼𝑟𝑟 is the equilibrium real interest rate; 𝜋𝜋 is the inflation rate; 𝜋𝜋∗ is the desired inflation rate; 𝑝𝑝ℎ is the representative household’s 
production; ℎ is a production parameter; �̅�𝑝ℎ, is the household’s potential production; 𝐿𝐿𝐿𝐿𝐿𝐿 is the logarithm with base ten; 𝑎𝑎𝜋𝜋 is the 
weight assigned to inflation; 𝑎𝑎𝑝𝑝 = 1 − 𝑎𝑎𝜋𝜋 is the weight assigned to production; and 𝑧𝑧 is the negative lower bound on the interest rate 
𝐼𝐼𝑚𝑚. 

In period 2 the representative household chooses its production 𝑝𝑝, consumption 𝑐𝑐, and CBDC holding 𝑚𝑚, causing the non-CBDC 
holding 𝑞𝑞 = 𝑟𝑟 − 𝑎𝑎𝑝𝑝 − 𝑐𝑐 − 𝑚𝑚 , where 𝑟𝑟 is the household’s resources and 𝑎𝑎 is the household’s unit production cost. The household’s 
utility is 

𝑈𝑈 = 𝑝𝑝ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)𝑐𝑐𝛽𝛽−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞(𝑚𝑚(1 + 𝐼𝐼𝑚𝑚))
𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚  

× ((𝑟𝑟 − 𝑎𝑎𝑝𝑝 − 𝑐𝑐 − 𝑚𝑚)(1 + 𝐼𝐼𝑞𝑞))
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞 𝑚𝑚𝜇𝜇(𝑟𝑟 − 𝑎𝑎𝑝𝑝 − 𝑐𝑐 − 𝑚𝑚)𝜂𝜂

𝜃𝜃𝑐𝑐𝜆𝜆  
(2) 

where 𝛼𝛼 is the household’s output elasticity for production 𝑝𝑝, 0 ≤ 𝛼𝛼 ≤ 1, 𝛽𝛽 is the household’s output elasticity for consumption 𝑐𝑐, 
0 ≤ 𝜆𝜆 ≤ 𝛽𝛽 ≤ 1, 𝛾𝛾 is the household’s output elasticity for CBDC 𝑚𝑚, 0 ≤ 𝛾𝛾 ≤ 1, 𝑀𝑀 is the household’s weight of the CBDC interest 
rate 𝐼𝐼𝑚𝑚 in its output elasticities, 𝑄𝑄 is the household’s weight of the non-CBDC interest rate 𝐼𝐼𝑞𝑞 in its output elasticities, 1 − 𝛼𝛼 − 𝛽𝛽 −
𝛾𝛾 + 2𝑄𝑄𝐼𝐼𝑞𝑞 is the household’s output elasticity for non-CBDC 𝑞𝑞, 0 ≤ 1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 2𝑄𝑄𝐼𝐼𝑞𝑞 ≤ 1, 𝐼𝐼𝑞𝑞 is the non-CBDC interest rate, 𝜇𝜇 
is the household’s transaction efficiency for CBDC 𝑚𝑚, 𝜂𝜂 is the household’s transaction efficiency for non-CBDC 𝑞𝑞, 𝜆𝜆is the 
household’s transaction efficiency for consumption 𝑐𝑐, and 𝜃𝜃 is the scaling or degree or level of the household’s transaction cost, 𝜃𝜃 ≥
0.  

Analyzing the model 

When 𝑝𝑝 ≥ 0, 𝑐𝑐 ≥ 0,𝑚𝑚 ≥ 0, 𝑞𝑞 ≥ 0,𝑈𝑈 ≥ 0, the household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, 
and utility 𝑈𝑈, are 

𝑝𝑝 =
𝑟𝑟ℎ(𝛼𝛼 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

𝑎𝑎(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇), 

𝑐𝑐 =
𝑟𝑟(𝛽𝛽 − 𝜆𝜆 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇, 

𝑚𝑚 = 𝑟𝑟(𝛾𝛾 + 2𝑀𝑀𝐼𝐼𝑚𝑚 + 𝜇𝜇)
1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇, 

𝑞𝑞 =
𝑟𝑟(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)

1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇, 

𝑈𝑈 =
(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)
𝜃𝜃(𝛽𝛽 − 𝜆𝜆 −𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

(1 + 𝐼𝐼𝑚𝑚)𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚(1 + 𝐼𝐼𝑞𝑞)
1−𝛼𝛼−𝛽𝛽−𝛾𝛾+2𝑄𝑄𝐼𝐼𝑞𝑞 

(3) 
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× (
−𝑟𝑟ℎ(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

𝑎𝑎 ((1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝜂𝜂 + 𝜆𝜆 − 𝜇𝜇 − 1)
)

ℎ(𝛼𝛼−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞)

 

× (
−𝑟𝑟(1 − 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 + 𝜂𝜂 + 2𝑄𝑄𝐼𝐼𝑞𝑞)

(1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝜂𝜂 + 𝜆𝜆 − 𝜇𝜇 − 1)
−𝛼𝛼−𝛽𝛽−𝛾𝛾+𝜂𝜂+2𝑄𝑄𝐼𝐼𝑞𝑞

 

× (
−𝑟𝑟(𝛽𝛽 − 𝜆𝜆 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

(1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝜂𝜂 + 𝜆𝜆 − 𝜇𝜇 − 1)
1+𝛽𝛽−𝜆𝜆−𝑀𝑀𝐼𝐼𝑚𝑚−𝑄𝑄𝐼𝐼𝑞𝑞

 

× ( −𝑟𝑟(𝛾𝛾 + 2𝑀𝑀𝐼𝐼𝑚𝑚 + 𝜇𝜇)
(1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) − 𝜂𝜂 + 𝜆𝜆 − 𝜇𝜇 − 1)

𝛾𝛾+2𝑀𝑀𝐼𝐼𝑚𝑚+𝜇𝜇
 

which are inserted into (1) to give the central bank’s CBDC interest rate 𝐼𝐼𝑚𝑚, i.e. 

𝐼𝐼𝑚𝑚 = max {𝜋𝜋 + 𝐼𝐼𝑟𝑟 + 𝑎𝑎𝜋𝜋(𝜋𝜋 − 𝜋𝜋∗) + 𝑎𝑎𝑝𝑝ℎ𝐿𝐿𝐿𝐿𝐿𝐿 (
𝑟𝑟ℎ(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞)

𝑎𝑎(1 − (1 − ℎ)(𝛼𝛼 − 𝑀𝑀𝐼𝐼𝑚𝑚 − 𝑄𝑄𝐼𝐼𝑞𝑞) + 𝜂𝜂 − 𝜆𝜆 + 𝜇𝜇)�̅�𝑝) , 𝑧𝑧} (4) 

 

Proof. See G. Wang and Hausken (2022). ∎ 

 

Figure 1 is plotted in G. Wang and Hausken (2022). 

Figure 1. See G. Wang and Hausken (2022). 
Figure 2 is plotted in G. Wang and Hausken (2022).  

Figure 2. See G. Wang and Hausken (2022). 

Comparing the US, China and Russia 

The US 
The Federal Open Market Committee (2021) maintained the target range for the federal funds rate (refers to CBDC interest rate 𝐼𝐼𝑚𝑚) 
at 0% − 0.25% on September 22, 2021. We choose the midpoint of this range, that is 𝐼𝐼𝑚𝑚 = 0.125%. The US real interest rate was 
𝐼𝐼𝑟𝑟 = 2.305% in 2020 (The World Bank, 2021c). The US annual inflation rate was 𝜋𝜋 = 6.2% for the 12 months ending October 31, 
2021 (The US Labor Department, 2021). The Federal Open Market Committee (2021) seeks to achieve an average target inflation 
rate at 𝜋𝜋∗ = 2% in the long-run. Table 1 summarizes these numbers. 

Table 1: Empirical CBDC interest rate 𝐼𝐼𝑚𝑚, model CBDC interest rate 𝐼𝐼𝑚𝑚, empirical equilibrium real interest rate 𝐼𝐼𝑟𝑟, empirical 
inflation rate 𝜋𝜋, and empirical desired or target inflation rate 𝜋𝜋∗, for the US, China and Russia. 

Parameters The US China Russia 
Empirical CBDC interest rate 𝐼𝐼𝑚𝑚 0.125% 3.85% 6.75% 
Model CBDC interest rate 𝐼𝐼𝑚𝑚 7.56% 2.99% 6.82% 
Empirical real interest rate 𝐼𝐼𝑟𝑟 2.305% 3.6535 % 5.83% 
Empirical inflation rate 𝜋𝜋 6.2% 2.419% 3.382% 
Empirical target inflation rate 𝜋𝜋∗ 2% 3% 4% 
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Figure 3: The household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, utility 𝑈𝑈, and the CBDC interest 
rate 𝐼𝐼𝑚𝑚 for the US, as functions of the real interest rate 𝐼𝐼𝑟𝑟, inflation rate 𝜋𝜋, and target inflation rate 𝜋𝜋∗, respectively, relative to the 
benchmark parameter values 𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 1

4 , 𝑟𝑟 = 𝑎𝑎 = 𝑀𝑀 = 𝑄𝑄 = 1, 𝐼𝐼𝑞𝑞 = 2%, 𝐼𝐼𝑟𝑟 = 2.305%, 𝜂𝜂 = 1
5 , 𝜇𝜇 = 2

5 , 𝜆𝜆 = 1
10 , 𝜋𝜋 = 6.2%, 𝜋𝜋∗ =

2%, ℎ = 1
10 , �̅�𝑝 = 1

2 , 𝑎𝑎𝜋𝜋 = 𝑎𝑎𝑝𝑝 = 1
2 , 𝑧𝑧 = −5%. Multiplication of 𝑝𝑝 and 𝐼𝐼𝑚𝑚 with 10 is for scaling purposes. 

 
Figure 3a plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟 when the inflation rate 𝜋𝜋 = 6.2%, which is higher than 𝜋𝜋 =
3% in Figure 1. All the other parameter values are as the benchmarks in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 
when 𝐼𝐼𝑟𝑟 > 7.4%, which is lower than 𝐼𝐼𝑟𝑟 > 12.21% in Figure 1n. The higher inflation rate 𝜋𝜋 = 6.2% > 3% decreases consumption 
𝑐𝑐 in Figure 3a. Compared to Figure 1n, in Figure 3a the household chooses lower consumption 𝑐𝑐, lower production 𝑝𝑝, and holds less 
non-CBDC 𝑞𝑞. The household holds more CBDC 𝑚𝑚 and earns higher utility 𝑈𝑈. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 
𝐼𝐼𝑟𝑟 < −4.85%, which is lower than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 1n. The model thus predicts a higher CBDC interest rate 𝐼𝐼𝑚𝑚 when the 
inflation rate is 𝜋𝜋 = 6.2% in Figure 3a compared to 𝜋𝜋 = 3% in Figure 1n. That follows from the logic of the Taylor (1993) rule in 
(4). The central bank combats high inflation rate 𝜋𝜋 = 6.2% by increasing its CBDC interest rate 𝐼𝐼𝑚𝑚, to make saving in the form of 
holding CBDC 𝑚𝑚 more attractive than consumption 𝑐𝑐, which is lower in Figure 3a than in Figure 1n. Mathematically, high inflation 
𝜋𝜋 = 6.2% on the right hand side in (4) causes high CBDC interest rate 𝐼𝐼𝑚𝑚 on the left hand side in (4). For example, the CBDC interest 
rate is 𝐼𝐼𝑚𝑚 = 7.56% at the benchmark 𝐼𝐼𝑟𝑟 = 2.305% in Figure 3a, which is higher than 𝐼𝐼𝑚𝑚 = 2.48% when 𝐼𝐼𝑟𝑟 = 2.305% in Figure 1n, 
and much higher than the empirical 𝐼𝐼𝑚𝑚 = 0.125% in Table 1. That seems remarkable. The model and the Taylor (1993) rule predict 
that the US CBDC interest rate 𝐼𝐼𝑚𝑚 should be substantially higher, 𝐼𝐼𝑚𝑚 = 7.56%, than the empirical 𝐼𝐼𝑚𝑚 = 0.125%, in order to induce 
holding more CBDC 𝑚𝑚, and suppress the high inflation 𝜋𝜋 = 6.2%. 

Figure 3b plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the inflation rate 𝜋𝜋, when the real interest rate 𝐼𝐼𝑟𝑟 = 2.305%, which is higher than 
𝐼𝐼𝑟𝑟 = 2% in Figure 1. All the other parameter values are as the benchmarks in Figure 1. The household’s consumption 𝑐𝑐 decreases to 
𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > 9.60%, which is slightly lower than 𝐼𝐼𝑟𝑟 > 9.80% in Figure 1o. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 
𝜋𝜋 < 1.43%, which is lower than 𝜋𝜋 < 1.63% in Figure 1o. Hence the higher real interest rate 𝐼𝐼𝑟𝑟 = 2.305% decreases the consumption 
𝑐𝑐 and increases the CBDC interest rate 𝐼𝐼𝑚𝑚. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 7.56% at the benchmark 𝜋𝜋 = 6.2%, which is higher than 
𝐼𝐼𝑚𝑚 = 7.24% when 𝜋𝜋 = 6.2% in Figure 1o. Both these 𝐼𝐼𝑚𝑚 are substantially higher than 𝐼𝐼𝑚𝑚 =0.125% in Table 1.  

Figure 3c plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗ for the same real interest rate 𝐼𝐼𝑟𝑟 = 2.305%, which is higher 
than 𝐼𝐼𝑟𝑟 = 2% in Figure 1. All the other parameter values are as the benchmarks in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes 
negative when 𝜋𝜋∗ > 6.71%, which is higher than 𝜋𝜋∗ > 6.10% in Figure 1p. The household consumption 𝑐𝑐, production 𝑝𝑝, CBDC 
holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 16.19%, which is higher than 𝜋𝜋∗ > 15.58% in Figure 1p. 
Hence the higher real interest rate 𝐼𝐼𝑟𝑟 = 2.305% increases the target inflation rate 𝜋𝜋∗ and the CBDC interest rate 𝐼𝐼𝑚𝑚. The CBDC 
interest rate is 𝐼𝐼𝑚𝑚 = 2.48% at the benchmark 𝜋𝜋∗ = 2%, which is higher than 𝐼𝐼𝑚𝑚 = 0.125% in Table 1, and also higher than 𝐼𝐼𝑚𝑚 =
2.00% in Figure 1p when  𝜋𝜋∗ = 2%. 

Figure 3d plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the inflation rate is 𝜋𝜋 = 6.2%, which is higher than 
𝜋𝜋 = 3% in Figure 1. All the other parameter values are as the benchmarks in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative 
when 𝜋𝜋∗ > 15.70%, which is much higher than 𝜋𝜋∗ > 6.10% in Figure 1p. The household consumption 𝑐𝑐, production 𝑝𝑝, CBDC 
holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 25.18%, which is much higher than 𝜋𝜋∗ > 15.58% in Figure 
1p. Hence the higher inflation rate 𝜋𝜋 = 6.2% greatly increases the target inflation rate 𝜋𝜋∗ and the CBDC interest rate 𝐼𝐼𝑚𝑚. The CBDC 
interest rate is 𝐼𝐼𝑚𝑚 = 7.24% at the benchmark 𝜋𝜋∗ = 2%, which is much higher than 𝐼𝐼𝑚𝑚 = 0.125% in Table 1, and also higher than 
𝐼𝐼𝑚𝑚 = 2.00% in Figure 1p when  𝜋𝜋∗ = 2%. 
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Figure 3e plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate is 𝐼𝐼𝑟𝑟 = 2.305% and the inflation 
rate is 𝜋𝜋 = 6.2%. All the other parameter values are as the benchmarks in Figure 1. It is the combination of Figure 3c and Figure 3d. 
The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋∗ > 16.31%, which is much higher than  𝜋𝜋∗ > 6.10% in Figure 1p. The 
household consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 25.79%, 
which is much higher than 𝜋𝜋∗ > 15.58% in Figure 1p. Hence the higher inflation rate is 𝜋𝜋 = 6.2% and the higher real interest rate 
𝐼𝐼𝑟𝑟 = 2.305% greatly increases the target inflation rate 𝜋𝜋∗ and the CBDC interest rate 𝐼𝐼𝑚𝑚. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 7.56% at 
the benchmark 𝜋𝜋∗ = 2%, which is much higher than 𝐼𝐼𝑚𝑚 = 0.125% in Table 1, and also higher than 𝐼𝐼𝑚𝑚 = 2.00% in Figure 1p when 
 𝜋𝜋∗ = 2%. 

The empirical US inflation rate 𝜋𝜋 = 6.2% is much higher than the empirical CBDC interest rate 𝐼𝐼𝑚𝑚 = 0.125%. Thus, the gap between 
the predicted CBDC interest rate 𝐼𝐼𝑚𝑚 and the US empirical CBDC interest rate 𝐼𝐼𝑚𝑚 is large, at the real interest rate benchmark 𝐼𝐼𝑟𝑟 and 
the target inflation benchmark 𝜋𝜋∗. The model predicts that the US CBDC interest rate 𝐼𝐼𝑚𝑚 should be substantially higher than 𝐼𝐼𝑚𝑚 =
0.125%. The higher real interest rate 𝐼𝐼𝑟𝑟 decreases the consumption 𝑐𝑐, increases the CBDC interest rate 𝐼𝐼𝑚𝑚, and increases the target 
inflation rate 𝜋𝜋∗. The higher inflation rate increases the target inflation rate 𝜋𝜋∗ and increases the CBDC interest rate 𝐼𝐼𝑚𝑚. 

Table 2: Interpretation of Figure 3 for the US compared to Figure 1. 

The US 
Changed parameter 
values from the 
benchmark in Figure 1 

𝑐𝑐 decreases to zero 
when 

𝑐𝑐, 𝑝𝑝, 𝑚𝑚, 𝑞𝑞 reach constant 
values when 

𝐼𝐼𝑚𝑚 becomes 
negative when 𝐼𝐼𝑚𝑚 at the benchmark 

Figure 
3a 𝜋𝜋 = 6.2% 𝐼𝐼𝑟𝑟 > 7.4% 𝐼𝐼𝑟𝑟 < −9.59% 𝐼𝐼𝑟𝑟 < −4.85% 𝐼𝐼𝑚𝑚 = 7.56% at 𝐼𝐼𝑟𝑟 =

2.305% 
Figure 
3b 𝐼𝐼𝑟𝑟 = 2.305% 𝜋𝜋 > 9.60% 𝜋𝜋 < −1.73% 𝜋𝜋 < 1.43% 𝐼𝐼𝑚𝑚 = 7.56% at 𝜋𝜋 =

6.2% 
Figure 
3c 𝐼𝐼𝑟𝑟 = 2.305% 𝜋𝜋∗ < −17.80% 𝜋𝜋∗ > 16.19% 𝜋𝜋∗ > 6.71% 𝐼𝐼𝑚𝑚 = 2.48% at 

𝜋𝜋∗ = 2% 
Figure 
3d 𝜋𝜋 = 6.2% 𝜋𝜋∗ < −8.81% 𝜋𝜋∗ > 25.18% 𝜋𝜋∗ > 15.70% 𝐼𝐼𝑚𝑚 = 7.24% at 

𝜋𝜋∗ = 2% 
Figure 
3e 

𝐼𝐼𝑟𝑟 = 2.305% 
𝜋𝜋 = 6.2% 𝜋𝜋∗ < −8.20% 𝜋𝜋∗ > 25.79% 𝜋𝜋∗ > 16.31% 𝐼𝐼𝑚𝑚 = 7.56% at 

𝜋𝜋∗ = 2% 
Figure 
1n 𝐼𝐼𝑟𝑟 = 2% 𝐼𝐼𝑟𝑟 > 12.21% 𝐼𝐼𝑟𝑟 < −4.79% 𝐼𝐼𝑟𝑟 < 0.00% 𝐼𝐼𝑚𝑚 = 2.48% at 𝐼𝐼𝑟𝑟 =

2.305% 
Figure 
1o 𝜋𝜋 = 3% 𝐼𝐼𝑟𝑟 > 9.80% 𝐼𝐼𝑟𝑟 < −1.53% 𝜋𝜋 < 1.63% 𝐼𝐼𝑚𝑚 = 7.24% at 𝜋𝜋 =

6.2% 
Figure 
1p 𝜋𝜋∗ = 2% 𝜋𝜋∗ < −18.41% 𝜋𝜋∗ > 15.58% 𝜋𝜋∗ > 6.10% 𝐼𝐼𝑚𝑚 = 2.00% at 

𝜋𝜋∗ = 2% 
 

China 
The People's Bank of China kept its interest rate unchanged since October 2015. The China interest rate has on average been 
𝐼𝐼𝑚𝑚 =3.85% over the last year (Gang, 2021). The China real interest rate is 𝐼𝐼𝑟𝑟 = 3.6535 % in 2020, the China annual inflation rate is 
𝜋𝜋 = 2.419%, according to the World Bank (The World Bank, 2021a). The State Council of China (2020) set the inflation target 
𝜋𝜋∗ = 3% for the year 2021, just as in 2020. 
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Figure 4: The household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, utility 𝑈𝑈, and the CBDC interest 
rate 𝐼𝐼𝑚𝑚 for China, as functions of the real interest rate 𝐼𝐼𝑟𝑟, inflation rate 𝜋𝜋, and target inflation rate 𝜋𝜋∗, respectively, relative to the 
benchmark parameter values 𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 1

4 , 𝑟𝑟 = 𝑎𝑎 = 𝑀𝑀 = 𝑄𝑄 = 1, 𝐼𝐼𝑞𝑞 = 2%, 𝐼𝐼𝑟𝑟 = 3.6535%, 𝜂𝜂 = 1
5 , 𝜇𝜇 = 2

5 , 𝜆𝜆 = 1
10 , 𝜋𝜋 =

2.419%, 𝜋𝜋∗ = 3%, ℎ = 1
10 , �̅�𝑝 = 1

2 , 𝑎𝑎𝜋𝜋 = 𝑎𝑎𝑝𝑝 = 1
2 , 𝑧𝑧 = −5%. Multiplication of 𝑝𝑝 and 𝐼𝐼𝑚𝑚 with 10 is for scaling purposes. 

 

Figure 4a plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟, when the inflation rate 𝜋𝜋 = 2.419%, which is lower than 𝜋𝜋 =
3% in Figure 1. All the other parameter values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 
when 𝐼𝐼𝑟𝑟 > 13.08%, which is slightly higher than 𝐼𝐼𝑟𝑟 > 12.21% in Figure 1n. The lower inflation rate 𝜋𝜋 = 2.419% < 3% increases 
slightly the consumption 𝑐𝑐 in Figure 4a compared to Figure 1n, in contrast to the decreased consumption 𝑐𝑐 in Figure 3a for the US. 
Compared to Figure 1n in Figure 4a, the household chooses higher consumption 𝑐𝑐, higher production 𝑝𝑝, and holds more non-CBDC 
𝑞𝑞, in contrast to Figure 3a for the US. The household holds less CBDC 𝑚𝑚 and earns lower utility 𝑈𝑈, also in contrast to Figure 3 for 
the US. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < 0.82% which is higher than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 1n, and much 
higher than 𝐼𝐼𝑟𝑟 < −4.85% in Figure 3a for the US. The model thus predicts a lower CBDC interest rate 𝐼𝐼𝑚𝑚 when the inflation rate is 
𝜋𝜋 = 2.419% in Figure 4a compared to 𝜋𝜋 = 3% in Figure 1n. That follows from the logic of the Taylor (1993) rule in (4). The central 
bank responds to low inflation rate 𝜋𝜋 = 2.419% by decreasing its CBDC interest rate 𝐼𝐼𝑚𝑚, to make saving in the form of holding 
CBDC 𝑚𝑚 less attractive than consumption 𝑐𝑐, which is higher in Figure 4a than in Figure 1n. Mathematically, low inflation 𝜋𝜋 =
2.419% on the right hand side in (4) causes low CBDC interest rate 𝐼𝐼𝑚𝑚 on the left hand side in (4). For example, the CBDC interest 
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rate is 𝐼𝐼𝑚𝑚 = 2.99% at the benchmark 𝐼𝐼𝑟𝑟 = 3.6535% in Figure 4a, which is lower than 𝐼𝐼𝑚𝑚 = 3.91% when 𝐼𝐼𝑟𝑟 = 3.6535% in Figure 
1n, and also lower than the empirical 𝐼𝐼𝑚𝑚 = 3.85% in Table 1. The model predicts partly in accordance with the empirics. The model 
and the Taylor (1993) rule predict that China’s CBDC interest rate 𝐼𝐼𝑚𝑚 should be lower, 𝐼𝐼𝑚𝑚 = 2.99%, than the empirical 𝐼𝐼𝑚𝑚 = 3.85%, 
in order to induce holding less CBDC 𝑚𝑚, and increase the low inflation rate 𝜋𝜋 = 2.419% towards its target 𝜋𝜋∗ = 3%. 

Figure 4b plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟, when the target inflation rate 𝜋𝜋∗ = 3%, which is higher than 
𝜋𝜋∗ = 2% in Figure 1. All the other parameter values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 
𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > 12.71%, which is higher than 𝐼𝐼𝑟𝑟 > 12.21% in Figure 1n. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 <
0.45%, which is higher than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 1n. Hence the higher target inflation rate 𝜋𝜋∗ = 3% increases the consumption 𝑐𝑐 
and correspondingly decreases the CBDC interest rate 𝐼𝐼𝑚𝑚. Both of these are in contrast to the US in Figure 3b. Accordingly, the 
CBDC interest rate is 𝐼𝐼𝑚𝑚 = 3.38% at the benchmark 𝐼𝐼𝑟𝑟 = 3.6535%, which is lower than 𝐼𝐼𝑚𝑚 = 3.91% when 𝐼𝐼𝑟𝑟 = 3.6535% in Figure 
1n, and lower than 𝐼𝐼𝑚𝑚 = 3.85% in Table 1. 

Figure 4c plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟,when the inflation rate 𝜋𝜋 = 2.419% and the target inflation 
rate 𝜋𝜋∗ = 3%, thus combining the assumptions for Figure 4a and Figure 4b. All the other parameter values are as the benchmark in 
Figure 1. The consumption 𝑐𝑐 decreases and the CBDC interest rate 𝐼𝐼𝑚𝑚 increases. More specifically, the household’s consumption 𝑐𝑐 
decreases to 𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > 13.58%, which is higher than 𝐼𝐼𝑟𝑟 > 12.21% in Figure 1n. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative 
when 𝐼𝐼𝑟𝑟 < 1.32%, which is higher than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 1n. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 2.46% at the benchmark 𝐼𝐼𝑟𝑟 =
3.6535%, which is lower than 𝐼𝐼𝑚𝑚 = 3.91% when 𝐼𝐼𝑟𝑟 = 3.6535% in Figure 1n, and also lower than 3.85% in Table 1. 

Figure 4d plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the inflation rate 𝜋𝜋, when the real interest rate 𝐼𝐼𝑟𝑟 = 3.6535%, which is higher than 
𝐼𝐼𝑟𝑟 = 2% in Figure 1. All the other parameter values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 
𝑐𝑐 = 0 when 𝜋𝜋 > 8.70%, which is lower than 𝜋𝜋 > 9.80% in Figure 1o. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋 <
0.53%, which is lower than 𝜋𝜋 < 1.63% in Figure 1o. Hence the higher real interest rate 𝐼𝐼𝑟𝑟 = 3.6535% decreases the consumption 
𝑐𝑐 and correspondingly increases the CBDC interest rate 𝐼𝐼𝑚𝑚. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 2.99% at the benchmark 𝜋𝜋 = 2.419%, 
which is higher than 𝐼𝐼𝑚𝑚 = 1.24% when 𝜋𝜋 = 2.419% in Figure 1o, but lower than 𝐼𝐼𝑚𝑚 = 3.85% in Table 1. Hence China empirically 
chooses a higher CBDC interest rate 𝐼𝐼𝑚𝑚 = 3.85% than 𝐼𝐼𝑚𝑚 = 2.99% predicted by the model, which is the opposite of what the US 
does. 

Figure 4e plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the inflation rate 𝜋𝜋, when the target inflation rate 𝜋𝜋∗ = 3%, which is higher than 
𝜋𝜋∗ = 2% in Figure 1. All the other parameter values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 
𝑐𝑐 = 0 when 𝜋𝜋 > 10.14%, which is higher than 𝜋𝜋 > 9.80% in Figure 1o. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋 <
1.97%, which is higher than 𝜋𝜋 < 1.63% in Figure 1o. Hence the higher target inflation rate 𝜋𝜋∗ = 3% increases the consumption 𝑐𝑐 
and correspondingly decreases the CBDC interest rate 𝐼𝐼𝑚𝑚. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 0.71% at the benchmark 𝜋𝜋 = 2.419%, 
which is lower than 𝐼𝐼𝑚𝑚 = 1.24% when 𝜋𝜋 = 2.419% in Figure 1o, and also lower than 3.85% in Table 1. Again, China empirically 
chooses a higher CBDC interest rate 𝐼𝐼𝑚𝑚 = 3.85% than 𝐼𝐼𝑚𝑚 = 0.71% predicted by the model, which is the opposite of what the US 
does. 

Figure 4f plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the inflation rate 𝜋𝜋, when the real interest rate 𝐼𝐼𝑟𝑟 = 3.6535% and the target inflation 
rate 𝜋𝜋∗ = 3%, thus combining the assumptions for Figure 4d and Figure 4e. All the other parameter values are as the benchmark in 
Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋 > 9.03%, which is lower than 𝜋𝜋 > 9.80% in Figure 1o. The 
CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋 < 0.87%, which is lower than 𝜋𝜋 < 1.63% in Figure 1o. Hence 𝐼𝐼𝑟𝑟 = 3.6535% and 
𝜋𝜋∗ = 3% increase the consumption 𝑐𝑐 and correspondingly decreases the CBDC interest rate 𝐼𝐼𝑚𝑚. The results are intermediate between 
those of Figure 4d and Figure 4e which pull in opposite directions. More specifically, the CBDC interest rate is 𝐼𝐼𝑚𝑚 = 2.46% at the 
benchmark 𝜋𝜋 = 2.419%, which is higher than 𝐼𝐼𝑚𝑚 = 1.24% when 𝜋𝜋 = 2.419% in Figure 1o, and lower than 3.85% in Table 1. 

Figure 4g plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate 𝐼𝐼𝑟𝑟 = 3.6535%, which is higher 
than 𝐼𝐼𝑟𝑟 = 2% in Figure 1. All the other parameter values are as the benchmark in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes 
negative when 𝜋𝜋∗ > 9.40%, which is higher than 𝜋𝜋∗ > 6.10% in Figure 1p. The household consumption 𝑐𝑐, production 𝑝𝑝, CBDC 
holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 18.89%, which is higher than 𝜋𝜋∗ > 15.58% in Figure 1p. 
The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 3.38% at the benchmark 𝜋𝜋∗ = 3%, which is higher than 𝐼𝐼𝑚𝑚 = 1.63% when 𝜋𝜋∗ = 3% in Figure 1p, 
but lower than 3.85% in Table 1. Thus, the higher real interest rate 𝐼𝐼𝑟𝑟 = 3.6535% increases the target inflation rate 𝜋𝜋∗, but decreases 
the CBDC interest rate 𝐼𝐼𝑚𝑚, which is contrary to the US.  

Figure 4h plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the target inflation rate 𝜋𝜋∗, when the inflation rate 𝜋𝜋 = 2.419%, which is lower than 
𝜋𝜋 = 3% in Figure 1. All the other parameter values are as the benchmark in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative 
when 𝜋𝜋∗ > 4.35%, which is lower than 𝜋𝜋∗ > 6.10% in Figure 1p. The household consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 
and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 13.84%, which is lower than 𝜋𝜋∗ > 15.58% in Figure 1p. The CBDC 
interest rate is 𝐼𝐼𝑚𝑚 = 0.71% at the benchmark 𝜋𝜋∗ = 3%, which is lower than 𝐼𝐼𝑚𝑚 = 1.63% when 𝜋𝜋∗ = 3% in Figure 1p, and much 
lower than 3.85% in Table 1. The lower inflation rate 𝜋𝜋 = 2.419% decreases the CBDC interest rate 𝐼𝐼𝑚𝑚, and decreases the target 
inflation rate 𝜋𝜋∗. 

Figure 4i plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate 𝐼𝐼𝑟𝑟 = 3.6535% and the inflation 
rate 𝜋𝜋 = 2.419%, thus combining the assumptions for Figure 4g and Figure 4h. All the other parameter values are as the benchmark 
in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋∗ > 7.66%, which is higher than 𝜋𝜋∗ > 6.10% in Figure 1p. The 
household consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 17.15%, 
which is higher than 𝜋𝜋∗ > 15.58% in Figure 1p. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 2.46% at the benchmark 𝜋𝜋∗ = 3%, which is higher 
than 𝐼𝐼𝑚𝑚 = 1.63% when 𝜋𝜋∗ = 3% in Figure 1p, but lower than 3.85% in Table 1. Thus, the real interest rate 𝐼𝐼𝑟𝑟 = 3.6535% combined 
with the lower inflation rate 𝜋𝜋 = 2.419%, increase target inflation rate 𝜋𝜋∗ and decrease the CBDC interest rate 𝐼𝐼𝑚𝑚. 
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The gap between the empirical inflation rate 𝜋𝜋 = 2.419% and the empirical CBDC interest rate 𝐼𝐼𝑚𝑚 = 3.6535% is much lower for 
China than for the US. The model predicts that China’s CBDC interest rate 𝐼𝐼𝑚𝑚 should be slightly lower. China empirically chooses 
a higher CBDC interest rate 𝐼𝐼𝑚𝑚 predicted by the model, which is contrary to the US. The higher real interest rate increases the target 
inflation rate 𝜋𝜋∗, but decreases the CBDC interest rate 𝐼𝐼𝑚𝑚. The higher target inflation rate 𝜋𝜋∗ increases the consumption 𝑐𝑐 and 
decreases the CBDC interest rate 𝐼𝐼𝑚𝑚. The lower inflation rate 𝜋𝜋 decreases the CBDC interest rate 𝐼𝐼𝑚𝑚, and decreases the target inflation 
rate 𝜋𝜋∗. 

Table 3: Interpretation of Figure 4 for China compared to Figure 1. 

China Changed parameter values from 
the benchmark in Figure 1 

𝑐𝑐 decreases to zero 
when 

𝑐𝑐, 𝑝𝑝,𝑚𝑚, 𝑞𝑞 reach 
constant values when 

𝐼𝐼𝑚𝑚 becomes 
negative when 𝐼𝐼𝑚𝑚 at the benchmark 

Figure 
4a 𝜋𝜋 = 2.419% 𝐼𝐼𝑟𝑟 > 13.08% 𝐼𝐼𝑟𝑟 < −3.92% 𝐼𝐼𝑟𝑟 < 0.82% 𝐼𝐼𝑚𝑚 = 2.99% at 𝐼𝐼𝑟𝑟 =

3.6535% 
Figure 
4b 𝜋𝜋∗ = 3% 𝐼𝐼𝑟𝑟 > 12.71% 𝐼𝐼𝑟𝑟 < −4.29% 𝐼𝐼𝑟𝑟 < 0.45% 𝐼𝐼𝑚𝑚 = 3.38% at 𝐼𝐼𝑟𝑟 =

3.6535% 
Figure 
4c 

𝜋𝜋 = 2.419% 
𝜋𝜋∗ = 3% 𝐼𝐼𝑟𝑟 > 13.58% 𝐼𝐼𝑟𝑟 < −3.42% 𝐼𝐼𝑟𝑟 < 1.32% 𝐼𝐼𝑚𝑚 = 2.46% at 𝐼𝐼𝑟𝑟 =

3.6535% 
Figure 
4d 𝐼𝐼𝑟𝑟 = 3.6535% 𝜋𝜋 > 8.70% 𝜋𝜋 < −2.63% 𝜋𝜋 < 0.53% 𝐼𝐼𝑚𝑚 = 2.99% at 𝜋𝜋 =

2.419% 
Figure 
4e 𝜋𝜋∗ = 3% 𝜋𝜋 > 10.14% 𝜋𝜋 < −1.19% 𝜋𝜋 < 1.97% 𝐼𝐼𝑚𝑚 = 0.71% at 𝜋𝜋 =

2.419% 
Figure 
4f 

𝐼𝐼𝑟𝑟 = 3.6535% 
𝜋𝜋∗ = 3% 𝜋𝜋 > 9.03% 𝜋𝜋 < −2.3% 𝜋𝜋 < 0.87% 𝐼𝐼𝑚𝑚 = 2.46% at 𝜋𝜋 =

2.419% 
Figure 
4g 𝐼𝐼𝑟𝑟 = 3.6535% 𝜋𝜋∗ < −15.1% 𝜋𝜋∗ > 18.89% 𝜋𝜋∗ > 9.40% 𝐼𝐼𝑚𝑚 = 3.38% at 

𝜋𝜋∗ = 3% 
Figure 
4h 𝜋𝜋 = 2.419% 𝜋𝜋∗ < −20.15% 𝜋𝜋∗ > 13.84% 𝜋𝜋∗ > 4.35% 𝐼𝐼𝑚𝑚 = 0.71% at 

𝜋𝜋∗ = 3% 
Figure 
4 i 

𝐼𝐼𝑟𝑟 = 3.6535% 
𝜋𝜋 = 2.419% 𝜋𝜋∗ < −16.85% 𝜋𝜋∗ > 17.15% 𝜋𝜋∗ > 7.66% 𝐼𝐼𝑚𝑚 = 2.46% at 

𝜋𝜋∗ = 3% 
Figure 
1n 𝐼𝐼𝑟𝑟 = 2% 𝐼𝐼𝑟𝑟 > 12.21% 𝐼𝐼𝑟𝑟 < −4.79% 𝐼𝐼𝑟𝑟 < 0.00% 𝐼𝐼𝑚𝑚 = 3.91% at 𝐼𝐼𝑟𝑟 =

3.6535% 
Figure 
1o 𝜋𝜋 = 3% 𝐼𝐼𝑟𝑟 > 9.80% 𝐼𝐼𝑟𝑟 < −1.53% 𝜋𝜋 < 1.63% 𝐼𝐼𝑚𝑚 = 1.24% at 𝜋𝜋 =

2.419% 
Figure 
1p 𝜋𝜋∗ = 2% 𝜋𝜋∗ < −18.41% 𝜋𝜋∗ > 15.58% 𝜋𝜋∗ > 6.10% 𝐼𝐼𝑚𝑚 = 1.63% at 

𝜋𝜋∗ = 3%  
 

Russia 
The Bank of Russia (2021) set its interest rate to 𝐼𝐼𝑚𝑚 = 6.75% September 10, 2021. Russia’s real interest rate is 𝐼𝐼𝑟𝑟 = 5.83% in 2020 
and its annual inflation rate is 𝜋𝜋 = 3.382% (The World Bank, 2021b). The Bank of Russia (2021) set its inflation target rate 𝜋𝜋∗ =
4%. 
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Figure 5: The household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, utility 𝑈𝑈, and the CBDC interest 
rate 𝐼𝐼𝑚𝑚 for Russia, as functions of the real interest rate 𝐼𝐼𝑟𝑟, inflation rate 𝜋𝜋, and target inflation rate 𝜋𝜋∗, respectively, relative to the 
benchmark parameter values 𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 1

4 , 𝑟𝑟 = 𝑎𝑎 = 𝑀𝑀 = 𝑄𝑄 = 1, 𝐼𝐼𝑞𝑞 = 2%, 𝐼𝐼𝑟𝑟 = 5.83%, 𝜂𝜂 = 1
5 , 𝜇𝜇 = 2

5 , 𝜆𝜆 = 1
10 , 𝜋𝜋 = 3.382%, 𝜋𝜋∗ =

4%, ℎ = 1
10 , �̅�𝑝 = 1

2 , 𝑎𝑎𝜋𝜋 = 𝑎𝑎𝑝𝑝 = 1
2 , 𝑧𝑧 = −5%. Multiplication of 𝑝𝑝 and 𝐼𝐼𝑚𝑚 with 10 is for scaling purposes. 

 

Figure 5a plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟, when the inflation rate 𝜋𝜋 = 3.382%, which is higher than 
𝜋𝜋 = 3% in Figure 1. All the other parameter values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 
𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > 11.63%, which is slightly lower than 𝐼𝐼𝑟𝑟 > 12.21% in Figure 1n. The higher inflation rate 𝜋𝜋 = 3.382% > 3% 
decreases consumption 𝑐𝑐 in Figure 5a. Compared to Figure 1n, in Figure 5a the household chooses lower consumption 𝑐𝑐, lower 
production 𝑝𝑝, and holds less non-CBDC 𝑞𝑞. The household holds more CBDC 𝑚𝑚 and earns higher utility 𝑈𝑈. The CBDC interest rate 
𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < −0.62%, which is lower than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 1n. The model thus predicts a higher CBDC 
interest rate 𝐼𝐼𝑚𝑚 when the inflation rate is 𝜋𝜋 = 3.382% in Figure 5a compared to 𝜋𝜋 = 3% in Figure 1n. Analogously to Figure 3a for 
the US, that follows from the logic of the Taylor (1993) rule in (4). The central bank combats high inflation rate 𝜋𝜋 = 3.382% by 
increasing its CBDC interest rate 𝐼𝐼𝑚𝑚, to make saving in the form of holding CBDC 𝑚𝑚 more attractive than consumption 𝑐𝑐, which is 
lower in Figure 5a than in Figure 1n. Mathematically, high inflation 𝜋𝜋 = 3.382% on the right hand side in (4) causes high CBDC 
interest rate 𝐼𝐼𝑚𝑚 on the left hand side in (4). For example, the CBDC interest rate is 𝐼𝐼𝑚𝑚 = 6.82% at the benchmark 𝐼𝐼𝑟𝑟 = 5.83% in 
Figure 5a, which is higher than 𝐼𝐼𝑚𝑚 = 6.21% when 𝐼𝐼𝑟𝑟 = 5.83% in Figure 1n, and slightly higher than the empirical 𝐼𝐼𝑚𝑚 = 6.75% in 
Table 1. We interpret this to mean that the model and the Taylor (1993) rule predict appropriately and in accordance with the current 
empirics for Russia. Interestingly, the model shows that Russia chooses a slightly higher CBDC interest rate 𝐼𝐼𝑚𝑚 to suppress the 
inflation rate 𝜋𝜋. But its empirical inflation rate 𝜋𝜋 = 3.382 is lower than its target inflation rate 𝜋𝜋∗ = 4%. The model suggests that 
Russia should choose a slightly lower CBDC interest rate 𝐼𝐼𝑚𝑚, which decreases the household’s CBDC holding 𝑚𝑚, and encourages 
the household to consume and produce more. 

Figure 5b plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the real interest rate 𝐼𝐼𝑟𝑟, when the target inflation rate 𝜋𝜋∗ = 4%. All the other parameter 
values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > 13.20%, which is higher 
than 𝐼𝐼𝑟𝑟 > 12.21% in Figure 1n. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < 0.95%, which is higher than 𝐼𝐼𝑟𝑟 < 0.00% 
in Figure 1n. Hence the higher target inflation rate 𝜋𝜋∗ = 4% increases the consumption 𝑐𝑐 and correspondingly decreases the CBDC 
interest rate 𝐼𝐼𝑚𝑚. The impact of the higher target inflation rate is in contrast to the US in Figure 3b, but the same as for China in Figure 
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4b. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 5.15% at the benchmark 𝐼𝐼𝑟𝑟 = 5.83%, which is lower than 𝐼𝐼𝑚𝑚 = 6.21% when 𝐼𝐼𝑟𝑟 = 5.83% in 
Figure 1n, and also lower than 𝐼𝐼𝑚𝑚 = 6.75% in Table 1. 

Figure 5c plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the real interest rate 𝐼𝐼𝑟𝑟, when the inflation rate 𝜋𝜋 = 3.382% and the target inflation 
rate 𝜋𝜋∗ = 4%, thus combining the assumptions for Figure 4d and Figure 5e. All the other parameter values are as the benchmark in 
Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > 12.63%, which is slighter higher than 𝐼𝐼𝑟𝑟 > 12.21% in 
Figure 1n. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < 0.38%, which is higher than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 1n. Thus, the 
higher inflation rate 𝜋𝜋 = 3.382% combined with the target inflation rate 𝜋𝜋∗ = 4% increase the consumption 𝑐𝑐 slightly, and decrease 
the CBDC interest rate 𝐼𝐼𝑚𝑚 slightly. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 5.76% at the benchmark 𝐼𝐼𝑟𝑟 = 5.83%, which is lower than 𝐼𝐼𝑚𝑚 =
6.21% when 𝐼𝐼𝑟𝑟 = 5.83% in Figure 1n, and also lower than 6.75% in Table 1. 

Figure 5d plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the inflation rate 𝜋𝜋, when the real interest rate 𝐼𝐼𝑟𝑟 = 5.83%, which is higher than 𝐼𝐼𝑟𝑟 =
2% in Figure 1. All the other parameter values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 
when 𝜋𝜋 > 7.25%, which is lower than 𝜋𝜋 > 9.80% in Figure 1o. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋 < −0.92%, 
which is lower than 𝜋𝜋 < 1.63% in Figure 1o. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 6.82% at the benchmark 𝜋𝜋 = 3.382%, which is higher 
than 𝐼𝐼𝑚𝑚 = 3.46% when 𝜋𝜋 = 3.382% in Figure 1o, and slightly higher than 𝜋𝜋 = 6.75% in Table 1. Thus, the higher real interest rate 
𝐼𝐼𝑟𝑟 = 5.83% decreases the consumption 𝑐𝑐 and increases the CBDC interest rate 𝐼𝐼𝑚𝑚. 

Figure 5e plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the inflation rate 𝜋𝜋, when the target inflation rate 𝜋𝜋∗ = 4%. All the other parameter 
values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋 > 10.47%, which is higher than 
𝜋𝜋 > 9.80% in Figure 1o. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋 < 2.3%, which is higher than 𝜋𝜋 < 1.63% in Figure 
1o. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 1.71% at the benchmark 𝜋𝜋 = 3.382%, which is lower than 𝐼𝐼𝑚𝑚 = 3.46% when 𝜋𝜋 = 3.382% in 
Figure 1o, and much lower than 𝜋𝜋 = 6.75% in Table 1. Notably, the higher target inflation rate 𝜋𝜋∗ = 4% decreases CBDC interest 
rate 𝐼𝐼𝑚𝑚. Again, the model predicts that Russia should choose a lower CBDC interest rate 𝐼𝐼𝑚𝑚.  

Figure 5f plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the inflation rate 𝜋𝜋, when the real interest rate 𝐼𝐼𝑟𝑟 = 5.83% and the target inflation 
rate 𝜋𝜋∗ = 4%. Both parameter values are higher than in Figure 1. Figure 5f thus combines the assumptions for Figure 5d and Figure 
5e. All the other parameter values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋 >
7.92%, which is lower than 𝜋𝜋 > 9.80% in Figure 1o. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋 < −0.25%, which is 
lower than 𝜋𝜋 < 1.63% in Figure 1o. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 5.76% at the benchmark 𝜋𝜋 = 3.382%, which is higher than 
𝐼𝐼𝑚𝑚 = 3.46% when 𝜋𝜋 = 3.382% in Figure 1o, but lower than 𝜋𝜋 = 6.75% in Table 1. The impact of the higher real interest rate 𝐼𝐼𝑟𝑟 =
5.83% is greater than the higher target inflation rate 𝜋𝜋∗ = 4%. Thus, the household’s consumption 𝑐𝑐 decreases compared to Figure 
1o. 

Figure 5g plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate 𝐼𝐼𝑟𝑟 = 5.83%, which is higher 
than 𝐼𝐼𝑟𝑟 = 2% in Figure 1. All the other parameter values are as the benchmark in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes 
negative when 𝜋𝜋∗ > 13.76%, which is higher than 𝜋𝜋∗ > 6.10% in Figure 1p. The household consumption 𝑐𝑐, production 𝑝𝑝, CBDC 
holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 23.24%, which is higher than 𝜋𝜋∗ > 15.58% in Figure 1p. 
The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 5.15% at the benchmark 𝜋𝜋∗ = 4%, which is much higher than 𝐼𝐼𝑚𝑚 = 1.11% when 𝜋𝜋∗ = 4% in Figure 
1p, but lower than 6.75% in Table 1. Hence, the higher real interest rate 𝐼𝐼𝑟𝑟 = 5.83% increases the target inflation rate 𝜋𝜋∗, but 
decreases the CBDC interest rate 𝐼𝐼𝑚𝑚. The impact of the higher interest rate 𝐼𝐼𝑟𝑟 is the same as for China in Figure 4g for the target 
inflation rate 𝜋𝜋∗ and the CBDC interest rate 𝐼𝐼𝑚𝑚, but in contrast to the US for the CBDC interest rate 𝐼𝐼𝑚𝑚.  
Figure 5h plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the target inflation rate 𝜋𝜋∗, when the inflation rate 𝜋𝜋 = 3.382%, which is higher than 
𝜋𝜋 = 3% in Figure 1. All the other parameter values are as the benchmark in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative 
when 𝜋𝜋∗ > 7.24%, which is higher than 𝜋𝜋∗ > 6.10% in Figure 1p. The household consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 
and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 16.73%, which is higher than 𝜋𝜋∗ > 15.58% in Figure 1p. The CBDC 
interest rate is 𝐼𝐼𝑚𝑚 = 1.71% at benchmark 𝜋𝜋∗ = 4%, which is much lower than 𝐼𝐼𝑚𝑚 = 1.11% when 𝜋𝜋∗ = 4% in Figure 1p, and much 
lower than 𝜋𝜋∗ = 6.5% in Table 1. The higher inflation rate 𝜋𝜋 = 3.382% increases the target inflation rate 𝜋𝜋∗, but decreases the 
CBDC interest rate 𝐼𝐼𝑚𝑚. 

Figure 5i plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚, as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate 𝐼𝐼𝑟𝑟 = 5.83% and the inflation 
rate 𝜋𝜋 = 3.382%. Both parameter values are higher than in Figure 1. All the other parameter values are as the benchmark in Figure 
1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋∗ > 14.90%, which is much higher than 𝜋𝜋∗ > 6.10% in Figure 1p. The 
household consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 24.39%, 
which is higher than 𝜋𝜋∗ > 15.58% in Figure 1p. The CBDC interest rate is 𝐼𝐼𝑚𝑚 = 5.76% at the benchmark 𝜋𝜋∗ = 4%, which is much 
higher than 𝐼𝐼𝑚𝑚 = 1.11% when 𝜋𝜋∗ = 4% in Figure 1p, but slightly lower than 𝜋𝜋∗ = 6.5% in Table 1. Hence, the higher real interest 
rate 𝐼𝐼𝑟𝑟 = 5.83% and the higher inflation rate 𝜋𝜋 = 3.382% CBDC interest rate 𝐼𝐼𝑚𝑚, and increase the target inflation rate 𝜋𝜋∗. 

The Russia inflation rate 𝜋𝜋 = 3.382% is lower than the CBDC interest rate 𝐼𝐼𝑚𝑚 = 6.75%. The gap between the predicted CBDC 
interest rate 𝐼𝐼𝑚𝑚 and the Russia empirical CBDC interest rate 𝐼𝐼𝑚𝑚 is intermediate between The US and China. The model predicts that 
Russia chooses a slightly higher CBDC interest rate 𝐼𝐼𝑚𝑚 to suppress the inflation rate 𝜋𝜋. Notably, the change of real interest rate 𝐼𝐼𝑟𝑟 
has a higher impact on the CBDC interest rate 𝐼𝐼𝑚𝑚, the change of the inflation rate 𝜋𝜋 has a lower impact on the CBDC interest rate 
𝐼𝐼𝑚𝑚. This holds for the three countries’ empirical data. Table 1 shows the empirical data of the four variables 𝐼𝐼𝑚𝑚, 𝐼𝐼𝑟𝑟, 𝜋𝜋, 𝜋𝜋∗ for the US, 
China and Russia. 
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Table 4: Interpretation of Figure 5 for Russia compared to Figure 1. 

Russia 
Changed parameter 
values from the 
benchmark in Figure 1 

𝑐𝑐 decreases to zero 
when 

𝑐𝑐, 𝑝𝑝,𝑚𝑚, 𝑞𝑞 reach constant 
values when 

𝐼𝐼𝑚𝑚 becomes 
negative when 𝐼𝐼𝑚𝑚 at the benchmark 

Figure 
5a 𝜋𝜋 = 3.382% 𝐼𝐼𝑟𝑟 > 11.63% 𝐼𝐼𝑟𝑟 < −5.36% 𝐼𝐼𝑟𝑟 < −0.62% 𝐼𝐼𝑚𝑚 = 6.82% at 𝐼𝐼𝑟𝑟 =

5.83% 
Figure 
5b 𝜋𝜋∗ = 4% 𝐼𝐼𝑟𝑟 > 13.20% 𝐼𝐼𝑟𝑟 < −3.79% 𝐼𝐼𝑟𝑟 < 0.95% 𝐼𝐼𝑚𝑚 = 5.15% at 𝐼𝐼𝑟𝑟 =

5.83% 
Figure 
5c 

𝜋𝜋 = 3.382% 
𝜋𝜋∗ = 4% 𝐼𝐼𝑟𝑟 > 12.63% 𝐼𝐼𝑟𝑟 < −4.36% 𝐼𝐼𝑟𝑟 < 0.38% 𝐼𝐼𝑚𝑚 = 5.76% at 𝐼𝐼𝑟𝑟 =

5.83% 
Figure 
5d 𝐼𝐼𝑟𝑟 = 5.83% 𝜋𝜋 > 7.25% 𝜋𝜋 < −4.08% 𝜋𝜋 < −0.92% 𝐼𝐼𝑚𝑚 = 6.82% at 𝜋𝜋 =

3.382% 
Figure 
5e 𝜋𝜋∗ = 4% 𝜋𝜋 > 10.47% 𝜋𝜋 < −0.86% 𝜋𝜋 < 2.3% 𝐼𝐼𝑚𝑚 = 1.71% at 𝜋𝜋 =

3.382% 
Figure 
5f 

𝐼𝐼𝑟𝑟 = 5.83% 
𝜋𝜋∗ = 4% 𝜋𝜋 > 7.92% 𝜋𝜋 < −3.41% 𝜋𝜋 < −0.25% 𝐼𝐼𝑚𝑚 = 5.76% at 𝜋𝜋 =

3.382% 
Figure 
5g 𝐼𝐼𝑟𝑟 = 5.83% 𝜋𝜋∗ < −10.75% 𝜋𝜋∗ > 23.24% 𝜋𝜋∗ > 13.76% 𝐼𝐼𝑚𝑚 = 5.15% at 𝜋𝜋∗ =

4% 
Figure 
5h 𝜋𝜋 = 3.382% 𝜋𝜋∗ < −17.26% 𝜋𝜋∗ > 16.73% 𝜋𝜋∗ > 7.24% 𝐼𝐼𝑚𝑚 = 1.71% at 𝜋𝜋∗ =

4% 
Figure 
5i 

𝐼𝐼𝑟𝑟 = 5.83% 
𝜋𝜋 = 3.382% 𝜋𝜋∗ < −9.6% 𝜋𝜋∗ > 24.39% 𝜋𝜋∗ > 14.90% 𝐼𝐼𝑚𝑚 = 5.76% at 𝜋𝜋∗ =

4% 
Figure 
1n 𝐼𝐼𝑟𝑟 = 2% 𝐼𝐼𝑟𝑟 > 12.21% 𝐼𝐼𝑟𝑟 < −4.79% 𝐼𝐼𝑟𝑟 < 0.00% 𝐼𝐼𝑚𝑚 = 6.21% at 𝐼𝐼𝑟𝑟 =

5.83% i 
Figure 
1o 𝜋𝜋 = 3% 𝐼𝐼𝑟𝑟 > 9.80% 𝐼𝐼𝑟𝑟 < −1.53% 𝜋𝜋 < 1.63% 𝐼𝐼𝑚𝑚 = 3.46% at 𝜋𝜋 =

3.382% 
Figure 
1p 𝜋𝜋∗ = 2% 𝜋𝜋∗ < −18.41% 𝜋𝜋∗ > 15.58% 𝜋𝜋∗ > 6.10% 𝐼𝐼𝑚𝑚 = 1.11% at 𝜋𝜋∗ =

4%  

Assessing higher inflation rates 𝝅𝝅 for the US, China and Russia 

This section analyzes the implications of hypothetically higher inflation rates 𝜋𝜋 = 10% and 𝜋𝜋 = 15% for the US, China and Russia. 
The relevance of such an analysis is underscored by Turkey’s annual inflation increasing to a three-year high of 21.31% in November 
2021.1 Hanke and Krus (2013) summarize 56 worldwide hyperinflation examples. The highest is 𝜋𝜋 = 2.93 × 10177% per year (𝜋𝜋 =
4.19 × 1016% per month) in Hungary in July 1946. We consider 𝜋𝜋 = 2,688,670% Venezuela, January 2019 (Descifrado, 2019) for 
analysis. 

The US 

  

 
1 https://www.reuters.com/world/middle-east/turkish-inflation-jumps-3-year-high-amid-lira-plunge-2021-12-03/, retrieved April 22, 2022. 



Wang and Hausken, International Journal of Finance & Banking Studies 11(2) (2022), 69-86 

 80 

  

  

  

  
Figure 6: The household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, utility 𝑈𝑈, and the CBDC interest 
rate 𝐼𝐼𝑚𝑚, as functions of the real interest rate 𝐼𝐼𝑟𝑟, inflation rate 𝜋𝜋, and target inflation rate 𝜋𝜋∗, respectively, relative to the benchmark 
parameter values 𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 1

4 , 𝑟𝑟 = 𝑎𝑎 = 𝑀𝑀 = 𝑄𝑄 = 1, 𝐼𝐼𝑞𝑞 = 2%, 𝐼𝐼𝑟𝑟 = 2.305%, 𝜂𝜂 = 1
5 , 𝜇𝜇 =

2
5 , 𝜆𝜆 =

1
10 , 𝜋𝜋

∗ = 2%, ℎ = 1
10 , �̅�𝑝 =

1
2 , 𝑎𝑎𝜋𝜋 = 𝑎𝑎𝑝𝑝 =

1
2 , 𝑧𝑧 = −5%. Panels a and f: 𝜋𝜋 = 10%. Panels b and g: 𝜋𝜋 = 15%. Panels c and h: 𝜋𝜋 = 100%. Panels d and i: 𝜋𝜋 =

1000%. Panels e and j: 𝜋𝜋 = 2,688,670%. Multiplication of 𝑝𝑝 and 𝐼𝐼𝑚𝑚 with 10 is for scaling purposes. 
 

Figure 6a plots 𝑝𝑝, 𝑐𝑐,𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟 when the inflation rate 𝜋𝜋 = 10%, which is higher than 𝜋𝜋 = 3% 
in Figure 1. All the other parameter values are as the benchmarks in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 
when 𝐼𝐼𝑟𝑟 > 1.71%, which is lower than 𝐼𝐼𝑟𝑟 > 12.21% in Figure 1n and lower than 𝐼𝐼𝑟𝑟 > 7.4% in Figure 3a. The higher inflation rate 
𝜋𝜋 = 10% > 3% decreases consumption 𝑐𝑐 in Figure 6a. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < −10.55%, which 
is lower than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 1n and lower than 𝐼𝐼𝑟𝑟 < −4.85% in Figure 3a. Thus, the curves move to the left compared to 
Figure 1n and Figure 3a. When consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0, the CBDC interest rate is 𝐼𝐼𝑚𝑚 = 13.0%. Again, the central bank 
combats high inflation rate 𝜋𝜋 = 6.2% by increasing its CBDC interest rate 𝐼𝐼𝑚𝑚, to make saving in the form of holding CBDC 𝑚𝑚 more 
attractive than consumption 𝑐𝑐. But it is costly since the CBDC interest rate 𝐼𝐼𝑚𝑚 goes up a lot.  

Figure 6b plots 𝑝𝑝, 𝑐𝑐,𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟 when the inflation rate 𝜋𝜋 = 15%. All the other parameter 
values are as the benchmarks in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > −5.8%, which is lower than 
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𝐼𝐼𝑟𝑟 > 1.71% in Figure 6a. Thus, the higher inflation rate 𝜋𝜋 = 15% decreases consumption 𝑐𝑐 in Figure 6b. The CBDC interest rate 𝐼𝐼𝑚𝑚 
becomes negative when 𝐼𝐼𝑟𝑟 < −18.05%, which is lower than 𝐼𝐼𝑟𝑟 < −10.55% in Figure 6a. Again, the curves move to the left 
compared to Figure 1n, Figure 3a and Figure 6a. 

Figure 6c plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟 when the inflation rate 𝜋𝜋 = 100%. All the other parameter 
values are as the benchmarks in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > −133.3%, which is lower 
than 𝐼𝐼𝑟𝑟 > −5.8% in Figure 6b. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < −145.55%, which is lower than 𝐼𝐼𝑟𝑟 <
−18.05% in Figure 6b. The curves move to the left compared to Figure 1n, Figure 3a, Figure 6a, Figure 6b.  

Figure 6d plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟 when the inflation rate 𝜋𝜋 = 1000%. All the other parameter 
values are as the benchmarks in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > −1483.3%, which is lower 
than 𝐼𝐼𝑟𝑟 > −133.3% in Figure 6c. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < −1495.55%. 

Figure 6e plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟 when the inflation rate 𝜋𝜋 = 2,688,670%, as in Venezuela, 
January 2019. All the other parameter values are as the benchmarks in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 
when 𝐼𝐼𝑟𝑟 > −4,032,988.3%. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < −4,033,000.55%. The high Venezuela 
inflation rate 𝜋𝜋 = 2,688,670% makes consumption 𝑐𝑐 almost impossible, unless the real interest rate 𝐼𝐼𝑟𝑟 is extremely and 
unrealistically negative. 

Figure 6f plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate is 𝐼𝐼𝑟𝑟 = 2.305% and the inflation 
rate is 𝜋𝜋 = 10%. Both the real interest rate and the inflation rate are higher than in Figure 1. All the other parameter values are as the 
benchmarks in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋∗ > 27.71%, which is much higher than  𝜋𝜋∗ > 6.10% 
in Figure 1p and higher than 𝜋𝜋∗ > 16.31% in Figure 3e. The household consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-
CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 37.19%, which is much higher than 𝜋𝜋∗ > 15.58% in Figure 1p and higher than 
𝜋𝜋∗ > 25.79% in Figure 3e. Thus, the curves move to the right compared to Figure 1p and Figure 3e. The higher inflation rate 𝜋𝜋 =
10% and the higher real interest rate 𝐼𝐼𝑟𝑟 = 2.305% greatly increase the target inflation rate 𝜋𝜋∗ and decrease the CBDC interest rate 
𝐼𝐼𝑚𝑚. The household consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋∗ < 3.2%, where the CBDC interest rate is 𝐼𝐼𝑚𝑚 = 13.00%. 

Figure 6g plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate is 𝐼𝐼𝑟𝑟 = 2.305% and the inflation 
rate is 𝜋𝜋 = 15%. Both the real interest rate and the inflation rate are higher than in Figure 1. All the other parameter values are as the 
benchmarks in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋∗ > 42.71%. The household consumption 𝑐𝑐, 
production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 52.20%. The higher inflation rate 𝜋𝜋 =
15% and the higher real interest rate 𝐼𝐼𝑟𝑟 = 2.305% greatly increases the target inflation rate 𝜋𝜋∗ and increase the CBDC interest rate 
𝐼𝐼𝑚𝑚. The household consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋∗ < 18.20%, where the CBDC interest rate is 𝐼𝐼𝑚𝑚 = 13.00%. 

Figure 6h plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate is 𝐼𝐼𝑟𝑟 = 2.305% and the inflation 
rate is 𝜋𝜋 = 100%. Both the real interest rate and the inflation rate are higher than in Figure 1. All the other parameter values are as 
the benchmarks in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋∗ > 297.71%. The household consumption 𝑐𝑐, 
production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 307.20%. The higher inflation rate 𝜋𝜋 =
100% and the higher real interest rate 𝐼𝐼𝑟𝑟 = 2.305% greatly increases the target inflation rate 𝜋𝜋∗ and increase the CBDC interest rate 
𝐼𝐼𝑚𝑚. The household consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋∗ < 18.20%, where the CBDC interest rate is 𝐼𝐼𝑚𝑚 = 13.00%. 

Figure 6i plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate is 𝐼𝐼𝑟𝑟 = 2.305% and the inflation 
rate is 𝜋𝜋 = 1000%. Both the real interest rate and the inflation rate are higher than in Figure 1. All the other parameter values are as 
the benchmarks in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋∗ > 2997.8%. The household consumption 𝑐𝑐, 
production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 3072.0%. The higher inflation rate 𝜋𝜋 =
1000% and the higher real interest rate 𝐼𝐼𝑟𝑟 = 2.305% greatly increases the target inflation rate 𝜋𝜋∗ and increase the CBDC interest 
rate 𝐼𝐼𝑚𝑚. The household consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋∗ < 2937.20%, where the CBDC interest rate is 𝐼𝐼𝑚𝑚 = 13.00%. 

Figure 6j plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate is 𝐼𝐼𝑟𝑟 = 2.305% and the inflation 
rate is 𝜋𝜋 = 2,688,670%. Both the real interest rate and the inflation rate are higher than in Figure 1. All the other parameter values 
are as the benchmarks in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝜋𝜋∗ > 8,066,007.71%. The household 
consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 8,066,017.19%. The 
extremely high inflation rate 𝜋𝜋 = 2,688,670% and the higher real interest rate 𝐼𝐼𝑟𝑟 = 2.305% greatly increase the target inflation rate 
𝜋𝜋∗ and increase the CBDC interest rate 𝐼𝐼𝑚𝑚.  

Table 5: Implication summary of higher inflation rates for the US. 

The 
US 

Changed 
parameter 
values from the 
benchmark in 
Figure 1 

𝑐𝑐 decreases to zero 
when 

𝐼𝐼𝑚𝑚 becomes 
negative when 

𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞 reach 
constant values 
when 

𝐼𝐼𝑚𝑚 at the benchmark 
How curves 
change compared 
to Figure 3 

Figure 
6a 𝜋𝜋 = 10% 𝐼𝐼𝑟𝑟 > 1.71% 𝐼𝐼𝑟𝑟 < −10.55% 𝐼𝐼𝑟𝑟 < 15.29% 𝐼𝐼𝑚𝑚 = 13.64% Left 

Figure 
6b 𝜋𝜋 = 15% 𝐼𝐼𝑟𝑟 > −5.8% 𝐼𝐼𝑟𝑟 < −18.05% 𝐼𝐼𝑟𝑟 < 22.79% 𝐼𝐼𝑚𝑚 = 22.09% Left 

Figure 
6c 𝜋𝜋 = 100% 𝐼𝐼𝑟𝑟 > −133.3% 𝐼𝐼𝑟𝑟 < −145.55% 𝐼𝐼𝑟𝑟 < −150.29% 𝐼𝐼𝑚𝑚 = 1495.41% Left 
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Figure 
6d 𝜋𝜋 = 1000% 𝐼𝐼𝑟𝑟 > −1483.3% 𝐼𝐼𝑟𝑟 < −1495.55% 𝐼𝐼𝑟𝑟 < −1500.29% 𝐼𝐼𝑚𝑚 = 14998.17 Left 

Figure 
6e 

𝜋𝜋 =
2,688,670%. 

𝐼𝐼𝑟𝑟
> −4,032,988.3% 

𝐼𝐼𝑟𝑟
< −4,033,000.55% 

𝐼𝐼𝑟𝑟
< 4033005.29% 

𝐼𝐼𝑚𝑚
= 40,330,048.78% Left 

Figure 
6f 

𝜋𝜋 = 10% 
𝐼𝐼𝑟𝑟 = 2.305% 𝜋𝜋∗ < 3.2% 𝜋𝜋∗ > 27.71% 𝜋𝜋∗ > 37.19% 𝐼𝐼𝑚𝑚 = 13.64% Right 

Figure 
6g 

𝜋𝜋 = 15% 
𝐼𝐼𝑟𝑟 = 2.305% 𝜋𝜋∗ < 18.2% 𝜋𝜋∗ > 42.71% 𝜋𝜋∗ > 52.20% 𝐼𝐼𝑚𝑚 = 22.09% Right 

Figure 
6h 

𝜋𝜋 = 100% 
𝐼𝐼𝑟𝑟 = 2.305% 𝜋𝜋∗ < 273.2% 𝜋𝜋∗ > 297.71% 𝜋𝜋∗ > 307.20% 𝐼𝐼𝑚𝑚 = 1495.41% Right 

Figure 
6i 

𝜋𝜋 = 1000% 
𝐼𝐼𝑟𝑟 = 2.305% 𝜋𝜋∗ < 2973.2% 𝜋𝜋∗ > 2997.8% 𝜋𝜋∗ > 3072.0% 𝐼𝐼𝑚𝑚 = 14998.2% Right 

Figure 
6j 

𝜋𝜋
= 2,688,670% 
𝐼𝐼𝑟𝑟 = 2.305% 

𝜋𝜋∗

< 8,065,983.2% 
𝜋𝜋∗

> 8,066,007.71% 
𝜋𝜋∗

> 8,066,017.19% 
𝐼𝐼𝑚𝑚
= 40,330,048.78% Right 

Figure 
1n 𝜋𝜋 = 3% 𝐼𝐼𝑟𝑟 > 12.21% 𝐼𝐼𝑟𝑟 < 0.00% 𝐼𝐼𝑟𝑟 < −4.79% 𝐼𝐼𝑚𝑚 = 3.91% Right 

Figure 
1p 𝐼𝐼𝑟𝑟 = 2% 𝜋𝜋∗ < −18.41% 𝜋𝜋∗ > 6.10% 𝜋𝜋∗ > 15.58% 𝐼𝐼𝑚𝑚 = 1.63% Left 

 

China 

  

  
Figure 7: The household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, utility 𝑈𝑈, and the CBDC interest 
rate 𝐼𝐼𝑚𝑚, as functions of the real interest rate 𝐼𝐼𝑟𝑟, inflation rate 𝜋𝜋, and target inflation rate 𝜋𝜋∗, respectively, relative to the benchmark 
parameter values 𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 1

4 , 𝑟𝑟 = 𝑎𝑎 = 𝑀𝑀 = 𝑄𝑄 = 1, 𝐼𝐼𝑞𝑞 = 2%, 𝐼𝐼𝑟𝑟 = 3.6535%, 𝜂𝜂 = 1
5 , 𝜇𝜇 = 2

5 , 𝜆𝜆 = 1
10, 𝜋𝜋∗ = 3%, ℎ = 1

10 , �̅�𝑝 =
1
2 , 𝑎𝑎𝜋𝜋 = 𝑎𝑎𝑝𝑝 = 1

2 , 𝑧𝑧 = −5%. Panels a and c: 𝜋𝜋 = 10%. Panels b and d: 𝜋𝜋 = 15%. Multiplication of 𝑝𝑝 and 𝐼𝐼𝑚𝑚 with 10 is for scaling 
purposes. 
 

Figure 7a plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟, when the inflation rate 𝜋𝜋 = 10% and the target inflation rate 
𝜋𝜋∗ = 3%. All the other parameter values are as the benchmark in Figure 1. The consumption 𝑐𝑐 decreases and the CBDC interest rate 
𝐼𝐼𝑚𝑚 increases. More specifically, the household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > 2.2%, which is much lower than 𝐼𝐼𝑟𝑟 >
12.21% in Figure 1n, and also much lower than 𝐼𝐼𝑟𝑟 > 13.58% in Figure 4c. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 <
−10.05%, which is lower than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 1n, and lower than 𝐼𝐼𝑟𝑟 < 1.32% in Figure 4c. Thus, the curves move to the left 
compared to Figure 1n and Figure 4c. The high inflation rate 𝜋𝜋 = 10% decreases the consumption 𝑐𝑐 and decreases the real interest 
rate 𝐼𝐼𝑟𝑟. The central bank increases its interest to combat inflation. 

Figure 7b plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟, when the inflation rate 𝜋𝜋 = 15% and the target inflation rate 
𝜋𝜋∗ = 3%. All the other parameter values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 
𝐼𝐼𝑟𝑟 > −5.3%, which is much lower than 𝐼𝐼𝑟𝑟 > 12.21% in Figure 1n, much lower than 𝐼𝐼𝑟𝑟 > 13.58% in Figure 4c, and lower than 𝐼𝐼𝑟𝑟 >
2.2% in Figure 7a. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < −17.55%, which is lower than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 
1n, lower than 𝐼𝐼𝑟𝑟 < 1.32% in Figure 4c, and lower than 𝐼𝐼𝑟𝑟 < −10.05% in Figure 7a. Again, the curves move to the right even further 
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compared to Figure 1n, Figure 4c and Figure 7a. The high inflation rate 𝜋𝜋 = 15% decreases the consumption 𝑐𝑐 and decreases the 
real interest rate 𝐼𝐼𝑟𝑟.  

Figure 7c plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate 𝐼𝐼𝑟𝑟 = 3.6535% and the inflation 
rate 𝜋𝜋 = 10%. All the other parameter values are as the benchmark in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative 
when 𝜋𝜋∗ > 30.40%, which is much higher than 𝜋𝜋∗ > 6.10% in Figure 1p and higher than 𝜋𝜋∗ > 7.66% in Figure 4i. The household 
consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 39.89%, which is much 
higher than 𝜋𝜋∗ > 15.58% in Figure 1p and higher than 𝜋𝜋∗ > 17.15% in Figure 4i. Thus, the curves move to the right compared to 
Figure 1p and Figure 4i. The higher inflation rate 𝜋𝜋 = 10% and the higher real interest rate 𝐼𝐼𝑟𝑟 = 3.6535% greatly increase the target 
inflation rate 𝜋𝜋∗. The household consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋∗ < 5.9%, the CBDC interest rate is 𝐼𝐼𝑚𝑚 = 13.00% at this 
point. 

Figure 7d plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate 𝐼𝐼𝑟𝑟 = 3.6535% and the inflation 
rate 𝜋𝜋 = 15%. All the other parameter values are as the benchmark in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative 
when 𝜋𝜋∗ > 45.4%, which is much higher than 𝜋𝜋∗ > 6.10% in Figure 1p, much higher than 𝜋𝜋∗ > 7.66% in Figure 4I, and higher 
than  𝜋𝜋∗ > 30.40% in Figure 7c. The household consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach 
constant values when 𝜋𝜋∗ > 45.41%, which is higher than 𝜋𝜋∗ > 15.58% in Figure 1p, higher than 𝜋𝜋∗ > 17.15% in Figure 4i, and 
higher than 𝜋𝜋∗ > 39.89% in Figure 7c. Again, the curves move to the right even further compared to Figure 1p, Figure 4i and Figure 
7c. The higher inflation rate 𝜋𝜋 = 15% and the higher real interest rate 𝐼𝐼𝑟𝑟 = 3.6535% greatly increase the target inflation rate 𝜋𝜋∗. 
The household consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋∗ < 5.9%, the CBDC interest rate is 𝐼𝐼𝑚𝑚 = 13.00% at this point. 

Table 6: Implication summary of higher inflation rates for China. 

China 
Changed parameter 
values from the 
benchmark in Figure 1 

𝑐𝑐 decreases to 
zero when 

𝐼𝐼𝑚𝑚 becomes 
negative when 

𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞 reach 
constant values 
when 

𝐼𝐼𝑚𝑚 at the 
benchmark 

How curves 
change compared 
to Figure 4 

Figure 
7a 

𝜋𝜋 = 10% 
𝜋𝜋∗ = 3% 𝐼𝐼𝑟𝑟 > 2.2% 𝐼𝐼𝑟𝑟 < −10.05% 𝐼𝐼𝑟𝑟 < −14.79% 𝐼𝐼𝑚𝑚

= 14.56% Left 

Figure 
7b 

𝜋𝜋 = 15% 
𝜋𝜋∗ = 3%. 𝐼𝐼𝑟𝑟 > −5.3% 𝐼𝐼𝑟𝑟 < −17.55% 𝐼𝐼𝑟𝑟 < −22.29% 𝐼𝐼𝑚𝑚

= 23.21% Left 

Figure 
7c 

𝜋𝜋 = 10% 
𝐼𝐼𝑟𝑟 = 3.6535% 𝜋𝜋∗ < 5.9% 𝜋𝜋∗ > 30.40% 𝜋𝜋∗ > 39.89% 𝐼𝐼𝑚𝑚

= 14.56% Right 

Figure 
7d 

𝜋𝜋 = 15% 
𝐼𝐼𝑟𝑟 = 3.6535% 𝜋𝜋∗ < 20.9% 𝜋𝜋∗ > 45.4% 𝜋𝜋∗ > 45.41% 𝐼𝐼𝑚𝑚

= 23.21% Right 

Figure 
1n 𝜋𝜋 = 3% 𝐼𝐼𝑟𝑟 > 12.21% 𝐼𝐼𝑟𝑟 < 0.00% 𝐼𝐼𝑟𝑟 < −4.79% 𝐼𝐼𝑚𝑚 = 3.91% Right 

Figure 
1p 𝐼𝐼𝑟𝑟 = 2% 𝜋𝜋∗

< −18.41% 𝜋𝜋∗ > 6.10% 𝜋𝜋∗ > 15.58% 𝐼𝐼𝑚𝑚 = 1.63% Left 

 

Russia 

  

  
Figure 8: The household’s production 𝑝𝑝, consumption 𝑐𝑐, CBDC holding 𝑚𝑚, non-CBDC holding 𝑞𝑞, utility 𝑈𝑈, and the CBDC interest 
rate 𝐼𝐼𝑚𝑚, as functions of the real interest rate 𝐼𝐼𝑟𝑟, inflation rate 𝜋𝜋, and target inflation rate 𝜋𝜋∗, respectively, relative to the benchmark 
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parameter values 𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 1
4 , 𝑟𝑟 = 𝑎𝑎 = 𝑀𝑀 = 𝑄𝑄 = 1, 𝐼𝐼𝑞𝑞 = 2%, 𝐼𝐼𝑟𝑟 = 5.83%, 𝜂𝜂 = 1

5 , 𝜇𝜇 = 2
5 , 𝜆𝜆 = 1

10, 𝜋𝜋∗ = 4%, ℎ = 1
10 , �̅�𝑝 = 1

2 , 𝑎𝑎𝜋𝜋 =
𝑎𝑎𝑝𝑝 = 1

2 , 𝑧𝑧 = −5%. Panels a and c: 𝜋𝜋 = 10%. Panels b and d: 𝜋𝜋 = 15%. Multiplication of 𝑝𝑝 and 𝐼𝐼𝑚𝑚 with 10 is for scaling purposes. 
 

Figure 8a plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟, when the inflation rate 𝜋𝜋 = 10% and the target inflation rate 
𝜋𝜋∗ = 4%. All the other parameter values are as the benchmark in Figure 1. The consumption 𝑐𝑐 decreases and the CBDC interest rate 
𝐼𝐼𝑚𝑚 increases. More specifically, the household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝐼𝐼𝑟𝑟 > 2.7%, which is much lower than 𝐼𝐼𝑟𝑟 >
12.21% in Figure 1n, and lower than 𝐼𝐼𝑟𝑟 > 12.63% in Figure 5c. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < −9.5%, 
which is lower than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 1n, and lower than 𝐼𝐼𝑟𝑟 < 0.38% in Figure 5c. Thus, the curves move to the left compared 
to Figure 1n and Figure 5c. The high inflation rate 𝜋𝜋 = 10% decreases the consumption 𝑐𝑐 and decreases the real interest rate 𝐼𝐼𝑟𝑟.  

Figure 8b plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the real interest rate 𝐼𝐼𝑟𝑟, when the inflation rate 𝜋𝜋 = 15% and the target inflation rate 
𝜋𝜋∗ = 4%. All the other parameter values are as the benchmark in Figure 1. The household’s consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 
𝐼𝐼𝑟𝑟 > −4.8%, which is much lower than 𝐼𝐼𝑟𝑟 > 12.21% in Figure 1n, lower than 𝐼𝐼𝑟𝑟 > 12.63% in Figure 5c, and lower than 𝐼𝐼𝑟𝑟 > 2.7% 
in Figure 8a. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative when 𝐼𝐼𝑟𝑟 < −17.0%, which is lower than 𝐼𝐼𝑟𝑟 < 0.00% in Figure 1n, lower 
than 𝐼𝐼𝑟𝑟 < 0.38% in Figure 5c, and lower than 𝐼𝐼𝑟𝑟 < −9.5% in Figure 8a. Again, the curves move to the left even further compared to 
Figure 1n, Figure 5c, and Figure 8a. The higher inflation rate 𝜋𝜋 = 15% further decreases the consumption 𝑐𝑐 and decreases the real 
interest rate 𝐼𝐼𝑟𝑟.  

Figure 8c plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate 𝐼𝐼𝑟𝑟 = 5.83% and the inflation 
rate 𝜋𝜋 = 10%. All the other parameter values are as the benchmark in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative 
when 𝜋𝜋∗ > 34.76%, which is much higher than 𝜋𝜋∗ > 6.10% in Figure 1p and higher than 𝜋𝜋∗ > 14.90% in Figure 5i. The household 
consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant values when 𝜋𝜋∗ > 44.24%, which is much 
higher than 𝜋𝜋∗ > 15.58% in Figure 1p and higher than 𝜋𝜋∗ > 24.39% in Figure 5i. The household consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 
when 𝜋𝜋∗ < 10.25%. Thus, the curves move to the right compared to Figure 1p and Figure 5i. The higher inflation rate 𝜋𝜋 = 10% and 
the higher real interest rate 𝐼𝐼𝑟𝑟 = 5.83%% greatly increase the target inflation rate 𝜋𝜋∗. 

Figure 8d plots 𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞, 𝑈𝑈, 𝐼𝐼𝑚𝑚 as functions of the target inflation rate 𝜋𝜋∗, when the real interest rate 𝐼𝐼𝑟𝑟 = 5.83% and the inflation 
rate 𝜋𝜋 = 15%. All the other parameter values are as the benchmark in Figure 1. The CBDC interest rate 𝐼𝐼𝑚𝑚 becomes negative 
when 𝜋𝜋∗ > 49.76%, which is much higher than 𝜋𝜋∗ > 6.10% in Figure 1p, higher than 𝜋𝜋∗ > 14.90% in Figure 5i, and higher than 
 𝜋𝜋∗ > 34.76% Figure 8c. The household consumption 𝑐𝑐, production 𝑝𝑝, CBDC holding 𝑚𝑚 and non-CBDC holding 𝑞𝑞 reach constant 
values when 𝜋𝜋∗ > 59.24%, which is much higher than 𝜋𝜋∗ > 15.58% in Figure 1p, higher than 𝜋𝜋∗ > 24.39% in Figure 5i, and higher 
than 𝜋𝜋∗ > 44.24% in Figure 8c. The household consumption 𝑐𝑐 decreases to 𝑐𝑐 = 0 when 𝜋𝜋∗ < 25.25%. Again, the curves move to 
the right even further compared to Figure 1p, Figure 5i, and Figure 8c. 

Table 7: Implication summary of higher inflation rates for Russia. 

Russia 
Changed parameter 
values from the 
benchmark in Figure 1 

𝑐𝑐 decreases to 
zero when 

𝐼𝐼𝑚𝑚 becomes 
negative when 

𝑝𝑝, 𝑐𝑐, 𝑚𝑚, 𝑞𝑞 reach 
constant values 
when 

𝐼𝐼𝑚𝑚 at the 
benchmark 

How curves change 
compared to Figure 
5 

Figure 
8a 

𝜋𝜋 = 10% 
𝜋𝜋∗ = 4% 𝐼𝐼𝑟𝑟 > 2.7% 𝐼𝐼𝑟𝑟 < −9.5% 𝐼𝐼𝑟𝑟 < −14.29% 𝐼𝐼𝑚𝑚

= 16.37% Left 

Figure 
8b 

𝜋𝜋 = 15% 
𝜋𝜋∗ = 4% 𝐼𝐼𝑟𝑟 > −4.8% 𝐼𝐼𝑟𝑟 < −17.0% 𝐼𝐼𝑟𝑟 < −21.79% 𝐼𝐼𝑚𝑚

= 24.74% Left 

Figure 
8c 

𝜋𝜋 = 10% 
𝐼𝐼𝑟𝑟 = 5.83% 𝜋𝜋∗ < 10.25% 𝜋𝜋∗ > 34.76% 𝜋𝜋∗ > 44.24% 𝐼𝐼𝑚𝑚

= 16.37% Right 

Figure 
8d 

𝜋𝜋 = 15% 
𝐼𝐼𝑟𝑟 = 5.83% 𝜋𝜋∗ < 25.25% 𝜋𝜋∗ > 49.76% 𝜋𝜋∗ > 59.24% 𝐼𝐼𝑚𝑚

= 24.74% Right 

Figure 
1n 𝜋𝜋 = 3% 𝐼𝐼𝑟𝑟 > 12.21% 𝐼𝐼𝑟𝑟 < 0.00% 𝐼𝐼𝑟𝑟 < −4.79% 𝐼𝐼𝑚𝑚

= 3.91% Right 

Figure 
1p 𝐼𝐼𝑟𝑟 = 2% 𝜋𝜋∗

< −18.41% 𝜋𝜋∗ > 6.10% 𝜋𝜋∗ > 15.58% 𝐼𝐼𝑚𝑚
= 1.63% Left 

 

Conclusion 
The article extends G. Wang and Hausken (2022) in a series of two articles by comparing a decision model with the empirics for the 
US, China and Russia. In period 1 the central bank chooses positive or negative interest rate. In period 2 the household allocates its 
resources into production, consumption, CBDC (central bank digital currency) holding, and non-CBDC holding. 

Whereas the benchmark in G. Wang and Hausken (2022) assumed the inflation rate 3% and the target inflation rate 2%, the US’s 
October 2021 empirical inflation rate is 6.2%, with a target 2% inflation rate. The model predicts and quantifies how the US should 
choose a substantially higher CBDC interest rate 7.56% than its empirical interest rate 0.125%, in order to suppress the high inflation 
rate. That would encourage the household to hold more CBDC, hold less non-CBDC, and produce and consume less. The central 
bank should choose negative CBDC interest rate when the inflation and real interest rate are low, and the inflation target is high. 
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China, in contrast, has a low empirical inflation rate 2.419% below its target inflation rate 3%. The model predicts that China should 
choose the low CBDC interest rate 2.99%, below its empirical interest rate 3.85%. That would decrease the household’s CBDC 
holding and increase the low inflation rate to the target inflation rate. It would also induce the household to hold more non-CBDC, 
and produce and consume more. 

Russia chooses a strategy in between that of the US and China. Russia’s inflation rate is 3.382%, which is below its target inflation 
rate 4%. The model predicts that Russia should choose the CBDC interest rate 6.82%, which is slightly above its empirical interest 
rate 6.75%. Compared to the benchmark in G. Wang and Hausken (2022), Russia’s high CBDC interest rate 6.82% induces the 
household to hold slightly more CBDC and earn slightly higher utility, and hold slightly less non-CBDC and produce and consume 
slightly less. 

The article also assesses higher inflation rates for the US, Russia, and China. The highest recent inflation rate 2,688,670% occurred 
in Venezuela in January 2019. As inflation increases, all curves move to the left compared to the benchmark for the real interest rate. 
That is, extremely high inflation makes production and consumption almost impossible, unless the real interest rate is extremely 
negative. The extremely high inflation greatly increases the CBDC interest rate. In contrast, all curves move to the right compared to 
the benchmark for the target inflation rate. That is, an extremely high target inflation rate makes production and consumption almost 
impossible, unless the target inflation rate is extremely positive. 
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Abstract 
 
This article combines the Taylor rule, the Friedman’s Quantity Equation, and the Phillips curve to 
explore how deviations in the inflation rate, real GDP, money supply, money velocity, and the 
unemployment rate interact with the interest rate. The motivation is to understand which factors 
impact the interest rate and how. Applying monthly United States data from 1 January 1959 to 31 
March 2022, the contribution and findings show that the deviation in the inflation rate, the deviation 
in the real GDP, the deviation in the money supply, the money velocity, and the deviation in the 
unemployment rate are positively correlated with the interest rate. Regression analysis shows 
that the deviation in the inflation rate and the deviation in the real GDP are statistically positive 
and interact with the interest rate, consistently with Taylor. The interest rate increases with the 
money supply and the money velocity. Multicollinearity exists between the deviation in the real 
GDP and the deviation in the unemployment rate. The interest rate increases with the deviation 
in the unemployment rate, consistently with the Phillips curve. The deviation in the inflation rate, 
the deviation in the money supply, the money velocity, and the deviation in the unemployment 
rate are good interest rate indicators. The combination explains the interest rate more realistically 
than the Taylor rule. 
 
Keywords: Interest Rate, Taylor Rule, Quantity Equation, Phillips Curve, Money Supply, Money 
Velocity, Unemployment, Regression Analysis 
 
JEL Classifications: C5, E24, E4, E5 
 
 
1. Introduction 
 
Central banks have multiple roles, with goals pertaining to economic growth, optimal employment 
or low unemployment rate, low inflation rate, exchange stability, financial stability, etc. The widely 
known Taylor (1993) rule is a tool for central banks to determine interest rates. It predicts and 
suggests the interest rate with four variables, i.e., the inflation rate, the equilibrium real interest 
rate, the gap in the inflation rate, and the gap in real GDP (gross domestic product). The Taylor 
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(1993) rule does not include the money supply, commonly accepted to impact the interest rate. 
The Quantity Equation (Friedman, 1970) connects the money supply, money velocity, price level 
(inflation rate), and real GDP. For the money supply, first, based on the law of supply and demand 
(Gale, 1955), the interest rate is the price of the money supply. Thus, the money supply increase 
causes the interest rate to decrease. Second, central banks tend to increase the interest rate to 
prevent massive withdrawals when the money supply increases. In addition, the increase in the 
money supply may cause inflation. If the inflation rate is high, central banks may be forced to 
increase the interest rate to stabilize the economy. Money velocity is related to the interest rate. 
As Taylor (1999) points out, velocity depends on the interest rate and real output or income. 
Money velocity is the average number of times that a unit of currency is circulated within a time 
period. Under a certain real output level, the increase of money velocity decreases the money 
supply. According to the Keynesian money demand theory (Keynes et al. 1971), when the money 
supply decreases, the money velocity has to increase to maintain the balance of the monetary 
market. Thus, the money velocity has an opposite impact on the interest rate compared with the 
money supply. Phillips (1958) connects the inflation rate and the unemployment rate in the short 
run, expressed in the so-called Phillips (1958) curve1. It suggests a negative relationship between 
inflation and unemployment rates in the short run. Taylor (1993) suggests that the inflation rate 
increases the interest rate. Hence, an inverse relationship is assumed between unemployment 
and interest rates (Prag, 1994). Therefore, it is reasonable to link the Taylor (1993) rule, the 
Quantity Equation (Friedman, 1970), and the Phillips (1958) curve. To our best knowledge, such 
combinations remain poorly explored. Thus, against this background, this article combines the 
Taylor (1993) rule, the Quantity Equation (Friedman, 1970), and the Phillips (1958) curve. This 
research identifies five variables involved in these three equations and explores their interaction 
with the interest rate. 

This article chooses the following five independent variables which may statistically 
impact the interest rate, i.e., the deviation in the inflation rate, the deviation in the real GDP, the 
deviation in the money supply, the money velocity, and the deviation in the unemployment rate. 
This article innovatively explores the combinations of the Taylor (1993) rule, the Quantity Equation 
(Friedman, 1970), and the Phillips (1958) curve. We employ the monthly data from 1 January 
1959 to 31 March 2022 to explore the impact of these five variables on the interest rate in the 
United States. The research generalizes the Taylor (1993) rule by introducing money supply and 
money velocity captured in the Quantity Equation (Friedman, 1970) and the unemployment rate 
presented in the Phillips (1958) curve. Exploring the combinations of these three equations helps 
better understand the interactions of these five variables with the interest rate. 

Although the money supply is not included in the Taylor (1993) rule, it has received 
substantial attention. The literature compares the Taylor (1993) rule with other rules, including the 
money supply rule (Minford et al. 2003), the Friedman rule (Srinivasan, 2000), and the solvency 
rule (Brancaccio and Fontana, 2013). Various studies analyze the Taylor (1993) rule and 
monetary policy (Asso et al. 2010; Auray and Fève, 2003; Castro, 2011; Kliesen, 2019)) or apply 
the Taylor (1993) rule to analyze central bank digital currencies (Wang and Hausken, 2022). The 
growth form of the Quantity Equation (Friedman, 1970) indicates the relationship between the 
inflation rate and changes in the money supply, money velocity, and GDP. Kang (1983) points 
out that the relationship between the money supply and the interest rate is robust since the money 
supply has a negative short-term liquidity effect on the interest rate and a positive long-term 
income effect. Qureshi (2021) investigates the role of money in Federal Reserve policy. The 
findings indicate that money is a relevant indicator for explaining the monetary policy.2 The well-
known Phillips (1958) curve explores the unemployment rate and suggests an inverse relationship 

 
1 The modern Phillips curves include a short-run Phillips curve and a long-run Phillips curve (Granger and 
Jeon, 2011). In the short run, it is commonly accepted that inflation and unemployment rates are inversely 
related. In the long run, that relationship breaks down (Russell and Banerjee, 2008). The economy maintains 
the natural unemployment rate regardless of the inflation rate. Thus, there is no tradeoff between inflation 
and interest rates in the long run. This article uses monthly data. Thus, it is reasonable to assume an inverse 
relationship between the inflation rate and the unemployment rate, as in a short-run Phillips curve. 
2 For monetary policy in a Central Bank Digital Currency System, see Wijngaard and Van Hee (2021). 
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between inflation rate and unemployment rate in the short run. It omits the interest rate term. 
Rocheteau and Rodriguez-Lopez (2014) explore the linkage between the money supply, liquidity 
(the interplay between the supply and demand for money), unemployment, and interest rates. 
They find that increased public liquidity (assets serving as media of exchange) causes the real 
interest rate and unemployment to increase. 

The article shows a positive correlation between the interest rate on the one hand and 
the deviation in the inflation rate, the deviation in the real GDP, the deviation in the money supply, 
the money velocity, and the deviation in the unemployment rate positively on the other hand. 
Regression analysis shows that the deviation in the inflation rate and the deviation in the real 
GDP are statistically positive and interact with the interest rate. The interest rate increases with 
the money supply and the money velocity. Multicollinearity exists between the deviation in the 
real GDP and the deviation in the unemployment rate, causing the removal of the deviation in the 
real GDP. The interest rate increases with the deviation in the unemployment rate. The deviation 
in the inflation rate, the deviation in the money supply, the money velocity, and the deviation in 
the unemployment rate are goods interest rate indicators. 

The remainder of the article is as follows. Section 2 illustrates the conceptual framework 
of dependent and independent variables and the analytic approaches. Section 3 presents the 
empirical data. Section 4 investigates the Pearson correlation between six variables, presents 
exploratory regression analysis, and contains a discussion. Section 5 summarizes the study 
giving conclusions. 
 
2. Conceptual framework and the analytic procedures 
2.1. Choosing the dependent and independent variables 
 
The nomenclature is shown in Table A1 in the Appendix. This article investigates the variables 
that impact interest rates by incorporating the Taylor (1993) rule, the Quantity Equation 
(Friedman, 1970), and the Phillips (1958) curve. Interest rate is the dependent variable. We use 
five independent variables according to the incorporated approaches described as follows: 
 

1. The deviation (𝜋𝜋 − 𝜋𝜋∗) in the inflation rate is present in the Taylor (1993) rule as in 
Equation (1), 

𝑖𝑖 = 𝜋𝜋 + 𝑟𝑟∗ + 𝑎𝑎𝜋𝜋(𝜋𝜋 − 𝜋𝜋∗) + 𝑎𝑎𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿 (𝑦𝑦
�̅�𝑦), (1) 

 

where 𝑖𝑖 ∈ ℝ is the interest rate, 𝜋𝜋 ∈ ℝ is the inflation rate, 𝜋𝜋∗ ∈ ℝ is the target inflation rate, 𝑟𝑟∗ ∈
ℝ is the equilibrium real interest rate, whereas 𝑎𝑎𝜋𝜋 = 𝑎𝑎𝑦𝑦 = 0.5 are constants, 𝑦𝑦 ≥ 0 is the real 
GDP, and �̅�𝑦 ≥ 0 is the potential real GDP that can be sustained over the long term. The latter is 
a theoretical estimation of GDP when labor and capital are at their maximum sustainable 
amounts. 𝐿𝐿𝐿𝐿𝐿𝐿 denotes the logarithm with base ten.  
 

2. The deviation 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) in the real GDP is in Equation (1). 
3. The deviation 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏) in the money supply, where 𝑚𝑚 > 0 is the money supply that is 

present in the Quantity Equation (Friedman, 1970) as in Equation (2),  
 

𝑚𝑚 ∗ 𝑣𝑣 = 𝜋𝜋 ∗ 𝑡𝑡, (2) 
 

where 𝑡𝑡 is the volume of transactions and 𝑚𝑚𝜏𝜏 ≥ 0 is the money supply at some earlier point 𝜏𝜏 in 
time (𝜏𝜏 ≥ 0).  
 

4. The money velocity 𝑣𝑣 (𝑣𝑣 ≥ 0) is also present in the Quantity Equation in (2).  
5. The deviation �̅�𝑢 − 𝑢𝑢  between the natural unemployment rate  �̅�𝑢  (�̅�𝑢 ≥ 0 ) and the 

unemployment rate 𝑢𝑢 (𝑢𝑢 ≥ 0). Both �̅�𝑢 and 𝑢𝑢 are present in the Phillips (1958) curve in 
Equation (3), 

 

𝐿𝐿𝑔𝑔 = 𝐿𝐿𝑔𝑔𝑇𝑇 + 𝑓𝑓(�̅�𝑢 − 𝑢𝑢), (3) 
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where 𝑔𝑔𝑔𝑔 is the growth rate of money wages, 𝑔𝑔𝑔𝑔𝑇𝑇 is the growth trend rate of money wages, and 
𝑓𝑓(∙)  is a function. Analogously to the Taylor (1993) rule in Equation (1), with the deviation 
𝐿𝐿𝐿𝐿𝑔𝑔(𝑦𝑦/�̅�𝑦) in the real GDP and the deviation 𝜋𝜋 − 𝜋𝜋∗ in the inflation rate, this article introduces the 
deviation �̅�𝑢 − 𝑢𝑢 in the unemployment rate in Equation (3). Phillips (1958) assumes a negative 
relationship between the inflation rate 𝜋𝜋 and the unemployment rate 𝑢𝑢, i.e. a positive relationship 
between the inflation rate 𝜋𝜋 and the deviation �̅�𝑢 − 𝑢𝑢 in the unemployment rate. Taylor (1993) 
assumes a positive relationship between the interest rate 𝑖𝑖 and the inflation rate 𝜋𝜋. Combining 
assumptions of Phillips (1958) and Taylor (1993) implies a positive relationship between the 
interest rate 𝑖𝑖 and the deviation �̅�𝑢 − 𝑢𝑢 in the unemployment rate. This implication is consistent 
with Prag’s (1994) finding of an inverse relationship between the interest rate 𝑖𝑖  and 
unemployment rate 𝑢𝑢  
 
2.2. The analytic procedures 
 
The article first shows the Pearson correlation coefficients between six variables. After that, the 
regression analysis is presented with an interest rate 𝑖𝑖 as a dependent variable and the other five 
variables as independent variables. The regression analysis is updated and refined by removing 
insignificant independent variables. Consequently, independent variables which pass the 
significant test are selected. This approach is exploratory. The total amount of possible 
combinations with five independent variables is given by ∑ (5x)

5
x=1 = 31 , where (5𝑥𝑥)  denotes the 

binomial coefficient. Furthermore, the regression findings are presented and discussed. The 
analysis seeks to combine the three equations mentioned above in economics to enhance the 
understanding of the impact of these five variables on the interest rate 𝑖𝑖. 
 
3. Empirics for the United States 
 
This article collects and adopts monthly United States data from 1 January 1959 to 31 March 
2022 from the following resources. The historical interest rate 𝑖𝑖 is derived from the Board of 
Governors of the Federal Reserve System (US) (2022a). The inflation rate 𝜋𝜋 data is obtained from 
the U.S. Bureau of Labor Statistics (2022a). The target inflation rate 𝜋𝜋∗ = 1.5% is estimated from 
a previous study by Shapiro and Wilson (2019) from 1 January 2000 to 30 December 2007. For 
the remaining period from 1 January 1959 to 31 March 2022, we adopt the common 𝜋𝜋∗ = 2%, 
which Taylor (1993) also uses from 1 January 1984 to 30 September 1992. The real GDP 𝑦𝑦 is 
estimated by the U.S. Bureau of Economic Analysis (2022). The real potential GDP �̅�𝑦 is derived 
from the U.S. Congressional Budget Office (2022b). The M2 money supply 𝑚𝑚 is estimated from 
the Board of Governors of the Federal Reserve System (2022b). Inspired by previous studies 
(Batini, 2006; Batini and Nelson, 2001; Friedman and Schwartz, 1982), this study uses the money 
supply 𝑚𝑚𝜏𝜏 with a two-year lag. This approach suggests more than a one-year time lag from money 
printing to inflation. The unemployment rate 𝑢𝑢 is evaluated by the U.S. Bureau of Labor Statistics 
(2022b). The natural unemployment rate �̅�𝑢 is estimated from the U.S. Congressional Budget 
Office (2022a).3 This is the same natural rate of unemployment used in the Phillips (1958) curve. 
The money velocity 𝑣𝑣 is estimated from the Federal Reserve Bank of St. Louis (2022). For the 
real GDP 𝑦𝑦, the real potential GDP �̅�𝑦, the natural unemployment rate �̅�𝑢, and the money velocity 
𝑣𝑣, the quadratic interpolation method is adopted to convert the quarterly data to monthly data. 
Table 1 illustrates the descriptive statistics for the six variables. 

According to Table 1, the sample size is 𝑁𝑁 = 735. For the interest rate 𝑖𝑖, the minimum and 
maximum are 0.05% in April and May 2020 and 19.10% in July 1981, respectively, with an 
average of 4.85% and a standard deviation of 3.73%. 
 

 
3 The natural unemployment rate is the rate of unemployment arising from all sources except fluctuations in 
aggregate demand. Starting with the July 2021 report: “An Update to the Budget and Economic Outlook: 
2021 to 2031”, this series was renamed from "Natural Rate of Unemployment (Long-Term)" to "Noncyclical 
Rate of Unemployment". 
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Table 1. Descriptive statistics of six variables 

Variable 𝑵𝑵 Mean S.D. Min. Median Max. 
(1) 𝑖𝑖 735 0.0485 0.0373 0.0005 0.0476 0.1910 

(2) 𝜋𝜋 − 𝜋𝜋∗ 735 0.0182 0.0281 -0.0396 0.0112 0.1259 

(3) 𝐿𝐿𝐿𝐿𝐿𝐿 (𝑦𝑦
�̅�𝑦) 735 -0.0042 0.0105 -0.0523 -0.0041 0.0246 

(4) 𝐿𝐿𝐿𝐿𝐿𝐿 ( 𝑚𝑚
𝑚𝑚𝜏𝜏

) 735 0.0595 0.0237 0.0076 0.0577 0.1489 

(5) 𝑣𝑣 735 1.7813 0.2215 1.0711 1.7664 2.1928 

(6) �̅�𝑢 − 𝑢𝑢 735 -0.0053 0.0169 -0.1019 -0.0016 0.0245 

Notes: In Table 1, Column 1 presents the variable name. Column 2 is the sample size. 
Column 3 shows the mean of the six variables, whereas Column 4 is the standard deviation. 
Columns 5, 6, and 7 are the variables’ minimum, median, and maximum values, respectively. 

 
4. Correlation and regression analysis 
4.1. Correlation 
 
Table 2 shows the Pearson correlation between the interest rate 𝑖𝑖, the deviation 𝜋𝜋 − 𝜋𝜋∗ in the 
inflation rate, the deviation 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) in the real GDP, the deviation 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏) in the money 
supply, the money velocity 𝑣𝑣, and the deviation �̅�𝑢 − 𝑢𝑢 in the unemployment rate. Notably, the 
variables are all positively related to the interest rate 𝑖𝑖. As shown in the second column of Table 
2, the interest rate 𝑖𝑖 has the highest correlation coefficient (0.7267) with the deviation 𝜋𝜋 − 𝜋𝜋∗ in 
the inflation rate. This high number indicates that the deviation 𝜋𝜋 − 𝜋𝜋∗  in the inflation rate is 
explanatory for the interest rate  𝑖𝑖 . Thereafter follows the money velocity 𝑣𝑣  at 0.3686, which 
suggests that the money velocity 𝑣𝑣 is also essential for the interest rate 𝑖𝑖. This relationship has 
hardly been explored in the existing literature. The deviation �̅�𝑢 − 𝑢𝑢 in the unemployment rate is 
0.2201. This lower correlation coefficient expresses weak relation with the interest rate 𝑖𝑖. That 
sounds plausible since the unemployment rate 𝑢𝑢 is usually not assumed to impact the interest 
rate 𝑖𝑖 directly.  
 

Table 2. Correlation matrix 

Variables 𝒊𝒊 𝝅𝝅 − 𝝅𝝅∗ 𝑳𝑳𝑳𝑳𝑳𝑳 (𝒚𝒚
�̅�𝒚) 𝑳𝑳𝑳𝑳𝑳𝑳 ( 𝒎𝒎

𝒎𝒎𝝉𝝉
) 𝒗𝒗 �̅�𝒖 − 𝒖𝒖 

 𝑖𝑖 1.0000      

 𝜋𝜋 − 𝜋𝜋∗ 0.7267 1.0000     

 𝐿𝐿𝐿𝐿𝐿𝐿 (𝑦𝑦
�̅�𝑦) 0.1473 0.0552 1.0000    

 𝐿𝐿𝐿𝐿𝐿𝐿 ( 𝑚𝑚
𝑚𝑚𝜏𝜏

) 0.0875 0.2170 -0.0443 1.0000   

 𝑣𝑣 0.3686 0.1157 0.2097 -0.5221 1.0000  

 �̅�𝑢 − 𝑢𝑢 0.2201 0.1189 0.8847 -0.0916 0.1878 1.0000 

Note: Table 2 reports the correlation between the dependent variable interest rate 𝑖𝑖 and 
five independent variables. 
 
An even lower correlation coefficient exists for the deviation 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) in the real GDP at 

0.1473. This low correlation suggests that the deviation 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) in the real GDP has a weak 
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relationship with the interest rate 𝑖𝑖. Thereafter follows the deviation 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏) in the money 
supply with an even lower correlation coefficient at 0.0875. In that regard, Conrad (2021) argues 
that the interest rate 𝑖𝑖 decreases in the money supply 𝑚𝑚. This low correlation coefficient may be 
explained by the net effect of the money supply 𝑚𝑚. First, the money supply rule implies a positive 
relationship between the money supply 𝑚𝑚 and the interest rate 𝑖𝑖, as Ascari and Ropele (2013) 
suggest. Second, and in contrast, the interest rate 𝑖𝑖 is the price of the money supply 𝑚𝑚 from the 
supply and demand perspective. Hence when the money supply 𝑚𝑚 increases, the interest rate 𝑖𝑖 
decreases (Carr and Smith, 1972). Therefore, the net effect of the money supply 𝑚𝑚 on the interest 
rate 𝑖𝑖 may be moderate. Noticeably, the deviation 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) in the real GDP has a high correlation 
coefficient with the deviation �̅�𝑢 − 𝑢𝑢 in the unemployment rate at 0.8847. 
 
4.2. Analysis 
 
This analysis investigates the statistical linear relationship between the dependent variable 
interest rate 𝑖𝑖 and five independent variables as in Equation (4), 
 

𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1(𝜋𝜋 − 𝜋𝜋∗) + 𝛽𝛽2𝐿𝐿𝐿𝐿𝐿𝐿 (𝑦𝑦
�̅�𝑦) + 𝛽𝛽3𝐿𝐿𝐿𝐿𝐿𝐿 ( 𝑚𝑚

𝑚𝑚𝜏𝜏
) + 𝛽𝛽4𝑣𝑣 + 𝛽𝛽5(�̅�𝑢 − 𝑢𝑢), (4) 

where 𝛽𝛽0 is the constant intercept term, 𝜋𝜋 − 𝜋𝜋∗ is the deviation in the inflation rate, 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) is 
the deviation in the real GDP, 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏) is the deviation in the money supply, 𝑣𝑣 is the money 
velocity, and �̅�𝑢 − 𝑢𝑢 refers to the deviation in the unemployment rate. The article enriches the 
regression analysis by removing the most insignificant independent variables. The significance 
level 1% is applied. Table 3 shows the results. The null hypothesis is the regression coefficient 
𝛽𝛽i = 0 for 𝑖𝑖 = 0,1, … 5, which implies no significant statistical relationship between the dependent 
variable and the independent variables. 
 

Table 3. Regression results for the interest rate 
 (1) (2) (3) (4) (5) 

𝜋𝜋 − 𝜋𝜋∗ 0.9561*** 
(0.0414) 

0.8690*** 
(0.0384) 

0.9389*** 
(0.0421) 

0.8362*** 
(0.0399) 

0.8565*** 
(0.0391) 

𝐿𝐿𝐿𝐿𝐿𝐿 (𝑦𝑦
�̅�𝑦) 0.3830*** 

(0.103) 
0.1534 

(0.0973) 
-0.1969 
(0.1900) 

-0.6188*** 
(0.1870)  

𝐿𝐿𝐿𝐿𝐿𝐿 ( 𝑚𝑚
𝑚𝑚𝜏𝜏

)  0.2065*** 
(0.0467)  0.2486*** 

(0.0504) 
0.2170*** 
(0.0455) 

𝑣𝑣  0.0594*** 
(0.0042) 

 0.0621*** 
(0.0044) 

0.0588*** 
(0.0040)   

�̅�𝑢 − 𝑢𝑢   0.4081*** 
(0.1070) 

0.5389*** 
(0.1040) 

0.1997*** 
(0.0572)   

Intercept 0.0327*** 
(0.0009) 

-0.0847*** 
(0.0088) 

0.0328*** 
(0.0009) 

-0.0919*** 
(0.0092) 

-0.0837*** 
(0.0081) 

𝑁𝑁 735 735 735 735 735 
Adj. R-squared 0.5383 0.6217 0.5450 0.6334 0.6277 

Notes: The numbers are the regression coefficients. Standard errors are in parentheses. *, **, and *** denote 
significance levels at 10%, 5%, and 1%, respectively. The dependent variable is the interest rate 𝑖𝑖  in 
regressions (1)-(5). Adj. R-squared expresses the adjusted R-squared, which shows the percentage of 
variation explained by the independent variables that affect the dependent variable. 
 

Regression (1) represents the result when the interest rate 𝑖𝑖 is the dependent variable, 
and 𝜋𝜋 − 𝜋𝜋∗ and 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) are two independent variables. This regression resembles the Taylor 
(1993) rule. Notably, the regression coefficients for 𝜋𝜋 − 𝜋𝜋∗ and 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦)  are positive and 
statistically significant at the 1% significance level. 

Regression (2) represents the result when the interest rate 𝑖𝑖 is the dependent variable, 
and 𝜋𝜋 − 𝜋𝜋∗ , 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦), 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏) and 𝑣𝑣  are four independent variables. Since the deviation 
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𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏) in the money supply and the money velocity 𝑣𝑣 are added to the Taylor (1993) rule, 
Regression (2) represents the combination of the Taylor (1993) rule and the Quantity Equation 
(Friedman, 1970). Again, the regression coefficients for the four independent variables are 
positive, where 𝜋𝜋 − 𝜋𝜋∗, 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏) and 𝑣𝑣 are significant at the 1% significance level. 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) is 
nevertheless insignificant. 

Regression (3) represents the result when the interest rate 𝑖𝑖 is the dependent variable, 
and 𝜋𝜋 − 𝜋𝜋∗, 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦), and �̅�𝑢 − 𝑢𝑢 are three independent variables. Since the deviation �̅�𝑢 − 𝑢𝑢 in 
the unemployment rate is added to the Taylor (1993) rule, Regression (3) represents the 
combination of the Taylor (1993) rule and the Phillips (1958) curve. As in regression (2), 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) 
is insignificant with a p-value above 10%. The coefficient sign in Regression (3) is negative for 
𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) , in contrast to positive coefficients in Regressions (1) and (2). The other two 
independent variables, 𝜋𝜋 − 𝜋𝜋∗ and �̅�𝑢 − 𝑢𝑢, are positive and significant at the 1% level. 

Regression (4) represents the result when the interest rate 𝑖𝑖 is the dependent variable, 
and 𝜋𝜋 − 𝜋𝜋∗, 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦), 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏), 𝑣𝑣, and �̅�𝑢 − 𝑢𝑢 are five independent variables. Regression (2) 
incorporates the deviation 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏)  in the money supply, the money velocity 𝑣𝑣 , and the 
deviation �̅�𝑢 − 𝑢𝑢 in the unemployment rate. It represents the combination of the Taylor (1993) rule, 
the Quantity Equation (Friedman, 1970), and the Phillips (1958) curve. All five independent 
variables are statistically significant at the 1% significance level. The coefficient for 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) is 
significant and negative at the 1% significance level. 

We further test the potential problem of multicollinearity among the variables in 
Regression (4). The estimation of the VIF (variance inflation factor) for 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) , �̅�𝑢 − 𝑢𝑢 , 
𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏), 𝑣𝑣, and 𝜋𝜋 − 𝜋𝜋∗ gives 4.91, 4.89, 1.61, 1.58, and 1.19, respectively, with an average of 
2.83. The VIFs for Regression (3) with respect to �̅�𝑢 − 𝑢𝑢, 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦), and 𝜋𝜋 − 𝜋𝜋∗ are 4.71, 4.65, and 
1.03, respectively. The VIF estimates the severity of the multicollinearity problem in a regression 
analysis with the ordinary least squares estimation method. Generally, a VIF above 10 expresses 
a high degree of multicollinearity. A more conservative opinion is that a VIF above 2.5 indicates 
multicollinearity. According to Table 2, a high correlation coefficient of 0.8847 exists between 
𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) and �̅�𝑢 − 𝑢𝑢. The coefficient sign for 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) changes from positive to negative from 
Regression (2), which contains 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) but not �̅�𝑢 − 𝑢𝑢, to Regressions (3) and (4), which contain 
both 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) and �̅�𝑢 − 𝑢𝑢 . This suggests a multicollinearity issue in Regressions (3) and (4). 
Therefore, among 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) and u̅ − u, we remove the independent variable with the highest VIF 
(𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦)) in Regression (4) and run the regression again. The result is Regression (5), where 
the VIFs for 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏), 𝑣𝑣, 𝜋𝜋 − 𝜋𝜋∗, and �̅�𝑢 − 𝑢𝑢 are 1.54, 1.51, 1.15, and 1.05, respectively, with an 
average of 1.31. Findings suggest no multicollinearity concern in Regression (5). 
 
4.3. Discussion and limitations 
 
The regression analysis results in Table 3 suggest a positive impact of 𝜋𝜋 − 𝜋𝜋∗ , 𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) , 
𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏) , 𝑣𝑣  and �̅�𝑢 − 𝑢𝑢  on the interest rate 𝑖𝑖 . In this article, we begin with the regression 
analysis illustrating the Taylor (1993) rule, then combine the Taylor (1993) rule, the Quantity 
Equation (Friedman, 1970), and the Phillips (1958) curve. The multicollinearity issue is tested and 
addressed. Finally, Regression (5) presents a statistically significant result. Based on Regression 
(5), the coefficient for 𝜋𝜋 − 𝜋𝜋∗ is statistically significant and positive at 0.8565, which indicates that 
the deviation 𝜋𝜋 − 𝜋𝜋∗  in the inflation rate is essential for the interest rate 𝑖𝑖. The coefficient for 
𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) is also found to be significant and positive at 0.3830 in Regression (1). However, 
𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦) is removed in Regression (5) due to multicollinearity, in contrast with Regressions (3) 
and (4). The result supports the Taylor (1993) rule, which confines attention to 𝜋𝜋 − 𝜋𝜋∗  and 
𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦/�̅�𝑦). The combination of the Taylor (1993) rule and the Quantity Equation (Friedman, 1970) 
explains interest rate 𝑖𝑖 better, since the adjusted R-squared increases from 0.5383 in Regression 
(1) to 0.6217 in Regression (2). The second highest coefficient in Regression (5) is 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏) at 
0.2170. This finding suggests that the deviation 𝐿𝐿𝐿𝐿𝐿𝐿(𝑚𝑚/𝑚𝑚𝜏𝜏) in the money supply is an important 
indicator for the interest rate 𝑖𝑖. The coefficients for �̅�𝑢 − 𝑢𝑢 and 𝑣𝑣 in Regression (5) are positively 
significant under the 1% level at 0.1997 and 0.05878, respectively. Hence the best combination 
of the Taylor (1993) rule, the Quantity Equation (Friedman, 1970), and the Phillips (1958) curve 
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is reported in Regression (5), which explains the interest rate 𝑖𝑖 in a superior manner with the 
adjusted R-squared at 0.6277.  

During the study period, the Federal Reserve adopts different operating procedures with 
respect to the federal funds rate, for example, free-reserves targeting, federal-funds-rate 
targeting, and non-borrowed reserves targeting, which implies different distributions for the 
federal funds rate. More recently, between late 2008 and late 2018 and again after March 2020, 
the Federal Reserve paid interest on both required and excess reserves at a rate at the top of its 
target range for the federal funds rate. The consequence is the virtual elimination of lending in the 
federal funds market by private banks (Afonso and Jalles, 2013; Bech and Klee, 2011) and a 
gradual drying up of that market (Dutkowsky and VanHoose, 2017) except for some borrowing of 
excess reserves from government-sponsored institutions like the Federal Home Loan Banks, the 
Federal National Mortgage Association, and the Federal Home Loan Mortgage Corporation by 
private banks that then held the funds on reserve at the Fed at the higher interest rate on reserves. 
One limitation is that the article mainly applies the central bank interest rate and does not account 
for what the central bank actually does. This article investigates the interest rate by extending the 
Taylor (1993) rule. The prediction is a recommendation or a reference for the central bank. This 
article finds an interest rule that explains the empirical interest rates better than the Taylor (1993) 
rule. 

Another limitation is that the analysis has not explored the underlying mechanisms and 
the interactions between the five independent variables. Other potential limitations are the linear 
relationship assumption implicit in regression analysis and whether the independent variables are 
independent of each other. 
 
5. Discussion 
 
This article combines the Taylor (1993) rule, the Quantity Equation (Friedman, 1970), and the 
Phillips (1958) curve to explore the variables which may influence the interest rate. Correlation 
and regression analyses are adopted to show how these variables interact with the interest rate. 
The article uses empirical data for the United States. The Pearson correlation coefficients suggest 
that the deviation in the inflation rate, the deviation in the real GDP, the deviation in the money 
supply, the money velocity, and the deviation in the unemployment rate are positively correlated 
with the interest rate. The highest Pearson correlation with the interest rate occurs for the 
deviation in the inflation rate, followed by the money velocity, the deviation in the unemployment 
rate, the deviation in the real GDP, and the deviation in the money supply. This ranking from high 
to low of the correlation coefficients between the interest rate and the five independent variables 
illustrates the focus variables that interact with the interest rate. 

Regression analysis specifies that the deviation in the inflation rate and the deviation in 
the real GDP are statistically positive and interact with the interest rate. This finding is consistent 
with the Taylor (1993) rule. Second, the interest rate increases with the money supply and the 
money velocity. This connection is illustrated by combing the Taylor (1993) rule and the Quantity 
Equation (Friedman, 1970). Third, multicollinearity is present between the deviation in the real 
GDP and the deviation in the unemployment rate. Thus, the deviation in the real GDP is removed. 
Fourth, the interest rate also increases with the deviation in the unemployment rate, which is in 
line with the Phillips (1958) curve. Final regression suggests that the deviation in the inflation rate, 
the deviation in the money supply, the money velocity, and the deviation in the unemployment 
rate are good interest rate indicators. The Pearson correlation and regression analysis contribute 
to understanding how the five independent variables impact the interest rate. The findings are 
relevant to how central banks choose interest rate policies. 

Future research may explore more comprehensibly potential indirect impact paths for how 
the five independent variables impact each other and the interest rate and include more variables. 
Some variables may be operationalized differently, e.g., the potential real GDP, the real 
equilibrium interest rate, and the natural unemployment rate. Variation and uncertainty in the 
variables may be accounted for, while a systematic comparison of the data for more countries 
and different periods is another future research direction. 
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Appendix 
 

Table A1. Nomenclature 
𝑖𝑖 Interest rate, 𝑖𝑖 ∈ ℝ 
𝜋𝜋 Inflation rate, 𝜋𝜋 ∈ ℝ 
𝜋𝜋∗ Target inflation rate, 𝜋𝜋∗ ∈ ℝ 
𝑟𝑟∗ Equilibrium real interest rate, 𝑟𝑟∗ ∈ ℝ 
𝑎𝑎𝜋𝜋 Constant 
𝑎𝑎𝑦𝑦 Constant 
𝐿𝐿𝐿𝐿𝐿𝐿 The logarithm with base ten 
𝑦𝑦 Real GDP (Gross Domestic Product), 𝑦𝑦 ≥ 0 
�̅�𝑦 Real potential GDP, �̅�𝑦 ≥ 0 
𝑚𝑚 Money supply, 𝑚𝑚 > 0 
𝑚𝑚𝜏𝜏 Money supply at some earlier point in time, 𝑚𝑚𝜏𝜏 > 0 
𝑣𝑣 Money velocity, 𝑣𝑣 ≥ 0 

𝑡𝑡 ≥ 0 Volume of transactions 
𝑢𝑢 Unemployment rate, 𝑢𝑢 ≥ 0 
�̅�𝑢 Natural unemployment rate, �̅�𝑢 ≥ 0 
𝐿𝐿𝑔𝑔 Growth rate of money wages, 𝐿𝐿𝑔𝑔 ≥ 0 
𝐿𝐿𝑔𝑔𝑇𝑇  Growth trend rate of money wages, 𝐿𝐿𝑔𝑔𝑇𝑇 ≥ 0 
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the deviation in real GDP (Gross Domestic Product), the deviation 
in money supply, the deviation in the money velocity, and the de-
viation in unemployment rate, are introduced and estimated. The 
article explores and tests various combinations of the Taylor rule, the 
Quantity Equation (Friedman, 1970), and the Phillips (1958) curve. 
The monthly US January 1, 1959 to March 31, 2022 data are adopted 
to test the optimal parameter values. Estimating the parameters with 
the least squares method gives better results than the Taylor rule. 
The optimal parameter values involve a relatively high weight to the 
deviation in unemployment rate, and moderate weights are assigned 
to the deviation in the inflation rate, the deviation in real GDP, the 
deviation in money supply, and the deviation in the money velocity. 
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1. Introduction

1.1. Background

Central banks are traditionally mandated to achieve certain objectives such as 
economic growth, low unemployment, price stability, stability of financial mar-
kets, etc. The Taylor rule (1993) accounts for some objectives. It predicts interest 
rates based on five variables: the equilibrium real interest rate, inflation rate, tar-
get inflation rate, real GDP (Gross Domestic Product), and the potential real GDP 
which can be sustained over the long term. Central banks often apply monetary 
policies including setting interest rates to manage the macroeconomy. Taylor’s 
analysis (1993) has substantial impact on how the interest rate is determined. 
According to the Taylor rule, the interest rate is adjusted in response to the devia-
tion in GDP and the deviation in the inflation rate. Taylor believes that his rule 
is a good tool to interpret historical monetary policy. This article questions that 
belief.

The Taylor rule relies on the deviation in real GDP and the deviation in the in-
flation rate to obtain the recommended central bank interest rate. It does not 
account for other variables which may be relevant for the conduct of monetary 
policy in economic and financial systems, such as money supply, money velocity, 
unemployment rate, financial market conditions, etc. Thus, the Taylor rule fails 
to reflect the state of the economy in real time. Another challenge is to precisely 
estimate the real potential GDP. In addition, the Taylor rule is a backward look-
ing approach. This is also a critique of the current article since it ignores that 
central banks may be forward looking in setting the interest rates.

The Taylor rule is a well-known technique for central banks to set interest rates. 
The rule recommends that central banks increase the interest rate when the infla-
tion rate is higher than the target inflation rate and the real GDP is higher than 
the real potential GDP. It gives equal 0.5 weight to the gap in real GDP and the gap 
in the inflation rate. It faces criticism because too few variables are incorporated. 
Other known variables such as money supply, money velocity and unemploy-
ment rate, captured by the Quantity Equation (Friedman, 1970) and the Phillips 
(1958) curve, respectively, may additionally impact the interest rates. Specifically, 
a lower unemployment rate is one essential objective for central banks. Hence, it 
is interesting to incorporate these variables into the Taylor rule and explore the 
associated weights. Other unknown factors not considered in this article, such 
as economic crisis, fiscal deficit, global interest rates, etc. may also impact the 
interest rates.
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How a central bank determines its interest rate is of particular interest in times of 
economic turmoil, common through history and, for example, during and in the 
aftermath of the 2020-2021 pandemic crisis when many countries first decreased 
and thereafter increased the interest rate to suppress high inflation above the 
target inflation rate. Changes in money supply impact economies substantially. 
Central banks commonly adjust the money supply through open market opera-
tions. That is, a central bank may increase the money supply by buying govern-
ment bonds, either from commercial banks or other actors, or new bonds created 
by the government. The money velocity may also impact monetary policy. For 
example, a decline in the money velocity may offset an increase in the money 
supply. The Quantity Equation (Friedman, 1970) shows the relationship between 
the money supply and the money velocity. Two important objectives of central 
banks are low unemployment rate, and low inflation commonly preferred at 2%. 
However, the Taylor rule does not include the money supply, the money velocity 
and the unemployment rate.

1.2. Contribution

The article generalizes the Taylor rule by introducing the money supply and the 
money velocity as presented in the Quantity Equation (Friedman, 1970), and the 
unemployment rate as presented in the Phillips (1958) curve. The monthly US 
January 1, 1959 to March 31, 2022 data is adopted for empirical analysis. The least 
squares method is applied to estimate the optimal weights.

In his article, Taylor (1993, p. 202) points out that “this policy rule has the same 
coefficient on the deviation in the real GDP from trend and the inflation rate.” 
Inspired by this, this article tests different weights assigned to the deviation in 
real GDP, the deviation in the inflation rate, and three additional variables. The 
research questions are: How can the Taylor (1993) rule be improved to better 
account for the money supply, the money velocity and the unemployment rate? 
What are the optimal weights assigned to the deviations in inflation, real GDP, 
money supply, money velocity, and unemployment rate?

The theoretical contribution of this research is as follows: First, the article ex-
pands the Taylor rule by introducing additional variables, i.e. money supply, 
money velocity and unemployment rate. Second, the article explores various 
weights assigned to the deviations in inflation, real GDP, money supply, money 
velocity, and unemployment rate. Third, the article shows that incorporating the 
money supply, money velocity and the unemployment rate is more accurate than 
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the Taylor rule. The article provides a better framework for central banks to de-
termine interest rates.

1.3. Literature

The Taylor rule has received substantial interest, with theoretical assessments 
and empirical testing, earning 12,681 citations in Google Scholar. Taylor (1993) 
assumes the same 0.5 weight to the deviation in real GDP and the deviation in 
the inflation rate. These parameter values fit the actual path during the 1987-
1992 period very well. Judd and Rudebusch (1998) explore the Federal Reserve’s 
response function to economic development. They point out that the Taylor rule 
framework helps to summarize the key elements of monetary policy. In his fol-
lowing research, Taylor (1999) updates the weights for the deviation in real GDP 
and the deviation in the inflation rate at 1 and 0.5, respectively. The reason is that 
the monetary policy rules have changed considerably over the different periods.

The Quantity Equation (Friedman, 1970) presents an analytical framework to ex-
plore the relationship between the money supply, money velocity, price level, and 
the real GDP. Although the money supply is widely assumed to impact interest 
rates, it is absent in the Taylor rule, perhaps because it is assumed to impact in-
flation and consequently may impact interest rates indirectly. The money supply 
plays an important role in monetary policy. The McCallum (1988) rule is an alter-
native to the Taylor rule. It recommends a target money supply M0 for the central 
banks. The McCallum rule is closely related to the Quantity Equation (Friedman, 
1970), and recommends the central bank to set the target money supply M0 based 
on five variables: These are the money supply M0 in the previous period, the av-
erage quarterly increase of the money velocity of M0, the desired inflation rate, 
the long-run average quarterly increase of real GDP, and the quarterly increase of 
nominal GDP. The McCallum rule performs better than the Taylor rule during 
crisis periods (Benchimol & Fourçans, 2012). Krušković (2022) investigates the 
role of central banks in maintaining price stability and achieving their inflation 
targets through various policy instruments, e.g. interest rate changes, foreign ex-
change interventions, and asset purchases.

The unemployment rate is also absent in the Taylor rule, but Prag (1994) finds a 
linkage from the unemployment rate to interest rates. Phillips (1958) also omits 
analyzing interest rates. Instead he analyzes the relationship between the unem-
ployment rate and inflation. Azam, Khan, and Khan (2022) investigate the valid-
ity of the Phillips (1958) curve for eight countries in the Middle East and North 
Africa region. They find a negative but insignificant trade-off between the infla-
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tion and unemployment rates in the short run. Gocer and Ongan (2020) examine 
the relationship between the inflation and interest rates in the United Kingdom 
using a nonlinear Autoregressive Distributed Lag model. They show that the 
nominal interest rate reacts more strongly to increases in inflation than to de-
creases in inflation. Wang and Hausken (2022b, 2022c) combine the Taylor (1993) 
rule, the Quantity Equation (Friedman, 1970), and the Phillips (1958) curve, ap-
plying different tools and generating results different from the current article. 

The literature more commonly compares how interest rate rules compare with 
money supply rules (Ascari & Ropele, 2013; Auray & Fève, 2003; Minford, Perug-
ini, & Srinivasan, 2003), with solvency rules (Brancaccio & Fontana, 2013), and 
with the Friedman rule (Srinivasan, 2000). The literature also links the money 
supply to interest rate targets (Schabert, 2005, 2009) or to exchange rates (Ter-
vala, 2012). The literature furthermore links monetary rules to macroeconomics 
more generally (Clarida, Gali, & Gertler, 2000), or applies the Taylor rule to build 
decision models for central bank digital currency (Wang & Hausken, 2022d).

Modified monetary rules appear after the Taylor rule. For example, Orphanides 
(2003) proposes a first difference rule, relating the current interest rate to its 
historical value and a year ahead forecast. As an alternative, Bullard (2017) and 
Kliesen (2019) adjust the Taylor rule, and propose an inertial rule. The rule pre-
scribes a response of the interest rate to the economic developments over time. 

1.4. Article organization

Section 2 presents the model. Section 3 analyzes the model with data sources, 
parameter estimation, and illustrations. Section 4 discusses the results. Section 5 
presents limitations and future research. Section 6 provides policy implications. 
Section 7 concludes.

2. The model

Appendix A shows the nomenclature. This article tests and generalizes the well-
known Taylor (1993) rule by incorporating the Quantity Equation (Friedman, 
1970), and the Phillips (1958) curve. Thus, we include three additional terms: 
money supply , money velocity , and the unemployment 
rate , at time , i.e.
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 (1)

where it , it ∈  is the interest rate at time t,  is the set of all real numbers. The 
right hand side of (1) contains πt + rt

*, as in the Taylor rule, where πt , πt ∈ , is the 
inflation rate and rt

*
 , rt

* ∈ , is the equilibrium real interest rate. The subsequent 
five terms in (1) are preceded with ± where + is the plausible default positive im-
pact on the interest rate it , and – is the alternative negative impact on it analyzed 
in section 3. These five terms are expressed as follows: The deviation πt - πt

* in 
inflation rate, where πt

*, πt
* ∈ , is the target inflation rate. The deviation  

in real GDP, where yt, yt ≥ 0, is the real GDP, and , is the potential real 
GDP that can be sustained over the long term. The deviation  in money 
supply, where mt, mt ≥ 0, is the money supply, and , is the potential 
money supply. The deviation  in money velocity, where vt, vt ≥ 0, is the 
money velocity, and , is the potential money velocity. The deviation 

 in the unemployment rate, where  ≥ 0 is the natural unemployment 
rate, and ut, ut ≥ 0 is the unemployment rate. The five nonnegative parameters aπ, 
ay, am, av, au are the weights assigned to the deviations in inflation πt, real GDP yt, 
money supply mt, money velocity vt, and unemployment rate ut, respectively. Log 
is the logarithm with a base ten. The sum of the five parameters is assumed to be 
one, corresponding to Taylor (1993) assuming that aπ + ay = 0.5 + 0.5 =1 when 
considering only the first two of the five terms.

The deviation πt - πt
* in the inflation rate and the deviation  in real GDP 

are the two terms originally included in the Taylor (1993) rule. For the new term, 
the deviation  in money supply in (1), the new variable money supply 
mt, mt ≥ 0 is introduced, as present in the Quantity Equation (Friedman, 1970). 
The potential money supply  is estimated using the standard HP filter (Hodrick 
& Prescott, 1997), which is commonly used in economics to estimate potential 
real GDP (Michałek, 2010). Regarding the impact of the money supply mt on 
the interest rate it, on the one hand, Ascari and Ropele (2013) suggest that an 
increase of money supply mt will cause the interest rate it to increase. Thus, when 
the money supply mt increases, central banks may increase the interest rate it to 
prevent savers’ extensive withdrawals. On the other hand, the interest rate it is 
the price of the money supply mt from the supply and demand perspective. Ac-
cordingly, C. A. Conrad (2021) suggest that the interest rate it decreases when the 
money supply mt increases. This article explores both suggestions. The plus sign 
in (1) assumes a positive relationship between the interest rate it and the deviation  
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 in the money supply, while the minus sign assumes a negative relation-
ship.

For the new term the deviation  in money velocity in (1), the new vari-
able money velocity vt, vt ≥ 0, is introduced. This term is also captured by the 
Quantity Equation (Friedman, 1970). The Keynesian theory of money demand 
(Keynes, Moggridge, & Johnson, 1971) suggests that the money velocity vt needs 
to increase when the money supply mt decreases, to keep the balance within the 
monetary market. Mendizabal (2006) suggests the money velocity vt has a posi-
tive impact on the inflation rate πt. Taylor (1993) suggests that the inflation rate πt 
impacts the interest rate it positively. Therefore, we assume a positive relationship 
between the money velocity vt and the interest rate it. Money velocity vt is defined 
as the ratio of nominal GDP to the money supply stock (Federal Reserve Bank 
of St. Louis, 2022). Similarly, we define the potential money velocity  as 
the ratio of nominal potential GDP to the potential money supply. Thus, in (1) the 
deviation  in the money velocity is presented on the same structure as the 

deviation  in real GDP.

The new variable unemployment rate ut is introduced for the new term the devia-
tion  in the unemployment rate in (1). A low unemployment rate ut is one 
of the most important objectives of a central bank. Thus, central banks may take 
into account the unemployment rate ut when setting the interest rate it. Phillips 
(1958) originally investigates the relationship between the unemployment rate ut 
and wage growth, Thereafter, Samuelson and Solow (1960) connect the employ-
ment rate with the inflation rate. The Phillips (1958) curve illustrates an inverse 
relationship between the unemployment rate ut and the inflation rate πt in the 
short term. Specifically, the Phillips (1958) curve is divided into a short run Phil-
lips (1958) curve and a long run Phillips (1958) curve (Granger & Jeon, 2011). The 
unemployment rate ut and the inflation rate πt are inversely related in the short 
run. This relationship breaks down in the long run (Russell & Banerjee, 2008). 
Since Taylor (1993) assumes a positive correlation between the inflation rate πt 
and the interest rate it, an inverse relationship is assumed between the interest 
rate it and the unemployment rate ut, as also suggested by Prag (1994). The devia-
tion  in the unemployment rate indicates an inverse relationship between 
the interest rate it and the unemployment rate ut. Finally, for generality, the article 
also tests the plus versus minus signs for the five terms, i.e. the deviation πt - πt

* 
in the inflation rate, the deviation  in real GDP, the deviation  in 
money velocity, and the deviation  in the unemployment rate.
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3. Analyzing the model

3.1. Data sources

Monthly US January 1, 1959 to March 31, 2022 data is collected and compiled 
from the following sources: The real GDP yt  is estimated from the U.S. Bureau 
of Economic Analysis (2022). The real potential GDP  is derived from the U.S. 
Congressional Budget Office (2022b). The quadratic interpolation method is ap-
plied to convert quarterly data to monthly data for the real GDP yt and the real 
potential GDP . The M2 money supply mt is estimated from the Board of Gov-
ernors of the Federal Reserve System (US) (2022b). The money velocity vt is es-
timated from the Federal Reserve Bank of St. Louis (2022). The unemployment 
rate ut is derived from the U.S. Bureau of Labor Statistics (2022b). The natural 
unemployment rate  is estimated from the U.S. Congressional Budget Office 
(2022a). The quadratic interpolation method is used to convert quarterly data to 
monthly data for . The inflation rate πt is derived from the U.S. Bureau of Labor 
Statistics (2022a). The target inflation rate πt

* = 1.5% is estimated from Shapiro 
and Wilson (2019) from January 1, 2000 to December 30, 2007. The common 
πt

* = 2% is assumed for the remaining January 1, 1959 to March 31, 2022 period, 
as Taylor (1993) assumes for January 1, 1984 to September 31, 1992. The common 
equilibrium real interest rate rt

* = 2% is assumed throughout January 1, 1959 to 
March 31, 2022, used also by Taylor (1993) for January 1, 1984 to September 31, 
1992, and consistently with Kiley’s (2020) estimation and the long run inflation 
target specified by the Federal Open Market Committee (The Federal Reserve, 
2022). The empirical interest rate it  is derived from the Board of Governors of the 
Federal Reserve System (US) (2022a). 

3.2. Estimating the parameters and illustrating the solution

Table 1 shows the estimations of the five paramter values aπ, ay, am, av, au with dif-
ferent combinations of parameter values in (1), obtained using Mathematica 13.1 
(https://www.wolfram.com). 

Table 1. Curve number, estimated parameter values aπ, ay, am, av, au, parameter 
specifics, the number N of free choice variables, and the sum S of the squared dif-
ferences between the empirical interest rate it and the theoretical interest rate it in 
(1). A superscript star * after a number means that the corresponding sign in (1) 
is changed from plus to minus.
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Curve aπ, ay, am, av, au Parameter specifics N S

1 0.5, 0.5, 0, 0, 0 Taylor (1993) rule 0 0.830774

2 0.2, 0.2, 0.2, 0.2, 0.2 Equal weight 0 0.582477

3a 0.2, 0.2, 0.2, 0, 0.4
aπ = ay = am = 0.2, optimizing au 

when av = 0.4 - au
1 0.577883

3b 0.2, 0.2, 0.2, 0.04*, 0.36
aπ = ay = am= 0.2, optimizing au 

when av = 0.4 - au
1 0.576750

4a 0.2, 0.2, 0.25, 0, 0.35
aπ = ay = 0.2, optimizing av and au 

when am = 0.6 - av - au
2 0.577109

4b 0.2, 0.2, 0, 0.17*, 0.43
aπ = ay = 0.2, optimizing av and au 

when am = 0.6 - av - au
2 0.576230

4c 0.2, 0.2, 0.03*, 0.17*, 0.4
aπ = ay = 0.2, optimizing av and au 

when am = 0.6 - av - au
2 0.576582

5a 0, 0, 0.37, 0.37, 0.26
aπ = ay , am = av , optimizing ay and 

av when au = 1 - 2ay - 2av
2 0.499951

5b 0.16*, 0.16*, 0.13, 0.13, 0.4
aπ = ay , am = av , optimizing ay and 

av when au = 1 - 2ay - 2av
2 0.474088

6a 0, 0, 0.47, 0.18, 0.35
aπ = ay , optimizing am, av and au 

when aπ = ay = (1 - am - av - au) / 2 3 0.496629

6b 0.165*, 0.165*, 0.11, 0.13, 0.43
aπ = ay , optimizing am, av and au 

when aπ = ay = (1 - am - av - au) / 2 3 0.474051

7a 0.2, 0.41, 0.17, 0, 0.22
aπ = 0.2, optimizing am, av and au 

when aπ = 0.8 - am - av - au
3 0.576203

7b 0.2, 0.42, 0, 0.12*, 0.26
aπ = 0.2, optimizing am, av and au 

when aπ = 0.8 - am - av - au
3 0.574744

7c 0.2, 0.61, 0.06*, 0, 0.13
aπ = 0.2, optimizing am, av and au 

when aπ = 0.8 - am - av - au
3 0.578171

7d 0.2, 0.42, 0*, 0.12*, 0.26
aπ = 0.2, optimizing am, av and au 

when aπ = 0.8 - am - av - au
3 0.574744

8a 0, 0.09, 0.44, 0.15, 0.32
optimizing ay , am, av and au when 

aπ = 1 - ay  - am - av - au
4 0.496512

8b 0.16*, 0, 0.32, 0.21, 0.31
optimizing ay , am, av and au when 

aπ = 1 - ay  - am - av - au
4 0.474937

8c 0.17*, 0.13*, 0.15, 0.15, 0.4
optimizing ay , am, av and au when 

aπ = 1 - ay  - am - av - au
4 0.473981

9a 0, 0.31, 0.4, 0.29, 0

au = 0, Taylor (1993) rule and 
Quantity Equation (Friedman, 1970), 

optimizing ay , am and av when 
au = 0, and aπ = 1 - ay  - am - av

3 0.502298

9b 0.16*, 0.32, 0.24, 0.28, 0

au = 0, Taylor (1993) rule and 
Quantity Equation (Friedman, 1970), 

optimizing ay , am and av when 
au = 0, and aπ = 1 - ay  - am - av

3 0.481483
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10a 0, 0.98, 0, 0, 0.02
am = av = 0, Taylor (1993) rule and 

Phillips (1958) curve, optimizing ay, 
au when am = av = 0, aπ = 1 - ay  - au

2 0.512049

10b 0.17*, 0.66, 0, 0, 0.17
am = av = 0, Taylor (1993) rule and 

Phillips (1958) curve, optimizing ay, 
au when am = av = 0, aπ = 1 - ay  - au

2 0.488556

11 0, 0, 0.47, 0.18, 0.35

aπ = ay = 0, Quantity Equation 
(Friedman, 1970) and Phillips (1958) 
curve, optimizing av , and au when 

aπ = ay = 0, am = 1 - av  - au

2 0.496629

12a 0, 0, 0.46, 0.1, 0.44
ay = 0, optimizing am , av , and au 
when ay = 0, aπ = 1 - am- av- au

3 0.497407

12b 0.16*, 0, 0.32, 0.21, 0.31
ay = 0, optimizing am , av , and au 
when ay = 0, aπ = 1 - am- av- au

3 0.474937

13 0, 0, 0.51, 0.49, 0
aπ = ay = au = 0, Quantity Equation 

(Friedman, 1970), optimizing av 
when am = 1 - av

1 0.509102

14 0, 0, 0, 0, 1
aπ = ay = am = av = 0, au = 1, 

Phillips (1958) curve
0 0.571153

Average N/A The average of the above 27 curves 0 0.510363

Curve 1 represents the Taylor (1993) rule assuming aπ = ay = 0.5, am = av = au = 0. 
The sum of squares is relatively high at S = 0.830774. Curve 2 assumes equal 0.2  
weight for the five parameters. The sum of the squared differences is lower at 
S = 0.582477, i.e. a 29.96% decrease compared with the Taylor (1993) rule in 
curve 1. Hence equal weights for the five parameters explain the interest rate 
it better than the Taylor (1993) rule. Curves 3a and 3b assume one free choice 
variable, where au is optimized assuming av = 0.4 - au. That causes an even 
lower sum of squared differences S = 0.577883, but with the optimal parame-
ter av = 0. That suggests that the corresponding sign in (1) may be negative. A 
negative sign before  in (1) causes the optimal parameters av = 0.04 and 
au = 0.36, and a marginally lower sum of squared differences S = 0.576750. Curves 
3a and 3b suggest that the weight au assigned to unemployment, not present in 
the Taylor (1993) rule, may potentially be relatively high, which becomes clearer 
as we proceed. Curves 4a, 4b, and 4c assume two free choice variables, where av 
and au are optimized assuming am = 0.6 - av - au. That causes a similar sum of 
squared differences S = 0.577109 in curve 4a. Again, the optimal parameter is 
av = 0. Hence, curve 4b tests the negative sign for  in (1). That causes a 
slightly lower sum of squares S = 0.576230 compared with curve 4a, but with the 
optimal parameter am = 0. Assuming negative signs for  and  in 
(1) cause the optimal parameters am = 0.03 and av = 0.17 in curve 4c, and a similar 
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sum of squared differences S = 0.576582. Curves 4a, 4b, and 4c also suggest that 
the weight au may be relatively high. Curves 5a and 5b assume two free choice 
variables, where ay and av are optimized assuming aπ = ay, am = av, and au = 1 - 
2ay - 2av. That causes a lower sum of squared differences S = 0.499951 in curve 5a, 
but interestingly with the two optimal parameters aπ = ay = 0. Assuming negative 
signs before (πt - πt

*) and  in (1) yield an even lower sum of squared dif-
ferences S = 0.474088 compared with curve 5a. Curves 6a and 6b assume three 
free choice variables, where am, av and u are optimized assuming aπ = ay = (1 - am 
- av - au)/2. That causes a similar sum of squared differences S = 0.496629, but also 
with the optimal parameters aπ = ay = 0. Hence, curve 6b assumes negative signs 
before (πt - πt

*) and  in (1). That causes a lower sum of squared differences 
S = 0.474051 compared with curve 6a. Curves 5a, 5b, 6a and 6b suggest negative 
signs before (πt - πt

*) and  in (1). Curves 7a, 7b, 7c, and 7d also assume 
three free choice variables, where am, av and u are optimized assuming aπ = 0.2. 
That causes the sum of squared differences S = 0.576203, 0.574744, 0.578171 and 
0.574744, respectively, which are higher compared with curves 5a, 5b, 6a and 6b. 
The higher sum of squares in curves 7a, 7b, 7c and 7d suggests that the weight ay 
assigned to (πt - πt

*) should be lower than 0.2. 

Curves 8a, 8b and 8c assume four free choice variables, where ay, am, av and au 
are optimized assuming aπ = 1 - ay - am - av - au. That causes the sum of squared 
differences S = 0.496512 in curve 8a, but with optimal parameter aπ = 0. A nega-
tive sign before (πt - πt

*) in (1) causes the optimal parameters aπ = 0.16 and ay = 0, 
and a marginally lower sum of squared differences S = 0.474937 compared with 
curve 8a. Hence, curve 8c assumes negative signs before (πt - πt

*) and  in 
(1), which causes the lowest sum of squared differences S = 0.473981 so far, and 
also the lowest overall in Table 1, and thus marked in bold, i.e. a 42.95% decrease 
compared with the Taylor (1993) rule in curve 1. The corresponding optimal pa-
rameter values are aπ = 0.17, ay = 0.13, am = 0.15, av = 0.15, au = 0.4. This again sug-
gests that the weight au assigned to unemployment rate should be relatively high. 

Curves 9a and 9b assume three free choice variables and represents the combina-
tion of the Taylor (1993) rule and the Quantity Equation (Friedman, 1970), where 
ay, am, and au are optimized assuming au = 0 and aπ = 1 - ay - am - av. That causes a 
sum of squared differences S = 0.502298 in curve 9a, but with the optimal param-
eter aπ = 0. A negative sign before (πt - πt

*) in (1) causes a lower sum of squared 
differences S = 0.481483 compared with curve 9a. Thus, the combination of the 
Taylor (1993) rule and the Quantity Equation (Friedman, 1970) explains the in-
terest rate it better than the Taylor (1993) rule in curve 1.
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Curves 10a and 10b assume two free choice variables and represent the combina-
tion of the Taylor (1993) rule and the Phillips (1958) curve, where ay and au are 
optimized assuming am = av = 0 and aπ = 1 - ay - au. That causes a sum of squared 
differences S = 0.512049 in curve 10a, but again with the optimal parameter 
aπ = 0. Thus, curve 10b assumes the negative sign for (πt - πt

*) in (1). That causes 
a slightly lower sum of squared differences S = 0.488556 compared with curve 
10a. The combination of the Taylor (1993) rule and the Phillips (1958) curve also 
explain the interest rate it better than the Taylor (1993) rule in curve 1.

Curve 11 assumes two free choice variables and represents the combination of the 
Quantity Equation (Friedman, 1970) and the Phillips (1958) curve, where av and 
au are optimized assuming aπ = ay = 0, and am = 1 - av - au. That causes a sum of 
squared differences S = 0.496629, i.e., a 40.22% decrease compared with the Tay-
lor (1993) rule in curve 1. The combination of the Quantity Equation (Friedman, 
1970) and the Phillips (1958) curve also explain the interest rate it better than the 
Taylor (1993) rule in curve 1.

Curves 12a and 12b assume three free choice variables, where am, av and au are 
optimized assuming ay = 0, and aπ = 1 - am - av - au. That causes a sum of squared 
differences S = 0.497407 in curve 12a, but again with the optimal parameter aπ = 
0. Assuming a negative sign before (πt - πt

*) in (1) causes for curve 12b the second 
lowest sum of squared differences S = 0.474937 in Table 1. The result happens to 
be the same as in curve 8b. 

Curve 13 assumes one free choice variable and represents the Quantity Equation 
(Friedman, 1970), where av is optimized assuming aπ = ay = au = 0, and am = 1 - 
av. That causes a sum of squared differences S = 0.509102. That suggests that the 
Quantity Equation (Friedman, 1970) explains the interest rate it better than the 
Taylor (1993) rule in curve 1.

Curve 14 assumes no free choice variables and that only the Phillips (1958) curve 
is explanatory, i.e. aπ = ay = am = av = 0, au = 1. The sum of squared differences is 
S = 0.571153. 

Curve Average calculates the average of these 27 curves. The corresponding sum 
of squared differences S = 0.510363, i.e. a 38.57% decrease compared with the 
Taylor (1993) rule in curve 1. Curve Standard deviation calculates the standard 
deviation on these 27 curves.

Figure 1 plots the empirical interest rate it with black “+”, together with 27 curves 
for the interest rate it in (1) with red filled triangles according to Table 1. The 
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average and the standard deviation of these 27 curves are shown in the last two 
panels, which gives 29 panels.
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Figure 1. The Monthly US January 1, 1959 to March 31, 2022 empirical interest rate it and the 
interest rate it based on (1) with the following parameter values. Curve 1: aπ = ay = 0.5, am = av = 
au = 0. Curve 2: aπ = ay = am = av = au = 0.2. Curve 3a: aπ = ay = am = 0.2, av = 0, au = 0.36. Curve 3b: 
aπ = ay = am = 0.2, av = 0.04*, au = 0.36. Curve 4a: aπ = ay = 0.2, am = 0.25, av = 0, au = 0.35. Curve 
4b: aπ = ay = 0.2, am = 0, av = 0.17*, au = 0.43. Curve 4c: aπ = ay = 0.2, am = 0.03, av = 0.17*, au = 0.4*. 
Curve 5a: aπ = ay = 0, am = av = 0.37, au = 0.26. Curve 5b: aπ = ay = 0.16*, am = av = 0.13, au = 0.42. 
Curve 6a: aπ = ay = 0, am = 0.47, av = 0.18, au = 0.35. Curve 6b: aπ = ay = 0.165*, am = 0.11, av = 0.13, 
au = 0.43. Curve 7a: aπ = 0.2, ay = 0.41, am = 0.17, av = 0, au = 0.22. Curve 7b: aπ =0.2, ay = 42, am = 0, 
av = 0.12*, au = 0.26. Curve 7c: aπ = 0.2, ay = 0.61, am = 0.06*, av = 0, au = 0.13. Curve 7d: aπ = 0.2, ay 
= 42, am = 0*, av = 0.12*, au = 0.26. Curve 8a: aπ = 0, ay = 0.09, am = 0.44, av = 0.15, au = 0.32. Curve 
8b: aπ = 0.16*, ay = 0, am = 0.32, av = 0.21, au = 0.31. Curve 8c: aπ = 0.17*, ay = 0.13*, am = 0.15, av = 
0.15, au = 0.4. Curve 9a: aπ = 0, ay = 0.31, am = 0.4, av = 0.29, au = 0. Curve 9b: aπ = 0.16*, ay = 0.32, 
am = 0.24, av = 0.28, au = 0. Curve 10a: aπ = 0, ay = 0.98, am = 0, av = 0, au = 0.02. Curve 10b: aπ = 
0.17*, ay = 0.66, am = 0, av = 0, au = 0.17. Curve 11: aπ = 0, ay = 0, am = 0.47, av = 0.18, au = 0.35. Curve 
12a: aπ = 0, ay = 0, am = 0.46, av = 0.1, au = 0.44. Curve 12b: aπ = 0.16*, ay = 0, am = 0.32, av = 0.21, 
au = 0.31. Curve 13: aπ = 0, ay = 0, am = 0.51, av = 0.49, au = 0. Curve 14: aπ = 0, ay = 0, am = 0, av = 0, 
au = 1. Curve Average: The average of these 27 curves. Curve Standard deviation: The standard 
deviation of these 27 curves A superscript star * after a number means that the corresponding 
sign in (1) is changed from plus to minus. No superscript star * after a number means that only 
the plus signs in (1) are used.

These 27 curves are similar in some regards, but they are unique and present dif-
ferent features. Curve 1 presents the Taylor (1993) rule, i.e. assuming aπ = ay = 0.5, 
am = av = au = 0. Among the 27 curves, the peak in 1980 for curve 1 is highest com-
pared with the peaks in 1980 for all the 27 curves. Curve 1 predicts negative inter-
est rate it from January 2009 to May 2009, and in March 2020. Curve 2 assumes 
aπ = ay = am = av = au = 0.2, which fits the empirical interest rate it better than the 
Taylor (1993) rule. The peak of curve 2 in 1980 is close to the empirical interest 
rate it. The last two curves show the average interest rate it of the 27 curves, and 
the standard deviation of the interest rate it, respectively. Overall, the 27 curves 
show especially high variation for 1980, as the curve Standard deviation shows.

Table 2 shows that the Pearson correlation coefficients are high, ranging from 
0.71 to 0.75 between the empirical interest rate it and the 27 curves. The correla-
tions are even higher, ranging from 0.92 to 1 among the 27 curves.
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Table 2 Pearson correlation coefficients between the empirical interest rate it  
and the 27 curves

Curves (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

(1) Empirical 1.00

(2) Curve1 0.74 1.00

(3) Curve2 0.74 1.00 1.00

(4) Curve3a 0.74 0.99 1.00 1.00

(5) Curve3b 0.74 0.99 1.00 1.00 1.00

(6) Curve4a 0.74 0.99 1.00 1.00 1.00 1.00

(7) Curve4b 0.74 0.99 1.00 1.00 1.00 1.00 1.00

(8) Curve4c 0.74 0.99 1.00 1.00 1.00 1.00 1.00 1.00

(9) Curve5a 0.74 0.99 1.00 1.00 1.00 1.00 0.99 0.99 1.00

(10) Curve5b 0.75 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(11) Curve6a 0.74 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(12) Curve6b 0.75 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(13) Curve7a 0.74 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

(14) Curve7b 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

(15) Curve7c 0.74 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00

(16) Curve7d 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

(17) Curve8a 0.74 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(18) Curve8b 0.74 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(19) Curve8c 0.75 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99

(20) Curve9a 0.74 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00

(21) Curve9b 0.74 0.99 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00

(22) Curve10a 0.73 0.97 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.99 0.98 0.99 0.99 0.99

(23) Curve10b 0.73 0.97 0.99 0.99 0.98 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99

(24) Curve11 0.74 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(25) Curve12a 0.74 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

(26) Curve12b 0.74 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(27) Curve13 0.74 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00

(28) Curve14 0.71 0.92 0.95 0.96 0.96 0.96 0.96 0.95 0.97 0.97 0.97 0.97 0.95 0.95 0.96

(29) Curve Average 0.74 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 2 Pearson correlation coefficients between the empirical interest rate it  
and the 27 curves - continued

Curves (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29)

(1) Empirical

(2) Curve1

(3) Curve2

(4) Curve3a

(5) Curve3b

(6) Curve4a

(7) Curve4b

(8) Curve4c

(9) Curve5a

(10) Curve5b

(11) Curve6a

(12) Curve6b

(13) Curve7a

(14) Curve7b

(15) Curve7c

(16) Curve7d 1.00

(17) Curve8a 1.00 1.00

(18) Curve8b 1.00 1.00 1.00

(19) Curve8c 0.99 1.00 1.00 1.00

(20) Curve9a 1.00 1.00 0.99 0.99 1.00

(21) Curve9b 0.99 0.99 1.00 0.99 1.00 1.00

(22) Curve10a 0.99 0.99 0.99 0.99 0.99 0.99 1.00

(23) Curve10b 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00

(24) Curve11 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00

(25) Curve12a 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 1.00 1.00

(26) Curve12b 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 1.00

(27) Curve13 0.99 0.99 0.99 0.99 1.00 1.00 0.98 0.98 0.99 0.99 0.99 1.00

(28) Curve14 0.95 0.97 0.97 0.97 0.94 0.95 0.97 0.98 0.97 0.97 0.97 0.93 1.00

(29) Curve Average 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.99 0.96 1.00
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4. Discussion

This article expands the Taylor (1993) rule by introducing three additional vari-
ables, i.e. the money supply, the money velocity, and the unemployment rate. The 
article also tests the various weights assigned to the deviations in inflation rate, 
real GDP, money supply, money velocity, and unemployment rate. Five results in 
the previous section are noteworthy. First, the Taylor (1993) rule does not explain 
the US empirical interest rate well. Among the Taylor (1993) rule, the Quantity 
Equation (Friedman, 1970) and the Phillips (1958) curve, the Quantity Equation 
(Friedman, 1970) gives the lowest sum of the squared differences between the 
empirical interest rate and the predicted interest rate, followed by the Phillips 
(1958) curve and the Taylor (1993) rule, respectively. Second, the combination 
of the Taylor (1993) rule, the Quantity Equation (Friedman, 1970), and the Phil-
lips (1958) curve causes a substantially better result than the Taylor (1993) rule. 
Thus, incorporating the money supply, the money velocity and the unemploy-
ment rate substantially improves the accuracy compared with the Taylor (1993) 
rule. Third, the weight assigned to the unemployment rate should be relatively 
high. The Taylor (1993) rule assigns equal 0.5 weight to the deviation in inflation 
rate and the deviation in real GDP. The findings show that that may not be a good 
weight combination. Fourth, equal 0.2 weight to the deviations of inflation rate, 
real GDP, money supply, money velocity and unemployment rate decreases the 
sum of squared differences compared with the Taylor (1993) rule. Fifth, assum-
ing two combinations, the Taylor (1993) rule and the Quantity Equation (Fried-
man, 1970) gives best result, followed by the Taylor (1993) rule and the Phillips 
(1958) curve, and finally, the Quantity Equation (Friedman, 1970) and the Phil-
lips (1958) curve. The results of these three combinations are similar.

The endogeneity problem, i.e. that some independent variables are not independ-
ent of the dependent variable, is commonly assessed related to the Taylor (1993) 
rule. Endogeneity is often problematic in an econometric approach, but can also 
arise in economics more generally. This article does not apply an econometric 
approach. The authors believe that endogeneity is a limited or not a problem for 
this article for the following reasons: The article assumes that the sum of the five 
weight parameters is one. The authors believe that the three additional variables 
are not highly correlated. The article does not introduce the money supply and 
the money velocity into the Taylor (1993) rule directly in (1). The term  
for the money supply is a ratio which eliminates the scaling impact of the money 
supply. The term  for the money velocity is a ratio which eliminates the 
scaling impact of the money velocity. The term  for the GDP is a ratio 
which eliminates the scaling impact of the real GDP. Instead, these are loga-
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rithms of ratios, and thus not linear combinations of the relevant variables, which 
eliminates the scaling impact of these variables. A stationary test of endogeneity 
is common in time series analysis. This article does not use a time series analysis 
technique. Thus it is not feasible to conduct a stationary test. Instead this article 
conducts a robustness test by exploring various weights assigned to the five vari-
ables.

5. Limitations and future research

Conrad and Eife (2012) point out that the weights discussed in the previous sec-
tions are not fixed over time. One limitation of the Taylor (1993) rule, and also 
of this article assuming additional terms, is thus the assumption of constant 
weights through time. Future research may explore how these weights change 
dynamically over time.

Other potential limitations of the Taylor (1993) rule, combined or not combined 
with the other rules in this article, are the uncertainty of the level of potential real 
GDP, the long term real equilibrium interest rate, and the natural unemployment 
rate. One common challenge of the Taylor (1993) rule is to estimate the potential 
real GDP and thus the real GDP gap, i.e. the difference between the real GDP 
and the potential real GDP. Orphanides (2001) points out that the real GDP gap 
can look quite differently today as compared to the view in retrospect in some 
years. Hence, future research may find a better way to dynamically estimate the 
real GDP gap. This article assumes that the long term equilibrium real interest 
rate is 2%, which is commonly accepted, also in the Taylor (1993) rule. Laubach 
and Williams (2003) suggest that the equilibrium real interest rate is not stable 
over time. Thus, future research may find a way to better estimate the long term 
equilibrium real interest rate.

The central bank may adjust interest rates to the desired level gradually, i.e. "in-
terest smoothing" (Judd & Rudebusch, 1998). Future research may incorporate 
additional lagged variables into the model, and explore non-lagged variables. An-
other limitation of this article and the Taylor (1993) rule is that these are backward 
looking approaches. In contrast, Clarida et al. (2000) explore a forward looking 
interest rate rule and recommend being forward looking in future research.

This article and the Taylor (1993) rule apply an in-sample fit approach. Qin 
and Enders (2008) compare the properties of the in-sample fit approach and 
the out-sample fit approach in the Taylor (1993) rule. They suggest that an 
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out-of-sample fit approach may be useful in selecting the alternative interest rate 
functional forms.

Future research may connect the interest rates in multiple counties and treat the 
global financial system as a whole. The interaction between interest rates, mon-
etary policy and macroprudential policy may be examined. The data for various 
countries during different time periods may be explored accounting for specific 
economic changes. Interest rate rules during times of changes between positive 
and negative interest rates may be explored (Wang & Hausken, 2022a).

Other factors impacting interest rates may also be explored, e.g. economic crises, 
fiscal deficits, global interest rates, financial variables such as house prices, stock 
prices, leverage, oil and commodity prices (Kahn, 2010). Broader economic and 
financial theories may be incorporated to investigate potential further underly-
ing mechanisms impacting interest rates.

6. Policy implications

Research on interest rates has progressed at a torrid pace in recent years. But 
central banks still face challenges when choosing monetary policy and deter-
mining interest rates, perhaps especially after the 2021-2022 pandemic crisis. The 
findings in this article provide insights relevant for the policy makers including 
central banks. First, the Taylor (1993) rule performs poorly in explaining the em-
pirical interest rate. Hence, it is beneficial for the central bank to consider more 
factors beyond the Taylor rule when determining the interest rate. Second, the 
article presents a generalized interest rate rule, which combines the Taylor rule, 
the Quantity Equation (Friedman, 1970) and the Phillips (1958) curve. The model 
performs better than the Taylor rule. Three additional variables, i.e. the money 
supply, the money velocity and the unemployment rate help explain the inter-
est rate more convincingly. Therefore, the central bank may consider these addi-
tional variables when determining the interest rate. Third, Taylor (1993) assigns 
equal 0.5 weight to the deviation in the inflation rate and the deviation in the 
real GDP. However, the article shows that these weights are not optimal. Higher 
weights assigned to the deviation in the unemployment rate, the deviation in the 
money supply and the deviation in the money velocity are appropriate. Fourth, 
interest rates impact households, firms and other actors substantially. For exam-
ple, a lower interest rate may boost consumption, spending and borrowing. It 
may also encourage an entrepreneur to borrow funds for expansion, make new 
investments, and hire more workers. The findings of this article are believed to be 
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helpful for researchers, financial analysts, investors, entrepreneurs, consumers, 
etc., who may better predict interest rates and make better decisions.

7. Conclusion

This article provides a broad view of monetary policy starting from the Taylor 
(1993) rule. The article generalizes the Taylor rule to account for the money sup-
ply, the money velocity, and the unemployment rate. Thus, the article explores 
and tests various combinations of the Taylor rule, the Quantity Equation (Fried-
man, 1970), and the Phillips (1958) curve. Five parameters are introduced and 
estimated; i.e. the weights assigned to the deviation in inflation rate, real GDP, 
money supply, money velocity, and the unemployment rate. The Taylor rule only 
has two parameters, i.e. the weights assigned to the deviation in real GDP and 
the deviation in the inflation rate. Various combinations of parameter values are 
explored and tested. 

The generalized equation is tested using the monthly US January 1, 1959 to March 
31, 2022 data. First, the Taylor rule is evaluated against the empirics. Second, 
equal weight to the five parameters is evaluated. Third, various values for these 
five parameters are explored and tested, such as equal weight to the deviation in 
the inflation rate and the deviation in the real GDP, equal weight to the devia-
tion in the money supply and the deviation in the money velocity, and the values 
that represent various combinations of the Taylor (1993) rule, the Quantity Equa-
tion (Friedman, 1970), and the Phillips (1958) curve. The findings show that the 
generalized equation fits the empirical interest rate better and has a lower sum 
of squares compared with the Taylor rule. Notably, for the optimal values for the 
five parameters, the weights assigned to the deviation in inflation rate and the 
deviation in real GDP decrease compared with the Taylor rule. Meanwhile, the 
weight assigned to the deviation in unemployment rate is relatively high com-
pared with the weights assigned to the deviation in inflation rate and the devia-
tion in real GDP. The weights assigned to the deviation in money supply and the 
deviation in money velocity are moderate compared with the weights assigned to 
the deviation in inflation rate and the deviation in real GDP.
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Appendix A: Nomenclature

Parameters

aπ Weight assigned to deviation in inflation, 0 ≤ aπ ≤ 1

ay Weight assigned to deviation in real GDP, 0 ≤ ay ≤ 1

am Weight assigned to deviation in money supply, 0 ≤ am ≤ 1

av Weight assigned to deviation in money velocity, 0 ≤ am ≤ 1

au Weight assigned to deviation in the unemployment rate, 0 ≤ am ≤ 1

Variables

it Interest rate at time t, it ∈ 

πt Inflation rate, πt ∈ 

πt
* Target inflation rate, πt

* ∈ 

rt
* Equilibrium real interest rate, rt

* ∈ 

 Real GDP (Gross Domestic Product),  ≥ 0

 Real potential GDP,  ≥ 0

mt Money supply at time t, mt > 0

ut Unemployment rate, ut ≥ 0

 Natural rate of unemployment,  ≥ 0

t Time, t > 0
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ABSTRACT

The article introduces scaling and generalizes the Taylor (1993) interest rate rule from four terms to seven terms. The three additional terms are the 
deviation in money supply, the deviation in money velocity, and the deviation in unemployment rate. The four original terms are the inflation rate, the 
equilibrium real interest rate, the deviation in inflation rate, and the deviation in real GDP (Gross Domestic Product). The weights for the seven terms 
are estimated via the monthly January 1, 1959-March 31, 2022 US data. All the seven combinations of the Taylor (1993) rule, the Quantity Equation 
(Friedman, 1970), and the Phillips (1958) curve with scaling give substantially better results than both the Taylor (1993; 1999) rules without scaling. 
The Phillips (1958) curve is best when choosing only one rule with scaling. Combining the Taylor (1993) rule and the Phillips (1958) curve is best 
when choosing between two rules with scaling.

Keywords: Monetary Policy, Taylor Rules, Phillips Curve, Interest Rate, Inflation Rate, Money Supply, Money Velocity, Unemployment Rate 
JEL Classifications: C6, E24, E50, E47, E52, E58

1. INTRODUCTION

1.1. Background
Interest rates have been a hot topic in academic research for a 
long time. Central banks apply discretion and various rules to 
adjust interest rates to ensure economic stability and monetary 
liquidity. The best known policy rule is the Taylor (1993) rule. It 
recommends that central banks adjust interest rates in response 
to four terms, i.e. the inflation rate, long term equilibrium real 
interest rate, deviation in inflation rate, and the deviation in real 
GDP (Gross Domestic Product). The Taylor (1993) rule has 
received substantial attention in academic research. Various 
interest rate rules have emerged after the Taylor (1993) rule, e.g. 
the Taylor (1999) rule, balanced-approach rule, inertial Taylor 
rule, effective lower bound-adjusted rule, first-difference rule, etc. 
(Erceg et al., 2012). The Taylor (1993) rule has four terms, i.e. 
the inflation rate, the equilibrium real interest rate, the deviation 
in inflation rate, and the deviation in real GDP. Taylor (1993) 
assigns equal 0.5 weight to both the deviation in real GDP and 
the deviation in inflation rate. Subsequently, in his Taylor (1999) 
rule, he increases the weight for the deviation in real GDP to 

one. Perhaps surprisingly, both Taylor (1993; 1999) rules assign 
default weight one to the inflation rate and the equilibrium real 
interest rate.

1.2. Contribution
Building upon this background, it seems interesting to explore 
additional phenomena beyond Taylor’s (1993; 1999) four terms, 
and assess how the terms should be scaled relative to each other. 
The article investigates and generalizes the Taylor (1993) rule 
from four terms to seven terms on the right hand side to determine 
the interest rate on the left hand side. The three additional terms 
are two terms from the Quantity Equation (Friedman, 1970), i.e. 
the money supply and money velocity, and one term from the 
Phillips (1958) curve, i.e. the unemployment rate. The article 
estimates weights for the seven terms, which amounts to scaling 
them relative to each other. To our best knowledge, this article is 
the first to explore the scaling issue for Taylor (1993; 1999) rules 
or generalizations of such rules. The article adopts monthly US 
January 1, 1959-March 31, 2022 US data in the empirical analysis. 
The article uses the least squares method to estimate the optimal 
weights for the seven terms.

This Journal is licensed under a Creative Commons Attribution 4.0 International License
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1.3. Literature
The Taylor (1993) rule suggests an equal 0.5 weight for the 
deviation in inflation rate and the deviation in real GDP. The Taylor 
(1999) rule keeps the 0.5 weight for the deviation in inflation rate, 
but increases the weight assigned to the deviation in real GDP to 
one. Several monetary rules are based on the Taylor (1993) rule, 
e.g. the effective lower bound-adjusted rule (Reifschneider and 
Williams, 2000). It suggests that the interest rate cannot be lower 
than the so-called effective lower bound. The first difference 
rule (Orphanides, 2003) connects the current interest rate to its 
previous value. The inertial rule (Bullard, 2017; Kliesen, 2019) 
lowers the interest rate’s volatility over time, and points out that the 
policymaker adjusts the interest rate gradually. Taylor and Williams 
(2010) provide a comprehensive review of interest rate policy rules.

The Quantity Equation (Friedman, 1970) connects the money 
supply, money velocity, price level (or inflation rate), and the real 
GDP. Money supply is widely assumed to impact interest rates. 
For example, Friedman (1961) suggests that the money supply 
has a negative effect on the interest rate. Money velocity also 
relates to the interest rate. Taylor (1999, p. 322) says that “we 
know that velocity depends on the interest rate and on real output 
or income.” Keynes et al. (1971) suggest an inverse relationship 
between the money velocity and the money supply. In addition, 
money velocity may also impact the interest rate via the inflation 
rate (Mendizabal, 2006). But both money supply and money 
velocity are absent in the Taylor (1993, 1999) rules. Prag (1994) 
suggests an inverse relationship between the interest rate and the 
unemployment rate. The unemployment rate is also absent in the 
Taylor (1993, 1999) rules.

The literature compares the interest rate rules with other policy 
rules, e.g. money supply rules (Ascari and Ropele, 2013; Auray 
and Fève, 2003; Schabert, 2005; Srinivasan, 2000), McCallum 
rule Razzak (2003), Friedman rule (Srinivasan, 2000), etc. The 
literature also links monetary policy to macroeconomics (Clarida 
et al., 2000; Schabert, 2009; Wijngaard and Van Hee, 2021; 
Woodford, 2001), to the Phillips (1958) curve (Wang and Hausken, 
2022a), adopts the Taylor (1993) rule to design decision models 
(Wang and Hausken, 2022b), and builds dynamic stochastic 
general equilibrium models (Ferrari Minesso et al., 2022; Oh and 
Zhang, 2020).

1.4. Article Organization
Section 2 presents the model. Section 3 analyzes the model with 
data sources, parameter estimation, and illustrations. Section 4 
concludes.

2. THE MODEL

Appendix A shows the nomenclature. This article generalizes the 
Taylor (1993) rule. First, it introduces three additional terms, i.e. 
money supply mt, mt>0, and money velocity νt, νt>0, as presented 
in the Quantity Equation (Friedman, 1970), and unemployment 
rate ut, ut ≥ 0 as presented in the Phillips (1958) curve. Second, it 
incorporates scaling for the seven terms, thus making the weights 
assigned to the seven terms comparable. Thus the interest rate it 
at time t is given by
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where it∈R, R is the set of all real numbers, t ≥ 0, rt
* is the 

equilibrium real interest rate, yt is the real GDP, yt ≥ 0, yt  is the 
potential real GDP that can be sustained in the long run, yt ≥ 0 . 
The right hand side of (1) contains the four original terms in the 

Taylor (1993) rule, i.e πt, rt
*, πt– πt

* and Log
y
y
t

t

�

�
�

�

�
� , where πt– πt

*  

is the deviation in inflation rate, Log
y
y
t

t

�

�
�

�

�
�  is the deviation in real 

GDP. The three new terms in (1) are the deviation Log
m
m
t

t

�

�
�

�

�
�  in 

money supply, the deviation Log
v
v
t

t

�

�
�

�

�
�  in money velocity, and the 

deviation u ut t−  in unemployment rate, where, Log is the 
logarithm with a base of 10, mt is the money supply, mt ≥ 0, mt  
is the potential money supply, mt ≥ 0 , νt is the money velocity νt 
≥ 0, vt  is the potential money velocity, vt ≥ 0 , ut  is the natural 
unemployment rate, ut ≥ 0 , and ut is the unemployment rate, 
ut ≥ 0.

In (1), sj, j=pi,r,π,y,m,v,u are the scaling parameters for the seven 
terms. These are the inflation rate πt, the equilibrium real interest 
rate rt

*, the deviation πt–πt
* in inflation rate, the deviation
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�  in money supply, 

the deviation Log
v
v
t

t
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�
�  in money velocity, and the deviation 

u ut t−  in unemployment rate, respectively, where Pj, j=pi,r,π,y,m,v,u 
specifies the number of nonnegative numbers in the data for term 
j, and Nj, j=pi,r,π,y,m,v,u specifies the number of negative numbers 
in the data for term j. Hence Nj is multiplied by the absolute value 
of the sum of the negative data points for term j in (1). The sum 
Pj+Nj=759 specifies the number of data points for the period 
January 1, 1959-March 31, 2022. We introduce Pj and Nj to ensure 
proper and intuitive scaling, since data points may be negative or 
positive. The counting parameters h and k are associated with Pj 
and Nj, respectively, to run through the Pj+Nj=759 data points. 
The seven parameters api,ar,aπ, ay, am, av, au are the weights assigned 
to the seven terms, which can be positive or nonpositive. If the 
weight is positive, it means that the corresponding term positively 
impacts the interest rate it. If the weight is negative, it means that 
the corresponding term negatively impacts the interest rate it.

The four terms in (1), i.e. the inflation rate πt, the equilibrium real 
interest rate rt

*, the deviation πt– πt
* in inflation rate and the 

deviation Log
y
y
t

t

�

�
�

�

�
�  in real GDP, are originally included in the 

Taylor (1993, 1999) rules. The Taylor (1993, 1999) rules assign 
default weight one to both the inflation rate πt and the equilibrium 
real interest rate rt

*.

The first new term is the deviation Log
m
m
t

t

�

�
�

�

�
�  in money supply. 

Thus, the two variables the money supply mt and the potential 
money supply mt  are introduced. We adopt the standard Hodrick 
and Prescott (1997) filter to estimate the potential money 
supply mt . The method is widely used in macroeconomics to 
investigate the potential GDP, especially in real business cycle 
theory (Furceri and Mourougane, 2012). The interest rate it is the 
price of the money supply mt applying supply and demand 
considerations. As Friedman (1961) suggests, money supply mt 
has a negative effect on the interest rate it. Conrad (2021) also 
points out that the interest rate it decreases when the money supply 
mt increases. Nevertheless, central banks may choose to increase 
the interest rate it to prevent savers’ extensive withdrawals when 
the money supply mt increases. This is consistent with Ascari and 
Ropele (2013). They suggest a positive relationship between the 
money supply mt and the interest rate it.

The second new term is the deviation Log
v
v
t

t

�

�
�

�

�
�  in money velocity. 

The money velocity vt and the potential money velocity vt  are 
introduced. The two variables are present in the Quantity Equation 
(Friedman, 1970). The money velocity vt is defined as the ratio of 
nominal GDP to the money supply (Federal Reserve Bank of St. 
Louis, 2022). The potential money velocity vt  is defined as the 
ratio of nominal potential GDP to the potential money supply. The 
money velocity vt is widely accepted to have a positive impact on 
the inflation rate πt (Mendizabal, 2006). This is consistent with 

Taylor (1993, 1999) assuming positive correlation between the 
inflation rate πt and the interest rate it. Thus, the money velocity 
vt may affect the interest rate it positively.

The third new term is the deviation u ut t−  in the unemployment 
rate. The unemployment rate ut is present in the short run Phillips 
(1958) curve. It shows an inverse relationship between the inflation 
rate πt and the unemployment rate ut over the short run. Taylor 
(1993) assumes a positive correlation between the inflation rate 
πt and the interest rate it. Hence, the unemployment rate ut may 
impact the interest rate it negatively. Summing up, as specified in 
(1), the seven weights of the seven terms scale these terms relative 
to each other, and scale them overall relative to the interest rate it 
on the left hand side.

3. ANALYZING THE MODEL

3.1. Data Sources
This article uses the monthly US data. The data range is from 
January 1, 1959 to March 31, 2022, collected and estimated from 
the following sources. We estimate the real GDP yt and the real 
potential GDP yt  from the US Bureau of Economic Analysis 
(2022) and the US Congressional Budget Office (2022b), 
respectively. We apply the quadratic interpolation method to 
convert quarterly data to monthly data for the real GDP yt and the 
real potential GDP yt . We estimate the M2 money supply mt and 
the money velocity vt from the Board of Governors of the Federal 
Reserve System (US) (2022b), and the Federal Reserve Bank of 
St. Louis (2022), respectively. The unemployment rate ut and the 
natural unemployment rate ut  are estimated from the US Bureau 
of Labor Statistics (2022b) and the US Congressional Budget 
Office (2022a), respectively. Again, we adopt the quadratic 
interpolation method to convert quarterly data to monthly data for 
the natural unemployment rate ut . The inflation rate πt and the 
empirical interest rate it are derived from the US Bureau of Labor 
Statistics (2022a), and the Board of Governors of the Federal 
Reserve System (US) (2022a), respectively. The target inflation 
rate πt

* is from several sources. We set the target inflation rate 
πt

*=1.5% from January 1, 2000 to December 30, 2007 inspired by 
Shapiro and Wilson (2019). For the remaining January 1, 
1959-March 31, 2022 time periods, we use the common πt

* =2%, 
as Taylor (1993) assumes for January 1, 1984 to September 31, 
1992. Finally, we use the common equilibrium real interest rate 
rt

*=2% from January 1, 1959 to March 31, 2022, as used by Taylor 
(1993) for January 1, 1984 to September 31, 1992, and consistent 
with the estimation of Kiley (2020).

3.2. Estimating the Parameters and Illustrating the 
Solutions
Table 1 shows the estimations of the seven parameter values 
api,ar,aπ,ay,am,av,au in (1), the sum S of the squared differences 
between the empirical interest rate it and the estimated interest rate 
it in (1), the number N of free choice variables for each estimation, 
and the specifics of each estimation.

Curve 1 assumes seven free choice variables, and represents the 
combination of the Taylor (1993) rule, the Quantity Equation 
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(Friedman, 1970), and the Phillips (1958) curve with scaling, 
where api,ar,aπ,ay,am,av,au are optimized. With scaling no difference 
exists between the two Taylor (1993, 1999) rules, so we refer to 
the Taylor (1993) rule with scaling in general. That leads to the 
lowest sum of squares S=0.44567 in Table 1. The corresponding 
optimal weights are api,ar,aπ,ay,am,av,au 66.72, –11.44, –16.84, 
–3.13, 1.29, 2.73 and 2.06, respectively. This indicates that the 
inflation rate πt with a weight 66.72 is very explanatory to the 
interest rate it. Thereafter, in degree of explanatory power, follows 
the deviation πt – πt

* In inflation rate with a negative weight –16.84, 
the equilibrium real interest rate πt

* with a negative weight –11.44, 

and the deviation Log
y
y
t

t

�

�
�

�

�
�  in real GDP with a negative weight 

–3.13. The three new terms have lower weights. That is, the 

deviation Log
v
v
t

t

�

�
�

�

�
�  in money velocity has weight 2.73, the 

deviation u ut t−  in unemployment rate has weight 2.06, and the 

deviation Log
m
m
t

t

�

�
�

�

�
�  in money supply has weight 1.29.

Curve 2 assumes six free choice variables, and represents 
the combination of the Taylor (1993) rule and the Quantity 
Equation (Friedman, 1970) with scaling, where api,ar,aπ,ay,am,av 
are optimized assuming au = 0. That leads to a slightly higher 
sum of squares S=0.45341 compared to curve 1 in Table 1. 
The corresponding optimal weights api,ar,aπ,ay,am,av are 61.94, 
–9.00, –14.75, –1.12, 1.25 and 2.98, respectively. Again, the 
inflation rate πt has the highest weight 61.94 compared to the 
other five terms.

Curve 3 assumes five free choice variables, and represents the 
combination of the Taylor (1993) rule and the Phillips (1958) curve 
with scaling, where api,ar,ay,aπ,au are optimized assuming am=av=0. 
That leads to a sum of squares S=0.45157. The corresponding 
optimal weights api,ar,ay,aπ,au are 71.23, –12.69, –18.61, –0.73 and 
2.19, respectively. Under the assumption am=av=0, the optimal 
weight assigned to the inflation rate πt increases from 66.72 in 
curve 1 to 71.23 in curve 3. Meanwhile, the optimal weight 

assigned to the deviation Log
y
y
t

t�
�

�

�
�  in real GDP increases from 

�

–3.13 in curve 1 to –0.73 in curve 3.

Curve 4 assumes five free choice variables, and represents
the combination of the Quantity Equation (Friedman, 1970) 
and Phillips (1958) curve with scaling, where api,ar,ay,aπ,au are 
optimized assuming aπ=ay=0. That causes a sum of squares 
S=0.45628. The corresponding optimal weights api,ar,ay,aπ,au are 
25.72, 11.32, 0.41, 0.94 and 0.92, respectively. Notably, under the 
assumption aπ=ay=0, the weights assigned to the remaining five
terms are positive. The optimal weights in curve 4 are substantially 
lower compared to the absolute values of the optimal weights in 
curve 1.

Curve 5 assumes four free choice variables, and represents
the Taylor (1993) rule with scaling, where api,ar,ay,aπ are 
optimized assuming am=av=au=0. That causes a sum of squares 
S=0.46065. The corresponding optimal weights api,ar,aπ,ay are 
66.14, −10.02, −16.34 and 1.64, respectively. Curve 6 assumes
four free choice variables, and represents the Quantity Equation 
(Friedman, 1970) with scaling, where api,ar,am,av are optimized

Table 1: Curve label, estimated parameter values api,ar,aπ,ay,am,av,au, the sum S of the squared differences between the empirical 
interest rate it and the estimated interest rate it in (1), the number N of free choice variables, and the estimation specifics

Curve api ar aπ ay am av au S N Estimation specifics
1 66.72 –11.44 –16.84 –3.13 1.29 2.73 2.06 0.44567 7 Combination of the Taylor (1993) rule, the Quantity 

Equation (Friedman, 1970), and the Phillips (1958) curve 
with scaling, optimizing api,ar,aπ,ay,am,av,au

2 61.94 –9.00 –14.75 –1.12 1.25 2.98 0 0.45341 6 au = 0 , combination of the Taylor (1993) rule and the
 

Quantity Equation (Friedman, 1970) with scaling, optimizing 
api,ar,aπ,ay,am,av

3 71.23 –12.69 –18.61 –0.73 0 0 2.19 0.45157 5 a am v= = 0 ,
 combination of the Taylor (1993) rule and the 

Phillips (1958) curve with scaling, optimizing api,ar,ay,aπ,au

4 25.72 11.32 0 0 0.41 0.94 0.92 0.45628 5 aπ= ay=0, combination of the Quantity Equation (Friedman, 
1970) and Phillips (1958) curve with scaling, optimizing 
api,ar,ay,aπ,au

5 66.14 –10.02 –16.34 1.64 0 0 0 0.46065 4 a a am v u= = = 0 , Taylor (1993) rule with scaling, 
optimizing

 
a a a api r y, , , π

6 25.82 10.77 0 0 0.77 1.88 0 0.45850 4 a a ay u� � � � 0 , Quantity Equation (Friedman, 1970) with 
scaling, optimizing

 
a a a api r m v, , ,

7 25.68 11.58 0 0 0 0 1.55 0.45780 3 a a a ay m v� � � � � 0 , Phillips (1958) curve with scaling,
 

optimizing a a api r u, ,
8 27.44 15.18 5.55 1.88 0 0 0 0.83070 0 Taylor (1993) rule
9 27.44 15.18 5.55 3.76 0 0 0 0.81949 0 Taylor (1999) rule
Average 
1-7

0.45094 0 Average of curves 1-7

Average 
1-9

0.47122 0 Average of curves 1-9
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assuming aπ=ay=au=0. That causes a slightly lower sum of squares 
S=0.45850 compared to curve 5. The corresponding optimal 
weights api,ar,am,av are 25.82, 10.77, 0.77 and 1.88, respectively. 
Curve 7 assumes three free choice variables, and represents the 
Phillips (1958) curve with scaling, where api,ar,au are optimized 
assuming aπ=ay=am=av=0. That causes an even lower sum of 
squares S=0.45780 compared to curves 5 and 6. The corresponding 
optimal weights api,ar,au are 25.68, 11.58 and 1.55, respectively. 
The results show that the Phillips (1958) curve with scaling 
explains the interest rate it better than the Taylor (1993) rule with 
scaling and the Quantity Equation (Friedman, 1970) with scaling.

Curve 8 represents the Taylor (1993) rule, assuming aπsπ=aysy=0.5, 
apispi=arsr=1, am=av=au=0. That causes a sum of squares S=0.83077. 
Curve 9 represents the Taylor (1999) rule, assuming aπsπ=aysy=0.5, 
apispi=arsr=1, am=av=au=0. That causes a slightly lower sum of squares 
S=0.81953. The sum of squares S= 0.44567 in curve 1 is 46.35% and 
45.62%, respectively, lower than the Taylor (1993) rule’s S=0.83077, 
and the Taylor (1999) rule’s S=0.81953. Hence curve 1 explains the 
interest rate it better than both Taylor (1993, 1999) rules.

“Curve average 1-7” shows the average of curves 1-7. The 
corresponding sum of squares is S=0.45094, i.e. a 45.72% decrease 

and a 44.97% decrease, respectively, compared with the Taylor 
(1993) rule and the Taylor (1999) rule. Finally, “Curve average 
1-9” shows the average of curves 1-9. The corresponding sum 
of squares is S=0.47122, i.e. a 43.27% decrease and a 42.50% 
decrease, respectively, compared with the Taylor (1993, 1999) rules.

Overall, among the curves 1-7, the weight api assigned to the 

inflation rate πt the weight am assigned to the deviation Log
m
m
t

t

�

�
�

�

�
�  

in money supply, the weight av assigned to the deviation Log
v
v
t

t

�

�
�

�

�
�  

in money velocity, and the weight au assigned to the deviation 
u ut t−  in unemployment rate are always positive. That means 

that the inflation rate πt, the deviation Log
m
m
t

t

�

�
�

�

�
�  in money supply, 

the deviation Log
v
v
t

t

�

�
�

�

�
�  in money velocity, and the deviation 

u ut t−  in unemployment rate impact the interest rate it positively. 
Notably, the weight aπ assigned to the deviation πt– πt

* in inflation 
rate is always negative. The weight ar assigned to the equilibrium 
real interest rate rt

*, and the weight ay assigned to the deviation 

Log
y
y
t

t

�

�
�

�

�
�  in real GDP are predominantly negative. Hence the 

Figure 1: The monthly US January 1, 1959-March 31, 2022 empirical interest rate it and the interest rate it based on (1). Panel a: api = 66.72, 
ar = –11.44, aπ = –16.84, ay = –3.13, am = 1.29, av = 2.73, au=2.06. Panel b: The Taylor (1993, 1999) rules. Panel c: The average of the curves 1-7. 

Panel d: The standard deviation of the curves 1-7. Panel e: The average of curves 1-9. Panel f: The standard deviation of the curves 1-9

dc

b

f

a

e



Wang and Hausken: A Generalized Interest Rates Model with Scaling

International Journal of Economics and Financial Issues | Vol 12 • Issue 5 • 2022148

equilibrium real interest rate rt
*, the deviation Log

y
y
t

t

�

�
�

�

�
�  in real 

GDP may impact the interest rate it negatively. These findings 
differ from the common wisdom, and the Taylor (1993, 1999) 
rules, that the deviation πt– πt

* in inflation rate and the deviation 

Log
y
y
t

t

�

�
�

�

�
�  in real GDP impact the interest rate it positively.

Figure 1, panel a plots the empirical interest rate it with black “+”, 
and curve 9 for the interest rate it in (1) with red filled triangles 
according to Table 1. Panel b plots the Taylor (1993; 1999) rules. 
Panel c plots the average interest rate it of the curves 1-7. Panel d 
plots the standard deviation of the predicted interest rate it of the 
curves 1-7. Panel e plots the average interest rate it of the curves 
1-9. Panel f plots the standard deviation of the predicted interest 
rate it of the curves 1-9.

Panel a, curve 1 assumes seven free choice variables, where 
api,ar,aπ,ay,am,av, au are optimized. It fits the empirical interest rate 
it better than the Taylor (1993, 1999) rules, and has the lowest sum 
of squares S=0.44567 in Table 1. The local maximum of curve 
1 in 1974 is close to the empirical interest rate it. Curve 1 shows 
an especially high interest rate it in 1980. In addition, it predicts 
negative interest rate it from April, 2009 to October, 2009. Panel 
b shows the Taylor (1993; 1999) rules. Overall, the Taylor (1999) 
rule predicts marginally lower interest rate it compared with the 
Taylor (1993) rule after the maximum in 1980.

Panel c, curve “Average curves 1-7” shows the average interest 
rate of the curves 1-7. Overall, the predicted interest rate is lower 
than the empirical interest rate it, except after 2010. Furthermore, 
it predicts negative interest rate it from April, 2009 to September, 
2009. Panel d, curve “Standard deviation curves 1-7” shows 
the standard deviation of the interest rate it of the curves 1-7. In 
general, the standard deviation of the 1-7 curves is quite low. It 
shows moderately high values in 2010, 2020 and 2022.

Panel e, curve “Average curves 1-9” shows the average interest 
rate it of the curves 1-9. Panel f, curve “Standard deviation curves 
1-9” shows the standard deviation of the interest rate it of the curves 
1-9. Overall, the curve “Average curves 1-9” predicts a marginally 
higher interest rate it compared with the “Average curves 1-7”. 
Similarly, the curve “Standard deviation curves 1-9” shows higher 
interest rate it compared to the “Standard deviation curves 1-7”. 
This is because, overall, the Taylor (1993, 1999) rules predict 
higher interest rate it compared with curves 1-7.

4. CONCLUSION

The article establishes a generalized interest rates model by 
generalizing the Taylor (1993) rule from four terms to seven 
terms, and scaling the terms relative to each other. First, the 
article introduces three additional terms, i.e. the deviation in 
money supply, the deviation in money velocity, and the deviation 
in unemployment rate, which accounts for the money supply, 
the money velocity, and the unemployment rate, respectively. 
Second, the article investigates the seven combinations of the 

Taylor (1993) rule, the Quantity Equation (Friedman, 1970), and 
the Phillips (1958) curve, allowing the presence of one rule, two 
rules, or all three rules. Third, the article innovatively explores 
the scaling issue within the seven terms, i.e. the inflation rate, the 
equilibrium real interest rate, the deviation in inflation rate, the 
deviation in real GDP (Gross Domestic Product), the deviation in 
money supply, the deviation in money velocity, and the deviation in 
unemployment rate. To our best knowledge, the article investigates 
the scaling issue for the first time related to the Taylor (1993) rule’s 
framework. The optimal seven weights are estimated and tested 
through the monthly January 1, 1959-March 31, 2022 US data. 
First, the two Taylor (1993, 1999) rules are evaluated against the 
empirics. Second, the seven combinations of the Taylor (1993) 
rule, the Quantity Equation (Friedman, 1970), and the Phillips 
(1958) curve with scaling are explored and tested.

The findings show that, first, all the seven combinations of the 
Taylor (1993) rule, the Quantity Equation (Friedman, 1970), and 
the Phillips (1958) curve with scaling give substantially better 
results than both the Taylor (1993, 1999) rules without scaling. 
The second best combination is the Taylor (1993) rule and the 
Phillips (1958) curve with scaling. Third best is the combination 
of the Taylor (1993) rule and the Quantity Equation (Friedman, 
1970) with scaling. Second, when choosing only one rule with 
scaling, the Phillips (1958) curve is the best, followed by the 
Quantity Equation (Friedman, 1970), and finally the Taylor (1993, 
1999) rules. Third, when choosing between two combinations with 
scaling, the Taylor (1993) rule and the Phillips (1958) curve is the 
best, followed by the Taylor (1993) rule and the Quantity Equation 
(Friedman, 1970), and finally, the Quantity Equation (Friedman, 
1970) and the Phillips (1958) curve.

Among the seven terms, the most explanatory term to the interest 
rate is the inflation rate. The weights assigned to the inflation rate 
are always positive. Thus, it impacts the interest rate positively. 
The second explanatory term is the deviation in inflation rate, 
and the equilibrium real interest rate. Notably, the deviation in 
the inflation rate impacts the interest rate negatively. The weights 
assigned to the equilibrium real interest rate are predominantly 
negative. Thereafter, with decreasing degrees of negativity, 
followed by the deviation in real GDP, the deviation in money 
velocity, the deviation in unemployment rate, and the deviation 
in money supply. Thus, the money velocity is more explanatory 
for the interest rate than the money supply. The weights assigned 
to the deviation in real GDP are also predominantly negative. 
The deviation in money velocity, the deviation in unemployment 
rate, and the deviation in money supply impact the interest rate 
positively.

Future research may compare the empirics for different 
geographical regions, and incorporate the monetary policy changes 
over different time periods. Further possibilities are to account 
for the uncertainty and variation of the potential real GDP, the 
real equilibrium interest rate, and the natural unemployment rate. 
Alternative methods may be assessed to better estimate these 
three terms. Future research may also investigate the interest rate 
by incorporating time series approaches, or intruding broader 
financial theories.
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APPENDIX A

Nomenclature
Parameters
api Weight assigned to the inflation rate, −∞ ≤ api ≤ ∞
ar Weight assigned to the equilibrium real interest rate, −∞ ≤ ar ≤ ∞
aπ Weight assigned to the deviation in inflation rate, −∞ ≤ ap ≤ ∞
ay Weight assigned to the deviation in real GDP, −∞ ≤ ay ≤ ∞
am Weight assigned to the deviation in money supply, −∞ ≤ am ≤ ∞
av Weight assigned to the deviation in money velocity, −∞ ≤ av ≤ ∞
au Weight assigned to the deviation in unemployment rate, −∞ ≤ au ≤ ∞
spi Scaling parameter for the inflation rate, spi > 0
sr Scaling parameter for the equilibrium real interest rate, sr > 0
sπ Scaling parameter for the deviation in inflation rate, sπ > 0
sy Scaling parameter for the deviation in real GDP, sy > 0
sm Scaling parameter for the deviation in money supply, sm > 0
sv Scaling parameter for the deviation in money velocity, sv > 0
su Scaling parameter for the deviation in unemployment rate, su > 0

Variables
it Interest rate at time t, it∈R
πt Inflation rate, πt ∈ R
πt

* Target inflation rate, πt
*∈R

rt
* Equilibrium real interest rate, rt

*∈ R
yt Real GDP (Gross Domestic Product), yt ≥ 0
 Real potential GDP, yt  ≥ 0
mt Money supply at time t, mt > 0
ut Unemployment rate, ut ≥ 0

 Natural rate of unemployment, ut  ≥ 0
t Time, t ≥ 0


