

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialisation:

Petroleum Engineering

Spring / Autumn semester, 2019

Open / Restricted access

Author:

Erik Andreas Løken

Jens Løkkevik

…………………………………………

…………………………………………
(signature of author)

Programme coordinator: Karina Sanni

Supervisor(s): Dan Sui

Title of master's thesis:

Optimization of an Intelligent Autonomous Drilling Rig: Testing and Implementation of
Machine Learning and Control Algorithms for Formation Classification, Downhole
Vibrations Management and Directional Drilling

Credits (ECTS): 30

Keywords:

Drilling Automation
Drill String Dynamics
Vibrations
Machine Learning
ROP Optimization
Fault Detection
Drillbotics®

 Number of pages: 291

 + supplemental material/other: 24

 Stavanger, 14. Juni 2019

	
Title	page	for	Master's	Thesis	

Faculty	of	Science	and	Technology	

Abstract

In recent years, considerable resources have been invested to explore applications

for- and to exploit the vast amount of data that gets collected during exploration,

drilling and production of oil and gas. Such data will potentially become a game

changer for the industry in terms of reduced costs through improved operational

efficiency and fewer accidents, improved HSE through strengthened situational

awareness, ensured optimal placement of wells, less wear on equipment and so on.

While machine learning algorithms have been around for decades, it is only in

the last five to ten years that increased computational power along with heavily

digitalized control- and monitoring systems have been made available. Consid-

ering the state of art technology that exists today and the significant resources

that are being invested into the technology of tomorrow, the idea of intelligent

and fully automated machinery on the drill floor that is capable of consistently

selecting the best decisions or predictions based on the information available and

providing the driller and operator with such recommendations, becomes closer to

a reality every day.

This thesis is the result of research carried out on the topic of drilling automa-

tion. Its basis has been improvements and upgrades conducted on a laboratory-

scale drilling rig developed at the University of Stavanger, as part of the multi-

disciplinary project; UiS Drillbotics. Main contribution of the thesis is a study

on how machine learning can be used to develop models that are capable of ac-

curately predicting what rock formation is being drilled using an autonomous

control system, along with detecting some common drilling incidents in real-time

on the laboratory rig. Methodology is also applied to field data from the Volve

field. Furthermore, research and implementation of search algorithms to ensure

optimal drilling speed (ROP), safety to personnel and environment (HSE), and

efficiency along with a digitalized drilling program for directional drilling, gets

presented. Finally, rig upgrades for directional drilling and research into downhole

sensors that get used in a closed-loop steering model is elaborated on.

Acknowledgement

Taking on this topic and project has been incredibly rewarding. The challenge

of working with machine learning and autonomous systems has encouraged us

to explore new areas of research, not covered in our study. The project has also

given us the opportunity to get hands on experience with machinery, component

design, development and manufacturing as well as rather complex programming.

Of equal importance, being able to collaborate with skilled students and industrial

partners in a multidisciplinary environment has been particularly rewarding. The

project was initiated by Professor Dan Sui at the University of Stavanger in 2016,

and for three years, students from several departments at the University have

designed, developed and further improved an autonomous rig that gets used for

research as well as participation in the international Drillbotics® competition. In

addition to this Master´s thesis, three students have written Bachelor´s theses.

We would like to express our gratitude towards our supervisor Professor Dan Sui

at UiS. She has been of great guidance throughout the process of our work giving

valuable feedback to our research and thesis. We would also like to thank Suranga

Chaminda Hemba Geekiyanage and Ekaterina Wiktorski for several interesting

and encouraging discussions.

Finally, we would like to thank the UiS Drillbotics team for a great collaboration

and the Department of Energy and Petroleum Engineering (IEP) at the University

of Stavanger for both technical and financial support.

Table of Contents

1 Introduction 1
1.1 Research Problem . 1
1.2 Background of Study . 3
1.3 Control System Architecture . 4

2 Experimental Setup 6
2.1 Drilling Rig System . 6

2.1.1 Rotation System . 6
2.1.2 Hoisting System . 7
2.1.3 Circulation System . 9
2.1.4 Drill String Assembly . 9

2.2 Additions to facilitate for directional drilling 11
2.2.1 Downhole motor (pneumatic) 12
2.2.2 2-axis Actuator System . 14
2.2.3 BHA components . 17

2.3 Rig Sensors . 19
2.4 Downhole Sensor Sub . 19

2.4.1 Mechanical design . 19
2.4.2 Mechanical design - Stress simulation 21
2.4.3 Sensor Package . 21
2.4.4 Final Design . 23

2.5 Calibration of systems . 24
2.5.1 Pneumatic Motor . 24
2.5.2 Top Drive . 27
2.5.3 WOB Control . 28

2.6 Downhole measurements . 31
2.6.1 Inclination and azimuth calculations 31
2.6.2 Calibration of sensors . 33

2.7 Downhole Position Tracking . 34
2.8 Software Architecture . 35

iii

2.8.1 gRPC . 36
2.8.2 API - OPC UA . 37

2.9 Graphical User Interfaces (GUIs) 38

3 Theory 40
3.1 Data Management . 40

3.1.1 Data Mining . 40
3.1.2 Data Quality . 41
3.1.3 Some challenges concerning data aggregating 44
3.1.4 Importance of utilizing a database for data storage 45
3.1.5 Downsampling the data 47
3.1.6 Describing the dataset . 48
3.1.7 Noise Reduction Methods 50
3.1.8 Normalization and standardization of the data 54

3.2 Machine Learning Theory . 57
3.2.1 A Short Introduction to Supervised Learing 57
3.2.2 A Short Introduction to Unsupervised Learning 58
3.2.3 Training and Cross Validation 60

3.3 Supervised Machine Learning Models 61
3.3.1 Selecting the most optimal model 61
3.3.2 Multilayer Feed Neural Network and Back-propagation . . 66
3.3.3 Support Vector Machine 69
3.3.4 Decision Tree . 71
3.3.5 Gradient Boosting . 73
3.3.6 Random Forest . 75
3.3.7 K-Nearest Neighbor . 76
3.3.8 Bayesian Classification . 77
3.3.9 TPOT Algorithm . 78

3.4 Unsupervised Machine Learning Models 80
3.4.1 K-Means Clustering . 80
3.4.2 Density Based Spatial Clustering of Applications with Noise 82

3.5 Drilling Theory . 83
3.5.1 Drill String Vibrations . 83
3.5.2 Directional Drilling . 87
3.5.3 Buckling Models . 89

4 Data Preparation 91
4.1 Laboratory data preparation for rock / formation classification . . 91

4.1.1 Data source . 91

iv

4.1.2 Data concatenation . 93
4.1.3 Data labeling . 94
4.1.4 Describing the raw data 94

4.2 Data collection for classification of laboratory rig operations . . . 97
4.2.1 Data source . 97
4.2.2 Data concatenation . 97
4.2.3 Data labeling . 97
4.2.4 Describing the data . 97

4.3 Surface Data collection for drilling incident classification 99
4.3.1 Surface data for vibration classification 99
4.3.2 Normal pressure vs leak and overpressure 101
4.3.3 Rotating pipe vs stuck pipe 103
4.3.4 Normal drilling vs drill string twist off 105

4.4 Downhole data for vibration classification 108
4.5 Possible errors present in laboratory data 110
4.6 Volve data . 111

4.6.1 Volve data aggregated to classify rock formations 111
4.6.2 Volve data aggregated to classify rig operations 113

4.7 Field data challenges . 116

5 Data Quality Improvement 118
5.1 Down sampling experimental data 118
5.2 Removing duplicates . 119
5.3 Removing Missing data . 119
5.4 Normalizing the data . 119
5.5 Outlier removal using IQR method 121
5.6 Four-plots for WOB and Torque 123

6 Feature Engineering and Optimization 126
6.1 Drilling Feature Engineering . 126

6.1.1 Natural features . 126
6.1.2 Artificial Feature Engineering 128
6.1.3 Drilling Features constructed after processing 129

6.2 Feature Selection . 137
6.2.1 With outliers kept in the dataset 137
6.2.2 With no outliers in the dataset 141

6.3 Feature Extraction . 144

v

7 Model Development - Sensitivity Study 146
7.1 Sensitivity study objective . 146
7.2 Study cases . 150

7.2.1 Laboratory formation classification 150
7.2.2 Volve formation classification 168
7.2.3 Laboratory rig operations 186
7.2.4 Volve rig operations . 191
7.2.5 Laboratory pressure cases 196
7.2.6 Laboratory vibration cases (surface data) 200
7.2.7 Laboratory vibration cases (downhole data) with downhole

motor . 205
7.2.8 Laboratory stuck-pipe cases 211
7.2.9 Laboratory twist off cases 215

7.3 Summary of preliminary clasifications results 219

8 Validation 221
8.1 Rock Classification . 221

8.1.1 Task a. Laboratory Experimental data 221
8.1.2 Laboratory rig voting system 232
8.1.3 Task b. Volve field data 234
8.1.4 Formation classification - recommendations 240

8.2 Drilling Rig Operations Classification 242
8.2.1 Task c. Laboratory Experimental data 242
8.2.2 Task d. Volve field data 243
8.2.3 Rig operations - recommendations 244

8.3 Drilling Incident Classification . 245
8.3.1 Task e. Pressure Incident Detection 245
8.3.2 Task f. Surface Drilling Vibrations Detection 246
8.3.3 Task g. Downhole Vibrations 247
8.3.4 Task h. Stuck Pipe Incident Detection 250
8.3.5 Task i. Twist off Incident Detection 252
8.3.6 Incident classification - recommendations 253

8.4 Limitations using machine learning 254

9 Autonomous Drilling 256
9.1 Search algorithms . 257

9.1.1 ROP Optimization Background 257
9.1.2 Various search algorithms 259

9.2 Implemented algorithms . 263

vi

9.2.1 Column-Row search (Implemented in 2018) 263
9.2.2 Gradient Descent (Implemented in 2019) 264
9.2.3 Triggers that can reinitiate search algorithm 268

9.3 Digital Detailed Operating Procedure 268
9.4 Downhole closed-loop steering . 271
9.5 Drilling Incident Detection . 273
9.6 Rig performance . 275

9.6.1 Experiment 1: Inclined well section 275
9.6.2 Experiment 2: Vertical well section 277
9.6.3 Experiment 3: Deviation well with WOB 5 to 20 kg 278
9.6.4 Experiment 4: Pilot hole section 0 - 166 mm MD. Inclina-

tion well from 109 mm to 600 mm MD. 279
9.6.5 Experiment 5: Increasing cross-over OD to 30.75 mm (up

from 20) . 280

10 Conclusion and Future Research 282
10.1 Discussion of results and end state achieved 282

10.1.1 Machine Learning . 282
10.1.2 Control System and Control Algorithms 283
10.1.3 Mechanical . 284

10.2 Future recommendations . 285
10.2.1 Machine Learning . 285
10.2.2 Control System and Control Algorithms 286
10.2.3 Mechanical work . 287

A Sensor Sub Stress Simulation 292

B Manual Downhole Position Tracking Concept 297

C Autonomous Search Algorithm Code 299

D Active Steering Code 301

E Stuck Pipe Code 304

F Autonomous Drilling Program Code 305

G Downhole Vibration Classification Code 309

H Downhole Position Tracking Code 311

vii

List of Figures

1.1 3D model of Volve field . 3
1.2 Laboratory drilling system at the University of Stavanger. 4

2.1 Rotational system . 7
2.2 Hoisting system . 8
2.3 Circulation System . 9
2.4 BHA components: pipe, sensor sub, knuckle joint, downhole motor

and bit . 10
2.5 Laboratory drilling rig schematic to enable for directional drilling 11
2.6 170 watt drilling motor speficiations 12
2.7 Pneumatic output characteristic 13
2.8 Pneumatic output characteristic 14
2.9 Actuator system concept . 15
2.10 Assembled actuator system for directional drilling 16
2.11 Bit entering the whipstock . 16
2.12 Illustration and design sketch showing the whipstock design . . . 17
2.13 Knuckle joint design . 18
2.14 Rig sensors . 19
2.15 Dimensions of the sensor sub . 20
2.16 Sensor sub CAD drawing . 20
2.17 Cross-sectional view of sensor house 21
2.18 FLORA 9-DOF Accelerometer/Gyroscope/Magnetometer 22
2.19 Adafruit Trinket M0 . 22
2.20 Drilled through thread tap and refurbished threads 23
2.21 Sensor sub end result - after sand blasting and assembling 24
2.22 High frequency camera used to measure bit revolutions 25
2.23 Vertical displacement of a tracked pixel 25
2.24 Frequency of which pixel occurs 26
2.25 Bit RPMs corrected for torque . 27
2.26 PID Controller block diagram . 28

viii

2.27 Proof of concept, using simple tracker 35
2.28 Concept illustration of the control system 36
2.29 Implemented control system illustrating layers and dataflow . . . 37
2.30 API . 38
2.31 Rig performance graphical user interface 38
2.32 Downhole position tracking graphical user interface 39

3.1 Four Plot . 43
3.2 User panel for the developed database at UiS 47
3.3 Python function to describe the dataset 48
3.4 MATLAB pairplot of data from five variables (features) 49
3.5 Box plots and heat maps for visualization of the data 50
3.6 Data that is treated as invalid data gets transformed to NaN . . . 51
3.7 Rows of data that contain NaN is removed 51
3.8 Rows containing maximum and minimum values get added 56
3.9 Data is normalized using LFS . 56
3.10 Work flow illustration to develop a machine learning model 57
3.11 Charachteristics of different machine learning algorithms 62
3.12 Scikit learn and SAS cheat sheets to select an approproate algorithm 63
3.13 Grid Search CV function from the Scikit Learn software 64
3.14 Classification report providing feedback on the model performance 65
3.15 Feed forward neural network illustration 67
3.16 Example of an overfitted model 69
3.17 Polynomial kernel . 70
3.18 Decision Tree concept illustration 72
3.19 K-Nearest Neighbor . 76
3.20 TPOT machine learning pipeline 78
3.21 TPOT optimization progress . 79
3.22 K-Means Clustering: raw data before clustering 81
3.23 K-Means Clustering - after clustering 81
3.24 Density Based Spatial Clustering of Applications with Noise . . . 83
3.25 Drill String Vibrations . 84
3.26 Drill String System . 86
3.27 Dogleg angle . 88
3.28 Buckling modes . 89
3.29 Non-rotating buckling . 90

4.1 Rock samples drilled for collecting experimental drilling data . . . 92

ix

4.2 Process of labeling rock formation data 94
4.3 Description of the original data collected for rock classification models 95
4.4 Plot representing the dataset containing natural features only . . 95
4.5 Seaborn pairplot representing raw data - rock formation classification 96
4.6 Description of dataset containing raw observations for rig operations 98
4.7 Plot representing the raw data from laboratory rig operations . . 98
4.8 Seaborn pairplot representing rig operation raw data 99
4.9 Description of the raw data for vibrations using surface sensors . . 100
4.10 Plot of the raw data for vibrations using surface sensors 100
4.11 Seaborn pairplot - normal vs moderately high vibrations case . . . 101
4.12 Pressure loss and overpressure cases for the mud system 102
4.13 Description of raw data for pressure cases 102
4.14 Pairplot of pressure and WOB features for pressure cases 103
4.15 Normal drilling vs stuck pipe cases for stuck pipe classification . . 104
4.16 Description of raw data to later develop a stuck pipe model 104
4.17 Pair plot of raw data gathered in order to develop a stuck pipe model105
4.18 Transition from normal drilling to a twist off. Cement drilled at

high RPM and WOB . 106
4.19 Description of natural features in twist off experiment 107
4.20 Pairplot of raw data collected for twist off model 107
4.21 Description of raw data used in downhole vibration study 109
4.22 Pairplot of raw data collected for downhole vibration level model . 109
4.23 Description of the Volve data for formation classification 112
4.24 Plot of features from Volve field data 112
4.25 Pairplot of features from Volve field data 113
4.26 Description of the Volve data for rig operation classification . . . 114
4.27 Plot of features from Volve field data 115
4.28 Pairplot of features from Volve field data 116

5.1 Normalizing data using MinMaxScaler 120
5.2 Renaming the features in Jupyter Notebook 120
5.3 Changing normalized labels back to their original values 120
5.4 Feature sorting – outlier removal 121
5.5 Quartile identification for IQR method 121
5.6 Illustration of how IQR gets calculated 121
5.7 IQR – upper and lower limit . 122
5.8 IQR - upper and lower limits for rock formation classification . . . 122
5.9 Setting outlying data to zero . 123

x

5.10 Number of identified outliers that have been converted to NaN . . 123
5.11 Four-plot for WOB before the data has been pre-processed 124
5.12 Four-plot – WOB, processed data 124
5.13 Four-plot – Torque, raw data . 125
5.14 Four-plot – Torque, processed data 125

6.1 Algorithm used to calculate mean-depth 128
6.2 Algorithm to calculate ROP . 129
6.3 MSE different between soft and hard formation 131
6.4 Algorithm to calculate RPM*WOB feature 133
6.5 Algorithm to calculate RPM*WOB/ROP feature 134
6.6 Algorithm to calculate RPM2 feature 134
6.7 Algorithm to calculate WOB2 feature 134
6.8 Algorithm to calculate WOB/RPM feature 134
6.9 Algorithm to calculate standard deviation 135
6.10 Algorithm to calculate mean value 135
6.11 Algorithm to calculate median value 135
6.12 Algorithm to calculate maximum value 135
6.13 Algorithm to calculate maximum value 136
6.14 Algorithm to calculate average divided by standard deviation . . . 136
6.15 Algorithm to calculate median divided by standard deviation . . . 136
6.16 Algorithm to calculate maximum value 136
6.17 Result from feature evaluation before outliers are removed 138
6.18 Feature dimensionality reduction using PCA 139
6.19 Mean and variance ratio for original features 139
6.20 Feature dimensionality reduction using PCA when z-scaled 140
6.21 Importance of principal components created 141
6.22 Importance of principal components, z-scaled 141
6.23 ExtraTreesClassifier results after performing IQR 142
6.24 PCA- feature dimensionality reduction and feature importance

after using IQR . 143
6.25 Real-time flow chart as integrated in Python 144

7.1 Area Under Curve . 147
7.42 Volve data rock classification feature importance 168
7.83 Laboratory operation classification feature importance 186
7.89 Volve rig operation classification feature importance 191
7.95 Pressure cases feature importance 196

xi

7.101Vibration classification feature importance 200
7.106Unsupervised K-Means Clustering 203
7.108Downhole vibration classification feature importance 206
7.115Stuck pipe classification feature importance 211
7.121Twist off classification feature importance 215

8.1 Laboratory formation classification with all features, models trained
for six formations . 222

8.2 Median-filtered laboratory formation classification with all features,
models trained for six formations 223

8.3 Laboratory formation classification with only six features, models
trained for six formations . 224

8.4 Median-filtered laboratory formation classification with only six
features, models trained for six formations 225

8.5 Laboratory formation classification with all features, models trained
for 3 formations . 226

8.6 Median-filtered laboratory formation classification with all features,
models trained for 3 formations 227

8.7 Laboratory formation classification with only six features, models
trained for 3 formations . 228

8.8 Median-filtered laboratory formation classification with only six
features, models trained for 3 formations 229

8.9 Raw and median-filtered laboratory formation classification using
a granite test set . 230

8.10 Raw and median-filtered laboratory formation classification using
a granite test set . 231

8.12 Volve formation classification without removing outliers and using
all features . 235

8.13 Median-filtered Volve formation classification without removing
outliers with all features . 236

8.14 Volve formation classification removing outliers using IQR with all
features . 237

8.15 Median-filtered Volve formation classification removing outliers
using IQR with all features . 238

8.16 Volve formation classification removing outliers using IQR with
only six features . 239

8.17 Median-filtered Volve formation classification removing outliers
using IQR with only six features 240

xii

8.18 Laboratory rig operations classification with raw- and median-
filtered prediction . 242

8.19 Volve rig operations classification 244
8.20 Leak and overpressure classification from original dataset 246
8.21 Vibration classification using surface data 247
8.22 Classifying vibration levels in the original dataset 248
8.24 Downhole Vibration Classification as implemented in the drilling

system. 249
8.23 Classifying vibration levels in a freshly acquired dataset 249
8.25 Classifying stuck pipe in the original dataset 251
8.26 Classifying stuck pipe in the original dataset without removing

invalid data . 252
8.27 Twist off detection from original dataset 253

9.1 Simplified logic of the control system illustrating the processes . . 256
9.2 Illustration of ROP response from varying drilling parameters . . 258
9.3 Shortest path is the gradient directly towards the goal state of the

machine . 259
9.4 Gradient Descent . 260
9.5 Unimodal function . 261
9.6 Illustration of hill climb search . 263
9.7 Snapshot of the code implemented in 2018 264
9.8 State space constraints and ROP contours from Dunlop et al. . . 266
9.9 Gradient descent illustration . 267
9.10 DDOP Phases for Autonomous Drilling 269
9.12 Illustration of how the machine uses a look up table to confirm or

deny whether sufficient build is achieved 272
9.13 Experiment 1: Well log, downhole motor drilling of 70 mmTVD . 275
9.14 Well profile using 7 degrees whipstock in homogeneous cement . . 276
9.15 Experiment 2: Well log, downhole motor drilling of 170 mmTVD . 277
9.16 Experiment 3: Well log, downhole motor drilling of 600 mmTVD . 278
9.17 Experiment 4: Well log, downhole motor drilling of 166 mmTVD

pilot hole . 279
9.18 Experiment 4: Well log, downhole motor drilling of 600 mmTVD . 280

A.1 Momentum load case simulation from Fusion 360 292
A.2 Results from momentum load case simulation in Fusion 360 293
A.3 WOB load case simulation from Fusion 360 293

xiii

A.4 Results from WOB load case simulation in Fusion 360 294
A.5 Overpull load case simulation from Fusion 360 294
A.6 Results from overpull load case simulation in Fusion 360 295
A.7 Pressure load case simulation from Fusion 360 295
A.8 Results from pressure load case simulation in Fusion 360 296
A.9 Buckling load case simulation from Fusion 360 296

B.1 Tracking concept for downhole position, part 1 297
B.2 Tracking concept for downhole position, part 2 298

xiv

List of symbols

δ the tolerance specified for when gradient search shall terminate

ηk step size used for steepest descent

gk gradient used in steepest descent

xk+1 minimal point used in steepest descent

xk current position used in steepest descent

f frequency

FN integer in fibonacci sequence

fr framerate

g gravity

J sum of squared errors

Kd controller gain for derivative controller

Ki controller gain for integral controller

Kp controller gain for proportional controller

u(t) error

u0 bias

α positivity constraint

x̄ mean value

β buoyancy factor

χ output value of neuron

xv

η learning rate

Γ mapping function

λ learning rate for back-propagation

µ coefficient of sliding friction

µ true mean value

ωij weight coefficient

σ standard deviation

τ torque

ε neighbourhood radius in DBSCAN

ϑ threshold coefficient (referred to as bias)

ξ neuron potential

Abit area of bit

Dbit drill bit diameter

E obective function to determine the sum of squared error between predicted
and known output in a supervised neural network

Es specific energy

L maximization equation

mi, ci, ki mass-, damping- and spring constants for a spring-mass system

G gini index

Q flow rate

xvi

Common Abbreviations

A - Azimuth
AI - Artificial Intelligence
ANN - Artificial Neural Network
API - Application Programming Interface
ARI - Adjusted Rand Index
AUC - Area Under Curve
BA - Bit Aggressiveness
BHA - Bottom Hole Assembly
BHP - Bottom Hole Pressure
CPU - Central Processing Unit
CSS - Cascading Style Sheets
CSV - Comma Separated Values
CV - Cross-Validation
DAQ - Data Aquisition
DB - Database
DDS - Data Distribution Service
DT - Decision Tree
DBSCAN - Density-based spatial clustering of applications with noise
DDOP - Digital Detailed Operating Procedure
DL - Dogleg angle, or Deep Learning
DLS - Dogleg Severity
DM - Data Mining
DOC - Depth of Cut
DPS - Degrees Per Second
DT - Decision Tree
ECD - Equivalent Drilling Density
FSM - Finite State Machine

BG - Gradient Boosting
gRPC - google Remote Procedure Calls
GUI - Graphical User Interface
HSE - Health, Safety and Environment
HTML - HyperText Markup Language
I - Inclination
ID - Inner Diameter
IDE - Integrated Development Environment
IEP - Department of Energy and Petroleum Engineering
IQR - InterQuartile Range
K-NN - K-Nearest Neighbor
KOP - Kick-Off Point
LC - Load Cell
LFS - Linear Feature Scaling
MD - Mean Depth
MLP - Multi Layer Perceptron
MSE - Mechanical Specific Energy
MW - Mud Weight
NaN - Not a Number
NPP - Normal Pore Pressure gradient
NPT - Non Productive Time
OD - Outer Diameter
OPC UA - Open Platform Communications Unified Architecture
PCA - Principal Component Analysis
PDC - Polycrystalline Diamond Compact
PID - Proportional Integral Derivative controller
PLC - Programmable Logic Controller
POOH - Pull Out Of the Hole
PWM - Pulse Width Modulation
Q-Q plot - Quantile-Quantile plot

ii

RBF - Radial Basis Function
RDBMS - Relational Database Management System
RF - Random Forest
RIH - Run In Hole
RL - Reinforced Learning
RMSE - Root Mean Squared Error
ROnB - Rotating On Bottom
ROP - Rate Of Penetration
RPM - Revolutions Per Minute
SD - Secure Digital
SPP - Stand Pipe Pressure
SQL - Structured Query Language
SVD - Singular Value Decomposition
SVM - Support Vector Machine
TF - Toolface
TOB - Torque On Bit
TVD - True Vertical Depth
UCS - Uniaxial Compressive Strength
UI - User Interface
UIS - University of Stavanger
WOB - Weight On Bit
XML - Extensible Markup Language

iii

Chapter 1

Introduction

1.1 Research Problem

“My contention is that machines can be constructed which will simulate the be-
havior of the human mind very closely. They will make mistakes at times, and at
times they may make new and very interesting statements, and on the whole the
output of them will be worth attention to the same sort of extent as the output
of a human mind. The content of this statement lies in the greater frequency
expected for the true statements, and it cannot, I think, be given an exact state-
ment. It would not, for instance, be sufficient to say simply that the machine will
make any true statement sooner or later, for an example of such a machine would
be one which makes all possible statements sooner or later. We know how to
construct these, and as they would (probably) produce true and false statements
about equally frequently their verdicts would be quite worthless. It would be the
actual reaction of the machine to circumstances that would prove my contention,
if indeed it can be proved at all.” (Turing, 1951) [1].

In recent years, the concept of drilling automation has advanced from primarily
being automation of rig floor equipment to novel solutions that rapidly can be
deployed to the rig environment and assist the driller in a variety of operations.
Aside from providing an early warning to the driller, and if necessary, for instance
perform a controlled shut-in procedure should a kick that is migrating towards
surface get detected, such intelligent systems could improve efficiency and reduce
financial costs through continuous monitoring and interaction with the driller.
Smart drilling systems could also be used to suggest operating parameters to the
driller through correlating real-time drilling data with vast amounts of historic
data stored in a virtual environment, popularly referred to as a digital twin, or

1

1.1. RESEARCH PROBLEM 2

even exert full control of all rig equipment if permissable (top drive, draw works,
mud pumps, elevator, rough neck and so on) leaving only major decision points
to be determined by the driller. The latter automation level described for the
drilling scene is likely still several years away from being deployable to the field.
A timeline that highlights artificial intelligence (AI) applications in drilling prac-
tices is given in Application Of Artificial Intelligence Methods In Drilling System
Design And Operations: A Review Of The State Of The Art (Bello et al., 2015) [2].

In our opinion, short term advances in drilling automation lies in developing
simple, yet robust tools for the driller to strengthen the understanding of the
operations during critical phases, and if possible, automate some of the routine
tasks that easily can be controlled by a machine. In the same way that a Tesla
can self-operate in known terrain, so should the drilling rig, enabling the driller
to remain one step ahead, maintaining an overview of all on-going events.

According to Jordan and Mitchell, “The past decade has seen rapid growth in the
ability of networked and mobile computing systems to gather and transport vast
amounts of data, a phenomenon often referred to as “Big Data.” The scientists
and engineers who collect such data have often turned to machine learning for so-
lutions to the problem of obtaining useful insights, predictions, and decisions from
such data sets.” (Jordan & Mitchell, 2015) [3]. Given the big amount of wells that
get drilled every year, and the amount of data that gets collected from operations,
an approach to predict and make decisions based on the data that already gets col-
lected through the use of machine learning models is an important area of research.

In this thesis, an approach to develop data-driven models to classify different
rock formations is presented. The models have been developed using so-called
supervised machine learning, and get trained and validated using both time-based
experimental data that have been collected in the laboratory environment on a
test bench (see section 1.2) and field data from the Volve field released by Equinor
and its partners [4]. Furthermore, unsupervised machine learning models have
been developed to classify some drilling incidents such as stuck pipe and plugged
drill bit nozzles, in addition to common rig operations such as tripping (POOH
– pull out of the hole and RIH – run in hole) and rotating on bottom (ROnB),
meaning that the pipe is rotated on bottom of the hole without being raised or
lowered in the axial direction.

3 CHAPTER 1. INTRODUCTION

Figure 1.1: 3D model of the Volve field (created in the exploration phase), where
all subsurface and production data has been made publicly available
[4].

Since experimental test data has been gathered using an autonomous laboratory-
scale drilling rig that has been developed as part of the UiS Drillbotics project
at the University of Stavanger, the thesis will also cover some of the parallel ac-
tivities to the data-driven model development, such as developing a bottom hole
assembly (BHA) with an integrated sensor package that is capable of measuring
forces and bit-rock interaction in real-time during drilling, autonomous search
algorithms allowing the system to maximize the rate of penetration (ROP) while
minimizing the risk of running into drilling incidents and drilling with sub-optimal
parameter setpoints, and finally a digital algorithm that has been implemented
to fully autonomously drill a deviation well using a closed-loop steering system.

1.2 Background of Study

Since 2016, students at UiS have designed, constructed and conducted experi-
ments in order to optimize an autonomous drilling rig of approximately 3 m ×
1.5 m × 1.5 m size. While the system initially got developed with the aim to
participate in the annual Drillbotics® competition (Loeken and Trulsen, 2017) [5]
(Hjelm and Nilsen, 2018) [6], hosted by the Society of Petroleum Engineers (SPE)
[7], the machine is now being used as a test bench to investigate the potential in
various drilling automation applications and data analytics. A picture of the rig
as it was in the end of 2018 is shown in Figure 1.2a. Equipping the rig with all
upgrades, the improved system is shown in Figure 1.2b.

1.3. CONTROL SYSTEM ARCHITECTURE 4

(a) Autonomous Laboratory-scale drilling rig devel-
oped at the University of Stavanger.

(b) Upgraded rig in 2019.

Figure 1.2: Laboratory drilling system at the University of Stavanger.

Several articles have been published on the research that has been conducted with
the drilling system, see (Loeken et al., 2017) [8], (Geekiyanage et al., 2018) [9]
(Loeken et al., 2018)[10] . An important objective in 2019 has been to evaluate
whether or not methodology that has been developed to create drilling-related
models on the laboratory scale can be directly associated with field data, thus
strengthening the research value of the project. More information regarding the
experiment setup (rig) to develop the models is given in chapter 2.

1.3 Control System Architecture

The drilling system is a collection of several systems including mechanical, hy-
draulic, electrical, hardware, software, and data systems. The hardware architec-
ture is comprised of three levels; programmable logic controllers (PLCs) on level
1, computers on level 2 and cloud-based storage of time-based data (optionally
also depth-based data) on level 3. On level 1, the control aspect (PLCs) for

5 CHAPTER 1. INTRODUCTION

the five main systems on the rig are located (rotational system, hoisting system,
pneumatic system, riser and whipstock positioning system and finally hydraulic
mud system). Each system gets controlled through its own microcontroller / PLC,
that both executes commands to the controllable systems on the rig (actuators,
motors, pumps and so on) and gathers information from the equipped sensors.
The PC located on level 2 handles the decision-making logic. This logic involves
carrying out the digital detailed operating procedure (DDOP), ROP search algo-
rithms, steering algorith, stuck pipe model, machine learning models, detection of
drilling incidents and carrying out remedial actions, as well as pushing the data
to a configured database for post-analysis and data extraction (level 3). A key
factor has been to ensure that all components that make up the drilling system
are compatible for real-time and autonomous control.

In 2018, the software architecture was configured to operate as a finite state
machine (FSM), meaning that the system at any time would operate in a partic-
ular state (from a pre-defined number of finite states such as calibration state,
normal drilling state, remedial action state and so on). The Arduino Due micro-
controllers / PLCs were programmed using the Arduino integrated development
environment (IDE), while the control system was configured using Python and
the Visual Studio Code IDE. In 2019, the software architecture has seen a major
upgrade, and is now configured as a multithreading system, meaning that several
client/server modules, referred to as threads that run on multiple cores on the
central processing units (CPUs), run in parallel using a gRPC API to handle
communication between each module / thread. In addition, an API based on
OPC UA has been developed to support remote connectivity and remote event
handling, allowing external partners to execute commands remotely to the control
system, for instance through their own API, and receive data from the rig in
real-time upon request. The control system is described further in section 2.8.
Additional details are found in (Sand, 2018) [11] and (Guggedal and Steinstø,
2019) [12].

Chapter 2

Experimental Setup

2.1 Drilling Rig System

The drilling rig consists of in total six hardware systems, in addition to the
control system. These are; rotation, hoisting, circulation, pneumatic, whipstock
positioning and power systems. In the following subsections, all key systems get
described shortly.

2.1.1 Rotation System

There exists two rotational systems that can be used: a conventional top drive,
used for vertical drilling and a downhole motor used for directional drilling. While
the two rotational systems in theory can operate simultaniously, with the current
downhole motor specifiations, the torque is less than in the top drive which could
cause severe motor damage if for instance the bit gets stuck.

For the conventional system, a hollow-shaft brushless motor is used to rotate the
assembly. The top drive transfers torque directly to the drill string and provides
a rated torque of 2.86 Nm and a maximum instantaneous torque of 8.59 Nm.
Because the motor is hollow shafted, the mud injection hose that runs along
the derrick can be connected on top of the motor using a swivel (rotary union)
(See Figure 2.1). This set-up allows us to circulate drilling fluid (either water,
water-based mud - WBM or oil-based mud - OBM) all the way from top of derrick
to the drill bit nozzles. Velocity margins and pressure loss across the system can
be calculated as shown in (Akisanmi, 2016) [13].
The top drive provides rotational speeds up to 3500 RPM but is limited to 1500
RPM due to the rotary union currently in place.

6

7 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.1: Picture showing the connection between the hose, swivel and motor
[6].

By varying two analog voltage signals one can control the RPM- and torque-
output from the top drive. The signals are transmitted from programmable logic
controllers (PLCs) to a driver for the top drive. The motor driver also has a
dynamic braking function that can be programmed using the autonomous control
algorithm, or the driller can define the absolute motor torque limitations. This
brake acts as a safety measure for the system so that if the system where to
exceed the given torque limitations, it will stop, temporarily, in order to prevent
incidents such as buckling or twist-off. Instantanious twist-off due to fatigue
can however still occur. For the case of this particular rig this is very useful
because the drill string is made out of aluminum which has a low mechanical
strength and buckling limit, as has been calculated by students on the team in
2018. The braking function can be controlled in the same way that RPM and
torque operating setpoints get controlled.

2.1.2 Hoisting System

In order to simulate drilling operations, the system is equipped with a hoisting
system that consists of three actuators, each equipped with its designated stepper
motor and brake of type normally-closed (in order to reduce the holding torque
on the stepper motors when the system is not running). The motors raise/lower
the top plate that resembles the drill floor where top drive and other components
are mounted. The top plate is situated on three brackets, each equipped with
a tri-axial load cell that measures the free hanging weight and hook load of ap-

2.1. DRILLING RIG SYSTEM 8

proximately one third of the combined drill floor weight. The decision to use
three actuators was made for several reasons where the most important were; to
ensure that a sufficient lifting force can be provided, the system will be more rigid
when mounted between three actuators to prevent vibrations on the drill floor and
finally it allows for smaller incremental changes to actuator distance movement
which in turn is essential to regulate the WOB. Various safety algorithms are in
place to reduce for instance the risk of a brake accidentally closing when either of
the three actuators are moving, which can possibly damage parts of the system
(Hagen et al., 2018) [14].

Figure 2.2: Illustration of hoisting system, consisting of three actuators operating
in synchrony.

The three actuators are controlled by its own stepper motor with a step-angle of
1.8 degrees, where for each 1.8 degrees of stepping 10 micro-steps get transmitted
(resulting in a total of 2000 steps/rev). The stepper motor is connected to the a
lead screw, where each revolution of the screw results in 8 mm travel length of
the top plate which gives an elevation resolution of 4 µm. High accuracy for the
actuators is as mentioned above key in order to ensure the required WOB control.
Therefore, powerful stepper motors that combined can provide an approximate
maximum WOB up to 500 N is used. To address the challenge of vibrations in the
system, a rigid coupling is used between stepper motor and actuator to reduce the

9 CHAPTER 2. EXPERIMENTAL SETUP

overall vibration making the system more sturdy compared to the use of spring
loaded coupling.

More information and details are found in thesis from 2017 and 2018 [5] [14] [6].

2.1.3 Circulation System

The circulation system consists of two pumps alternating for 30 seconds each.
This prevents the pumps from over-heating and should one pump fail, the other
will kick in to ensure the required velocity margin for adequate hole cleaning and
cooling of the bit. The pumps have a maximum flowrate of 19 L/min at a working
pressure of 3.1 bar (Hagen et al., 2018) [14].

Figure 2.3 shows the circulation system mounted inside the rig structure. This
gives a mobile set-up where no dismantling is needed before transportation of
the rig, while simultaniously reduces the chance of a leak damaging the electrical
components on the rig.

Figure 2.3: Picture showing the circulation system mounted inside the drill rig.

More information and details are found in [14] [6].

2.1.4 Drill String Assembly

The drill string assembly developed in 2019 consists of:

• Aluminum drill pipe

2.1. DRILLING RIG SYSTEM 10

• Downhole sensor sub

• Knuckle joint

• Pneumatic downhole motor

• Drill bit

The concept of the drill string assembly developed with the aim to drill direc-
tionally is shown in Figure 2.4. While the knuckle joint can be used to control
the dogleg by varying the WOB setpoint thresholds either so that a spring gets
compressed (bend) or left uncompressed (no bend), the mechanical angle of the
top drive can be varied through pulsing to change the azimuth, if an offset is
registered. Finally, the bit RPM is controlled by throttling the air flow coming
from a compressor to the downhole motor.

Figure 2.4: BHA consisting of pipe, sensor sub, knuckle joint, downhole motor
and bit.

Aluminum Drill Pipe

The aluminum drill pipe used for drilling has the following dimension:

Parameter Description and Unit
Material Aluminum, 6061-T6 alloy

Pipe length 914.4 mm
Pipe OD 9.53 mm
Pipe ID 7.75 mm

Wall thickness 1.2446 mm

See [14] for pipe limit calculations and destructive testing of the drill pipe. In
short, calculations and destructive tests performed have shown that:

11 CHAPTER 2. EXPERIMENTAL SETUP

• the critical slenderness ratio of the pipe is 70.2, and the slenderness ratio of
the drill pipe is approximately 280.2,

• provided the same pipe dimensions and material above, the approximate
buckling limit is 280.5 N,

• the maximum torque before the pipe yields is approximately 19.0 Nm, while
the maximum torque before the pipe shears is approximately 24.7 Nm.

Destructive testing carried out in both 2017 and 2018 has shown that the pipe
can sustain a maximum tensile load of approximately 10.331 kN and a maximum
compressive load 985.72 N. [14].

2.2 Additions to facilitate for directional drilling

The rig concept to facilitate for directional drilling consists of several additions,
in which the most important is presented below. A schematic of the complete
system is presented in Figure 2.5:

Figure 2.5: Schematic of the drilling rig design that allows for for directional
drilling through downhole motor, benable BHA, downhole position
tracking and whipstock to kick off from vertical below KOP.

2.2. ADDITIONS TO FACILITATE FOR DIRECTIONAL DRILLING 12

2.2.1 Downhole motor (pneumatic)

Two pneumatic motors have been purchased to allow for both vertical and hori-
zontal drilling by rotating only the bit (and crossover that connects the bit to the
pneumatic motor). The pneumatic motors of type 302916D and 302916F have
nominal torques of 2.1 and 4.9 Nm and nominal speeds of 750 and 330 RPM
respectively, producing a nominal power of 170 W (= 0.23 HP) [15].

Figure 2.6: Both pneumatic motors deliver 170 W of nominal power [15].

According to the manufacturer datasheet, the power output in kW can be calcu-
lated from the following equation [16]:

P [kW] =
M [Nm]× n[RPM]

9550
(2.1)

The speed and power output from the pneumatic motor can be regulated by either
regulating the air volume or pressure of the system. In terms of regulating the
air volume, speed can be varied by throttling the exhaust air, while power and
torque can be varied through throttling of the air inflow to the motor. Speed,
torque, power and air flow can be regulated by varying the operating pressure of
the system. In terms of maximum allowable shaft load (assuming the bit being
25 mm away from the collet end) both motors are rated to sustain 380 N axial
force and 50 N of radial force.

13 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.7: The charachteristic of the pneumatic motors [15].

The pneumatic system on the rig is designed with a compressor that delivers 345
LPM, a hydraulic maintenance unit (to separate out water from the compressed
air, add oil to the air flow for lubrication and choke the inlet pressure to the
pneumatic motor), a pressure relief valve, a solenoid valve (to throttle the inlet
pressure from 0-100 %), a pressure transmitter, a rotary union (to connect the
air hose to the rotating shaft of the top drive) and three manual ball valves to 1)
relief the pressure between the hydralic maintenance unit and solenoid valve, 2)
relief the pressure between between the solenoid valve and pneumatic motor and
3) manually choke the air flow after the solenoid valve.

2.2. ADDITIONS TO FACILITATE FOR DIRECTIONAL DRILLING 14

Figure 2.8: Pneumatic system comprised of various components to regulate the
air inflow, monitor pressure and lubricate the system.

For experiments, the 1st ball valve (between hydraulic maintenance unit and
solenoid valve) can be opened during drilling to simulate a leak in the system
(which is monitored by the pressure transmitter) or losses into the formation. The
3rd ball valve (manual choke) can be closed to simulate loss of hydraulics, or
to tune the solenoid valve opening positions. In addition, a blind plug can be
installed at the air hose outlet to simulate plugged nozzles (also monitored by
the pressure transmitter). The pressure relief valve ensures that the operating
pressure in the pneumatic motor at no time can exceed the maximum pressure
rating of 6 bars, if for instance a different compressor is connected to the system,
or if the hydraulic maintenance unit is bypassed for various reasons. For more
details, see [17].

2.2.2 2-axis Actuator System

To faciliate for the Drillbotics® 2019 competition to drill a deviation well, a 2-axis
actuator system has been developed to provide the following functionality:

• Shift between drilling with riser, whipstock or no lateral constraints above

15 CHAPTER 2. EXPERIMENTAL SETUP

the wellbore,

• Lower a whipstock into a pilot hole wellbore section,

• In the future, place a bearing around the drill pipe (which is mounted
between actuators on the y-axis) and perform a comparative study on
vibrations and the response to drilling with and without a constrained
drill pipe.

Figure 2.9: Concept of mounting a riser and a whipstock on the 2-axis actuator
system, allowing the system to drill a pilot hole through the riser,
re-position and lower the whipstock into the pilot hole, and use the
whipstock to kick off from vertical.

The actuators are operated by in total 4 × Nema23 stepper motors with 4 ×
Geckodrive G250X drivers, controlled by an individual Arduino Due microcon-
troller. The two stepper motors used for lowering and raising the whipstock on
the z-axis have a combined holding torque of 25.2 kg-cm while the two motors
moving the whipstock and riser in the y-direction produce a holding torque of
49 kg-cm. This is to ensure that two z-axis actuators and a whipstock can be
operated on the y-axis without operating close to the maximum torque of the
stepper motors. The finalized design is shown in Figure 2.10 below:

2.2. ADDITIONS TO FACILITATE FOR DIRECTIONAL DRILLING 16

Figure 2.10: 2-axis actuator system as it was installed on the rig.

An illustration of the bit entering a whipstock (that has been positioned inside
of a 165 mm deep pilot hole section) is given in Figure 2.11:

Figure 2.11: Bit enters the whipstock that has been lowered approximately 165
mm into a pre-drilled pilot hole.

For more details, see [17].

17 CHAPTER 2. EXPERIMENTAL SETUP

2.2.3 BHA components

Several additions have been added to the rig to facilitate for directional drilling.
These are whipstocks, a knuckle joint and various 3-cone drilling bits ordered
from China to compare the drilling performance between 2-cone and 3-cone PDC
drill bits. For more details, see [17].

Whipstock

Three different whipstocks have been developed with 5, 7 and 10 degrees build
sections, that deviate from a vertical wellpath. The whipstocks have been de-
veloped in Fusion 360, 3D printed in PLA, re-designed and 3D printed in 316L
stainless steel at Promet. For more details, see [17].

Figure 2.12: The whipstock is developed with an entry cone at the top and a flat
base for level positioning on the rock surface.

Knuckle Joint

A knuckle joint was developed in the team (see [17]) with the possibility of a 10
degree bend to provide the BHA with a bendable joint. The knuckle joint reliefs
the drill pipe of the initial bend, when transitioning from drilling a vertical to a
deviated section. The knuckle joint is thought used to control the build rate in
the deviated well section, as part of the closed-loop steering system developed in
section 9.4.

2.2. ADDITIONS TO FACILITATE FOR DIRECTIONAL DRILLING 18

Figure 2.13: Knuckle joint design, developed by Sander Skjørestad [17].

Drill bits

For details regarding the Baker Hughes drill bit provided by the Drillbotics®

competition committee and the 2-cone and 3-cone bits acquired, see [17].

In short, the Baker Hughes poly diamond crystalline (PDC) bit provided has an
OD of 1.25 in, a bit length of 1.25 in a back rake angle (BRA) of 25 degrees for
the two cone cutters and 20 degrees for both shoulder cutters. Clearance at gauge
pads is configurable from 0 to 0.15 in in such way that tungsten carbide avoid
elements can get inserted to control either clearance or depth of cut (DOC).

19 CHAPTER 2. EXPERIMENTAL SETUP

2.3 Rig Sensors

The sensors that are installed on the rig are:

Figure 2.14: Rig sensors, including high-speed camera and acoustic sensor for
research.

Rig sensors, are connected either to a high frequency data acquisition (DAQ)
module (surface sensors; analog voltage and current signal), or directly to the PC
(downhole sensors; digital I2C to microcontroller that transmits usb signal to PC).
Each sensor is regularly calibrated according to calibration procedure developed
as part of the operating procedure for the drilling rig (provided at the rig).

2.4 Downhole Sensor Sub

2.4.1 Mechanical design

The sensor sub is a essential for several objectives during drilling, ranging from
providing the driller with a visualization of the downhole conditions and wellpath
to vibration classification, in real-time, while drilling. To do so, a versatile sensor
sub design, that is both easy to access, maintain and independent of the other
parts of the BHA, has been developed.

2.4. DOWNHOLE SENSOR SUB 20

Figure 2.15: Technical drawings of the sensor sub.

The sensor sub is designed for easy access, making it possible to open and close
the sub in order to replace electronics in case of hardware-failure or damage to
internal components. This can be done without interacting with other down-
hole components which ensures quick replacements or repairs can be carried out
if required. Two compartments inside of the house allows for either placing a
sensor and a microcontroller (current configuration enabling real-time dataflow
to surface), multiple sensors and a tiny controller with internal storage so that
data can be accessed post drilling, or the positioning of strain gauges to measure
the downhole torque in experiments. Figure 2.16 shows the sensor house when
opened. From the housing there is a wire-channel which leads to surface. The
OD of the sensor sub is lower than that of the drill bit (under gauge BHA) which
ensures that the sub does not scrape along the walls of the wellbore (disturbing
measurements if the sub is partially confined in the wellbore) as well as reduces
the risk of the non-rotating BHA getting stuck, in particular when passing KOP.

Figure 2.16: CAD drawing of the sensor sub showing inside compartments.

The purpose of the sensor sub is to provide the bottom hole assembly with a sensor
package that consists of accelerometers, gyroscopes and magnetomers, allowing
the rig to calculate inclination build (dogleg), azimuth (heading), and if necessary
the orientation of the BHA (in case of over-torque in connections). Hence, through

21 CHAPTER 2. EXPERIMENTAL SETUP

simple sensor equipment, the well trajectory can get calculated in real-time. In
Figure 2.17, a cross-sectional view is provided to illustrate the compartments
inside of the sub, as well as the thread pitch alignment of the sensor house and
locking mechanism.

Figure 2.17: Cross-section analysis showing the dimensions of the sensor house
design. The section analysis is used to ensure that thread pitch and
depth of threads will match up once the sensor house is 3D printed.

2.4.2 Mechanical design - Stress simulation

In 2018, a novel BHA design was developed [6] for the Drillbotics® competition.
While the stabilizers and drill collars were developed to endure severe axial and
lateral vibrations (> 300 N force), the flow channel that connected the sensor
package, located in the near-bit stabilizer broke shortly after drilling with the
BHA commenced (due to fatigue). For this purpose, a short study on five differ-
ent load cases (static momentum stress, static stress for high WOB, static stress
for overpull, structural buckling and burst pressure) for the sensor house was
conducted, considering the threaded sleeve that is regarded as the weak point in
the sensor house design.

The results from performing the stress simulations are found in Appendix A.

2.4.3 Sensor Package

The inside of the sensor house is fitted with two circuit boards. The sensor circuit
board is a 9-DOF accelerometer, gyroscope and magnetometer (see Figure 2.18).

2.4. DOWNHOLE SENSOR SUB 22

The sensor allows the system to calculate the azimuth (magnetometer), inclination
and roll (gyro) and vibrations in the x, y, z-directions (accelerometer).

Figure 2.18: Picture showing the combined FLORA 9-DOF Accelerometer/Gy-
roscope/Magnetometer sensor [18].

The sensor circuit board is connected to the Adafruit Trinket M0 (see Figure 2.19)
using 3V, GND, SCL and SDA connectors with a I2C communcation protocol.
From the Adafruit Trinket M0, a micro-USB cable is run to surface. There is
already installed a slipring underneath the top drive. This allows for transmission
of data from downhole even though the entire system is rotating. For directional
drilling using a downhole motor, no slip-ring is required, as all parts other than
the bit are stationary permitting a USB cable from running all the way to the
PC. This is desirable since when the cable can be shielded in the high-noise area
(drill floor surroundings), the risk of lost connection due to interference is greatly
minimized. An oscilloscope has been used to measure the interference on and
around the drill floor.

Figure 2.19: Picture showing the Adafruit Trinket M0 [19].

The data stream from the downhole sensor, to surface, is controlled by having a
pulse generator in the control system transmit a pulse to request data actively;
simultaniously a pulse gets sent to the high frequency DAQ to request data from
the surface sensors. This alleviates the problem of having multiple data sources
that can lead to:

• The internal clocks in the Trinket microcontroller and high frequency DAQ
are out of synch, causing data that is sampled at different times to be
merged in the control system,

• An overflow of data is piled up in the buffer in the PC, so that the system
either crashes or data from the sources is received in the control system
with a delay.

23 CHAPTER 2. EXPERIMENTAL SETUP

There is however one challenge in using such pulse to synchronize sensor mea-
surements taken from multiple sources. If it was not for the pulse, a watchdog
timer could easily get implemented to detect anomalies in software, downhole
microcontroller, PLCs or even in the control system, and reset the CPU if an
incident occurs that causes temporary disconnection between PC and sensor (loss
in communication). One could then re-initiate communication with the sensor,
if for instance a brownout (a drop in voltage for parts of the system) causes a
temporary disconnection from the control system. If a common pulse transmitted
to all parts of the control system gets used however, a temporarily disconnection
and reconnection could possibly cause instability in the dataflow, which is why
such solution has not yet been tested or implemented.

2.4.4 Final Design

Upon receiving the 3D print, supports had to be removed, and all threads needed
to get refurbished so that the components in the compartments within the sensor
sub are properly sealed off from dust or mud. The inner threads of the sensor
house was refurbished by drilling through a thread tap (to allow the flow channel
to be bypassed), and fine threading the coarse threads in the sleeve.

Figure 2.20: Drilled through thread tap (left) and final results of refurbished
threads (right). The tight fit of components inside is shown in the
background.

After sand blasting each component while protecting the threads, and installing
the sensors inside of the house, the end results is shown in Figure 2.21.

2.5. CALIBRATION OF SYSTEMS 24

Figure 2.21: End result of sensor sub in 316L stainless steel, equipped with a
sensor board containing ten sensors and a small microcontroller
within. A swivel connection (right) allows the sub to be directly con-
nected to the pneumatic motor or to a knuckle joint when drilling
deviated well sections.

2.5 Calibration of systems

2.5.1 Pneumatic Motor

Even if the pneumatic motor is not equipped with an encoder, bit RPM can
get calculated in real-time by measuring the torque, pressure, and the solenoid
valve opening position (controlled in %). While the top drive brake has been
configured to prevent the motor shaft and the drill string assembly from rotating
counter-clockwise, the inbuilt encoder of the top drive still measures the torque
which is assumed equal in the BHA.

The speed of the downhole motor can be controlled by throttling either the input
air flow, the exhaust air flow, or the pressure in the system, as is described in
subsection 2.2.1. From Figure 2.7, it can be shown that at nominal torque, the
nominal speed is approximately 50 % of the idling speed. This suggests that for
motor 302916D, at nominal torque (= 2.1 Nm), the nominal speed is only 750
RPM (as is also confirmed by supplier of motor).

Since the input air flow and pressure are both regulated by the solenoid valve
opening position, the first step to calculate the downhole RPM is to use a high
frequency camera to measure the number of revolutions per second of the bit
at different valve opening positions. A framerate of approximately 150 Hz was
selected, since at 1500 RPM only a framerate higher than 25 Hz is required to
track 25 revolutions of a pixel per second. The experimental setup is shown in
Figure 2.22.

25 CHAPTER 2. EXPERIMENTAL SETUP

Ekaterina Wiktorski at the University of Stavanger has developed an approach to
use pixel tracking to measure the vertical- and horizontal displacement of the drill
string. This allows vibrations in the drill string to get measured without attaching
sensor equipment to the pipe, thus affecting the natural frequency of the system
[20]. Using the same algorithm, the vertical displacement of an isolated pixel is
tracked using an algorithm written in MATLAB, and the frequency that the pixel
occurs with is then used to determine the number of revolutions per second.

Figure 2.22: High frequency camera is used to measure the idle speed of the
pneumatic motor at different solenoid valve positions (60 to 100
%). Pylon Viewer is used to configure the camera capture settings.

Figure 2.23: Vertical displacement of a pixel at 90 % solenoid valve opening.

2.5. CALIBRATION OF SYSTEMS 26

Figure 2.24: Frequency of pixel occuring in the same position, so that bit RPM
can be calculated.

The RPM can then be calculated by the following equations:

RPM = −0.4509×(V alveopening)2 +88.289×(V alveopening)−3249.4 (2.2)

RPMidle =
f × 60

fr
(2.3)

where f (frequency of occuring pixel) is given in Hz, fr (framerate of the camera)
in Hz and the constant 60 refers to the number of seconds in a minute. For
example, this suggests that for a 90 % solenoid valve opening, the idle bit RPM is
1038.6, since the pixel occured every 17.31 Hz. This can be verified by manually
counting how many images correspond to one full bit revoltuion, which in this
case corresponded to between eigth and nine (150Hzframrate

8images
= 18.75 Hz).

Knowing the idle RPM, the actual bit RPM can now be calculated in the system
using linear regression.

RPMactual,corrected = RPMidle −
RPMidle

2

2.1
× torquetopdrive (2.4)

27 CHAPTER 2. EXPERIMENTAL SETUP

This suggests that if the bit at 90 % solenoid valve opening is rotating at 1038.6
RPM and a torque of 1.2 Nm is registered, the actual downhole RPM and power
produced is equal to:

RPM(rev/min) = 1038.6− 519, 3

2.1
× 1.2 = 610RPM (2.5)

The power output can be calculated to be:

Power =
1.2× 610

9550
= 0.0766kW = 76.6W (2.6)

For the pneumatic motor that provides 2.1 Nm nominal torque and 1500 RPM
idle speed, a characteristic using this approach can be created so that:

Figure 2.25: Bit RPMs for solenoid valve opening ranging from 60 to 100 %,
corrected for 0 to 2.1 Nm torque.

2.5.2 Top Drive

For several experiments, the top drive is still used to provide the torque on bit.
Previously, the top drive has been controlled using Pulse Width Modulation
(PWM). Due to the inconsistent PWM output from the logic controller, the top
drive has been re-tuned using the analog output pins from the Arduino, that
support an operating range of 0.55 V to 2.75 V.

2.5. CALIBRATION OF SYSTEMS 28

Through calibration, the top drive can now be controlled from 0 to 1500 RPM
with an offset of only 1-2 RPM, which is a significant improvement compared to
previous years where the offset has been as high as 50 RPM at certain rotational
speeds. For more details regarding how the top drive gets tuned, see [5] and [6].

Command Value Unit
Analog velocity command scale 682 rpm/V
Analog velocity command offset 450 mV

Analog velocity command clamp level 10 rpm (or mm/s)

2.5.3 WOB Control

A brief introduction to the Proportional Integral Derivative Controller

The PID controller is the most used controller for closed-loop systems in the
industry and in equation 2.7 below the equation for the controller is shown (Sui,
2019) [21]:

u(t) = u0 +Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(2.7)

In the following three subsections, each of the parameters that combined make
up the PID controller gets described.

The PID controller block diagram is shown in Figure 2.26:

Figure 2.26: PID Controller block diagram illustrating the concept from setpoint
(u), controller (P I D), process, output X(s) and error (e) [22].

Proportional controller (P controller)
The P controller is the first and simplest part of the PID controller. The output
of this controller is the output of the proportional control mode with a bias added.
One needs to add the bias in order to maintain a given output while there is no

29 CHAPTER 2. EXPERIMENTAL SETUP

error. Equation 2.8 below shows how the output is calculated. The bias (u0) can
be thought of as the “start value” of the loop, while the controller gain (kp) can
be adjusted in order to change the output if necessary. The bias is what controls
the error, u(t), and causes it to become 0 (Sui, 2019) [21].

u(t) = u0 +Kpe(t) (2.8)

By increasing Kp, one will reduce the offset between setpoint and output and
speed up the process response. On the other hand the system may oscillate or
even become unstable. It’s important that the system has a realistic proportional
gain. A high proportional gain will give the system big responses for the changes
in the error but can also make the system unstable. On the other hand, a small
change can make the system unreactive, thus not being able to handle larger
changes in the system error (Sui, 2019) [21].

Proportional Integral controller (PI controller) In the PI controller the
output signal is controlled by a sum of the proportional- and integral control.
Using equation 2.9 below, one can alter the control variable (Sui, 2019) [21].

u(t) = u0 +Kpe(t) +Ki

∫ t

0

e(τ)dτ (2.9)

The integral part of the controller is added in order to tune the proportional
controller in a direction that eliminates the steady state error. There are though
negative sides to the adding the integral component such as a reduced response
time and decreased stability of the system (Sui, 2019) [21].

Derivative controller (D controller)
The last part of the PID controller is the derivative controller. The D term,
illustrated in equation 2.10 below is implemented with the purpose of predicting
the future change and increase the stability of the model by considering the rate
of change (Sui, 2019) [21].

u(t) = u0 +Kd
de(t)

dt
(2.10)

2.5. CALIBRATION OF SYSTEMS 30

Implemented Controller

When drilling on the laboratory rig, the hoisting system gets used to control the
WOB used to drill the formation. It is important that the selected setpoint is
stable during drilling in order to keep a steady drill rate, and the use of a PID
controller ensures that the error between the WOB setpoint and measured hook
load is minimized, seeing that the WOB is calculated as the difference between
free hanging weight and hook load.

In the past, the PID controller that is used for WOB-control on the laboratory-
scale drilling rig has been running on an Arduino Due microcontroller to calculate
the error between WOB setpoint and actual WOB applied to the formation. With
the new control architecture, a PID controller is run as part of the hoisting pro-
gram in Python (that handles all hoisting-related events) at 60 Hz frequency. A
short illustration of the controller implementation using the simple_pid library
is shown below, where the kP, kI and kD gains can get defined (current gain
values of 1,1,1 given for illustration), and upper and lower thresholds allow the
operator to adjust how prone the controller should be to axial vibrations caused
from vibrations. The rig operator can also select different distances and speeds
for the actuators to move either to add or remove WOB.

The PID controller will move down if the WOB setpoint is > 0.5 kg higher than
the actual WOB, and likewise the controller will only lift up if the overshoot
is more than 1.0 kg greater than the setpoint. If the error is greater than the
permissable overshoot, the control system sends an output to the microcontrollers
(PLCs) to move 0.5 mm in the appropriate direction. If a new command is
received, and an old command is still getting executed in the PLC, the old com-
mand gets overwritten by the new. The WOB data that is sampled in real-time
is filtered using a moving median filter with a window-size of 5 samples, which
combined with 60 Hz frequency has proven to be reliable for WOB control. Since
the maximum allowable axial load of the pneumatic downhole motor shaft is 380
N, the maximum permitted WOB with such motor should never exceed 190 N
accounting for axial vibrations. There is however a great challenge to tune the
PID controller gains when the BHA consists of a bendable knuckle joint. For this
reason, test drilling using only a P-controller with kP = 1 has proven adequate.

An algorithm to tune the controller setpoints by measuring the setpoint overshoot,
controller response and time to stabilize on setpoint can possibly be created in

31 CHAPTER 2. EXPERIMENTAL SETUP

the future by performing a grid search of for instance 103 combinations of kP, kI
and kD.

2.6 Downhole measurements

The downhole sensor (LSM9DS0) is a 9 degree of freedom (DOF) sensor, with an
acceleration range of 2 to 16 g, a magnetometer sensitivity of 2 to 12 Gauss and
a gyroscope scale between 245 and 2000 degrees per second (DPS). The following
sections will describe how inclination, azimuth, and calibration of the sensors in
the sensorsub is performed for the sensor sub.

2.6.1 Inclination and azimuth calculations

The downhole sensors are configured with sampling rate of 60 Hz using the
Adafruit Trinket M0 and the pulse-algorithm implemented to request and receive
measurements synched across all sensor sources (downhole sensor package and
surface sensors). The inclination is calculated using the downhole accelerometers:

Inclination =
180.0 ∗ arccos(accelerometerz√

accx∗accx+accy∗accy+accz∗accz

π
) (2.11)

The azimuth could normally be calculated using the relationship between the
magnetometer measurements on the y- and x-axis:

Azimuth =
180 ∗ arctan(magnetometery

magnetometerx

π
) (2.12)

The fluctuation between 360 and 0 degrees can be calculated by a simple if
statement so that if azimuth < 0, azimuth = azimuth+ 360degrees.
While the sensor is 90 degrees inclined however, there is a need to calculate a tilt-
compensated azimuth, which can be performed according to the example provided
in [23]. First, the magnetometer values get calibrated according to an algorithm
that measures the minimum and maximum magnetometer values while the sensor
is rotated in any direction for 30 seconds. The raw magnetometer measurements

2.6. DOWNHOLE MEASUREMENTS 32

get corrected by the following equation:

magnetometerx/y/z

=
(magnetometerx/y/z−min −magnetometerx/y/z−max)

2

(2.13)

Note however that the currently used technique only ensures that the constant
offset gets removed. The accelerometer measurements can then be converted to
degrees by the equations:

Accelerometerx−angle = (arctan(
accelerometery
accelerometerz

)) ∗ 57.296 (2.14)

Accelerometery−angle = (arctan(
accelerometerz
accelerometerx

) + π) ∗ 57.296 (2.15)

The constant 57.296 refers to the conversion factor from radians to degrees. Fur-
ther, the accelerometer values get converted to values between -180 and 180
degrees, and the azimuth can be calculated as shown in equation 2.12. One then
needs to normalize raw values from the accelerometer measurements. This can
be achieved by equations:

Accelerometerx−normalization

=
accelerometerx√

accelerometer2
x + accelerometer2

y + accelerometer2
z

(2.16)

Accelerometery−normalization

=
accelerometery√

accelerometer2
x + accelerometer2

y + accelerometer2
z

(2.17)

The pitch (commonly referred to as inclination), and roll is then calculated from
the equations:

Pitch = arcsin(Accelerometerynormalization) (2.18)

33 CHAPTER 2. EXPERIMENTAL SETUP

Roll = − arcsin
(Accelerometerynormalization)

cos(pitch)
(2.19)

Finally, we can calculate the compensated values for the magnetomer measure-
ments:

magnetometerx−compensated

= magnetometerx × cos(pitch) +magnetometerz × sin(pitch)
(2.20)

magnetometery−compensated

= magnetometerx × sin(roll) ∗ sin(pitch) +magnetometery × cos(roll)

−magnetometery cos(roll)−magnetometerz × sin(roll)× cos(pitch)

(2.21)

The tilt compensated azimuth can then be calculated from the relationship be-
tween the x- and y-compensated magnetometer values:

tiltcompAzimuth =
180× arctan(

magnetometery−compensated
magnetometerx−compensated

)

π
(2.22)

2.6.2 Calibration of sensors

Magnetometer Calibration

As mentioned, the magnetometer is calibrated by rotating the sensor sub in any
direction for 30 seconds, while constantly measuring and saving the magnetometer
measurements in the x-,y- and z-axes. After the experiment, the floor and ceiling
values (Python command to determine the minimum and maximum value in
a series of data) get identified. Equation 2.13 shows how the magnetometer
measurements are then corrected for the difference between the maximum and
minimum measurement.

Accelerometer Calibration

The accelerometer is similarly calibrated, however while the magnetometer was
only rotated for 30 seconds, the following procedure is carried out:

2.7. DOWNHOLE POSITION TRACKING 34

• 1) Rotate the accelerometer for 30 seconds, saving all data and then calculate
the maximum and minimum value at normal rotation

• 2) Apply a median filter, for instance with a window size of 60 samples (1
second at 60 Hz), and define the median value as the 0 point for x/y/z axis.

• 3) Based on drilling, perform steps 1 and 2 for the following cases: no
movement, normal drilling, aggressive drilling and severe drilling state, so
that a classification chart to classify the severity of the vibrations can be
used to guide the machine, based on measurements.

An example of how the accelerometer scale can be visualized is:

Vibration level (severity) -4 -3 -2 -1 0 1 2 3 4
Value -6 g -4 g -2 g -1 g 0 g 1 g 2 g 4 g 6 g

The final implemented scale and visualization is shown in Figure 2.32.

Gyroscope Calibration

The gyroscope is not being used due to time-constraints caused by delays in the
3D-printing of sensor house, which left only a month to experiment with downhole
sensor sub and trajectory calculations.

2.7 Downhole Position Tracking

The downhole position can get tracked as shown in the table presented in Ap-
pendix B. An illustration is given in Figure B.1, that illustrate how, by measuring
the change in drill bit elevation every five seconds, and then using the median
value taken for a five second window to calculate the inclination and azimuth, the
mean depth (MD), true vertical depth (TVD), horizontal build (x-displacement),
azimuth offset (y-displacement) and estimated inclination and azimuth measuring
error can be calculated. By calculating each of the above over a five second win-
dow, referred to as a section in the figure, the sum of the sections can be added
to track the position of the bit.

Based on Appendix B, Figure 2.27 can be generated, which illustrates three 2-D
plots of the well trajectory; the rock is seen from either the side (well profile
visualization), the top (bird´s eye view to visualize the azimuth offset per hor-
izontal build), and the rear (azimuth offset along the TVD). In the figure, the

35 CHAPTER 2. EXPERIMENTAL SETUP

red line marks the well trajectory calculated, while the dashed pink lines mark
the maximum and minimum cumulative offset, based on an error estimate for
inclination of 10 degrees and 20 degrees for the magnetometer. A pre-programmed
well trajectory, as marked with black, can be calculated for each section of five
seconds, which can then be used to steer the inclination by either increasing or
decreasing the weight on bit on the laboratory-scale drilling rig (see chapter 9).
In the example shown in Figure B.1 and Figure 2.27, it can be observed how the
well trajectory can get tracked from arbitrarily generated sensor measurements if
KOP is assumed to be at 165.15 mm measured depth (MD). A selection of the
program written in Python to achieve same functionality in real-time using live
measurements is provided in Appendix H.

Figure 2.27: Proof of concept; downhole position tracking.

For details regarding autonomous steering of the inclination, by varying the WOB,
see section 9.4 as well as a selection of the code presented in Appendix D.

2.8 Software Architecture

The control system is based on multithreading where the programs or modules
each communicate through the gRPC-API. In short, the control system short
consists of a series of microservices running as parallel processes to distribute
the work load among multiple threads on the 12-core CPU in place. With the
exception of some variables that are made available to all microservices that
subscribe to them, the dataflow in the control system is unidirectional, i.e. from
the first layer (layer 1 - left), to the last (layer 7 - right). A prototype of the
dataflow is illustrated in Figure 2.28:

2.8. SOFTWARE ARCHITECTURE 36

Figure 2.28: Concept illustration of the uniflow gRPC modules that combined
make up the control system on the rig.

2.8.1 gRPC

gRPC is an open source Remote Procedure Call (RPC) developed by Google.
RPC is a communication platform where the program (identified as the caller)
performs remote operations on a server. As mentioned above, gRPC was ini-
tially launched by Google. The framework allows for communication between
a variety of platforms and programming languages, and while traditional API’s
share data through formats readable by humans, the gRPC uses protocol buffers
for transparent communication between client and server applications. Protocol
buffers are communication platforms that are not readable by humans. The user
creates the server client implementation. This kind of structure is beneficial for
many reasons, but the main one is that both size of buffer files are smaller and
communication times are much higher than traditional communication platforms
(Guggedal & Steinstø, 2019) [12].

After the final changes were made in accordance with the directional drilling
strategy, the following figure to visualize the dataflow in the control system was
made:

37 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.29: Implemented control system illustrating layers and dataflow inter-
nally and externally with PLCs and sensor equipment.

2.8.2 API - OPC UA

An Open Platform Communications Unified Architecture (OPC UA) was used
for API implementation on the rig in order to integrate a plug-and-play (PnP)
concept on the drilling rig. Using OPC UA and gRPC, a client can connect to
the rig using the API as illustrated in Figure 2.30. This enables the option for the
client to remotely execute two different types of interactions with the rig: request
information such as drilling data or exert commands to control the rig (Steinstø
& Guggedal, 2019) [12].

2.9. GRAPHICAL USER INTERFACES (GUIS) 38

Figure 2.30: Illustration of the API (Steinstø and Guggedal, 2019) [12].

2.9 Graphical User Interfaces (GUIs)

Two GUIs have been developed in 2018 and 2019 for the laboratory scale drilling
rig. These are a visualization GUI to track the progress of the autonomous control
system and drilling performance Figure 2.31 and a downhole well trajectory
environment, also showing the real-time position, inclination and orientation of
the bit Figure 2.32.

Figure 2.31: GUI is equipped with gauges and parameters showing the control
system setpoints and sensor feedback as well as building a well log
in real-time for interpretation of all stages of the drilling operation.

39 CHAPTER 2. EXPERIMENTAL SETUP

Figure 2.32: GUI consists of both real-time feedback from downhole sensor and
downhole vibration model, as well as real-time tracking of the well
trajectory position with respect to the pre-programmed trajectory to
steer towards.

The GUIs have been created using PyQT and QtEditor and are located in their
own gRPC module in the control system.

Chapter 3

Theory

3.1 Data Management

3.1.1 Data Mining

Data mining (DM), or extraction of new and useful knowledge from existing data,
can be handled in several different ways and is an important step in the process of
understanding a problem. It will depend on both the system and the complexity
of it, and can be executed using several methods ranging from those being fully
automatic to others requiring manual collection of for instance laboratory test
results, that be either sensor information or observations. The data collected to
develop models in this thesis was collected both automatically and manually using
the test rig at the University while running experiments carefully put together.
From the collected data, one can further process, analyse and identify hidden
trends or patterns using different statistical models and algorithms.

An important aspect of data mining is the quality of the data gathered. Noisy
data can be particularly challenging to work with because a model will only per-
form at the quality level of the data available to it. When collecting data, it is
important that the data gathered can be used along with the existing pool of data
from previous runs. If no data has previously been collected, it is important to
establish good rutines and to be consistent in all phases such as calibration, sensor
ranges, operational thresholds and so on. This will ensure that the results are
repeatable and comparable, and that datasets collected from different experiments
can be used to cross-validate results obtained from previous experiments (Hastie
et al., 2016) [24].

40

41 CHAPTER 3. THEORY

Another aspect to consider is the size of the dataset. With a large dataset, the
computational time will increase making the prediction process a lot more time
consuming. Selection of appropriate algorithms to complement the data available
is therefore an essential part of the DM process. Figure 3.11 shows how different
supervised learning methods work for different sets of data (Hastie et al., 2016)
[24].

Usually only a small portion of the data gathered gets used for prediction. Even
if many models can perform well with only a few features, because of domain
knowledge one rarely can select the most optimal features or create new artificial
ones just considering the data. Feeding the model with too much data could
cause overfitting, which will make the model perform poorly when given new
input data due to the model becoming overly complex, for instance if too many
parameters get used. Another challenge is that the model should not only be able
to predict, but also identify correlations between the different features of the data
given (Hastie et al., 2016) [24].

The most popular models used for DM are the ones based on tree structures.
These structures are the easiest models to build and usually do not require a lot
of data preparation to work. They can mix numeric, categorical predictor values
and missing data. The many advantages of prediction trees almost make them
perfect models to use, but there is particularly in one area they all have a lack
which is inaccuracy. Inaccuracy causes them to rarely provide a good enough
prediction when compared to best achievable results based on the data available
(Hastie et al., 2016) [24]. Tree structures and other models will get further dis-
cussed later in this chapter.

3.1.2 Data Quality

In order to develop accurate models that have applications for drilling and well
engineering, major importance lies in ensuring that the data is of high quality.
According to Good and Hardin, the following are common errors to statistical
procedures (Good and Hardin, 2006) [25]:

• the same dataset is used for training (hypothesis) and validation (testing),

• data is collected that either describes the wrong phenomena or are neither
random nor representative,

3.1. DATA MANAGEMENT 42

• the wrong variables get measured,

• either inappropriate or inefficient statistical methods get used,

• statistical software with inappropriate defaults gets used,

• the findings in the data are inadequately communicated,

• models get extrapolated outside of the range of observations, and

• failing to validate models.

Good and Hardin recommend that the following steps are carried out (Good and
Hardin, 2006) [25]:

• review quality assurance reports,

• describe the dataset, i.e. calculate the maximum, minimum, standard devi-
ation for all variables and compare these against predefined ranges, as well
as produce box and whisker plots of the variables,

• remove duplicate values in the dataset,

• verify the physical units of the measured data,

• characterize the extent of, and remove missing data, as long as all popula-
tions still are encompassed in the samples,

• remove outliers only if the outliers are signs of poor data that are extreme
values and well separated from the main set of observations,

• confirm that for each variable, a serial correlation is computed and a four-
plot (containing time plot, lag plot, histogram and Normal Q-Q plot) is
generated.

43 CHAPTER 3. THEORY

Figure 3.1: Depiction of a typical Four-plot including a time plot, lag plot, his-
togram and normal Q-Q plot (Good and Hardin, 2006) [25].

In the next sections, the theory behind the following data processing methods
gets described:

• Data aggregation and collation,

• describing the data,

• noise reduction methods,

• data normalization and/or standardization,

• evaluating the feature importance,

• down sampling of data.

The methodology that has been used to process and thus ensure sufficiently high
quality in our datasets that get used to train and validate the models is given in
chapter 5.

3.1. DATA MANAGEMENT 44

3.1.3 Some challenges concerning data aggregating

Data is collected from multiple sources in real-time which causes some common
challenges to merge the data. Since data could originate from either surface sen-
sors, downhole sensors, control system outputs or manual inputs that describe
the operation, all data should be synchronized with a common time reference. As
an example, the clock time in every microcontroller or PC, varies slightly.

If the sampling frequency is low, for instance 10 Hz (10 samples per second), there
is typically only a need to calibrate each system ahead of the operation and in
regular intervals to prevent that the clock times get out of synch. If however
one is working with data sampled at hundreds if not thousands of Hz (number
of samples per second), only a small offset in synchronization could cause the
data to become highly inaccurate once the data gets merged with data from
other sources. One solution to this problem is to transmit a common pulse to all
sensors or microcontrollers, requesting measurements from all sources simultan-
iously. Through measuring the time difference between each system´s response
to sending a package of data back to the control system, the delay in each system
can be accounted for. This ensures that for instance a measurement that rep-
resents the bottom hole pressure (BHP), i.e. the pressure at the bottom of the
well, at a given time can be compared to the stand pipe pressure (SPP) on surface.

Another challenge when aggregating data from several sources is calibration. Be-
fore data logging begins, all systems should get calibrated to ensure that data
from each operation has the same base value, unit, and threshold. One example
could be if the mud weight is given in kilograms per cubic meter (kg/m3) for one
experiment, while in the other the same variable is provided in pounds per gallon
(ppg). Another example could be if the hook load gets measured and calibrated
for one bottom hole assembly (BHA) configuration, and the hook load is not
updated for another configuration for a later experiment or operation. In both
cases, the data can be merged if the user is aware of the variations in units or
BHA weight. There is however no way that the computer can automatically work
with such differences in the data, unless the variations in the data are inserted as
metadata that the computer can access and use to correct the data with, which
should not be assumed.

Also, there might be a difference in terms of which data and when the data is
collected for each operation. If for instance a sensor has failed between two logging

45 CHAPTER 3. THEORY

operations, the data in one of the datasets might be either missing, corrupt, or
wrong. If for instance data is missing, the user can use techniques such as interpo-
lation, or keep the last datapoint that was measured until a new measurement is
received. If the data is corrupt, there might be a need to discard all data taken in
a certain time interval. If the data is suspected to be wrong, one should consider
to evaluate the standard deviation, maximum and minimum values, changes in
the operation or drilling conditions that can explain the change or possibly discard
the data due to the uncertainty. In the event of merging datasets that have been
sampled at different frequencies, there might be a need to downsample the data to
a common sampling frequency, or use a method such as interpolation to increase
the number of samples for those sensors that output a lower sampling frequency
than the others.

3.1.4 Importance of utilizing a database for data storage

During every drilling experiment, the sensors installed on the rig gather a large
amount of timestamped data. These timestamped data are commonly known as
time series data. There have been many drilling experiments conducted over the
years and a lot of data has been collected, either in real-time using a Python script
that saves real-time data received directly from Arduino Due microcontrollers or
for post analysis using a high-frequency data acquisition (DAQ) module. In the
first years, the data was stored in flat text files and there was a lack of organization.
A large amount of the data lacked proper labeling or sorting. In 2017, the team
that worked with the laboratory-scale drilling rig received help to implement a
database in PostgreSQL.

The database and web application that in the past has served as a user interface
for the database and hosted both the application and the database, was hosted
externally. However, this database was implemented in a conventional relational
database management system (RDBMS). Storing time series data in a RDBMS is
not very efficient in the long term. There are more efficient database technologies
out there that are specialized for this kind of task. Furthermore, the hosting
infrastructure in use was not very reliable.

After a team member properly researched available solutions for time series data,
the range of alternatives was narrowed down to two possible candidates; InfluxDB
and TimescaleDB. Both are considered state of the art time series DB systems,
but there were uncertainties as to which system would best fit the rig and data.

3.1. DATA MANAGEMENT 46

In order to compare the technologies, the two DB systems got installed in identi-
cal environments with identical datasets. Then, several queries were run against
both databases and their execution time was measured. Based on the results, the
team concluded that TimescaleDB is a faster and more reliable solution on the
drilling rig. TimescaleDB was created by heavily modifying the architecture of
PostgreSQL, a well-known RDBMS. It is offered as an extension of PostgreSQL
and enhances its functionality and performance. TimescaleDB still preserves all
the features and capabilities of a conventional RDBMS. Data is organized in
tables with columns, rows, indexes, primary keys, foreign keys, constraints and
all the desirable features usually reserved for relational databases. TimescaleDB
satisfied both of our requirements where both leverages the features of relational
database systems, and also offers great query optimization for time series data.
This is convenient in order to not have to implement two different databases; one
to store sensor data and another to store rig state data.

In order to easily manage the data that gets stored in the DB, an application
that serves as the interface between the users and the DB is required. A sepa-
rate small application is also required; responsible for pushing the data to the
database. The sensors’ signals are sampled at a specific frequency and these data
are stored in text files on the computer. A short Python script gets executed on
this computer, which reads the text files and pushes the data to the database.
The script can either be executed manually by the conductor of the experiment,
or it can be scheduled to be executed at a specific time of the day. For simplicity,
the scheduling can be achieved by using Task Scheduler, which is a built-in job
scheduler program of the Windows operating system.

To make the data in the DB easily accessible, a user-friendly platform to access
the data was created in the team. This is solved by writing a web application,
where team members can log in and manage the stored data. The user can access
and download the data gathered from either specific experiments, or a partic-
ular subset of those data. The user can then choose to visualize the data by
generating graphs, query experiments using different parameters, manage which
variables that the database shall contain, register the drilled rocks (label the rock
types, experiments, add comments etc.), manage access to the database, and so on.

47 CHAPTER 3. THEORY

Figure 3.2: Illustration of how data is visualized after the user has selected
which sensors and sample resolution to capture. The data can then
be exported as a CSV-file.

The back end of the DB was developed using the Python programming language.
Django was used for the web framework. In the frontend, JavaScript, hypertext
markup language (HTML) and cascading style sheets (CSS) got used. The fron-
tend libraries and frameworks used are Bootstrap, jQuery, jQuery user interface
(UI), Popper.js and Chart.js. The database is hosted at the University of Sta-
vanger, while data can be pushed from any location by running a script that can
also be downloaded from the web interface where the user accesses the DB. As
is illustrated above in Figure 3.2, the user can select the experiment that was
run from a list containing all uploaded experiments, and quickly visualize data
from the sensors that shall get exported. In addition, the data can easily be
downsampled to for instance 10% of the raw data. When working with datasets
of millions of rows (measurements) and between five and thirty columns (sensors
or features), this immediately allows the user to select which data-frequency to
work with, rather than having to import a large dataset, carry out either a linear
downsampling process and then save the data as a new file.

3.1.5 Downsampling the data

For post analysis, the time to work through prediction algorithms and other
processes can be tremendous, and in some cases even cause computer crashes
when working with large sets of data. In order to cope with this challenge, an
important part of data processing is to downsample the data. Other reasons to

3.1. DATA MANAGEMENT 48

downsampe the data with respect to our work, include:

• When working with the data, equally high results get obtained even when
data is signficiantly downsampled from 9600 Hz to less than 100 Hz. Down-
sampling the data allows us to work with several large datasets combined
rather than having to develop separate models, or only very specific objec-
tives.

• It suits the control system architecture of the rig better because frequency
of the control system is about 60-100 Hz, suggesting that models that get
implemented have been developed at approximately the same frequency.

When down-sampling data several considerations must be taken into account.
It is particularly important that necessary data is not lost when downsampling
and therefore, a combination of both linear and random downsampling has been
tested and evaluated. A discovered challenge with using linear downsampling
in the model creation phase was that critical information such as for instance a
vibration frequency could get removed. There is of course no guarantee that the
same information can not get lost when using random downsampling by extracting
a certain percentage of random samples from the dataset.

3.1.6 Describing the dataset

Before a dataset can be used to train a model, the user should aim to describe
the data in the dataset by calculating the count from each data origin (to identify
potential missing data), the mean, standard deviation, minimum value, maximum
value, P25, P50, P75 and so on. This can be done by either using a function in
for instance Python such as dataset.describe():

Figure 3.3: Various information about the data present in the dataset can be
obtained by using the .describe() function in Python.

Another way to interpret the data is to plot each of the data columns, or features,
against each other, to visually inspect the distribution and ranges in the dataset.

49 CHAPTER 3. THEORY

Figure 3.4 below is obtained by plotting five different features against each other
in a pairplot using MATLAB, where the three different colors represent three
class labels, or in this case rock formations, that the observations belon to:

Figure 3.4: MATLAB pairplot of data from five drilling variables (features). A
histogram for each sensor is shown along the diagonal.

As can be observed from the diagonal, the data distribution for each feature is
given. If one wishes to inspect the distribution of a single feature or statistical
properties of for instance different rock samples, a box plot or heatmap, as shown
below, can provide valuable information that might not be easily interpretable by
only considering the raw data:

3.1. DATA MANAGEMENT 50

Figure 3.5: As illustrated, a box plot (left) shows the normalized values for rate
of penetration (ROP) for three different formations, while a heatmap
(right) shows distribution of sensor data for the same three forma-
tions.

In the left part of Figure 3.5 (box plot), the x-axis represents the class labels
for the three different rock formations used in the pairplot created in MATLAB
above. As can be observed in the box plot, an outlier separated from the rest of
the observations, exists for the third label class.

3.1.7 Noise Reduction Methods

Before a model can be developed using machine learning, pre-processing and
cleaning the dataset is essential. The results will only be as good as the data fed
through the algorithm which means that one should be meticulous when preparing
the data for analysis. Cleaning the data can include several steps including, but
not limited to, outlier removal, removing invalid data, removing missing data,
duplicates, and so on.

Invalid Data

Invalid data can cause issues when developing algorithms. For the drilling data
captured using the laboratory drilling system, invalid data would typically be
data measured outside of the specific sensors measurement range. For example,
if torque in the top drive is measured in the 0 to 8.59 Nm range, an invalid
measurement would be 11 Nm. For the case of missing data, using a programmed
script all measurements outside of the allowed range gets overwritten with Not
a Number (NaN). Then, the amount of NaN in the dataset got counted before a
decision was made as to whether the experiment would have to be repeated or
whether the entire row of data from all variables would get dropped (in order to
have the same amount of data in each column of measurements).

51 CHAPTER 3. THEORY

Figure 3.6: First, all values that fall outside of the allowed range get treated as
false data and is replaced by NaN. The amount of rows with invalid
data is then counted.

Figure 3.7: Since only a small portion of the dataset in the figure above contains
invalid measurements, all rows that contain NaN gets removed.

If a significant part of the dataset falls outside of the validity range, an approach
can be to rather than replacing the values with NaN and later remove the complete
row of observations, write the value to be either a very high or very low number.
One could then keep measurements from the other variables (sensors) in the
dataset, but simply discard the measurements in the single variable where invalid
data is present.
Other measurements that get removed are NaN values that occur for different
reasons. From the data extracted from drilling with the laboratory drilling rig,

3.1. DATA MANAGEMENT 52

less than 5 % of the dataset will typically contain invalid values after the outside
of range- and NaN-check is performed.

Missing Data

There can be a number of reasons for why data is missing in a dataset. One com-
mon cause is when different sensors get sampled with varying sampling frequencies,
for instance 10 Hz for one sensor and 20 Hz for another. Another common cause
could be hardware (electrical) failure, where the signal is lost for a short duration
of time. A third cause could be that the data is held up in the buffer where the
PC stores the data short-term before it gets used.

To handle missing data, two common techniques can be used. These are interpo-
lation or filling the data with the last known value. Three common interpolation
techniques that can be used are linear, quadratic or cubic (Bakri et al., 2014) [26].

For linear interpolation, a straight line is drawn between two points so that (Bakri
et al., 2014) [26]:

F1(x) = b0 + b1(x− x0) (3.1)

If more than two points exist, higher polynomial orders such as quadratic, cubic
etc. can be used:

F2(x) = b0 +b1(x−x0)+b2(x−x0)(x−x1), ..., bn(x−x0)(x−x1)(x−xn) (3.2)

b0, ..., bn can be found from equations;

b0 = f(x0) (3.3)

b1 =
f(x1)− f(x0)

x1 − x0

(3.4)

53 CHAPTER 3. THEORY

bn =

f(xn)−f(xn−1)
xn−xn−1

− ...− f(x1)−f(x0)
x1−x0

xn − x0

(3.5)

An approach to evaluate which interpolation technique that is most optimal to
fill the missing data could be to fit the data to a particular distribution. One
can then use various performance indicators to evaluate the error between the
interpolation-filled value and the actual data. One performance indicator could
be to calculate the Root Mean Squared Error (RMSE) (Bakri et al., 2014) [26]:

RMSE = (
1

N
×

n∑
i=1

[Pi −Oi]
2)

1
2 (3.6)

Where; N denotes the number of imputations (substitutions of missing data), Oi

the actual measurement and Pi the interpolated data point.

Outlier Removal - Interquartile Range (IQR)

Outliers are data that are situated away from the main observation window. An
important factor to consider before removing outliers is to find out whether they
consist of relevant information or are the result of noise, i.e. can you remove the
outliers without deleting valuable information from the data? In some datasets, for
example when dealing with kick detection or stuck pipe detection, the important
information could be apparent in the outlying points. In our research several
techniques have been evaluated for optimal outlier removal. The Interquartile
range method (IQR-method) has been identified as most optimal when dealing
with outliers in the drilling data. Using this technique, the Q1 and Q3 quartiles
must first be defined. The IQR range, which gives the middle 50 % of the data,
is then defined as follows (Holdaway, 2014) [27]:

IQR = Q3−Q1 (3.7)

Then, using the following two relations, one can find the lower and upper windows
that contain outliers according to the method (Holdaway, 2014) [27]:

Lower Range= Q1− 1, 5 ∗ IQR (3.8)

3.1. DATA MANAGEMENT 54

and

Upper Range= Q1− 1, 5 ∗ IQR. (3.9)

3.1.8 Normalization and standardization of the data

Linear Feature Scaling (LFS)

When working with drilling data where the variables or features originate from
different sources or sensors, an important task is to scale all data to a common
unit range, ideally so that data that is normal distributed gets represented as
values from 0 to 1. This can be achieved through performing a Linear Feature
Scaling (LFS), by considering the minimum and maximum value of each variable
(James, 2016) [28].

For a set of values xj = [x1j, x2j, . . . xnj] where a = min(xj) and b = max(xj) –
min(xj):

f(x)= x−a
b

=
x−min(xj)

max(xj)−min(xj)
(3.10)

While LFS provides a sensible method to scale data that have no predefined range,
this technique could still cause a challenge if a significant outlier is present in the
set of values. The outlier, which could be either very large or very small, would
then cause the rest of our values to be skewed either towards 0 or 1, even if the
original values had a common distribution (James, 2016) [28].

Another commonly used technique is standardization, which refers to the process
of subtracting the mean value of the set of values for a variable from each measure-
ment and dividing by the standard deviation of the set of values (James, 2016) [28].

f(x)= x−x̄
σ(x)

=
x−

n∑
i=1

xij

n√
n∑
i=1

(xij−µ)2

(n−1)
)

(3.11)

Where σ represents the standard deviation, x̄ the mean value and µ the true mean
value for the set.

55 CHAPTER 3. THEORY

Rank Scaling

If one only needs to know the relative size of the data, for instance if a value
is relatively high or relatively low, rank scaling can be a useful technique. If
one considers a set of values where Oj(xij) = 1 represents the highest value,
Oj(xij) = 2 represents the second highest value and so on, every value in each
variable can be transformed into a score from 0 to 1 by setting (James, 2016) [28]:

f(x)= m−Oj(x)

m−1
(3.12)

If for instance the transformed measurement would have a score of 0.5, this would
suggest that the measurement is higher than 50 % of the measurements in the set
of values that has been considered (James, 2016) [28].

Normalizing drilling data in practice

For our case, we are only interested in representing the measurements for each
variable relative to the threshold that each system can measure. If we first con-
sider the case of weight on bit, or hook load, we know that even if the system
is capable of providing a hook load of approximately -400 N (tension) to 400
N (compression), the load cells are configured to measure -300 (compression) to
300N (tension) of force. Therefore, the first step of processing the data would
be to remove all measurements where the data is invalid, leaving only those mea-
surements where the hook load is within the (-300 N, 300 N) range. In terms of
normalization however, there is no guarantee that a measurement representing
the absolute maximum and minimum values in the sensor threshold occurs, and
in real-time, there would be no way to transform the data. This is handled by
adding a hardcoded maximum and minimum value for each variable.

As is illustrated in the Figure 3.8 below, two rows of hardcoded maximum and
minimum values get added at the end of the dataset. These are user defined
boundary conditions for each variable, in order to ensure that a measurement of
for instance 750 revolutions per minute in the top drive corresponds to 0.5 (if 0.0
corresponds to 0 RPM and 1.0 to 1500 RPM).

3.1. DATA MANAGEMENT 56

Figure 3.8: Two rows of maximum and minimum values are added as additional
rows at the end of the dataset.

After a minimum maximum scaling operation has been run in order to normalize
the data, we can check and verify that the last two rows of data (where hardcoded
boundary conditions for each variable was added) is now 1.0 (corresponding to
the maximum boundary) for the first row and 0.0 (minimum boundary) for the
second row.

Figure 3.9: The dataset is normalized by running the MinMaxScaler function
from the Scikit Learn library in Python [29]. The red boxes indicate
the rows that were added in Figure 3.8.

This technique is especially helpful when trying to correlate drilling data that is
captured with one configuration, or one set of sensors with data captured using a
different set of sensors, by using the same threshold for all cases.

57 CHAPTER 3. THEORY

3.2 Machine Learning Theory

The methodology used to develop and evaluate the different machine learning
models is illustrated in Figure 3.10:

Figure 3.10: Illustration of the seven steps that go into the development of
machine learning models used for various classification objectives.

3.2.1 A Short Introduction to Supervised Learing

When developing a method for supervised learning we use a model-based approach.
In supervised learning there is an observation, xi, followed by a response, yi. The
goal is to train a given algorithm into predicting a response when given the ob-
servation, xi. Other uses could be to simply have better understanding of the
link between the observation and response (Hastie et al., 2014) [30]. Supervised
learning is commonly used for several different tasks ranging from engineering
applications to cultural behavior.

When build a model, an important part of making the algorithm accurate is to
train it for the same conditions or environment that you want the model pre-
diction to work in. For example, if you want to predict at which dates a given
plant will start to flower during summer, you could have a dataset with historical
information about when the plant will blossom. If you then want your prediction
model to give realistic estimates where you live, it’s important to train the model
using data that is representative for the same location, or at least approximately
the same conditions. The same will apply for formation classification and chal-
lenges considered in this study. If the data is based on laboratory measurements
taken under laboratory conditions, the algorithm will likely score the highest on
laboratory data taken in the same conditions, unless the physics and conditions
of the real drilling scene can be replicated for the experiment.

3.2. MACHINE LEARNING THEORY 58

Supervised learning is divided into two groups; classification and regression.
Which group a classification objective falls under depends on whether the data is
categorical or numerical. As an example, we will demonstrate a numerical case,
as this is of bigger relevance to the scope of classification in this thesis.

Linear regression is a commonly used method to identify the correlation between
numerical data. For such a case, the model is given the response value y and
the predictor variables x1, x2, ..., xn. Using these values, one can create a linear
model, ŷ given by equation 3.13 (van der Aalst, 2016) [31]:

ŷ = f(x1, x2, ..., xn) = a0 +
n∑
i=1

aixi (3.13)

For each value, a given error |yj − ŷj| can be calculated. Furthermore, the sum of
squared errors, J , can be calculated using equation 3.14 for m instances:

J =
m∑
j=1

(yj − ŷj)2 (3.14)

This technique is just one of several approaches that can be used to solve regression
problems using supervised learning (van der Aalst, 2016) [31].

3.2.2 A Short Introduction to Unsupervised Learning

As described previously, supervised learning works by analysing a dataset con-
sisting of observations, xi, that all have a response, or class, yi. What differs
when it comes to unsupervised learning is that it works only by analysing the
list of observations, xi, and areas of application can include finding hidden layers,
visualizing the data better or identifying hidden structures or patterns in the
observations (Hastie et al., 2014) [30].

Furthermore, unsupervised learning is much more challenging than supervised
learning because there is no real answer to the problem since there is no response,
yi, to the observations, xi (Hastie et al., 2014) [30].

Unsupervised learning is of growing interest since the methods are applicable
in most settings where statistics are important. Where a model in only a short

59 CHAPTER 3. THEORY

duration of time can be used to organize vast sets of data, consisting of millions
if not billions of observations, it would take a human a lifetime to analyse and
organize it, if even possible. An examples of an application for unsupervised
learning is a cellphone application that can suggest when you should go grocery
shopping based on when the activity level or queue in your local store is low.
Such suggestion can be created by analysing and organizing data for when other
customers typically visit the same store, and the level of complexity behind such
analysis is only limited by data available. Another example of an application can
be to identify genetic correlations in a population of people that all have a specific
kind of cancer, and to finetune their treatment using a specifically tailored recipe
for medication (Hastie et al., 2014) [30].
For drilling, an example of an appliacation using unsupervised learning is to
identify the most optimal WOB for a well section to ensure a high drilling efficiency,
for instance by evaluating the WOB setpoints where the mechanical specific energy
(MSE) is low.
There are several different ways of identifying subgroups, for instance visualizing
or simplifying the data. Common techniques include Principal Component Anal-
ysis (PCA) and clustering. PCA is used to find low-dimensional representations
of the data that explain the variance of the data properly, while clustering will
locate homogenous subgroups in the dataset (Hastie et al., 2014) [30].

Principal Component Analysis

PCA is a method of analysing small or large datasets. Whether only a few hundred
or even millions of observations exists, PCA method extracts the numerical values
from the variables and calculates a set of new orthogonal variables called principal
components, hence the name Principal Component Analysis. The benefit of using
this method is to extract only the required information to explain the variance
in the data and thus reduce the size of the dataset by keeping only the valuable
information required for prediction and classification. After creating the principal
components, the quality of the model can be evaluated by cross validation (Hervé
and Williams, 2010) [32].

The principal components are found using Singular Value Decomposition (SVD)
and depend on the eigen-decomposition of semidefinite matrices. This is done
by finding the components by SVD of the data table X. The table that is to
be analysed by PCA consists of I observations that belong to J variables. The

3.2. MACHINE LEARNING THEORY 60

matrix X is described as I×J . The matrix X has a rank L where L ≤ min{I, J}.
The matrix, X, then has the following SVD (Hervé and Williams, 2010) [32]

X = P∆QT (3.15)

where P is the I × L matrix and Q is the J × L matrix of the right singular
vectors, while ∆ gives the diagonal matrix of the singular values. Then, using
the components obtained from the SVD of the data in table X, where X is given
by Equation 3.15 the relation I × L, given by F, is obtained by the following
equation (Hervé and Williams, 2010) [32]:

F = P∆ (3.16)

Furthermore, Q gives the coefficients of linear combinations needed to calculate the
coefficient scores. It can also be used to find the projections from the observations
on the principal components. This is done by multiplying X and Q, i.e. combining
equation 3.15 and 3.16 (Hervé and Williams, 2010) [32], as is shown in 3.17 below:

F = P∆ = P∆QTQ = XQ (3.17)

Clustering

Clustering is a general term and there exists various clustering methods. The con-
cept behind clustering is to group the data into so-called clusters so that a given
observation (point) within a cluster has the same properties as the surrounding
points. When dealing with clustering, one will typically have n different samples
that are each represented by a number of p observations. One can expect some
sort of heterogeneity in the samples which means that there also could be un-
known subgroups within the data. Two different methods of clustering, k-means
and density-based spatial clustering of applications with noise (DBSCAN) are
presented in section 3.4.

3.2.3 Training and Cross Validation

A common way to develop a supervised machine learning model is to randomly
divide a set of observations into two pieces. One piece (for instance 80 % of the

61 CHAPTER 3. THEORY

original data) can be used to train the model, while the other (in this case the
remaining 20 % of the original data) can be used to validate the model and its
accuracy by carrying out predictions on the validation set of observations and
compare them with the class label that the observations truthfully belong to (van
der Aalst, 2016) [31] (DeepAI, viewed 25.03.2019) [33].

A common mistake when splitting the dataset into a train set and a test set is to
not pick random samples. By not doing so, a trend which might exist in the testing
set, but not in the training set can be erronously predicted (since the model is not
trained for such), which in turn can lead to poor performance when evaluating
the model accuracy. One can also risk that the entirety of the population is not
represented in the training data, causing the model to be inadequately trained,
since a phenomena that has been captured in the observations and original dataset
does not make it to the training set.

3.3 Supervised Machine Learning Models

3.3.1 Selecting the most optimal model

Selecting an algorithm

The process of selecting an algorithm, optimizing the input parameters for the
model, training the model, evaluating the model performance (score) and finally
cross validating the model on a fresh dataset may seem like a tedious and com-
plicated process. Fortunately, if selecting the correct programming language and
libraries, the process can become both quick and rather simple. Python is by
many viewed as the go-to programming language for machine learning, due to its
richness in available libraries for algorithms and scripts. Python will therefore be
used from chapter 4 and forward as an alternative to research that in the past
has been performed using MATLAB.

According to (Hastie, Tibshirani and Friedman, 2016) [24], the following table
illustrates charachteristics of some different learning methods, to give an indication
on when the different models are applicable.

3.3. SUPERVISED MACHINE LEARNING MODELS 62

Figure 3.11: Charachteristics of different machine learning algorithms [24].

As has been mentioned in the previous sections, different use cases require dif-
ferent approaches. Before one can simply select an algorithm, several important
questions should be adressed, that combined can help determine which approach
to take. First and foremost, the user should determine what type of (drilling)
problem he or she is addressing. If the objective is to predict values such as well
pressure or to forecast the production from a well, a regression model that esti-
mates the relationship between different variables is likely the correct approach. If
the aim of the model is to classify different rock formations that have been drilled,
or the size of cuttings that is returned to surface, a multiclass classification model
would allow the drilling engineer to predict which category the data or sample
falls within. If on the other hand, the objective is to identify an anomaly that
differs from the normal drilling state or to analyse the structure in the data, a
clustering or anomaly detection method can be adopted.

Secondly, the user should consider the size, distribution, quality and type of data
that is available. What sampling frequency is typical, and is the same sampling
frequency available for all data? Can downhole measurements be accessed such as
gamma ray logging that measures the emitted gamma rays, or acoustic logs that
measure the interval transit time through the formation or is only surface data

63 CHAPTER 3. THEORY

such as the free hanging weight and surface RPM available? Is the data that will
be used to train and develop the models accurately describing each of the phe-
nomena that the model should predict in the future? The size of the dataset will
decide both the requirements to computational power and the likelihood of over-
fitting (producing a too specific model that only describes the particular dataset)
or underfitting (even failing to produce a model that can accurately predict on
the original training data, thus also making it impossible to produce estimations
or predictions for new sets of data). Finally, one must weigh the need for speed
versus the complexity and amount of data against each other; classification or
forecasting. This applies to both training the model and using the already trained
model to produce a prediction. Some models such as multiclass neural networks
can be very accurate, however require long training times. Others, such as de-
cision tree models could retain a high accuracy yet have much faster training times.

Figure 3.12: Scikit learn (upper figure) [34] and SAS (bottom figure) [35] ma-
chine learning cheat sheets to select the most optimal algorithm.

One approach to determine which model to select once the aforementioned topics
have been adressed is to use a so-called cheat sheet. Cheat sheets allow the user
to very quickly determine what model is possibly appropriate to solve a particular

3.3. SUPERVISED MACHINE LEARNING MODELS 64

problem, rather than having to thoroughly read up on the theory behind each
model, its pro’s and con’s and field of application. Please note that some cheat
sheets often vary slightly from each other, and should only be used as an initial
consideration.

Determining the model input parameters

Once the most optimal algorithm has been selected, one needs to define which
parameters to use to tune the model. This can be done either theoretically or
through a data-driven approach where multiple combinations of different parame-
ter setpoints get tested and evaluated.

In the scikit learn software, two data-driven approaches are provided to tune
the parameters of a classifier algorithm, either randomly from the parameter
space by specifying the distribution, or exhaustively by defining which parameters
and ranges to evaluate. These are Exhaustive Grid Search (GridSearchCV) and
Randomized Parameter Optimization (RandomizedSearchCV). Those parameters
that do not get defined will be left as the default setting in the model. [36].

Figure 3.13: Example of how the GridSearchCV function can be used to identify
the most optimal parameter values.

In Figure 3.13 , an example is given using the Exhaustive Grid Search function
from Scikit Learn on a Multilayer Perceptron (MLP) machine learning model. The
user imports the GridSearchCV function from the Sklearn library and selects which

65 CHAPTER 3. THEORY

inputs (could be for instance integer ranges, estimator objects, cross-validation
splitting category and so on) to test for five different input parameters to the MLP
model in lines 4-10. Since the MLP model has a long training time, please note
that by selecting njobs = 4 as an argument in line 20, we can make use of Python’s
multiprocessing module to test different parameters by building several models
in parallel. This reduces the computational time significantly when evaluating
a large number of model input parameter combinations or working with large
datasets. As is illustrated in the bottom of the figure, the best parameters for
an estimator (built using the most optimal parameters) for the specific training
dataset is printed out.

Evaluating the performance of the model

Once the user has selected the most appropriate model, tuned the model pa-
rameters and trained a model, it is time to print out a preliminary report that
provides feedback on the correlation between the model’s predictions and the
actual class label that the observation(s) belong to. Continuing to use the Scikit
Learn software, the classification report function can be used to print out the
precision, recall, f1-score and support for each of the classes and the average
score for each metric :

Figure 3.14: Classification report evaluates the precision, recall and f1 score by
comparing the model output (predictions) with the class-label, for
instance rock formation label.

The precision value denotes the ratio between the positive correlation between a
model prediction and the class label the observation belongs to (the truth), and
the total number of predictions [37]:

Precision =
truepositivecorrelation

truepositivecorrelation+ falsepositivecorrelation
(3.18)

The recall value denotes all positive correlations by considering the number of

3.3. SUPERVISED MACHINE LEARNING MODELS 66

true positive and false negative correlations [37]:

Recall =
truepositivecorrelation

truepositivecorrelation+ falsenegativecorrelation
(3.19)

To explain the concept of true positive, false positive, true negative and false
negative correlation, an example can be made for an algorithm that is developed
to predict when a kick is about to occur; i.e. when an underbalance in the well
pressure allows formation fluids to enter the wellbore.

• True Positive: the algorithm detects a kick, when a kick is indeed occuring,

• False Positive: the algorithm detects a kick, even though a kick actually
does not occur,

• False Negative: the algorithm does not detect a kick, when a kick is indeed
occuring,

• True Negative: the algorithm detects that a kick is not occuring, when there
is no kick either.

The f1-score can be considered a weighted mean value between the precision and
recall scores, and support denotes how many times each class or label occurs in
the ytest. If a satisfactory result is achieved, the user can move on to cross-validate
the model on a dataset and later deploy the algorithm. If the performance is
insufficient, the user should evaluate the adequacy of the features that have been
used, and the estimator parameters.

3.3.2 Multilayer Feed Neural Network and Back-propagation

Multilayer Feed Neural Network

Multilayer feed-forward neural networks, also known as artificial neural networks
(ANN) is a network of neurons, or processing elements, that each receives an
input signal, processes it and feeds it forward to the next neuron. The neurons
are organized in an input layer, either one or several hidden layers, and an output
layer. The feed-forward term implies that dataflow is unidirectional from a layer
to the consecutive layer. Each neuron is connected with at least one other neuron,
and the importance of each connection between the two is represented by a weight
coefficient.

67 CHAPTER 3. THEORY

Figure 3.15: Illustration of a feedforward neural network consisting of an input
layer, a hidden layer and an output layer, with weights and biases
describing the importance of the neuron-connection in the network
[38].

As is illustrated in Figure 3.15, each neuron in a layer is connected to all neu-
rons in subsequent layer, illustrating how even only a few layers can become a
complex network of connections. The number of hidden layers is arbitrary and
can be selected depending on the accuracy and complexity required versus the
computational power available.

If for each neuron we use a mapping function Γ that assigns a subset Γ(i) ⊆ V
for all ancestors for neuron i. The subset Γ−1 (i) ⊆ V consists of all predecessors
for neuron i. The weight coefficient ωij and the threshold coefficient ϑi (referred
to as bias) describes the connection between neuron i and the next neuron j in
the feedforward network, and the processed output value χ from the i neuron is
given by [39]:

χi = f(ξi) (3.20)

ξi = ϑi +
∑
j∈Γ−1

i

ωijχj (3.21)

ξi denotes the ith neuron potential and the function f(ξi) is the transfer function

3.3. SUPERVISED MACHINE LEARNING MODELS 68

that can be shown as [39]:

f(ξ) =
1

1 + exp(−ξ)
(3.22)

For the case of supervised neural networks, the neural network knows the correct
output, and can use this information to correct the weight coefficients until the
error between the predicted output and the known output becomes as small as
defined. This is achieved by varying the weighting coefficients ωij and biases ϑi
to minimize the sum of the squared error between the predicted output and the
known output. Minimization of the objective function E is shown below, where
xo and x̂o are vectors constituting the error. The summation is applied for all
output neurons o [39].

E =
∑

0

1

2
(xo − x̂o)2) (3.23)

Back-propagation algorithm

A back-propagation algorithm is run iteratively, where for each iteration, the
weight coefficients and biases get varied (steepest descent minimization) [39]:

ω
(k+1)
ij = ω

(k)
ij − λ(

∂E

∂ωij
)(k) (3.24)

ϑ
(k+1)
i = ϑ

(k)
i − λ(

∂E

∂ϑi
)(k) (3.25)

The term λ denotes the learning rate and is always a positive number. In order
to derive the two derivative expressions in equations 3.24 and 3.25, see p. 45 in
Introduction to multi-layer feed-forward neural networks [39].
To build the feed-forward neural network model, a sequence of training values, or
training tuples, are sent to the input layer of the ANN. Here, the data is passed
forward into the hidden layers where arbitrary numbers are applied in terms of
weight and bias for the connections. Once the training values have passed through
the entire network of neurons and all connections have been established, the back
propagation algorithm is used to reduce the error. The iterations, where one

69 CHAPTER 3. THEORY

complete iteration over the training set is referred to as an epoch, continue un-
til the weights and biases converge below a tolerance that gets specified by the user.

Figure 3.16: Figure a) illustrates a model built on properly fitted data, where as
seen in figure b), the data is overfitted thus less likely to deliver
accurate outputs for new input data (Svozil et al., 1997) [39].

If the number of epochs, or iterations, is set too high, as illustrated in chapter 7,
there is a risk of the network memorizing the training data, leading to so-called
overfitting. If the model is overfitted, and thus less generalized, there is a high
chance that the model will not be capable of delivering accurate outputs for new
inputs that the model has not been trained on. This is illustrated in Figure 3.16
[39]:

3.3.3 Support Vector Machine

Support vector machine (SVM) was developed by Vapnik and others and is a
machine learning method for training linear learning machines in the kernel-
induced feature spaces. These systems offer very efficient algorithms due to the
Karush-Kuhn-Tucker conditions. These conditions have a crucial part in the im-
plementation and analysis of these machines. What separates the support vector
machine from for example pattern recognition algorithms such as neural networks
is that they are convex and have no local minima. Furthermore it has a reduced
number of non-zero parameters (Christianini and Shawe-Taylor, 2000) [40].

There is one particular reason for why the support vector machines have become

3.3. SUPERVISED MACHINE LEARNING MODELS 70

such powerful classifiers; the kernel trick (illustrated by the polynomial kernel in
Figure 3.17). The kernel trick is a mathematical transformation that remaps the
data points, making them easier to separate (Sejnowski, 2018) [41].

Figure 3.17: Illustration of the polynomial kernel [6].

If we use a function that maps our data into higher dimensional space, the
maximization (equation 3.26) and decision rules (equation 3.27) will depend on
the dot product of the support vectors (Bhattacharyya, 2018) [42]:

L =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjφ(−−→xSVi
) · φ(−−→xSVj

) (3.26)

Where L refers to the Langrange equation for maximization where the dot products
of support vectors is calculated. α refers to a positivity constraint. The decision
rule, where the dot product of a support vector and a new observation gets
calculated is given by:

∑
i

αiyiφ(−−→xSVi
) · φ(−→u) + b ≥ 0 (3.27)

The decision rule gets used to calculate the kernel function K. If K is known, we
do not need to know the mapping function. If K is unknown, we need to use the
equation for the kernel function, as shown below (Bhattacharyya, 2018) [42]:

K(xi, xj) = φ(xi) · φ(xj) (3.28)

Several kernel functions exist, and they define the inner product of the trans-

71 CHAPTER 3. THEORY

formed space. The most commonly used kernel functions are the polynomial
kernel (equation 3.29), the Gaussian kernel (equation 3.30), the Radial Basis
Function kernel (RBF) (equation 3.31) and the Sigmoid kernel (Equation 3.32)
(Bhattacharyya, 2018) [42].

K(xi, xj) = (xi · xj + 1)p (3.29)

K(xi, xj) = e

−1

2σ2
(xi−xj)2

(3.30)

K(xi, xj) = e−γ(xi−xj)2

(3.31)

K(xi, xj) = tanh(ηxi · xj + v) (3.32)

For more details, see (Hastie et al., 2016) [24].

For a function to be defined as a kernel, it must fulfill several requirements. These
are defined in Mercer’s theorem where the first requirement states that the kernel
function needs to be symmetric. In addition, the function needs to be semi-definite.
As was mentioned earlier, the kernel function is a matrix element, and as the
matrix merges all of the information, the data points and mapping function get
fused into the dot product.

3.3.4 Decision Tree

In decision trees (DT), one starts with a root node that consists of all instances
given in a dataset. From the first instance, the attribute node splits the instances
into several subsets. An attribute can appear several times in a decision tree, but
not in the same path. A path will at some point end at a leaf node. Worth noting
with regards to the decision tree is that it can become very complex for large
datasets. With an increase in the amount of data there will be generated more
subsets causing the variations between each of the outcomes to become smaller.
Overly complex decision trees can also result in overfitting, which as mentioned

3.3. SUPERVISED MACHINE LEARNING MODELS 72

earlier is a common result of the algorithm getting trained on too much data (van
der Aalst, 2016) [31].

An important part when designing a decision tree is to know how many nodes
to include. Methods like Entropy or the Gini index of diversity can be used to
measure the diversity of a leaf node and to select attributes. This is of particular
importance, seeing as the tree would become too complex if each attribute had
every possible child node attached to it (van der Aalst, 2016) [31].

When an entropy greater than zero gets used (entropy controls the information
gain), one can easily observe that when the tree is split into subsets, the resulting
outcome of each decision will decrease in diversity as more options get added. If
a low entropy value is calculated, there are only small variations between each
of the elements in the tree. If the entropy on the other hand is high, then the
choices (variations) in the tree are more unique. To calculate the entropy, the
following formula gets used (van der Aalst, 2016) [31].

Depth of cut
>= X mm

Depth of cut
>= X mm

ROP < X
cm/min

Class
1

Class
4

Torque > X
Nm

Class
2

Class
3

Torque < X
Nm

Class
7

MSE > X
MPa

Class
5

Class
6

YesNo

YesNo YesNo

YesNo YesNo

YesNo

Figure 3.18: Illustration of how a decision tree could evaluates the features to
determine which class an observation or a set of observations belong
to.

73 CHAPTER 3. THEORY

E = −
k∑
i=1

pi log2 pi (3.33)

Where p can be thought of as the proportion or probability and k refers to the
number of different elements in X, so that if k = 1, all elements are identical, and
if k = n, all elements in X are different.

When the entropy is zero, the tree is pretty much useless since there no longer is
any variation between the elements. It’s important to realize when to stop adding
options. Another approach to ensure that that an optimal tree model has been
developed is to select the attributes that result in the highest G-score from the
Gini index of diversity. The Gini index is a similar approach to the concept of
evaluating the uniqueness of elements by calculating the entropy, and using the
equation below (equation 3.34) one can determine the so-called “impurity” in the
decision tree:

G = 1−
k∑
i=1

(pi)
2 (3.34)

When G = 0, this means that all the classifications of the algorithm are the same.
If G = 1, then there is great diversity in the classification (van der Aalst, 2016)
[31].

3.3.5 Gradient Boosting

In boosting trees, the values of all common predictor variables are partitioned
into disjoint regions Rj,j = 1, 2, ..., J . These variables can be represented visually
as nodes in a tree structure as seen above in Figure 3.18. For each tree structure
region, a constant γj is given. For this constant, the predictive rule is given by
(Hastie et al., 2016) [24]:

x ∈ Rj ⇒ f(x) = γj, (3.35)

3.3. SUPERVISED MACHINE LEARNING MODELS 74

The tree can then be expressed as (Hastie et al., 2016) [24]:

T (x; Θ) =
J∑
j=1

γjI(x ∈ Rj), (3.36)

with the parameters Θ = {Rj, γj}J1 where J is a meta-parameter. Through
minimization of the empirical risk, as shown in 3.37, the parameters get found
(Hastie et al., 2016) [24]:

Θ̂ = arg min
Θ

J∑
j=1

γj
∑
xi∈Rj

L(yi, γj). (3.37)

In the equations above, L refers to the loss function L(yi, γj) and I is an indicator
variable that takes the value of 0 if x is outside of region Rj, and 1 if x belongs
to Rj.

This is an optimization problem that usually is set for approximate subplot
solutions. In order to solve such optimization problem, it is beneficial to divide
the problem into two parts (Hastie et al., 2016) [24]:

1. Finding γj given Rj

• When Rj is given, finding γj usually is a trivial task. Often γ̂j = ȳj,
where ȳj is the mean value. ȳj often falls within the region Rj.

• If there is a misclassification loss, γ̂j is the modal class that falls within
the region of Rj.

2. Finding Rj

• One needs to find approximate solutions in order to determine Rj. To
determine Rj, one also needs to estimate γ̂j. To solve this particular
problem, one needs to use a top-down recursive partitioning algorithm.

f̂ = arg min
f
L(f) (3.38)

75 CHAPTER 3. THEORY

where f ∈ RN are the approximating function values f(xi) for each of the N
observations xi (Hastie et al., 2016) [24]:

f = {f(x1), f(x2), . . . , f(xN)}. (3.39)

The procedures for numerical optimization solve equation 3.38 as a sum of com-
ponent vectors (Hastie et al., 2016) [24].

fM =
M∑
m=0

hm, hm ∈ RN, (3.40)

where f0 = h0 is the initial guess. Each fm in the sequence can then be found
based on the value of fm−1. fm−1 is the sum of the previously induced updates.

The methods for numerical optimization vary in how the increment vector hm

gets computed (Hastie et al., 2016) [24].

3.3.6 Random Forest

Random forest (RF) is based on the tree structure, and typically gets used for
simpler types of prediction problems. It makes use of the same principle as the
decision tree model, by selecting parts of the tree structure that further get used
to create more powerful prediction models. RF prediction is similar to Bagging,
another common ensemble technique, but is considered an improvement due to
small tweaks that decorrelate the trees.

In both RF and Bagging, a number of trees get built and connected to a forest-like
structure. For each decision where you get a new split, a random sample of m
predictors are chosen for the split taken from a set of p predictors. For each split
in the prediction model, a new predictor subset-size m is chosen. The subset size
m varies in the dataset. For example, when having a large dataset with highly
correlated predictors one will typically choose a small subset size m, but usually
the size will be m ≈ √p. There is a good reason for choosing this approach. In
Bagging the strongest predictors are considered early in the tree structure. RF
on the other hand forces the predictors to get “mixed” for the whole structure
of the tree. The lack of “mixing” in the entire tree structure makes the Bagging
models highly correlated (as the structures are too similar), while for RF this

3.3. SUPERVISED MACHINE LEARNING MODELS 76

issue gets eliminated because at each split there will be a subset of predictors;
resulting in that (p−m)/p of the splits will not only consider the strong predictors.
This ensures that also some of the weaker predictors get used to build the model
(Hastie et al., 2014) [30].

3.3.7 K-Nearest Neighbor

K nearest neighbor (K-NN) is a supervised learning classifier that must not be
confused with K-means which is used for unsupervised learning. The method
was first introduced by Cover and Hart in 1967 [43] and is widely used in various
machine learning applications. Simply explained, the K-NN algorithm tries to
classify the class that a sample, or observation, belongs to based on its K sur-
rounding points, as can be observed in Figure 3.19. The classifier has its highest
accuracy when surrounded by samples of the same class. If two or more classes
are surrounding the samples, the model give an erronous prediction (Mucherino
et al., 2009) [44] and (Xu et al., 2013) [45].

Figure 3.19: In this example K=3, which results in the observation x becoming
classified as a blue triangle, since three observations that belong to
the blue triangle class are located the closer to the new observation
x. than three from the other class (represented as green diamonds).

For the model to work properly, a correct K-value must be selected. In general, a
large K value is preferred, seeing as the model becomes less prone to noisy data.
If however K is set too large, a large accumulation of observations that belong to
a different class (that outnumbers the correct class in vicinity of the observation
point) can cause an erronous prediction. If on the other hand K is set too small,
the decision boundary is too flexible which can lead to patterns being identified
that does not exist. Furthermore, a too low K value can take away the advantage
of having a large dataset in the first place (Mucherino et al., 2009) [44].

For a more mathematical approach to the problem one can look at the obser-
vation point x0 and the K neighboring points. Using the K-NN classifier, the
K neighboring points to x0 then can be represented as N0. Furthermore, using

77 CHAPTER 3. THEORY

equation 3.41 the classifier will make calculations, estimating the probability for
the class j as a fraction of the identified points in N0 whose response values are
equal to j (Hastie et al., 2014) [30].

Pr(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j) (3.41)

After identifying the neighbor with the highest probability using Bayes rule, x0

is then given its new class (Hastie et al., 2014) [30].

3.3.8 Bayesian Classification

Bayesian classification method is based on Thomas Bayes theorem. It is a sta-
tistical classifier that can predict if a given tuple (finite sequence of elements)
belongs to a specific class. Central to the method is that it assumes that a given
feature of the dataset is independent of the next. In this classifier, two types of
probabilities are used; Posterior probability, P (c|E) and Prior probability, P (c).
E is the given tuple while c is the hypothesis.

Knowing this, we can determine whether example E belongs to class c (Zhang,
2004) [46]:

P (c|E) =
P (E|c)P (c)

P (E)
. (3.42)

E is classified as the class C = + if the Bayesian Classifier (denoted by fb) satisfies
the condition (Zhang, 2004) [46]:

fb =
p(C = +|E)

p(C = −|E)
≥ 1, (3.43)

To use the naive Bayesian classifier, all attributes need to be independent:

p(E|c) = p(x1, x2, ..., xn|c) =
n∏
i=1

p(xi|c) (3.44)

3.3. SUPERVISED MACHINE LEARNING MODELS 78

The Bayesian classifier, fnb(E), can then be written as (Zhang, 2004) [46]:

fnb(E) =
p(C = +)

p(C = −)

n∏
i=1

p(xi|C = +)

p(xi|C = −)
(3.45)

3.3.9 TPOT Algorithm

Figure 3.20: Example of the TPOT algorithm steps that fully automate the
process of processing, developing and validating a model [47]

TPOT is an algorithm that can automate all steps in the methodology to develop
and validate a machine learning model, such as data cleaning, feature preprocess-
ing/creation/selection, model selection, parameter tuning and model validation
[47]. As is shown in Figure 3.21, the algorithm is based on genetic programming,
which is a heuristic search/optimization technique based on the natural selec-
tion and genetics principles. The principle of natural selection suggests that a
population can only flourish if the genetics constantly improve.

79 CHAPTER 3. THEORY

Figure 3.21: The TPOT optimization process is iteratively run, depending on
how many generations the algorithm should produce to select the
most optimal model to build [47].

A genetic algorithm works by generating an initial population using randomly
generated rules from the data. This initial population is tested against an objec-
tive function, and for each iteration a full population of new points is generated.
According to Kamruzzaman et al. "The process of generating new populations
based on prior populations of rules continues until a population P “evolves” where
each rule in P satisfies a pre-specified fitness threshold." [48].

Three main rules apply to the process of producing a new population. These are
selection rules, crossover rules and mutation rules. Selection rules can be thought
of as selecting the parent data that perform best against the objective function.
Crossover rules is the process of selecting parents that have similarities. Finally,
the mutation rules are used to apply random genes to the parent data, effectively
preventing a premature convergence; the algorithm falling into a local minima
prematurely. In short, the genetic algorithms are considered highly applicable
to solve optimization problems with multiple possible solutions, illustrating how
the TPOT algorithm is capable of selecting the best model, features and tune
the input parameters. TPOT is built on the Scikit learn library where all models
used in this research are taken from [?].

Since the TPOT algorithm allegedly should be capable of identifying the most
optimal pre-processing techniques, features and model pipeline, the algorithm has
been used in chapter 7 and chapter 8 for Cases 1-10 in addition to the other models.
The TPOT score is then used to evaluate whether our approach to pre-process
the raw data, engineer and select our own features and identify the optimal model

3.4. UNSUPERVISED MACHINE LEARNING MODELS 80

parameters, is optimal or not; for instance if one of the other models only achieve
an accuracy of 50 %, but the TPOT algorithm scores significantly better.

While the TPOT algorithm can be helpful to get started using machine learning,
it is still our recommendation to carry out the steps (as illustrated in Figure 6.25)
manually when working with drilling data; particularly with regards to under-
standing which pre-processing techniques and features that have been selected.

3.4 Unsupervised Machine Learning Models

3.4.1 K-Means Clustering

Clustering, as mentioned earlier, is used to group unlabeled data into so-called
clusters, in which a cluster can represent for instance a class, a trend and so on.
Since the data is unlabeled, an unsupervised method like K-Means Clustering
can be used. This is a distance-based method, and each cluster is marked with a
centroid that denotes the center of the cluster. An important factor when using
this approach is to choose the correct number of clusters. A simple approach to
get started with K means clustering is to start with a small number k, referring
to the number of clusters that are to get identified, and then gradually increase
the amount if improvements are still observed. If k becomes too large, one might
worst case end up with a cluster for each point and a worthless model (van der
Aalst, 2016) [31].

Clustering can range from simple diagrams, that are easily interpretable for the
human eye, to more complex models that are nearly impossible to interpret for a
human. An example of a clustering task that can be difficult for the human mind
to interpret is shown below in Figure 3.22. In the example, observations from two
variables measured during drilling of three different rock samples are plotted.

81 CHAPTER 3. THEORY

Figure 3.22: K-Means clustering plot - before clustering.

From running the K-means clustering algorithm, the user first selects the number
of centroids for the machine to randomly generate. The machine then positions
the centroids at the center of the three most densily populated areas. Once the
centroids have been determined, each observation (point) can be assigned to a
cluster, depending on its closeness to the centroids. This can be observed in
Figure 3.23.

Figure 3.23: K-Means clustering plot - after clustering.

There is however no guarantee that the identified clusters are indeed representative
for the three different rock formations that the data originate from. One can
therefore only use the K means model to organize the data, but not to perform
classification and prediction operations.

3.4. UNSUPERVISED MACHINE LEARNING MODELS 82

3.4.2 Density Based Spatial Clustering of Applications with

Noise

Continuing on the topic of clustering, Density Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) is considered one of the most effective density-based
techniques, for reasons such as (He et al., 2011) [49]:

• the technique can identify clusters that are surrounded by other clusters,

• observations can be grouped in clusters without predetermining the number
of clusters that should be generated,

• no order is required for the given data points.

There are however some challenges using DBSCAN. For one, datasets are con-
stantly growing in size, which can result in storage challenges. Another aspect to
consider is that DBSCAN requires much higher computational capacity, compared
to techniques such as K-means clustering (He et al., 2011) [49].

In order to use DBSCAN, one first needs to define when a point becomes a cluster
core point. To determine this, we need to define a ε-neighborhood. Then, the
number of core points that belong to the given ε-neighborhood can be identified,
and when all the core points have been defined, the points that belong to the
initial core points can be found. These are the ones with at least a minimum
number of samples (defined by the user) (Celebi, 2015) [50].

It is important to understand that a point might not be considered a core point,
even though it lies within a ε-neighborhood. It might lie on the edge of a cluster
which means that it does not fulfill the requirements for it to be regarded as a
core point. For a point to be directly density-reachable to x (a given core point),
the following condition needs to be satisfied: p ∈ Nε (x). Furthermore, we need
to define whether two points are density-connected. Take for instance the points
p and q. They are density-connected if they are density reachable from the point
o (Celebi, 2015) [50].

With the different densities defined the clusters can now be found using the DB-
SCAN technique. A set C ⊆ D is a cluster if the points within C are density
connected and there are no subsets within C that also forms clusters. Further-
more, if there are points outside the clusters defined by the DBSCAN algorithm
that are not density connected to any point, these values are defined as noise.

83 CHAPTER 3. THEORY

Figure 3.24 gives an example of the elements defined above (Celebi, 2015) [50].

Figure 3.24: Left figure: Shows the neighborhood with the core points, labeled
by diamonds. The star point (upper left) represents noise.
Middle figure: Shows how x1 and x3 are density reachable from
x2 which in turn makes x3 density reachable from x1.
Right figure: Shows how the additional points, p and q, are den-
sity connected to the points x1, x2 and x3 [50].

3.5 Drilling Theory

3.5.1 Drill String Vibrations

Drill string vibrations can be divided into three main categories; torsional, lateral
and axial vibrations. The three vibrations types are visualized in Figure 3.25. In
drilling vibrations can not be eliminated, considering bit-rock interaction, but is
something that can be controlled in order to improve the drilling performance and
to reduce the likelihood of damaging equipment such as the drill bit and BHA
or the wellbore. The main source of vibrations is the rotation of the drill string
which is induced by the top drive or downhole motor. Other causes of vibrations
are factors such as torque on bit, hole size, well geometry and so on. In order
to measure vibrations, the best practice is to use downhole sensors, but surface
measurements are also useful (Sui, 2019) [21].

3.5. DRILLING THEORY 84

Figure 3.25: Illustration of torsional-, lateral- and axial vibrations, where the
BHA is represented in yellow and the drill bit is represented in red.

Torsional Vibrations

Considering torsional vibrations, one typically observes oscillations in the drill
string without any change in volume. Because of this, the effect of friction from
torsional vibrations is often lower than the effect from axial- and lateral vibrations.
The torsional oscillations will easily propagate upwards along the drill string until
it reaches the top drive where the pipe is fixed. Because the top drive is fixed, it
allows the oscillated waves to reflect which in turn will lead to a self-reinforcing
transfer of energy. This can be avoided if drilling parameters are changed because
this will break the pattern of the oscillations (Sui, 2019) [21].

When talking about torsional vibrations, one typically referes to stick-slip. Stick-
slip occurs for two main reasons; the bit digging to aggressively into the formation
causing it to get stuck before the built up energy releases the bit or by the
interaction between the drill string and the wellbore. The probability of a stick-slip
is higher in deviated well sections. This can result in the ROP being decreased by
30-40 % in severe cases, and when the string or bit releases from the stuck situation
the RPM downhole can typically become several times the surface RPM. The
conditions for a stick-slip to occur will be different depending on the environment
downhole, but with increasing WOB, stick-slip can occur more frequently since a
higher WOB can increase the friction between the bit and formation. Therefore
a strategy to mitigate the probability of stick-slipping occuring is to lower the
WOB and rather increase the RPM. This lowers the overall probability of either
the bit or string getting temporarily stuck downhole, but can in turn increase the

85 CHAPTER 3. THEORY

chance of bit whirl (Sui, 2019) [21] and (Larsen, 2014) [51].

Lateral Vibrations

Lateral vibrations include both bending (transverse shear stress) and whirl. This
type of vibration does not travel upwards along the string like axial and torsional
vibrations do, making it difficult to detect on surface and to prevent. There are
different types of lateral vibrations, but the most complicated is the centrifugal
bowing of the BHA between two stabilizers, and in extreme situations, the RPM
can coincide with the natural beam-bending mode.

Another type of lateral vibrations that can cause significant damage to both the
BHA, bit and wellbore is whirl. Whirl is when the bit starts rotating off-center
in an enlarged hole, and the pipe and BHA can get exposed to both forward- and
backward whirl, where backward whirl is considered to be the most dangerous
as the vibration moves in a counter-clockwise direction opposite to the normal
pipe rotation (clockwise). An effect of whirl can be that the BHA starts to climb
on the walls wellbore due to friction. When the BHA slips and falls to bottom;
acceleration can in extreme cases reach 100 g.

When lateral vibrations and whirl are initiated, they tend to be quite stable
which obviously not is desireable. A remedial action to lateral vibrations is to
allow the energy to dissipate through stopping the rotation in the top drive and
pulling off bottom. Drilling parameters where lateral vibrations occur should
then be avoided when drilling continues. In addition to causing high wear to the
drill string, BHA and bit, lateral vibrations can also decrease directional control.
The hole will also likely become overgauge, enabling even more lateral movement
downhole (Sui, 2019) [21] and (Larsen, 2014) [51].

Axial Vibrations

To understand axial vibrations in the drill string, one can think of it as a mass
spring system as illustrated in Figure 3.26 (Sui, 2019) [21]:

3.5. DRILLING THEORY 86

mn

m3

m2

m1

k0 c0

x1 k1 c1

x2 k2 c2

x3 k3 c3

xn kn cn

Drill Bit

Drill Floor

Figure 3.26: Drill string system - illustrated by a mass spring system. Drill pipe
represented as the grey part, BHA as the yellow part and drill bit
as the red part.

To determine the vibrations , one needs to apply Newtons second law to all
elements of the system (Sui, 2019) [21].

m1ẍ1 + c0ẋ1 − c1(ẋ2 − ẋ1)− k1(x2 − x1) + k0x1 = m1gβ, (3.46)

m1ẍ1 − ci(ẋi+1 − ẋi) + ci-1(ẋi − ẋi-1)− ki(xi+1 − xi) + ki-1(xi − xi-1)

= migβ,

∀i = 2, ..., n− 1,

(3.47)

mnẍn + cn − (ẋn − ẋn-1) + kn-1(xn − xn-1) = mngβ − F (t), (3.48)

where mi denotes the mass of the element i and ki is the spring constant of the

87 CHAPTER 3. THEORY

spring connected above the mass i. c denotes the damping coefficient of the
spring-mass system. One also needs to account for the buoyancy factor, β, of the
fluid that the system is submerged in (for instance the drilling mud). To account
for the bit-rock interaction, F (t) is introduced. As can be observed from equation
3.49, F (t) depends on several drilling parameters (Sui, 2019) [21]:

F (t) = f(RPM,WOB,ROP, α) (3.49)

where RPM is the rotational speed, WOB is the weight on bit, ROP is the rate
of penetration and α are other factors that one needs to consider (Sui, 2019) [21].

The system, given by the equations 3.46 to 3.48 is a n-coupled second order
ordinary differential equation, meaning that we can write it on matrix form as
shown in equation 3.50 (Sui, 2019) [21]:

Mẍ+ Cẋ+Kx = F (3.50)

3.5.2 Directional Drilling

Directional drilling is one of the biggest contributors to the oil and gas industry
when it comes to increased oil recovery (IOR). The concept of drilling non-vertical
well sections made it possible for operators to not only aim their wells in the exact
direction of the reservoir, but also to avoid areas like salt domes and crossing
faults in more optimal angles as well as to position the wells at a point in the
reservoir where maximum depletion can be achieved. Other advantages with di-
rectional drilling include being able to drill several wells from the same platform,
the drilling of multilateral wells, performing sidetracking, drilling of relief wells
and so on(Fjelde, 2017) [52].

In order to understand the concept of directional drilling one needs to know four
concepts (Fjelde, 2017) [52]:

1. True vertical depth (TVD):

• The vertical distance to the bottom of the well

2. Measured depth (MD):

3.5. DRILLING THEORY 88

• The tangential space of the well path

3. Inclination:

• Angle between the tangent to the wellbore and the vertical

4. Azimuth:

• The horizontal plane measured clockwise from north in the range 0-360
degrees

Another important concept, which is the combined change in inclination and
azimuth is the dogleg severity (DLS). In the industry it is usually measured in
degrees per 30 m, or in other words how many degrees you build per stand of drill
pipe. To calculate the DLS one first needs to calculate the dogleg angle (DL),
which is the angle between two points along a curve and is given by equation 3.51
below:

DL = cos−1(cos I1 cos I2 + sin I1 sin I2 cos(A2 − A1)) (3.51)

The variables I1, I2, A1 and A2 refers to the inclination and azimuth at two points
(I1, A1) and (I2, A2) as illustrated in Figure 3.27. The dogleg severity (DLS) can
further be found from:

DLS =
DL

L
(3.52)

where L is the wellpath or curve connecting the two points marked by red dots
in Figure 3.27

Figure 3.27: Illustration of the dogleg angle between the two points I1,A1 and
I2,A2 in a wellpath.

89 CHAPTER 3. THEORY

To calculate the change in azimuth for a new well position, you can use equation
3.53:

∆A = tan−1(
tanDL · sinTF

sin I1 + tanDL · cos I1 · cosTF
) (3.53)

To find the new inclination, I2, one can use equation 3.54:

I2 = cos−1(cos I1 · cosDL− sin I1 · sinDL · cosTF) (3.54)

The toolface, TF , is the point set 90 degrees either to the left or right of the
borehole. It can be calculated using equation 3.55 given that the dogleg and
expected change in inclination is known.

TF = cos−1(
cos I1 · cosDL− cos I2

sin I1 · sinDL
). (3.55)

3.5.3 Buckling Models

In oil wells, the tubing will be constrained by the circular path made up by the
well itself. The well typically contains four different sections: vertical, curved,
inclined and horizontal. For the different sections we have both sinusoidal and
helical buckling (see Figure 3.28 for illustrations) (Belayneh, 2018) [53].

Figure 3.28: Buckling modes. Left side: Sinusoidal. Right side: Helical [53].

These are the two modes of buckling that can appear in circularly constrained

3.5. DRILLING THEORY 90

wells. Sinusoidal buckling is the first phase of buckling. It happens when the
pipe encounters lateral constraints along the length of the tube which in turn
causes a sinusoidal shape of the pipe, as can be observed in Figure 3.28 above.
Sinusoidal buckling is often referred to as the critical buckling load. Helical
buckling is the second phase of buckling referred to as the critical tube buckling.
If one continues to increase the load in the sinusoidal phase of buckling, one will
at some point reach the helical buckling load. At this point the tubing will be of
helical shape inside the casing. If additional force is applied after sinusoidal and
helical buckling modes one could also experience the phenomenon lock-up. A
lock-up happens because the helix-shaped tubing gets in contact with the casing
wall. This results in an outward force that creates friction between the casing and
tubing. If the friction becomes large enough it will be impossible to push more
tubing into the hole (Belayneh, 2018) [53].

Figure 3.29: A selection of non-rotating buckling models [53].

Chapter 4

Data Preparation

In this chapter, the techniques to collect, concatenate, label and describe each
dataset for different classification problems is discussed. Due to its available
machine learning libraries, the Python programming language has been used
together with the Jupyter Notebook integrated developer environment (IDE) to
develop the methodology and results that are discussed in chapter 4 to chapter 8.

4.1 Laboratory data preparation for rock / forma-

tion classification

4.1.1 Data source

Six different rocks were drilled at different drilling parameter combinations such
as:

• Uniform cement:

1. 400 RPM with 3 & 6 kg WOB

2. 600 RPM with 3, 6 & 10 kg WOB

3. 800 RPM with 10 kg WOB

• Uniform salt:

1. 400 RPM with 3 & 6 kg WOB

2. 600 RPM with 3, 6 & 10 kg WOB

3. 800 RPM with 8 & 10 kg WOB

• Homogeneous sandstone (Drillbotics® competition rock 2018):

91

4.1. LABORATORY DATA PREPARATION FOR ROCK / FORMATION
CLASSIFICATION 92

1. 400 RPM with 3 & 6 kg WOB

2. 600 RPM with 3, 6 & 10 kg WOB

3. 800 RPM with 3, 6 & 10 kg WOB

4. 1000 RPM with 10 kg WOB

• Chalk:

1. 400 RPM with 5 kg WOB

2. 600 RPM with 5 kg WOB

3. 800 RPM with 10 kg WOB

4. 1000 RPM with 10 kg WOB

• Shale:

1. 300 RPM with 3 & 6 kg WOB

2. 600 RPM with 3, 6 & 10 kg WOB

3. 800 RPM with 3, 6 & 10 kg WOB

4. 1000 RPM with 10 kg WOB

• Granite:

1. 400 RPM with 3 & 6 kg WOB

2. 600 RPM with 3, 6, & 10 kg WOB

3. 800 RPM with 3, 6 & 10 kg WOB

4. 1000 RPM with 10 kg WOB

Figure 4.1: Collection of different rock specimen drilled to gather experimental
drilling data.

Before each rock sample was drilled, the same operational procedure was followed
including; zeroing all sensors, configuring the sampling rate, and drilling a pilot

93 CHAPTER 4. DATA PREPARATION

hole for each well to prevent that a big portion of the dataset would contain pilot
hole drilling (here referred to as the first inch of the well). The sampling frequency
was configured to 9600 Hz to gather as much data as possible. The data is then
downscaled to approximately 1 % of the original data size; 96 Hz.

4.1.2 Data concatenation

Before data can be concatenated, metadata such as WOB setpoint for the PID
controller and RPM setpoint for the top drive was input as separate columns.
Drilling features such as instantanious ROP that need to be calculated before
concatenating the data were also calculated and implemented ahead of merging
multiple datasets to ensure that transitions between datasets do not get mixed
up for these features (see chapter 6). In addition, observations from the compu-
tational channels on the high frequency DAQ such as bit torque (calcuated) and
MSE (calculated) were removed due to uncertainty as to whether these features
correctly describe the rock formations and thus were evaluated to be too uncer-
tain to introduce when developing the models. Since there are no perfect drilling
operations, data that represent moderate vibrations or slight deviation drilling is
intentionally kept in the dataset in an attempt to make the data best represent
the actual conditions that occur at high drilling speeds with the laboratory rig.
The process of concatenating all experiments and labeling them is repeated for
rock formations 1 through 6 so that the pool of data to develop models on consist
of the following number of observations for each rock formation specimen:

Rock specimen Label Number of samples (rows)
Cement 1 8.263 × 106

Chalk 2 1.864 × 106

Granite 3 1.473 × 107

Sandstone 4 1.020 × 107

Salt 5 7.149 × 106

Shale 6 1.375 × 107

The difference in number of observations per rock speciment is based on the
availability of different rock specimen to drill, as well as the drilling speed (a 150
mm thick chalk specimen is drilled in less than a minute for reference, however
a well drilled in granite rock would require several hours to drill). At 9600 Hz
sampling rate, 106 samples represent approximately 104 seconds of drilling for
reference.

4.1. LABORATORY DATA PREPARATION FOR ROCK / FORMATION
CLASSIFICATION 94

4.1.3 Data labeling

Once the experimental data from all experiments containing observations from
the same rock specimen have been imported, the dataframe is labeled by class-
labels 1 to 6 (each rock formation has its own class-label). This ensures that
supervised models can be trained (since these require a class-label to train), that
the accuracy of supervised models can be evaluated and finally that each rock
formation if necessary can get separated by the class-label, for instance if a class
is to be dropped from the dataframe.

Figure 4.2: Data is labeled before all dataframes get combined.

4.1.4 Describing the raw data

There are several ways to describe a dataset or dataframe. For rock classification,
three initial techniques get used to describe the data that is collected from exper-
iments. These are pandas describe() function, matplotlibs plotting function and
the pairplot function from the Seaborn library.

Describing the raw data

When describing the raw data, a series of statistical properties such as the count,
minimum and maximum value, the 25, 50 and 75 percentile, standard deviation
and mean value is calculated. By running the functions Dataframe.describe()
and Dataframe.shape, the following table is printed out representing our merged
dataset for all rock formations.

95 CHAPTER 4. DATA PREPARATION

Figure 4.3: Description of original data (before pre-processing) and their statis-
tical properties such as mean value, percentiles and maximum value
for rock classification.

The number of (rows, columns) is equal to (55952987, 14).

Plotting the raw data

Using the matplotlib plotting function, each natural feature (column) in the
dataframe can be plotted against the sample index:

Figure 4.4: Plot representing the dataset containing natural features only (sensor
measurements) from experiments where six different rock formations
have been drilled.

4.1. LABORATORY DATA PREPARATION FOR ROCK / FORMATION
CLASSIFICATION 96

Generating a raw data pairplot

Using the seaborn pairplot function, a pairplot can be generated to plot every
feature (data column) against each other. Note that observations in the data that
are referred to as Not a Number (NaN) need to get removed ahead of running this
function. Please note that the pairplot below has been generated by randomly
downsampling the dataset to 1 % of the original dataset in order to reduce the
computational power required to plot the data.

Figure 4.5: Seaborn pairplot representing raw data from experimental drilling
that has been used for rock formation classification.

97 CHAPTER 4. DATA PREPARATION

4.2 Data collection for classification of laboratory

rig operations

4.2.1 Data source

Similar to the approach above, a total of nine experiments were conducted to
collect data on three rig operations in an attempt to develop models on the
laboratory-scale drilling rig that can distinguish between drilling and NPT activi-
ties such as tripping. These three operations are tripping up (POOH), tripping
down (RIH), and rotating on bottom (ROnB).

The experiments contain data for each operation, either with or without bit
rotation, circulation, or a combination of both.

4.2.2 Data concatenation

The same approach as described in subsection 4.1.2 is used to conatenate the data,
after metadata and features such as instantanious ROP have been calculated and
implemented in the dataset.

4.2.3 Data labeling

The data is labeled so that each operation is represented by:

Rig operation Label Number of samples (rows)
POOH 1 8.153 × 105

RIH 2 9.633 × 105

ROnB (R) 3 1.77 × 106

4.2.4 Describing the data

Describing the raw data

Figure 4.6 shows the distribution of data and some statistical properties for all
three rig operations.

4.2. DATA COLLECTION FOR CLASSIFICATION OF LABORATORY RIG
OPERATIONS 98

Figure 4.6: Description of datasets statistical properties such as mean value,
percentiles and maximum value for rig operations.

Plotting the raw data

The plot below has been generated by sorting the dataset by the class-label for
each operation:

Figure 4.7: Plot representing the raw data for laboratory rig operations.

Pairplot of the raw data

Please note that the pairplot below has been generated by randomly downsampling
the dataset to 1 % of the original dataset to reduce to computational power
required to plot the data:

99 CHAPTER 4. DATA PREPARATION

Figure 4.8: Seaborn pairplot representing rig operation raw data.

4.3 Surface Data collection for drilling incident

classification

4.3.1 Surface data for vibration classification

Data source

Two experiments were conducted to gather data on low vibrations and moderately
high lateral vibrations (whirl-tendency) by drilling at 120 and 510 RPM respec-
tively with the same WOB setpoint. To ensure that vibrations get measured
without capturing the impact between BHA stabilizers and the riser, the riser
was removed ahead of the operation.

4.3. SURFACE DATA COLLECTION FOR DRILLING INCIDENT
CLASSIFICATION 100

Data labeling

The data is labeled so that normal vibrations (low) is denoted by label 1, and
moderately high vibrations is denoted by label 2.
Describing the raw data
The data can be generally described as seen in Figure 4.9 below:

Figure 4.9: Description of the raw data using surface sensors only.

Plotting the raw data
As can be seen from Figure 4.10, the case of classifying vibration levels could rather
easily be solved analytically by comparing for example the change in amplitude
for load cell measurements (hook load and WOB). The analytical approach was
used on the Drillbotics project in 2017 and 2018. The plot below showcases the
change in amplitude for load cell and torque measurements by varying the RPM
when the BHA is unconfined (no riser in place).

Figure 4.10: Plot of the raw data using surface sensors only.

Pairplot of the raw data
Finally, a pairplot for the surface vibration data can be generated:

101 CHAPTER 4. DATA PREPARATION

Figure 4.11: Seaborn pairplot representing the case of normal vs moderately high
vibrations.

4.3.2 Normal pressure vs leak and overpressure

Data source

Similar to the vibration case above, pressure loss and overpressure has been solved
analytically in the past by defining safe operating ranges for pressure so that the
system could detect a drilling incident such as leak or overpressure if the thresh-
olds got violated. A challenge, however using hardcoded pressure boundaries to
determine when the system would go into a leak or an overpressure state, was that
these events could be triggered if outliers or noise occured in the measurements
for a short duration of time.

For this purpose, two experiments were conducted in which two ball valves (that
are installed on the rig) would get opened or closed fast (to artificially simulate
either a leak in the mud system or a plugged nozzle).

Data concatenation

As is shown in Figure 4.12, data from the experiments (top) can be extracted to
represent three pressure cases on the rig. These are (starting from left bottom)

4.3. SURFACE DATA COLLECTION FOR DRILLING INCIDENT
CLASSIFICATION 102

leak, normal drilling and overpressure. Only the pressure and WOB data is kept
for the pressure dataset.

Figure 4.12: Pressure loss and overpressure cases for the mud system. The blue
plots are measurements from the pressure transmitter integrated in
the mud system and the orange plots represent WOB.

Data labeling

The data is labeled so that normal pressure is denoted by label 2, and leak and
overpressure is labeled as 1 and 3, respectively. The transient phase from a normal
case to an incident is currently not considered or labeled as separate classes (if
for instance an aim in the future is to predict that an incident is about to occur).
Describing the raw data

Figure 4.13: Description of raw data extracted from experiments containing ob-
servations of normal pressure, leak and overpressure.

Pairplot of the raw pressure data

103 CHAPTER 4. DATA PREPARATION

Figure 4.14: Pairplot of pressure and WOB features for pressure cases.

4.3.3 Rotating pipe vs stuck pipe

Data source

Same as with pressure, a critical drilling incident can occur if the pipe repeatedly
gets stuck in the well, for instance due to stick-slip. Therefore, an experiment
was conducted in which a wrench was used to repeatedly clamp the BHA until
the bit would come to a complete stop during drilling to measure the impact on
RPM feedback and torque. Once the bit came to a complete stop, the BHA was
only kept at the stall-torque (where the brake in the top drive would kick in for
a momentum above 6.5 Nm) for a very short duration of time before the clamp
got released.

Data concatenation

To investigate whether a single occurance of stuck pipe can be used to classify all
incidents, only one stuck pipe occurance is used to represent a stuck pipe. The
same dataset can then be used to test the developed model (see chapter 7). In
the Figure 4.15 below, RPM and torque is plotted to illustrate the two cases.

4.3. SURFACE DATA COLLECTION FOR DRILLING INCIDENT
CLASSIFICATION 104

Figure 4.15: Normal drilling vs stuck pipe cases for stuck pipe classification.
The blue data represents torque measurements and the orange RPM
feedback in the top drive.

Data labeling

In terms of normal drilling, a sufficiently long interval to represent the base case
is used. Normal drilling is labeled 1 and stuck pipe is labeled 2.
Describing the raw data
The standard description of the raw data is given in the Figure 4.16 below.

Figure 4.16: Description of raw data to later develop a stuck pipe model.

Pairplot of the stuck pipe raw data
A pairplot of all raw data for the two scenarios normal drilling and stuck pipe is
shown in Figure 4.17 below.

105 CHAPTER 4. DATA PREPARATION

Figure 4.17: Pair plot of raw data gathered that represents either normal drilling
or stuck pipe.

4.3.4 Normal drilling vs drill string twist off

Data source

An important incident to detect and confirm is if a twist off has occured. While
the process of predicting an incoming twist off incident is difficult using the
laboratory drilling system, since the rotational speed is often configured to be in
the 1000 to 1500 RPM range, a model that can be used to detect and confirm
a twist off has been requested in the team. For this reason, an experiment was
conducted in which the rig was allowed to operate at high WOB and RPM during
cement drilling until a twist off of the aluminum drill pipe occured.

4.3. SURFACE DATA COLLECTION FOR DRILLING INCIDENT
CLASSIFICATION 106

Data concatenation

Figure 4.18 below represents a case where a twist off in the pipe connection occurs
from fatigue. An illustration of a twist off in pipe connection is given on page 138
in (Hjelm & Nilsen, 2018) [6]

Figure 4.18: Data representing the transition going from normal drilling into
a twist off of the aluminum drill pipe when drilling for a long
duration of time with high RPM and WOB setpoints. The blue line
represents torque and the orange WOB.

Data labeling

As with the other drilling incidents, normal drilling is labeled as 1 and twisted off
as 2, by adding a Label column for each case before merging the normal drilling
data and twist off datasets together.
Describing the raw data
The statistical properties of the raw dataset can be shown as:

107 CHAPTER 4. DATA PREPARATION

Figure 4.19: Description of natural features´ statistical properties for twist off
experiment conducted when drilling a homogeneous cement sample
with high operating setpoints.

Pairplot of the twist off raw data

Figure 4.20: Pairplot of raw data that has been used to develop a twist off
classification model.

4.4. DOWNHOLE DATA FOR VIBRATION CLASSIFICATION 108

4.4 Downhole data for vibration classification

Data source

When drilling with the downhole motor, there is no need to use a data swivel (slip
ring) to transmit data from the non-rotating sensor sub and BHA. If however the
top drive is used, a slip ring which is rated to 10 000 RPM [6] can be installed and
used to receive data from the sensor sub. In this experiment, drilling the results
from three operations where drilling has been performed with what is considered
low, moderate and high vibration levels in the BHA.

To capture low vibrations (zero bit-rock interaction), the bit is lowered into a
pre-drilled pilot hole section, approximately 5 mm below top of the rock. At this
point, there is no contact between the bit and the bottom of the well. The valve
opening is set to 80 % (BITRPM is approximately 925 RPM) and data is captured.

To capture moderate and high vibrations, the bit is lowered into a 355 mm deep
slightly inclined wellbore, to resemble the conditions in a deviation well. The
WOB-setpoint is 5 kg, and the rig drills at 60 (BITRPM = 420), 70 (BITRPM =
733), 80 (BITRPM = 925), 90 (BITRPM = 1039) and 100 % (BITRPM = 1075)
valve opening. From data analysis, observations then get extracted that represent
either moderate or high vibrations.

Data labeling

The data is labeled in such a way that low vibrations (idling RPM without rock
contact) are denoted by label 1, moderate vibrations are denoted by label 2 and
high vibrations (yet not severe) by label 3.

Describing the raw data

The statistical properties of the merged dataset can be shown as:

109 CHAPTER 4. DATA PREPARATION

Figure 4.21: Description of raw data statistical properties for downhole vibration
study conducted using a downhole motor and drilling a cement rock
sample.

Pairplot of downhole data

Figure 4.22: Pairplot of raw data that has been used to develop a downhole
vibration level classification model.

4.5. POSSIBLE ERRORS PRESENT IN LABORATORY DATA 110

4.5 Possible errors present in laboratory data

When collecting data, the following experimental errors were noted:

• the actual RPM is deviating from the RPM setpoint, due to the use of PWM in
the Arduino Due at the time of the experiment. At 400 RPM setpoint, the actual
RPM was approximately 280. At 600 RPM setpoint, the actual RPM was 510.
At 800 RPM setpoint, the actual RPM was 760, and at 1000 RPM setpoint, the
actual RPM was 1030. Even if the top drive has been re-tuned, this suggests that
if one is interested to replicate the data collection, the actual RPM values should
be used on the new system,

• the top drive and compressor both run on the 3-phase power grid at the University
of Stavanger. Heavy machinery that also runs on the same 3-phase circuit was in
different experiments at the same time as data for rock classification got collected.
It is possible that from operating these machines in vicinity of the laboratory
drilling rig signal noise has been picked up on the analog sensor measurements,

• for some of the experiments such as when drilling the salt-formation, the resulting
wells turned out slightly deviated (possibly caused by a high ROP and vibrations)
which might have had an effect on the data,

• the PID controller was previously running on the Arduino Due microcontrollers,
and not in Python which might have an effect on the response of the hoisting
system,

• The experiments were conducted using a PDC bit with two cutters and a BHA

with three stabilizers. If changing parts of the drill string assembly, it is important

to keep in mind that this has an effect on properties such as the natural frequency,

length of assembly and stiffness, as well as the ROP, bit aggressiveness, wellbore

friction and so on. The same applies for downhole vibration classification where

data gets collected using a PDC bit with four cutters from Baker Hughes and a

BHA consisting of a sensor sub, knuckle joint, and downhole motor.

Possibly having noisy data highlights the importane of adequate data cleaning
before the data can be used to train models. While the training data should
resemble actual drilling data as best as possible, such errors might cause invalid
data or outliers to be present in the dataset. For this reason, the pre-processing
techniques that have been used to clean the dataset is presented in chapter 5.

111 CHAPTER 4. DATA PREPARATION

4.6 Volve data

4.6.1 Volve data aggregated to classify rock formations

Data source

A student at the University of Stavanger mined data collected from the Volve
field, as introduced in chapter 1. Through a developed script that would extract
data from XML files and manually extracting data from PDF files and daily
drilling reports, a CSV file was generated for each well and well section. For
Volve data rock formation classification, data has been extracted from wells 15-9-
F(1/4/5/10/11/14/15).

Data concatenation

The data selected has been extracted from the 8-1/2 in sections of the wells
mentioned above. From well 15-9-F1, data exists from four lateral sections. From
wells 15-9-F4 and 15-9-F5, data exists for two lateral sections in each well. From
wells 15-9-F10 and 15-9-F14, data exists from one lateral section. From wells
15-9-F11, data exits from three lateral sections. From well 15-9-F15, data exits
from five lateral sections.

Data labeling

In the Volve formation data, seven different formations are present. In the 8-1/2"
sections, only six formation types are present. Each formation type in the data is
already labeled so that:

Rock specimen Label Number of samples (rows)
Claystone 1 598
Sandstone 2 1266
Siltstone 3 168

Tuff 4 0
Marl 5 470

Limestone 6 1099
Coal 7 9

Describing the raw data The raw data from the Volve wells that have been
used to classify the six different geological formations encountered when drilling
the 8-1/2 in sections that data has been collected can be described as:

4.6. VOLVE DATA 112

Figure 4.23: Certain statistical properties of field data from the Volve field that
has been used for formation classification of different geological
formations.

Plotting the raw data

Figure 4.24: Plot of features from the Volve datasets that has been used for
formation classification.

Pairplot of the raw data features

113 CHAPTER 4. DATA PREPARATION

Figure 4.25: Pairplot of all original features from the Volve datasets.

4.6.2 Volve data aggregated to classify rig operations

Data source

The second set of field data from the Volve field is taken from F1C WB2/537RGUI.
The data that has been extracted from this set represents three rig operations, i.e.
Tripping Up, Tripping Down and Drilling. In chapter 8, a section describes an
attempt to use the field data on a model that has been developed using laboratory
data, to classify the rig operations. The data is sampled at 1 sample every 2.8
seconds, i.e. with a sampling frequency of 0.357 Hz.

Data concatenation

The most important data to extract from the datasets is the bit depth, crown block
position, as well as drilling data such as torque, RPM and WOB. By analysis,

4.6. VOLVE DATA 114

only a portion of the dataset is extracted.

Data labeling

The data is labeled so that label 1 corresponds to drilling, label 2 to Tripping Up
(POOH) and label 3 to Tripping DOWN (RIH).

Rig operation Label Number of samples (rows)
Drilling 1 7500
RIH 2 1405

POOH 3 150

Describing the raw data

Describing the raw data The raw data from the Volve wells is used to classify
the three rig operations can be described by:

Figure 4.26: Certain properties of raw field data from the Volve field that is used
to develop models for rig operation classification.

115 CHAPTER 4. DATA PREPARATION

Plotting the raw data

Figure 4.27: Plot of features from the Volve datasets that gets used for rig op-
eration classification.

4.7. FIELD DATA CHALLENGES 116

Pairplot of the raw data features

Figure 4.28: Pairplot of all features from the Volve datasets that has been used
for rig operation classification.

4.7 Field data challenges

The greatest challenge when working with unprocessed field data is to our knowl-
edge the absence of an all inclusive database, where all data is correlated and
converted to one format. An example of this is how some data can be found in
XML and PDFs files, and other data can only be accessed in the daily drilling
reports. Another challenge is the quality of data, and the continuity. When data
is required to either be manually inserted into reports, or the data is correlated
manually by for instance comparing a daily drilling report with field data, both
accuracy and quality assurance get diminished. The same applies when infor-

117 CHAPTER 4. DATA PREPARATION

mation regarding the configuration and accuracy of logging tools and sensors is
not provided as metadata, which means that one may be unfortunate and merge
data from two completely different data sources that are not directly comparable.
It is therefore our recommendation that in order to fully capitalize on available
data, algorithms and technology a need exists to standardize drilling data flow
schemes and integrate data-driven approaches (with physics-based models) to
adress uncertainties in drilling.

Chapter 5

Data Quality Improvement

In this chapter, the process that has been used to pre-process the raw data before
features get created and selected is presented. The process includes downsampling
the data to a frequency that represents the data, yet reduces the computational
requirement, noise reduction and normalizing the data.

5.1 Down sampling experimental data

In the experiments conducted using the laboratory drilling rig, sensor data has
been sampled with a frequency of 9600 Hz. This results in large amounts of data
being generated, particularly when compared to well operations on the full scale,
where sampling rate is usually around 10 Hz. Downsampling has therefore been
important, and two approaches to downsample the data have been tested and
evaluated. These are linear- and random downsampling. Linear downsampling of
the dataset is performed through only a single line of code, as illustrated below
(code to keep every 96 samples in the original dataset):

1 Dataframe_downsampled = ...

Data f r ame_or i g i na l . i l o c [Data f rame_or ig ina l . index % 96 == 0]

Downsampling can also be handled by randomly selecting a fraction of the original
samples. Below, the code to randomly downsamle a dataset to 1 % of the original
data is shown:

1 Dataframe_downsampled = Dataframe_or ig ina l . sample (f r a c=0.01)

118

119 CHAPTER 5. DATA QUALITY IMPROVEMENT

Linear downsampling has been used for all laboratory datasets as part of the
pre-processing procedure, but for some models, such as support vector machine,
random downsampling has been used to extract a smaller fraction of the data.

5.2 Removing duplicates

While our datasets so far have not contained any duplicates, there are available
functions to easily remove duplicates. When processing the data, the Pandas-
library has been used. The function shown below has been taken from the Pandas
library:

1 Dataframe.drop_dupl icates ()

5.3 Removing Missing data

A cell containing missing data is described in the data as a NaN (Not a Number)
value. These missing numbers get identified during processing, and the preferred
method to handle missing values has been to remove the respective row. Because
our dataset initially has been sampled with a high sampling frequency, removing
the whole row when a NaN value is identified has not been a problem for further
use of the data. The NaN-values are identified and the row is removed using the
command Dataframe.dropna(axis=0, inplace=True), as shown below:

1 Dataframe.dropna (ax i s =0, i np l a c e=True)

If smaller datasets get used, one could argue that removing the entire row of a
missing data might not be beneficial or in some cases ruin the value of the dataset,
and different methods can be applied to not have to remove the complete set of
observations where one of the variables in the set contains an invalid or missing
number.

5.4 Normalizing the data

Before the data gets normalized, hardcoded minimum and maximum boundary
conditions for all variables get added for reasons mensioned in section 3.1.8. The
steps that have been follow are as following:

5.4. NORMALIZING THE DATA 120

Once the boundary conditions have been added, the MinMaxScaler function from
the preprocessing library in Scikit Learn is used:

Figure 5.1: Normalizing data using MinMaxScaler.

After the normalization operation has been performed the columns that represent
the different variables (features) must be renamed:

Figure 5.2: Renaming the features.

The class labels that represent the different classes have also been normalized
which means that these also must be renamed to their original label:

Figure 5.3: Changing normalized class labels back to their original label.

As can be observed in row 315025 and 315026, the hardcoded maximum and
minimum value have been normalized to 1.0 and 0.0, respectively.

121 CHAPTER 5. DATA QUALITY IMPROVEMENT

5.5 Outlier removal using IQR method

The data has been evaluated both when outliers have been removed from the data,
and when these outliers have been kept. For outlier removal, the interquartile
range (IQR) method has been used.

First, each column (feature) of observation has been sorted:

Figure 5.4: Sorting each feature in the dataset.

After the features have been sorted separately, the upper and lower quartiles of
each feature get identified by the following method:

Figure 5.5: Identifying upper and lower quartiles.

Once the upper and lower quartiles have been identiied, the inter quartile range
(IQR) gets calculated using equation 3.7 in the theory chapter:

Figure 5.6: Illustration of how IQR gets calculated.

When the IQR has been calculated for each feature, one must use equations 3.8
and 3.9 to determine the lower and upper limits. These limits determine the
threshold in which all observations that fall outside of the threshold are treated
as outliers and removed.

5.5. OUTLIER REMOVAL USING IQR METHOD 122

Figure 5.7: Upper and lower limit of the IQR range.

The lower and upper boundaries that have been identified in the dataset that gets
used to train the rock formation classification models in chapter 7 are shown in
the figure below:

Figure 5.8: Upper and lower boundaries for the dataset used to develop rock
formation classification models. Please note that the IQR method
is conducted after the data has been normalized, which is why all
boundaries are values between 0 and 1.

The results from the IQR method are based on historical data. When imple-
menting the supervised learning models in the real-time control system, these
determined upper and lower boundaries can be used to discard observations that
fall outside of the permitted range. After the threshold to keep has been deter-
mined, the following code (Figure 5.9) is run in order to convert observations that
lie outside of the permitted range to NaN.

123 CHAPTER 5. DATA QUALITY IMPROVEMENT

Figure 5.9: Setting outlying data to zero, keeping in range values.

After the outliers have all been converted to NaN, a count of the number of outliers
in each variable can be printed, in order to evaluate the number of observations
from each feature that are regarded as outliers by the method:

Figure 5.10: Counting number of identified outliers that have been converted to
NaN.

As described earlier, the NaN values can be dropped from the dataset using the
.dropna() function.
The accuracy and performance of supervised learning models developed on training
data where outliers have either been kept or removed been are presented in
chapter 7 and chapter 8.

5.6 Four-plots for WOB and Torque

In chapter 3, the concept of using a four-plot is discussed. The plots included in
a typical four-plot are so-called time or scatter plot, lag plot, histogram plot and
Q-Q plot. To generate the plots, functions from the Pandas and SciPy (Scientific
Python) libraries have been used.

In the figures below, four-plots have been generated both before and after the
observations for torque and WOB have been pre-processed. In the plot below
(Figure 5.11), the un-processed data for WOB is shown:

5.6. FOUR-PLOTS FOR WOB AND TORQUE 124

Figure 5.11: Four-plot showing the raw data for WOB (before the data has been
pre-processed by methods discussed above).

After missing data, invalid data, duplicates and outliers have been removed, and
after the dataset has been normalized, we plot the data once again. As seen in
Figure 5.12, the normal distribution has improved, as can be observed from the
histogram plot:

Figure 5.12: Four-plot showing the plotted processed data of WOB.

Repeating the same process for the torque measurements, it can once again be

125 CHAPTER 5. DATA QUALITY IMPROVEMENT

observed that the most optimal normal distribution is achieved once the data has
been pre-processed.

Figure 5.13: Four-plot showing the plotted raw data of torque.

Figure 5.14: Four-plot showing the plotted processed data of torque.

Chapter 6

Feature Engineering and
Optimization

In this chapter, the process of developing, evaluating and selecting which features
that are most valuable to develop the different models gets presented. Because the
objective is to classify different rock formations and drilling activities or incidents
in real-time, several artificial features can be engineered to distinguish between
classes. In this chapter, we commonly refer to natural features as observations
that originally were collected from sensors. Engineered features on the other hand
is used to describe features that have been created using the natural features (raw
data observations). This helps us to separate the original variables from those
that have been created after the data has been pre-processed.

6.1 Drilling Feature Engineering

6.1.1 Natural features

The natural features when classifying rock formations, rig operations and drilling
incidents on the laboratory-scale drilling rig are:

126

127 CHAPTER 6. FEATURE ENGINEERING AND OPTIMIZATION

Feature Unit Min Range Max Range
LC1 [g] -10000 10000
LC2 [g] -10000 10000
LC3 [g] -10000 10000
RPM [rev/min] o 1500
Torque [Nm] 0 8.59
Depth [mm] 0 1000
Wob [kg] -30 30

Pressure [bar] 0 10
Rock formation [#] 1 6

For the Volve field data used to classify different formations, the natural features
that are extracted from all available data are:

Feature Unit Min Range Max Range
ROP [m/hr] 0.50 177.67
MSE [Pa] 2.13 × 102 1.10 × 106

WOB [kN] -1.36 86.47
Torque [kNm] 0 35.45
RPM [rev/min] 0 311
Q [LPM] 0 3566

MWin [s.g.] 1.28 1.47
DOC [mm] 0.2059 43.65
BA [-] -104.63 3123.78

Mudtype [#] 1 3
Geological formation class [#] 1 7

Lastly, the Volve field data used to classify rig operations are:

Feature Unit Min Range Max Range
Bit RPM [rev/min] 0 3.33
Surf RPM [rev/min] 0 2.05
Depth [m] 2698.99 3056.18
ROP [m/hr] 0 0.0092

Block pos. [m] 9.00 49.91
Torque [kNm] 0 33.48
WOB [kN] 0 199

Operation class [#] 1 3

6.1. DRILLING FEATURE ENGINEERING 128

In the tables above, LC(1/2/3) denote the hook load strain gauge measurements
from load cells, Q denotes flow rate, MW denotes mud weight, DOC denotes depth
of cut, BA denotes the bit aggressiveness, block position is a measurement of the
crown block position (in the derrick). There exists uncertainty as to whether the
Volve rig operation that is not tripping is Rotating On Bottom (ROnB) or indeed
drilling. Based on the RPMs, it is unlikely that the data results from drilling,
given the low ROPs as well (but instead ROnB). The uncertainty still does not
have an effect on the further process of developing models to separate the three
activities from each other.

6.1.2 Artificial Feature Engineering

Several drilling-related features can be created from the above natural features.
The following features have been created and implemented in either one or several
machine learning models:

Features constructed before datasets are merged

Mean depth is a feature that is created for the laboratory-scale drilling rig to
output the average height sensor measurement of the drill floor (which travels
along with the drill string assembly).
The algorithm used to calculate the mean depth [mm] value for each 9600 samples
(i.e. one mean constant mean depth for all observations taken in a single second)
can be shown in Figure 6.1:

Figure 6.1: The algorithm shown is used to calculate the mean depth measure-
ment of 9600 observations corresponding to one mean depth value
every second. The calculated mean-value is stored for all 9600 ob-
servations in a new feature column called mean_depth.

Rate of Penetration (ROP) denotes the drilling speed; i.e. the change of bit
depth per time unit (usually given in m/hour or ft/hour). On the laboratory
drilling rig, the ROP can be calculated by a step counter (in real-time), which keeps
track of how many pulses that get executed on the Arduino Due microcontrollers.

129 CHAPTER 6. FEATURE ENGINEERING AND OPTIMIZATION

When collecting data from the high frequency DAQ with however, this information
is not available, and we therefore use the mean depth value found above to
calculate the ROP as a function of rate of change of depth. The algorithm
calculates the difference in mean depth between t and t-1 (between every 9600
samples), as is shown in Figure 6.3:

Figure 6.2: Algorithm performs n/9600 iterations, that is one iteration to cal-
culate the ROP which is the change in the mean depth value every
9600 samples, based on the mean-value calculations found above.
The same ROP value is written to the ROPinstantanious column for
all rows that the ROP value got calculated from.

6.1.3 Drilling Features constructed after processing

The following features have been constructed after data has been processed to
reduce the complexity in the real-time system of first calculating some features,
then processing the raw data, and again calculating additional features. Further-
more, the process of normalizing the data require us to hardcode thresholds so
that independent of what the maximum and minimum measurements are, the
values in the training data correspond to values from future drilling, seeing as
hardcoding for instance a maximum and minimum MSE or standard deviation
based on only historical data can provide errors at the end.

Mechanical Specific Energy (MSE) is according to (Hamrick, 2011) [54] a
measure of the mechanical energy required to remove a unit volume of rock, and
is a concept that was introduced by Teale in 1965. The lower the MSE, the less
energy is used to remove the same rock volume, which can be explained by that if
a formation is broken into smaller fragments than required (to lift the cuttings out
of the well) or too large fragments, which means that additional energy must be
used downhole to reduce the size of the cuttings, energy is wasted. As technology
advancements were made in the early 2000s in terms of accurate downhole tools

6.1. DRILLING FEATURE ENGINEERING 130

and state-of-art sensors, Dupriest, Koederlitz and Weis began computing the MSE
during drilling on full scale rigs, and ever since, MSE has been a standard for
surveillance of rig data.

Teale derived the following equation for MSE (Fear & Pessier, 1992) [55]:

Es =
WOB

Abit
+

120× π ×RPM × τ
Abit ×ROP

(6.1)

where: Es = Specific energy, WOB = Weight on bit [lbs], Abit = Area of bit
[in2], RPM = Revolutions per minute [rev/min], τ = Torque [lbf], ROP =
Rate of penetration [ft/hr].

Teale also derived an equation for minimum specific energy, suggesting that the
maximum efficiency of drilling is reached when the minimum specific energy is
approximately equal to the compressive rock strength (Fear & Pessier, 1992) [55]:

Esmin
Es

= 1 (6.2)

The equation that is used to calculate the MSE [Pa] on our system is (Hjelm &
Nilsen, 2018) [6]:

MSE =
WOB × g
π
4
×D2

bit

+
2× π ×RPM × τ
π
4
×D2

bit ×ROP
(6.3)

where: MSE = Mechanical specific energy [Pa], WOB = Weight on bit [kg],
Dbit = Drill bit diameter [m], RPM = Surface RPM [rev/min], τ = Torque
[Nm], ROP = Rate of penetration [m/hr].

As is shown in (Fear & Pessier, 1992) [55], ROP = f(WOB, µ, RPM, MSE, bit

131 CHAPTER 6. FEATURE ENGINEERING AND OPTIMIZATION

diameter):

ROP =
13.33× µ×N
DB(Es

WOB
− 1

AB
)

(6.4)

µ = 36× τ

DB ×WOB
(6.5)

where: ROP = Rate of penetration [ft/hr], µ = Coefficient of sliding friction,
Dbit = Drill bit diameter [in], τ = Torque [lbf], RPM = Revolutions per minute
[rev/min], AB = Area of bit [in2].

MSE can be used for classifying different rock formations, as is illustrated in
Figure 6.3, where the MSE is calculated for a soft and hard formation using the
laboratory setup at the University of Stavanger. See [56] for how specific energy
(MSE) is used to characterize geotechnical sites, indicating the optimality of using
this concept for rock classification.

Figure 6.3: Difference in MSE (and UCS) when drilling a soft rock (cement)
and hard rock (floor tiles) with the laboratory-scale drilling rig.

Depth of cut (DOC) can be described as the axial distance that the drill bit

6.1. DRILLING FEATURE ENGINEERING 132

cuts into the formation per revolution, which is dependent on the ROP and RPM.
While the ROP and RPM feedback is already measured, the calculation of DOC
gives the machine an additional parameter to distinguish between the drilled
formations. The formula to calculate the DOC is [57]:

DOC =
ROP

5×RPM
(6.6)

where: DOC = Depth of cut [in/rev] ROP = Rate of Penetration [ft/hr] RPM
= Revolutions per minute [rev/min]

On the system, the DOC is calculated in mm/rev, hence:

DOC =
ROP [m/hr]× 16.40

RPM [rev/min]
(6.7)

Bit aggressiveness (BA), according to (Karadzhova, 2014), can be determined
by how high the DOC of a drill bit is, and depend on the bits backrake angle
(cutter angle) and the exposure of cutters. It is common knowledge that since
PDC bits shear the formation, they are more aggressive than roller cone bits,
and since the PDC bits produce a higher torque from the interaction with the
formation, PDC bits are used on the laboratory-scale drilling rig at UiS. In 1992,
Pessier and Fear derived the following equation for bit aggressiveness [58]:

µ =
36× τ

WOB ×Dbit

(6.8)

where: τ = Torque [lbf], WOB = Weight on bit [lbs], Dbit = Bit diameter [in].

d-exponent describes the so-called drillability of different formations. The d-

133 CHAPTER 6. FEATURE ENGINEERING AND OPTIMIZATION

exponent, that was derived by Bingham, Jordan and Shirley in the late 1960s, is
typically used to correct the drilling rate (Akisanmi, 2016) [13]:

d =
log(ROP

60×RPM)

log(12×WOB
103×Dbit

)
(6.9)

where: ROP = Rate of penetration [ft/hr], WOB = Weight on bit [lbf], Dbit

= Bit diameter [in].

If one wants to correct the d-exponent to also take into account differences in the
pore-pressure and equivalent circulating density, the following equation can be
applied (Akisanmi, 2016) [13]:

dcorrected =
NPP

ECD
× d (6.10)

where: NPP = Normal pore pressure gradient [psi/ft], ECD = Equivalent
circulating density [ppg],

When calculating the d-exponent during drilling with the lab-scale rig, the uncor-
rected equation is utilized.

Interactions of natural features

Similar to the DOC and BA, the following features are created to add additional in-
teractions of the drilling parameters WOB, RPM and ROP to use for classification.

RPM*WOB is referred to as TF1:

Figure 6.4: Algorithm to calculate the RPM*WOB feature.

6.1. DRILLING FEATURE ENGINEERING 134

RPM*WOB/ROP is referred to as TF2:

Figure 6.5: Algorithm to calculate the RPM*WOB/ROP feature.

RPM2 is referred to as TF3:

Figure 6.6: Algorithm to calculate the RPM2 feature.

WOB2 is referred to as TF4:

Figure 6.7: Algorithm to calculate the WOB2 feature.

WOB/RPM is referred to as TF5:

Figure 6.8: Algorithm to calculate the WOB/RPM feature.

The basis for calculating the interactions of natural features was a data anal-
ysis experiment conducted using MATLAB to investigate whether the feature
importance of these natural interactions were higher than just using the natural
features. The resulting feature importance is shown in section 6.2.1 where an
ExtraTreesClassisfier algorithm is run to evaluate the feature importance of all
features.

Statistical features for drilling incident classification

Several statistical features have also been created for the cases of rock classifi-
cation, vibration classification, pressure classification, stuck pipe and twist off
classification. These describe the average value, standard deviation, median, max-
imum, minimum, P25, P50 and P75 value for each of the natural features pressure,
weight on bit, or torque. Please note that these features however, need to get
calculated before conducting the data concatenation, as each feature should be
distinct for the class that they represent only. In the following paragraphs, exam-
ples are given for how these statistical features have been calculated to classify

135 CHAPTER 6. FEATURE ENGINEERING AND OPTIMIZATION

either a leak (losses), normal operating pressure or overpressure (plugged nozzles)
in Python. Each feature is calculated over an interval of 960 samples; i.e. 10
calculations every second at a sampling rate of 9600 Hz.
Standard deviation is calculated running the algorithm shown:

Figure 6.9: Algorithm to calculate standard deviation for pressure measurements
to classify different pressure cases.

Mean value is calculated running the algorithm shown:

Figure 6.10: Algorithm to calculate mean value for pressure measurements to
classify different pressure cases.

Median value is calculated running the algorithm shown:

Figure 6.11: Algorithm to calculate median value for pressure measurements to
classify different pressure cases.

Peak maximum value is calculated running the algorithm shown:

Figure 6.12: Algorithm to calculate maximum value for pressure measurements
to classify different pressure cases.

6.1. DRILLING FEATURE ENGINEERING 136

Peak minimum value is calculated running the algorithm shown:

Figure 6.13: Algorithm to calculate the minimum value for pressure measure-
ments to classify different pressure cases.

P25, P30, P50, P60 and P75 can all be calculated using the Pandas library
for data analysis in Python: Dataframe.quantile(q=0.25/0.30/0.50/0.60/0.75)
function.

Interactions of statistical features for drilling incident classification

Based on the statistical features, the following interactions have been calculated
for the mentioned intervals for torque, WOB and pressure (where applicable).
average value / standard deviation

Figure 6.14: Algorithm to calculate the average divided by the standard deviation
within an interval to classify different pressure cases.

median value / standard deviation

Figure 6.15: Algorithm to calculate the median divided by the standard deviation
within an interval to classify different pressure cases.

Peak to Peak

Figure 6.16: Algorithm to calculate the difference between the peak maximum
value and the peak minimum value within an interval to classify
different pressure cases.

In the training data, the ROP, mean depth and statistical features are computed
for each individual dataset before the datasets get concatenated and pre-processed.

137 CHAPTER 6. FEATURE ENGINEERING AND OPTIMIZATION

6.2 Feature Selection

Before each feature were created, the original dataset was downsampled to 1 %
of the original dataset; i.e. a reduction from 9600 Hz to 96 Hz. This has been
necessary for two reasons:

• reduce the computational power and time required to develop the models,

• facilitate for classification in real-time on the control system that is only
capable of a sampling frequency of up to 100 Hz, even with a 12-core CPU
that allows us to execute 24 parallel processes (threads).

6.2.1 With outliers kept in the dataset

Before we remove outliers by the IQR method, we want to evaluate which features
that are most important using the ExtraTreesClassifier and PCA approaches.
This is necessary to see whether some features lose their importance when outliers
have been removed.

ExtraTreesClassifier to evaluate feature importance

A tree algorithm has been used to evaluate the feature importance in the datasets.
The algorithm is an ExtraTreesClassification which is part of the Scikit Learn
library [59], and the output of the algorithm is the score rank, feature number
and feature score (percentage). Due to this being an ExtraTreesClassifier, there
is no guarantee that these features are the most optimal for all algorithms (such
as neural networks, support vector machine, and so on). The algorithm does
however give a quick evaluation of the features, and can be very useful to evaluate
especially whether the engineered features are considered important, or whether
additional features should get engineered.
From running the ExtraTreesClassifier algorithm, the feature importance is shown
in Figure 6.17:

6.2. FEATURE SELECTION 138

Figure 6.17: Results from running the ExtraTreesClassifier algorithm before re-
moving outliers in the data. The rank, feature number, score (per-
centage) and feature name is given at the top.

By looking at the feature results, three out of the four highest scoring features
heavily depend on the depth measurement. Since depth, mean depth, WOBsetpoint
and RPMsetpoint in our opinion should not get used to develop the models (since
these are not representative of the interaction with the formation), the six highest
scoring features that will get used in chapter 7 are:

Feature: ROP TF3 rpm DOC Torque BA
Rank: 1 2 3 4 5 6

PCA to reduce feature dimensionality

As explained in section 3.2.2, PCA restructures the dataset; reducing the amount
of variables by creating new ones that are independent of each other. A principle
component represents a linear relation, where the variables are all original input
parameters. Figures 6.18, 6.19, 6.20, 6.21 and 6.22 have been created from the
laboratory drilling rig data using the algorithm examples provided in (Otterbach,
2016) [60].

139 CHAPTER 6. FEATURE ENGINEERING AND OPTIMIZATION

Figure 6.18: Feature dimensionality reduction using PCA. Yellow line represents
the cumulative explained variance ratio and the blue line represents
the explained variance ratio.

As can be observed in Figure 6.18, the principal component is shown on the x-axis
while the explained variance is shown on the y-axis. By plotting the mean- and
variance ratios, we can investigate how each of the original features have an effect
on the variance:

Figure 6.19: Mean (orange) and variance (blue) ratios for original features are
shown from PCA analysis.

6.2. FEATURE SELECTION 140

Furthermore, we can then normalize the data using z-scaling, to prevent some
components from dominating the PCA:

Figure 6.20: Feature dimensionality reduction using PCA when z-scaled. Yellow
line represents the cumulative explained variance ratio and the blue
line represents the explained variance ratio.

From Figure 6.20, we can see that when applying the z-scaling, the slope for
variance is less steep, and fewer principal components appear to be necessary to
explain the variance in the slope. From the observations, it appears that only five
principal components are necessary to explain almost all of the variance in the
dataset.

PCA to evaluate feature importance

PCA can also be used to evaluate the importance that each original feature has
on the principal components:

141 CHAPTER 6. FEATURE ENGINEERING AND OPTIMIZATION

Figure 6.21: Heatmap displaying the feature importance to create the Principal
Components that are created using PCA. x-axis: original feature
index. y-axis: principal component.

With z-scaling applied, the feature importance is shown in Figure 6.22:

Figure 6.22: Heatmap displaying the feature importance to create the Princi-
pal Components first applying a z-scaling normalization and then
conducting PCA. x-axis: original feature index. y-axis: principal
component.

6.2.2 With no outliers in the dataset

In chapter 3 and chapter 5, the concept of using IQR method to remove outliers
in the dataset is explained. The feature importance and PCA shown in the
next paragraphs are performed when removing outliers in the natural features
(measurements) that are outside of the minimum and maximum thresholds given
in the table below. IQR has not been used to remove outliers from the engineered

6.2. FEATURE SELECTION 142

features, since if an outlier is detected in the natural features; the entire data row
will get dropped (including the artificially engineered features for those data).

Natural Feature Minimum threshold Maximum threshold
Z1 0.08355937499999999 0.654294375
Z2 0.09999812499999997 0.650713125
Z3 0.09999812499999997 0.650713125
rpm -0.25634 0.94878

m_torque -0.01944994179278227 0.2572392316647264
wob 0.1413941666666667 0.6255875

ExtraTreesClassifier to evaluate feature importance

Figure 6.23: Results from ExtraTreesClassifier algorithm to evaluate the feature
importance after IQR has been used to remove outliers.

As can be observed in Figure 6.23, outlier removal only results in minor changes
to the feature importances, which possibly suggests that it might not be neces-
sary to remove outliers to retain the feature importance in the dataset for rock
classification. Except for the re-arranged order of TF1, TF2 and TF5, the only
notable change is the D-exponent, which has climbed from rank 16 to rank 14,

143 CHAPTER 6. FEATURE ENGINEERING AND OPTIMIZATION

as the weight on bit feature has become less important when outliers have been
dropped from the dataset.

PCA to reduce feature dimensionality

Figure 6.24: PCA feature dimensionality reduction and PCA feature importance
after performing IQR. In the top left corner, PCA is performed
with 19 principal components, and in the top right corner, the
mean ratio and variance ratio is shown. In the lower left corner,
the results are shown after z-scaling the data. In the lower left
corner, the update feature importance heatmap is shown.

When considering the results from the PCA, very few changes are noted from
performing removal of outliers. This suggests that for rock classification using the
laboratory drilling data, it might not be necessary to remove outliers from the
data. One possible explaination is that the IQR is performed on data that are
all sampled synchronously using a high-frequency DAQ with high consistency in
the measurements. This can also be observed when the raw data gets plotted in
box-plots. When data from several sources, including downhole data, is combined
we expect more noise and a stronger reliance on outlier removal to strengthen the

6.3. FEATURE EXTRACTION 144

importance of features.

6.3 Feature Extraction

The following workflow is integrated in the real-time system to extract the features
that have provided the highest score in the feature importance evaluation.

Figure 6.25: Flowchart of data flow and processes performed for real-time rock
classification.

Even if the results in this chapter are taken from the rock classification workflow,
the same flow chart is applied when developing the models for drilling incidents
and vibration classification using downhole measurements. With the currently
installed equipment, the data gets sampled at 60 Hz, limited by the sampling fre-
quency of the microcontroller that gets used to transmit downhole measurements
to surface. Raw-features such as meandepth and ROP get calculated both by the
height sensor and step-counting (as mentioned in chapter 2), and the data gets
normalized before additional features get engineered. The drilling features are
then calculated, before outliers get removed. At last, the features that have been
used to train the different models get extracted and are input into the model to

145 CHAPTER 6. FEATURE ENGINEERING AND OPTIMIZATION

deliver a classification.

Even if methods such as the ExtraTreesClassifier can be used to evaluate the
importance of features and PCA can be used in order to create new principal
components that can explain the variance in the dataset (and thus be used to
classify which class an observation belongs to), such scores are not guaranteed
to be correct. Methods such as the ExtraTreesClassifier algorithm should in our
opinion only get used to give an indication of the importance that an engineered
feature holds. Particularly when working with drilling data, manual selection of
features should be performed. Those features that are considered important to
describe a particular phenomena (such as for instance bit-rock interaction for rock
formation classification) should get selected rather than blindly trusting the score
from an algorithm. A high accuracy score does not guarantee that the model can
correctly classify the observations in a new dataset; if the selected features are not
directly applicable. One example of this can be if a certain flowrate gets selected
for one drilling operation, while another flowrate is used for another formation.
While such differences in the training data will result in a high feature importance
for flowrate, the setpoint can be independent of the formation type and thus can
not be used to confirm that a particular formation is being drilled. The same
applies to for instance RPM and WOB setpoints.

Chapter 7

Model Development - Sensitivity
Study

7.1 Sensitivity study objective

In this chapter, a sensitivity study is conducted to evaluate which preprocessing
techniques (missing or invalid data, and IQR) and features that result in the most
optimal models for the drilling cases given below. In the pre-processing column,
MD denotes missing (and invalid) data, Norm denotes data normalization and
IQR denotes outlier removal. For all cases, the most optimal model parameters are
found using the GridSearchCV function, as is presented in chapter 3. The input
data, model parameters, and a classification report is presented for all supervised
cases, where as for unsupervised cases the results are presented graphically. Since
the most optimal features have only been presented for rock formation classiciation
using laboratory measurements in chapter 6 each classification task will also be
presented with the recommended feature priority based on an ExtraTreesClassifier
algorithm. Regardless of the feature priority from the algorithm, manual selection
is performed to ensure that only those features that are regarded as applicable
gets used. In chapter 8.

a. Laboratory rock formation classification - 5 cases

b. Volve rock formation classification - 5 cases

c. Laboratory rig operation classification - 3 cases

d. Volve rig operation classification - 3 cases

e. Laboratory Normal pressure, leak and overpressure classification - 3 cases

f. Laboratory vibration classification (surface data) - 3 cases

146

147 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

g. Laboratory vibration classification (downhole data) - 4 cases

h. Laboratory stuck-pipe classification - 3 cases

i. Laboratory twist off classification - 3 cases

In terms of classification reports, each case is presented with the fitted model´s
accuracy and Area Under Curve (AUC). The AUC denotes the separability of the
data, i.e. to what extent the model is capable of distinguishing between a true
positive and a false positive as illustrated in subsection 3.3.1:

• a true positive can be thought of as the algorithm detecting a class (for-
mation type, or incident type) that is indeed observed, e.g. the algorithm
detecting a sandstone when a sandstone indeed is being drilled,

• a false positive indicates when the model detects a class, even if the obser-
vation belongs to a different class, e.g. the algorithm detecting a sandstone
while a granite rock is encountered.

Figure 7.1: Area under curve concept [61].

As can be observed in the figure above, the AUC returns a score between 0 and
1, where the higher the AUC score, the better the model performance is.

For rock classification, the combination of accuracy and AUC is used to evaluate
which combination of features and data preparation methods produce the best
model. For rig operations and drilling incidents (and vibration levels), unclassified
learning has been chosen to organize and evaluate the data. Unclassified learning
can not be used to classify or predict different rock formations, rig operations

7.1. SENSITIVITY STUDY OBJECTIVE 148

or drilling incidents. They do however give valuable information in terms of or-
ganizing the data and evaluating whether features can be used to separate the
different classes from the observations. For classification tasks c. - i., each task
is first presented with a case using supervised K-Nearest Neighbors to develop a
model that can be used on the drilling rig. Then, unsupervised learning is used to
generate clusters; first considering two natural features and then two engineered
features. For each unsupervised learning case, an Adjusted Rand Index (ARI)
score is given. The ARI denotes a similarity measure between clusters (Rand
Index) which is also adjusted for chance. The output range from the adjusted
rand index is -1.0 to 1.0, where 1.0 suggests that the clusters are identical.

The different classifiers that have been used to develop the models in the cases
below have all been taken from the Scikit Learn library [59]. These are: MLPClas-
sifier, DecisionTreeClassifier, SVC (C-Support Vector Classifier), RandomForest-
Classifier, GradientBoostingClassifier, KNeighborsClassifier, KMeans, DBSCAN
and TPOTClassifier.

Case studies
Case Data Pre-processing Model(s) Feature(s)
1. Laboratory rock data: 6

formations
MD, Norm Supervised: MLP,

DT, SVM, GB, RF,
K-NN, TPOT

16 features

2. Laboratory rock data: 6
formations

MD, Norm, IQR Supervised: MLP,
DT, SVM, GB, RF,
K-NN, TPOT

16 features

3. Laboratory rock data: 6
formations

MD, Norm, IQR Supervised: MLP,
DT, SVM, GB, RF,
K-NN, TPOT

6 highest fea-
tures

4. Laboratory rock: 3 forma-
tions

MD, Norm, IQR Supervised: MLP,
DT, SVM, GB, RF,
K-NN, TPOT

16 features

5. Laboratory rock: 3 forma-
tions

MD, Norm, IQR Supervised: MLP,
DT, SVM, GB, RF,
K-NN, TPOT

6 highest fea-
tures

6. Volve field data MD, Norm Supervised: MLP,
DT, SVM, GB, RF,
K-NN, TPOT

12 features

7. Volve field data MD, Norm, IQR Supervised: MLP,
DT, SVM, GB, RF,
K-NN, TPOT

12 features

149 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

8. Volve field data MD, Norm, IQR Supervised: MLP,
DT, SVM, GB, RF,
K-NN, TPOT

6 highest fea-
tures

9. Volve field data: 3 forma-
tions

MD, Norm, IQR Supervised: MLP,
DT, SVM, GB, RF,
K-NN, TPOT

12 features

10. Volve field data: 3 forma-
tions

MD, Norm, IQR Supervised: MLP,
DT, SVM, GB, RF,
K-NN, TPOT

6 highest fea-
tures

11. Laboratory rig operations MD, Norm, IQR Supervised: K-NN 21 features
12. Laboratory rig operations MD, Norm, IQR Unsupervised: K

means, DBSCAN
2 natural fea-
tures

13. Laboratory rig operations MD, Norm, IQR Unsupervised: K
means, DBSCAN

2 engineered
features

14. Volve rig operations MD Norm Supervised: K-NN 15 features
15. Volve rig operations MD, Norm Unsupervised: K

means, DBSCAN
2 natural fea-
tures

16. Volve rig operations MD, Norm Unsupervised: K
means, DBSCAN

2 engineered
features

17. Laboratory pressure case MD, Norm Supervised: K-NN 10 features
18. Laboratory pressure case MD, Norm Unsupervised: K

means, DBSCAN
2 natural fea-
tures

19. Laboratory pressure case MD, Norm Unsupervised: K
means, DBSCAN

2 engineered
features

20. Laboratory vibration case
(surface data)

MD, Norm Supervised: K-NN 13 features

21. Laboratory vibration case
(surface data)

MD, Norm Unsupervised: K
means, DBSCAN

2 natural fea-
tures

22. Laboratory vibration case
(surface data)

MD, Norm Unsupervised: K
means, DBSCAN

2 engineered
features

23. Laboratory vibration case
(downhole data)

Norm Supervised: K-NN 34 features

24. Laboratory vibration case
(downhole data)

Norm Supervised: K-NN 6 highest fea-
tures

25. Laboratory vibration case
(downhole data)

Norm Unsupervised: K
means, DBSCAN

2 natural fea-
tures

26. Laboratory vibration case
(downhole data)

Norm Unsupervised: K
means, DBSCAN

2 engineered
features

27. Laboratory stuck-pipe
case

MD, Norm Supervised: K-NN 14 features

28. Laboratory stuck-pipe
case

MD, Norm Unsupervised: K
means, DBSCAN

2 natural fea-
tures

7.2. STUDY CASES 150

29. Laboratory stuck-pipe
case

MD, Norm Unsupervised: K
means, DBSCAN

2 engineered
features

30. Laboratory twist off case MD, Norm Supervised: K-NN 14 features
31. Laboratory twist off case MD, Norm Unsupervised: K

means, DBSCAN
2 natural fea-
tures

32. Laboratory twist off case MD, Norm Unsupervised: K
means, DBSCAN

2 engineered
features

33.* Volve field data MD, Norm, IQR Supervised: MLP,
DT, SVM, GB, RF,
K-NN

14 features,
incl. flow
rate and
mud weight
into well

* denotes a theoretical test of which results are obtained also using two features
for flow rate and mud weight going into the well to classify the formations at the
Volve field, as is described in subsection 7.2.2, Volve formation classification. The
results from Case 33 is only presented in the summary table at the end of the
chapter. For a summary of the results, please see section 7.3.

7.2 Study cases

In each subsection, the GridSearchCV algorithm gets used to identify the most
optimal model parameters to develop the models with, except for the unsupervised
models. Then the different cases (as shown in the beginning of chapter 7) are
developed using the identified model parameters.

7.2.1 Laboratory formation classification

The processed dataset consists of 506147 rows × 16 feature columns (+ 1 label
column), containing a total of six rock types, as mentioned in chapter 6. The
dataset has been sampled at 9600 Hz, and downsampled to 96 Hz. The data has
further been processed for missing or invalid data, normalized and then outliers
have been removed. The features available are: load cells (1/2/3), rpm feedback,
motor torque feedback, weight on bit, rate of penetration, TF1, TF2, TF3, TF4,
TF5, mechanical specific energy, depth of cut, bit aggressiveness and d-exponent
(see chapter 6). Operating setpoints such as WOB setpoint and RPM setpoint
have been removed, along with depth and mean depth measurements, since these
are either controlled by the driller (or the machine), and do not describe the
formation (bit interaction). For case 1 through 5, the following labels are used for

151 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

naming the different formations: 1: Cement, 2: Chalk, 3: Granite, 4: Sandstone,
5: Salt and 6: Shale.

Model parameter tuning

a. Multi Layer Perceptron (MLP): optimal parameter search is performed
evaluating the following parameters on 10 % of the dataset and all 16 features.

1 params_to_test = { ' h idden_layer_sizes ' : [(1 0 , 1 0 , 1 0) , (50 ,50 ,50) , ...
(100 ,100 ,100)] , ' a c t i v a t i o n ' : [' tanh ' , ' r e l u '] , ' s o l v e r ' : [' sgd ' , ...
'adam '] , ' alpha ' : [0 .0001 , 0 . 1] , ' l ea rn ing_rate ' : [' adapt ive ' , ...
' i n v s c a l i n g '] , } .

The random state, grid-search cross-validation generator (cv), and scoring values
are:

1 MLP_model = MLPClass i f i er (random_state=None)
2 gr id_search = GridSearchCV (MLP_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 MLPClass i f i er (a c t i v a t i o n=' tanh ' , alpha=0.0001 , batch_size=' auto ' , ...
beta_1=0.9 , beta_2=0.999 , ear ly_stopping=False , e p s i l o n=1e -08 , ...
hidden_layer_sizes =(100 , 100 , 100) , l ea rn ing_rate=' i n v s c a l i n g ' , ...
l e a rn ing_rate_in i t=0.001 , max_iter=200 , momentum=0.9 , ...
nesterovs_momentum=True , power_t=0.5 , random_state=None , ...
s h u f f l e=True , s o l v e r='adam ' , t o l=0.0001 , v a l i d a t i on_ f r a c t i on=0.1 , ...
verbose=False , warm_start=Fal se)

b. Decision Tree (DT): optimal parameter search is performed evaluating the
following parameters on 100 % of the dataset and all 16 features.

1 params_to_test = { ' c r i t e r i o n ' : [' g i n i ' , ' entropy '] , 'max_depth ' : ...
[4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 15 , 20 , 30 , 40 , 50 , 70 , 90 , 120 , 150] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 DT_model = De c i s i o nT r e eC l a s s i f i e r (random_state=None)
2 gr id_search = GridSearchCV (DT_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

7.2. STUDY CASES 152

1 Dec i s i o nT r e eC l a s s i f i e r (c lass_weight=None , c r i t e r i o n=' entropy ' , ...
max_depth=70, max_features=None , max_leaf_nodes=None , ...
min_impurity_decrease=0.0 , min_impurity_split=None , ...
min_samples_leaf=1, min_samples_split=2, ...
min_weight_fraction_leaf=0.0 , p r e s o r t=False , random_state=None , ...
s p l i t t e r=' bes t ')

c. Support Vector Machine (SVM): optimal parameter search is performed
evaluating the following parameters on 5 % of the dataset and all 16 features.

1 params_to_test = { ' k e rne l ' : [' r b f ' , ' l i n e a r '] , 'gamma ' : [1 e - 3 , 1e - 4] , ...
'C ' : [1 , 10 , 100 , 1000]}

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 SV_model = SVC(random_state=None)
2 gr id_search = GridSearchCV (SV_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 SVC(C=1000 , cache_size =200 , c lass_weight=None , coe f 0=0.0 , ...
dec is ion_funct ion_shape=' ovr ' , degree=3, gamma=0.001 , k e rne l=' rb f ' , ...
max_iter= -1 , p r obab i l i t y=False , random_state=None , sh r ink ing=True , ...
t o l=0.001 , verbose=False)

d. Random Forest (RF): optimal parameter search is performed evaluating
the following parameters on 100 % of the dataset and all 16 features.

1 params_to_test = { ' n_estimators ' : [1 , 5 0 , 1 0] , 'max_depth ' : [5 , 1 0 , 1] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 RF_model = RandomForestClass i f i e r (random_state=42)
2 gr id_search = GridSearchCV (RF_model , param_grid=params_to_test , cv=10, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 RandomForestClass i f i e r (boots t rap=True , c lass_weight=None , ...
c r i t e r i o n=' g i n i ' , max_depth=10, max_features=' auto ' , ...
max_leaf_nodes=None , min_impurity_decrease=0.0 , ...

153 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

min_impurity_split=None , min_samples_leaf=1, min_samples_split=2, ...
min_weight_fraction_leaf=0.0 , n_estimators=50, n_jobs=1, ...
oob_score=False , random_state=42, verbose=0, warm_start=Fal se)

e. Gradient Boosting (GB): optimal parameter search is performed evaluating
the following parameters on 100 % of the dataset and all 16 features.

1 params_to_test = { ' l ea rn ing_rate ' : [0 .1 , 0 .05 , 0 .02 , 0 . 01] , 'max_depth ' : ...
[4 , 6 , 8] , ' min_samples_leaf ' : [2 0 , 50 ,100 ,150]

2 #' max_features ' : [1 .0 , 0 .3 , 0 . 1] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 GB_model = Grad i en tBoo s t i n gC l a s s i f i e r (random_state=None)
2

3 gr id_search = GridSearchCV (GB_model , param_grid=params_to_test , cv=3, ...
s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 Grad i en tBoo s t i n gC l a s s i f i e r (c r i t e r i o n=' friedman_mse ' , i n i t=None , ...
l ea rn ing_rate=0.1 , l o s s=' dev iance ' , max_depth=8, max_features=None , ...
max_leaf_nodes=None , min_impurity_decrease=0.0 , ...
min_impurity_split=None , min_samples_leaf=20, min_samples_split=2, ...
min_weight_fraction_leaf=0.0 , n_estimators =100 , p r e s o r t=' auto ' , ...
random_state=None , subsample=1.0 , verbose=0, warm_start=Fal se)

f. K-Nearest Neighbor (K-NN): optimal parameter search is performed
evaluating the following parameters on 100 % of the dataset and all 16 features.

1 params_to_test = { ' n_neighbors ' : [3 , 5 , 1 1] , ' we ights ' : [' d i s t anc e ' , ' uniform '] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 KNN_model = KNe ighbo r sC la s s i f i e r ()
2 gr id_search = GridSearchCV (KNN_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 KNe ighbo r sC la s s i f i e r (a lgor i thm=' auto ' , l e a f_ s i z e =30, metr ic=' minkowski ' , ...
metric_params=None , n_jobs=1, n_neighbors=5, p=2, weights=' d i s t anc e ')

7.2. STUDY CASES 154

g. TPOT Algorithm: optimal pipeline search is performed using the following
parameters on 1 % of the dataset and all 16 features.

1 tpot = TPOTClassi f ier (g ene ra t i on s =10, popu lat ion_s ize =50, v e rbo s i t y =2)

With regards to the best pipeline for TPOT, this changes for every case. Due to
this, the recommended pipeline from the software is presented at the end of each
case (for cases 1 - 10).

Case 1

Model variable
input(s):

z1, z2, z3, RPM, m_torque, WOB, ROP_instantanious,
TF1, TF2, TF3, TF4, TF5, MSE, DOC, BA, D-exponent

Sampling rate: 96 Hz
Labels: 1: Cement, 2: Chalk, 3: Granite, 4: Sandstone, 5: Salt, 6:

Shale

a. MLP - Accuracy: 94.31 %, Area under curve: 0.1413

Figure 7.2: Classification report for MLP.

b. DT - Accuracy: 99.67 %, Area under curve: 0.2444

Figure 7.3: Classification report for DT.

155 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

For decision tree, the class labels have been changed to the order of 0 to 5. 0:
Cement, 1: Chalk, 2: Granite, 3: Sandstone, 4: Salt and 5: Shale. In chapter 8,
this has been accounted for.

c. SVM - Accuracy: 89.88 %. Area under curve: 0.1524

Figure 7.4: Classification report for SVM.

d. RF - Accuracy: 98.52 %. Area under curve: 0.1537

Figure 7.5: Classification report for RF.

e. GB - Accuracy: 99.23 %. Area under curve: 0.1488

Figure 7.6: Classification report for GB.

7.2. STUDY CASES 156

f. K-NN - Accuracy: 85.62 %. Area under curve: 0.1866

Figure 7.7: Classification report for K-NN.

g. TPOT - GradientBoostingClassifier - Accuracy: 98.09 %. Area
under curve: 0.1519

Figure 7.8: Classification report for TPOT using an GradientBoostingClassifier.

Figure 7.9: Recommended pipeline for Case 1 is a GradientBoostingClassifier.

Case 2

Model variable
input(s):

z1, z2, z3, RPM, m_torque, WOB, ROP_instantanious,
TF1, TF2, TF3, TF4, TF5, MSE, DOC, BA, D-exponent

Sampling rate: 96 Hz
Labels: 1: Cement, 2: Chalk, 3: Granite, 4: Sandstone, 5: Salt, 6:

Shale

157 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

a. MLP - Accuracy: 95.53 %, Area under curve: 0.1338

Figure 7.10: Classification report for MLP.

b. DT - Accuracy: 99.66 %, Area under curve: 0.2265

Figure 7.11: Classification report for DT.

For decision tree, the class labels have been changed to the order of 0 to 5. 0:
Cement, 1: Chalk, 2: Granite, 3: Sandstone, 4: Salt and 5: Shale. In chapter 8,
this has been accounted for.

c. SVM - Accuracy: 89.66 %. Area under curve: 0.1344

Figure 7.12: Classification report for SVM.

7.2. STUDY CASES 158

d. RF - Accuracy: 98.50 %. Area under curve: 0.1245

Figure 7.13: Classification report for RF.

e. GB - Accuracy: 99.26 %. Area under curve: 0.1337

Figure 7.14: Classification report for GB.

f. K-NN - Accuracy: 85.37 %. Area under curve: 0.1527

Figure 7.15: Classification report for K-NN.

g. TPOT - ExtraTreesClassifier - Accuracy: 98.29 %. Area under
curve: 0.1395

159 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.16: Classification report for TPOT using an ExtraTreesClassifier.

Figure 7.17: Recommended pipeline for Case 2 is an ExtraTreesClassifier

Case 3

Model variable
input(s):

RPM, m_torque, ROP_instantanious, TF3, DOC, BA

Sampling rate: 96 Hz
Labels: 1: Cement, 2: Chalk, 3: Granite, 4: Sandstone, 5: Salt, 6:

Shale

a. MLP - Accuracy: 93.10 %, Area under curve: 0.1342

Figure 7.18: Classification report for MLP.

b. DT - Accuracy: 99.71 %, Area under curve: 0.2261

7.2. STUDY CASES 160

Figure 7.19: Classification report for DT.

For decision tree, the class labels have been changed to the order of 0 to 5. 0:
Cement, 1: Chalk, 2: Granite, 3: Sandstone, 4: Salt and 5: Shale. In chapter 8,
this has been accounted for.

c. SVM - Accuracy: 85.12 %. Area under curve: 0.1327

Figure 7.20: Classification report for SVM.

d. RF - Accuracy: 98.68 %. Area under curve: 0.1314

Figure 7.21: Classification report for RF.

e. GB - Accuracy: 99.18 %. Area under curve: 0.1333

161 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.22: Classification report for GB.

f. K-NN - Accuracy: 92.34 %. Area under curve: 0.1423

Figure 7.23: Classification report for K-NN.

g. TPOT - GradientBoostingClassifier - Accuracy: 98.02 %. Area
under curve: 0.1400

Figure 7.24: Classification report for TPOT using an GradientBoostingClassi-
fier.

Figure 7.25: Recommended pipeline for Case 3 is a GradientBoostingClassifier.

7.2. STUDY CASES 162

Case 4

Model variable
input(s):

z1, z2, z3, RPM, m_torque, WOB, ROP_instantanious,
TF1, TF2, TF3, TF4, TF5, MSE, DOC, BA, D-exponent

Sampling rate: 96 Hz
Labels: 1: Cement, 2: Chalk, 3: Granite, 4: Sandstone, 5: Salt, 6:

Shale

a. MLP - Accuracy: 99.36 %, Area under curve: nan

Figure 7.26: Classification report for MLP.

b. DT - Accuracy: 99.93 %, Area under curve: 0.9995

Figure 7.27: Classification report for DT.

For decision tree, the class labels have been changed to the order of 0 to 5. 0:
Cement, 1: Chalk, 2: Granite, 3: Sandstone, 4: Salt and 5: Shale. In chapter 8,
this has been accounted for.

c. SVM - Accuracy: 98.83 %. Area under curve: nan

Figure 7.28: Classification report for SVM.

163 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

d. RF - Accuracy: 99.53 %. Area under curve: nan

Figure 7.29: Classification report for RF.

e. GB - Accuracy: 99.85 %. Area under curve: nan

Figure 7.30: Classification report for GB.

f. K-NN - Accuracy: 89.92 %. Area under curve: nan

Figure 7.31: Classification report for K-NN.

g. TPOT - ExtraTreesClassifier - Accuracy: 99.32 %. Area under
curve: nan

Figure 7.32: Classification report for TPOT using an ExtraTreesClassifier.

7.2. STUDY CASES 164

Figure 7.33: Recommended pipeline for Case 4 is a ExtraTreesClassifier.

Case 5

Model variable
input(s):

RPM, m_torque, ROP_instantanious, TF3, DOC, BA

Sampling rate: 96 Hz
Labels: 1: Cement, 2: Chalk, 3: Granite, 4: Sandstone, 5: Salt, 6:

Shale

a. MLP - Accuracy: 98.60 %, Area under curve: nan

Figure 7.34: Classification report for MLP.

b. DT - Accuracy: 99.94 %, Area under curve: 0.9996

Figure 7.35: Classification report for DT.

For decision tree, the class labels have been changed to the order of 0 to 5. 0:
Cement, 1: Chalk, 2: Granite, 3: Sandstone, 4: Salt and 5: Shale. In chapter 8,
this has been accounted for.

c. SVM - Accuracy: 97.50 %. Area under curve: nan

165 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.36: Classification report for SVM.

d. RF - Accuracy: 99.66 %. Area under curve: nan

Figure 7.37: Classification report for RF.

e. GB - Accuracy: 99.93 %. Area under curve: nan

Figure 7.38: Classification report for GB.

f. K-NN - Accuracy: 97.74 %. Area under curve: nan

Figure 7.39: Classification report for K-NN.

g. TPOT - GradientBoostingClassifier - Accuracy: 99.83 %. Area
under curve: nan

7.2. STUDY CASES 166

Figure 7.40: Classification report for TPOT using an GradientBoostingClassi-
fier.

Figure 7.41: Recommended pipeline for Case 5 is a GradientBoostingClassifier.

Evaluation of best models from Cases 1-5:
With regards to Figure 3.11, it can be observed that the tree models (DT, RF,
GB) score equally high in cases 1 and 2 (with and without outliers present in the
data), corresponding with that these models are considered robust to outliers in
the input space. These models also perform very well when considering both the
accuracy and area under curve when the number of rock samples that the models
get trained on reduce from six to three. The TPOT algorithm also recommends to
use either a GradientBoostingClassifier (3 of the cases) or an ExtraTreesClassifier
(2 of the cases).

For the support vector machine, Figure 3.11 suggests that the ability to extract
linear combinations of features is high, but that the model is both weak with
regards to computational scalability and natural handling of mixed-type data. As
can be observed in cases 1 to 3, both of these statements appear correct. For
cases 4 and 5 however, when the number of rock samples have been reduced to
three, an increase by approximately 10 % can be noted. The same applies to the
multilayer perceptron model, which appears to perform much better when the
number of samples have been reduced to three.

With regards to K-NN, the model appears to score better when the number of
features are low. As shown in Figure 3.11, the K-NN models ability to extract
linear combinations of features is fairly good.

Considering all models, it is our recommendation to use tree classifiers for rock
formation classification on the laboratory drilling rig. The hypothesis from chap-
ter 6 suggesting that outlier removal might not be necessary with the laboratory

167 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

rig appears to hold. Furthermore, it can be observed that when using the algo-
rithm to identify the highest scoring features, and manually selecting those that
are considered the most applicable, the number of features to train and classify
formations can be reduced from 16 to 6.

7.2. STUDY CASES 168

7.2.2 Volve formation classification

The processed dataset consists of 2335 rows × 14 feature columns (+ 1 label
column), containing data for six rocks as mentioned in chapter 6. The sampling
frequency of the dataset is unknown, thus no features get engineered. The data
has been processed for missing or invalid data, normalized and then outliers have
been removed. Features available in the Volve formation data are: rate of pene-
tration, mechanical specific energy, weight on bit, bit torque, rpm, flow rate, mud
weightin, depth of cut, bit aggressiveness, TF1, TF2, TF3, TF4 and TF5 (see
chapter 6).

From running the ExtraTreesClassifier feature importance algorithm, the features
in the dataset scores as following:

Figure 7.42: Volve data feature importance for rock classification.

The flow rate and mud weight going into the well can not be used to classify the
different formations (as these are dependent on the operation). The six highest
scoring features then become:

Score: 1 2 3 4 5 6
Feature TF3 RPM Torque DOC MSE TF1

169 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Another challenge with the processed Vove data is the number of occurances for
formation type 7 (coal). In the original dataset coal had nine observations, and
after outlier removal, only three observations are left. For this reason, the coal
class has been removed from the dataset before all models get tuned and built.
The six highest scoring features when coal observations have been removed from
the dataset are the same as before. For case 6 through 10, the following labels
have been used: 1: Claystone, 2: Sandstone, 3: Siltstone, 4: Tuff, 5: Marl, 6:
Limestone and 7: Coal.

Model Parameter Tuning

a. Multi Layer Perceptron (MLP): optimal parameter search is performed
evaluating the following parameters on 100 % of the dataset and all features
except flow rate, mud weight in and mud type.

1 params_to_test = { ' h idden_layer_sizes ' : [(1 0 , 1 0 , 1 0) , (50 ,50 ,50) , ...
(100 ,100 ,100)] , ' a c t i v a t i o n ' : [' tanh ' , ' r e l u '] , ' s o l v e r ' : [' sgd ' , ...
'adam '] , ' alpha ' : [0 .0001 , 0 . 1] , ' l ea rn ing_rate ' : [' adapt ive ' , ...
' i n v s c a l i n g '] , } .

The random state, grid-search cross-validation generator (cv), and scoring values
are:

1 MLP_model = MLPClass i f i er (random_state=None)
2 gr id_search = GridSearchCV (MLP_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 MLPClass i f i er (a c t i v a t i o n=' r e l u ' , alpha=0.0001 , batch_size=' auto ' , ...
beta_1=0.9 , beta_2=0.999 , ear ly_stopping=False , e p s i l o n=1e -08 , ...
hidden_layer_sizes =(100 , 100 , 100) , l ea rn ing_rate=' adapt ive ' , ...
l e a rn ing_rate_in i t=0.001 , max_iter=200 , momentum=0.9 , ...
nesterovs_momentum=True , power_t=0.5 , random_state=None , ...
s h u f f l e=True , s o l v e r='adam ' , t o l=0.0001 , v a l i d a t i on_ f r a c t i on=0.1 , ...
verbose=False , warm_start=Fal se)

b. Decision Tree (DT): optimal parameter search is performed evaluating the
following parameters on 100 % of the dataset and all features except flow rate,
mud weight in and mud type.

1 params_to_test = { ' c r i t e r i o n ' : [' g i n i ' , ' entropy '] , 'max_depth ' : ...
[4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 15 , 20 , 30 , 40 , 50 , 70 , 90 , 120 , 150] }

7.2. STUDY CASES 170

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 DT_model = De c i s i o nT r e eC l a s s i f i e r (random_state=None)
2 gr id_search = GridSearchCV (DT_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 Dec i s i o nT r e eC l a s s i f i e r (c lass_weight=None , c r i t e r i o n=' g i n i ' , max_depth=10, ...
max_features=None , max_leaf_nodes=None , min_impurity_decrease=0.0 , ...
min_impurity_split=None , min_samples_leaf=1, min_samples_split=2, ...
min_weight_fraction_leaf=0.0 , p r e s o r t=False , random_state=None , ...
s p l i t t e r=' bes t ')

c. Support Vector Machine (SVM): optimal parameter search is performed
evaluating the following parameters on 100 % of the dataset and all features
except flow rate, mud weight in and mud type.

1 params_to_test = { ' k e rne l ' : [' r b f ' , ' l i n e a r '] , 'gamma ' : [1 e - 3 , 1e - 4] , ...
'C ' : [1 , 10 , 100 , 1000]}

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 SV_model = SVC(random_state=None)
2 gr id_search = GridSearchCV (SV_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 SVC(C=10, cache_size =200 , c lass_weight=None , coe f 0=0.0 , ...
dec is ion_funct ion_shape=' ovr ' , degree=3, gamma=0.001 , ...
ke rne l=' l i n e a r ' , max_iter= -1 , p r obab i l i t y=False , random_state=None , ...
sh r ink ing=True , t o l=0.001 , verbose=False)

d. Random Forest (RF): optimal parameter search is performed evaluating
the following parameters on 100 % of the dataset and all features except flow rate,
mud weight in and mud type.

1 params_to_test = { ' n_estimators ' : [1 , 5 0 , 1 0] , 'max_depth ' : [5 , 1 0 , 1] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

171 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

1 RF_model = RandomForestClass i f i e r (random_state=42)
2 gr id_search = GridSearchCV (RF_model , param_grid=params_to_test , cv=10, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 RandomForestClass i f i e r (boots t rap=True , c lass_weight=None , ...
c r i t e r i o n=' g i n i ' , max_depth=10, max_features=' auto ' , max_leaf_nodes=None ,

2 min_impurity_decrease=0.0 , min_impurity_split=None , min_samples_leaf=1, ...
min_samples_split=2, min_weight_fraction_leaf=0.0 , n_estimators=50, ...
n_jobs=1, oob_score=False , random_state=42, verbose =0, warm_start=False)

e. Gradient Boosting (GB): optimal parameter search is performed evaluating
the following parameters on 100 % of the dataset and all features except flow rate,
mud weight in and mud type.

1 params_to_test = { ' l ea rn ing_rate ' : [0 .1 , 0 .05 , 0 .02 , 0 . 01] , 'max_depth ' : ...
[4 , 6 , 8] , ' min_samples_leaf ' : [2 0 , 50 ,100 ,150]

2 #' max_features ' : [1 .0 , 0 .3 , 0 . 1] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 GB_model = Grad i en tBoo s t i n gC l a s s i f i e r (random_state=None)
2

3 gr id_search = GridSearchCV (GB_model , param_grid=params_to_test , cv=3, ...
s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 Grad i en tBoo s t i n gC l a s s i f i e r (c r i t e r i o n=' friedman_mse ' , i n i t=None , ...
l ea rn ing_rate=0.05 , l o s s=' dev iance ' , max_depth=8, max_features=None , ...
max_leaf_nodes=None , min_impurity_decrease=0.0 , ...
min_impurity_split=None , min_samples_leaf=20, min_samples_split=2, ...
min_weight_fraction_leaf=0.0 , n_estimators =100 , p r e s o r t=' auto ' , ...
random_state=None , subsample=1.0 , verbose=0, warm_start=Fal se)

f. K-Nearest Neighbor (K-NN): optimal parameter search is performed
evaluating the following parameters on 100 % of the dataset and all features
except flow rate, mud weight in and mud type.

1 params_to_test = { ' n_neighbors ' : [3 , 5 , 1 1] , ' we ights ' : [' d i s t anc e ' , ' uniform '] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

7.2. STUDY CASES 172

1 KNN_model = KNe ighbo r sC la s s i f i e r ()
2 gr id_search = GridSearchCV (KNN_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 KNe ighbo r sC la s s i f i e r (a lgor i thm=' auto ' , l e a f_ s i z e =30, metr ic=' minkowski ' , ...
metric_params=None , n_jobs=1, n_neighbors=10, p=2, weights=' d i s t anc e ')

g. TPOT Algorithm: optimal pipeline search is performed using the following
parameters on 1 % of the dataset and all features except flow rate, mud weight
in and mud type.

1 tpot = TPOTClassi f ier (g ene ra t i on s =10, popu lat ion_s ize =50, v e rbo s i t y =2)

With regards to the best pipeline for TPOT, this changes for every case. Due to
this, the recommended pipeline from the software is presented at the end of each
case (for cases 1 - 10).

Case 6

Model variable
input(s):

ROP, MSE, WOB, Torque, RPM, DOC, BA, TF1, TF2,
TF3, TF4, TF5

Sampling rate: Unknown
Labels: 1: Claystone, 2: Sandstone, 3: Siltstone, 5: Marl, 6: Lime-

stone

a. MLP - Accuracy: 59.86 %, Area under curve: 0.2655

Figure 7.43: Classification report for MLP.

b. DT - Accuracy: 57.36 %, Area under curve: 0.3262

173 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.44: Classification report for DT.

For decision tree, the class labels have been changed to the order of 0 to 4. 0:
Claystone, 1: Sandstone, 2: Siltstone, 3: Marl and 4: Limestone. In chapter 8,
this has been accounted for.

c. SVM - Accuracy: 54.03 %. Area under curve: 0.2795

Figure 7.45: Classification report for SVM.

d. RF - Accuracy: 71.39 %. Area under curve: 0.2468

Figure 7.46: Classification report for RF.

e. GB - Accuracy: 68.89 %. Area under curve: 0.2751

7.2. STUDY CASES 174

Figure 7.47: Classification report for GB.

f. K-NN - Accuracy: 67.22 %. Area under curve: 0.3013

Figure 7.48: Classification report for K-NN.

g. TPOT - GradientBoostingClassifier - Accuracy: 69.86 %. Area
under curve: 0.2598

Figure 7.49: Classification report for TPOT using an GradientBoostingClassi-
fier.

Figure 7.50: Recommended pipeline for Case 6 is a GradientBoostingClassifier.

175 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Case 7

Model variable
input(s):

ROP, MSE, WOB, Torque, RPM, DOC, BA, TF1, TF2,
TF3, TF4, TF5

Sampling rate: Unknown
Labels: 1: Claystone, 2: Sandstone, 3: Siltstone, 5: Marl, 6: Lime-

stone

a. MLP - Accuracy: 62.96 %, Area under curve: 0.2333

Figure 7.51: Classification report for MLP.

b. DT - Accuracy: 62.31 %, Area under curve: 0.3430

Figure 7.52: Classification report for DT.

For decision tree, the class labels have been changed to the order of 0 to 4. 0:
Claystone, 1: Sandstone, 2: Siltstone, 3: Marl and 4: Limestone. In chapter 8,
this has been accounted for.

c. SVM - Accuracy: 62.74 %. Area under curve: 0.2186

7.2. STUDY CASES 176

Figure 7.53: Classification report for SVM.

d. RF - Accuracy: 72.38 %. Area under curve: 0.2166

Figure 7.54: Classification report for RF.

e. GB - Accuracy: 69.81 %. Area under curve: 0.2292

Figure 7.55: Classification report for GB.

f. K-NN - Accuracy: 68.95 %. Area under curve: 0.2532

177 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.56: Classification report for K-NN.

g. TPOT - GradientBoostingClassifier - Accuracy: 71.09 %. Area
under curve: 0.2353

Figure 7.57: Classification report for TPOT using an GradientBoostingClassi-
fier.

Figure 7.58: Recommended pipeline for Case 7 is a GradientBoostingClassifier.

Case 8

Model variable
input(s):

MSE, Torque, RPM, DOC, TF1, TF3

Sampling rate: Unknown
Labels: 1: Claystone, 2: Sandstone, 3: Siltstone, 5: Marl, 6: Lime-

stone

a. MLP - Accuracy: 61.67 %, Area under curve: 0.2329

7.2. STUDY CASES 178

Figure 7.59: Classification report for MLP.

b. DT - Accuracy: 59.96 %, Area under curve: 0.3835

Figure 7.60: Classification report for DT.

For decision tree, the class labels have been changed to the order of 0 to 4. 0:
Claystone, 1: Sandstone, 2: Siltstone, 3: Marl and 4: Limestone. In chapter 8,
this has been accounted for.

c. SVM - Accuracy: 62.10 %. Area under curve: 0.2212

Figure 7.61: Classification report for SVM.

d. RF - Accuracy: 71.95 %. Area under curve: 0.1781

179 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.62: Classification report for RF.

e. GB - Accuracy: 70.02 %. Area under curve: 0.2062

Figure 7.63: Classification report for GB.

f. K-NN - Accuracy: 66.38 %. Area under curve: 0.2407

Figure 7.64: Classification report for K-NN.

g. TPOT - KNeighborsClassifier - Accuracy: 71.73 %. Area under
curve: 0.2291

7.2. STUDY CASES 180

Figure 7.65: Classification report for TPOT using a KNeighborsClassifier.

Figure 7.66: Recommended pipeline for Case 8 is a KNeighborsClassifier.

Case 9

Model variable
input(s):

ROP, MSE, WOB, Torque, RPM, DOC, BA, TF1, TF2,
TF3, TF4, TF5

Sampling rate: Unknown
Labels: 1: Claystone, 2: Sandstone, 6: Limestone

a. MLP - Accuracy: 76.94 %, Area under curve: 0.1878

Figure 7.67: Classification report for MLP.

b. DT - Accuracy: 78.20 %, Area under curve: 0.8791

Figure 7.68: Classification report for DT.

181 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

For decision tree, the class labels have been changed to the order of 0 to 2. 0:
Claystone, 1: Sandstone and 2: Limestone. In chapter 8, this has been accounted
for.

c. SVM - Accuracy: 75.94 %. Area under curve: 0.1883

Figure 7.69: Classification report for SVM.

d. RF - Accuracy: 83.46 %. Area under curve: 0.1686

Figure 7.70: Classification report for RF.

e. GB - Accuracy: 79.70 %. Area under curve: 0.2158

Figure 7.71: Classification report for GB.

f. K-NN - Accuracy: 78.95 %. Area under curve: 0.2379

7.2. STUDY CASES 182

Figure 7.72: Classification report for K-NN.

g. TPOT - RandomForestClassifier - Accuracy: 84.21 %. Area under
curve: 0.1696

Figure 7.73: Classification report for TPOT using an RandomForestClassifier.

Figure 7.74: Recommended pipeline for Case 9 is RandomForestClassifier.

Case 10

Model variable
input(s):

MSE, Torque, RPM, DOC, TF1, TF3

Sampling rate: Unknown
Labels: 1: Claystone, 2: Sandstone, 6: Limestone

a. MLP - Accuracy: 76.94 %, Area under curve: 0.1892

Figure 7.75: Classification report for MLP.

183 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

b. DT - Accuracy: 78.85 %, Area under curve: 0.8609

Figure 7.76: Classification report for DT.

For decision tree, the class labels have been changed to the order of 0 to 2. 0:
Claystone, 1: Sandstone and 2: Limestone. In chapter 8, this has been accounted
for.

c. SVM - Accuracy: 74.94 %. Area under curve: 0.1969

Figure 7.77: Classification report for SVM.

d. RF - Accuracy: 86.72 %. Area under curve: 0.1578

Figure 7.78: Classification report for RF.

e. GB - Accuracy: 82.46 %. Area under curve: 0.1950

Figure 7.79: Classification report for GB.

7.2. STUDY CASES 184

f. K-NN - Accuracy: 79.20 %. Area under curve: 0.2355

Figure 7.80: Classification report for K-NN.

g. TPOT - RandomForestClassifier - Accuracy: 85.21 %. Area under
curve: 0.1819

Figure 7.81: Classification report for TPOT using an RandomForestClassifier.

Figure 7.82: Recommended pipeline for Case 10 is a RandomForestClassifier.

Evaluation of best models from Cases 6-10:
Considering the results from the models that have been developed for classifica-
tion of six different geological formations at the Volve field, it can immediately
be observed that the accuracy is significantly lower than in the models developed
using laboratory data. A possible explaination to this is that the data from Volve
has been taken from different wells, and at different depths. It is furthermore
probable that different equipment has been used, which combined with the other
factors mentioned likely has an effect on the results of the models developed. A
10 - 13 % increase in accuracy for all models can be observed when the number
of geological formations (that the models have been trained on) is reduced from
six to three. If we first consider the difference between training models with and
without outliers present in the training data, all models improve slightly (a few
percentage higher) when IQR method has been used.

185 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Considering the tree classifiers, random forest and gradient boosting continue to
perform the best (out of the different models), while decision tree scores consid-
erably worse than expected. An explaination to why tree algorithms appear to
be the best performing are the characteristics shown in Figure 3.11.

Considering the support vector machine model, poor performance is observed for
six formations, which further strenghtens the characteristic that this model is
less robust to outliers and noisy data. Even if an increase in performance can be
noted when the number of geological formations get reduced, SVM continues to
score the lowest out of the seven models considered. Again, the same appears to
apply for the MLP model.

Considering the K-NN model, performance for six geological formations is mod-
erately high when compared to the highest scoring tree models and the lowest
scoring SVM and MLP models. When the number of formations have been re-
duced to three, it can be observed that almost 80 % accuracy is achieved when
using only the six highest scoring features.

Considering all results, it continues to be our recommendation to use tree classi-
fiers for rock formation classification. When outliers get removed, the accuracy
increases slightly, suggesting that for field data it is a good approach to make use
of the IQR (or similar methods) to remove outliers. The results could possibly
have improved even more, if outliers had been removed manually. Furthermore,
it can be observed that when using the algorithm to identify the highest scoring
features, and manually selecting those that are considered the most applicable,
the number of features to train and classify formations can be reduced from to
six without noting a drop in the performance.

7.2. STUDY CASES 186

7.2.3 Laboratory rig operations

The processed dataset contains 22762 rows × 25 feature columns (+ 1 label col-
umn), and the data represents three rig operations, i.e. RIH, POOH and ROnB.
The data has been sampled at 9600 Hz and downsampled to 96 Hz. The data has
further been processed for missing or invalid data, normalized and then outliers
have been removed. The features available in the dataset are: load cells (1/2/3),
rpm feedback, motor torque feedback, weight on bit, rate of penetration (ROP),
TF1, TF2, TF3, TF4, TF5, mechanical specific energy. Additional features that
have been engineered over a 96 sample window (= 1 second at 96 Hz sampling rate
when downsampled) are ROPstandarddeviation, ROPaverage, ROPmedian, ROPmaximum,
ROPminimum, ROPaverage divided by ROPstandarddeviation, ROPmedian divided by
ROPstandarddeviation and finally the peak-to-peak ROPmaximum - ROPminimum (see
chapter 6). For case 11 through 13, the following labels are used for naming the
samples: 1: POOH, 2: RIH and 3: ROnB.

From running the ExtraTreesClassifier feature importance algorithm, the follow-
ing result is obtained:

Figure 7.83: Laboratory operation classification feature importance using an Ex-
traTreesClassifier algorithm.

Operating setpoints for WOB and RPM should get removed together with depth
and mean-depth measurements (same as for Laboratory formation classification).

187 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

The highest scoring features then become:

Score: 1 2 3 4 5 6
Feature ROPmin ROPmed ROPinstant ROPmax ROPavg TF2

From looking at Figure 7.83, a remaining features that can be used in Case 12 for
unsupervised classification using natural features is weight on bit (together with
the ROP).

Model Parameter Tuning

K-Nearest Neighbor (K-NN): optimal parameter search is performed evalu-
ating the following parameters on 100 % of the dataset and all 21 features.

1 params_to_test = { ' n_neighbors ' : [3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5] , ...
' we ights ' : [' d i s t anc e ' , ' uniform '] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 KNN_model = KNe ighbo r sC la s s i f i e r ()
2 gr id_search = GridSearchCV (KNN_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 KNe ighbo r sC la s s i f i e r (a lgor i thm=' auto ' , l e a f_ s i z e =30, metr ic=' minkowski ' , ...
metric_params=None , n_jobs=1, n_neighbors=3, p=2, weights=' d i s t anc e ')

Case 11

Model variable
input(s):

z1, z2, z3, RPM, m_torque, WOB, ROP, TF1, TF2,
TF3, TF4, TF5, MSE, ROPstd, ROPavg, ROPmed, ROPmax,
ROPmin, ROPavg/std., ROPmed/std., ROPmax−min

Sampling rate: 96 Hz
Labels: 1: POOH, 2: RIH, 3: ROnB

K-NN - Accuracy: 100 %. Area under curve: 0.2613

7.2. STUDY CASES 188

Figure 7.84: Classification report for K-NN.

Case 12: ROP and WOB

Model variable
input(s):

ROP, WOB

Sampling rate: 96 Hz
Labels: 1: POOH, 2: RIH, 3: ROnB

K-Means - Adjusted Rand Index Score: 1.0000

Figure 7.85: Clusters generated by K-Means algorithm for ROPinstantanious ver-
sus WOB when nclusters = 3.

DBSCAN - Adjusted Rand Index Score: 0.9980

189 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.86: Clusters generated by DBSCAN algorithm for ROPinstantanious ver-
sus WOB when epsilon=0.600 and minsamples = 2.

Case 13: ROPmin and ROPmed

Model variable
input(s):

ROPmin, ROPmed

Sampling rate: 96 Hz
Labels: 1: POOH, 2: RIH, 3: ROnB

K-Means - Adjusted Rand Index Score: 0.9970

Figure 7.87: Clusters generated by K-Means algorithm for ROPinstantanious ver-
sus WOB when nclusters = 3.

DBSCAN - Adjusted Rand Index Score: 0.9970

7.2. STUDY CASES 190

Figure 7.88: Clusters generated by DBSCAN algorithm for ROPinstantanious ver-
sus WOB when epsilon=0.600 and minsamples = 2.

Evaluation of laboratory rig operations results:
Considering the results from cases 11 to 13, it appears that high accuracy can
be achieved using only a few select features being either natural or engineered.
When the results from cases 12 and 13 get considered, the models appear to more
easily be capable of separating the engineered features (representing the three rig
activities) from each other.

191 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

7.2.4 Volve rig operations

The processed dataset contains 9050 rows × 17 feature columns (+ 1 label col-
umn), and the data represents three rig operations, i.e. RIH, POOH and drilling.
The data has been sampled at 0.357 Hz (1 sample every 2.8 seconds), and has
further been processed for missing or invalid data and then normalized. Outlier
removal by IQR method can not be performed directly on the Volve rig opera-
tions dataset, as the IQR method would remove all observations from RIH and
POOH operations, leaving only drilling data. The features that are available in
the dataset are: bit- and surface RPM, depth of bit, rate of penetration, crown
block position, torque, weight on bit, rate of crown block movement (over a
20 Hz sample window corresponding to 56 seconds at approximately 0.357 Hz
sampling rate), TF1, TF3 and TF4. Additional features that have been en-
gineered over a 10 sample window (= 28 seconds at 0.357 Hz sampling rate)
are crown-block-positionstandarddeviation, crown-block-positionaverage, crown-block-
positionmedian, crown-block-positionmaximum, crown-block-positionminimum and fi-
nally peak-to-peak (crown-block-positionmaximum - crown-block-positionminimum).
For the cases 14 through 16, the following labels have been used: 1: Drilling, 2:
RIH and 3: POOH.

From running the ExtraTreesClassifier feature importance algorithm, the follow-
ing feature score is obtained:

Figure 7.89: Volve rig operation classification feature importance using an Ex-
traTreesClassifier algorithm.

The depth (bit depth) feature column gets discarded for the same reason as stated

7.2. STUDY CASES 192

in earlier classification tasks. The highest scoring features are:

Score: 1 2 3 4 5 6
Feature RPMsurface TF3 TF2 RPMbit ROP crownblockaverage

Model Parameter Tuning

K-Nearest Neighbor (K-NN): optimal parameter search is performed evalu-
ating the following parameters on 100 % of the dataset and all 16 features (except
depth).

1 params_to_test = { ' n_neighbors ' : [3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5] , ...
' we ights ' : [' d i s t anc e ' , ' uniform '] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 KNN_model = KNe ighbo r sC la s s i f i e r ()
2 gr id_search = GridSearchCV (KNN_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 KNe ighbo r sC la s s i f i e r (a lgor i thm=' auto ' , l e a f_ s i z e =30, metr ic=' minkowski ' , ...
metric_params=None , n_jobs=1, n_neighbors=3, p=2, weights=' d i s t anc e ')

Case 14

Model variable
input(s):

RPMbit, RPMsurface, ROP, Blockcomp-position, Torque,
WOB, Rate-of-crown-block-movement, TF1, TF3, TF4,
Rate-of-blockstd, Rate-of-blockavg, Rate-of-blockmed, Rate-
of-blockmax, Rate-of-blockmax−min

Sampling rate: 0.357 Hz
Labels: 1: Drilling, 2: RIH, 3: POOH

K-NN - Accuracy: 100 %. Area under curve: 0.9832

193 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.90: Classification report for K-NN.

Case 15: RPMsurface and RPMbit

Model variable
input(s):

RPMsurface, RPMbit

Sampling rate: 0.357 Hz
Labels: 1: Drilling, 2: RIH, 3: POOH

K-Means - Adjusted Rand Index Score: 0.9805

Figure 7.91: Clusters generated by K-Means algorithm for RPMbit versus
RPMsurface when nclusters = 3.

DBSCAN - Adjusted Rand Index Score: 0.9800

7.2. STUDY CASES 194

Figure 7.92: Clusters generated by DBSCAN algorithm for RPMbit versus
RPMsurface when epsilon=0.200 and minsamples = 2.

Case 16: TF1 and TF3

Model variable
input(s):

TF1, TF3

Sampling rate: 0.357 Hz
Labels: 1: Drilling, 2: RIH, 3: POOH

K-Means - Adjusted Rand Index Score: 0.9810

Figure 7.93: Clusters generated by K-Means algorithm for TF3 vs TF1 when
nclusters = 3.

DBSCAN - Adjusted Rand Index Score: 0.9825

195 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.94: Clusters generated by DBSCAN algorithm for TF3 versus TF1
when epsilon=0.200 and minsamples = 2.

Evaluation of laboratory rig operations results:
Considering the results from cases 14 to 16, it appears that high accuracy can also
be achieved using only a few select features from the Volve field data. When the
results from cases 15 and 16 get considered, it appears that the natural features for
surface and bit RPM perform better in terms of separating the three rig acitivites
apart, however one should be careful to rely on only the RPM feature since this
only depends on what setpoint was selected at the time the data was collected.

7.2. STUDY CASES 196

7.2.5 Laboratory pressure cases

The processed dataset contains 592 rows × 9 feature columns (+ 1 label column),
and the data represents three pressure cases, i.e. Normal pressure, Leak and
Overpressure. The data has been sampled at 9600 Hz and downsampled to 96
Hz. Furthermore, the data has been processed for missing or invalid data, and
then normalized. Outlier removal is not performed in order to keep observations
containing peak values (leak and overpressure). The features available in the
dataset are: mud system pressure and weight on bit. Additional features that
have been engineered over a 10 sample window (= 0.1 second at 96 Hz sam-
pling rate when downsampled from 9600 Hz to 96 Hz) are Pressurestandarddeviation,
Pressureaverage, Pressuremedian, Pressuremaximum, Pressureminimum, Pressureaverage
divided by Pressurestandarddeviation, Pressuremedian divided by Pressurestandarddeviation
and peak-to peak Pressuremaximum - Pressureminimum. In case 17 through 19, the
following labels are used: 1: Normal Pressure, 2: Leak (losses) and 3: Overpres-
sure (plugged nozzles)

From running the ExtraTreesClassifier algorithm, the following feature score is
obtained:

Figure 7.95: Pressure cases feature importance using an ExtraTreesClassifier
algorithm.

Score: 1 2 3 4 5 6
Feature Pmaximum Pmedian Paverage Pmed/std. Pavg/std. Pminimum

197 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Model Parameter Tuning

K-Nearest Neighbor (K-NN): optimal parameter search is performed evalu-
ating the following parameters on 100 % of the dataset and all 16 features.

1 params_to_test = { ' n_neighbors ' : [3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5] , ' a lgor i thm ' : [' auto ' , ...
' ba l l_t r e e ' , ' kd_tree ' , ' brute '] , ' we ights ' : [' d i s t anc e ' , ' uniform '] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 KNN_model = KNe ighbo r sC la s s i f i e r ()
2 gr id_search = GridSearchCV (KNN_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 KNe ighbo r sC la s s i f i e r (a lgor i thm=' auto ' , l e a f_ s i z e =30, metr ic=' minkowski ' , ...
metric_params=None , n_jobs=1, n_neighbors=3, p=2, weights=' d i s t anc e ')

Case 17:

Model variable
input(s):

WBM_Pressure, WOB, Pressurestd, Pressureavg,
Pressuremed, Pressuremax, Pressuremin, Pressureavg/std.,
Pressuremed/std., Pressuremax−min

Sampling rate: 96 Hz
Labels: 1: Normal Pressure, 2: Leak (losses), 3: Overpressure

(plugged nozzles)

K-NN - Accuracy: 99.16 %. Area under curve: 0.4254

Figure 7.96: Classification report for K-NN.

7.2. STUDY CASES 198

Case 18: Pressure and WOB

Model variable
input(s):

WBM_Pressure, WOB

Sampling rate: 96 Hz
Labels: 1: Normal Pressure, 2: Leak (losses), 3: Overpressure

(plugged nozzles)

K-Means - Adjusted Rand Index Score: 0.9951

Figure 7.97: Clusters generated by K-Means algorithm for Pressure vs WOB
when nclusters = 3.

DBSCAN - Adjusted Rand Index Score: 0.9955

Figure 7.98: Clusters generated by DBSCAN algorithm for Pressure versus
WOB when epsilon=0.200 and minsamples = 2.

199 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Case 19: Pmax and Pmed

Model variable
input(s):

Pmax, Pmed

Sampling rate: 96 Hz
Labels: 1: Normal Pressure, 2: Leak (losses), 3: Overpressure

(plugged nozzles)

K-Means - Adjusted Rand Index Score: 0.9956

Figure 7.99: Clusters generated by K-Means algorithm for Pressuremaximum vs
Pressuremedian when nclusters = 3.

DBSCAN - Adjusted Rand Index Score: 0.9955

Figure 7.100: Clusters generated by DBSCAN algorithm for Pressuremaximum vs
Pressuremedian when epsilon=0.200 and minsamples = 2.

Evaluation of pressure cases:
From the results obtained in cases 17 to 19, it can be observed that the models
can easily distinguish between a normal pressure case, a leak and overpressure.

7.2. STUDY CASES 200

7.2.6 Laboratory vibration cases (surface data)

The processed dataset contains 5822 rows× 16 feature columns (+ 1 label column),
and the data represents two vibration cases using surface sensors, i.e. normal
vibrations (gathered at a low rotational speed with the top drive) and heavy vibra-
tions (gathered at high RPM with top drive). The data was sampled at 9600 Hz
and then downsampled to 96 Hz. The data has further been processed for missing
or invalid data, and then normalized. IQR is not performed. The features avail-
able in the dataset are: load cells (1/2/3), weight on bit, rpm feedback and motor
torque feedback. Features that have been engineered over a 10 sample window (=
0.1 second at 96 Hz sampling rate when downsampled) are WOBstandarddeviation,
WOBaverage, WOBmedian, WOBmaximum, WOBminimum, WOBaverage divided by
WOBstandarddeviation, WOBmedian divided by standard deviation and peak-to-peak
WOBmaximum - WOBminimum. In case 20 through 22, the following labels are used:
1: Normal Vibrations and 2: Heavy Vibrations.

Figure 7.101: Vibration classification feature importance using an Extra-
TreesClassifier algorithm.

Operating setpoints for WOB and RPM get removed together with RPM feed-
back, since the RPM is varied to collect data. The highest scoring features become:

Score: 1 2 3 4 5 6
Feature WOBavg/std. WOBstd. WOBmax−min WOBmin WOBmax LC 2

201 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Model Parameter Tuning

K-Nearest Neighbor (K-NN): optimal parameter search is performed evalu-
ating the following parameters on 100 % of the dataset and all 13 features.

1 params_to_test = { ' n_neighbors ' : [3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5] , ' a lgor i thm ' : [' auto ' , ...
' ba l l_t r e e ' , ' kd_tree ' , ' brute '] , ' we ights ' : [' d i s t anc e ' , ' uniform '] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 KNN_model = KNe ighbo r sC la s s i f i e r ()
2 gr id_search = GridSearchCV (KNN_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 KNe ighbo r sC la s s i f i e r (a lgor i thm=' auto ' , l e a f_ s i z e =30, metr ic=' minkowski ' , ...
metric_params=None , n_jobs=1, n_neighbors=3, p=2, weights=' d i s t anc e ')

Case 20:

Model variable
input(s):

z1, z2, z3, m_torque, WOB, WOBstd, WOBavg,
WOBmed, WOBmax, WOBmin, WOBavg/std., WOBmed/std.,
WOBmax−min

Sampling rate: 96 Hz
Labels: 1: Normal Vibrations, 2: Heavy Vibrations

K-NN - Accuracy: 100 %. Area under curve: 1.0000

Figure 7.102: Classification report for K-NN.

7.2. STUDY CASES 202

Case 21: WOB and torque

Model variable
input(s):

m_torque, WOB

Sampling rate: 96 Hz
Labels: 1: Normal Vibrations, 2: Heavy Vibrations

First, the natural features weight on bit and torque can be plotted to see whether
the vibrations are separated or overlapping:

Figure 7.103: Plot of WOB vs torque to see whether vibrations are separated or
overlap.

This suggests that by using natural features, normal and heavy vibrations can
not be separated.
K-Means - Adjusted Rand Index Score: 0.1059

Figure 7.104: Clusters generated by K-Means algorithm for WOB vs torque
when nclusters = 2.

DBSCAN - Adjusted Rand Index Score: 0.0000

203 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.105: Clusters generated by DBSCAN algorithm for WOB and torque
when epsilon=0.200 and minsamples = 2.

Case 22: WOBmax and WOBavg/std.

Model variable
input(s):

WOBmax, WOBavg/std

Sampling rate: 96 Hz
Labels: 1: Normal Vibrations, 2: Heavy Vibrations

K-Means - Adjusted Rand Index Score: 0.9931

Figure 7.106: Clusters generated by K-Means algorithm for WOBmaximum vs
WOBavg/std. when nclusters = 3.

DBSCAN - Adjusted Rand Index Score: 0.9954

7.2. STUDY CASES 204

Figure 7.107: Clusters generated by DBSCAN algorithm for WOBmaximum vs
WOBavg/std. when epsilon=0.200 and minsamples = 2.

Evaluation of vibrations using surface sensors:
Compared to the results from the pressure cases, it can be observed for cases 20
to 22 that engineered features must be created to distinguish low and moderately
high vibrations apart. Despite no time to comprehensively evaluate which features
are most applicable to classify vibrations, the method of developing features that
consider the maximum and minimum value, the average obervation and the
standard deviation over a number of samples appear to give good results.

205 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

7.2.7 Laboratory vibration cases (downhole data) with down-

hole motor

The processed dataset contains 35602 rows × 35 feature columns (+ 1 label
column), and the data represents three vibration cases using a combination of
downhole and surface sensors, i.e. idle rotation corresponding to low vibrations,
moderate vibrations (gathered at 60 to 80 % solenoid valve opening) and high
vibrations (gathered at 90 to 100 % valve opening). The data has been sampled
at 60 Hz. The data has been processed for missing or invalid data, and nor-
malized. IQR is not carried out. The features available are: load cells (1/2/3),
weight on bit (surface sensors) and accelerometer (x/y/z), gyroscope (x/y/z),
magnetometer (x/y/z) and temperature (downhole sensors). Engineered features,
that have been created over a 60 sample window (= 1 second at 60 Hz sam-
pling rate) are accelerometerx/y/zmaximum, accelerometerx/y/zminimum, peak-to-peak
accelerometerx/y/zmaximum−minimum, gyroscopex/y/zmaximum, gyroscopex/y/zminimum,
peak-to-peak gyroscopex/y/zmaximum−minimum and finally gyroscopex/y/zstandarddeviation
In case 23 through 26, the following labels are used: 1: Low Vibrations, 2: Mod-
erate Vibrations and 3: Heavy Vibrations.

7.2. STUDY CASES 206

Figure 7.108: Downhole vibration classification feature importance using an Ex-
traTreesClassifier algorithm.

Operating setpoints for valve opening position setpoint (and the corresponding
calculated bit RPM) and height is removed, for the same reasons as state for
aforementioned classification tasks. The highest scoring features become:

Score: 1 2 3 4 5 6
Feature Gyrzstd. Gyrzmax Gyrxstd. Gyrzmax−min Gyrzmin Gyrxmin

Model Parameter Tuning

K-Nearest Neighbor (K-NN): optimal parameter search is performed evalu-
ating the following parameters on 100 % of the dataset and all 34 features (except
temperature, solenoid valve opening position, bit rpm and height).

207 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

1 params_to_test = { ' n_neighbors ' : [3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5] , ' a lgor i thm ' : [' auto ' , ...
' ba l l_t r e e ' , ' kd_tree ' , ' brute '] , ' we ights ' : [' d i s t anc e ' , ' uniform '] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 KNN_model = KNe ighbo r sC la s s i f i e r ()
2 gr id_search = GridSearchCV (KNN_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 KNe ighbo r sC la s s i f i e r (a lgor i thm=' auto ' , l e a f_ s i z e =30, metr ic=' minkowski ' , ...
metric_params=None , n_jobs=1, n_neighbors=7, p=2, weights=' d i s t anc e ')

Case 23:

Model variable
input(s):

accx, accy, accz, magx, magy, magz, gyrx, gyry, gyrz, z1, z2,
z3, WOB, accxmaxmin, accymaxmin, acczmaxmin, gyrxmaxmin,
gyrymaxmin, gyrzmaxmin, accxmax, accymax, acczmax, gyrxmax
gyrymax, gyrzmax, accxmin, accymin, acczmin, gyrxmin,
gyrymin, gyrzmin, gyrxstd, gyrystd, gyrzstd

Sampling rate: 60 Hz
Labels: 1: Low Vibrations, 2: Moderate Vibrations, 3: Heavy Vi-

brations

K-NN - Accuracy: 99.93 %. Area under curve: 0.0839

Figure 7.109: Classification report for K-NN.

7.2. STUDY CASES 208

Case 24:

Model variable
input(s):

gyrzmaxmin, gyrzmax, gyrxmin, gyrzmin, gyrxstd, gyrzstd

Sampling rate: 60 Hz
Labels: 1: Low Vibrations, 2: Moderate Vibrations, 3: Heavy Vi-

brations

K-NN - Accuracy: 99.94 %. Area under curve: 0.0835

Figure 7.110: Classification report for K-NN.

Case 25:

Model variable
input(s):

gyrx, gyrz

Sampling rate: 60 Hz
Labels: 1: Low Vibrations, 2: Moderate Vibrations, 3: Heavy Vi-

brations

K-Means - Adjusted Rand Index Score: 0.0037

Figure 7.111: Clusters generated by K-Means algorithm for WOB and torque
when nclusters = 2.

209 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

DBSCAN - Adjusted Rand Index Score: -0.0002

Figure 7.112: Clusters generated by DBSCAN algorithm for WOB and torque
when epsilon=0.200 and minsamples = 2.

Case 26:

Model variable
input(s):

gyrzstd., gyrxstd.

Sampling rate: 60 Hz
Labels: 1: Low Vibrations, 2: Moderate Vibrations, 3: Heavy Vi-

brations

K-Means - Adjusted Rand Index Score: 0.4869

Figure 7.113: Clusters generated by K-Means algorithm for standard deviation
in measurements of gyroscope x-axis and z-axis when nclusters =
2.

DBSCAN - Adjusted Rand Index Score: 0.9502

7.2. STUDY CASES 210

Figure 7.114: Clusters generated by DBSCAN algorithm for measurements
for standard deviation in gyroscope x-axis and z-axis when ep-
silon=0.200 and minsamples = 2.

Evaluation of vibrations using downhole sensors:
It can be observed from the results in cases 23 and 24 that the same accuracy and
AUC score is achieved when the number of features is reduced from 34 (containing
both natural and engineered features from surface and downhole sensors) to six
features that are all from downhole sensors. When downhole sensor measurements
get used, it appears to be necessary to engineer features such as those considering
the standard deivation and maximum and minimum amplitude over a number
of samples, as got concluded when developing the models to distinguish between
two vibration levels using only surface sensors.

211 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

7.2.8 Laboratory stuck-pipe cases

The processed dataset contains 117 rows × 14 feature columns (+ 1 label col-
umn), and the data represents normal drilling and stuck pipe incident. Data
has been downsampled from a sampling frequency of 1200 Hz to 96 Hz. The
data has been processed for missing or invalid data, and then normalized. IQR
is not performed. The features available in the dataset are: load cells (1/2/3),
RPM, top drive torque and weight on bit. Additional features that have been
engineered over a 5 sample window (= 0.052 seconds at 96 Hz sampling rate) are
torquestandarddeviation, torqueaverage, torquemedian, torquemaximum, torqueminimum,
torqueaverage divided by torquestandarddeviation, torquemedian divided by standard
deviation and peak-to-peak torquemaximum - torqueminimum. The following labels
where used for case 27 through 29: 1: Normal drilling and 2: Stuck pipe.

The highest scoring features from the ExtraTreesClassifier algorithm are:

Figure 7.115: Stuck pipe classification feature importance using an Extra-
TreesClassifier algorithm.

Score: 1 2 3 4 5 6
Feature torquemin torquemax top drive torque rpmfeedback WOB torquemed

Model Parameter Tuning

K-Nearest Neighbor (K-NN): optimal parameter search is performed evalu-
ating the following parameters on 100 % of the dataset and all 14 features.

7.2. STUDY CASES 212

1 params_to_test = { ' n_neighbors ' : [3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5] , ' a lgor i thm ' : [' auto ' , ...
' ba l l_t r e e ' , ' kd_tree ' , ' brute '] , ' we ights ' : [' d i s t anc e ' , ' uniform '] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 KNN_model = KNe ighbo r sC la s s i f i e r ()
2 gr id_search = GridSearchCV (KNN_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 KNe ighbo r sC la s s i f i e r (a lgor i thm=' auto ' , l e a f_ s i z e =30, metr ic=' minkowski ' , ...
metric_params=None , n_jobs=1, n_neighbors=7, p=2, weights=' d i s t anc e ')

Case 27:

Model variable
input(s):

z1, z2, z3, RPM, m_torque, WOB, torquestd,
torqueavg, torquestd, torquemax, torquemin, torqueavg/std.,
torquemed/std., torquemax−min

Sampling rate: 96 Hz
Labels: 1: Normal drilling, 2: Stuck pipe

K-NN - Accuracy: 100 %. Area under curve: 1.0000

Figure 7.116: Classification report for K-NN.

Case 28: WOB and torque

Model variable
input(s):

WOB, m_torque

Sampling rate: 96 Hz
Labels: 1: Normal drilling, 2: Stuck pipe

213 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

K-Means - Adjusted Rand Index Score: 1.0000

Figure 7.117: Clusters generated by K-Means algorithm for WOB and torque
when nclusters = 2.

DBSCAN - Adjusted Rand Index Score: 0.9691

Figure 7.118: Clusters generated by DBSCAN algorithm for WOB and torque
when epsilon=0.200 and minsamples = 2.

Case 29: torquemaximum and torqueminimum

Model variable
input(s):

torquemax, torqueavg/std.

Sampling rate: 96 Hz
Labels: 1: Normal drilling, 2: Stuck pipe

K-Means - Adjusted Rand Index Score: 1.0000

7.2. STUDY CASES 214

Figure 7.119: Clusters generated by K-Means algorithm for torquemaximum and
torqueminimum when nclusters = 2.

DBSCAN - Adjusted Rand Index Score: 1.0000

Figure 7.120: Clusters generated by DBSCAN algorithm for torquemaximum and
torqueminium when epsilon=0.200 and minsamples = 2.

Evaluation of stuck pipe cases:
Considering the stuck pipe cases 27 to 29, both natural and engineered features
appear to be useful to distinguish between a rotating and stuck pipe. It can
however be noted that torque and RPM feedback have been considered the most
important features, and that these features alone should be more than capable
detecting a stuck pipe.

215 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

7.2.9 Laboratory twist off cases

The processed dataset contains 659 rows × 14 feature columns (+ 1 label column),
and the data represents normal drilling and twist off incident. Data has been
downsampled from a sampling frequency of 9600 Hz to 96 Hz. The data has
furthermore been processed for missing or invalid data, and is then normalized.
IQR is not performed. The features available in the dataset are: load cells (1/2/3),
RPM, motor torque and weight on bit. Additional features that have been en-
gineered over a 5 sample window (=0.052 seconds at 96 Hz sampling rate) are
torquestandarddeviation, torqueaverage, torquemedian, torquemaximum, torqueminimum,
torqueaverage divided by torquestandarddeviation, torquemedian divided by standard
deviation and peak-to-peak torquemaximum - torqueminimum. For case 30 through
32, the following labels are used: 1: No Twist Off and 2: Twist Off.

The highest scoring features from the ExtraTreesClassifier algorithm are:

Figure 7.121: Twist off of drill pipe classification feature importance using an
ExtraTreesClassifier algorithm.

Score: 1 2 3 4 5 6
Feature RPM torquemin torqueavg torquemed torqueavg/std. torquemed/std.

7.2. STUDY CASES 216

Model Parameter Tuning

K-Nearest Neighbor (K-NN): optimal parameter search is performed evalu-
ating the following parameters on 100 % of the dataset and all 14 features.

1 params_to_test = { ' n_neighbors ' : [3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5] , ' a lgor i thm ' : [' auto ' , ...
' ba l l_t r e e ' , ' kd_tree ' , ' brute '] , ' we ights ' : [' d i s t anc e ' , ' uniform '] }

The random state, grid-search cross-validation generator (cv), and scoring is
shown below:

1 KNN_model = KNe ighbo r sC la s s i f i e r ()
2 gr id_search = GridSearchCV (KNN_model , param_grid=params_to_test , cv=3, ...

s c o r i ng=' f1_macro ' , n_jobs=4)

The best model parameters are:

1 KNe ighbo r sC la s s i f i e r (a lgor i thm=' auto ' , l e a f_ s i z e =30, metr ic=' minkowski ' , ...
metric_params=None , n_jobs=1, n_neighbors=3, p=2, weights=' d i s t anc e ')

Case 30

Model variable
input(s):

z1, z2, z3, RPM, m_torque, WOB, torquestd,
torqueavg,torquestd, torquemax, torquemin, torqueavg/std.,
torquemed/std., torquemax−min

Sampling rate: 96 Hz
Labels: 1: No Twist Off, 2: Twist Off

K-NN - Accuracy: 100 %. Area under curve: 1.0000

Figure 7.122: Classification report for K-NN.

217 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Case 31: RPM and torque

Model variable
input(s):

RPM, m_torque

Sampling rate: 96 Hz
Labels: 1: No Twist Off, 2: Twist Off

K-Means - Adjusted Rand Index Score: 1.0000

Figure 7.123: Clusters generated by K-Means algorithm for RPM and torque
when nclusters = 2.

DBSCAN - Adjusted Rand Index Score: 0.9476

Figure 7.124: Clusters generated by DBSCAN algorithm for RPM and torque
when epsilon=0.200 and minsamples = 2.

7.2. STUDY CASES 218

Case 32: torqueaverage and torqueavg/std.

Model variable
input(s):

torqueaverage, torqueavg/std.

Sampling rate: 96 Hz
Labels: 1: No Twist Off, 2: Twist Off

K-Means - Adjusted Rand Index Score: 0.9191

Figure 7.125: Clusters generated by K-Means algorithm for torqueaverage and
torqueavg/std. when nclusters = 2.

DBSCAN - Adjusted Rand Index Score: 0.9893

219 CHAPTER 7. MODEL DEVELOPMENT - SENSITIVITY STUDY

Figure 7.126: Clusters generated by DBSCAN algorithm for torqueaverage and
torqueavg/std. when epsilon=0.900 and minsamples = 2.

Evaluation of twist off cases:
Considering the twist off cases 30 to 32, both natural and engineered features
appear to be capable of detecting a twist off. As was the case for stuck pipe
detection, measurements for RPM feedback, torque and WOB should be enough
to detect if a twist off has occured.

7.3 Summary of preliminary clasifications results

Summary of preliminary clasifications results

Case MLP DT SVM RF GB K-NN TPOT K-Means DBSCAN
1. 94.31% 99.67% 89.88% 98.52% 99.23% 85.62% 98.09% - -
2. 95.53% 99.66% 89.66% 98.50% 99.26% 85.37% 98.29% - -
3. 93.10% 99.71% 85.12% 98.68% 99.18% 92.34% 98.02% - -
4. 99.36% 99.93% 98.83% 99.53% 99.85% 89.92% 99.32% - -
5. 98.60% 99.94% 97.50% 99.66% 99.93% 97.74% 99.83% - -
6. 59.86% 57.36% 54.03% 71.39% 68.89% 67.22% 69.86% - -
7. 62.96% 62.31% 62.74% 72.38% 69.81% 68.95% 71.09% - -
8. 61.67% 59.96% 62.10% 71.95% 70.02% 66.38% 71.73% - -
9. 76.94% 78.20% 75.94% 83.46% 79.70% 78.95% 84.21% - -
10. 76.94% 78.85% 74.94% 86.72% 82.46% 79.20% 85.21% - -
11. - - - - - 100% - - -

7.3. SUMMARY OF PRELIMINARY CLASIFICATIONS RESULTS 220

12. - - - - - - - ARI:
1.0000

ARI:
0.9989

13. - - - - - - - ARI:
0.9970

ARI:
0.9970

14. - - - - - 100% - - -
15. - - - - - - - ARI:

0.9805
ARI:
0.9800

16. - - - - - - - ARI:
0.9810

ARI:
0.9825

17. - - - - - 99.16% - - -
18. - - - - - - - ARI:

0.9951
ARI:
0.9955

19. - - - - - - - ARI:
0.9956

ARI:
0.9955

20. - - - - - 100% - - -
21. - - - - - - - ARI:

0.1059
ARI:
0.0000

22. - - - - - - - ARI:
0.9931

ARI:
0.9954

23. - - - - - 99.93% - - -
24. - - - - - 99.94% - - -
25. - - - - - - - ARI:

0.0037
ARI:
-0.0002

26. - - - - - - - ARI:
0.4869

ARI:
0.9502

27. - - - - - 100% - - -
28. - - - - - - - ARI:

1.0000
ARI:
0.9691

29. - - - - - - - ARI:
1.0000

ARI:
1.0000

30. - - - - - 100% - - -
31. - - - - - - - ARI:

1.0000
ARI:
0.9476

32. - - - - - - - ARI:
0.9191

ARI:
0.9893

33*. 67.67% 70.88% 64.03% 73.66% 74.73% 76.23% 75.59% - -

Chapter 8

Validation

In this chapter, the results obtained from the models developed in chapter 7 are
shown. Also, an evaluation is made as to which model(s) is most optimal to
classify the different rock formations, rig operations and drilling incidents. For
rock formation classification, the most optimal models get validated on a test
set of observations that has been prepared using a portion of the original data
gathered from either test drilling or the original data from Volve field. For rock
classification using the drilling rig, a voting system has been designed that is also
presented. For each classification task, a recommendation is given with regards
to which features that are recommended.

8.1 Rock Classification

Due to the vast amount of data on the x-axis of the plots included in Task a.
and b., only a few erronous predictions will lead to polluted plots. When the
results are inspected closely however, it can be observed that most predictions
are accurate. In order to use the data in real-time on the laboratory drilling rig,
a median filter gets used to output one filtered prediction each second.

8.1.1 Task a. Laboratory Experimental data

The labels for the Laboratory Experimental data are: 1: Cement, 2: Chalk, 3:
Granite, 4: Sandstone, 5: Salt, 6: Shale.

221

8.1. ROCK CLASSIFICATION 222

Laboratory formation classification of six formations using models from
Case 1

Figure 8.1: Laboratory formation classification with all features, models trained
for six formations.

In Figure 8.1, the predictions from seven models on a dataset that consists of six
different formations (cement, chalk, granite, sandstone, salt and shale) is shown.
In the top of the figure, the labels that have been added to distinguish the different
datasets from each other are shown.

From the table at the beginning of chapter 7, the data has been pre-processed by
removing missing- or invalid data and duplicates, normalized, and then all rows
containing observations with outliers in the natural features have been removed.
While the results are not shown here, it was determined to not use any of the
models that have been trained on the laboratory formation dataset without re-

223 CHAPTER 8. VALIDATION

moving outliers, since this would cause more erronous predictions compared to
when IQR method has been used ahead of training the models.

Laboratory formation classification of six formations, median-filtered
predictions

From evaluating the prediction outputs it was determined that the control system
only needs to receive one package of predictions outputs (from the seven models)
every second. Figure 8.2 shows the output from applying a median filter over a
96 Hz sample window (corresponding to 1 second of samples), and writing the
median prediction value from those 96 samples to all rows with observations in
that time interval to not have to downsample the dataset to 1 Hz.

Figure 8.2: Median-filtered laboratory formation classification with all features,
models trained for six formations.

8.1. ROCK CLASSIFICATION 224

From analysis of the filtered prediction outputs, the best predictions are achieved
from Case 1 with the decision tree, gradient boosting and random forest models.

Laboratory formation classification of six formations using models from
Case 3

Figure 8.3: Laboratory formation classification with only six features, models
trained for six formations.

In Figure 8.3 the same dataset (containing six formation types) is run through
the models from Case 2, with the only exception being that the models have
been trained using only the six highest scoring features obtained by using the
ExtraTreesClassifier algorithm. From the results it is seen that by reducing the
low-scoring features, the predictions from all models are less noisy, suggesting
that fewer of the predictions are erronous.

225 CHAPTER 8. VALIDATION

Laboratory formation classification, six formations, median-filtered pre-
dictions

For the same reasons as given above, a median filter is used to determine the
median of the prediction classes over a 96 Hz sample window. While the decision
tree, gradient boosting and random forest models continue to deliver the best
predictions, all models except the multilayer perceptron and support vector ma-
chine now deliver almost identical predictions as the Label (shown in the top of
the figure), considering that approximately 500000 observations are shown on the
x-axis.

Figure 8.4: Median-filtered laboratory formation classification with only six fea-
tures, models trained for six formations.

8.1. ROCK CLASSIFICATION 226

Laboratory formation classification of three formations using models
from Case 4

Figure 8.5: Laboratory formation classification with all features, models trained
for 3 formations.

While the above experiments were conducted for six different formations, several
of the formations are similar in drillability such as sandstone and cement. For
this reason, the models from Case 4 that have been trained on classes 3: granite,
4: sandstone and 5: salt, which respecitvely represent a hard-drilling formation,
a medium to hard-drilling formation and a soft formation, were used on a dataset
containing only those three formations. From the results, it is seen that except
from K-nearest neighbor model, all five models multilayer perceptron, decision
tree, gradient boosting, random forest and TPOT perform well. Support vector
machine was not used for the three different formations due to an error in the

227 CHAPTER 8. VALIDATION

configuration of the model when predicting on the datasets for three formations.

Laboratory formation classification of three formations, median-filtered
predictions

The same method of median-filtering the prediction outputs from the six models
is used (1 output from each model every second). By inspecting the results in
Figure 8.6, decision tree and gradient boosting deliver the best results, but for
three formations either model should be sufficiently robust to accurately detect
the drilled formation.

Figure 8.6: Median-filtered laboratory formation classification with all features,
models trained for 3 formations.

8.1. ROCK CLASSIFICATION 228

Laboratory formation classification of three formations using models
from Case 5

Figure 8.7: Laboratory formation classification with only six features, models
trained for 3 formations.

Finally, the same dataset is run through the models in Case 5 that have been
developed for three formations with the six highest-scoring features from the Ex-
traTreesClassifier algorithm. From the results of raw model-outputs, all models
except for multilayer perceptron and K-nearest neighbor perform well, suggesting
that compared to the last case, multilayer perceptron model perform better with
more features than the six identified.

229 CHAPTER 8. VALIDATION

Laboratory formation classification of three formations, median-filtered
predictions

From median-filtering the prediction outputs to one prediction every second, all
models again perform very well. While K-nearest neighbor continue to score
slightly below the other models, the accuracy when correlating the prediction
results to the Label plot in the top of each figure are high for all models.

Figure 8.8: Median-filtered laboratory formation classification with only six fea-
tures, models trained for 3 formations.

Granite Test set for validation

Since the validation results presented above are obtained from a test set built
using the same operating setpoints for the different formations that the models
have been trained on, this makes it difficult to evaluate whether the models are
overfitted or if they can be used to predict the rock formation when different

8.1. ROCK CLASSIFICATION 230

operating setpoints get selected. For this reason, an experiment was run where
a granite rock was drilled using different operating setpoints for RPM (300, 500
& 700) and WOB (5 & 7 kg) than was used to train the models. The test set
that contains granite drilling data has been downsampled to 96 Hz (from 9600 Hz
originally) before it has been pre-processed by removing missing data and outliers,
and then normalized. Engineered features have been calculated in accordance
with chapter 6.

In the first test, the models developed in Case 3 get used. These are trained on
data representing six different rock formations, and it can be re-called that only
the six highest scoring features have been used in Case 3. The raw prediction
outputs from the models then get median filtered with a window size of 96, in
order to obtain one prediction from each model every second. The results are
shown in Figure 8.9 below:

Figure 8.9: Raw (left) and median-filtered (right) laboratory formation classifi-
cation using a granite test set on models developed in Case 3.

In the second test, the models developed in Case 5 get used, that have been
trained on data representing three different rock formations also here using only
the six highest scoring features. The results are shown in Figure 8.10

231 CHAPTER 8. VALIDATION

Figure 8.10: Raw (left) and median-filtered (right) laboratory formation classi-
fication using a granite test set on models developed in Case 5.

Comparing the results above, it can be observed that all models developed in
Case 3 (observations from six different rock formations), except for the artificial
neural network model (MLP), are inaccurate when different operating parame-
ters get used for drilling. The erronous predictions can possibly be explained by
that for the six rock formations represented in the data, several are similar in
drillability. The similarity could potentially be a challenge seeing as all cases for
rock formation classification using the laboratory drilling rig have been developed
using surface sensors only. Another explaination can be that the models have
been overfitted, i.e. they are too specifically fitted on the training data, and less
applicable when exposed to completely different drilling parameters.

Considering the results from the models developed in Case 5 however (observations
from three different rock formations), where observations are taken from drilling of
a soft (salt), a moderately hard (sandstone) and a hard formation (granite), it can
be observed that all models, except for the K-nearest neighbor model, perform very
well; in particular when median-filtered to output one prediction every second.
Future recommendations to solve the challenge of possibly overfitted models

8.1. ROCK CLASSIFICATION 232

seen in Case 3, could be to further optimize the models, for instance through
reinforcement learning (RL), for cases where several different rock formations
get classified. Another future recommendation is to develop the models using
downhole data and create additional features from these.

8.1.2 Laboratory rig voting system

Step 1: Model prediction voting

A voting system has been developed to combine the predictions from the seven
models into one formation class prediction with a confidence level score. The
voting system is further used to signal that a new formation is possibly detected,
as well as to confirm that a new formation indeed has been encountered. From
analysing the performance of the models (results above) and checking the model
performance on a test set separately, the following weights are given to the different
models:

• MLP - 1 point

• DT - 3 points

• SVM - 1 point

• RF - 2 points

• GB - 2 points

• TPOT - 1 point

• K-NN - 1 points

The control system is configured to operate at 60 Hz; i.e. 60 predictions per second
per model. To ensure as high stability in the predictions as possible, these are
median-filtered over a 60 sample window (= 1 prediction per second per model).
The prediction value is then used to determine how much weight that the model
prediction should be given.

The voting system can be illustrated by considering a case where the median-
filtered outputs from the seven models and weights given. By the model weight,
each weight is counted as a separate problem, so that if for instance a model is
given weight 2, the prediction from that model is equal to the prediction of two
models that each have weight 1.

233 CHAPTER 8. VALIDATION

Model Formation prediction Model weight Output
MLP 3 1 3
DT 3 3 3,3,3
SVM 4 1 4
RF 3 2 3,3
GB 5 2 5,5

TPOT 4 1 4
K-NN 3 1 3

Then, a count is performed of the six classes that represent six different rock
formations, and a percentage score is calculated that represents the number of
times that the class is predicted divided by 11 (total amount of all predictions
multiplied by the weight):

Class (rock type) Occurances Confidence level
1 (cement) 0 0 %
2 (chalk) 0 0 %
3 (granite) 7 63.64 %

4 (sandstone) 2 18.18 %
5 (salt) 2 18.18 %
6 (shale) 0 0 %

In this example, this suggests that the machine should recognize a granite is
being drilled with a 63.64 % confidence, a 18.18 % chance that the formation is
a sandstone and a 18.18 % chance that salt is being drilled. The prediction and
confidence level is performed once every second (based on the median-filtered raw
outputs from the models).

Step 2: New formation encountered

New Formation Detection is handled in the control system by evaluating whether
a class (formation type) gets predicted with a higher confidence level than 60 %
(from the model voting system) that is different from the previously confirmed
formation class; for instance if a sandstone is predicted with 65 % even if the
machine previously has confirmed that a granite rock is being drilled.
New Formation Confirmed is handled in the control system by considering the
predictions over the last 10 seconds. For example, if 70 % of the predictions in
the last 10 seconds are of the same class (all with a higher confidence level than
60 %) the machine could now replace granite with sandstone as the formation
being drilled:

8.1. ROCK CLASSIFICATION 234

Figure 8.11: A new formation is not yet confirmed in the second last row, since
even though a new formation gets detected, this formation class
has not occured in 70 % of the last 10 seconds worth of predictions.
The highest class is only filled into the array if the confidence score
from the voting output is > 60 %. If less, the cell value is left
empty.

8.1.3 Task b. Volve field data

The labels for Volve field data are: 1: Claystone, 2: Sandstone, 3: Siltstone, 4:
Tuff, 5: Marl, 6: Limestone and 7: Coal.

Volve formation classification of six formations using models from Case
6

In Figure 8.12, the predictions from seven models on a dataset that consists of
six different formations from the Volve field (same as above except from Tuff) is
presented. Same as for the laboratory formation classification, the uppermost plot
in the figure represent the geology number, or label, that signals which formation
that the observations originally represent. Since the Volve data is collected from
multiple sources, the first test is to run the dataset through models that have been
trained on data where outliers have not been removed using IQR. All features,
as explained in chapter 7 are present in the dataset. From the results, it is
almost impossible to distinguish the true and false predictions from each other,
as significant noise is present in the dataset, which corresponds with the model
accuracy and area under curve results that are presented in the end of chapter 7.

235 CHAPTER 8. VALIDATION

Figure 8.12: Volve formation classification without removing outliers using IQR
with all features.

Volve formation classification, median-filtered model predictions

While the sampling rate was known in the laboratory formation classification
datasets, there exists uncertainty as to exactly what sampling rate the data from
the Volve field is captured with. For this reason, an assumption is made that the
sampling rate was approximately 10 Hz, and a median filter has been used with
sample window of 10 samples. The results are shown in Figure 8.13

8.1. ROCK CLASSIFICATION 236

Figure 8.13: Median-filtered Volve formation classification without removing
outliers using IQR with all features.

From inspecting the data, only the random forest model is able to accurately
predict most of the formations except for classes 1: Claystone and 3: Siltstone.
While the decision tree, gradient boosting, TPOT and K-nearest neighbor models
are somewhat delivering semi-accurate predictions, still a significant portion of
the predictions are erronous.

237 CHAPTER 8. VALIDATION

Volve formation classification of six formations using models from Case
7

Figure 8.14: Volve formation classification removing outliers using IQR with all
features.

In Figure 8.14, the same dataset that contains six formations from the Volve
field is run through the models from case 7 in which the models have been
trained on data where IQR method has been used to remove outliers. From
analysis of the prediction outputs, all models except from multilayer perceptron
and support vector machine now appear capable of to a certain extent predict
the correct geology number (as seen in the top plot of the figure). This suggests
that for the Volve field data, it is important to remove outliers in the dataset
that could be caused by different drilling phenomena, drilling at different depths
and temperatures (which is not accounted for when the datasets were merged) or
sampling the data using different equipment such as BHA sensors or other tools.

8.1. ROCK CLASSIFICATION 238

Volve formation classification, median-filtered model predictions

Once again, a median filter can be used with a window size of 10 samples, assuming
that the data has been sampled at 10 Hz.

Figure 8.15: Median-filtered Volve formation classification removing outliers us-
ing IQR with all features.

By analysing the prediction results, it can be seen that the model developed using
the TPOT algorithm is capable of correctly predicting the formation type. The
results from the gradient boosting, random forest and k-nearest neighbors models
are also very close to the class label (shown as geology no in the uppermost plot).
The two models multilayer perceptron and support vector machine still deliver
very poor prediction results, suggesting that these models are not applicable for
formation classification for field data.

239 CHAPTER 8. VALIDATION

Volve formation classification of six formations using models from Case
8

In the last experiment, the same dataset is run through the seven models from
Case 8 that have been trained on a dataset where outliers have been removed
using IQR and only the six highest scoring features are used to separate the data
from each other. From analysing the raw model predictions, very few changes
from the results achieved using Case 7 models are observed. Most significantly, it
appears that a smaller amount of erronous predictions occur, which can possibly
be explained by the models not using features that are inseparable for the different
formations.

Figure 8.16: Volve formation classification removing outliers using IQR with
only six features.

8.1. ROCK CLASSIFICATION 240

Volve formation classification, median-filtered model predictions

When a median fillter (window size = 10 samples) gets used however, it can be
observed that the decision tree, gradient boosting, random forest, TPOT and K-
nearest neighbor models however appear to be less accurate than when all features
were used. Results from support vector machine and multilayer perceptron models
continue to deliver completely inaccurate predictions, supporting the statement
above that these models are not applicable for formation classification using field
data collected from drilling.

Figure 8.17: Median-filtered Volve formation classification removing outliers us-
ing IQR with only six features.

8.1.4 Formation classification - recommendations

On the laboratory drilling rig, the best performing features for rock classification,
both based on results when developing the different models, and evaluating rig

241 CHAPTER 8. VALIDATION

performance (from several simulations run) are related to rate of change in depth
(i.e. ROP), torque, RPM and WOB setpoints and the artificial features TF3
(RPM×WOB

ROP
), depth of cut and bit aggressiveness. For the Volve field data, the

best performing features are mud weight going into the well, flow rate setpoint,
RPM, torque, depth of cut, MSE and the engineered feature TF3 (same as above).

While high accuracy is achieved using setpoints for RPM, WOB, flow rate and
mud weight, such features could be selected depending on which formation that
is expected to be encountered, and are therefore not representative for the inter-
action between bit and the formation. It is therefore our opinion that valuable
features are ROP performance, torque, depth of cut and bit aggressiveness. Fea-
tures recommended to be further developed are interactions between ROP, torque,
and the operational setpoints such as the relationship between torque and depth
of cut and resulting ROP as a result of torque and WOB. Furthermore, if available,
one should aim at developing the models using downhole measurements such as
gamma ray and sonic logs, which should greatly increase the performance and
accuracy of models.

In terms of pre-processing, best results get achieved when invalid data and outliers
have been removed in the training datasets, particularly for the Volve field. Of
high importance, when developing models using data from drilling of different
wells and at different depths, the data should both get normalized with fixed
boundary conditions (such as 0-200 RPM), and correlated for varying depth, pres-
sure and temperature. While not critical on the laboratory scale, Volve formation
classification results would likely improve if a correction had been applied.

Again it should be emphasized that methods such as selecting features blindly
based on the feature importance scores from for instance an ExtraTreesClassifier is
not recommended. Instead, a critical assessment should be made with regards to
whether a feature describes the phenomena that one wishes to classify or predict,
or whether the feature is completely unrelated. While there has been no time in
this thesis work, a future recommendation is to develop features that represent
changes in the frequency domain, and to develop models using the principal
components found from PCA method. While in our opinion machine learning can
be an extremely valuable tool to increase the situational awareness and provide
early warning, it is still our opinion that these models do not replace the physical
models, but instead can be used to compliment them.

8.2. DRILLING RIG OPERATIONS CLASSIFICATION 242

8.2 Drilling Rig Operations Classification

8.2.1 Task c. Laboratory Experimental data

The labels used for the Laboratory Experimental data are: 1: POOH, 2: RIH
and 3: ROnB.

Laboratory rig operations on original dataset

The three rig operations POOH, RIH and ROnB can similarly be predicted, as
is shown in Figure 8.18. The dataset is run on the K-nearest neighbor model
in Case 11, that is built using a combination of natural features and engineered
features. In the last plot in the figure, the filtered predictions are shown in which
the median is calculated over a 96 sample window size.

Figure 8.18: Laboratory rig operations classification with raw- and median-
filtered prediction.

From Case 12, it can be seen that the unsupervised K-means model is capable of
identifying the three different rig operations using the parameters WOB and ROP,
since for this model the number of clusters can be specified. The unsupervised
DBSCAN model however, interprets that four clusters are present, suggesting
that only natural features is not robust enough. If one considers Case 13, the
two engineered features ROP median (y-axis, window size = 96 samples) and

243 CHAPTER 8. VALIDATION

ROP maximum - ROP minimum (window size = 96 samples), both K-means and
DBSCAN models are capable of organizing the different rig operations by their
correct classes, where the centermost cluster represents ROnB, the left cluster
represents POOH and the right cluster RIH. Considering the results from cases
11 through 13, there is no challenge in classifying the rig operations using the
K-nearest neighbor model developed.

8.2.2 Task d. Volve field data

The labels used for the Volve field data are: 1: Drilling, 2: RIH and 3: POOH.

Volve rig operations on original dataset

As with the laboratory rig operations, the prediction of the different rig activities
from the K-nearest neightbor model built in Case 14 being drilling, POOH and
RIH are shown in Figure 8.19. Immediately, it can be seen that the model is
capable of accurately describing the different operations. In Case 15, K-means
and DBSCAN clustering models got used to evaluate the three operations when
considering the bit RPM and the surface RPM. Other natural features such as
the weight on bit or torque were uncapable of being organized properly. While
K-means models is capable of identifying the three operations to a certain level,
DBSCAN continues to predict that there is four classes in the data. In Case 16,
the two features TF1 and TF3 are evaluated, which depend on the RPM and
WOB changes. Also here, two of the classes are difficult to separate, but judging
from the figure, the K-nearest neighbor model performs adequately.

8.2. DRILLING RIG OPERATIONS CLASSIFICATION 244

Figure 8.19: Volve rig operations classification.

An attempt was made to assimilate the WOB, RPM, torque and ROP mea-
surements from field data with laboratory rig data. When trying to develop
the model for the laboratory case and perform predictions on the field data, a
poor performance is noted. A future recommendation is to try to correlate the
drilling parameters and measurements between the laboratory rig and the full
scale, which if performed successfully can contribute to develop the best models
using the laboratory rig.

8.2.3 Rig operations - recommendations

For rig operations, features related to rate of change in depth (laboratory drilling
rig) or RPM, ROP (differentiate between drilling and tripping), TF3 (RPM×WOB

ROP
)

and crown block position (Volve field data) perform the highest. Judging from the
results, classification of rig operations is easy, yet it is very difficult to correlate
the data between the drilling rig and the field data.

While it likely is not possible to develop accurate models on the laboratory scale
to classify formations on a full-scale drilling rig, it is our recommendation to first
and foremost attempt to correlatate the data between the laboratory drilling rig
and the Volve field data for rig operations. If successful, simple algorithms (either
developed using machine learning or for instance the developed API for remote

245 CHAPTER 8. VALIDATION

rig interaction, as is mentioned in subsection 2.8.2) can get used to verify that
rig operations get executed in accordance with commands sent forward by a fully
digital control system executing digitalized drilling procedures, as has become a
hot topic among several operators in recent years. Such functionality of correlating
the data would also open up for research and simulation of functionality using
the drilling rig, before technology can get deployed for testing on the full scale.

8.3 Drilling Incident Classification

8.3.1 Task e. Pressure Incident Detection

The labels used for Pressure Incident Detection are: 1: Normal Pressure, 2: Leak
(losses) and 3: Overpressure (plugged nozzles).

Losses and plugged nozzles detection (classification) of original dataset

Three different pressure cases get predicted in Figure 8.20 using the K-nearest
neighbor model developed in Case 17. Comparing the predicted classes with the
pressure ranges, the K-nearest neighbor model performs well, which is also sup-
ported by both K-means and DBSCAN models developed using natural features in
Case 18 and engineered features in Case 19. From evaluating the performance of
the pressure model on the rig, the model quickly detects when a drop in pressure
(possible leak case) or an increase in pressure (such as plugged nozzles or plugged
exhaust on the pneumatic motor) occurs, suggesting that the model can be used
when circulating mud (using the conventional setup configured for vertical drilling
operations).

8.3. DRILLING INCIDENT CLASSIFICATION 246

Figure 8.20: Leak and overpressure classified using the K-NN model developed
in Case 17 with data acquired from experiment drilling a rock
sample while closing or opening two valves to simulate leak (losses)
or overpressure (plugged nozzles). Data has been treated for invalid
data and normalized.

For directional drilling, solenoid valve regulation is an important control param-
eter. During the different phases such as POOH and RIH through a whipstock,
a near-closed solenoid valve can trigger a leak (losses). Similarly, overpressure
should not occur in the system since both a manual choke and a pressure relief
valve is installed. A passive overpressure indicator is therefore more suitable than
the model when drilling with the pneumatic motor.

8.3.2 Task f. Surface Drilling Vibrations Detection

The labels used for the Surface Drilling Vibrations Detection are: 1: Normal
Vibrations and 2: Heavy Vibrations.

Axial vibrations have in the past been detected by considering the oscillations in
the load cells that get used to measure the hook load changes (WOB), mounted
between the top plate that resembles the drilling floor (where the top drive is

247 CHAPTER 8. VALIDATION

mounted) and the actuators that acts as draw works. In Figure 8.21, the K-
nearest neighbor model from Case 20 is used to predict whether normal or heavy
vibrations occur on a portion of the dataset that was collected to train the model,
in which the top drive RPM is varied when the BHA is unconfined inside a vertical
pilot hole section. Considering the K-means and DBSCAN results in Case 21, it is
evident that vibrations can not be separated using only the natural features WOB
and torque, since the heavy vibration cycles overlap the natural (low) vibrations.
By introducing engineered features however such as the relationship between the
average measurements and the standard deviation, and the maximum amplitude
(Case 22), it seems that heavy vibrations can possibly get detected with surface
sensors equipment.

Figure 8.21: Vibration classification using surface sensors.

8.3.3 Task g. Downhole Vibrations

The labels used for Downhole Vibrations are: 1: Low Vibrations, 2: Moderate
Vibrations and 3: Heavy Vibrations.

8.3. DRILLING INCIDENT CLASSIFICATION 248

Vibration classification using only the highest scoring features from
downhole sensors

As was observed using natural features in the surface vibrations model, several
of these overlap, which affects the performance of models. For this reason the
downhole vibration classification is performed using only the six highest scoring
features (Case 24 rather than 23), based on the ExtraTreesClassifier algorithm.
In Figure 8.22, the K-nearest neighbor model developed in Case 24 is used on the
same dataset that the model was trained on to predict three vibration levels: low,
moderate and heavy. In Figure 8.23, the model is used on a fresh dataset when
drilling a vertical section for the three vibration classes. As can be seen from the
two figures, the model scores well using engineered features only.

Figure 8.22: Three vibration levels (1: low, 2: moderate, 3: high) classified using
KNN-model developed in Case 24 with data acquired from drilling
a short inclined section using a 7 deg whipstock. Accelerometer and
gyroscope data in bottom show correspondance between vibrations
and classification results.

249 CHAPTER 8. VALIDATION

(a) Python print function of downhole vi-
bration levels.

(b) Visualization of downhole vibration
level in GUI.

Figure 8.24: Downhole Vibration Classification as implemented in the drilling
system.

Figure 8.23: Three vibration levels (1: low, 2: moderate, 3: high) classified
using the K-NN model developed in Case 24 on data acquired
from drilling a vertical pilot hole section using a riser. Median
filter is applied for 2nd figure at top over a 300 sample window
(= 5 seconds). Accelerometer and gyroscope data in bottom show
correspondance between vibrations and classification results.

In Figure 8.24, the performance of the model is shown as it is implemented on
the rig.
Based on several experiments conducted using the implemented models on the rig,

8.3. DRILLING INCIDENT CLASSIFICATION 250

performance is consistent and accurate (based on analysis of the data and visual
observations of vibration levels). The downhole sensor package should however
be positioned closer to the bit, which was particularly difficult this year given the
length of the pneumatic motor and the challenge with running a wired pipe back
to surface when drilling with the knuckle joint. Even if the sensor package can be
used to classify the string vibrations, there setup is assessed to currently not be
viable to classify for instance bit whirl, which could cause major damage to both
the BHA and bit.

8.3.4 Task h. Stuck Pipe Incident Detection

The labels used for the Stuck Pipe Incident Detection are: 1: Normal drilling and
2: Stuck pipe.

251 CHAPTER 8. VALIDATION

Stuck pipe classification

Figure 8.25: Stuck pipe classified using the K-NN model developed in Case 27
with data acquired experiment where the pipe is clamped repeatedly,
simulating a stuck pipe incident. Data has been treated for invalid
data and normalized.

In the past, stuck pipe has been detected when the torque is above a pre-
determined threshold, and the RPM drops to zero. In Figure 8.25, the K-nearest
neighbor model developed in Case 27, and that has only been trained on one
instance of stuck pipe is used on a dataset that contains ten stuck pipe incidents.
Data that is considered to be invalid (outside of the sensor range) has been re-
moved before the dataset was normalized. Judging by the performance, the model
is capable of detecting five out of the ten stuck pipe incidents. This is possibly
caused by the remaining incidents being too short to get detected accurately. In
Figure 8.26, the same model (Case 27) is used on the same dataset, except that
here, the invalid data is kept in the data. This causes six out of ten stuck pipe
incidents to get detected. Judging from the results for Case 28 and 29, where
K-means and DBSCAN get used to organize the data for natural features and

8.3. DRILLING INCIDENT CLASSIFICATION 252

engineered features respectively, stuck pipe detection should be straight forward
and can possibly be greatly improved by building the model on a larger training
set.

Figure 8.26: Stuck pipe classified using the K-NN model developed in Case 27
with data acquired experiment where the pipe is clamped repeatedly,
simulating a stuck pipe incident. Data has only been normalized.

8.3.5 Task i. Twist off Incident Detection

The labels used for the Twist off Incident Detection are: 1: No Twist Off and 2:
Twist Off.

Twist off detection (classification) of original dataset

As with the stuck pipe, a twist off can get detected considering a sudden change
in the torque measurement in the system. In Figure 8.27, the K-nearest neighbor
model developed in Case 30 is used on the dataset that contains a twist off incident.
The model predicts the twist off with a short time delay, but can be used on the
drilling rig to confirm a twist off and thus shut down the system.

253 CHAPTER 8. VALIDATION

Figure 8.27: Twist off detected using the K-NN model developed in Case 30
with data acquired from experiment drilling a homogeneous cement
rock sample at high operating setpoints where the pipe twists off.
Data has been treated for invalid data and normalized.

Experiments were conducted to develop a model that is capable of twist off detec-
tion before the incident occurs. While at more than 1000 RPM it is impossible
for the control loop to stop rotation quick enough to prevent a twist off if the pipe
gets stuck, a future recommendation is to drill at close to maximum operating
conditions, and develop a model that can detect drilling conditions that result in
twist off from fatigue in the pipe where the pipe connections are situated.

8.3.6 Incident classification - recommendations

For drilling incidents, it can be observed that natural features such as pressure,
torque, WOB and RPM in most cases can get used to distinguish between for in-
stance a normal pressure case, overpressure and leak. It can however be observed
that natural features can not be used to distinguish between different vibration
levels, suggesting that instead engineered features such as evaluating the maxi-
mum, minimum, peak-to-peak and standard deviation over an interval of samples
should get used when developing the models. Such features are also incredibly

8.4. LIMITATIONS USING MACHINE LEARNING 254

easy to implement in a real-time system without requiring significant time delay
in predictions.

It is our recommendation for incident detection, that outliers do not get removed
by IQR method, but instead manually by for instance plotting the data and
evaluating each measurement, seeing as IQR method would typically reduce the
accuracy of models with 10-15 %. Similarly to the formation classification, the
data range should get normalized for all cases to ensure that drilling incidents
and trends in data are equally represented in both training data and data used
to predict on. Furthermore, it should be a future focus to identify which drilling
incidents that can get predicted ahead of the incident occuring. While stuck pipe
and twist off occur in a matter of milliseconds on the laboratory drilling rig when
drilling at more than 1000 RPM, fatigue in connections and the pipe, as well as
pressure build up, are likely incidents that can get predicted and responded to,
ahead of system failure.

8.4 Limitations using machine learning

While results from this chapter and chapter 7 show that machine learning can be
used to detect different rock formations and drilling incidents, there are however
several limitations and challenges using machine learning that have been identified:

• First and foremost, it should be emphasized that the model accuracy heavily
depends on the quality of the data used to train the models. This means that
while a good model can be created for one objective, there is no guarantee
that a good model can be developed for another, unless data of high quality
that accurately describes the phenomena exists.

• Secondly, the models depend heavily on the environment that they have
been trained for and the data that it gets exposed to. An example of this is a
model that has been trained on data acquired in the laboratory environment,
but when used in the field is not able to make the correct prediction, even
if the trend might be the same.

• Thirdly, another limitation is failing to understand which features that
must be selected in order to correctly detect the phenomena that the model
gets developed for, and to blindly trust different importance evaluation
techniques. An example of this is, as has been mentioned earlier, if the

255 CHAPTER 8. VALIDATION

setpoint for flow rate of mud going into the well gets selected to classify
different geological formations.

• When compared to physical models, it is our perception that it can both
be difficult to detect and correct if the machine makes a mistake. This is
related to the complexity of fully understanding the processes that go into
each decision that the machine makes when the model gets built.

• Finally, a major limitation lies in computational power available to train
a model on large sets of data. If for instance a deep learning model gets
developed from an immense number of observations, the required hardware
to train such model can be both expensive and inaccessible. There has
however been a big shift in recent years towards cloud-computing, where
one can upload the data and use the computational power of a data center
to build the model. This also applies to the time that it takes to train a
model. If either the time available to train the model or to make a prediction
is limited, it is absolutely necessary to understand which models that are
computationally expensive to build, and which that are not.

Chapter 9

Autonomous Drilling

The experimental drilling rig that has been developed at the University of Sta-
vanger can also be used to develop, implement and research autonomous drilling
algorithms and digital detailed operating procedures (DDOP). As part of the
implementation of an autonomous control system to serve in the Drillbotics®

competition, several search algorithms have been evaluated for ROP optimiza-
tion..

Figure 9.1: Simplified illustration of the logic behind the autonomous drilling
system.

The concept is a closed-loop autonomous control system that combines several

256

257 CHAPTER 9. AUTONOMOUS DRILLING

models with a digital detailed operational drilling procedure developed for di-
rectional drilling. A simplified flow chart illustrating the system is shown in
Figure 9.1. In addition, a novel voting system has been designed to prioritize
which commands that should receive priority if an event, or incident gets detected
or if conflicting commands from models get received at the same time. The voting
system has been configured so that critical incidents that can risk damage to
either equipment or the well receive the highest priority. Because an important
objective has been directional drilling, inclination steering (and azimuth steering
when enabled) receives the second highest priority. Maximizing the ROP and
ensuring that downhole vibrations are low are located at the lowest priority since
these tasks are not critical to handle immediately to meet the objective.

9.1 Search algorithms

9.1.1 ROP Optimization Background

Rate of penetration (ROP) is an important performance index on every drilling
rig, and in every drilling operation. Ensuring that the ROP is as high, without
compromising on HSE, rig equipment safety and well integrity, is not only impor-
tant for cost efficiency but it also reduces the time that the openhole wellbore
is left exposed before running casing, liner (or other equipment into the well)
which in turn minimizes the risk of well collapse or time-consuming back-reaming
operations.

To optimize the ROP, one first needs to consider what ROP really is. ROP is a
multi-variable vector function that depends on various parameters such as WOB,
torque on bit (TOB), RPM, flow rate (Q), rock formation strength (UCS), drill bit
properties and so on. The machine exerts control over the bit side properties. The
formation strength and drilling environment on the other hand is heterogeneous,
and changes in the drilling environment must be responded to in real-time. On
the laboratory drilling rig, the two most important control variables are WOB
and RPM. By varying either of the control variables (that are coupled, meaning
that if one is varied so becomes the other) a difference in ROP, drilling efficiency
and system response can be expected.

The operational state space can be thought treated as a topographic environment,
where two of the control variables constitute the x- and y-axis, and the perfor-
mance indicator (for instance ROP or mechanical specific energy - MSE) is found

9.1. SEARCH ALGORITHMS 258

on the z-axis. Since ROP is always non-negative, the state space and resulting
performance can be depicted as illustrated in Figure 9.2.

Figure 9.2: In the topographic environment for ROP, several local peaks exist
where the highest ROP is found at the global peak. If a different
response variable gets selected, for instance MSE that measures the
energy required to remove a unit volume of a formation, the best
performance is found at the global minimum point.

Take the example of a heuristic search algorithm, as is used in Google Maps, where
the origin and destination is fed into the algorithm and the algorithm uses a road
network map to select the most optimal route based on available infrastructure
in the state space. In this algorithm, a cost function and heuristic function can
calculate the shortest direction to reach the destination, in the least amount of
time depending on speed limits and where the algorithm detects road blocks or
even live traffic jams. Treating the resulting performance of varying two control
variables as a topographic environment, where no road infrastructure dictates
the available routes, the ROP search algorithm should select the shortest path to
reach the goal state from its initial starting point, as is illustrated in Figure 9.3
below.

259 CHAPTER 9. AUTONOMOUS DRILLING

Figure 9.3: Shortest path in the operational state space of the drilling rig to
reach a theoretical goal state of the machine.

There are however several challenges to perform an optimal ROP search. In the
drilling scene, there is lacking information with regards to the destination that
the machine needs to reach for maximum ROP and the most optimal route to get
there. As is illustrated in Figure 9.2, with several local maximums in the state
space, the machine needs to not only locate a peak, but the global peak to ensure
that the highest ROP is achieved. Another challenge occurs when considering the
route that the machine follows in the search. Perhaps would the shortest path
in an operation cause the machine to drill with highly suboptimal controller set
points; for instance a very high RPM combined with an unnaturally low WOB
which can result in severe lateral vibrations and possibly also damage either the
drill string, BHA or bit. A third challenge is the step size that the algorithm
selects. By keeping the step size very small, the time to move from the start
point to the goal state increases as the machine would need to not only vary
the controller setpoint but also drill at those setpoints in order to measure the
response. If the step size is too large however, this reduces the time required to
reach the destination but increases the likelihood of possibly bypassing the desti-
nation (overshooting). In addition, several challenges exist in terms of selecting
appropriate termination criteria and deciding which criteria should be used to
initiate a new search.

9.1.2 Various search algorithms

Several search algorithms have been considered implemented on the rig. Two of
the initial algorithms were stochastic and brute force search algorithms, in which

9.1. SEARCH ALGORITHMS 260

the rig can be configured to either drill a series of random (stochastic) parameter
combinations or drill every combination of RPM and WOB (brute force) in the
state-space, depending on the step size and operating range defined by the system
boundaries. The rig could then evaluate which operational parameter combination
from either of the search algorithms that resulted in the highest ROP performance,
the lowest vibrations, and the lowest MSE. While a stochastic search can be quick
to execute if only a few parameter combinations get evealuated, there is no
guarantee that the stochastic operating parameter-combinations will locate the
optimal rig performance. A brute force search can however certainly locate the
best drilling parameters to use, but at the cost of significantly increased time
required to run the algorithm. Given the limitations of stochastic and brute
force algorithms, three other search algorithms got considered; Gradient descent,
Fibonacci search and Golden section search.

Method of Steepest Descent

The Method of Steepest Descent, also known as Gradient search is one of the
older methods that is still in use. It was developed in the early 1900s, but the
principles of the technique dates back to Cauchy (Petrova and Solov’ev, 1997) [62].

This search method works by selecting an initial guess for a local minima. After
this initial guess, one moves towards the gradient in order to locate the minimum
point, as is illustrated in Figure 9.4.

Figure 9.4: Example illustration of the Gradient Descent method [63].

The method is defined by the iterative equation (shown in equation 9.1), where
in order to locate the minimum point, the product of the gradient multiplied by

261 CHAPTER 9. AUTONOMOUS DRILLING

the step size gets subtracted from the initial (last) position for each iteration.

xk+1 = xk − ηkgk (9.1)

xk+1 denotes the minimum point to go towards and xk the initial position. The
gradient is expressed by gk and ηk denotes the step size to move for each iteration
(Luenberg and Ye, 2008) [64].

Fibonacci search

The Fibonacci search is a line search method where the objective is to locate
a particular point on a non-linear line, for instance the highest or lowest point.
This can be achieved either analytically or by performing searches along the line
of investigation. The line search is designed for one dimensional objects, but can
also be used for searching in higher dimensions. For higher dimensions, n line
searches get conducted depending on n dimensions (Luenberg and Ye, 2008) [64].

When using the Fibonacci search, one must have a predefined interval in which the
point to locate needs to be approximately determined from a unimodal function.
The method only allows searching towards one goal point, such as for instance a
maximum Figure 9.5 (Luenberg and Ye, 2008) [64].

Figure 9.5: Unimodal function needed for the Fibonacci search [64].

From Figure 9.5, it becomes clear that the desired point, xk, must lie on c1 ≤
x1 < x2... < xN−1 < xN ≤ c2, for N number of samples. Using this row of
samples one can determine the uncertainty of the interval [xk−1, xk+1]. The width

9.1. SEARCH ALGORITHMS 262

of uncertainty, dk, can then be found from equation 9.2:

dk = (
FN−k+1

FN
)d1 (9.2)

where d1 refers to the initial width of uncertainty (c2−c1), Fk refers to the integers
that are members of the Fibonacci sequence and can be found from 9.3 below,
and FN is the integer of the Fibonacci sequence (Luenberg and Ye, 2008) [64]:

FN = FN−1 + FN−2 (9.3)

Golden Section search

The Golden Section search is really just a modified version of the previous men-
tioned Fibonacci search, where rather than selecting a definite number of N sets,
N is infinite. Using the correlation for the Fibonacci sequence relation (given by
equation 9.3) one can find the solution to the Golden Section search (Luenberg
and Ye, 2008) [64] from:

FN = AτN1 +BτN2 (9.4)

where A and B can be found using the initial conditions. τ1 and τ2 can be found
from:

τ1 =
1 +
√

5

2
and τ2 =

1−
√

5

2

When N becomes large the result on the right hand side of equation 9.4 becomes
the dominant part, thus resulting in the following:

limN→∞
FN−1

FN
=

1

τ1

' 0.618

Transformation of equation 9.2 leads the following uncertainty:

dk = (
1

τ1

)k−1d1 (9.5)

263 CHAPTER 9. AUTONOMOUS DRILLING

From this equation, the following equation can be deduced:

dk+1

dk
=

1

τ1

= 0.618 (9.6)

and from this, we can conclude that the Golden Section search converges linearly
with a convergence ratio of 0.618 (Luenberg and Ye, 2008) [64].

9.2 Implemented algorithms

9.2.1 Column-Row search (Implemented in 2018)

Figure 9.6: Univariate hill-climb algorithm implemented in 2018 to search for
the maximum ROP [11].

In 2017 and 2018, multiple search algorithms were evaluated including brute force
search algorithms, hill climb and so on. The selected algorithm was a univariate
column-row search algorithm, that would vary one of the control parameters RPM
or WOB up to five times subsequently, and after each iteration step the ROP
response would get measured by determining the depth gradient (ROP) over a
15 second interval using a moving average filter. Then the algorithm would move
over to vary the other control parameter up to five subsequent times, before the
process got repeated. If the ROP-response from varying a control parameter
would become lower than the response had been using the previous operating
setpoint, the algorithm would revert to the previous setpoint and begin to vary
the other drilling parameter right away. When the algorithm would no longer

9.2. IMPLEMENTED ALGORITHMS 264

measure an increase in the depth gradient, the algorithm would break the search.
The algorithm got reset when the machine measured a massive change in ROP
and MSE combined, suggesting that a new formation had been encountered [11].

Figure 9.7: Rig monitor (left) and code (right) illustrating the hill climb algo-
rithm that was implemented in 2018 to identify the maximum ROP
by univariate.

9.2.2 Gradient Descent (Implemented in 2019)

In 2019, a gradient descent (multivariate) search algorithm to optimize the ROP
has been developed (Geekiyanage et al., 2019) [65]. The search algorithm now
calculates the ROP gradient from evaluating the change in the depth gradient
(ROP) over the last five seconds, and a learning rate function can be used to
determine the step size to move for each iteration. The algorithm is terminated
when the following condition is no longer satisfied:

0 < X ≤ Xi,max (9.7)

Denoting the drilling parameters WOB = x1, TOB = x2, RPM = x3, etc., the
ROP X = (x1, x2, ..., xn) where n ∈ <+. ROP can then be expressed as:

ROP = f(X) = f(x1, x2, ..., xn) (9.8)

265 CHAPTER 9. AUTONOMOUS DRILLING

The search algorithm will attempt to find a set of coordinates (x∗1, x
∗
2, ..., x

∗
n), so

that the controller setpoints become:

f(X∗) = maximum (9.9)

Step 1: Determine the ROP gradient, i.e. the direction to go towards

The operational state space of the drilling machine constitutes the search space
of the algorithm, satisfying the condition Xi,min < X < Xi,max, for instance
0 < RPM < 2000 and 0 < WOB < 50.

The depth gradient, referred to as instantaneous ROP (over a five second interval),
is calculated using linear regression as can be shown in equation 9.10, where N
represents the number of samples considered to obtain an instantaneous gradient
and n is always ≥ 2.

ROPinstantanious = ∇f(Xk) =

N [
n∑
t=1

Xk,t × f(Xk,t)]−
n∑
t=1

Xk,t ×
n∑
t=1

f(Xk,t)

N
n∑
t=1

(Xk,t)2 − [
n∑
t=1

Xk,t]2

(9.10)

An objective function J can be defined for ROP using Euclidean norm, so that:

min
X

J(X) = ‖f(X)−ROPsetpoint‖2 (9.11)

The ROP gradient vector can now get calculated from:

g(
−→
X0) = ∇f(X0) = [

∂f(X)

∂x1

,
∂f(X)

∂x2

, ...,
∂(X)

∂xn
]TX=X0

(9.12)

At any given combination of the control parameters, the ROP gradient always
points to the maximal increase of the ROP function, and the gradient is always
perpendicular to the ROP hyper-surface contour f(X) = c, where the constant c
is an arbitrary real number.

From experiments conducted by Dunlop et al., field data from drilling operations

9.2. IMPLEMENTED ALGORITHMS 266

using poly-diamond crystalline (PDC) bits has been analysed to identify at which
combination of RPM andWOB different types of vibrations occur. The constraints
in state space that the drilling machine should operate in according to Dunlop et
al. can be shown in Figure 9.9:

Figure 9.8: Constraints and ROP contours in the state space of the drilling
machine [66].

Dunlop et al. furthermore suggest that the effect of flow rate on ROP is minimal,
unless a mud motor is used downhole [66]

Step 2: Determine the learning rate (step size) in each iteration

From step 1, the algorithm is now capable of determining the search direction
from a previous operating point. The optimization now is reduced to a univariate
line search, moving along the local gradients. The gradient descent method can
be shown as:

−→
X k+1 =

−→
X k − ηgk

−→
Xk (9.13)

η represents the learning rate; i.e. the step size to move in each iteration, and
k denotes the iteration number. Ideally, the learning rate should be varied for
each consecutive iteration, so that by selecting the most optimal η value, the
ROP sequence J(X0) > J(X1) > ... > J(X∗) will converge to a minimum.
The step size can be selected by the equation below, considering that we define

267 CHAPTER 9. AUTONOMOUS DRILLING

φ(ηk) = f(Xk + ηgk) and 0 < ε < 1
2
, which satisfies the Wolfe condition:

φ(ηk) ≥ (1− ε)φ′(0) (9.14)

Figure 9.9: Theoretical illustration of how the gradient descent algorithm should
work to search for the maximum ROP in the state space of drilling
parameters WOB and RPM.

Step 3: Update the gradient descent algorithm

Then, we can update the equation for gradient descent:

−→
X k+1 =

−→
X k − ηgk(

−→
X k) (9.15)

Where k corresponds to the iteration number.

Step 4: Define the termination criterion

The termination criterion to abort the search if the ROP increase at k + 1 is less
than k can be defined by:

‖f(Xk+1)− f(Xk)‖ ≤ δ (9.16)

9.3. DIGITAL DETAILED OPERATING PROCEDURE 268

9.2.3 Triggers that can reinitiate search algorithm

In the past, a significant change in the ROP and MSE models have suggested
that either; a new rock formation is encountered, or a considerable change in the
drilling environment has occured. For the gradient descent algorithm, triggers
that can reset the algorithm and force a new search can be:

• the rock classification voting system suggests that a formation change has
occured in 70 % of the classifications over the last 10 seconds,

• either raw accelerometer data or downhole vibration model suggests that
severe vibrations occur repeatedly in the system,

• for an inclined well, a section of more than 100 mm TVD has been drilled
since the last search was terminated (if wellbore friction has changed the
operating environment),

• the ROP gradient, which is continuously calculated even if the search algo-
rithm is not pushing controller setpoints for RPM and WOB, increases so
that ∇ROPk+1 >≥ ∇ROPk ∗ 1.5.

For more information on the rock classification voting system and new formation
detection see chapter 8

9.3 Digital Detailed Operating Procedure

The following digital detailed operating procedure (DDOP) has been developed
to autonomously execute the drilling of a directional well. Please note that the
complete code for the DDOP can be found in Appendix F.
The DDOP is arranged in eight phases, as visualized in Figure 9.10. These are:

269 CHAPTER 9. AUTONOMOUS DRILLING

DDOP Phases

Phase 1
(Start):

Initialize connection

and virtual drilling system

environment

Stage 5
(NPT):

POOH (& riser),

position whip stock (WS),

RIH w/ WS to TD

Phase 3
(Tag):

Establish rock

contact (tag bottom) &

re­calibrate

Stage 7
(Drill):

Drill directionally to 24"

TVD in closed­loop

steering mode

Stage 8
(NPT):

Exit out of rock (penetrate),

set low RPM,

POOH (& WS)

Phase 2
(NPT):

Calibrate sensors

Stage 4
(Drill):

Ramp up systems, RIH

and drill pilot hole (PH)

section

Stage 6
(Drill):

RIH at moderate

WOB_setpoint, drill out

pilot hole to TD

Figure 9.10: Eight phases constitute the digital directional drilling operation.

On the next page, a sequential draft is shown for the implemented DDOP to drill
a directional well with the laboratory drilling rig.

9.3. DIGITAL DETAILED OPERATING PROCEDURE 270

Digital Detailed Operating Procedure (DDOP), UiS Drillbotics 2019
Autonomous Directional Drilling, 2.1 Nm drilling motor, 7 deg whipstock

#: Phase Label: Description: Systems Involved: Sensor Reliance: Bit target
[mm]:

Inclination
target [deg]:

Horizontal
build

Well TVD
target:

0 0 Initialize System. Start start_system.bat file, open GUI´s. - - - 90 0 0

1 1 Start Autonomous Mode. Establish contact with all PLC´s and sensors (surface + downhole).
Hoisting, Pneumatic, Rotation,
WPU

Surface (8x ch.),
Downhole (10x ch.) - 90 0 0

2 1 Initialize Virtual Environment.
Zero position tracker for downhole virtual environment, establish rig actuator
control. Hoisting, WPU

Downhole (10x ch.),
Virtual rig - 90 0 0

3 2 Calibrate Surface Sensors. Zero all eight (8x) channels that log surface sensors. - Surface (8x ch.) - 90 0 0

4 2 Calibrate Downhole Sensors.
Set Inclination = 90 deg, Azimuth = 0 deg, Accelerometers = 0
(Temperature is left unchanged). - Downhole (10x ch.) - 90 0 0

5 2 Calibrate early Hook Load.
Define Hook Load = WOB_current so that WOB = Z1 + Z2 + Z3 -
Hook load (HL) -

Surface (3x ch. (z1, z2,
z3)) - 90 0 0

6 3 Tag bottom.
Set WOB_setpoint = 3 kg. Activate PID controller until WOB >= 3 kg for 3x
consecutive measurements.Set TVD = 0 mm Hoisting

Surface (3x ch. (z1, z2,
z3)), Virtual rig 0 90 0 0

7 3 Pull off bottom, reset Hook Load.
Lift off bottom to TVD = -5.00 mm, define Hook Load = WOB_current to that WOB
= Z1 + Z2 + Z3 - HL Hoisting

Surface (3x ch. (z1, z2,
z3)), Virtual rig -5 90 0 0

8 4 Ramp up Drilling Motor. Set Solenoid Valve Opening so that bit RPM = 1070 RPM free rotating Pneumatic, Rotation
Surface (1x ch.
(P_pneum)), Virtual rig -5 90 0 0

9 4 Tag bottom.

Set WOB_setpoint = 10-12 kg. Activate PID controller. Use Gradient descent
method to toggle between 10 and 12 kg in increments of 0.5 kg to find highest
ROP without risking damage to pilot hole. Pneumatic

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 0 90 0 0

10 4 Drill pilot hole w/ ROP-agent.

Drill pilot hole to 175 mm MD + 5mm (clearance) ensuring high well integrity.
WOB_max (gradient search) = 1 kg < knuckle joint bend force required to build
inclination. Hoisting, Pneumatic, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 169,6 90 0 169,6

11 5 POOH to behind riser.

POOH to -243mm (423 mm above MD) with moderately high speed (5 mm/s) with
Solenoid Valve Opening so that bit RPM = 800 RPM to prevent overpull and stuck
pipe. Hoisting, Pneumatic, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig -219,6 90 0 169,6

12 5 Close solenoid valve. Set Solenoid Valve Opening = 0 % (0 RPM). Pneumatic
Surface (1x ch.
(P_pneum)), Virtual rig -219,6 90 0 169,6

13 5 Position WS above hole. Move WPU in X-direction away from rig for 128mm at 10 mm/s speed. WPU Virtual rig -219,6 90 0 169,6

14 5 RIH with WS.
Lower WS into pilot hole for 175.5 mm (from original position 10mm above hole)
at 3 mm/s speed and land WS 5 mm above TD. WPU Virtual rig 164,6 (WS), 0 (bit)90 0 169,6

15 5 RIH with bit (pre-configure)

Simultaniously to when whipstock gets moved, activate PID with WOB_setpoint =
4 kg and follow whipstock down until bit is 5 mm above rock surface (TVD = -
5mm) Hoisting

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig -5 90 0 169,6

16 6 Ramp up Drilling Motor.
Set Solenoid Valve Opening = X % (400 RPM free rotating, 200 RPM at
maximum Torque). Pneumatic, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig -5 90 0 169,6

17 6 Expand pilot hole w/ ROP-agent.

Expand pilot hole to 135 mm depth (middle of bend section for whipstock)
ensuring high well integrity. WOB_max (gradient search) = 5 kg and bit RPM =
1070 to prevent stuck pipe. Hoisting, Pneumatic, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 106 90 0 169,6

18 6 Drill to TD w/ ROP-agent.

Drill to below whipstock shoe (175 mm until in open hole with WOB_max = 3 kg to
prevent getting stuck with BHA due to insufficient hole cleaning and reaming at
KOP. Hoisting, Pneumatic, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 169,6 83 15,870752 169,6

19 7
Activate ROP-agent + closed-loop
steering.

Set ROP-agent to free operation, with WOB setpoint adjusted accordingly to
required bend to reach digital well trajectory. E.g: If > trajectory (overbuild),
reduce WOB slightly I f < trajectory (underbuild), increase WOB
slightly. Maximum WOB for system is 18 kg when operating with the 2.1 Nm
downhole motor. Hoisting, Pneumatic, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 269,6 83 40,824763 269,6

20 7 Reset ROP-agent.

Reset ROP-agent to moderate parameters in center of state space threshold, if
agent has not been reinitiated by formation / environment change in past 100 mm
drilled. Currently, none of the previously described criteria for termination have
been implemented. -

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 269,6 83 40,824763 269,6

21 7
Activate ROP-agent + closed-loop
steering.

Set ROP-agent to free operation, with WOB setpoint adjusted accordingly to
required bend to reach digital well trajectory. E.g: If > trajectory (overbuild),
reduce WOB slightly I f < trajectory (underbuild), increase WOB
slightly. Maximum WOB for system is 18 kg when operating with the 2.1 Nm
downhole motor. Hoisting, Pneumatic, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 369,6 83 65,778775 369,6

22 7 Reset ROP-agent.

Reset ROP-agent to moderate parameters in center of state space threshold, if
agent has not been reinitiated by formation / environment change in past 100 mm
drilled. Currently, none of the previously described criteria for termination have
been implemented. -

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 369,6 83 65,778775 369,6

23 7
Activate ROP-agent + closed-loop
steering.

Set ROP-agent to free operation, with WOB setpoint adjusted accordingly to
required bend to reach digital well trajectory. E.g: If > trajectory (overbuild),
reduce WOB slightly I f < trajectory (underbuild), increase WOB
slightly. Maximum WOB for system is 18 kg when operating with the 2.1 Nm
downhole motor. Hoisting, Pneumatic, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 469,6 83 90,732787 469,6

24 7 Reset ROP-agent.

Reset ROP-agent to moderate parameters in center of state space threshold, if
agent has not been reinitiated by formation / environment change in past 100 mm
drilled. Currently, none of the previously described criteria for termination have
been implemented. -

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 469,6 83 90,732787 469,6

25 7
Activate ROP-agent + closed-loop
steering.

Set ROP-agent to free operation, with WOB setpoint adjusted accordingly to
required bend to reach digital well trajectory. E.g: If > trajectory (overbuild),
reduce WOB slightly I f < trajectory (underbuild), increase WOB
slightly. Maximum WOB for system is 18 kg when operating with the 2.1 Nm
downhole motor. Hoisting, Pneumatic, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 609,6 83 125,6684 609,6

26 8 Penetrate rock.
Drill through rock by 5 mm to 614.6 mm TVD to ensure succesful penetration.
Sucesfully penetrated rock is detected by separately implemented algorithm. Hoisting, Pneumatic, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 614,6 83 126,9161 614,6

27 8 Deactivate ROP-agent.
Set ROP-agent = False so that PID control is disabled and RPM is kept until next
step. Hoisting

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 614,6 83 126,9161 614,6

28 Set low RPM. Set Solenoid Valve Opening = 80 %. Pneumatic

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig 614,6 83 126,9161 614,6

29 POOH to behind whipstock. POOH to 50 mm MD (with moderate high speed: 5 mm/s). Pneumatic, Hoisting, Rotation

Surface (8x ch.),
Downhole (10x ch.),
Virtual rig -60 90 0 614,6

30 8 Stop all systems controlled.
Stop all active systems, export drilling data to local folder (User then pushes data
to database w/ script). 90 0 614,6

-1000

0

1000

-50 0 50 100 150

W
el

l T
V

D

Horizontal offset from 0 mm (90 deg)

Well TVD target:

Figure 9.11: Digital Detailed Operating Procedure for Directional Drilling, de-
veloped in the design phase in early 2019.

271 CHAPTER 9. AUTONOMOUS DRILLING

9.4 Downhole closed-loop steering

The concept of closed-loop steering in the control system is currently limited to
inclination steering through active management of knuckle joint bend in the BHA
(through WOB setpoint manipulation). For every 1 mm MD that gets drilled
below the whipstock KOP (at 108.908 mm for the 10 degree whipstock), the
relationship between horizontal build and TVD gets calculated so that:

H

TV D
(MD > 108.908mm) =

horizontalbuild[mm]

TV D[mm]
(9.17)

A look up table has been created which contains the H/TV Dplanned values for
either a 5, 7 or 10 degree whipstock. This is illustrated in Figure 9.12 which
shows a section of the downhole environment GUI with actual values for the well
trajectory and pre-programmed values for the planned build. The look up table
values are then called every mm, and the relationship between the actual build
and planned build is checked by the equation:

Statusbuild =
H/TV Dactual

H/TV Dplanned

(9.18)

If the build status is ≥ 1, the system will be in a drop angle mode, and if the build
status is ≤ 1, the machine will be in a build angle mode and needs to increase
the build-rate by increasing the WOB.

9.4. DOWNHOLE CLOSED-LOOP STEERING 272

Figure 9.12: Illustration of how the machine uses a look up table to confirm
whether or not sufficient build is achieved at any given depth.

Based on analysis of experiments thave have been conducted regarding build rate
by adjusting the WOB, the following ranges for weight on bit have been identified:
WOBdropInclination = (5, 12) [kg] and WOBbuildInclination = (12, 18) [kg]. While
downhole RPM only depends on the gradient search algorithm and the different
phases of the operation, the voting system in the control system will continuously
evaluate whether or not the system is in a build or drop mode. If for example
the ROP gradient search proposes 14 kg WOB, but the system should be in a
drop mode, the WOBsetpoint will be overwritten to 12 kg, which is the highest
permissible WOB in the drop mode. While a higher WOB from experiments have
yielded a higher ROP, another control algorithm exists that evaluates whether
the recommended controller setpoint (within the range identified for build or drop
mode) gets forwarded to the PID controller, or whether an even lower setpoint
should be used in the event of severe downhole vibrations or if the system is in a
critical phase (such as passing KOP with the components in the BHA that have
the highest OD).

With regards to azimuth control, the top drive can be configured to move a certain
number of steps through pulsing. While implementing active azimuth-steering
can be highly beneficial to the current laboratory setup, a challenge exists with
regards to the accuracy of the magnetometer sensor that is currently installed in
the sensor sub. Such challenge is likely the result of the sensor house being made
from a ferromagnetic material, and a possible solution can be to use a non-ferrous

273 CHAPTER 9. AUTONOMOUS DRILLING

metal in the future.

9.5 Drilling Incident Detection

Stuck pipe detection

The gradient descent algorithm has been programmed to only select WOB set-
points that are positive (to prevent the algorithm from calculating a new gradient
when POOH). The Buildangle and Dropangle modes have lower limitations of 12 and
5 kg, respectively. Since upwards movement is only allowed if the PID controller
calculates an overshoot of (WOB setpoint + 1 kg), there exists a risk that the
PID controller stops to move if either bit or BHA gets stuck in the well and the
overshoot was less than the defined maximum allowable.

For this reason, a stuck pipe detection model, along with a remedial action plan
has been implemented. The model is only activated if the BHA gets stuck inside
of the inclined well section, and evaluates whether the actuators that control drill
floor (and bit) elevation have moved less than 0.2 mm in either direction over
the last 15 seconds. Upon stuck pipe detection, the WOB setpoint is set to -5
kg (5 kg overpull allowed) until the assembly has been pulled 1 mm above the
stuck point, in which the gradient search algorithm and build vs drop modes will
continue to operate (normal drilling state commences).

Downhole vibrations detection

Downhole vibrations get detected by a machine learning model that has been
implemented as its own program in the control system layers. The model has
been developed as described in chapter 7.

Leak detection

A leak gets detected if the system detects three consecutive measurements of
pressure less than 3 bar (in the pneumatic line), and an active drilling phase is
on-going. Hence, leak does not get detected if for instance the whipstock is being
lowered into the well, and the solenoid valve that regulates air flow to the downhole
motor is closed which results in a 0 bar pressure (NPT phase). Such incident can
not get handled by the system, and thus require a controlled shut-down of the
system.

9.5. DRILLING INCIDENT DETECTION 274

Overpressure detection

Similarly to leak detection, overpressure in the system is detected if three con-
secutive measurements of pressure in the pneumatic line exceeds 6.5 bar (0.5 bar
safety margin above the pressure that the downhole motor can sustain due to
pressure drop). Such incident can also not get handled by the system; hence a
controlled shut-down procedure is implemented if overpressure is detected.

Twist off detection

Twist off detection is handled if three criteria are all met concurrently; a drilling
phase is on-going, a leak incident is triggered and WOB drops to a significantly
lower weight (varied between operations) than that being the current setpoint.
Twist off additionally must get confirmed by all three criteria for three consecutive
measurements to shut down the system.

Axial vibrations

Axial vibrations get detected if load cell measurements of the hook load (WOB
measurements) are 1.5 × higher than the WOBsetpoint. The concept of detecting
axial vibrations is particularly difficult for directional drilling, since the bendable
knuckle joint is present in the BHA, and the downhole motor gets used. Ideally,
it would not be necessary to monitor axial vibrations on the rig, but when a
downhole motor that can only sustain a maximum force of 380 N (axially on
the shaft) gets used, it is important to detect such vibration levels. Since the
maximum permissable load is 380 N, the maximum WOB of the system is set
to 18 kg (177 N), which means that all forces that exceed 266 N (well below the
limit of the motor) get detected.

Although not implemented, a counter can easily be implemented in the control
system to measure the number of times that a force above 265 N have occured,
and stop the system if such forces occur a certain amount of times or within a set
time interval.

275 CHAPTER 9. AUTONOMOUS DRILLING

9.6 Rig performance

In this section, five well logs of a short inclined section, a vertical pilot hole, a
complete inclined wellbore section and two complete wells (separated into pilot
hole and inclined section plots) are presented. The plotted figures have been
downsampled to 1 Hz (from a 60 Hz sampling frequency). To smoothen the plots
for inclination, azimuth and weight on bit, a Kalman filter has been used.

9.6.1 Experiment 1: Inclined well section

Figure 9.13: Experiment 1: Well log representing rig performance when drilling
with downhole motor in inclined section using a 7 degrees whipstock.

The first well section with logging tools in the BHA was drilled from 355 mm MD
to 440 mm MD in homogeneous cement, using a 7 degree whipstock (Figure 9.13).
The WOB setpoint is kept constant at 5 kg, while the RPM setpoint is varied
between 925 and 1075 revolutions per minute. The resulting ROP is approximately
0.4 to 0.5 m/hr, which is considered a good result given the increased wellbore
friction and a low WOB setpoint. WOB setpoint has from experiments conducted
in the past been assessed to be the most important drilling parameter affecting the
ROP. The MSE varies between 10 and 40 MPa, and was calculated by hardcoding
a constant torque value equal to 1 Nm (since the top drive is turned off during
drilling with the downhole motor for less noisy data; resulting in a zero torque

9.6. RIG PERFORMANCE 276

measurement in the motor encoder). From the figure, it can be observed that even
with high oscillations in the downhole sensor measurements, approximately 7.5
mm horizontal build is achieved, with an offset on the azimuth of approximately
1 mm. In Figure 9.14 below, a cross-section of the first deviation well that was
drilled successfully is shown after a waterjet cutting machine was used to split
the rock sample.
Deviation well 1, homogeneous cement, 7 degrees whipstock

Figure 9.14: Well profile using 7 degrees whipstock in homogeneous cement.

From inspection of the rock, approximately 55 mm horizontal build was achieved
over 490 mm TVD of drilling below KOP. In the last 150 mm of drilling, the
knuckle joint turned slightly due to a twist in the connection between the knuckle
joint and sensor sub, causing an azimuth offset of approximately 10 mm. From
evaluating the well integrity, it is probable that bit whirl has occured, possibly
caused by the undergauge BHA. It is however difficult to monitor and confirm bit
whirl with the current configuration.

277 CHAPTER 9. AUTONOMOUS DRILLING

9.6.2 Experiment 2: Vertical well section

Figure 9.15: Experiment 2: Well log representing rig performance when drilling
with downhole motor in vertical pilot hole section for 170 mmTVD
to later RIH with whipstock. Riser is used to ensure verticality.

The second well log, as shown in Figure 9.15, showcases a pilot hole section that
was drilled to evaluate the performance that can be achieved with high drilling
parameter setpoints in the first vertical section of the competition well. RPM is
kept nearly constant at 1040, and the WOB is increased from first 5, to 10 and
later 15 kg. As the WOB gets increased, the DOC increases from approximately
0.01 (5 kg WOB) to 0.015 (10 kg WOB) to 0.025 (15 kg WOB) mm/rev, which
results in an ROP increase from approximately 0.5 m/hr to 1.5 m/hr at most.
While the increased WOB lead to an improvement in ROP, a slight build can be
observed (according to measurements and visual inspection), which is possibly
caused by the knuckle joint starting to bend at high WOB. As can be recalled
from section 9.4, the range for WOBBuildInclination starts at approximately 12
kg (up to maximum 18 kg). While the MSE also for this well log is calculated
with 1 Nm torque constantly, it can be observed that the MSE is reduced as the
WOB increases, suggesting less energy is wasted, and a higher percentage of the
combined energy usage goes into bit-rock interaction.

9.6. RIG PERFORMANCE 278

9.6.3 Experiment 3: Deviation well with WOB 5 to 20 kg

Figure 9.16: Experiment 3: Well log representing rig performance when RIH
to 240 mmTVD and then drilling with downhole motor to 600
mmTVD. A 7 degrees whipstock is used to kick off.

Continuing to vary the WOB, the same approach as before is used in an inclined
section in Figure 9.16. For the first 235 mm, the bit is RIH, With a 5 kg WOB
setpoint and an RPM of between 730 and 1040 to pass the KOP where a 10
degree whipstock has been inserted. The previously drilled well section that the
whipstock had been landed in got drilled as shown in Experiment 2 above.
Contrary to the last experiment, it is observable that while the ROP continues
to increase with an increase in WOB setpoint, the MSE does not decrease. A
possible explaination to this is that increased friction between the non-rotating
BHA and the wellbore in the inclined section leads to a lower ROP (approximately
1 m/hr) than expected. Horizontal build is calculated from measurements to
approximately 100mm, with an offset on the azimuth of approximately 3 to 4
mm (occurs at the end of the inclined section). Upon inspection of the well,
approximately 45 mm horizontal build was achieved. Possible explainations of
both the MSE, over-estimated horizontal build and only a moderately high ROP
can be that; either the increased wellbore friction reduces the overall efficiency of
the drilling operation and that constant vibrations against the wellbore influence
the measurements for inclination calculation. Another possible explaination can

279 CHAPTER 9. AUTONOMOUS DRILLING

be that only half of the BHA is submerged inside of the well, leaving the BHA even
more unconfined, which in turn affects the vibration cycle of the entire assembly.

9.6.4 Experiment 4: Pilot hole section 0 - 166 mm MD.

Inclination well from 109 mm to 600 mm MD.

In Figure 9.17 and Figure 9.18, a complete well was drilled, first drilling to 166 mm
MD using the riser for vertical pilot hole, and then lowering a 10 degree whipstock
into the well before the bit kicks off. For the pilot hole, the first 65 mm are drilled
with a WOB setpoint of 10 kg, before 15 kg is used for the remaining parts of
the well-section. As has been observed from previously conducted experiments,
the ROP increases from approximately 0.5 m/hr to 1.5 m/hr with an increase
in WOB, and the MSE decreases as a result. In this pilot hole, the horizontal
build and azimuth offset plots are lacking, with constant values showing (due to
an error in calculations since the downhole sensor was calibrated erronously).

Figure 9.17: Experiment 4: Well log, downhole motor drilling of 166 mmTVD
pilot hole.

When the 10 degree whipstock is used, an ROP is achieved of approximately 1
to 1.25 m/hr in the inclined section when WOB is kept at either 10, 15 or 18 kg
WOB. In terms of the calculated horizontal build from 167 mm to 600 mm MD,
approximately 58 mm is measured with the downhole sensor, while the true build

9.6. RIG PERFORMANCE 280

is approximately 42 mm. A theory, that can possibly explain the low horizontal
build is that the small cross-over between the bit and pneumatic motor allows the
downhole motor to return to a near-vertical trajectory just below the whipstock,
resulting in a rathole and a much lower build at KOP than 10 degrees. Once the
cross-over has passed the end of the whipstock, and the downhole motor with a
larger OD passes the whipstock, the bit will get forced towards a steeper dogleg
than was initially achieved, but still lower than the whipstock dogleg at KOP. It is
possible that a higher horizontal build got achieved with the 7 degree whipstock,
since such an effect of the bit returning to near-vertical once the cross-over is
rotating inside of the whipstock would get limited. Another explaination is that
one of the cutters on the PDC bit received from Baker Hughes was observed to
be chipped after the operation, which is considered the most likely cause of the
reduction in ROP.

Figure 9.18: Experiment 4: Well log representing rig performance when RIH
to 109 mmTVD (whipstock KOP) and then drilling with downhole
motor to 600 mmTVD. A 10 degrees whipstock is used to kick off.

9.6.5 Experiment 5: Increasing cross-over OD to 30.75 mm

(up from 20)

From analysis of the data in Experiment 4, it was evident that the horizontal build
using the 10 degree whipstock (measured to 42 mm) was lower than in previous

281 CHAPTER 9. AUTONOMOUS DRILLING

runs where 55 mm horizontal build was achieved using a 7 degree whipstock. A
possible explanation was that by increasing the bend at KOP, the bit would, as
the PDC cutters on the bit passed the edge of the whipstock, produce a rat hole
below the whipstock and go as far back to vertical as possible since the cross-over
OD was only 20 mm (down from the bit OD at 31.75 mm). For this reason, a new
cross-over was machined, which had an OD of 26 mm (approximately equal to the
downhole motor OD of 25 mm when the 1 mm OD sleeve is attached). The hypoth-
esis with the new cross-over was that as soon as the bit would pass the whipstock,
the cross-over would keep the bit in place and act as a stabilizer for the first 3 cm
that the bit drilled below whipstock-shoe. Furthermore, once the cross-over would
pass the bit, and the OD of the BHA would reduce from 30.75 mm (cross-over OD)
to 20 mm (pneumatic motor OD), the cross-over would ensure that the bit could
not begin to drill back to vertical (90 degrees inclination), since the cross-over
would now continue to act as a stabilizer in the open hole section below whipstock.

Unfortunately, two of the cutters in one of the two available PDC bits broke during
test drilling, forcing the team to test the larger cross-over using first the chipped
bit, and then a 3-cone PDC bit. From the performance, approximately 5 cm of
build was achieved with the chipped bit, up from 4 cm using the reduced-size
crossover. Due to the bit and BHA (crossover, downhole motor, knuckle joint and
sensor sub) now being on gauge, a slight drop in ROP was noted, compared to
previous runs where the ROP has stabilized at around 1.5 m/hr. It is expected
that a new drill bit, combined with the larger cross-over, will provide a consis-
tently high ROP in the inclined section, and a horizontal build of at least 6.5 cm
when using a 7 degree whipstock, and approximately 7 to 8 cm build when using
a 10 degree whipstock.

Chapter 10

Conclusion and Future Research

10.1 Discussion of results and end state achieved

10.1.1 Machine Learning

An end-state has been achieved where in total six different rock formations can
successfully get classified on the laboratory drilling rig; using machine learning
models developed with data that got collected in early 2019. The predictions
from the seven machine learning models that have been used for formation classi-
fication can be combined through the use of a voting system in order to present
the output prediction along with a confidence level. Furthermore, a sufficiently
high confidence level can be used to detect that a new formation has possibly
been encountered, and if a new formation has been detected sucesfully over a
number of consecutive iterations, the new formation can be confirmed, allowing
the autonomous control system to initiate either a new search for an optimal
ROP or to use pre-determined drilling parameters for WOB and rotational speed,
based on analysis of previous runs.

Similarly, three rig operations and several drilling incidents such as stuck pipe,
pressure outside of the normal operating range and heavy vibrations (either mea-
sured with downhole or surface equipment) can be classified on the laboratory
drilling rig. While preliminary results have shown that the models that have been
developed using field data from Volve can also be used for formation classification
and rig operation classification, it is difficult to assimilate the models developed
for the laboratory drilling rig and the full scale, likely due to the physics of the
two different systems being different from each other.

282

283 CHAPTER 10. CONCLUSION AND FUTURE RESEARCH

While the models up to this point have only been developed using supervised
machine learning (and unsupervised to organize and evaluate the effectiveness
of individual features), reinforcement learning is likely the next step to make
the predictions even more accurate. Except for the downhole vibrations model,
all models have been built using surface sensor measurements, due to the late
completion of the downhole sensor sub and integration in the control system.

10.1.2 Control System and Control Algorithms

The control system on the drilling rig has been developed makes use of multi-
threading, in which multiple threads, or processes, get executed simultaneously
with a unidirectional data flow. The developed control system architecture cur-
rently runs on a CPU with twelve cores, allowing for up to 24 different threads to
run in parallel to each other. The threads, or modules, that all consist of a client
and a server in each thread, communicate through the gRPC API / framework,
and is currently organized in six layers, in which each layer consists of a core
thread and several child threads. The use of multithreading for the laboratory
drilling rig has increased the robustness of the drilling rig heavily. Furthermore,
the use of gRPC allows different modules, or threads, that have been develioped
using different programming languages to get combined. Proof of concept for this
has been obtained by connecting the high frequency DAQ that runs in C Sharp
on the .NET framework to the control system that has been developed in Python.

The resulting control system is capable of executing a series of control algorithms
and models in parallel, such as a directional drilling program, ROP search (by
gradient descent method), inclination steering, downhole vibrations, incident and
stuck pipe detection (and handling), and so on. This is possible through the use
of another voting system that prioritizes pending commands from the control
algorithms depending on which action is most critical to execute. While tuning
of PID controller and gradient descent method is difficult with a bendable BHA
developed to be used in inclined well sections, proof of concept has been obtained
by the algorithms selecting optimal drilling setpoints based on measured rig
performance and response to earlier changes executed.
The operating frequency of the control system is currently configured to be 60
Hz, due to the sampling rate from the microcontroller in the sensor sub being the
bottleneck for higher sampling frequencies. While a bottleneck in developing the
control system has been the Arduino Due and Mega microcontrollers that execute

10.1. DISCUSSION OF RESULTS AND END STATE ACHIEVED 284

commands to the actuators, top drive, pumps, valves and so on, new PLCs have
been purchased for future upgrades.

10.1.3 Mechanical

During this semester, a series of mechanical upgrades have been implemented
on the rig, to enable directional drilling with closed-loop steering; using both
downhole and surface sensors. The most important upgrades are;

• installation of a complete pneumatic system with compressor, several manual
and automatic valves and chokes to throttle the air flow to the downhole
motor that has been selected according to several critical specifications to
function on the laboratory drilling rig,

• designing, prototyping, 3D printing and optimizing a fully functional sen-
sor sub equipped with downhole sensors to measure acceleration forces,
inclination and heading of the BHA (and bit),

• development of a knuckle joint, capable of bending to 10 degrees in the BHA
to relief the drill pipe of bend stress,

• designing, developing and testing different whipstock solutions on the small-
scale, before the most optimal whipstock design has been integrated on a
2-axis positioning system,

• tuning of the top drive,

• and finally, calibrate all parts of the system to allow for complete au-
tonomous operation based on a developed digital detailed operating proce-
dure presented in chapter 9.

The sensor sub, whipstock and knuckle joint were developed in Fusion 360 (CAD)
and outsourced to a local manufacturer for 3D printing in 316L stainless steel.

A pneumatic downhole motor was selected for three main reasons; to reduce the
friction between the BHA and wellbore in inclined well sections (reducing the
likelihood of stuck pipe), to keep the pipe stationary with no rotation so that the
knuckle joint can provide the desired bend during directional drilling, and finally
to allow for consistently high quality in downhole measurements. Rotating the
pipe and sensors would both distort the signals and introduce centrifugal forces
that needs to be accounted for.

285 CHAPTER 10. CONCLUSION AND FUTURE RESEARCH

Results from drilling with the downhole motor have shown that the vibrations
in the entire system are significantly reduced when compared to the old system
where a conventional top drive would rotate the complete string assembly. The
reduction in vibrations furthermore indicates that instead of the energy being
lost to reaming the wellbore, most of the energy goes into bit / rock interaction.
One can also observe from the well logs presented in section 9.6 that the MSE is
decreasing when the WOB is increasing when less wellbore friction is encountered.
More importantly, there have been no twist offs in the pipe connection attaching
the pipe to the top drive.

The well integrity has improved significantly after the conventional top drive was
replaced with a downhole motor. Because the only rotating part of the system
now is the bit, there is less reaming by the BHA during drilling and tripping. It
can still be observed that bit whirl continues to be a challenge. The bit whirl is
likely caused by the combination of high rotational speeds and no stabilizers in
the BHA; allowing the bit to move laterally.

Due to less reaming of the wellbore, the chance of getting stuck in a tight open
hole section is higher, especially at KOP where the whipstock deflects the bit
away from vertical. There have also been instances when stuck pipe has occured
during drilling. Due to this, selection of components that go into the well is
extremely important; such as cross over between the bit and motor, running into
hole with or without stabilizers and so on. A large cross over might lead to a
stuck pipe when high WOB is applied, since high WOB increases the build-rate
in the inclined section. RIH with a undergauged BHA can also be problematic,
due to the risk of creating a significant rathole below the whipstock where the bit
or BHA can get stuck when POOH.

10.2 Future recommendations

10.2.1 Machine Learning

The developed approach of pre-processing the data, selecting the most optimal
features and developing multiple models along with a voting system has resulted
in reliable results. Future recommendations are:

• Integration of reinforement learning on the rig, in which the models con-

10.2. FUTURE RECOMMENDATIONS 286

stantly get improved by correction of the prediction outputs from models,

• developing a larger database containing both different rock formations drilled
while varying drilling parameters and a collection of drilling incidents,

• making use of feature dimensionality reduction methods such as PCA, as
shown in chapter 6 in order to extract the principal components that explain
the variance in the dataset and in order to develop the models,

• develop models and perform PCA based on downhole measurements or
surface measurements that accurately describe the bit interaction with the
formations.

10.2.2 Control System and Control Algorithms

For the control system, several future improvements have been identified:

• make use of so-called IP Multicast to send a data package from a server to
multiple clients without sending the data each time that a client subscribes
to it (Multicast) and possibly also Data Distributing Service (DDS),

• since the threads communicate through the gRPC API, use the Go pro-
gramming language to write some of the modules,

• ensure that the libraries that get used in for instance filters (median, average
and so on) are the least demanding in terms of computational loads, and

• minimize the use of loops (for and while loops particularly) to reduce the
computational load.

In terms of control algorithms, the suggested practice for a complete closed-loop
system is that a database gets developed that contains best practice drilling pa-
rameters for the different formation types, so that when a new formation type
gets confirmed, the most optimal drilling parameters can immediately get selected.
The rig can then make use of various search-algorithms in the reduced state-space
(due to previously established most optimal parameters) to identify the point at
which the Founder point of the system is found. This point describes the optimal
performance point when drilling with optimal conditions related to WOB and
RPM, and the point is a linear function between these two parameters so that
when one of the two increases or decreases, equipment might get damaged [67].
Once the Founder point has been located, for instance by gradient descent method
, a series of drilling incident models can be used to not only classify the occurance
of a drilling incident, but also if possible, predict that an incident is imminent

287 CHAPTER 10. CONCLUSION AND FUTURE RESEARCH

(unless measures get taken). Gradient descent method will likely perform signifi-
cantly better once proper real-time learning rate determination is implemented.

While all drilling operations are unlikely to get automated in the near future,
in our opinion the first step on the path is to provide the driller with powerful
tools to increase safety, operational efficiency and reduce costs. It is therefore
our recommendation to build a control system that promotes human-machine
integration, where the machine for instance can suggest optimal strategies going
forward, and the driller can select one of these or simply override the suggestion.
Furthermore, ensuring high quality of data in all steps of the decision making
process will increase reliability and ensure consistently high performance.

10.2.3 Mechanical work

In terms of mechanical aspects with the rig, a recommendation is to rebuild the
laboratory rig. As the rig sits today, the experiments performed are not scalable
to the full-scale drilling rig, making it difficult to assimilate physics and drilling
phenomena on the two rig types. An example of this is that the drill string is
kept in compression during drilling, to allow enough WOB to get applied. This
is a result of the drill pipe neither being long nor heavy enough to provide the
required slenderness and hook load, thus placing the neutral point right beneath
the top-drive which in the long run causes high fatigue in the top of the string.
This challenge can for instance get solved by developing a rig that drills horizon-
tally with a 10-15m long drill pipe.

Other improvements should include the downhole sensor sub. In the current
set-up the sub is placed at the rear-end of the BHA. This places the sub at a
great distance from the drill bit when comparing it to the total length of the pipe,
which is only about 1.4 m. In order to get near-bit measurements, the sub should
for optimal results be placed immediately after the bit, which can possibly be
solved by either storing data for post-analysis on an SD card, or installing wireless
telemetry solutions, capable of wireless transmission of data in real-time.

References

[1] A. M. Turing. Intelligent Machinery, A Heretical Theory*. Philosophia Mathematica,
4(3):256–260, 09 1996. ISSN 1744-6406. doi: 10.1093/philmat/4.3.256. URL
https://doi.org/10.1093/philmat/4.3.256.

[2] Bello et al. Application Of Artificial Intelligence Methods In Drilling System
Design And Operations: A Review Of The State Of The Art. Journal of Artificial
Intelligence and Soft Computing Research, 5(2), pages 121–139, 2015. URL https:
//doi.org/10.1515/jaiscr-2015-0024.

[3] M. I. Jordan and T. M. Mitchell. Machine Learning: Trends, Perspectives, and
Prospects. Science Volume 349, Issue 6245, pages 255–260, July 2015. doi: 10.
1126/science.aaa8415.

[4] Equinor. Disclosing all Volve data, viewed 15.02.2019. URL https://www.
equinor.com/en/news/14jun2018-disclosing-volve-data.html.

[5] E. A. Løken and A. Trulsen. Construction, Design and Optimization of an Au-
tonomous Laboratory-Scale Drilling Rig. Bachelor thesis, University of Stavanger,
2017.

[6] O. A. Hjelm and S. J. Nilsen. Further Development and Testing of an Autonomous
Drilling Rig and Control Algorithms for Improved Drilling Performance. Master’s
thesis, University of Stavanger, 2018.

[7] DSATS. About Drillbotics, viewed 15.02.2019. URL https://drillbotics.com/
about-drillbotics/.

[8] S. C. H. Geekiyanage and E. A. Løken. Autonomous Laboratory-Scale Drilling Rig
for Testing and Control of Drilling Systems. Oil Gas European Magazine, March
2018.

[9] S. C. H. Geekiyanage and E. A. Løken. Design of a Finite State Machine; Case
study on Algorithm Design for a Smart Drilling Rig. Oil Gas European Magazine,
March 2019.

[10] Loeken et al. Design Principles Behind the Construction of an Autonomous
Laboratory-Scale Drilling Rig. IFAC-PapersOnLine Volume 51, Issue 8, pages
62–69, 2018.

[11] E. L. Sand. Design and implementation of a control system for a fully automated
drilling rig. Bachelor thesis, University of Stavanger, 2018.

[12] C. Guggedal and M. Steinstø. Control System Architecture and API Integration.
Bachelor thesis, University of Stavanger, 2019.

[13] O. A. Akisanmi. Automatic Management of Rate of Penetration in Heterogeneous
Formation Rocks. Master’s thesis, University of Stavanger, 2016.

[14] Jakobsen A. Hagen, H. and M. Khadisov. Laboratory Drilling Rig Construction,
Testing and Modeling for Optimization and Problem Management. Bachelor thesis,
University of Stavanger, 2018.

288

https://doi.org/10.1093/philmat/4.3.256
https://doi.org/10.1515/jaiscr-2015-0024
https://doi.org/10.1515/jaiscr-2015-0024
https://www.equinor.com/en/news/14jun2018-disclosing-volve-data.html
https://www.equinor.com/en/news/14jun2018-disclosing-volve-data.html
https://drillbotics.com/about-drillbotics/
https://drillbotics.com/about-drillbotics/

289 REFERENCES

[15] Deprag. Air Motors - Customized drive solutions, viewed 15.04.2019.
URL https://www.deprag.com/fileadmin/bilder_content/emedia/
broschueren_pics/emedia_druckluftmotoren/D6000/D6000en.pdf.

[16] Air Vane Motors for Special Applications. Air Motors - Customized drive solu-
tions, viewed 15.04.2019. URL http://www.depragusa.com/files/catalogs/
D6800en.pdf.

[17] S. Skjørestad. Directional Drilling Capabilities of a Rebuilt and Optimized Au-
tonomous Laboratory Scale Drilling Rig. Bachelor thesis, University of Stavanger,
2019.

[18] Adafruit. FLORA 9-DOF Accelerometer/Gyroscope/Magnetometer - LSM9DS0 -
v1.0, viewed 27.04.2019. URL https://www.adafruit.com/product/2020.

[19] Adafruit. Adafruit Trinket M0, viewed 27.04.2019. URL https://learn.
adafruit.com/adafruit-trinket-m0-circuitpython-arduino/overview.

[20] E. Wiktorski. Comparative Study of Surface and Downhole Dynamics on a
Laboratory-Scale Drilling Rig. SPE ID: SJ-0419-0021. Society of Petroleum Engi-
neers, 2019.

[21] D. Sui. Drilling Automation and Modeling (PET575). University of Stavanger,
2019.

[22] Dewesoft. PID Control, viewed 08.05.2019. URL https://dewesoft.pro/
online/course/pid-control.

[23] Ozzmaker github user: mwilliams03. python-BerryIMU-gryo-accel-
compass/berryIMU-simple.py, viewed 30.03.2019. URL https://github.com/
ozzmaker/BerryIMU/blob/master/python-BerryIMU-gryo-accel-compass/
berryIMU-simple.py.

[24] Tibshirani R. Hastie, T. and J. Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, Second Edition (Springer Series in
Statistics). Springer, 2nd edition, 2016. ISBN 0387848576.

[25] P. I. Good and J. W. Hardin. Common errors in statistics (and how to avoid them).
Wiley, 2006.

[26] Mustafa Al Bakri et al. Filling missing data using interpolation methods: Study
on the effect of fitting distribution., pages 889–895. Trans Tech Publications, 2014.
doi: 10.4028. URL https://www.scientific.net/KEM.594-595.889.

[27] K. Holdaway. Harness Oil and Gas Big Data with Analytics: Optimize Exploration
and Production with Data Driven Models. Wiley Publishing, 1st edition, 2014. ISBN
1118779312, 9781118779316.

[28] S. James. An Introduction to Data Analysis using Aggregation Functions in R.
Springer, 2016. URL https://doi.org/10.1007/978-3-319-46762-7.

[29] Scikit Learn. Preprocessing Data, viewed 20.04.2019. URL https://
scikit-learn.org/stable/modules/preprocessing.html.

[30] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical
Learning: With Applications in R. Springer, 2014.

[31] W. van der Aalst. Process Mining: Data Science in Action - Second Edition.
Springer, 2016.

[32] A. Hervé and L. J. Williams. Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(4):433–459, 2010. doi: 10.1002/wics.101. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101.

https://www.deprag.com/fileadmin/bilder_content/emedia/broschueren_pics/emedia_druckluftmotoren/D6000/D6000en.pdf
https://www.deprag.com/fileadmin/bilder_content/emedia/broschueren_pics/emedia_druckluftmotoren/D6000/D6000en.pdf
http://www.depragusa.com/files/catalogs/D6800en.pdf
http://www.depragusa.com/files/catalogs/D6800en.pdf
https://www.adafruit.com/product/2020
https://learn.adafruit.com/adafruit-trinket-m0-circuitpython-arduino/overview
https://learn.adafruit.com/adafruit-trinket-m0-circuitpython-arduino/overview
https://dewesoft.pro/online/course/pid-control
https://dewesoft.pro/online/course/pid-control
https://github.com/ozzmaker/BerryIMU/blob/master/python-BerryIMU-gryo-accel-compass/berryIMU-simple.py
https://github.com/ozzmaker/BerryIMU/blob/master/python-BerryIMU-gryo-accel-compass/berryIMU-simple.py
https://github.com/ozzmaker/BerryIMU/blob/master/python-BerryIMU-gryo-accel-compass/berryIMU-simple.py
https://www.scientific.net/KEM.594-595.889
https://doi.org/10.1007/978-3-319-46762-7
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101

REFERENCES 290

[33] DeepAI. Unsupervised Learning, viewed 25.03.2019. URL https://deepai.org/
machine-learning-glossary-and-terms/unsupervised-learning.

[34] Scikit Learn. Choosing the right estimator, viewed 20.02.2019. URL https://
scikit-learn.org/stable/tutorial/machine_learning_map/index.html.

[35] H. Li. Which machine learning algorithm should I use?, viewed 30.03.2019.
URL https://blogs.sas.com/content/subconsciousmusings/2017/04/12/
machine-learning-algorithm-use/.

[36] Scikit Learn. Tuning the Hyper-Parameters of an Estimator, viewed
15.03.2019. URL https://scikit-learn.org/stable/modules/grid_search.
html#grid-search.

[37] Scikit Learn. Precision Recall F-score and Support function, viewed 20.03.2019.
URL https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.precision_recall_fscore_support.html#sklearn.metrics.
precision_recall_fscore_support.

[38] E. Beqari. A Very Basic Introduction to Feed-Forward Neural Net-
works, viewed 10.03.2019. URL https://dzone.com/articles/
the-very-basic-introduction-to-feed-forward-neural.

[39] Svozil et al. Introduction to Multi-Layer Feed-Forward Neural Networks, pages
44–58. Elsevier, 1997. doi: 10.1016/S0169-7439(97)00061-0. URL https://doi.
org/10.1016/S0169-7439(97)00061-0.

[40] N. Christiani and J. Shawe-Taylor. Support vector machines: Data Analysis, Ma-
chine Learning and Applications. Cambridge University Press, 2000. ISBN ISBN :
0521780195.

[41] T. J. Sejnowski. The Deep Learning Revolution. The MIT Press, 2018. ISBN
978-0-262-03803-4.

[42] S. Bhattacharyya. Support Vector Machine: Kernel Trick; Mercer’s
Theorem, viewed 02.05.2019. URL https://towardsdatascience.com/
understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d.

[43] T. Cover and P. Hart. Nearest Neighbor Pattern Classification. IEEE Transactions
on Information Theory 13.1 (1967): 21-27, 1967.

[44] Papajorgji P. J. Mucherino, A. and P. M. Pardalos. k-Nearest Neighbor Clas-
sification, pages 83–84. Springer, New York, NY, 2009. ISBN 978-0-387-
88615-2. doi: 10.1007/978-0-387-88615-2_4. URL https://doi.org/10.1007/
978-0-387-88615-2_4.

[45] Y. et al. Xu. Coarse to fine k nearest neighbor classifier. Pattern Recogn. Lett., 34
(9):980–986, July 2013. ISSN 0167-8655. doi: 10.1016/j.patrec.2013.01.028. URL
http://dx.doi.org/10.1016/j.patrec.2013.01.028.

[46] H. Zhang. The optimality of naive bayes. volume 2, 01 2004.

[47] Randal S. Olson. TPOT, viewed 12.03.2019. URL https://epistasislab.
github.io/tpot/.

[48] S. M. Kamruzzaman, F. Haider, and Hasan A. R. Text classification using asso-
ciation rule with a hybrid concept of naive bayes classifier and genetic algorithm.
CoRR, abs/1009.4976, 2010. URL http://arxiv.org/abs/1009.4976.

[49] Fan et al. Mr-dbscan: An efficient parallel density-based clustering algorithm
using mapreduce. In 2011 IEEE 17th International Conference on Parallel and
Distributed Systems, pages 473–480, Dec 2011. doi: 10.1109/ICPADS.2011.83.

https://deepai.org/machine-learning-glossary-and-terms/unsupervised-learning
https://deepai.org/machine-learning-glossary-and-terms/unsupervised-learning
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
https://scikit-learn.org/stable/modules/grid_search.html#grid-search
https://scikit-learn.org/stable/modules/grid_search.html#grid-search
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://dzone.com/articles/the-very-basic-introduction-to-feed-forward-neural
https://dzone.com/articles/the-very-basic-introduction-to-feed-forward-neural
https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/10.1016/S0169-7439(97)00061-0
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://doi.org/10.1007/978-0-387-88615-2_4
https://doi.org/10.1007/978-0-387-88615-2_4
http://dx.doi.org/10.1016/j.patrec.2013.01.028
https://epistasislab.github.io/tpot/
https://epistasislab.github.io/tpot/
http://arxiv.org/abs/1009.4976

291 REFERENCES

[50] M. E. Celebi. Partitional Clustering Algorithms. Springer, Cham, 2015. ISBN
3-319-09259-6.

[51] L. K. Larsen. Tools and Techniques to Minimize Shock and Vibration to the Bottom
Hole Assembly. Master’s thesis, University of Stavanger, 2014.

[52] K. K. Fjelde. Directional Drilling and Well Flow Engineering (PET505), 2017.

[53] M. A. Belayneh. Advanced Well and Drilling Engineering (PET580). University of
Stavanger, 2019.

[54] T. R. Hamrick. Optimization of Operating Parameters for Minimum Mechanical
Specific Energy in Drilling. Master’s thesis, West Virginia University, 2011.

[55] M. J. Fear and R. C. Pessier. Quantifying Common Drilling Problems With
Mechanical Specific Energy and a Bit-Specific Coefficient of Sliding Friction. SPE-
24584, 1992.

[56] Celada et al. The Use of the Specific Drilling Energy for Rock Mass Characterisation
and TBM Driving During Tunnel Construction. 2009.

[57] E. Kenneth and S. C. Russel. Innovative Ability to Change Drilling Responses of
a PDC Bit at the Rigsite Using Interchangeable Depth-of-Cut Control Features.
SPE-178808-MS. Society of Petroleum Engineers, 2016.

[58] G. N. Karadzhova. Drilling Efficiency and Stability Comparison Between Tricone,
PDC and Kymera Drill Bits. Master’s thesis, University of Stavanger, 2014.

[59] Scikit Learn. scikit-learn Machine Learning in Python, viewed 05.02.2019. URL
https://scikit-learn.org/stable/.

[60] Johannes Otterbach. Principal Component Analysis (PCA) for Feature Selection
and some of its Pitfalls, viewed 20.04.2019. URL https://jotterbach.github.
io/2016/03/24/Principal_Component_Analysis/.

[61] B. Horton. Calculating AUC: The Area Under a ROC Curve, viewed 29.05.2019.
URL https://blog.revolutionanalytics.com/2016/11/calculating-auc.
html.

[62] S. S. Petrova and A. D. Solov’ev. The origin of the method of steepest descent.
Historia Mathematica, 24(4):361 – 375, 1997. ISSN 0315-0860. doi: https://doi.
org/10.1006/hmat.1996.2146. URL http://www.sciencedirect.com/science/
article/pii/S0315086096921461.

[63] M. Hutson. Ai researchers allege that machine learning is alchemy.
Science Mag, 2018. URL https://www.sciencemag.org/news/2018/05/
ai-researchers-allege-machine-learning-alchemy.

[64] D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 3rd
edition, 2008. ISBN 978-0-387-74502-2.

[65] S. C. H Geekiyanage, E. A. Loeken, and D. Sui. Draft: Architectures and Algorithms
of an Autonomous Small-Scale Drilling Agent. Submitted for review, Elsevier, 2019.

[66] Dunlop et al. Increased Rate of Penetration Through Automation. SPE/IADC
Drilling Conference and Exhibition, January 2011. doi: https://doi.org/10.2118/
139897-MS.

[67] Sui D. Akisanmi O. Cayeux, E. and O. Alani. Challenges in the Automation of
a Laboratory-Scale Drilling Rig and Comparison with the Requirements for Full
Scale Drilling Automation. April 2017. doi: 10.2118/185898-MS.

https://scikit-learn.org/stable/
https://jotterbach.github.io/2016/03/24/Principal_Component_Analysis/
https://jotterbach.github.io/2016/03/24/Principal_Component_Analysis/
https://blog.revolutionanalytics.com/2016/11/calculating-auc.html
https://blog.revolutionanalytics.com/2016/11/calculating-auc.html
http://www.sciencedirect.com/science/article/pii/S0315086096921461
http://www.sciencedirect.com/science/article/pii/S0315086096921461
https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy
https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy

Appendix A

Sensor Sub Stress Simulation

Provided in the software, the material properties considered for all load cases are as
illustrated in the table below:

Property Value Unit
Density 7.99 × 10−6 kg / mm3

Young´s modulus 193000 MPa
Poisson´s ratio 0.25 -
Yield strength 170 MPa

Ultimate tensile strength 485 MPa
Thermal conductivity 0.0163 W / (mm C)

Specific heat 500 J / (kg C)

Static Stress - Momentum Load Case
In this simulation, a momentum load case is run for 10 Nm torque applied to the
threaded sleeve. The top drive mounted on the system can provide a nominal torque of
2.86 Nm and a maximum instantanious torque of 8.59 Nm, and the pneumatic motors
can provide nominal torque 2.1 and 4.9 Nm torque respectively, suggesting the sensor
sub should never be subjected to more than 10 Nm of torque.

Figure A.1: Safety factor, displacement and stresses acting on the sensor house
when 10 Nm force is applied to the threaded sleeve.

292

293 APPENDIX A. SENSOR SUB STRESS SIMULATION

Figure A.2: Stress, strain, reaction force, displacement and safety factor when
sensor house is subjected to 10 Nm force.

Static Stress - WOB Force
In this simulation, a force load case is run for 500 N force applied to the surface of
the threaded sleeve. The WOB used to drill different formations on the autonomous
drilling rig is limited to 30 kg (= 294.2 N), but due to the axial vibrations that occur
an additional safety margin of approximately 200 N is added.

Figure A.3: Safety factor, displacement and stresses acting on the sensor house
when 500 N force is applied to the surface of the threaded sleeve.

294

Figure A.4: Stress, strain, reaction force, displacement and safety factor when
sensor house is subjected to 500 N force.

Static Stress - Overpull Force
In this simulation, a force load case is run for 500 N force of pull applied to the
surface of the threaded sleeve. The actuators that operate the hoisting system on the
autonomous rig is similarly to the WOB case limited to maximum 30 kg force before a
safety algorithm limits further movement. If however safety algorithms malfunction (or
get lifted), estimated pull force of stepper motors controlling actuators is at least 500
N, making an accidental overpull to such force probable.

Figure A.5: Safety factor, displacement and stresses acting on the sensor house
when 500 N force is applied to surface of the threaded sleeve.

295 APPENDIX A. SENSOR SUB STRESS SIMULATION

Figure A.6: Stress, strain, reaction force, displacement and safety factor when
sensor house is subjected to 500 N force.

Static Stress - Burst Pressure
In this simulation, a pressure load case is run for 10 bar pressure applied to the inside of
the small flow channel that the plug screws around, and where an O-ring is used to isolate
the sensor chamber inside the sensor sub away from the flow channel. The maximum
pressure that the pneumatic motor can sustain is 6 bar, but since the compressor can
provide 10 bar pressure at 345 LPM, a 4 bar margin is added to the maximum pressure
that the pneumatic motor will get subjected to.

Figure A.7: Safety factor, displacement and stresses acting on the sensor house
when 10 bar force is applied to flow channel that extends out of the
sensor house and into the plug.

296

Figure A.8: Stress, strain, reaction force, displacement and safety factor when
sensor house is subjected to 10 bar pressure.

Structural Buckling - WOB Force
In this simulation, a buckling load case is run for 500 N force applied to the threaded
sleeve, for the same reasons as stated above for the static stress - WOB force.

Figure A.9: Displacement and buckling modes acting on the sensor house when
500 N force is applied to the threaded sleeve in compression. Buck-
ling modes (right) illustrate three different buckling cases at 3338,
3357 and 3611 times the 500 N load case simulated.

Appendix B

Manual Downhole Position
Tracking Concept

Figure B.1: Tracking concept for downhole position, part 1.

297

298

Figure B.2: Tracking concept for downhole position, part 2.

Appendix C

Autonomous Search Algorithm
Code

In this appendix, a short section of the implemented code for optimal ROP search is
included.

1 ...
2
3 def on_hoisting_hbm_sync(pulse, timestamp, data):
4 global rop_list, rpm_list, wob_list
5 global LEARNING_RATE, GRADIENT_INTERVAL, rpm_setpoint, wob_setpoint, rop_prev_depth
6 global rop_enabled
7 wob = 0
8 z1 = 0
9 z2 = 0
10 z3 = 0
11 rpm = 0
12 opening = 0
13 rop_inst = 0
14
15 current_wob_setpoint = 0.0
16
17 for package in data:
18
19 if package[0] == module_pb2.HOISTING_UNIT:
20 hoisting_data = package[1]
21
22 for value in hoisting_data:
23 if value.source == module_pb2.HEIGHT:
24 #print(" height_data(0): ", value.data[0])
25
26 #print(" height_data(last): ", value.data[-1])
27 #rop_inst = value.data[0] - value.data[-1]
28 #print(" ROP_inst is: ", rop_inst)
29
30 ∆_depth = rop_prev_depth - value.data[0]
31 depth = value.data[0]∗(-1)
32 rop_prev_depth = value.data[0]
33
34 rop_inst = ∆_depth
35
36 elif value.source == module_pb2.WOB:
37 #print("Current WOB setpoint: ", (value.data[-1] / 1000))
38 current_wob_setpoint = value.data[-1] / 1000
39
40 elif package[0] == module_pb2.HBM:
41 downhole_data = package[1]
42
43 for value in downhole_data:
44 if value.source == module_pb2.Z1:
45 z1 = value.data[0]
46 elif value.source == module_pb2.Z2:
47 z2 = value.data[0]
48 elif value.source == module_pb2.Z3:
49 z3 = value.data[0]
50
51 elif package[0] == module_pb2.VALVE_UNIT:
52 valveopening_data = package[1]
53
54 for value in valveopening_data:
55 if value.source == module_pb2.OPENING:
56 opening = value.data[0]
57 #print(" Valve opening is: ", opening)
58
59
60 wob = (z1+z2+z3) / 1000
61 rpm = valve_opening_to_rpm(opening)
62
63 if rpm == 0 or current_wob_setpoint ≥0:
64 rop_enabled = False
65 rpm_list.clear()
66 wob_list.clear()
67 rop_list.clear()
68 return
69 else:
70 if not rop_enabled:
71 # A new search has started. Base start on current setpoint
72 wob_setpoint = current_wob_setpoint
73 rpm_setpoint = rpm

299

300

74 rop_enabled = True
75
76 # Calculate ROP gradient
77 rpm_list.append(rpm)
78 wob_list.append(wob)
79 rop_list.append(rop_inst)
80
81
82 if len(rpm_list) ≥GRADIENT_INTERVAL:
83 # Calculate and pass on model suggestions
84 rpm_grad = ((GRADIENT_INTERVAL ∗ sum(np.multiply(rpm_list, rop_list))) - ...

↪→ (sum(rpm_list) ∗ sum(rop_list)))/((GRADIENT_INTERVAL ∗ ...
↪→ sum(np.multiply(rpm_list, rpm_list))) - (math.pow(sum(rop_list), 2)))

85 wob_grad = ((GRADIENT_INTERVAL ∗ sum(np.multiply(wob_list, rop_list))) - (sum(wob_list) ...
↪→ ∗ sum(rop_list)))/((GRADIENT_INTERVAL ∗ sum(np.multiply(wob_list, wob_list))) - ...
↪→ (math.pow(sum(rop_list), 2)))

86
87 new_rpm_setpoint = rpm_setpoint + (LEARNING_RATE ∗ rpm_grad)
88
89 # Setpoint can not be less than 0 or greater than 1070 RPM
90 new_rpm_setpoint = min(max(new_rpm_setpoint, 0), 1070)
91
92
93 print(" New RPM_setpoint: ", str(new_rpm_setpoint), " Old RPM was: ", str(rpm_setpoint))
94
95 new_wob_setpoint = wob_setpoint + (LEARNING_RATE ∗ wob_grad)
96
97 # Setpoint has to be between -5 and -18 kg WOB
98 new_wob_setpoint = max(min(new_wob_setpoint, -5), -18)
99
100 if new_wob_setpoint < wob_setpoint and new_wob_setpoint ≥wob_setpoint - 0.5:
101 new_wob_setpoint = wob_setpoint - 0.5
102
103 if new_wob_setpoint == wob_setpoint:
104 new_wob_setpoint -= 0.25
105
106 print(" New WOB_setpoint: ", str(new_wob_setpoint), " Old WOB was: ", str(wob_setpoint))
107
108 rpm_setpoint = new_rpm_setpoint
109 wob_setpoint = new_wob_setpoint
110
111 rop_list = []
112 wob_list = []
113 rpm_list = []
114
115 values = []
116 values.append(module_pb2.Values(data=[rpm_setpoint], source=module_pb2.RPM_SETPOINT))
117 values.append(module_pb2.Values(data=[wob_setpoint], source=module_pb2.WOB_SETPOINT))
118
119 suggestion = module_pb2.StreamData(pulse=pulse, timestamp=timestamp, ...

↪→ origin=module_pb2.GRADIENT_SEARCH, values=values)
120
121 with suggestion_cv:
122 suggestion_items.append(suggestion)
123 suggestion_cv.notify()
124
125
126 def valve_opening_to_rpm(opening):
127 rpm = -0.4509 ∗ math.pow(opening,2) + 88.289 ∗ opening - 3249.4
128 #print("BIT RPM: ", rpm)
129 return rpm
130
131 ...

Appendix D

Active Steering Code

In this appendix, a short section of the implemented code for inclination steering is
included.

1 ...
2
3 HMD_target = [0,0,0,............,0.14298618] # Horizontal build per MD distance, updated every mm.
4
5 MD_target = [0,1,2,............,617.3] # MD reference, updated every mm.
6
7 ...
8
9 def on_hoisting_downhole_mode_sync(pulse, timestamp, data):
10 # Sync data received. Calculate values dependent of both hoisting and downhole
11 global mag_x_min, mag_y_min, mag_z_min, mag_x_max, mag_y_max, mag_z_max, ...

↪→ downhole_initialized
12 global AZIMUTH_ERROR, INCLINATION_ERROR, MD_sum, x_disp_sum, y_disp_sum, ...

↪→ z_disp_sum, TVD_sum, TVD_sum_max
13 global MD_sum_max, min_error_x_sum, min_error_y_sum, min_error_z_sum, ...

↪→ max_error_x_sum, max_error_y_sum, max_error_z_sum
14 global x_disp_sum_max, y_disp_sum_max, z_disp_sum_max
15 global min_error_x_sum_max, min_error_y_sum_max, max_error_x_sum_max, ...

↪→ max_error_y_sum_max
16 global acc_measurements, depth_counter
17 global topside_plot_counter, topside_graph_data_x, topside_graph_data_y, topside_graph_max_x
18 global topside_graph_max_y, topside_graph_min_x, topside_graph_min_y
19 global other_plot_counter, rear_graph_data_x, rear_graph_data_y, rear_graph_max_x
20 global rear_graph_max_y, rear_graph_min_x, rear_graph_min_y
21 global side_graph_data_x, side_graph_data_y, side_graph_max_x
22 global side_graph_max_y, side_graph_min_x, side_graph_min_y
23 global tag_bottom, prev_depth, rop_prev_depth
24 global x_disp_last, error_x, maximum_depth
25 global last_mm_step, last_build
26 global acc_x, acc_y, acc_z, gyr_x, gyr_y, gyr_z, mag_x, mag_y, mag_z, depth
27 #print("Data sync")
28 acc_x = 0.0
29 acc_y = 0.0
30 acc_z = 0.0
31 mag_x = 0.0
32 mag_y = 0.0
33 mag_z = 0.0
34
35 autonomous_phase = 0
36
37 horizontal_by_TVD = 0.0
38
39 depth = 0
40 ∆_depth = 0.0
41
42 for package in data:
43 print(package[0])
44
45 if package[0] == module_pb2.HOISTING_UNIT:
46 hoisting_data = package[1]
47
48 for value in hoisting_data:
49 if value.source == module_pb2.HEIGHT:
50 #Height is positive upwards and negative downwards, we want ...

↪→ depth to be positive
51 #∆_depth = (value.data[-1] - value.data[0])∗(-1)
52 ∆_depth = rop_prev_depth - value.data[0]
53 depth = value.data[0]∗(-1)
54 print("Delta Height: ", ∆_depth)
55 print("Height: ", depth)
56
57 rop_prev_depth = depth∗(-1)
58
59
60 elif package[0] == module_pb2.DOWNHOLE:
61 downhole_data = package[1]
62 for value in downhole_data:
63 if value.source == module_pb2.ACC_X:
64 acc_x = value.data[0]
65 elif value.source == module_pb2.ACC_Y:
66 acc_y = value.data[0]
67 elif value.source == module_pb2.ACC_Z:
68 acc_z = value.data[0]
69
70 elif value.source == module_pb2.GYR_X:
71 gyr_x = value.data[0]

301

302

72 elif value.source == module_pb2.GYR_Y:
73 gyr_y = value.data[0]
74 elif value.source == module_pb2.GYR_Z:
75 gyr_z = value.data[0]
76
77 elif value.source == module_pb2.MAG_X:
78 mag_x = value.data[0]
79
80 elif value.source == module_pb2.MAG_Y:
81 mag_y = value.data[0]
82
83 elif value.source == module_pb2.MAG_Z:
84 mag_z = value.data[0]
85
86
87 #Check if the drillpipe is moving downwards or upwards and check if bottom has been tagged
88 if not tag_bottom:
89 if prev_depth > 0:
90 if prev_depth > depth ∗ 20:
91 print("Bottom has been tagged, can begin plotting!")
92 tag_bottom = True
93
94 prev_depth = depth
95
96 # Calculate inclination
97 inclination = 180.0∗math.acos(acc_y/math.sqrt(acc_x∗acc_x+acc_y∗acc_y+acc_z∗acc_z))/math.pi
98 ###was acc_z / ...
99
100
101 if not downhole_initialized:
102 INCLINATION_ERROR = inclination - 90
103 downhole_initialized = True
104 else:
105 inclination -= INCLINATION_ERROR
106
107 # MD (Measured depth) denotes the change in actuator position over the 300(?) sample window.
108 MD = ∆_depth
109 MD2 = depth
110
111 #print("MD", str(MD))
112
113 # MD_sum denotes the sum of all previous TVD values, and is used to track the bit elevation in ...

↪→ real-time
114 # NB! SHOULD BE A GLOBAL VARIABLE
115
116 MD_sum += MD
117 MD_sum_max = max(MD_sum, MD_sum_max)
118
119 print("MD TOTAL: ", str(MD_sum), " mm")
120
121
122 # TVD (True vertical depth) denotes the vertical change in actuator position over the 300 sample ...

↪→ window (given that
123 # even if the pipe moves down, it is not guaranteed that the movement is ...

↪→ perfectly 90
124 # degree downwards).
125 TVD = MD ∗ math.sin(inclination ∗ (math.pi / 180))
126
127 #print("TVD", str(TVD))
128
129 TVD_sum += TVD
130
131 TVD_sum_max = max(TVD_sum, TVD_sum_max)
132
133 print("TVD TOTAL: ", str(TVD_sum_max), " mm")
134
135 # x_disp (horizontal build) denotes the horizontal movement that is built in each well section ...

↪→ depending on inclination
136 x_disp = (MD) ∗ math.cos(inclination ∗ (math.pi / 180))
137
138 print(x_disp)
139
140 # x_disp_sum denotes the sum of all x_disp in the past so that
141 # NB! SHOULD BE A GLOBAL VARIABLE
142 if inclination ≤90:
143
144 x_disp_sum += x_disp
145
146 x_disp_sum_max = max(x_disp_sum, x_disp_sum_max)
147
148 elif inclination > 90:
149
150 x_disp_sum += x_disp
151
152 x_disp_sum_max = min(x_disp_sum, x_disp_sum_max)
153
154 print("HORIZONTAL BUILD: ", str(x_disp_sum_max), " mm")
155
156 if TVD_sum_max ≤0:
157 horizontal_by_TVD = 0
158 else:
159 horizontal_by_TVD = x_disp_sum_max / TVD_sum_max
160
161 print("H/TVD: ", horizontal_by_TVD)
162
163 # Check H/TVD relative to target path per mm
164 current_mm_step = max(0, min(len(HMD_target), math.floor(depth)))
165
166 print("Target H/TVD: ", HMD_target[current_mm_step])
167
168
169 if current_mm_step > last_mm_step:
170 if constant_build:
171 # A sensor is lost, send constant build messages
172 print("Constant build")
173 build_angle = 1.0
174 elif HMD_target[current_mm_step] ≥horizontal_by_TVD:
175 build_angle = 1.0
176 print("Build angle")
177 else:
178 build_angle = 0.0

303 APPENDIX D. ACTIVE STEERING CODE

179 print("No build")
180 last_mm_step = current_mm_step
181 last_build = build_angle
182 """else:
183 print()
184 build_angle = 0.0"""
185 else:
186 build_angle = last_build
187 print("No new mm")
188
189 values = []
190 values.append((module_pb2.Values(data=[build_angle], source=module_pb2.BUILD_ANGLE)))
191
192 suggestion = module_pb2.StreamData(pulse=pulse, timestamp=timestamp, ...

↪→ origin=module_pb2.ACTIVE_STEERING, values=values)
193
194 for _, receiver in receivers.items():
195 with receiver.cv:
196 receiver.items.append(suggestion)
197 receiver.cv.notify()
198
199 ...

Appendix E

Stuck Pipe Code

In this appendix, a short section of the implemented code for stuck pipe detection is
included.

1 ...
2
3 def on_hoisting_downhole_sync(pulse, timestamp, data):
4 # Sync data received. Calculate values dependent of both hoisting and downhole
5 global MD_current, MD_old, md_counter, phase
6 #print("Data sync")
7
8 stuck = False
9
10 for package in data:
11 #print(package[0])
12
13 if package[0] == module_pb2.HOISTING_UNIT:
14 hoisting_data = package[1]
15
16 for value in hoisting_data:
17 if value.source == module_pb2.HEIGHT:
18 #∆_height = value.data[-1] - value.data[0]
19 #print("Delta Height")
20 #print(∆_height)
21
22 MD_current = value.data[0]∗(-1)
23
24
25 elif package[0] == module_pb2.MODE_UNIT:
26 mode_data = package[1]
27
28 for value in mode_data:
29 if value.source == module_pb2.AUTONOMOUS_PHASE:
30 phase = value.data[0]
31
32
33 # every 30 sec, the MD position is stored in phases 6,7,8.
34 # If, by performing a check every 30 sec when a new MD_old position is updated the
35 # bit has moved less than 0.2 mm in either direction; trigger stuck pipe.
36 #
37 # Stuck pipe remedial action: set WOB = 5 kg (upwards direction) for 1 second with 1 mm/s speed.
38 # Then, continue drilling.
39
40 if phase ≥6 or phase == 4:
41 '''
42 if MD_old == 0:
43 MD_old = MD_current
44 md_counter -= 1'''
45
46 md_counter += 1
47 if md_counter ≥15:
48 if MD_current < MD_old + 0.15 and MD_current > MD_old - 0.15:
49 stuck = True
50 MD_old = MD_current
51 md_counter = 0
52
53 values = []
54 if stuck:
55 print("STUCK PIPE")
56 values.append(module_pb2.Values(data=[1.0], source=module_pb2.PIPE_STUCK))
57 suggestion = module_pb2.StreamData(pulse=pulse, timestamp=timestamp, ...

↪→ origin=module_pb2.STUCK_PIPE, values=values)
58 stuck = False
59 with suggestion_cv:
60 suggestion_items.append(suggestion)
61 suggestion_cv.notify()
62
63
64 else:
65 print("NO STUCK PIPE")
66 #values.append(module_pb2.Values(data=[0.0], source=module_pb2.STUCK))
67
68 ...

304

Appendix F

Autonomous Drilling Program Code

In this appendix, a short section of the implemented code for different phases in the
implemented directional drilling program is included.

1 ...
2
3
4 def autonomous_operation(start_phase, stop_phase):
5 global autonomous_enabled
6 print("Autonomous operation initialized")
7 if start_phase == 1:
8 autonomous_phase(1)
9 # Control the rig fully autonomously. Operation is done is phases
10 # -----------------Phase 2: initialize and calibrate-----------------
11 if start_phase ≤2 and stop_phase ≥2:
12 print("-----------------Autonomous phase 2-----------------")
13 autonomous_phase(2)
14 # Zeroize hoisting position
15 print("Zeroizing hoisting position..")
16 zeroize_position(module_pb2.AUTONOMOUS)
17 # Zeroize whipstock position
18 print("Zeroizing whipstock position..")
19 zeroize_x_position(module_pb2.AUTONOMOUS)
20 zeroize_z_position(module_pb2.AUTONOMOUS)
21
22 # -----------------Phase 3: tag bottom-----------------
23 if start_phase ≤3 and stop_phase ≥3:
24 print("-----------------Autonomous phase 3-----------------")
25 autonomous_phase(3)
26 # Start WOB controller with -3 kg as setpoint
27 print("Setting WOB setpoint to -3.0 kg..")
28 wob_control_on(-3.0, 1.0, module_pb2.AUTONOMOUS)
29 # Wait until WOB is greater than 3 kg for 3 samples in a row
30 print("Waiting until WOB has reached -3.0 kg..")
31 autonomous_condition_wob(-3.0)
32 if not autonomous_enabled:
33 print("Autonomous operation returned")
34 stop_all()
35 return
36
37 print("Stopping WOB agent..")
38 wob_control_off(module_pb2.AUTONOMOUS)
39
40 # Small wait before next operation
41 print("Waiting 3 second..")
42 autonomous_condition_wait(3)
43
44 # Zeroize hoisting position
45 print("Zeroizing hoisting position..")
46 zeroize_position(module_pb2.AUTONOMOUS)
47
48 # Move up from the bottom
49 print("Moving up from bottom..")
50 start_hoisting(5.0, 2.5, RAISE, module_pb2.AUTONOMOUS)
51
52 # Wait until operation is done
53 print("Waiting for operation to finish")
54 autonomous_condition_wait(5.0/2.5)
55 if not autonomous_enabled:
56 print("Autonomous operation returned")
57 stop_all()
58 return
59
60 # -----------------Phase 4: drill pilot hole-----------------
61 if start_phase ≤4 and stop_phase ≥4:
62 print("-----------------Autonomous phase 4-----------------")
63 autonomous_phase(4)
64 # Set pneumatic motor setpoint to 500 RPM
65 print("Setting RPM setpoint to 500 RPM..")
66 rpm_setpoint_on(950, module_pb2.AUTONOMOUS)
67 # Start WOB controller with 2 kg as setpoint
68 print("Setting WOB setpoint to -2.0 kg..")
69 wob_control_on(-5.0, module_pb2.AUTONOMOUS)
70
71 # Start ROP agent to drill pilot hole
72 print("Starting ROP search..")
73 # TODO: find exact values
74 start_rop_search(rpm_min=1070, rpm_max=1070, wob_min=-12.0, wob_max=-10.0, ...

↪→ controller=module_pb2.AUTONOMOUS)
75 # Wait until depth is greater than 185.5 mm

305

306

76 autonomous_condition_MD(-180.0)
77 if not autonomous_enabled:
78 print("Autonomous operation returned")
79 stop_all()
80 return
81
82 print("Stopping ROP agent..")
83 stop_rop_search()
84
85 # -----------------Phase 5: insert whipstock-----------------
86 if start_phase ≤5 and stop_phase ≥5:
87 print("-----------------Autonomous phase 5-----------------")
88 autonomous_phase(5)
89 # Set pneumatic motor setpoint to 800 RPM
90 print("Setting RPM setpoint to 800 RPM..")
91 rpm_setpoint_on(800, module_pb2.AUTONOMOUS)
92 # Reverse WOB comtroller while POOH
93 print("POOH with inversed WOB controller..")
94 wob_control_on(5.0, 4.0, module_pb2.AUTONOMOUS)
95
96 # Wait until above hole
97 print("Waiting until 5.0 mm out of hole..")
98 autonomous_condition_MD(35.0)
99 if not autonomous_enabled:
100 print("Autonomous operation returned")
101 stop_all()
102 return
103
104 # Setting WOB to POOH to 243 mm above rock to facilitate for whipstock positioning (x-axis lateral movement)
105 print("Setting WOB control with speed 10.0 mm/s")
106 wob_control_on(5.0, 10.0, module_pb2.AUTONOMOUS)
107 # Turning bit of
108 print("Closing valve..")
109 close_valve()
110
111 # Wait until bit is 10 mm above the riser
112 print("Pulling all the way out of the riser..")
113 # TODO: find exact value
114 autonomous_condition_MD(240.0)
115 if not autonomous_enabled:
116 print("Autonomous operation returned")
117 stop_all()
118 return
119
120 # Stop WOB controller
121 print("Stopping WOB controller..")
122 wob_control_off(module_pb2.AUTONOMOUS)
123 # Move whipstock in X direction with the whipstock
124 # TODO: find exact value
125 print("Moving whipstock X position..")
126 whipstock_x_command = "WhipstockX"
127 start_whipstock_x_positioning(128.0, 10.0, RAISE, module_pb2.AUTONOMOUS, whipstock_x_command)
128
129 # Wait until operation is done
130 print("Waiting until operation is done..")
131 autonomous_condition_status(module_pb2.WHIPSTOCK_UNIT, whipstock_x_command)
132 if not autonomous_enabled:
133 print("Autonomous operation returned")
134 stop_all()
135 return
136
137 # Move whipstock in Z direction into the hole
138 print("Inserting whipstock into hole..")
139 whipstock_z_command = "WhipstockZ"
140 # TODO: find exact value
141 start_whipstock_z_positioning(175.5, 3.0, LOWER, module_pb2.AUTONOMOUS, whipstock_z_command)
142 # Follow the whipstock system at the same speed going down
143 print("Lowering BHA with the whipstock..")
144 wob_control_on(-4.0, 3.0, module_pb2.AUTONOMOUS)
145
146 #autonomous_condition_wait((100.0 / 10) + (165 / 5.0))
147 print("Waiting until operation is done..")
148 autonomous_condition_status(module_pb2.WHIPSTOCK_UNIT, whipstock_z_command)
149 if not autonomous_enabled:
150 print("Autonomous operation returned")
151 stop_all()
152 return
153
154 """# Start WOB controller with -4.0 kg as setpoint
155 print("Setting WOB setpoint to -4.0 kg..")
156 wob_control_on(-4.0, 10.0, module_pb2.AUTONOMOUS)"""
157
158 # Wait until bit is 5 mm above the rock surface
159 print("Waiting until 50.0 mm above the rock..")
160 autonomous_condition_MD(50.0)
161 if not autonomous_enabled:
162 print("Autonomous operation returned")
163 stop_all()
164 return
165
166 # Start WOB controller with -4.0 kg as setpoint
167 print("Setting WOB setpoint to -4.0 kg..")
168 wob_control_on(-4.0, 3.0, module_pb2.AUTONOMOUS)
169 # Wait until bit is 0.0 mm above the rock surface
170 print("Waiting until 0.0 mm above the rock..")
171 autonomous_condition_MD(0.0)
172 if not autonomous_enabled:
173 print("Autonomous operation returned")
174 stop_all()
175 return
176
177 # -----------------Phase 6: expand pilot hole-----------------
178 if start_phase ≤6 and stop_phase ≥6:
179 print("-----------------Autonomous phase 6-----------------")
180 autonomous_phase(6)
181 # Start ROP search to expand pilot hole
182 print("Starting ROP search")
183 start_rop_search(rpm_min=1040, rpm_max=1040, wob_min=-5.0, wob_max=-5.0, ...

↪→ controller=module_pb2.AUTONOMOUS)
184 print("Waiting until 135.0 mm into the rock")

307 APPENDIX F. AUTONOMOUS DRILLING PROGRAM CODE

185 autonomous_condition_MD(-135.0)
186 if not autonomous_enabled:
187 print("Autonomous operation returned")
188 stop_all()
189 return
190 stop_rop_search(controller=module_pb2.AUTONOMOUS)
191
192 print("Staring ROP search..")
193 start_rop_search(rpm_min=1070, rpm_max=1070, wob_min=-3.0, wob_max=-3.0, ...

↪→ controller=module_pb2.AUTONOMOUS)
194 print("Waiting until 175 mm into the rock..")
195 autonomous_condition_MD(-175)
196 if not autonomous_enabled:
197 print("Autonomous operation returned")
198 stop_all()
199 return
200 stop_rop_search(module_pb2.AUTONOMOUS)
201
202 # -----------------Phase 7: drill deviated well path-----------------
203 if start_phase ≤7 and stop_phase ≥7:
204 print("-----------------Autonomous phase 7-----------------")
205 autonomous_phase(7)
206 # Start ROP search with closed loop steering
207 print("Starting ROP search..")
208 start_rop_search(rpm_min=1070, rpm_max=1070, wob_min=-18.0, wob_max=-15.0, ...

↪→ controller=module_pb2.AUTONOMOUS)
209
210 # -----------------Phase 8: penetrate rock-----------------
211 if start_phase ≤8 and stop_phase ≥8:
212 print("-----------------Autonomous phase 8-----------------")
213 autonomous_phase(8)
214 # Waiting until 5.0 mm through the rock
215 print("Waiting until through rock..")
216 autonomous_condition_MD(-600)
217 if not autonomous_enabled:
218 print("Autonomous operation returned")
219 stop_all()
220 return
221
222 # Stopping ROP agent
223 print("Stopping ROP search..")
224 stop_rop_search(module_pb2.AUTONOMOUS)
225
226 # Limit WOB setpoint to not break bottom plate
227 # Set pneumatic motor setpoint to 1070 RPM
228 print("Setting RPM setpoint to 1070 RPM..")
229 rpm_setpoint_on(1070, module_pb2.AUTONOMOUS)
230 print("Setting WOB to 8.0kg..")
231 wob_control_on(-8.0, 0.75, module_pb2.AUTONOMOUS)
232
233
234 print("Waiting to hit bottom plate..")
235 autonomous_condition_end()
236
237 # Mark autonomous mode as finished
238 stop_autonomous()
239 """
240 # Set pneumatic motor setpoint to 200 RPM
241 print("Setting RPM setpoint to 200 RPM..")
242 rpm_setpoint_on(200, module_pb2.AUTONOMOUS)
243 # Reverse WOB controller while POOH
244 wob_control_on(10.0, module_pb2.AUTONOMOUS)
245 # Waiting until pulled out of whipstock
246 print("Waiting until above whipstock..")
247 # TODO: find exact value
248 autonomous_condition_MD(100.0)
249 if not autonomous_enabled:
250 print("Autonomous operation returned")
251 stop_all()
252 return"""
253
254 # Stop all systems
255 stop_all(module_pb2.AUTONOMOUS)
256 print("Autonomous operation returned successfully")
257 autonomous_enabled = False
258
259
260 def rpm_voting_client(rpm_min, rpm_max):
261 global rpm_enabled, rpm_counter
262 print("RPM voting listener")
263 channel = grpc.insecure_channel(RPM_VOTING_LOCAL_PORT)
264 try:
265 grpc.channel_ready_future(channel).result(timeout=10)
266 except grpc.FutureTimeoutError:
267 print("RPM voting listener timeout")
268 else:
269 stub = module_pb2_grpc.ModuleStub(channel)
270
271 recommendations = stub.DataStream(module_pb2.Request(min=rpm_min, max=rpm_max))
272
273 client_id = 0
274 with rpm_lock:
275 client_id = rpm_counter
276
277 for recommendation in recommendations:
278 # Check if stream should still be active
279 """if not rpm_enabled:
280 # Break stream
281 print("Breaking RPM stream..")
282 return"""
283
284 with rpm_lock:
285 if client_id != wob_counter:
286 print("Breaking WOB stream..")
287 return
288
289 # Transform recommendation into output command
290 rpm = 0
291
292 for value in recommendation.values:

308

293 rpm = value.data[0]
294
295 command = module_pb2.Command(output=module_pb2.VALVE, controller=module_pb2.AUTONOMOUS,
296 operation=module_pb2.RPM_SET, amount=rpm)
297
298 with model_commands_cv:
299 model_commands_items.append(command)
300 model_commands_cv.notify()
301
302
303
304 def wob_voting_client(wob_min, wob_max):
305 print("WOB voting listener")
306 channel = grpc.insecure_channel(WOB_VOTING_LOCAL_PORT)
307 try:
308 grpc.channel_ready_future(channel).result(timeout=10)
309 except grpc.FutureTimeoutError:
310 print("RPM voting listener timeout")
311 else:
312 stub = module_pb2_grpc.ModuleStub(channel)
313
314 recommendations = stub.DataStream(module_pb2.Request(min=wob_min, max=wob_max))
315
316 client_id = 0
317 with wob_lock:
318 client_id = wob_counter
319
320 for recommendation in recommendations:
321 """if not wob_enabled:
322 # Break stream
323 print("Breaking WOB stream..")
324 return"""
325
326 with wob_lock:
327 if client_id != wob_counter:
328 print("Breaking WOB stream..")
329 return
330
331 # Transform recommendation into output command
332 wob = 0
333
334 for value in recommendation.values:
335 wob = value.data[0]
336
337 command = module_pb2.Command(output=module_pb2.HOISTING, ...

↪→ controller=module_pb2.AUTONOMOUS,
338 operation=module_pb2.WOB_SET, amount=wob, velocity=1.0, enable=True)
339
340 with model_commands_cv:
341 model_commands_items.append(command)
342 model_commands_cv.notify()
343
344 ...

Appendix G

Downhole Vibration Classification
Code

In this appendix, a short section of the implemented code for downhole vibration
classification using either a K-nearest neighbor or support vector machine model is
included.

1 ...
2
3 def on_hoisting_downhole_sync(pulse, timestamp, data):
4 # Sync data received. Calculate values dependent of both hoisting and downhole
5 global mag_x_min, mag_y_min, mag_z_min, mag_x_max, mag_y_max, mag_z_max, downhole_initialized
6 global AZIMUTH_ERROR, INCLINATION_ERROR, MD_sum, x_disp_sum, y_disp_sum, ...

↪→ z_disp_sum, TVD_sum, TVD_sum_max
7 global MD_sum_max, min_error_x_sum, min_error_y_sum, min_error_z_sum, max_error_x_sum, ...

↪→ max_error_y_sum, max_error_z_sum
8 global x_disp_sum_max, y_disp_sum_max, z_disp_sum_max
9 global min_error_x_sum_max, min_error_y_sum_max, max_error_x_sum_max, max_error_y_sum_max
10 #print("Data sync")
11 acc_x = 0.0
12 acc_y = 0.0
13 acc_z = 0.0
14 mag_x = 0.0
15 mag_y = 0.0
16 mag_z = 0.0
17
18 ∆_height = 0.0
19
20 for package in data:
21 #print(package[0])
22
23 if package[0] == module_pb2.HOISTING_UNIT:
24 hoisting_data = package[1]
25
26 for value in hoisting_data:
27 if value.source == module_pb2.HEIGHT:
28 ∆_height = value.data[-1] - value.data[0]
29 #print("Delta Height")
30 #print(∆_height)
31
32 elif package[0] == module_pb2.DOWNHOLE:
33 downhole_data = package[1]
34 for value in downhole_data:
35 if value.source == module_pb2.ACC_X:
36 acc_x = value.data[0]
37 elif value.source == module_pb2.ACC_Y:
38 acc_y = value.data[0]
39 elif value.source == module_pb2.ACC_Z:
40 acc_z = value.data[0]
41 elif value.source == module_pb2.MAG_X:
42 mag_x = value.data[0]
43 elif value.source == module_pb2.MAG_Y:
44 mag_y = value.data[0]
45 elif value.source == module_pb2.MAG_Z:
46 mag_z = value.data[0]
47
48
49
50
51
52 def downhole_listener():
53 print("Downhole listener initialized")
54
55 loaded_model = pickle.load(open('TrainedSVC.sav', 'rb'))
56
57 #loaded_model = joblib.load('KNN_Model.sav')
58
59 """try:
60 with open("pickle/K_model.pkl", "rb") as f:
61 data = pickle.loads(f)
62 except pickle.UnpicklingError as e:
63 # normal, somewhat expected
64 print("Unpickling error")
65 except (AttributeError, EOFError, ImportError, IndexError) as e:
66 # secondary errors
67 print(traceback.format_exc(e))
68
69 except Exception as e:

309

310

70 # everything else, possibly fatal
71 print(traceback.format_exc(e))
72 return"""
73
74 sources = [module_pb2.GYR_X, module_pb2.GYR_Z]
75 stub = module_pb2_grpc.ModuleStub(grpc.insecure_channel(WINDOW_LOCAL_PORT))
76 status_data = stub.DataStream(module_pb2.Request(component=module_pb2.DOWNHOLE, window_size=60,
77 interval=60, sources=sources))
78
79 MAX = 250
80 MIN = -250
81
82 Vibrationlevel = 0.0
83
84 pulse = 0
85
86 time = 0
87
88
89
90 for data in status_data:
91 normalized_gyr_x = []
92 normalized_gyr_z = []
93
94 min_x = sys.float_info.max
95 max_x = sys.float_info.min
96
97 min_z = sys.float_info.max
98 max_z = sys.float_info.min
99
100 pulse = data.pulse
101 time = data.timestamp
102
103 for value in data.values:
104 if value.source == module_pb2.GYR_X:
105 for data in value.data:
106 normalized = (data - MIN) / (MAX - MIN)
107 normalized_gyr_x.append(normalized)
108 min_x = min(normalized, min_x)
109 max_x = max(normalized, max_x)
110
111 elif value.source == module_pb2.GYR_Z:
112 for data in value.data:
113 normalized = (data - MIN) / (MAX - MIN)
114 normalized_gyr_z.append(normalized)
115 min_z = min(normalized, min_z)
116 max_z = max(normalized, max_z)
117 #on_downhole_data(data)
118
119 min_max_diff_x = max_x - min_x
120 min_max_diff_z = max_z - min_z
121
122 std_x = np.std(normalized_gyr_x)
123 std_z = np.std(normalized_gyr_z)
124
125 data = [min_max_diff_z, max_z, min_x, min_z, std_x, std_z]
126
127 # Create the pandas DataFrame
128 Observations = pd.DataFrame([data], columns = ['min_max_diff_z', 'max_z', 'min_x', 'min_z', ...

↪→ 'std_x', 'std_z'])
129
130 # print dataframe.
131
132 #print(Observations)
133
134 Prediction = loaded_model.predict(Observations)
135
136 vib_data = 0
137
138 if Prediction == 1:
139 Vibrationlevel = 'Low'
140 vib_data = 25
141
142 elif Prediction == 2:
143 Vibrationlevel = 'Moderate'
144 vib_data = 100
145
146 elif Prediction == 3:
147 Vibrationlevel = 'High'
148 vib_data = 200
149
150 print("Vibration level is: ", Vibrationlevel)
151
152 values = []
153
154 values.append(module_pb2.Values(data=[vib_data], ...

↪→ source=module_pb2.DOWNHOLE_VIBRATIONS))
155
156 suggestion = module_pb2.StreamData(pulse=pulse, timestamp=time, ...

↪→ origin=module_pb2.DOWNHOLE_VIBRATIONS, values=values)
157
158 with suggestion_cv:
159 suggestion_items.append(suggestion)
160 suggestion_cv.notify()
161
162 ...

Appendix H

Downhole Position Tracking Code

In this appendix, a short section of the implemented code for downhole position tracking
is included.

1 ...
2
3 def on_hoisting_downhole_sync(self, data):
4 # Sync data received. Calculate values dependent of both hoisting and downhole
5 global mag_x_min, mag_y_min, mag_z_min, mag_x_max, mag_y_max, mag_z_max, ...

↪→ downhole_initialized
6 global AZIMUTH_ERROR, INCLINATION_ERROR, MD_sum, x_disp_sum, y_disp_sum, ...

↪→ z_disp_sum, TVD_sum, TVD_sum_max
7 global MD_sum_max, min_error_x_sum, min_error_y_sum, min_error_z_sum, ...

↪→ max_error_x_sum, max_error_y_sum, max_error_z_sum
8 global x_disp_sum_max, y_disp_sum_max, z_disp_sum_max
9 global min_error_x_sum_max, min_error_y_sum_max, max_error_x_sum_max, ...

↪→ max_error_y_sum_max
10 global acc_measurements, depth_counter
11 global topside_plot_counter, topside_graph_data_x, topside_graph_data_y, topside_graph_max_x
12 global topside_graph_max_y, topside_graph_min_x, topside_graph_min_y
13 global other_plot_counter, rear_graph_data_x, rear_graph_data_y, rear_graph_max_x
14 global rear_graph_max_y, rear_graph_min_x, rear_graph_min_y
15 global side_graph_data_x, side_graph_data_y, side_graph_max_x
16 global side_graph_max_y, side_graph_min_x, side_graph_min_y
17 global tag_bottom, prev_depth, rop_prev_depth
18 global x_disp_last, error_x, maximum_depth
19 global rop_list, rop_inst_counter, reset_counters
20 global acc_x, acc_y, acc_z, mag_x, mag_y, mag_z, gyr_x, gyr_y, gyr_z, vib_class
21 global mode, depth, ∆_depth, time, time_started
22 global side_graph_pilot_x, side_graph_pilot_y, rear_graph_pilot_x, rear_graph_pilot_y
23 #print("Data sync")
24 '''
25 acc_x = 0.0
26 acc_y = 0.0
27 acc_z = 0.0
28 mag_x = 0.0
29 mag_y = 0.0
30 mag_z = 0.0
31 '''
32
33 #build_angle = 0.0
34
35 for package in data:
36 print(package[0])
37
38 time = int(package[2])
39
40 if package[0] == module_pb2.HOISTING_UNIT:
41 hoisting_data = package[1]
42
43 for value in hoisting_data:
44 if value.source == module_pb2.HEIGHT:
45 #Height is positive upwards and negative downwards, we want ...

↪→ depth to be positive
46 #∆_depth = (value.data[-1] - value.data[0])∗(-1)
47 ∆_depth = rop_prev_depth - value.data[0]
48 depth = value.data[0]∗(-1)
49 rop_prev_depth = value.data[0]
50 print("Delta Depth: ", ∆_depth)
51 print("Depth: ", depth)
52
53
54 elif package[0] == module_pb2.DOWNHOLE:
55 downhole_data = package[1]
56 for value in downhole_data:
57 if value.source == module_pb2.ACC_X:
58 acc_x = value.data[0]
59 elif value.source == module_pb2.ACC_Y:
60 acc_y = value.data[0]
61 elif value.source == module_pb2.ACC_Z:
62 acc_z = value.data[0]
63
64 elif value.source == module_pb2.GYR_X:
65 gyr_x = value.data[0]
66 elif value.source == module_pb2.GYR_Y:
67 gyr_y = value.data[0]
68 elif value.source == module_pb2.GYR_Z:
69 gyr_z = value.data[0]
70
71 elif value.source == module_pb2.MAG_X:

311

312

72 mag_x = value.data[0]
73 #mag_x_min = min(mag_x_min, value.data[0])
74 #mag_x_max = max(mag_x_max, value.data[0])
75 elif value.source == module_pb2.MAG_Y:
76 mag_y = value.data[0]
77 #mag_y_min = min(mag_y_min, value.data[0])
78 #mag_y_max = max(mag_y_max, value.data[0])
79 elif value.source == module_pb2.MAG_Z:
80 mag_z = value.data[0]
81 #mag_z_min = min(mag_z_min, value.data[0])
82 #mag_z_max = max(mag_z_max, value.data[0])
83
84 elif package[0] == module_pb2.DOWNHOLE_VIBRATIONS:
85 vib_data = package[1]
86 print("Vibration data: ", vib_data)
87 for value in vib_data:
88 if value.source == module_pb2.DOWNHOLE_VIBRATIONS:
89 vib_class = value.data[0]
90 '''
91 if vib_data == 'Low':
92 vib_class = 25
93 elif vib_data == 'Moderate':
94 vib_class = 100
95 elif vib_data == 'High':
96 vib_class = 200
97 else:
98 print("Vib_data ERROR")
99 vib_data = 0
100 '''
101
102 elif package[0] == module_pb2.MODE_UNIT:
103 mode_data = package[1]
104 print("MODE: ", mode_data)
105 for value in mode_data:
106 if value.source == module_pb2.AUTONOMOUS_PHASE:
107 mode = value.data[0]
108 print("Autonomous mode: ", mode)
109
110 '''
111 elif package[0] == module_pb2.ACTIVE_STEERING:
112 steering_data = package[1]
113 print("Active steering data: ", steering_data)
114 for value in steering_data:
115 if value.source == module_pb2.BUILD_ANGLE:
116 build_angle = value.data[0]'''
117
118
119 print("MODE RECIEVED: ", mode)
120
121 if len(rop_list) < rop_inst_counter:
122 rop_list.append(depth)
123 elif len(rop_list) == rop_inst_counter:
124 tmp2_rop = rop_list[1:]
125 tmp2_rop.append(depth)
126 rop_list = tmp2_rop
127 else:
128 print("Skipped rop value calculation for GUI, CHECK!")
129
130 if mode > 0:
131 if time_started == 0:
132 time_started = time
133
134
135 #Check if the drillpipe is moving downwards or upwards and check if bottom has been tagged
136 '''
137 if not tag_bottom:
138 if prev_depth > 0:
139 if prev_depth > depth∗20:
140 print("Bottom has been tagged, can begin plotting!")
141 tag_bottom = True
142
143 prev_depth = depth
144 '''
145
146 # Calculate inclination
147 if acc_x == 0 and acc_y == 0 and acc_z == 0:
148 inclination = 90
149 else:
150 inclination = ...

↪→ 180.0∗math.acos(acc_y/math.sqrt(acc_x∗acc_x+acc_y∗acc_y+acc_z∗acc_z))/math.pi
151 ###was acc_z / ...
152
153 # Calculate azimuth
154 mag_x -= (mag_x_min + mag_x_max) / 2
155 mag_y -= (mag_y_min + mag_y_max) / 2
156 mag_z -= (mag_z_min + mag_z_max) / 2
157
158 azimuth = 180 ∗ math.atan2(mag_z, mag_x) / math.pi
159 """azimuth = 180 ∗ math.atan2(mag_y, mag_x) / math.pi"""
160
161 if azimuth < 0:
162 azimuth += 360
163
164 #Setting global acc variables for gui to get
165 with acc_cv:
166 acc_measurements[3] = acc_x
167 acc_measurements[2] = acc_y
168 acc_measurements[1] = acc_z
169 acc_measurements[0] = vib_class
170
171 if acc_x == 0 and acc_y == 0 and acc_z == 0:
172 accXnorm = 0
173 accYnorm = 0
174 else:
175 accXnorm = acc_x / math.sqrt(acc_x ∗ acc_x + acc_y ∗ acc_y + acc_z ∗ acc_z)
176 accYnorm = acc_z / math.sqrt(acc_x ∗ acc_x + acc_y ∗ acc_y + acc_z ∗ acc_z)
177
178 #Calculate pitch and roll: <<<--------
179 pitch = math.asin(accXnorm)
180

313 APPENDIX H. DOWNHOLE POSITION TRACKING CODE

181 roll = -math.asin(max(-1, min(abs(accYnorm/math.cos(pitch)), 1)))
182 #max(-1 ,min(pitch, 1))
183
184 #Calculate the new tilt compensated values:
185 mag_x_comp = mag_x ∗ math.cos(pitch) + mag_y ∗ math.sin(pitch)
186 mag_y_comp = mag_x ∗ math.sin(roll) ∗ math.sin(pitch) + mag_z ∗ math.cos(roll) - mag_y ∗ ...

↪→ math.sin(roll) ∗ math.cos(pitch)
187
188 #tiltCompensatedAzimuth = math.pi ∗ math.atan2(mag_y_comp,mag_x_comp) / 180
189
190 tiltCompensatedAzimuth = 180 ∗ math.atan2(mag_y_comp,mag_x_comp) / math.pi
191
192 #self.ui.actuatorZ3Lcd.display(float("{0:.2f}".format(value.data[0])))
193 print("MAG X: ", mag_x)
194 print("MAG Y: ", mag_y)
195 print("MAG Z: ", mag_z)
196
197 if tiltCompensatedAzimuth < 0:
198 tiltCompensatedAzimuth += 360
199
200
201 print("Azimuth raw data: ", tiltCompensatedAzimuth)
202 if not downhole_initialized:
203 INCLINATION_ERROR = inclination - 90
204 AZIMUTH_ERROR = tiltCompensatedAzimuth - 360
205 downhole_initialized = True
206 else:
207 tiltCompensatedAzimuth -= AZIMUTH_ERROR
208 inclination -= INCLINATION_ERROR
209
210 if tiltCompensatedAzimuth > 360:
211 tiltCompensatedAzimuth -= 360
212
213 """tiltCompensatedAzimuth -= AZIMUTH_ERROR
214 inclination -= INCLINATION_ERROR
215
216 if tiltCompensatedAzimuth > 360:
217 tiltCompensatedAzimuth -= 360"""
218
219 if 15 < tiltCompensatedAzimuth < 180:
220 tiltCompensatedAzimuth = 15
221 elif 180 < tiltCompensatedAzimuth < 345:
222 tiltCompensatedAzimuth = 345
223
224 if inclination > 92 and mode ≤5:
225 inclination = 92
226 elif inclination > 95 and (mode ≥6 or mode == 0):
227 inclination = 95
228 elif inclination < 88 and mode ≤5:
229 inclination = 88
230 elif inclination < 75 and (mode ≥6 or mode == 0):
231 inclination = 75
232
233 print("AZIMUTH: ", str(tiltCompensatedAzimuth), " degrees")
234 print("INCLINATION: ", str(inclination), " degrees")
235
236
237 #if 180 > tiltCompensatedAzimuth > 15:
238 # tiltCompensatedAzimuth = 15
239 #elif 180 ≤tiltCompensatedAzimuth < 345.:
240 # tiltCompensatedAzimuth = 345
241
242
243 # MD (Measured depth) denotes the change in actuator position over the 300(?) sample window.
244 MD = ∆_depth
245 MD2 = depth
246
247 print("MD2:", MD2)
248
249 #print("MD", str(MD))
250
251 # MD_sum denotes the sum of all previous TVD values, and is used to track the bit elevation in ...

↪→ real-time
252 # NB! SHOULD BE A GLOBAL VARIABLE
253
254 #MD_sum += MD
255 MD_sum = depth
256 MD_sum_max = max(MD_sum, MD_sum_max)
257
258 print("MD TOTAL: ", str(MD_sum), " mm")
259
260
261 # TVD (True vertical depth) denotes the vertical change in actuator position over the 300 sample ...

↪→ window (given that
262 # even if the pipe moves down, it is not guaranteed that the movement is ...

↪→ perfectly 90
263 # degree downwards).
264 TVD = MD ∗ math.sin(inclination ∗ (math.pi / 180))
265
266 #print("TVD", str(TVD))
267
268 TVD_sum += TVD
269
270 TVD_sum_max = max(TVD_sum, TVD_sum_max)
271
272 print("TVD TOTAL: ", str(TVD_sum_max), " mm")
273
274 # x_disp (horizontal build) denotes the horizontal movement that is built in each well section ...

↪→ depending on inclination
275 x_disp = (MD) ∗ math.cos(inclination ∗ (math.pi / 180))
276
277 print(x_disp)
278 #print("x_disp", str(x_disp))
279
280 # y_disp (azimuth offset) denotes the azimuthal displacement that is built in each well section ...

↪→ depending on x_disp and azimuth
281
282
283 # CHANGED y_disp = x-disp ∗ ... to y_disp = MD ∗ ...
284
285 y_disp = x_disp ∗ math.sin(tiltCompensatedAzimuth ∗ (math.pi / 180))
286

314

287
288 #print("y_disp", str(y_disp))
289
290 # z_disp is equal to the vertical displacement, that is the True Vertical Depth (TVD)
291 z_disp = TVD
292
293 #print("z_disp", str(z_disp))
294
295 # x_disp_sum denotes the sum of all x_disp in the past so that
296 # NB! SHOULD BE A GLOBAL VARIABLE
297 if inclination ≤90:
298
299 x_disp_sum += x_disp
300
301 x_disp_sum_max = max(x_disp_sum, x_disp_sum_max)
302
303 elif inclination > 90:
304
305 x_disp_sum += x_disp
306
307 x_disp_sum_max = min(x_disp_sum, x_disp_sum_max)
308
309 print("HORIZONTAL BUILD: ", str(x_disp_sum_max), " mm")
310
311 # y_disp_sum denotes the sum of all y_disp in the past so that
312 # NB! SHOULD BE A GLOBAL VARIABLE
313 if 0 ≤tiltCompensatedAzimuth ≤15:
314
315 y_disp_sum += y_disp
316
317 y_disp_sum_max = max(y_disp_sum, y_disp_sum_max)
318
319 elif 345 ≤tiltCompensatedAzimuth < 360:
320 y_disp_sum += y_disp
321
322 y_disp_sum_max = min(y_disp_sum, y_disp_sum_max)
323
324 print("AZIMUTH OFFSET: ", str(y_disp_sum_max), " mm")
325
326 # z_disp_sum denotes the sum of all z_disp when length change is positive
327 # NB! SHOULD BE A GLOBAL VARIABLE
328 z_disp_sum += z_disp
329
330 z_disp_sum_max = min(z_disp_sum, z_disp_sum_max)
331
332 #print("z_disp_sum_max", str(z_disp_sum_max))
333
334 # min_error_x takes into account that the x_disp could be 10% smaller due to inclination ...

↪→ measurement errors
335 min_error_x = (x_disp) ∗ 0.75
336
337 # max_error_x takes into account that the x_disp could be 10% greater due to inclination ...

↪→ measurement errors
338 max_error_x = (x_disp) ∗ 1.25
339
340 # min_error_y takes into account that the y_disp could be 15% smaller due to azimuth ...

↪→ measurement errors
341
342 min_error_y = (y_disp) ∗ 0.50
343
344 # max_error_y takes into account that the y_disp could be 15% greater due to azimuth ...

↪→ measurement errors
345 max_error_y = (y_disp) ∗ 1.50
346
347 # min_error_x_sum is the sum of all errors cumulative
348 #min_error_x_sum_max += min_error_x
349
350
351 error_∆_x = (x_disp_last - x_disp) ∗ 0.75
352
353 x_disp_last = x_disp
354
355 if MD > maximum_depth:
356 error_x += abs(error_∆_x)
357 maximum_depth = MD
358
359
360 if inclination ≤90:
361
362 min_error_x_sum += min_error_x
363
364 min_error_x_sum_max = max(min_error_x_sum, min_error_x_sum_max)
365
366 elif inclination > 90:
367
368 min_error_x_sum -= abs(min_error_x + x_disp)
369
370 min_error_x_sum_max = min(min_error_x_sum, min_error_x_sum_max)
371
372 print("MIN X:", str(min_error_x_sum_max), " mm")
373
374
375 # min_error_y_sum is the sum of all errors cumulative
376
377 if 0 ≤tiltCompensatedAzimuth ≤15:
378
379 min_error_y_sum += min_error_y
380
381 min_error_y_sum_max = max(min_error_y_sum, min_error_y_sum_max)
382
383 elif 345 ≤tiltCompensatedAzimuth < 360:
384
385 min_error_y_sum += min_error_y
386
387 min_error_y_sum_max = min(min_error_y_sum, min_error_y_sum_max)
388
389 print("MIN Y:", str(min_error_y_sum_max), " mm")
390
391 # max_error_x_sum is the sum of all errors cumulative
392
393 #max_error_x_sum_max += max_error_x
394
395

315 APPENDIX H. DOWNHOLE POSITION TRACKING CODE

396 if inclination ≤90:
397
398 max_error_x_sum += max_error_x
399
400 max_error_x_sum_max = max(max_error_x_sum, max_error_x_sum_max)
401
402 elif inclination > 90:
403
404 max_error_x_sum -= abs(max_error_x - x_disp)
405
406 max_error_x_sum_max = min(max_error_x_sum, max_error_x_sum_max)
407
408
409 print("MAX X:", str(max_error_x_sum_max), " mm")
410
411
412
413 # max_error_Y_sum is the sum of all errors cumulative
414
415 if 0 ≤tiltCompensatedAzimuth ≤15:
416
417 max_error_y_sum += max_error_y
418
419 max_error_y_sum_max = max(max_error_y_sum, max_error_y_sum_max)
420
421 elif 345 ≤tiltCompensatedAzimuth < 360:
422
423 max_error_y_sum += max_error_y
424
425 max_error_y_sum_max = min(max_error_y_sum, max_error_y_sum_max)
426
427 print("MAX Y:", str(max_error_y_sum_max), " mm")
428
429 ...

	Introduction
	Research Problem
	Background of Study
	Control System Architecture

	Experimental Setup
	Drilling Rig System
	Rotation System
	Hoisting System
	Circulation System
	Drill String Assembly

	Additions to facilitate for directional drilling
	Downhole motor (pneumatic)
	2-axis Actuator System
	BHA components

	Rig Sensors
	Downhole Sensor Sub
	Mechanical design
	Mechanical design - Stress simulation
	Sensor Package
	Final Design

	Calibration of systems
	Pneumatic Motor
	Top Drive
	WOB Control

	Downhole measurements
	Inclination and azimuth calculations
	Calibration of sensors

	Downhole Position Tracking
	Software Architecture
	gRPC
	API - OPC UA

	Graphical User Interfaces (GUIs)

	Theory
	Data Management
	Data Mining
	Data Quality
	Some challenges concerning data aggregating
	Importance of utilizing a database for data storage
	Downsampling the data
	Describing the dataset
	Noise Reduction Methods
	Normalization and standardization of the data

	Machine Learning Theory
	A Short Introduction to Supervised Learing
	A Short Introduction to Unsupervised Learning
	Training and Cross Validation

	Supervised Machine Learning Models
	Selecting the most optimal model
	Multilayer Feed Neural Network and Back-propagation
	Support Vector Machine
	Decision Tree
	Gradient Boosting
	Random Forest
	K-Nearest Neighbor
	Bayesian Classification
	TPOT Algorithm

	Unsupervised Machine Learning Models
	K-Means Clustering
	Density Based Spatial Clustering of Applications with Noise

	Drilling Theory
	Drill String Vibrations
	Directional Drilling
	Buckling Models

	Data Preparation
	Laboratory data preparation for rock / formation classification
	Data source
	Data concatenation
	Data labeling
	Describing the raw data

	Data collection for classification of laboratory rig operations
	Data source
	Data concatenation
	Data labeling
	Describing the data

	Surface Data collection for drilling incident classification
	Surface data for vibration classification
	Normal pressure vs leak and overpressure
	Rotating pipe vs stuck pipe
	Normal drilling vs drill string twist off

	Downhole data for vibration classification
	Possible errors present in laboratory data
	Volve data
	Volve data aggregated to classify rock formations
	Volve data aggregated to classify rig operations

	Field data challenges

	Data Quality Improvement
	Down sampling experimental data
	Removing duplicates
	Removing Missing data
	Normalizing the data
	Outlier removal using IQR method
	Four-plots for WOB and Torque

	Feature Engineering and Optimization
	Drilling Feature Engineering
	Natural features
	Artificial Feature Engineering
	Drilling Features constructed after processing

	Feature Selection
	With outliers kept in the dataset
	With no outliers in the dataset

	Feature Extraction

	Model Development - Sensitivity Study
	Sensitivity study objective
	Study cases
	Laboratory formation classification
	Volve formation classification
	Laboratory rig operations
	Volve rig operations
	Laboratory pressure cases
	Laboratory vibration cases (surface data)
	Laboratory vibration cases (downhole data) with downhole motor
	Laboratory stuck-pipe cases
	Laboratory twist off cases

	Summary of preliminary clasifications results

	Validation
	Rock Classification
	Task a. Laboratory Experimental data
	Laboratory rig voting system
	Task b. Volve field data
	Formation classification - recommendations

	Drilling Rig Operations Classification
	Task c. Laboratory Experimental data
	Task d. Volve field data
	Rig operations - recommendations

	Drilling Incident Classification
	Task e. Pressure Incident Detection
	Task f. Surface Drilling Vibrations Detection
	Task g. Downhole Vibrations
	Task h. Stuck Pipe Incident Detection
	Task i. Twist off Incident Detection
	Incident classification - recommendations

	Limitations using machine learning

	Autonomous Drilling
	Search algorithms
	ROP Optimization Background
	Various search algorithms

	Implemented algorithms
	Column-Row search (Implemented in 2018)
	Gradient Descent (Implemented in 2019)
	Triggers that can reinitiate search algorithm

	Digital Detailed Operating Procedure
	Downhole closed-loop steering
	Drilling Incident Detection
	Rig performance
	Experiment 1: Inclined well section
	Experiment 2: Vertical well section
	Experiment 3: Deviation well with WOB 5 to 20 kg
	Experiment 4: Pilot hole section 0 - 166 mm MD. Inclination well from 109 mm to 600 mm MD.
	Experiment 5: Increasing cross-over OD to 30.75 mm (up from 20)

	Conclusion and Future Research
	Discussion of results and end state achieved
	Machine Learning
	Control System and Control Algorithms
	Mechanical

	Future recommendations
	Machine Learning
	Control System and Control Algorithms
	Mechanical work

	Sensor Sub Stress Simulation
	Manual Downhole Position Tracking Concept
	Autonomous Search Algorithm Code
	Active Steering Code
	Stuck Pipe Code
	Autonomous Drilling Program Code
	Downhole Vibration Classification Code
	Downhole Position Tracking Code

