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Preface
This thesis is submitted as partial fulfillment of the requirements for the
degree of Philosophiae Doctor at the University of Stavanger, Norway. The
research has been carried out at the Department of Electrical Engineering
and Computer Science, University of Stavanger, in collaboration with the
Department of Pathology, Stavanger University Hospital.

This thesis comprises a collection of five peer-reviewed and published sci-
entific papers. For increased readability, the papers have been reformatted
for alignment with the format of the thesis and are included as chapters.

Rune Wetteland, November 2021
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Abstract
Urothelial carcinoma is the most common type of bladder cancer and
is among the cancer types with the highest recurrence rate and lifetime
treatment cost per patient. Diagnosed patients are stratified into risk groups,
mainly based on the histological grade and stage. However, it is well known
that correct grading of bladder cancer suffers from intra- and interobserver
variability and inconsistent reproducibility between pathologists, potentially
leading to under- or overtreatment of the patients. The economic burden,
unnecessary patient suffering, and additional load on the health care system
illustrate the importance of developing new tools to aid pathologists.
With the introduction of digital pathology, large amounts of data have

been made available in the form of digital histological whole-slide images
(WSI). However, despite the massive amount of data, annotations for the
given data are lacking. Another potential problem is that the tissue samples
of urothelial carcinoma contain a mixture of damaged tissue, blood, stroma,
muscle, and urothelium, where it is mainly the urothelium tissue that is
diagnostically relevant for grading.

A method for tissue segmentation is investigated, where the aim is to seg-
ment WSIs into the six tissue classes: urothelium, stroma, muscle, damaged
tissue, blood, and background. Several methods based on convolutional
neural networks (CNN) for tile-wise classification are proposed. Both
single-scale and multiscale models were explored to see if including more
magnification levels would improve the performance. Different techniques,
such as unsupervised learning, semi-supervised learning, and domain adap-
tation techniques, are explored to mitigate the challenge of missing large
quantities of annotated data.

It is necessary to extract tiles from the WSI since it is intractable to pro-
cess the entire WSI at full resolution at once. We have proposed a method
to parameterize and automate the task of extracting tiles from different
scales with a region of interest (ROI) defined at one of the scales. The
method is reproducible and easy to describe by reporting the parameters.

A pipeline for automated diagnostic grading is proposed, called TRIgrade.
First, the tissue segmentation method is utilized to find the diagnostically
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relevant urothelium tissue. Then, the parameterized tile extraction method
is used to extract tiles from the urothelium regions at three magnification
levels from 300 WSIs. The extracted tiles form the training, validation,
and test data used to train and test a diagnostic model. The final system
outputs a segmented tissue image showing all the tissue regions in the WSI,
a WHO grade heatmap indicating low- and high-grade carcinoma regions,
and finally, a slide-level WHO grade prediction. The proposed TRIgrade
pipeline correctly graded 45 of 50 WSIs, achieving an accuracy of 90%.
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Chapter 1

Introduction
This chapter will present the background and motivation of the work,
followed by an overview of research challenges and opportunities. Next, the
thesis objectives and related previous work will be presented. Lastly, the
main contributions and outline of the thesis are given.

1.1 Background and motivation

Bladder cancer

There has been a significant increase in both new incidents of urinary
bladder cancer and mortalities over the past decades. Globally, there
were 573 278 new bladder cancer incidents in 2020 and 212 536 deaths
from the disease, making it the 10th most common cancer disease for both
sexes combined [119]. Men are overrepresented in this statistics, with
approximately 77% and 75% of the incidents and mortalities occurring in
men, respectively [119]. This makes bladder cancer the 6th most common
cancer disease among men. In addition, bladder cancer is known as one of
the most recurring cancer types. Of all patients diagnosed with bladder
cancer, 50% to 70% will experience one or more recurrences, and 10% to
30% will have disease progression to a higher stage [81].

There are several kinds of bladder cancer, such as squamous cell carcinoma
and adenocarcinoma; however, urothelial carcinoma is by far the most
common type, with as much as 90% of the incidents in some regions
[37]. Because of the implication of the disease, it requires a very intensive
treatment and follow-up plan. Consequently, bladder cancer is one of the
cancer types with the highest lifetime treatment cost per patient [12, 111].
In histopathological diagnostics, an expert pathologist will determine

the grade and stage of the tumor and describe it according to the latest
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1. Introduction

WHO16 classification system [7]. Evaluation of the tumor is usually per-
formed manually through a microscope, a time-consuming, and challenging
process. The grade and stage of the tumor are used to stratify patients
into risk groups, which dictates a suitable treatment and follow-up plan
for each patient. However, it is well known that correct grading of bladder
cancer suffers from intra- and interobserver variability and inconsistent
reproducibility between pathologists [65, 82], potentially leading to under-or
overtreatment of the patients.
Among the main challenges for bladder cancer diagnosis is correctly

identifying patients at higher risk of recurrence or those facing overtreat-
ment. A patient facing undertreatment may experience recurrence and go a
prolonged period before proper treatment, risking both disease progression
and the tumor spreading into nearby tissue. In contrast, a patient experi-
encing overtreatment will undergo unnecessary suffering inflicted by the
more vigorous treatment program. Consequently, this will also lead to an
additional cost and load on the health care system. The economic burden,
unnecessary patient suffering, and additional load on the health care system
illustrate the importance of developing new tools to aid pathologists.

As seen in Figure 1.1, there has been a considerable increase in both new
incidents and mortalities by bladder cancer in the past two decades. The
majority of the numbers belong to men, but an increase is seen in both
sexes. To make matters worse, there is a lack of pathologists combined
with the ever-growing number of patients. This shortcoming of pathologists
could potentially result in less time per patient.

 -

 100 000

 200 000

 300 000

 400 000

 500 000

1998 2000 2002 2008 2012 2018 2020

Bladder cancer new incidents and mortality
1998-2020

Male Incidents Male Mortality Female Incidents Female Mortality

Figure 1.1: Global incidents and mortalities for bladder cancer, both sexes, in the period
1998 to 2020. Data collected from the GLOBOCAN reports [15, 39, 40, 95, 96, 97, 119].
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1. Introduction

A pathologist’s workload is not limited to the grading of urothelium
carcinoma, but they have a wide range of other tasks at hand, e.g., diagnosis
of other cancer diseases and forensic pathology. They have a critical role,
and numerous other disciplines rely on their work. If the workload in one
of these tasks increases, such as the increasing number of bladder cancer
patients, it may simultaneously affect the time available for other vital
tasks.

Märkl et al. [83] recently did a study on the number of German physicians
in pathology and compared it with European countries, USA, and Canada.
The results indicate a shortage of pathologists in Germany, and a survey
revealed an increase in workload for university pathologists over the past
decade. The study was primarily focused on the German situation, but the
authors state that "the key findings of this study have implications for many
if not all European countries, northern America and probably at least some
countries in Asia." As a possible solution, the authors hint that automation
and new digital technology "could offer enormous potential for relieving
pathologists in their daily work" [83].

Digital pathology

For over a century, pathologists around the world have been examining tissue
specimens through a microscope. However, with the Digital Revolution,
otherwise known a the Third Industrial Revolution, novel technologies
emerged and shifted the analog technologies to new digital technologies.
Within pathology, commercial slide scanners allowed the glass slides to be
stored on a computer as a digital image and introduced a new field called
digital pathology. This process, referred to as whole-slide imaging (WSI),
uses a digital microscope and scans the glass slides at very high resolution.
There are many benefits of utilizing digital versions of the glass sides.

Sharing slides between institutes across the world becomes both easier and
faster, allowing new collaborations. It opens the possibility for remote
access, more accessible storage, and cloud computing. Furthermore, and
most importantly, it opens the opportunity for computational pathology,
enabling new tools to analyze and interpret the specimen. The significance
of this is improved workflow, automation of tedious tasks such as cell
counting, potentially improved diagnostic accuracy, and better clinical
outcome for the patients [10, 16, 51, 79, 90].

Digital pathology and access to digital slides open new possibilities and
is gaining research interest. Morales et al. [86] analyzed the amount of
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1. Introduction

research related to computational pathology between 2011 and 2020. In
PubMed, 4 983 research papers were published, and for Google Scholar, the
number was 96 830, with the majority of these papers being published in
the last five years.

Lack of annotations

With the introduction of commercial slide scanners and digital pathology,
large amounts of data have been made available in the form of histological
whole-slide images. However, despite the massive amount of data, annota-
tions for the given data are lacking. That is, a region in a WSI of a known
class, e.g., a region of interest (ROI) indicating, for instance, low-grade
or muscle tissue. These annotations are important for several reasons;
first, they are required to train models using supervised or semi-supervised
learning methods. Secondly, it helps reduce the massive amount of data
provided by the WSIs to the ROI for the given task, excluding the unwanted
areas outside the ROI. Lastly, to evaluate a method, the trained model
must be tested on data with known attributes. This means the tested WSIs
or ROIs need to be verified by an expert pathologist prior to the test to
compare the model’s performance against them.
For traditional datasets, like ImageNet, examples of the known classes

are cat, dog, car, airplane, and similar. Annotations for these kinds of
images are easy to offer, as anybody can provide them. The challenge lies
in gathering millions of labels, and methods such as crowdsourcing are used
to achieve this. For medical images, however, the main challenge lies in
the difficulties in providing the correct label for a given area. This task
requires expert input by pathologists and thus is a costly job. Pathologists
are in shortage and a limited resource; hence, a large manually annotated
dataset is impossible to achieve.
Some possible solutions to this problem can be the use of weak labels,

unsupervised learning strategies, or domain adaptation techniques. A weak
label is a label that is inaccurate in the description. It may cover a larger
area, where parts of this area have a different class than the class label
itself. An example of this can be a WSI where a pathologist has graded
the entire slide as a specific grade, even though some areas in the image
may consist of a different grade. By sampling tiles from this image, one
popular strategy is to inherit the slide-level grade to all tiles within the
image. Each tile is then weakly defined, as some of the tiles may represent
one grade and the associated label to another grade. Unsupervised learning
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1. Introduction

techniques aim at training models on data without the use of annotations.
Domain adaptation techniques use models pre-trained on images from one
domain and then fine-tunes it on a new domain. This process reduced the
necessary amount of annotated data.

Artificial intelligence

Artificial intelligence and machine learning methods emerged in the 1950s.
However, the lack of large annotated datasets and advanced hardware
capable of handling the computational complexity of the methods slowed
down the development. The field has experienced several AI winters, halting
the economic support for continued research.

Following the development of the Digital Revolution, improved computer
hardware has allowed machine learning approaches more available for
people. In addition, dedicated researchers have curated several large open-
source datasets, such as MNIST, ImageNet, CIFAR-10, which helped
other researchers focus on developing the machine learning algorithms.
Furthermore, the releases of deep learning frameworks, like Tensorflow,
Keras, and PyTorch, have made machine learning methods more accessible
for researchers. As a result of these combined efforts, artificial intelligence
has seen rapid growth in recent years; research interest and commercial
products have skyrocketed, with little signs of slowing down.
The interest in AI is not without reason. Time and time again, state-

of-the-art results have been set by a machine learning method [66]. For
example, the ImageNet contest in 2012 marked the first time a machine
learning algorithm contributed to the competition. The model was AlexNet,
and it won by a good margin, marking the abandonment of feature engi-
neering for the benefit of machine learning within computer vision tasks
[44]. The winner of the 2015 edition of the same competition marked the
first model surpassing human-level performance [53]. Similar stories are
also seen within the medical field, where deep learning models outperform
human expert’s performance [17].

Following the general success of machine learning, there is an interest in
utilizing such tools to assist pathologists in their work. This is also stated
by the authors Morales et al. [86] in their recent overview, where they state
that "the combination of digital histopathology imaging and AI therefore
presents a significant opportunity for the support of the pathologists’ tasks
and opens up a whole new world of computational analysis." A successful
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1. Introduction

computer-aided diagnosis (CAD) system could potentially help improve on
the low reproducibility, decrease the variability in interpretations, reduce
the increasing workload, and improve the workflow and patient outcome. It
has also been shown by Want et al. [133] that errors made by an algorithm
and pathologist are different and that the best result was achieved by
combining the two.

1.2 Research challenges and opportunities
With the introduction of digital pathology, some computer-aided tools to
assist pathologists have been introduced for other diseases. However, such
tools are currently not in use for the assessment of urothelial carcinoma
slides, which are mainly examined manually through a microscope. This
is a time-consuming process, and reproducibility among pathologists is in
some cases low, for example, within the prognostic classification of urinary
bladder cancer. New tools to aid pathologists in their work are therefore
desired. Successful implementation of such tools can improve the workflow,
raise the accuracy, and increase the quality of the treatment, thus greatly
benefiting the patients suffering from the disease.

The large WSI of urothelium carcinoma contains areas of different tissue
types and damaged and burnt tissue areas. Therefore, automatic extraction
of diagnostic relevant tissue would be an important step towards automatic
grading and prognosis prediction. Prior to this work, no methods were
reported for tissue-type segmentation of whole-slide images of urothelial
carcinoma.
The large size and multiscale nature of the WSI make it necessary to

patch up the images before processing or to extract smaller tiles, possibly
over different resolutions. However, to the best of the author’s knowledge, a
technical description or source code for extracting tiles in multilevel gigapixel
images, for example, based on coordinates or masks defining regions of
interest, does not exist. This makes reproducibility low if patching and
tiling methods can not be described well and parameterized. Therefore,
a sound, efficient, parameterized, and automated method for extracting
tiles would be useful as a data curation or preprocessing step that can be
accurately reported for reproducibility.

As will be discussed in Section 1.4 Previous work, some work on grading
urothelial carcinoma slides exist. However, this topic is far from fully
explored, and more work is needed both on automatic grading systems, as
well as staging and prognosis prediction.
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1. Introduction

1.3 Thesis objectives

The main goal of this study is to develop an automatic diagnostic system
for grading bladder cancer, type urothelium carcinoma. We have access to a
dataset of WSIs, with associated slide-level diagnostic labels from Stavanger
University Hospital. However, not all parts of the WSI are diagnostically
relevant; hence, a tissue segmentation algorithm is necessary to find and
extract the diagnostic relevant areas of the WSIs. Furthermore, as detailed
region-based annotating in WSIs requires an expert’s opinion, we only have
access to a small number of annotations for the different tissue classes in
the WSIs.
The thesis objectives are divided into one main objective and four sub-

objectives as follows:

O1: Create a system for automated grading of urothelial carcinoma slides.

SO1: Create an automated system for distinguishing between the
different tissue types present in histological whole-slide images
of urothelial carcinoma.

SO2: Explore different approaches for unsupervised and semi-supervised
learning techniques to deal with the lack of detailed region-based
annotation data.

SO3: Investigate the use of multiscale models in WSI processing by
utilizing several magnification scales.

SO4: Create a reproducible system that automatically extracts tiles
from multilevel whole-slide images.

1.4 Previous work

This section will look at some of the related works in the field of tissue
segmentation and automatic diagnostic methods for bladder cancer.

There exist some related work for multiclass tissue classification on other
cancer types [5, 62, 71, 131, 134]. However, to the author’s knowledge, there
was no published research on multiclass tissue segmentation of urothelial
carcinoma WSIs prior to the work presented in this thesis.

There is, however, some work on two-class segmentation of bladder cancer
images. These methods aim to classify tiles from the images into one of
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1. Introduction

two classes, often tumor vs. non-tumor, cancer vs. non-cancer, and similar.
For example, in the work of Xu et al. [142], a method for predicting low
or high tumor mutational burden (TMB) in bladder cancer patients was
investigated. As a preprocessing step, a tile-wise tumor vs. non-tumor
classifier was used to segment out the tumor regions from the surrounding
tissue. An support-vector machine (SVM) classifier was then used to predict
the patient’s TMB state using extracted histological image features from
the tumor regions. A similar approach was used by Zhang et al. [151],
where a U-net-like network was used to predict each pixel into tumor or
non-tumor as a preprocessing step before using another neural network for
predicting the slide level diagnosis.
The majority of the research on cancer diagnostic follows a two-stage

approach. First, a detection algorithm is used to find the diagnostic
relevant areas in the images, followed by a classification of this area. This
has many advantages, such as reducing the area needed to be processed in
the second stage and also removing unwanted tissue classes. This is a quite
common methodology, and several researchers have come up with a variety
of approaches [19, 59, 78, 115, 151].
In Jansen et al. [59], they utilized two individual single-scale neural

networks to detect and grade 328 cases of bladder cancer collected from 232
patients. A U-net-based segmentation network was trained to detect and
segment the urothelium tissue, used as input to a second network trained to
grade the urothelium tissue according to the WHO04 grading system. The
classification network assessed the WHO04 grading on slide-level, using the
majority vote of all classified tiles. The predictions were compared with
the grading of three experienced pathologists. According to the consensus
reading, the classification model achieved an accuracy score of 74%. The
included whole-slide images were all exported at 20x magnification (0.5 µm
per pixel).

To mimic the work of pathologists, some work utilizes multiscale methods
to incorporate both details and context from a broader field of view in the
models. This is done by using multiple magnification scales, or by using
tiles from the same scale but with varying sizes to accommodate the larger
field of view. Reported works by Sirinukunwattana et al. [114], Vu et al.
[131], and Hashimoto et al. [52] supports the claim that multiscale models
have the potential to improve the classification performance. In Hashimoto
et al. [52], the authors also confirm that class-specific features exist at
different magnification scales.

8



1. Introduction

Both before and during the work of this thesis, there has been some work
on bladder cancer image analysis at our research group at the University of
Stavanger in collaboration with Stavanger University Hosptial. The majority
of these are master thesis, and includes work on tissue segmentation,
prediction of recurrence, detection of cells and immune cells, and assessment
of immune cells [31, 80, 120, 126, 127, 128, 136].
The greater part of research on cancer diagnostic are devoted to other

cancer types, such as breast, lung, prostate, brain, and skin cancer [88].
This is also the case for AI-based medical technologies approved by the
U.S. Food and Drug Administration (FDA), which mostly are in the fields
of radiology, cardiology, and Internal Medicine/General Practice [9]. A
similar trend can be seen in commercial companies. E.g., ContextVision,
one of the leading companies in the field of medical image processing uses
artificial intelligence for cancer diagnosis. Within digital pathology, they
have products for prostate, lung, and colon. But still, a lot of effort is also
aimed towards histological images [19, 25, 45, 57, 117].
One of the main goals of research on bladder cancer is to create new

tools to aid pathologists, and a significant amount of work in this thesis
is aimed to create helpful and intuitive visualization, which can be used
in a clinical setting. Some work presents a few selected close-up areas
of segmentation [45], and some work presents segmentation of full WSIs
[52, 117, 151]. However, there is no reported work on visualizing all tissue
classes from bladder cancer.

1.5 Main contributions

The main contribution of this thesis is an end-to-end diagnostic pipeline for
urothelium carcinoma. The pipeline consists of several methods, which are
described and presented in five scientific papers. The first three papers are
dedicated to the topic of tissue segmentation, Paper 4 covers parameterized
and reproducible tile extraction in multilevel gigapixel images, and finally,
Paper 5 is about cancer diagnosis, specifically grading of urothelium carci-
noma based on WSI input without any manual ROI markings. An overview
of the proposed pipeline is depicted in Figure 1.2, indicating at which step
each paper contributes. In addition, an overview of all the papers and how
they are connected is shown in Figure 1.3.

In Paper 1, an autoencoder model was used to utilize a large dataset of
unlabeled data and then fine-tuned on a smaller dataset with annotations.
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1. Introduction

Input 
WSI

Tissue 
segmentation

Multilevel tile 
extraction

Diagnostic 
prediction

Paper 1 – Paper 2 – Paper 3 Paper 4 Paper 5

Whole-slide image Foreground mask Tissue segmentation map Urothelium mask Urothelium tiles WHO04 grade heatmap

Figure 1.2: An overview of the proposed pipeline. Input WSI) A whole-slide image
is used as input. Tissue segmentation) A foreground mask is used as a reference to
extract tiles. Then, a tissue segmentation model is used to identify each tissue class.
Multilevel tile extraction) The urothelium regions are used to create a urothelium
mask, and a method for extracting tiles from all levels is used to extract the urothelium
tiles to be used for grading. Diagnostic prediction) The urothelium tiles are fed to
a diagnostic model, which outputs a probabilistic score for the two classes, low- and
high-grade carcinoma. The system will output a WHO04 grade heatmap and a slide-level
WHO04 prediction.

The proposed method was demonstrated by displaying heatmaps of each
tissue class on unseen WSIs. In Paper 2, we leveraged on pre-trained models
and domain adaptation to better adapt our models to the small labeled
dataset. We extracted the dataset at three magnification levels (25x, 100x,
400x) to be able to utilize multiscale models. Three novel architectures were
proposed, referred to as MONO-, DI- and TRI-scale models. Furthermore,
new and novel tissue segmentation maps were implemented to demonstrate
the methods on WSIs. Lastly, in Paper 3, we utilized semi-supervised meth-
ods on the best-performing model from Paper 2. A clustering approach and
a probability approach were experimented on to improve the classification
of the different tissue classes.
In Paper 4, an automatic and parametric method for extracting tiles

in multilevel gigapixel was proposed. The method is parameterized and,
as such, repeatable, reproducible, and easy to report by reporting a few
parameters. First, the full WSI dataset was segmented into all tissue classes
using the best model from Paper 2. Afterward, the methods described in
Paper 4 were used to extract urothelium tiles from all three magnification
levels to create a diagnosis dataset. Finally, in Paper 5, a model for
predicting low- and high-grade carcinoma was proposed. The method
correctly graded 45 of the 50 WSIs in the test set, achieving an accuracy
of 90%, and the method was further demonstrated by creating heatmaps
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1. Introduction

on 14 WSIs annotated into low- and high-grade carcinoma regions by a
pathologist, achieving a weighted average F1-score of 83%.

Tissue segmentation

Multilevel tile 
extraction

Diagnostic prediction

Paper 1
Autoencoder tissue 
classification

Paper 2
Multiscale tissue 
classification

Paper 3
Semi-supervised 
tissue classification

Paper 4
Tile-extraction of 
gigapixel images

Paper 5
Grading of bladder 
cancer

Autoencoder

Tritissue

TriWHO04

Mono

Di

Tri

Tri

• Objective: 𝑂𝑂1

• Objective: 𝑆𝑆𝑂𝑂1

• Objective: 𝑆𝑆𝑂𝑂2

• Objective: 𝑆𝑆𝑂𝑂3

• Objective: 𝑆𝑆𝑂𝑂4

• Objective: 𝑆𝑆𝑂𝑂1

• Objective: 𝑆𝑆𝑂𝑂1

• Objective: 𝑆𝑆𝑂𝑂2 • Objective: 𝑆𝑆𝑂𝑂2

Figure 1.3: An overview of the contributions and the relationship between them. The
thesis objectives and the main model used are shown for each paper. The first three
papers are devoted to tissue segmentation and explore the objectives SO1, SO2, and SO3.
Paper 4 is for multilevel tile extraction and investigates the objective SO4. Paper 5 is
for diagnosis prediction, the objective O1. It leverages the TRI-model from paper 2 and
methods from Paper 4.

1.6 Thesis outline

The remaining content in this thesis is organized as follows: Chapters 2
and 3 will provide an overview of the relevant background theory used in
this thesis for medical and technical background, respectively. In Chapter
4, the data material used in the thesis is presented, and it is describes how
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1. Introduction

the different datasets are defined. Chapter 5 will give a synopsis of Paper
1, 2, and 3, relevant to the topic of tissue segmentation, while Chapter
6 will summarize the contribution of Paper 4 and the work on multilevel
tile extraction, and Chapter 7 will present Paper 5 related to the topic of
diagnostic prediction. Chapter 8 contains the discussion and conclusion
of the thesis. Finally, the five papers are reformatted and presented in
Chapters 9 to 13.
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Chapter 2

Medical background
In this chapter, an introduction to bladder cancer is given. Then, an
overview of bladder cancer diagnosis is given, and, in the end, the epidemi-
ology, incidence, and mortality of bladder cancer are given.

2.1 Bladder cancer

Cancer of the bladder is known as bladder cancer and is a disease in which
abnormal cells multiply without control and form tumors in the urinary
bladder. Tumors may be found anywhere within the bladder but are most
common along the lateral walls [81]. Bladder cancer requires an intensive
treatment and follow-up plan, which results in it being one of the cancer
types with the highest lifetime treatment cost per patient [12, 111].
The urinary bladder is a hollow muscular organ that functions as a

reservoir for storage of urine. The urine comes from the kidney, enters the
bladder via the ureters, and exits the bladder via the urethra. The inside
of the bladder is lined with muscle tissue that stretches to hold the urine.
A cross-section of the urinary bladder is depicted in Figure 2.1, showing
the different tissue types making up the bladder wall. The bladder lining
consists of the urothelium and acts as a membrane. Below the urothelium
is the connective tissue made up of stroma tissue, followed by a layer of
muscle tissue and a layer consisting of fat.

In the same figure, example tumors of different T-stages are also shown.
The Tumor Node Metastasis (TNM) classification system defines the cancer
stage depending on how far the tumor has spread into the surrounding
tissue. The tumor stage classification system ranges from CIS to T4, where
T4 is the most invasive and has the worst prognosis. In its earliest stages
(CIS, Ta, T1), the tumor is confined to the bladder lining or stroma tissue
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2. Medical background

and has not invaded the muscle tissue. These stages are known as non-
muscle-invasive bladder cancer (NMIBC) and are easier to treat. Whereas
for stages T2 to T4, the tumor has invaded the muscle wall and is referred
to as muscle-invasive bladder cancer (MIBC). This is a severe condition,
and a cystectomy is often required, i.e., removal of the bladder. All patients
in this thesis have either cancer stage Ta or T1, meaning they have NMIBC.

Figure 2.1: A cross-section of the urinary bladder showing the T-stages of bladder
cancer, and how the cancer tumor infiltrates the nearby tissue. Image by Cancer Research
UK, licensed under the Creative Commons BY-SA 4.0 license [125].

For patients diagnosed with NMIBC, the tumor is usually removed
through transurethral resection of bladder tumor (TURBT). The removed
tissue contains both atypical urothelial from the tumor and stroma, but
can also contain smooth muscle from the bladder wall, normal urothelium
from surrounding mucosa and blood. During the procedure, parts of the
tissue can get both physical- and heating damage, for example, in terms
of heating damage induced by laser or electrically heated wire loop, also
called cauterization damage, or tearing of the tissue samples. Areas in
the WSI with damaged tissue or blood will not be suitable for extracting
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2. Medical background

diagnostic and prognostic information, and a pathologist will ignore such
regions during an examination.
For the purpose of grading NMIBC, urothelium is the most diagnostic

relevant tissue. For staging, both urothelium and stroma, and particularly
the border between them, is essential. The presence of muscle tissue also
has importance for correct staging. However, cauterized tissue from the
TURBT process, as well as areas containing blood, has no diagnostic
relevance. Examples from each class are shown in Figure 2.2.

Figure 2.2: Example tiles of each class extracted at three magnification scales. Tiles at
each scale are extracted from the same center pixel. The magnification scale is increased
by a factor of four in each step, resulting in the tile covering 16 times as much area, even
though they have the same size of 128x128 pixels.

The removed tissue is prepared, stained, and placed on a glass slide for
analysis through a microscope. Examination of the tissue specimen is a
process referred to as histopathology and is performed by a pathologist.
It is a manual analysis that is very challenging and time-consuming. To
aid the pathologists, different chemical dyes are used during the staining
process. The stain creates contrast and emphasizes different aspects of the
tissue, like immune cells or different tissue types. A variety of staining
methods exists, depending on what features to highlight. All WSIs used in
this work are stained either using haematoxylin, eosin, and saffron (HES),
or haematoxylin and eosin (H&E). The haematoxylin will stain the cell
nuclei in a purple-blue color, the eosin will stain the extracellular matrix
and cytoplasm in a pink color, giving the WSIs its recognizable look, and
saffron is used to distinguish fibers of collagen [24, 26].
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2. Medical background

The most prominent risk factors for bladder cancer are cigarette smoking
and occupational exposure to chemicals [106]. With bladder cancer, as
with other cancer types, there is a risk of metastasis, where the cancer is
spreading to nearby lymph nodes or other organs. However, the primary
focus of this thesis is the classification and grading of urothelial carcinoma.

2.2 Diagnosis

In histopathological diagnostics, pathologists use grading and staging to
describe the tumor. These parameters are used to stratify patients into
risk groups and tailor a suitable treatment and follow-up plan.

A histological image will reveal specific diagnostic information at different
resolutions, and a pathologist will integrate information across several
magnification levels before reaching a decision. High magnification (400x)
will reveal cytological features like cell size and shape, mitosis, as well as
cell nucleus characteristics as contour, size, and colorization (intensity and
distribution). As you go down in magnification, you will get a broader field
of view and show more context information from the surrounding tissue.
At 100x, you can evaluate nucleolar polarity, and lower magnification (25x)
will show global context information such as papillary architecture, outline,
and border of the tissue, as well as color and texture.
After examination, the pathologist will document his or her findings in

a pathology report. This report will include histological description and
information about the grade and stage, and an estimate of the risk for
recurrence and disease progression.

The tumor stage is important and is determined based on the size of the
primary tumor, if it has invaded nearby tissue, and if so, how far it has
spread into the surrounding tissue, as well as the number of primary tumors
present. Pathologists use the TNM classification system to stage bladder
cancer tumors, and example tumors for each stage are shown in Figure 2.1.
The tumors may form papillary protrusions into the bladder lumen, solid
nodules, or grow diffusely within the bladder wall. Approximately 70%
of patients have NMIBC at first diagnosis [81], where the tumor has not
invaded the muscle wall.

The grade of a tumor describes the differentiation state of the tumor cells
under a microscope. Different cancer types have different grading scales, but
in general, if the cancer cells are similar to that of healthy non-cancerous
cells, the grade will be low, and the cancer will have a lower likelihood of
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2. Medical background

spreading. On the other hand, if the cells have a more abnormal appearance
and are disorganized, the grade will be higher. The grade is generally based
on the tissue architecture, nuclear arrangement, proliferation, and nuclear
atypia. Each of these categories has several subcategories to describe the
tumor in detail [81]. In [65], a set of 13 microscopic features are listed,
which are examined to determine the final grade of the tumor.

Low-grade High-grade

400x

100x

25x

256 pixels

256 pixels
256 pixels

256 pixels

Figure 2.3: Examples of low-grade and high-grade tiles extracted from a WSI. The
tiles are extracted from three magnification levels (25x, 100x, and 400x) and all have the
same size of 256 × 256 pixels.

The World Health Organization (WHO) has proposed three grading
systems for bladder cancer. The first grading system was introduced in
1973, referred to as WHO73, which is still somewhat used today. It consists
of three categories, grade 1, grade 2, and grade 3, where grade 3 is the most
severe state. A revised edition of the grading system was introduced in 2004
called WHO04, and further updated in 2016 as WHO16. In these versions,
cases are split into low- and high-grade carcinoma. Some examples of low-
and high-grade areas are shown in Figure 2.3. Grade 1 patients are referred
to as low-grade patients, and grade 3 patients are high-grade patients.
Patients diagnosed as grade 2, however, are now split into either the low-
or high-grade case. This might seem like a minor change, but for a patient
to be diagnosed as low- or high-grade may result in very different follow-
up regimes and local treatment with potential adverse events. A patient
falsely diagnosed as a high-risk patient is an example of unnecessary patient
suffering by overtreatment, additional load on the health care system, and
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2. Medical background

extra cost. There is some correlation between the WHO73 and WHO04
systems, but they are not directly interchangeable, so both systems coexist
[81]. The data material used in this paper was collected and diagnosed
prior to 2016 and will therefore focus on the WHO04 grading system.
A WSI may contain regions of different grades, as well as regions of

normal urothelium. It is usually assigned the worst grade present in the
WSI as the final diagnosis.

2.3 Epidemiology

Bladder cancer is the 10th most commonly diagnosed cancer worldwide,
with an estimated 573 278 new cases and 212 536 deaths in 2020 [119].
Figure 2.4 and 2.5 shows an estimate of age-standardized incidence and
mortality for bladder cancer in 2020.

It is well known that men are overrepresented when it comes to bladder
cancer. Figure 2.6 shows the estimated incidence and mortality rates. The
left-hand side of the plot shows the estimated numbers of incidents and
mortalities for males and the right-hand side for females.
And finally, Figure 2.7 presents a diagram showing the most common

cancer types for men in 2020. With 4.4% of the new cases falling into the
bladder cancer category, it is the 6th most common cancer among men.
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Figure 2.4: Estimated age-standardized incidence rate per 100 000 for both sexes in
2020. Reprinted from Global Cancer Observatory: Cancer Today. Public domain [38].
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Figure 2.5: Estimated age-standardized mortality rate per 100 000 for both sexes in
2020. Reprinted from Global Cancer Observatory: Cancer Today. Public domain [38].
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Figure 2.6: Estimated age-standardized incidence and mortality rates for bladder cancer
in 2020. Rates for males are shown to the left and for females to the right. Reprinted
from Global Cancer Observatory: Cancer Today. Public domain [38].
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Figure 2.7: Estimated number of new cases of all cancer types in 2020, for males only.
Bladder cancer accounts for 4.4% of the new cases, resulting in it being the 6th most
common cancer among men. Reprinted from Global Cancer Observatory: Cancer Today.
Public domain [38].
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Chapter 3

Technical background
In this chapter, an introduction to artificial intelligence is given, followed
by an overview of the different building blocks in a neural network. Then,
different evaluation metrics and how to distribute the datasets are presented.
Finally, the most common learning techniques are discussed. The chapter
focus on the techniques used in the thesis as the overall topic is far too
wide to cover comprehensively in the scope of this thesis.

3.1 Artificial intelligence

Artificial intelligence is a multidisciplinary field of study involving neurobiol-
ogy, information theory, cybernetics, statistics, computer science, and more.
Artificial intelligence aims to train an intelligent agent to solve specific
tasks based on the environment presented to the agent. The intelligent
agent wants to optimize its success by taking the decisions with the highest
probability. Machine learning is a subfield of artificial intelligence used to
train an artificial intelligence system. First, an algorithm is trained on a
dataset, and then the performance is measured against an independent test
set. If the performance on the test set increases over time as the algorithm is
trained on the training set, the algorithm is said to be learning. In essence,
a dataset is a collection of samples, where each sample is a collection of
features. In machine learning, we want to develop an algorithm to learn
these features using the dataset.
A machine learning algorithm can be trained for many different tasks,

for example, regression, classification, or segmentation. In regression, the
predicted output will be a continuous value (e.g., predicting temperature,
house pricing, stock market pricing.), whereas in classification, the pre-
diction will be a discrete, categorical value. Examples of classification
problems can be an email spam filter (spam vs. not spam), classifying
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3. Technical background

images of animals (cat vs. dog), or predicting diagnosis for a disease (cancer
vs. non-cancer). Segmentation is a computer vision problem, where the
core problem is understanding the scene. From the input image, the seg-
mentation algorithm will classify each pixel into one of the predetermined
classes. Machine learning can be used in a wide range of other tasks as
well, such as machine translation, anomaly detection, synthesis, clustering,
imputation of missing data, or denoising, but those aspects will not be
discussed here.
To create a successful machine learning system, three elements are re-

quired; a sufficiently large set of training data, computational power to
process the data, and an algorithm that learns from the data. Nowadays,
advances are still made on each of the three required elements. Man-
ufacturers of graphical processing units (GPU) are pushing their limits
and developing new and more powerful units each year. Simultaneous,
cloud computing has grown in both accessibility and popularity, allowing
users almost unlimited computational power at the expense of cost. Large,
open-source datasets are growing in both numbers and size. There is also
a trend to arrange competitions, where the chairholders have gathered a
large, often labeled, dataset, and participants are encouraged to develop
algorithms and compete against each other. This also takes place here
in Norway, where recently the Norwegian Artificial Intelligence Research
Consortium (NORA) announced MedAI, a medical image segmentation
competition to segment polyps in images taken from endoscopies [91]. And
finally, researchers are developing new methods and algorithms in record
speed within artificial intelligence. Benjamens et al. state that “the number
of life science papers describing AI/ML rose from 596 in 2010 to 12 422 in
2019” [9].

During the past decade, AI-related methods have also bridged the gap
from research over to finalized products. For example, a database of
FDA-approved AI/ML-based devices is presented in [9], and an up-to-date
database is maintained at the website [124]. The year 2010 marked the first
year where the FDA approved an AI/ML-based device, and the number of
such approvals has since only increased, as seen in Figure 3.1.

3.2 Deep learning networks

This chapter introduces neural networks and some common techniques and
models used in deep learning.
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Figure 3.1: The number of FDA-approved AI/ML-devices. Data collected from [124].

3.2.1 Neural networks

Artificial neural networks draw inspiration from the human brain, where
the biological neuron is modeled into an artificial neuron. A depiction of an
artificial neuron is shown in Figure 3.2. It consists of multiple inputs xi and
weights wi, where i = 1, . . . ,m. The input x0 is usually set equal to 1, and
then the weight w0 is used for the bias term, often written as b. A weighted
sum between inputs and weights are computed, and the bias term is added,
b+

∑m
i=1 xiwi. The resulting sum is fed through an activation function that

generates a single output. Each input to the neuron has a weight associated
with it, which can strengthen or weaken the signal. The bias value is used
to shift the weighted sum. The activation function defines the neuron’s
output and determines if the neuron should be activated or not. A wide
range of activation functions exists, all with different properties [66].
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Figure 3.2: Example of an artificial neuron. It computes a weighted sum from the
inputs and computes a single output.
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Similar to how the brain links neurons together in a network, an artificial
neural network also consists of multiple neurons linked together and orga-
nized layer by layer. An example of a simple neural network is depicted
in Figure 3.3. The network consists of an input and output layer, and all
layers between the input and output are referred to as the hidden layers.
Because each neuron is connected to all neurons in the following layer,
these layers are also sometimes referred to as fully-connected layers. And a
network consisting of only fully-connected layers are sometimes referred to
as a fully-connected neural network (FCNN).

Input 
layer

Output 
layer

Hidden 
layer𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0
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Figure 3.3: Example of an artificial neural network. Each node consists of an artificial
neuron as depicted in Figure 3.2.

It is possible to add more hidden layers, and the number of layers in
a network determines the depth of the model. Over the past decade, the
number of layers in models has increased rapidly, and models have become
deeper and deeper. This has led to the introduction of the term deep
learning, referring to a machine learning task solved using a deep model.
The weights and bias values are usually initialized randomly from a

truncated Gaussian distribution before training starts. Training a neural
network is an iterative optimization problem, usually based on stochastic
gradient descent (SGD), and requires a loss function to quantify the error
in the model’s predictions. The optimization algorithm uses an algorithm
called backpropagation for calculating the gradient of the loss function with
respect to the weights and bias values. The optimization algorithm then
updates the weights and biases by minimizing the loss from the loss function.
Multiple loss functions exist, but for the training of neural networks, the
most common functions are cross-entropy and mean squared error (MSE)
[66].
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3.2.2 Autoencoders

An autoencoder is a neural network with a specific network design, as shown
in Figure 3.4. The goal of an autoencoder is to learn how to reconstruct
the input on the output. The network typically has a bottleneck structure,
where the middle part is smaller than the input and output. It is one
consistent network, but it is common to refer to the first half of the network
as the encoder, and the latter part as the decoder, as shown in Figure 3.4.
The overall structure of the encoder decreases in size, forcing the model
to discard redundant features and learn the features that are important
for reconstruction. This makes autoencoders great for learning feature
extractors without the need for detailed labels. The smallest layer in the
network, often called the bottleneck layer or latent vector, is a latent feature
representation containing a code describing the input. The term latent
vector means that the stored values are hidden and not directly observable,
hence the need for a decoder to reveal the stored information. The role of
the decoder network is to decode the code stored in the latent vector and
thus reconstruct the input as closely as possible. The size of the layers in
the decoder is usually the same as in the encoder but in reversed order.

Encoder Decoder

Latent 
vector

Input
Reconstructed 

output

Figure 3.4: Typical structure of an autoencoder model. The input is transformed into
a latent vector using the encoder part of the network and then reconstructed by the
decoder network.

To train an autoencoder, the MSE loss function is utilized. This function
measures the reduced mean of the squared difference between the output
and input with the following expression:

LossMSE = 1
NM

N∑
i

M∑
j

(Outputij − Inputij)2 (3.1)

One of the main advantages of the autoencoder model is that the loss
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function does not require an input label. Because of this, the autoencoder
is often used in unsupervised learning.

3.2.3 Convolutional neural networks

A convolutional neural network (CNN) is a neural network where at least
one of the layers of the model consists of a convolutional layer. These
convolutional layers use the mathematical operation convolution between
its input and a kernel consisting of weights. It is these weights in the kernel
that is adjusted during training. Convolutional networks work excellent
on data such as images, but are also employed on other data types like
time-series data.

Some of the advantages of using a convolutional network are parameter
sharing and sparsity of connections. For parameter sharing, the convolu-
tional layer relies on the same filter kernel, which strides across the entire
input. Since the filter kernel is much smaller than the input, each output
value depends only on a small number of inputs, resulting in the sparsity
of the connections. A result of both parameter sharing and the sparsity of
connection is fewer parameters in the network, making the convolutional
network more memory efficient than regular neural networks. In addition,
because the filter is shifted across the entire image, specific features can be
detected at any location in the image, resulting in one of the properties of
convolutional networks known as shift-invariance.

Pooling layers are often used in CNN models, usually added after a con-
volutional layer or a group of convolutional layers. Unlike the convolutional
layers, the pooling layers do not contain any parameters; instead, it is an
operation that downsamples its input. The pooling layer slides a small
region across the input, usually a 2 × 2 pixel region with a stride of 2 pixels,
and applies the pooling operation at each location. The most common
operation types are average pooling and maximum pooling. The average
pooling operation computes the average value of the samples within the
region, and max pooling selects the maximum value from the region. The
pooling layers are used in convolutional networks because they reduce the
dimensions of the feature maps, which again helps with reducing the total
number of parameters in the model. Another benefit is that the pooling
layers make the model invariant to small translations. Because the pooling
layers aggregate the features within a small region, translations within this
region would often result in the same aggregated values by the pooling
operation.
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3.2.4 VGG16 convolutional neural network

VGG16 is the name of a CNN architecture proposed by K. Simonyan and
A. Zisserman [113]. The architecture is depicted in Figure 3.5 and consists
of five convolutional blocks followed by three fully-connected layers. The
convolutional blocks consist of two or three convolutional layers and a
max-pooling layer.
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Figure 3.5: The VGG16 architecture. The convolutional layers indicate the receptive
field size and number of channels. The fully-connected (FC) layers indicate the number
of neurons in the layer. Based on architecture description in [113].

The name VGG16 stems from the group’s name, Visual Geometry Group
from the University of Oxford, and the number 16 refer to the network
containing 16 trainable layers. The max-pooling layers do not contain
any parameters and are therefore not considered a trainable layer. The
VGG team submitted their proposed model to the 2014 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) and won first and second
place in localization and classification tasks. After the competition, the
team further improved the model and shared their model with pre-trained
weights. The model is included in most deep learning frameworks, such as
Keras, Tensorflow, and PyTorch, making it easy for researchers to download
and use the model. Because of the model’s availability, it has become a
very popular model to use, and by November 2021, the paper currently has
over 65 000 citations on Google Scholar.

3.2.5 Regularization techniques

When training a deep learning model, there is always a risk of overtraining
the model. That is, to optimize the weights on the training dataset to
such an extent that the model’s generalization is reduced. As a result, the
accuracy score would be relatively high if the model would be evaluated on
the training dataset. However, if assessed on an independent test set, the
score would be much worse. This undesired effect is referred to as overfitting
on the training data and should be avoided. Large models trained on small
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datasets are more prone to overfitting. To lower the overfitting problem,
regularization techniques are usually implemented.

Early stopping

The problem described above can arises when training for too long. However,
the problem would be resolved if model weights from earlier training were
restored into the model.

Early stopping is a technique where the model is evaluated on a validation
dataset after each epoch of training. The model’s weights are not updated
during this step; only the validation accuracy or loss is stored. Training
of the model then continues until the performance on the validation set
does not improve for a predetermined number of epochs. Once training is
terminated, the weights from the best-performing epoch are restored.

Dropout layers

Dropout layers are placed between other layers in a neural network. They
have no weights associated with them. Instead, nodes in the dropout layer
are randomly set to zero during training. For each training step, a new
set of nodes are randomly dropped out. This has a regularization effect on
the network, as the connectivity between the layers is altered, and smaller
subnets in the network emerge. The dropout effect is disabled during
evaluation on the validation or test sets.

3.3 Evaluation metrics

When training a deep learning model, there is a large unknown search space
of hyperparameters and other choices a data architect needs to take. These
choices range from which preprocessing technique to implement, how many
layers are in the model, what type of layers, as well as post-processing
steps. For hyperparameters, we need to choose an appropriate learning rate,
batch size, dropout rate, number of neurons in each layer, which optimizer
to train the model, to name a few. How we arrange our datasets is also
important. How we distribute the data into training, validation, and test
sets, or if we choose to use cross-validation or other ways to split our data.

These are just some of the more important choices to make when designing
a deep learning system for a specific task and set of data. Unfortunately,
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one of the challenges with machine learning, in general, is that there is no
obvious way to determine the optimal parameter for each of these choices.
Instead, a set of models are often trained on different parameters, and
then the performance of each model is compared with each other using a
validation set. Model architecture tuning and hyperparameter optimization
is an iterative process. A set of default parameters are trained and evaluated,
and then the evaluation metric will guide which actions to take.

A set of different metrics are used to measure a model’s performance and
will be explained here.

3.3.1 Confusion matrix

A confusion matrix summarizes the model’s prediction into different classes,
and is suitable for classification tasks. An example confusion matrix with
three classes is shown in Figure 3.6. The rows represent the true classes,
and the columns represent the predicted classes. In some situations, the
number of predicted samples is shown for each class, as in the example
confusion matrix in Figure 3.6. This can be useful as it shows exactly
how many samples are predicted correctly and incorrectly for each class.
However, if the classes are imbalanced, it may, in some cases, be more
beneficial to normalize the predictions in the confusion matrix.
Because the confusion matrix contains a large set of numbers, it may

be difficult and time-consuming to compare the performance of different
models. Hence, it is often desirable to aggregate, or extract, a few metrics
indicating the performance of the models. Many different metrics can be
derived from the confusion matrix, from which some will be presented here.
For a classification problem with n classes, a n× n confusion matrix is

constructed. Each element in the confusion matrix can be referenced as
celli,j, as seen in Figure 3.6.

3.3.2 TP, FP, FN, and TN

In confusion matrices, the terms positive and negative are often used and
are usually linked to an outcome. For instance, positive may refer to a
patient with a disease and negative to a patient without the disease. Based
on the values of true and predicted positive and negative cases, four metrics
can be extracted. First, the true positive (TP) value is the number of
samples where the true class and the predicted class are the same; i.e., the
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Figure 3.6: An example confusion matrix with n = 3 classes. The green boxes indicate
correct predictions, and the red boxes are incorrect predictions. The gray boxes are
different aggregated evaluation metrics used to describe the performance of the current
model.

TP value refers to the number of correct predictions. The false positive
(FP) value is the number of samples that belong to the negative class but
is wrongly predicted as the positive class, hence the name false positive.
The false negative (FN) value is the number of samples that belong to
the positive class but are wrongly predicted as one of the negative classes,
hence the name false negative. Finally, the true negative (TN) value is
the number of negative samples correctly predicted as negative, hence the
name true negative.

In the binary case (n = 2), values for TP, FP, FN, and TN are computed
as described above. However, in a multiclass setting (n ≥ 3), the values for
TP, FP, FN, and TN must be computed for each class [122]. The following
equations will compute the values for TP, FP, FN, and TN for class c:

TPc = cellc,c (3.2)

FPc = (
n∑

P=1
cellP,c)− TPc (3.3)

FNc = (
n∑

Q=1
cellc,Q)− TPc (3.4)
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TNc = (
n∑

P=1

n∑
Q=1

cellP,Q)− TPc − FNc − FPc (3.5)

3.3.3 Total population

The total population is the sum of all elements in the confusion matrix,
corresponding to all instances.

total population =
n∑

P=1

n∑
Q=1

cellP,Q (3.6)

3.3.4 Accuracy

Accuracy is an overall measure of the model’s performance. It is the
proportion of correctly predicted samples and computed as follows:

Accuracy =
∑n
P=1 TPP

total population
(3.7)

Accuracy is a single metric of the model’s overall performance, making it
easy to compare several models and is often used in result tables. However,
if the classes are imbalanced, it may not give an accurate evaluation of the
model.

3.3.5 Precision

Precision is the proportion of positive predictions that are positive. For
example, in Figure 3.6, the precision for class 2 is 92%, which means that
of all the samples the model predicted as class 2, 92% of them belongs to
the true class 2. Precision is sometimes referred to as positive predictive
value (PPV). Precision needs to be computed per class. Expression for
precision for class c is:

Precisionc = TPc
TPc + FPc

(3.8)
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3.3.6 Recall

Recall is the proportion of positive samples that are correctly predicted as
positive. For example, from Figure 3.6, the recall1 of 87% corresponds to
that 87% of the true class 1 instances are predicted as class 1. Recall may
also sometimes be referred to as sensitivity or True Positive Rate (TPR).
Recall needs to be computed per class. Expression for recall for class c is:

Recallc = TPc
TPc + FNc

(3.9)

3.3.7 F1-score

The F1-score is the harmonic mean between precision and recall, computed
as follows:

F1c = 2 · Precisionc ·Recallc
Precisionc +Recallc

= 2 · TPc
2 · TPc + FPc + FNc

(3.10)

F1-score is a popular metric used in many applications, such as informa-
tion retrieval, machine learning, and natural language processing. It is also
well suited to use with imbalanced data.

3.4 Data distribution and augmentation

Machine learning algorithms are, in essence, algorithms that will learn
from experience. This experience is usually gathered from a dataset that
is presented to the algorithm. Thus, the dataset itself is a vital part of
any machine learning system. How we use the data at our disposal and
train our model may impact the resulting model. This section look at some
common ways to process the datasets for deep learning models.

3.4.1 Distribution and splitting

Train, validation, and test

The total dataset is often split into three parts: training, validation, and test
set. The training set is used to optimize the parameters of the model during
training. The validation set is never used for weight adjustments but is used

32



3. Technical background

for selecting hyperparameters and evaluating different architectures. The
final model is then evaluated on the test set for the final result. Depending
on the size of the training dataset, it can sometimes be helpful to re-train
the final model architecture with the chosen hyperparameter settings on
the combined training and validation dataset before evaluation on the test
set.

K-fold cross-validation

In k-fold cross-validation, the dataset is first split into two parts: the
data used for cross-validation and a test set. The samples from the cross-
validation part are then further divided into k number of folds of approxi-
mately equal size. Example of a 5-fold cross-validation setup is depicted
in Figure 3.7. The model is then trained on k − 1 folds and validated on
1 of the folds. This process is repeated for k iterations, with a different
fold used for validation for each iteration [103, 144]. Once all iterations are
completed, we are left with k models. Therefore, it is necessary to re-train
the model architecture with the hyperparameter settings on the combined
data from all k folds.

Iteration1

5-fold Cross-Validation

Training data Validation data

TP1, FP1, FN1

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1
5�
𝑖𝑖=1

5

𝐴𝐴𝑐𝑐𝑐𝑐𝑖𝑖

TP2, FP2, FN2

TP3, FP3, FN3

TP4, FP4, FN4

TP5, FP5, FN5

Results from 
validation data

Fold1 Fold2 Fold3 Fold4 Fold5

Iteration2

Iteration3

Iteration4

Iteration5

Figure 3.7: Example of a 5-fold cross-validation setup. The available data is split into
five equal folds. For each iteration, a model is trained on the blue folds and validated on
the green fold. Results are saved for each iteration and used to judge the performance of
the model.

One of the main advantages with this setup, is that each sample in
the cross-validation data is used as both training and validation. This
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makes it useful in scenarios where only a small amount of data is available.
A downside, however, is the requirement of training k models. This is
especially challenging in a deep learning setting, where each model can take
several days to train.
An index value i is used to keep track of the different iterations, where

i = 1, . . . , k. After a model has completed training on iterationi, the
model is evaluated on the validation data in foldi, and values for TPi,
FPi, and FNi are computed. To compute an overall F1-score for all the
iterations combined, there are two approaches referred to as macro- and
micro-averaging.
For macro-averaging, the values for TPi, FPi, and FNi are used to

compute the F1i-score for each respective iteration according to Equation
3.11. Then, using the F1i-score from all iterations, the macro-average
F1-score is calculated with Equation 3.12.

F1i = 2 · TPi
2 · TPi + FPi + FNi

(3.11)

F1macro−avg = 1
k

k∑
i=1

F1i (3.12)

For micro-averaging, the values for TPi, FPi, and FNi are summarized
for each fold using Equations 3.13, 3.14, and 3.15. Then, the micro-average
F1-score is computed using Equation 3.16. According to Forman and
Scholz [41], this is the recommended way of computing the F1-score in a
cross-validation setup and will produce an unbiased evaluation score.

TPtot =
k∑
i=1

TPi (3.13)

FPtot =
k∑
i=1

FPi (3.14)

FNtot =
k∑
i=1

FNi (3.15)

F1micro−avg = 2 · TPtot
2 · TPtot + FPtot + FNtot

(3.16)

34



3. Technical background

Stratified k-fold cross-validation adds one additional requirement to the
setup. Each fold must contain about the same number of samples from
each class. This ensures that each fold is a good representation of the whole
dataset [41].

3.4.2 Data augmentation

The aim of data augmentation techniques is to utilize existing data and
generate synthetic data in a low-cost manner, usually automatically and
without human intervention. Since the augmented data is based on data
from the actual dataset, it is representative of the specific dataset. The
augmented data will typically be used in training and not during validation
or testing. Having access to a larger training dataset can potentially help
produce more robust models. It is also possible to only augment data from
a few of the classes in the dataset to help balance an imbalanced set.
For image data, the most common augmentation technique consists of

rotating and mirroring. However, it can only be applied to rotationally
invariant data, that is, images where the semantic meaning or value does
not change when arbitrarily rotated. If an image does not change its
class after rotation, the original label for the image can be reused for the
augmented image. It is possible to rotate the image with an arbitrary
number of degrees, but then the resulting image is not square anymore,
making it necessary to crop the image before feeding it to a neural network.
By limiting the rotations to factors of 90 degrees and flipping horizontal
and vertically, it is possible to augment an input image in eight unique
ways.

A range of other augmentation techniques also exist. For example, in
color augmentation, the RGB or HSV values of the image are slightly
altered, changing the image’s color. Random cropping is a technique where
random sub-images are extracted from a larger image, and all sub-images
represent the same category and therefore use the same label. It is also
possible to add random noise to the input during training in a technique
known as noise perturbation. For all augmentation techniques, care must
be taken to not alter the features of the image to such an extent that it no
longer represents its attached label.
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3.5 Learning techniques

There are many techniques and methods used to train a model on a specific
dataset. Often, the type of labels available for the dataset, or the absence
of labels, influence the choice of method used to train the model. Some of
the most common types will be presented here.

3.5.1 Supervised learning

In a supervised learning setting, we want to train a model on a dataset
consisting of pairs of input samples and labels. The input set X contains a
large collection of samples x, and a corresponding set Y contains one label
y per input sample. There must exist some relationship between a sample
x and its target label y, represented with the mapping function y = f(x).
The goal is to train a model to approximate this mapping function as
ŷ = fmodel(x), and to use it in the future for classification of previously
unseen input samples. Supervised learning is the most widely used learning
algorithm to train neural networks and deep learning models.

During training, the labels in Y are compared with the model’s prediction.
Then, a loss function is used to calculate a distance measure between the
model’s prediction and the target. This distance, often referred to as error
or loss, is then used to optimize the model’s weights so that the distance
decreases over time. The name supervised stems from the fact that the
learning algorithm is given a set of ground truth labels by a supervisor, for
example, a human-annotated label.

3.5.2 Unsupervised learning

In unsupervised learning, the goal is to find compact representations,
clusters, and groups in the data without having any knowledge or labels
on a training set. Therefore, unsupervised learning is harder to solve than
supervised learning due to the lack of labels. In supervised learning, we
can present the model with an image, and the target label will dictate
what features within the image we want the model to learn. However, in
unsupervised learning, we do not have such a luxury. Instead, we must
alter the model’s architecture and use constraints to force the model to
solve the desired task.
Unsupervised learning can be used to solve different problems, such as

dimensionality reduction and clustering. In dimensionality reduction, we
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want to learn a model which can transform the input data into a new
representation. Usually, there is some constraint in the model, forcing it to
produce a simpler representation of the input. These new representations
are often called low-dimensional representation, or sparse representation
[44]. During learning, we want to preserve as much information regarding
the input sample x as possible but still represent it in a simpler way. This
is useful, as the new representation may be more accessible than x itself
and give insight into the structure of the underlying data. In clustering, an
algorithm will group similar input samples into categories based on a given
similarity measure. The model will use the structure and pattern of the
samples to group them.

There exist many popular probabilistic methods for unsupervised learning,
such as k-means clustering, hierarchical cluster analysis (HCA), principal
component analysis (PCA), and singular value decomposition (SVD). In
addition, there are also unsupervised methods based on neural networks,
e.g., restricted Boltzmann machine (RBM) and autoencoders. There are
many applications of unsupervised learning, and some examples of usage
ranges from content-based fake news identification [54], learning of probably
symmetric deformable 3D objects from images [141], identify phases and
phases transitions of many-body systems [135], anomaly detection [43], to
unsupervised image segmentation [152] and image denoising [30].

3.5.3 Semi-supervised learning

Semi-supervised learning sits between supervised and unsupervised learning.
It has access to a limited set of labels to optimize its parameters, but the
majority of the training comes from unlabeled inputs. Semi-supervised
approaches are usually pursued when the available labeled data is too small
for a purely supervised learning setup. I.e., the model’s performance will
increase by incorporating the unlabeled data [93].
A study by Ligthart et al. [72] investigated the effectiveness of semi-

supervised learning methods for opinion spam classification. They conclude
that the "self-training algorithm can outperform traditional supervised
classification methods when limited labeled data is available" and continue
to state that "the proposed semi-supervised approaches can mitigate labeling
efforts while retaining high-performance" [72].

There exist many different semi-supervised learning methods. One of
these is called self-training (self-labeling or self-teaching is also used),
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where a model is first trained in a supervised manner on a labeled dataset.
Afterward, the trained model is used to annotate unlabeled data. This
automatically generated labeled data can then be used as training data.
This is an iterative process that may be repeated several times.

Another example of an iterative learning process is online human-assisted
machine learning, or sometimes human-aided learning. First, a model
is trained through unsupervised or semi-supervised learning techniques,
followed by automatic annotation of unlabeled data. Next, a human will
manually examine the model’s prediction and correct the misclassified
samples. If this were, for example, a segmentation task, the model would
predict a ROI consisting of thousands of pixels. The human, however, may
be able to classify the entire ROI in a short amount of time, therefore
correcting a large number of data at once. Thus, human-assisted learning
has the potential as an efficient method of generating a large dataset,
especially in fields requiring expert input, like medical images.
Villamizar et al. built a classifier that progressively learned a face and

object detection algorithm. During training, human intervention was used
to assist the learning by discarding false-positive training samples [130].

3.5.4 Weakly-supervised learning

As mentioned, it is not always feasible getting enough labels of sufficient
quality. An alternative to unsupervised learning is weakly supervised
learning. This technique, sometimes referred to as weak supervision, uses
labels of lower quality to train the models. These low-quality labels are
cheaper and more efficient to produce but are imprecise or inaccurate in
nature.

The labels may be sourced through crowdsourcing, where a large group
of non-experts will collectively sample a large dataset. However, because
there is little control over the labeling process and the use of non-experts,
the labels may be inaccurate.
Another source of weak labels is diagnostic information and patient

follow-up data. For example, a pathologist will grade and stage WSIs,
but will usually not provide any localization data with the diagnosis. A
pathologist will also record follow-up data such as recurrence and disease
progression. However, these outcomes are not linked to a specific part of
the WSIs. Using the diagnostic information and follow-up data on all parts
of a WSI may not be completely accurate, and the labels for the extracted
tiles would therefore be considered a weak label.
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3.5.5 Domain adaptation

Domain adaptation, also known as transfer learning, is a technique that
utilizes knowledge from one domain and transfers it to another domain. It
is a very powerful method, easy to implement, and provides good results;
and is thus a popular technique.
An overview of the domain adaptation setup is shown in Figure 3.8.

First, a model is trained on a large dataset from one knowledge domain, for
example, the VGG16 model from Chapter 3.2.4. The model is trained on
the dataset to solve a specific task referred to as Task A. Next, we remove
the last layers of the model and substitute them with new layers with
random initialization. The model is then trained on a new dataset from
another domain. The updated model is trained on the new dataset to solve
a different task referred to as Task B. Training of the initial model on Task
A is referred to as pre-training, while training the updated model on Task
B is called fine-tuning. For transfer learning to work efficiently, the input
datatype for tasks A and B must be the same. It is usually implemented in
a situation where there exists a large labeled dataset for Task A but only a
small limited dataset for Task B.

Task A

Task B

Classification network

New classification network

Convolutional network

Knowledge transfer

Pre-trained convolutional network

Large
Dataset

Small
Dataset

For example, the 
ImageNet dataset

For example, a cancer 
diagnosis dataset

Model 
prediction

Model 
prediction

OutputInput

Figure 3.8: Overview of domain adaptation setup. A model is trained on a large dataset
to solve Task A. Then, the knowledge is transferred to another domain, the last layers of
the model are discarded and replaced with new layers. The new model is then fine-tuned
on Task B.

Because the majority of the parameters in the model are pre-trained,
training time is reduced during fine-tuning. In addition, when compared
to training a model on Task B from scratch, it is common to see higher
starting performance (i.e., the accuracy of the model on Task B is higher
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at the start of training) and higher final accuracy on Task B when using
transfer learning [92].
During fine-tuning, it is possible to have the pre-trained layers frozen.

This has the effect that the optimization process will not alter any of the
weights in the pre-trained layers, and only the newly added layers will
be updated. Opposite to this is to unfreeze all layers. This results in
all parameters in the model being updated during fine-tuning. It is also
possible to freeze most of the layers in the model but unfreeze some of
the last layers. Freezing the pre-trained layers results in faster training as
fewer parameters need to be learned. However, by unfreezing the weights,
it may allow better adaptation to Task B, at the cost of longer training
time. Depending on the dataset for Task B, unfreezing may also result in
overfitting. Another advantage with freezing the pre-trained parameters
and a reduction in trainable parameters is that the model consumes less
memory on the GPU, which may be limited in some circumstances.

Because training a model from scratch on Task A is very time-consuming
and requires advanced and expensive hardware, it is common for researchers
to share the pre-trained weights and models. These are referred to as pre-
trained models and are openly shared for others to download and leverage
in their research. For computer vision and image processing tasks, most of
these pre-trained models are pre-trained on the ImageNet dataset.
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Figure 4.1: An overview of the proposed pipeline, where the topic of this section is
highlighted.

This chapter presents the data material used in this work. The histological
whole-slide images, highlighted in Figure 4.1, acts as the input to the
proposed pipeline. An overview of the process used to create the WSIs is
presented, the quality aspect of the material, how the annotation process
was conducted, the ethical approval, and finally, an overview of how the
data material was split into the different datasets is shown.
In this thesis, the data material refers to the 314 WSIs, whereas the

different datasets refer to subsets extracted from the data material.

4.1 Histological whole-slide images

The data material consists of 314 digital whole-slide images from patients
diagnosed with primary papillary NMIBC. All slides are from unique
patients, where the tissue is removed through transurethral resection of
bladder tumor. The data were collected at the Department of Pathology,
Stavanger University Hospital, Norway, in the period between 01.01.2002
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and 01.01.2011. The biopsies were formalin-fixed and paraffin-embedded,
from which 4 µm thick sections were cut and stained either with hematoxylin,
eosin, and saffron (HES) or hematoxylin and eosin (H&E). All WSI have
gone through a manual quality check at the department of pathology,
Stavanger University Hospital, and only high-quality slides, with little or
no blur, have been included in the data material. All WSI are from the
same laboratory, and the variation in staining color is relatively low.

All slides were diagnosed and graded according to WHO73 and WHO04
[7], cancer stage, and follow-up data on recurrence and disease progression
are recorded. Only patients diagnosed with stage Ta or T1, i.e., non-muscle
invasive bladder cancer, are included in the data material. A small section
of the available slide-level diagnosis are shown in Figure 4.2.

Year WHO73 WHO04 Stage Recurrence Time to rec Stage progr Time to progr
2009 Grade 1 Low grade TA no 75 no 79
2010 Grade 1 Low grade TA yes 66 no 76
2004 Grade 2 Low grade TA no 32 no 49
2007 Grade 2 Low grade TA no 74 no 102
2009 Grade 2 Low grade TA no 80 no 83
2009 Grade 2 Low grade TA yes 8 no 18
2010 Grade 2 Low grade TA yes 4 yes 4
2006 Grade 3 High grade T1 no 109 no 116
2004 Grade 3 High grade T1 yes 7 yes 59
2009 Grade 3 High grade T1 yes 8 yes 26
2007 Grade 3 High grade TA no 93 no 111
2009 Grade 3 High grade TA no 76 no 85
2004 Grade 3 High grade TA yes 4 yes 16
2003 Grade 3 High grade T1 yes 1 no 50

Figure 4.2: A small section of the available diagnostic labels for the data material. The
WHO04 labels were used in this work.

4.2 SCN format

The WSIs are captured using a slide scanner with the onboard image
processing sensor, which creates a digital image file, much like a regular
digital camera. However, the captured images produced by a slide scanner
are much larger than a regular photograph and much more complex, with
many levels incorporated in the same file. Because of these differences, a
slide scanner can not store the captured image in a typical image format
like JPEG or PNG. Instead, it is common that the slide scanner stores the
images in vendor-specific file formats designed for these images.
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Examples of vendor-specific file formats are the slide scanners manufac-
tured by Zeiss, which saves the images using the CZI image format [148], or
by Hamamatsu, which stores the captured images in an NDPI file format
[50]. There also exist standards for storage and transmission of medical
images, like, for example, the Digital Imaging and Communications in
Medicine (DICOM) standard [85].

The slides are digitized using a Leica SCN400 slide scanner, and stored
in the vendor-specific SCN file format. These images use an XML file to
define the structure within the file, which consists of the image pyramid,
dimensions of each level, and resolution, to name a few. The images within
the SCN file are stored in a single-file pyramidal tiled BigTIFF image.
While regular TIFF format uses 32-bit pointers to store the offset values,
limiting the file size to 4 GB, the BigTIFF format, however, uses 64-bit
offsets and supports file sizes up to 18 exabytes (1.8×1010 GB) [11].

These WSI images are gigapixel images with a typical size of 100 000×
100 000 pixels, stored as a pyramidal tiled image with several down-sampled
versions of the base image in the same file to accommodate for rapid panning
and zooming. In the SCN format, each level in the file is down-sampled by
a factor of 4 from the previous level. The pyramidal structure of the WSI
with three levels is depicted in Figure 4.3.

Due to the vendor-specific file format, WSIs can not be opened using
traditional image software. Instead, specific software is needed to read
the images. To open the SCN files, Leica has a software called Aperio
ImageScope SCN Viewer, which was used as the primary WSI viewer at the
beginning of this work [67]. See section 4.5 for more info on the software.

4.3 Magnification and resolution

To examine the stained specimen, it is necessary to enlarge the apparent
size of the tissue, allowing a pathologist to view the individual cells of
the tissue. This is done either by a microscope or by zooming in a digital
WSI to the desired resolution. The ratio between the apparent size of the
tissue, and its true size, is called optical magnification. It is a dimensionless
number but usually referred to as the power of magnification (e.g., 400x
magnification).

For a microscope, a series of lenses and light is used to magnify an object.
The eyepiece contains an ocular lens, often with a 10x magnification power.
Above the platform is a rotating wheel containing one to five objective lenses
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Figure 4.3: WSI images are stored in a pyramidal format, where the base image
corresponds to the highest magnification level. The right-hand side shows a set of three
tiles extracted so that the center of the tile corresponds to the same physical area in the
WSI.

with different magnification powers. The total magnification is the product
of the ocular lens magnification and the objective lens magnification. For
example, a 10x ocular lens and a 40x objective lens will produce a total
magnification of 400x.
Some papers refer only to the objective magnification when describing

what resolution they use [19, 78, 115], while others use the total magnifica-
tions [33, 74, 146]. All magnification levels in this thesis are referring to
the total magnification scale.

Even more confusing is the fact that slide scanners by different manufac-
turers create WSIs where the stated total magnification does not reflect
the apparent size of the produced images. Even though this is not a huge
problem in this work, as all WSIs in the data material are produced at the
same laboratory, using the same slide scanner. However, it is mentioned
because it is important to be aware of the situation, in the case any of
the proposed models should be evaluated on external data. To try and
avoid confusion, Sellaro et al. [108] suggest instead using microns/pixel as
a reference point.

In this work, tiles from different magnification levels are used, depending
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on the paper. In Paper 1, only tiles from magnification level 400x are used,
while the remaining papers utilize tiles from three levels. The levels in the
image pyramid correspond to a magnification level of 25x, 100x, and 400x
magnification, which is equivalent to a spatial resolution of 4 µm/pixel, 1
µm/pixel, and 0.25 µm/pixel, respectively.

For the tissue models in Paper 1-3, we used a tile size of 128 × 128 pixels,
which for the three magnification levels correspond to (512 µm × 512 µm),
(128 µm × 128 µm), and (32 µm × 32 µm). Example tiles can be seen in
Figure 2.2.
For the diagnostic model in Paper 5, we had access to a much larger

library of WSIs, and thus a larger tile size of 256 × 256 pixels was chosen.
For the three magnification levels, this corresponds to (1024 µm × 1024
µm), (256 µm × 256 µm), and (64 µm × 64 µm). Example of such tiles
can be seen in Figure 2.3.

4.3.1 VIPS image library

Aperio ImageScope was exclusively used for viewing and annotation of
the WSIs. However, by using proprietary software, one is limited to
the functionality within the software. It was, therefore, necessary with
additional software to be able to process the images in Python. For this,
the open-source image processing software called VIPS (VASARI Image
Processing System) [84] was used, which has a Python binding called
PyVips [101].

The use of the VIPS library allows us to open the SCN images in a Python
environment. It has a long list of supported image processing functions
and can extract the base image from the SCN-file and the down-sampled
versions, a helpful ability used in developing the multiscale methods.

One of the main reasons to use the VIPS library, besides opening the
SCN-files, lies in its architecture and multi-threading capabilities. At the
core of VIPS is the image-processing library called libvips, which is very
memory efficient and fast. Instead of loading the entire image into the
computer’s memory, it only loads the specific parts of the image which
need processing. Also, the library does not execute one command at a
time; instead, it stores each command in a pipeline. When the end of the
pipeline is connected to a destination, the entire pipeline is executed at
once in parallel. In a benchmark comparison, the PyVips library was more
than seven times faster than OpenCV [102]. Another comparison from
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[101] specifies that "PyVips is typically 3x faster than ImageMagick and
needs 5x less memory".

4.4 Tissue and image quality

The produced digital slides are not without faults and may include artifacts
that impact the overall quality. The quality of a WSI can be divided into
two main components; tissue quality and image quality.

The first component, tissue quality, is the quality of the tissue specimen
which is placed on the glass slide. Unwanted artifacts may be introduced
here either from the TURBT procedure or the preparation of the specimen.
Examples of tissue artifacts include cauterized or damaged areas, folded
tissue, torn tissue, pen marks, or other artifacts in the WSIs. Inconsistent
stain coloring is also a quite common problem. Some examples are shown
in Figure 4.4. Because of the cauterization process, WSIs from bladder
cancer often contain more damaged areas than other cancer types, like
breast cancer or prostate cancer. Also, bladder cancer WSIs include non-
diagnostic classes like blood. In addition, muscle tissue and stroma are
used for staging of urothelium carcinoma but not for grading. If any of
these unwanted tissue classes or foreign objects were included in a diagnosis
system, they could negatively impact the result.
The second component is the quality of the image, and artifacts may

be introduced during the scanning of the glass slide. Image-based arti-
facts include areas with blur and out-of-focus areas. To mitigate such
inconsistencies, the pathology department, which has produced the WSIs,
has strict guidelines to produce WSIs of high quality. WSIs are inspected
post scanning, and if there are any problems with the WSI, it will be
rescanned. Also, high-quality equipment manufactured by Leica is used for
the scanning. We believe the WSIs included in our dataset consist of high
image quality; however, small parts may be compromised. An evaluation
of the image quality has not been conducted on the dataset used in this
manuscript, but this is considered for the future.

Because tissue quality is a much more significant problem in our dataset
than image quality, we have focused on developing our tissue segmentation
algorithm and then utilizing this for detecting and separating high-quality
urothelium tissue from other unwanted areas in the WSI.

The image quality of the dataset used in this study will be evaluated in
the future. In some rare cases, issues like out-of-focus or noise can appear
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in parts of the WSI. It is both of interest to quantitatively measure the
amount of this and see how the proposed system reacts to those areas. A
system for identifying areas with image quality could also potentially be
used to mask out these areas if they negatively impact the performance of
the proposed system.

Pen marks

Inconsistent stain color

Folded tissueBurnt and damaged tissue

Blur and out of focusDebris and artifacts

Figure 4.4: Examples of tissue- and image artifacts found in some of the histological
images.

4.5 Annotations

Labeled ground truth data is important both for training the models but
even more critical for evaluations of the models. The labeling process in
this work used two approaches. First, the Aperio ImageScope was used,
and later, an in-house developed software called UiS-histology was used.

4.5.1 Aperio ImageScope

Since the WSIs in the data material were scanned using a Leica slide-
scanner, it was natural to use Leica’s own slide viewer program called
Aperio ImageScope SCN Viewer [67]. In addition to navigating the WSIs,
the program has a lot of other features. The most helpful feature for us
was the free-hand drawing tool. This tool was used to annotate polygon
regions in the WSI, and the coordinates were stored in an XML file. A
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Python function was created to read the coordinates and create a binary
mask of the regions. A screenshot of the ImageScope software with an
example annotation region is shown in Figure 4.5.

Figure 4.5: The Aperio ImageScope software is used in this work for viewing and
annotating whole-slide images. The software has a free-hand drawing tool used for
annotating regions on the WSI. A region is shown in green for demonstration (but is not
used).

Even though the free-hand drawing tool was working well, the use of
proprietary software provided some challenges. First, both the WSIs and
software needed to be stored on the same computer. Secondly, because of
strict guidelines at the hospital, installation of proprietary software was
not possible. These challenges were solved by transferring a subset of the
WSIs to a laptop, installing the software, and bringing the laptop to the
hospital for annotation.

4.5.2 UiS-histology

Due to the problems mentioned with using a proprietary program, and be-
cause other projects at the Biomedical data analysis laboratory (BMDLab)
at the university utilize histological images, there was a need for an easier
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Figure 4.6: The UiS-histology software developed at UiS is accessible via an internet
browser. The tools allow for viewing and annotating WSIs, as well as giving specific
TAGs to each region. The screenshot shows multiple regions with different types of TAGs
illustrated with different colors annotated by a pathologist.

way to handle this. An in-house tool for viewing and annotating WSIs was
developed at the department, and about halfway through this thesis work, a
new annotation tool was available. This tool is referred to as UiS-histology,
and a screenshot can be seen in Figure 4.6. The UiS-histology tool has
many advantages. All WSIs are stored locally at the university and are
remotely available through a web browser. In addition, free-hand anno-
tation is possible without installing any software, and annotated regions
can be tagged with different classes (e.g., "urothelium," "muscle tissue," or
"high-grade").

4.6 Ethical approval

Ethical approval from Regional Committees for Medical and Health Re-
search Ethics (REC), Norway, ref.no.: 2011/1539, regulated in accordance
to the Norwegian Health Research Act. As this is a retrospective study,
Ethical approval was given without written consent from the patients. All
insights in a patient’s journal are monitored electronically, and all except
the treating physician were required to state the reason why they needed to
read that patient’s journal. This log is always open for the patient to view.
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All patients were checked if any had registered themselves in the register
for research reservation from the National Institute of Health (Registry of
Withdrawal from Biological Research Consent, Norway).

4.7 Dataset overview

The data material described in this chapter, consisting of 314 WSIs and
diagnostic labels, is the basis for all the datasets used in the published
papers. An overview of how the WSIs are distributed is shown in Figure 4.7,
and a description of each dataset follows below. A more detailed description
of how tiles are extracted is given under each respective paper in sections
5, 6, and 7.

The names Dataset A, B, C, . . . , are not used in the papers but introduced
here for improved readability and will be used throughout the thesis.

For training and evaluation of the various models, several training, vali-
dation, and test sets have been constructed. Some of the WSIs are present
in more than one dataset; however, care has been taken into account to
ensure no cross-contamination between any of the training and testing sets
of the same model.
WSIs included in Dataset E, F, and G were randomly selected and

stratified to include the same ratio of all diagnostic outcomes based on the
WHO73 and WHO04 grading, stage, recurrence, and disease progression,
to represent the data material best.

Dataset A – Training

In Dataset A, 48 WSIs were extracted randomly from the data material
and used as unlabelled training data to train an autoencoder in Paper 1.

From the 48 WSIs in Dataset A, 26 are also present in Dataset B, two in
Dataset C, three in Dataset D, 35 in Dataset E, seven in Dataset F, and
four in Dataset G. The WSIs shared between Dataset A and B, are only
used for training data in Paper 1, and separate WSIs are used for testing.
The WSIs shared between Dataset A and the remaining datasets C-G are
separate models.
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Dataset B – Training, validation and test

Dataset B consists of 32 WSIs with a total of 239 annotated regions be-
longing to the five foreground tissue classes (urothelium, stroma, muscle,
damaged tissue, and blood). The dataset was created using the Aperio Im-
ageScope over multiple sessions at Stavanger University Hospital. Together
with a pathologist, we annotated regions in as many WSIs as possible over
the limited time scheduled for the task. Regions for the background class
were randomly selected afterward and are different between the papers.

Tiles are extracted from the annotated regions and act as the basis
dataset used in Paper 1-3. For Paper 1 and 3, the data is split on WSI
level into training and test set, and for Paper 2, all data is used as training
and validation data using cross-validation. Because the three papers uti-
lize different methods (autoencoder, cross-validation, and semi-supervised
learning, respectively), the number of extracted tiles differs between the
papers.
Some tissue classes are more sparse in the tissue specimen, and thus

harder to find large regions suitable for annotation. This creates a class
imbalance, where the classes of stroma and muscle tissue have fewer samples
than the remaining classes.

The dataset was annotated on the 400x magnification scale and is consid-
ered strongly labeled on this level. In Papers 2 and 3, the dataset is used
with multiscale models utilizing lower magnification levels (25x, 100x), and
by keeping the tile size the same, the lower magnification tiles will have a
wider field of view, allowing for more context of the surrounding tissue to
be included. Consequently, these tiles will, in some cases, include several
classes. For these scales, the dataset is considered weakly labeled.
From the 32 WSIs in Dataset B, 29 WSIs are present in Dataset E,

and three are present in Dataset F. Dataset E and F are the training and
validation datasets for the diagnostic model, where the TRI-model trained
on dataset B is used as the tissue model. However, none of the WSIs
present in Dataset B is present in the test dataset for the diagnostic model
(Dataset G).

Dataset C – Test

This dataset consists of seven unlabeled WSIs, used for testing the tissue
model in Paper 2. From the seven WSIs in Dataset C, it shares two WSIs
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with Dataset A and two WSIs with Dataset D. However, these datasets are
used on separate models.

Ideally, we would have annotations of all the tissue classes in these WSIs,
but this was not possible. Later, after Paper 1-3 were published, using
the UiS-histology annotation tool, a pathologist annotated all tissue in one
example WSI from Dataset C.

Dataset D – Training

This dataset consists of 46 unlabeled WSIs, used for training data in Paper
3. From the 46 WSIs in Dataset D, three WSIs are present in Dataset A,
two in Dataset C, 29 in Dataset E, two in Dataset F, and five WSIs in
Dataset G. However, these are used to train separate models, not in conflict
with each other.

Dataset E – Training

This dataset consists of 220 WSIs and corresponding WHO04 labels used
to train the diagnostic model in Paper 5. It consists of 124 low-grade and
96 high-grade WSIs.

From the 220 WSIs in Dataset E, 62 WSIs are present in either Dataset
A or D; however, these are unrelated to each other. In addition, 29 of the
WSIs in Dataset E are present in Dataset B. Dataset B is used to train the
tissue model used in the diagnostic pipeline.

Dataset F – Validation

This dataset consists of 30 WSIs and corresponding WHO04 labels used
as validation data for the diagnostic model in Paper 5. It consists of 17
low-grade and 13 high-grade WSIs.

From the 30 WSIs in Dataset F, nine WSIs are present in either Dataset
A or D; however, these are unrelated to each other. In addition, two of the
WSIs in Dataset F are present in Dataset B. Dataset B is used to train the
tissue model used in the diagnostic pipeline.
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Dataset G – Test

This dataset consists of 50 WSIs and corresponding WHO04 labels used as
test data for the diagnostic model in Paper 5. It consists of 28 low-grade
and 22 high-grade WSIs.

In addition to the slide-level WHO04 labels, a pathologist has annotated
30 low- and high-grade regions in 14 WSIs (seven low-grade and seven
high-grade WSIs), in a subset of Dataset G, referred to as the segmentation
test set.

From the 50 WSIs in Dataset G, four of the WSIs are present in Dataset
A, and five in Dataset D. These datasets are unrelated.
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Figure 4.7: Overview of all datasets used in each paper. Which paper each dataset is
used in is written on top of the box, and the name of the dataset in the paper is specified
inside the box.
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Tissue segmentation
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Figure 5.1: An overview of the proposed pipeline, where the topic of this section is
highlighted.

The following chapter is dedicated to the topic of tissue segmentation; the
blue highlighted section in Figure 5.1. Paper 1-3 are all dedicated to the
topic, and the main methods, results, and contributions from each will be
presented. In the thesis, these papers are part of the sub-objectives SO1,
SO2 and SO3.

SO1: Create an automated system for distinguishing between the different
tissue types present in histological whole-slide images of urothelial
carcinoma.

SO2: Explore different approaches for unsupervised and semi-supervised
learning techniques to deal with the lack of detailed region-based
annotation data.

SO3: Investigate the use of multiscale models in WSI processing by utilizing
several magnification scales.
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5.1 Contribution overview

The objective is to differentiate the tissue classes in WSI from NMIBC
automatically. A set of six classes were selected in cooperation with
pathologists at the Stavanger University Hospital: urothelium, stroma,
muscle, damaged tissue, blood, and background. The urothelium is the
diagnostic relevant tissue class for grading bladder cancer, and urothelium,
stroma, and muscle tissue are all used in staging bladder cancer.
A system capable of identifying these tissue types and visualizing their

location in the WSI will have multiple benefits. First, it can guide the
pathologists to the diagnostic relevant areas of the WSI, making their
workflow more efficient. Also, it can be used to find and automatically
extract these diagnostic relevant areas and used as input in a computer-
aided diagnostic (CAD) system. Damaged tissue can potentially impact the
diagnostic predictions negatively, and a system should therefore be able to
identify these areas and exclude them from further analyses. Furthermore,
identification of muscle tissue in the WSIs would also be beneficial. It plays
a vital role in the staging of bladder cancer, as pathologists want to know
whether the tumor has infiltrated the muscle tissue. Also, in the pathologic
report, pathologists must specify whether muscle tissue is present or absent
in the specimen [6]. Muscle tissue is usually relatively sparse in the WSI,
and it can be time-consuming to get a complete overview of its locations.
However, with the help of segmented tissue images, it can be verified in a
short amount of time.

5.2 Paper 1 – Autoencoder

In this section, the contributions in Paper 1 are presented, where a method
for automatic classification of WSI into six different classes is proposed.
The method is based on CNN, firstly trained unsupervised using a large
unlabelled dataset by utilizing an autoencoder. Thereafter, a smaller
labeled dataset is used to fine-tune the final fully-connected layers from
the low dimensional latent vector of the autoencoder, providing an output
as a probability score for each of the six classes, suitable for automatically
defining regions of interests in WSI. The principle of autoencoder models
is explained in Chapter 3.2.2.
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5.2.1 Data material

The proposed method in Paper 1 uses two datasets, referred to as Dataset
A and Dataset B in Figure 4.7. For both datasets, non-overlapping tiles
of size 128 × 128 pixels are extracted at the 400x magnification level,
corresponding to a spatial resolution of 32 µm × 32 µm.

The first dataset is a large unlabeled dataset used to train the autoencoder
model from scratch. This dataset is referred to as train-ae, and consists
of 7 130 527 unlabeled tiles extracted from the 48 WSIs in Dataset A.
On the other hand, Dataset B is a strongly labeled dataset used to fine-
tune the encoder-classifier model. To compensate for the class imbalance,
tiles belonging to the stroma and muscle classes were augmented by using
overlapping tiles during extraction and rotation and mirroring the extracted
tiles. Augmentation was not performed on the test set.

Dataset B was split into a training set with 145 343 tiles after augmenta-
tion referred to as train-set2 and a test set with 8 463 tiles called test-set.
The split was done on WSI-level, and none of the WSIs from Dataset A or
train-set2 was part of the test-set to avoid cross-contamination between
training and test data.

5.2.2 Method

The architecture of the best performing encoder-decoder model is depicted in
Figure 5.2. The encoder consists of several convolutional layers, max-pooling
layers, dropout, and fully-connected layers. The decoder consists of the same
layers but in reverse order and uses unpooling and deconvolutional layers
instead. An extensive grid search was conducted as the first experiment
in the paper to find the optimal number of convolutional layers and the
size of the latent vector. In Figure 5.2, a tile is extracted from the input
WSI and used as input to the autoencoder. On the right-hand side, the
reconstructed output tile is visible.
There is a strong correlation between the size of the latent vector and

the loss between the input and reconstructed output. With a large enough
latent vector, the loss approaches zero, and almost perfect reconstruction
can be achieved. However, the goal is not to use the latent vector for
reconstruction but rather for classification in the next step. Hence, a
small latent space was chosen, which force the network to extract only the
essential features of the input and preserve these in the vector.

57



5. Tissue segmentation

Convolution

128x128x8

64x64x8

Output tile
(128x128x3)

Decoder

32x32x8

Max Pooling

Input Training model
128x128x8

Dropout

64x64x8

Input tile
(128x128x3)

4096

Latent 
vector

Encoder

2048
1024

32x32x8
40962048

1024

Fully-connected De-convolution Un-pooling

Visualization of 
latent vector

Step 1: Pre-training

Figure 5.2: The autoencoder model consists of two main parts: the encoder and the
decoder. Tiles are extracted from the WSI and fed to the encoder network, compressing
the data into the latent vector. The decoder network will reconstruct the input image
from the latent vector. The difference between the input and reconstructed output
constitutes the loss of the model used to train the model. This step is referred to as
pre-training of the model.

After training the encoder-decoder network, the decoder part is sub-
stituted by a new classification network as depicted in Figure 5.3. The
classification network consists of three fully-connected layers, where the
output layer uses a softmax activation function, yielding a probability
score for each class. This encoder-classifier model constitutes the proposed
CNN-model.

To find a suitable architecture and appropriate hyperparameters, a large
grid search was conducted consisting of 36 different encoder-decoder models
and 162 encoder-classifier models. The grid search included different latent
vector sizes, learning rates, dropout rates, different numbers of convolutional
layers in the encoder and decoder, different numbers of fully-connected
layers in the classifier, and freezing and unfreezing the encoder during
fine-tuning. The specific values for all parameters are reported in Paper 1.
To reduce both computational time and search space, a preliminary

search was set up with some limitations. A reduced version of the train-ae
dataset was used to decrease the processing time, and each model was only
trained for 50 epochs, and hyperparameters that showed poor performance
on several models were excluded to narrow down the search space.
The resulting architecture from the grid search was trained once more.

First, the autoencoder was trained on the full train-ae dataset for 100
epochs, followed by fine-tuning of the encoder-classifier on the train-set2
dataset for another 600 epochs. Since the grid search showed the best results
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Figure 5.3: The decoder network is exchanged with a classification network. The
encoder network will compress the input tile to the latent vector, and the classification
network will classify the tile into one of the six classes. During training, this step is
referred to as fine-tuning. The finished model can classify new WSIs by outputting a
probability score for each of the six classes used to create heatmaps.

when the encoder was not frozen during fine-tuning, both the encoder and
classifier were trained during this step.
The final model can classify entire WSIs tile by tile, with or without

overlapping, and produce heatmaps, visualizing each tissue class and its
location in the image. Such maps can provide useful information to a
pathologist during visual inspection. As seen in Figure 5.3, one heatmap
is created for each class. The maps were first filtered using a gaussian
filter, and then a thresholding operation was performed with a limit of 0.8,
setting all predictions below this threshold to zero. This ensures that only
predictions of 0.8 or higher are visible in the final heatmaps.

5.2.3 Result

The proposed CNN-model achieved an F1-score of 93.8% on the urothelium
class and an average F1-score of 93.4% over all six tissue classes. The
precision, recall, and F1-score of each class is shown in Table 5.1.

The model was further used to create heatmaps from three unseen WSIs,
and visualize each tissue class in the image. Figure 5.4 shows the WSIs
with their corresponding heatmaps. Only the urothelium heatmaps are
shown here, but heatmaps for all classes are shown in Paper 1.
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Table 5.1: Detailed classification results from the model trained using 10% dropout
rate.

Class Precision Recall F1-Score

Urothelium 0.924 0.952 0.938
Stroma 0.897 0.929 0.913
Damaged 0.925 0.927 0.926
Muscle 0.980 0.714 0.826
Blood 0.996 0.991 0.994
Background 0.990 0.988 0.989

Average total 0.936 0.935 0.934

5.2.4 Conclusion

This paper proposes a method for automatically classifying tile-segments
of histopathological WSI of urinary bladder cancer into six different classes
using a CNN-based model.

The use of autoencoder for pretraining followed by supervised fine-tuning
for tissue classification seems promising with an F1-score of 93.4%. Perfor-
mance of the heatmaps can not be quantitative measured but have been
visually inspected by pathologists and is considered very promising.

Further work will include an effort to improve the classifier, and other
methods such as a multiscale approach are considered.
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Original image Urothelium heatmap

1.0

0.9

0.8

Figure 5.4: Urothelium heatmaps shown for three WSIs. Heatmaps for the remaining
tissue classes are shown in Paper 1. Note that only urothelium with a probability score
of 80% and higher are shown.

5.3 Paper 2 – Multiscale model

In this section, the contributions in Paper 2 are presented. The objective of
this paper was to explore if it was possible to reduce the training time by
leveraging on pre-trained models rather than training an autoencoder model
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from scratch. A second objective was to investigate the use of multiscale in
the input tiles. The tile size is kept constant over the scales so that the
field of view is increased with decreased resolution.

Tiles are extracted from three magnification scales: 25x, 100x, and 400x.
When a tile is saved from the region, the corresponding tiles from 25x and
100x magnification were also extracted in such a manner that the center
pixel is the same in all three magnification levels, as can be seen in the
right-half of figure 4.3.

5.3.1 Data material

The methods in this paper are trained and evaluated on Dataset B from
Figure 4.7, and further demonstrated on Dataset C.

Due to the small size of Dataset B, stratified 5-fold cross-validation was
implemented. This way, all tiles are used both for training and validation.
Stratification is performed on slide-level to ensure that tiles from the same
patient are not present in both the training and test set. A fixed seed is set
to ensure that the folds are the same for each model, making the included
samples in the training and test sets identical for all models. Background
regions were annotated in five additional WSIs, to fit the 5-fold cross-
validation scheme better. Tiles belonging to the stroma- and muscle-tissue
classes were augmented similarly to the description in Paper 1 but with
less rotation and mirroring.

A new strategy for extracting tiles from all classes was implemented. This
strategy, referred to as automatic grid search, was implemented to better
accommodate the shape of the tissue regions in the WSI, as these often
contain tight corners and narrow passages. The grid of non-overlapping
tiles was shifted in the X- and Y-direction to maximize the number of
extracted tiles. This search was performed individually for each of the 239
regions.
Stratification means that the number of WSIs for each class is evenly

distributed across all five folds. However, some of the WSIs contained
annotation for several classes in the same WSI, and by evenly distribut-
ing the WSIs containing the urothelium regions, it may result in uneven
distribution of another class. To achieve the best possible stratification of
this dataset, an automatic python-script was implemented that tested all
combinations by brute force. Once the optimal WSI distribution was found,
the seed creating the split was saved and used throughout the experiments.
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By collecting tiles from multiple scales, the model has access to more
context information from the surrounding tissue. However, by keeping the
tile size the same, the lower magnification (25x, 100x) tiles will have a
wider field of view, allowing for more context of the surrounding tissue to
be included. Consequently, these tiles will, in some cases, include several
classes. Furthermore, the labels are imprecise as they do not include samples
of the labeled border between tissue regions. This would require multi-label
samples, an even more expensive annotation process. As a result of this,
the dataset is weakly labeled in both quantity and quality.
With the additional WSIs for background, implementation of the au-

tomatic grid search, but fewer tiles gained from augmentation, a total of
139 861 tiles were extracted from the WSIs in Dataset B. In addition, the
seven WSIs from Dataset C were used as inference on the re-trained models.
The WSIs included in the inference dataset are not part of the CV dataset
and thus unseen by the models.

5.3.2 Method

An overview of the proposed system is presented in Figure 5.5 and consists of
three steps. First, a binary background mask is produced from the 25x level
of the WSI, generated by checking the pixel intensity value and splitting
them into background or non-background tiles. The non-background tiles
are then extracted and fed to the multiscale tissue model in step 2 for
further classification.

To increase the resolution of the resulting segmentation image, the 128 ×
128 pixels tiles are extracted using overlap. The stride of the overlap affects
the resolution, and a typical value of 8 pixels is used, but it can be any
value within the size of the tile. Tiles are classified according to the highest
prediction score. However, the score must be above a specific threshold
value to be considered valid. A threshold value of 0.6 was determined as
a trade-off between removing unwanted predictions and not removing too
much. Tiles with all prediction scores below the threshold are labeled as
undefined.

Finally, in the last step, after each tile was classified, a color-mapping
function was used to give each class a separate color. Then, by combining
all the predicted tiles, a segmentation image is created, visualizing the
location of all classes.
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Figure 5.5: Overview of the proposed system in Paper 2. A background mask is created
from the 25x WSI to exclude the background from further processing. Areas in the
WSI selected as non-background is then extracted and fed through the multiscale model
from Figure 5.6, which outputs tissue predictions. The prediction needs to exceed a set
threshold to be valid. Finally, the segmentation image is generated by giving each class
a separate color. The values shown in the figure are for illustration purposes only.

Model architecture

This paper proposes three architectures referred to as the MONO-, DI-, and
TRI-CNN models. The three architectures have one, two, and three inputs,
respectively. To differentiate the models from each other, they are named
according to their main architecture and the input scale, e.g., MONO-400x
is a MONO-CNN model trained on tiles extracted at 400x magnification.

Tiles in the dataset are extracted at three magnification levels, yielding
three MONO models: MONO-25x, MONO-100x, and MONO-400x. These
three magnification scales can further be combined in three configurations
for the DI-CNN model: DI-25x-100x, DI-25x-400x, and DI-100x-400x. The
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TRI-CNN model has only one configuration: TRI-25x-100x-400x, and is
depicted in Figure 5.6. The different MONO- and DI-CNN models can easily
be derived from the same figure. E.g., to create the DI-25x-400x model,
remove the 100x input and blue blocks, and to create the MONO-100x
model, remove the 25x input, 400x input, red and yellow blocks.

VGG16

VGG16

VGG16

400x

100x

25x
GAP

Feature extractor
(VGG16-Global Average Pooling)

Classification
(Concatenate-FC-Drop-FC-Drop)

Output
(Softmax)Input tiles

GAP

GAP

Figure 5.6: A block diagram of the TRI-CNN model proposed in the current paper.
The input tiles are fed through individual pre-trained VGG16 network and global average
pooling (GAP) layer to create feature vectors. The feature vectors are concatenated and
fed through the classification network before entering the final output layer consisting of
a softmax function. The softmax function outputs a prediction score for each of the six
classes.

The overall structure of each model is the same. Each input is fixed
at 128 × 128 × 3 pixels, which is the size of each tile. The input is fed
into a pre-trained VGG16 network [113] which acts as a feature extractor,
followed by a global average pooling (GAP) layer providing a feature
vector representation of the input. This feature vector is then fed into a
classification network consisting of two fully-connected (FC) layers, each
followed by a dropout layer, and a final softmax layer with one output
node for each class. The DI- and TRI-CNN models have two and three
parallel VGG16 branches, resulting in multiple feature vectors. These
feature vectors are concatenated before entering the classification network.
The FC-layers have the same size of 4 096 neurons as the original layers in
the VGG16 network. Dropout layers are added after each FC-layers to add
regularization to the network due to the small dataset.

Experiments

A wide range of experiments was performed. Each magnification scale
was tested individually, in addition to all combinations of the three scales.
Freezing and unfreezing the parameters of the VGG16 base model were
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Table 5.2: Results for all 28 models, trained using stratified 5-fold cross-validation.
Each score is shown as micro-averaged F1-score aggregated across all classes, marked as
’All’ in the table. F1-score only for the urothelium class is shown in the columns marked
’Uro.’. Numbers in bold refer to the highest score in their respective column.

Multiclass Binary-class

Frozen Unfrozen Frozen Unfrozen

Model All Uro. All Uro. All Uro. All Uro.

MONO-25x 93.4 92.9 96.4 96.8 96.3 92.5 98.1 96.1
MONO-100x 94.4 96.6 94.8 97.8 98.3 96.5 99.1 98.1
MONO-400x 87.2 89.7 86.4 86.3 94.2 88.1 93.7 87.2

DI-25x-100x 96.5 97.4 96.2 98.1 98.1 96.2 99.3 98.5
DI-25x-400x 95.6 96.3 96.0 97.6 97.8 95.4 98.3 96.5
DI-100x-400x 95.0 96.8 95.3 97.6 98.4 96.6 98.9 97.7
TRI-25x-100x-400x 96.5 97.6 96.4 98.3 98.5 97.0 99.2 98.3

tested to see if unfreezing the weights would lead to better adaption to the
histological domain at the cost of longer training time. Instead of classifying
tiles into six classes, a possible easier problem would be to only classify
urothelium vs. non-urothelium tissue. Therefore, each model was also
tested with this binary-class approach to see if it improved classification
results for urothelium tissue.
After evaluating the model using stratified cross-validation, a new and

final inference model was trained by utilizing all available data as training
data. The average number of epochs used during cross-validation was used
when training the inference model. This inference model was then used to
predict new WSIs from the inference dataset.

5.3.3 Result

Table 5.2 shows the cross-validation results for all the models. Aggregated
micro-average F1-score across all classes are included, as well as the F1-score
for only the urothelium class to better compare multiclass vs. binary-class
models.
Based on the results in Table 5.2, some of the best models were chosen

to segment the WSIs in the inference dataset. The selected models were
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retrained on the entire CV dataset before segmenting the WSIs. Figure
5.7 shows a comparison between segmentation images generated by the
best binary-class model and the best multiclass model. A DICE-score
is calculated to measure the similarity between the predicted urothelium
tissue between these two models, with an average DICE-score of 0.87 for
the three WSIs. Segmentation images for the remaining four WSIs in the
inference dataset can be viewed in Paper 2.

DI-25x-100x-binary-unfrozen TRI-25x-100x-400x-multi-frozenOriginal WSI

Figure 5.7: The best binary-class model vs. the best multiclass model. A DICE-score
is calculated to measure the similarity between the predicted urothelium tissue between
the two models. DICE-score from top to bottom are 0.92, 0.85 and 0.85.
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5.3.4 Conclusion

This work uses convolutional neural networks (CNN) for multiscale tile-wise
classification and coarse segmentation, including both context and detail,
by using three magnification levels: 25x, 100x, and 400x. Twenty-eight
models were trained on weakly labeled data from 32 WSIs, where the best
model got an F1-score of 96.5% across six classes. The multiscale models
were consistently better than the single-scale models, demonstrating the
benefit of combining multiple scales.

The best models were retrained on all available data and used to segment
seven unseen WSIs. This is potentially useful to both help pathologists in
their work with diagnosing bladder cancer patients, as well as extracting
diagnostic relevant areas of the WSIs of high quality to be used in an auto-
matic computer-aided diagnostic (CAD) system. The resulting segmented
images have been manually inspected by an expert uropathologist and are
considered to be very promising especially considering that the WSIs were
only weakly annotated.

5.4 Paper 3 – Semi-supervised learning

In this section, the contributions in Paper 3 are presented. This paper
uses a fixed model architecture and focus on experimenting with different
datasets used to train the models. The best architecture from Paper 2,
TRI-25x-100x-400x, is used in all experiments.

The paper deals with semi-supervised learning on the application of
tissue-type classification by using the model itself to find and extract a
larger dataset, which is subsequently used to fine-tune the model. Two
semi-supervised approaches utilizing the unlabeled data in combination
with a small set of labeled data are presented. The first method is a
probability-based method based on predicted probabilities from an initial
model. The second method is a cluster-based self-training method based on
both predicted probability from the initial model and local neighborhood
in the predictions.

5.4.1 Data material

Dataset B from Figure 4.7 is used as a ground truth dataset, and divided
into a training and test set. The training set, named Dgt{train}, consists
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of 103 650 tiles from 29 WSIs, and the test set, Dgt{test}, consisting of
21 370 tiles from 8 WSIs.

In addition, the 46 unlabeled WSIs in Dataset D were used with the two
self-training methods. For the probability-based method, a total of 121 239
tiles were extracted from all 46 patients and formed the probability-weak
dataset, Dpw. For the cluster-based method, a total of 221 612 tiles were
collected from 44 patients and formed the cluster-weak dataset, Dcw.

5.4.2 Method

Six multiscale models are presented, and the following letters are used
to describe them: SL is short for supervised learning, and SSL for semi-
supervised learning. P indicates that the models are trained through the
probability-based self-training method, and C implies that the cluster-based
self-training method is used. A refers to that augmentation by rotation
of tiles is involved. Finally, F and U refer to the weights in the VGG16
models being frozen or unfrozen during training, respectively.
All models are evaluated on the Dgt{test} dataset. In addition, they

are used to segment a new WSI to investigate the model’s performance
with regard to segmentation. The WSI has been annotated by a pathol-
ogist and has not been used during training. This WSI is referred to as
WSI_segment_test, and the predictions of the WSI is visually compared
to the ground truth annotations.

Two versions of the TRI model were trained through supervised learning
on the Dgt{train} dataset, one with frozen weights and one with unfrozen.
These models are referred to as TRI-SL-AF and TRI-SL-AU. The trained
models were then evaluated on the Dgt{test} dataset and acts as a baseline
for the two semi-supervised methods. The best model of these two, the TRI-
SL-AF, is further used in combination with the SSL methods as described
below.

Probability-based self-training

The first SSL method is a probability-based self-training approach, depicted
in Figure 5.8. Two models are trained, referred to as TRI-P-SSL-F and
TRI-P-SSL-AU.

First, the TRI-SL-AF model is used to classify all tiles from the 46 WSIs
in Dataset D. Only tiles with a probability of 60% and higher are saved.
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Figure 5.8: Origin of probability-weak dataset, Dpw.

Next, a subset of the saved tiles is selected based on four criteria: minimum
and maximum tiles per WSI, minimum tile probability, and maximum tiles
in total. The criteria value is set for each tissue class, and a complete
overview is given in table 2 in the paper. For each patient, tiles with the
highest probability are collected first until the maximum number of tiles
per WSI has been collected, or no more sufficient tiles remain. The subset
of tiles that meets the criteria are saved in the probability-weak dataset
Dpw.
The two probability-based models, TRI-P-SSL-F and TRI-P-SSL-AU,

were trained on the labels in both the Dgt{train} and Dpw datasets.

Cluster-based self-training

The second SSL method is a cluster-based self-training approach, depicted
in Figure 5.9. Two models are trained, referred to as TRI-C-SSL-F and
TRI-C-SSL-AU.

Similar to the probability-based method, the cluster-based method uses
model TRI-SL-AF to classify the WSIs. The tiles are classified with
a minimum of 60% probability, and tiles with a lower probability are
discarded.

For the cluster-weak dataset, six criteria are given for a tile to be valid.
These are the minimum and maximum tiles per WSI, maximum clusters
per WSI, minimum cluster size, maximum tiles per cluster, and minimum
average cluster probability. A complete overview of the criteria for each
tissue class is given in table 3 in the paper.
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Figure 5.9: Origin of cluster-weak dataset, Dcw.

An algorithm searches through the tiles and groups them into clusters.
If, at any point in the search, the maximum number of tiles per cluster
is not reached, the difference is appended to the limit of the next cluster
in line. The average cluster probability is calculated per cluster, and the
clusters are sorted after the highest probability. Each cluster originating in
the WSI is then sorted into an array, and the program selects the clusters
based on the highest probability according to the maximum number of
clusters. The labels are then saved to the cluster-weak dataset Dcw.

The two models, TRI-C-SSL and TRI-C-SSL-AU, were then trained on
labels from both the Dgt{train} and Dcw datasets.

5.4.3 Result

All six multiscale models were tested on dataset Dgt{test}, yielding the
results in Table 5.3. The models were also used to segment a new WSI, and
close-up regions were compared with the annotated ground truth regions.
These segmentation images can be seen in figures 6 and 7 in the paper.

The supervised model, TRI-SL-AF, trained only on the Dgt{train}
dataset, achieved an accuracy of 94.61%. The best SSL model, TRI-C-
SSL-AU, trained on both the Dgt{train} and Dcw datasets, improved
the accuracy by 1.38% and got a score of 95.99%. Furthermore, the F1-
Score stayed the same or increased for every single class, and a distinct
improvement is seen in the predicted segmentation maps.
The probability-based model TRI-P-SSL-AU showed an improvement

in classifying urothelium, with an increase of 1.44% in F1-Score, from an
initial 98.08%. However, the accuracy was only increased by 0.24%, as the
model had a reduction in the F1-Score for blood.
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Table 5.3: F1-Scores for each of the classes, and overall accuracy for the six models.
Green cells indicate the best result within each category. The results from Paper 3 is
reproduced here, rounded to one decimal place to better fit the page width.
Ba = Background tiles, Bl = Blood tiles, Da = Damaged tissue tiles,
Mu = Muscle tissue tiles, St = Stroma tissue tiles, Ur = Urothelium tiles.

Model Ba Bl Da Mu St Ur Total
TRI-SL-AF 100% 98.6% 89.1% 79.4% 96.4% 98.0% 94.6%
TRI-P-SSL-F 100% 98.6% 90.0% 82.7% 96.1% 98.3% 95.2%
TRI-C-SSL-F 99.9% 96.7% 90.6% 82.5% 95.9% 98.6% 95.1%
TRI-SL-AU 100% 99.9% 87.9% 78.1% 98.1% 99.1% 94.6%
TRI-P-SSL-AU 100% 97.4% 88.2% 82.2% 96.8% 99.5% 94.9%
TRI-C-SSL-AU 100% 98.7% 91.9% 84.7% 95.9% 99.0% 96.0%

5.4.4 Conclusion

The two semi-supervised methods, using both the labeled and unlabeled
datasets, outperformed the fully supervised methods, which only use the
labeled dataset. The cluster-based self-training method performed best
and increased the overall accuracy of the tissue tile classification model
from 94.6% to 96% compared to using fully supervised learning with the
labeled dataset. In addition, the clustering method generated visually
better segmentation images.

5.5 Tissue segmentation comparison

This section summarizes and compares the main results of the three papers
related to tissue segmentation. The weighted average F1-score for each
class and the total average F1-score for each paper is shown in Figure 5.10.
A straightforward comparison is not possible, as all three papers use

different evaluation methods based on different test sets. Paper 1 and 3
evaluated the models on test sets (however, not the same test set), and
Paper 2 utilizes a cross-validation approach, where all tiles are used in both
training and validation. Hence, the presented comparison in Figure 5.10
must be taken with a grain of salt and not interpreted literally. Still, some
insight is given. The right-most columns, indicating the weighted average
result, show that the multiscale models in Paper 2 and 3 outperform the
single-scale model in Paper 1. For the classes of stroma and muscle, the
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two classes with the fewest annotations, it seems like the models can only
achieve good results in one of these two classes. Paper 1 and 3 have good
results for the stroma class, but have their worst results for the muscle
class. Furthermore, Paper 2 has the best results on the muscle class of the
three models, but the overall lowest score on the stroma class. All three
models have an excellent score on the blood and background classes. And
finally, all models have a good score for the urothelium and damaged tissue
classes, all well above 90%.
In Paper 3, the TRI architecture from Paper 2 was trained on the

Dgt{train} dataset, and got an accuracy of 94.6% when tested on the
Dgt{test} dataset. However, with the cross-validation scheme in Paper
2, the same architecture got a score of 96.5%. Both papers use the same
labels from Dataset B, but in Paper 2, the model is evaluated on all labels
and should therefore have a more accurate result of the two. More data
is utilized, and it is not surprising that this can improve the results. The
claim in Paper 3 that the clustering-based self-training method increases
the accuracy of tissue classification should still be valid. Nevertheless, the
results of the two papers can not be directly compared.
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Figure 5.10: Comparison of the best result from each paper on tissue segmentation.
Results are for each tissue class and a total average score.

After Paper 3 was published and the work on tissue segmentation was
done, one WSI was fully annotated into different tissue types by a pathol-
ogist. The annotations have been transformed into a segmentation map
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using the same color-mapping function introduced in Paper 2 for easier
comparison. The resulting image is considered the ground truth and is
shown in Figure 5.11. The same WSI has also been segmented using the
best model from Paper 2 and Paper 3, shown in Figures 5.12 and 5.13,
respectively.
The predicted images are compared, pixel by pixel, with the ground

truth image. The F1-score for each class and a weighted average F1-score
for all classes are shown in Table 5.4.

Table 5.4: F1-score for the segmentation maps in Figures 5.12 and 5.13.

Class Paper 2
(TRI-25x-100x-400x)

Paper 3
(TRI-C-SSL-AU)

Urothelium 0.78 0.79
Damaged 0.50 0.52
Stroma 0.29 0.19
Blood 0.76 0.90
Muscle 0.00 0.00
Background 0.97 0.98

Average 0.92 0.93
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Figure 5.11: Ground truth test image showing regions of all tissue classes in a whole-
slide image, annotated by a pathologist.
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Figure 5.12: The whole-slide image predicted by the best model in Paper 2 (TRI-25x-
100x-400x).
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Figure 5.13: The whole-slide image predicted by the best model in Paper 3 (TRI-C-
SSL-AU).

77





Chapter 6

Multilevel tile extraction
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Figure 6.1: An overview of the proposed pipeline, where the topic of this section is
highlighted.

The following chapter will present our proposed methods for tile extraction
in multilevel gigapixel images; highlighted in blue in Figure 6.1. The main
methods and results from Paper 4 are presented. This paper is part of the
thesis sub-objective SO4.

SO4: Create a reproducible system that automatically extracts tiles from
multilevel whole-slide images.

6.1 Paper 4 – Multilevel tile extraction

During the work with tissue segmentation, different ways of dealing with the
patches and tiles from the image were tested. However, only straightforward
methods were implemented, with few options to control the tile extraction.
For instance, in Paper 2, a time-consuming script was made to shift the
starting position of the grid in both x- and y-direction to maximize the
number of tiles within the ROI. This was implemented because there was
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no easy way of controlling the amount of non-ROI in the tiles. During
this work, it became clear that even if all papers on WSI processing in
the literature use some sort of patching, the process is seldom explained,
and it is not very reproducible. Furthermore, to the author’s knowledge,
no system for visualizing individual tiles from the different magnification
levels has been reported.
The main objective of this work is to create a diagnosis system. To be

able to create a robust system, most of the WSIs should be utilized in
the training/validation/test setup. However, not every single tile in every
image should be used. To ensure solid coverage of tiles extracted from each
WSI, from all levels in the image pyramid, a sound method for finding and
extracting relevant tiles from the WSIs, possibly defined by a ROI mask
that can be manually or automatically generated, is needed
In this work, a method for parameterizing and automating the task of

extracting tiles from different scales with a ROI defined at one of the scales.
The proposed method makes it easy to extract different datasets from the
same group of gigapixel images with different choices of parameters, and
it is reproducible and easy to describe by reporting the parameters. The
method is also used for visualization of tiles from all levels in the pyramid.
It is suitable for many image domains and is demonstrated with different
parameter settings using histological images from urinary bladder cancer.

6.2 Data material

The methods are demonstrated on histological whole-slide images of urothe-
lial carcinoma, with a corresponding annotation mask generated with the
TRI-25x-100x-400x tissue model from Paper 2.

6.3 Method

A 3-level gigapixel image pyramid is depicted in Figure 6.2. Let S denote
the set of levels in a gigapixel image, where S = {0, 1 . . . k . . . kmax}. Let
Ik(x, y) be an image on level k, where k ∈ S, and Ik(x, y) has dimension
Nk ×Mk. A binary mask Bk(x, y) representing the ROI at level k, also
have the same dimension Nk ×Mk.

A tight grid of non-overlapping tiles is superimposed on the image, where
the upper-left corner of the grid starts at the image coordinate (0, 0). Let
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the upper-left coordinates of a tile in image Ik(x, y) be denoted (xk, yk),
and let the tile have dimension LkT × LkT . A valid tile is a tile constrained
by the annotation mask on level Iα(x, y), where α ∈ S and refers to the
constraining level.
Once a valid tile is found on level α, tiles from Iβ(x, y)∀β ∈ Sβ are

found and referred to as corresponding tiles, where Sβ is a subset of S and
contains the remaining levels to extract tiles. I.e., to extract tiles from all
three levels in Figure 6.2 with level 0 as the constraining level, we would
specify α = 0 and Sβ = {1, 2}.

𝐿𝐿𝑇𝑇

Valid tile

Corresponding tile

Corresponding tile

𝑥𝑥𝛼𝛼,𝑦𝑦𝛼𝛼 ,𝛼𝛼 = 0

𝐼𝐼𝑘𝑘=0

𝐼𝐼𝑘𝑘=1

𝐼𝐼𝑘𝑘=2Տ = 0, 1, 2

𝐿𝐿𝑇𝑇

𝐿𝐿𝑇𝑇

𝐿𝐿𝑇𝑇 𝑥𝑥𝛽𝛽,𝑦𝑦𝛽𝛽 ,𝛽𝛽 = 1

𝑥𝑥𝛽𝛽,𝑦𝑦𝛽𝛽 ,𝛽𝛽 = 2Տ𝛽𝛽 = 1, 2
𝛼𝛼 = 0

Figure 6.2: The left-hand side displays a 3-level image pyramid, and the right-hand
side shows a valid tile found on level α = 0 and the two corresponding tiles for level
β = 1 and 2. LT is the same in all levels.

τ specifies the current level a tile is on, and is necessary to maintain the
generalization of the equations. τ may, or may not, be equal to α, as it is
possible to have, e.g., a tile at τ = 2, and check if it is valid on level α = 1
The parameter φ is defined to parameterize the overlap-ratio between

the tile and the ROI at a chosen magnification level. φ ∈ [0, 1], where φ = 1
means the ratio between the tile area and ROI must be 1 for the tile to be
valid, i.e., the entire tile must be inside the ROI. φ = 0 would correspond
to the ROI being ignored, and all tiles within the image would become
valid, whereas φ = 0.8 means that 80% of the tile at that level is required
to be inside the ROI for it to become valid.
It is necessary to define the size of level k relative to the base level as

a ratio Rk = Nk
N0

. The size-relationship between an arbitraty level k1 and
level k2 is found as Rk1k2 = Rk1

Rk2
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The parameterization of the tile-extraction is defined by α, φ LkT , Sβ,
and the starting coordinate of the tile grid. The method is divided into
three parts, presented here.

Part 1 - Parameterizing of overlap-ratio with ROI

The input to the method is a histological WSI. These images contain a
lot of unwanted tissue types, like blood and damaged tissue. To avoid
such regions, we use an annotation mask as a reference, for example, the
urothelium mask in Figure 6.1. It is a binary mask and contains 1’s for the
urothelium tissue and 0’s everywhere else.

We want to allow some tile-area outside the ROI, as this can be useful if
the region contains voids of background, like the example tile in Figure 6.3-
A. Also, in some cases, the tissue border may reveal diagnostic information,
and the only way to include the border in a diagnostic dataset is to allow
for some background when extracting tiles. An example of such a tile is
shown in Figure 6.3-B.

A B

Figure 6.3: Examples of tiles positioned to include both ROI and non-ROI areas. In
image A, the ROI contains voids, and in image B, the tile covers the edge of the tissue.

The parameter φ controls how much non-ROI area to allow in the
extracted tiles. To determine if the tile (xα, yα) is a valid tile, it must
satisfy the following condition:xα+LαT ·Rατ∑

i=xα

yα+LαT ·Rατ∑
j=yα

Bα(i, j)

 ≥ (LαT ·Rατ )2 · φ (6.1)
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In Figure 6.4, a tile is positioned at location (xα, yα), containing multiple
voids of background. For φ = 1 this tile would not satisfy Equation 6.1
and thus be discarded. However, for φ <≈ 0.7 the tile would satisfy the
condition and thus be considered a valid tile and be included.

B) Binary mask

𝑥𝑥𝛼𝛼 𝑥𝑥𝛼𝛼 + (𝐿𝐿𝑇𝑇𝛼𝛼 � 𝑅𝑅𝛼𝛼𝛼𝛼)

𝑦𝑦𝛼𝛼

𝑦𝑦𝛼𝛼
+

(𝐿𝐿
𝑇𝑇𝛼𝛼
�𝑅𝑅

𝛼𝛼𝛼𝛼
)

𝑦𝑦𝛼𝛼

𝑥𝑥𝛼𝛼
𝑇𝑇𝑥𝑥,𝑦𝑦
𝑘𝑘=𝛼𝛼(𝑖𝑖, 𝑗𝑗)C)

A) WSI with annotation mask

ISPA Presentation version 
(correct T_L)

Figure 6.4: A) A WSI image with an annotation mask (semi-purple) and a red tile. B)
Binary mask with the same tile, showing the minimum and maximum coordinates for
the tile.

Part 2 - Finding corresponding tiles on levels β ∈ Sβ

In part 2, we want to use the valid tiles from part 1, and find the corre-
sponding tiles on level beta.
Tiles are usually referenced by the upper-left corner. However, when

going between levels, it is convenient to use the center point of the tile, as
visualized in Figure 6.2.

We do this by adding half of the tile’s length LT and then transform this
position to the corresponding level by multiplying with the ratio between
the two levels. After transformation, we need to return to the upper-left
corner by subtracting half of the tile’s length.

This can be generalized into an expression for the upper-left coordinate of
corresponding tiles, one for X- and one for Y-coordinate (only X-coordinate
is shown here).

xβ = (xτ + LτT ·Rατ
2 ) ·Rτβ −

LτT
2 ∀β ∈ Sβ (6.2)
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Part 3 - Visualize all tiles on one sub-image

Typically extracted tiles are spread onto kmax different images, and due
to the enormous size of the highest resolution image in the pyramid, we
cannot use these coordinates directly for visualization. Thus, we want
to transform all tiles onto the smallest image in the pyramid, Ikmax(x, y),
which is suitable for viewing on a monitor.

For this, we need to alter Equation 6.2 slightly. First, Rτβ is changed to
Rτkmax to transform all coordinates to level kmax. Second, the last term
LT is changed to LT ·Rβkmax because we need to rescale the tile’s apperent
length so that it covers the same physical area on both level β and level
kmax for visualization.
To formalize these operations for all levels, the following equations will

transform the upper-left coordinate of a tile on level τ into the upper-left
coordinate of a tile on level kmax.

xkmaxβ = (xτ + LτT ·Rατ
2 ) ·Rτkmax −

LτT ·Rβkmax
2 ∀β ∈ Sβ (6.3)

The transformation, or visualization, of tiles from all levels onto level
kmax is illustrated in Figure 6.5, where the left-hand side of the figure
represents the input coordinates to Equations 6.3, and the right-hand side
represents the output.

𝐼𝐼𝑘𝑘=0

𝐼𝐼𝑘𝑘=1

𝐼𝐼𝑘𝑘=2 𝐼𝐼𝑘𝑘=2
𝑥𝑥22,𝑦𝑦22 , 𝐿𝐿𝑇𝑇2

𝑥𝑥0,𝑦𝑦0 , 𝐿𝐿𝑇𝑇

𝑥𝑥1,𝑦𝑦1 , 𝐿𝐿𝑇𝑇

𝑥𝑥2,𝑦𝑦2 , 𝐿𝐿𝑇𝑇

𝑥𝑥12,𝑦𝑦12 , 𝐿𝐿𝑇𝑇1

𝑥𝑥02,𝑦𝑦02 , 𝐿𝐿𝑇𝑇0

Figure 6.5: Tiles from all levels are combined on the highest level to be visualized next
to each other.

The proposed methods are primarily used for preprocessing to extracting
tiles used to train a deep learning model, as shown in Figure 6.6-A. However,
part 3 is for visualization of the extracted tiles, and this method can also be
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used in post-processing. E.g., the method can be used after a deep learning
model has classified the tiles, either by plotting the tiles using colors to
indicate correct and incorrect predictions, as depicted in Figure 6.6-B, or
by using the model’s probabilistic output score to generate a heatmap, as
shown in Figure 6.6-C.

Preprocessing:
Use the proposed 
method to extract all 
urothelium tiles Incorrect prediction

Correct prediction

Post-processing:
Display predictions

Post-processing:
Create heatmaps using 
the model’s output score

A B C

Figure 6.6: The proposed methods in this paper can be used for both preprocessing
and post-processing. A) shows an example of how the method finds and extract tiles
from WSIs, B) tiles are colored according to the model’s prediction, highlighting correct
and incorrect model predictions, and lastly, C) the model’s probabilistic score is used to
color the position of each tile and create a heatmap.

6.4 Result

To demonstrate the method, an example WSI is used together with a
urothelium mask and a stroma tissue mask. The stroma mask is not used
in the automatic grading system in this thesis; but is included in this
demonstration to show the method’s ability to include several tissue classes.
In Figures 6.7, 6.8 and 6.9, the proposed methods are used to find tiles of
size 256 × 256 pixels in the WSI, with three different values of alpha. φ is
set to a relatively low value of 0.4 for all three figures, but is easiest to see
in Figure 6.7 by the amount of non-ROI regions in the red, valid tiles.
The red tiles indicate the constrained valid tile, i.e., at k = α, and the

green tiles are the corresponding tiles found from the other levels. Note
that the red constraining tiles never overlap, but the green tiles may do so.
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Also, the red tiles are restricted to lay within the ROI, but the green tiles
may cover an area beyond the region border.

In Figure 6.9, tiles are found on the Ik=0 image, the largest image in the
pyramid. This results in the most tiles found, 9 362 tiles in this instance.
Whereas in Figure 6.7, we are finding tiles on the smaller Ik=2 image in
the pyramid. Because the dimension of this image is smaller than that of
the Ik=0 and the tile size LT is the same, the apparent size of the tiles is
larger. Consequently, there is room for fewer tiles, and only 29 valid tiles
are found.

The advantage of setting α = 0 is a large dataset; however, this dataset
will contain redundant pixel information on levels 1 and 2. A smaller
dataset is found by setting α = 2, but each tile will be unique on all levels
in the image pyramid.
For a given image Ik(x, y) with a binary annotation mask Bk(x, y), by

specifying α, φ, LkT , Sβ, and the grid starting coordinates, all extracted
tiles from all levels in the image is uniquely determined, and the process is
repeatable and reproducible.
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Valid tiles

Corresponding tiles

Figure 6.7: Visualization of all valid and corresponding tiles found in the WSI. The
urothelium mask is shown as purple, and the stroma mask in green. In this example,
α = 2, LT = 256, and φ = 0.4. Tiles from all levels are shown. These values are just for
demonstration and are not used to extract the diagnosis dataset.
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Valid tiles

Corresponding tiles

Figure 6.8: Visualization of valid and corresponding tiles found in the WSI. The
urothelium mask is shown as purple, and the stroma mask in green. In this example,
α = 1, LT = 256, and φ = 0.4. Tiles from levels 0 and 1 are shown, but tiles from all
levels are extracted and can be used in a dataset. These values are just for demonstration
and are not used to extract the diagnosis dataset.
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Valid tiles

Corresponding tiles

Figure 6.9: Visualization of valid tiles found in the WSI. The urothelium mask is shown
as purple, and the stroma mask in green. In this example, α = 0, LT = 256, and φ = 0.4.
Only tiles from level 0 are shown, but tiles from all levels are extracted and can be used
in a dataset. These values are just for demonstration and are not used to extract the
diagnosis dataset.
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6.5 Conclusion

The proposed method for parameterized tile extraction was very useful in
the work in this thesis. Using this method to patch up and extract datasets
from ROI makes it reproducible and easy to report, which can be useful in
other types of gigapixel images as well as WSI applications. The additional
ability to use the method to generate heatmaps also proved to be a valuable
and important factor in the work of the diagnosis system.
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Chapter 7

Diagnostic prediction

Input 
WSI

Tissue 
segmentation

Multilevel tile 
extraction

Diagnostic 
prediction

Paper 1 – Paper 2 – Paper 3 Paper 4 Paper 5

Whole-slide image Foreground mask Tissue segmentation map Urothelium mask Urothelium tiles WHO04 grade heatmap

Figure 7.1: An overview of the proposed pipeline, where the topic of this section is
highlighted.

The following chapter will present the proposed method for automatic
grading of urothelium carcinoma whole-slide images, highlighted in blue in
Figure 7.1. First, an overview of the contribution is given, then the main
methods and results from Paper 5 are presented. This paper is part of the
thesis’s main objective O1.

O1: Create a system for automated grading of urothelial carcinoma slides.

7.1 Contribution overview

Through the Stavanger University Hospital, we have access to a large dataset
of bladder cancer WSIs. In addition, each WSI has been graded and staged
by a pathologist. We want to use the tissue segmentation model from Paper
2 to extract urothelium tissue from all WSIs in the dataset and use the
slide-level WHO04 grades as labels to train an automatic diagnosis system.
The output of such a system could be heatmaps, visualizing locations of
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low- and high-grade carcinoma in the WSIs, in addition to slide-level grade
predictions.

Successful implementation of a grading system has some potential appli-
cations. For example, where the tissue segmentation images can guide the
pathologists to the diagnostic relevant urothelium areas in the WSIs, the
addition of WHO04 grading heatmaps could help narrow this further down
to the most severe urothelium regions, making their workflow even more
efficient.

In a clinical setting, the automated diagnosis system could run without
supervision from the clinician and predict the slide-level grade of newly
scanned glass slides. The predicted grade could then be used to prioritize
high-grade patients for earlier examination. Also, it can be used as input to
an automatic prognostic tool and output a measure of the patient’s overall
clinical outcome, such as the risk of recurrence, 1-yr and 5-yr survival rate,
and mortality. In the future, it is also a possibility to use it in an automatic
system that predicts how a patient will respond to a given treatment and
therapy program.

The current study’s main contribution is the demonstration of how two
systems (tissue and diagnosis) are combined into one fully automatic pipeline
for tissue segmentation, generating WHO04 heatmaps and providing a slide-
level grading.

7.2 Paper 5 – Diagnostic prediction

In this paper, we propose a pipeline called TRIgrade for automatically
grading WSI according to the WHO04 grading system. The pipeline is
depicted in Figure 7.2. The system will identify diagnostic relevant regions
in the WSI and collectively predict the grade. The proposed system uses
the TRItissue-model as a first-stage network for preprocessing the WSI to
find regions of urothelium tissue. Next, the extracted urothelium tissue
is then fed through a second-stage network, called TRIWHO04-model, for
automatic WHO04 grading. The TRIgrade pipeline will output a tissue
segmentation map, a WHO04 grading heatmap, and a slide-level WHO04
grade prediction. A depiction of the pipeline is shown in Figure 7.2 and
explained in detail below.

In Paper 2, three architectures were tested (MONO, DI, and TRI) with
both frozen and unfrozen weights. The best result was achieved with the
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Input 1) Foreground mask

Filter out background to 
extract a foreground 
discriminative mask

3) Urothelium mask

Extract all urothelium regions, filter 
small regions, and create a 
urothelium discriminative mask

2) Use tissue model to predicted tissue classes

All tiles within the foreground discriminative mask is processed by the tissue 
model to generate a tissue segmentation map

Whole-slide image used as 
input to the system

5) Use diagnostic model to predict WHO04 grade

The urothelium triplets are processed sequentially by the WHO04 grade model. 
Individual probabilities are used to generate the heatmap and afterward 
aggregated into a slide-level prediction.

Output

Slide-level prediction: Low-grade

TRItissue Model

25x

100x

400x

TRIWHO04 Model
High 

Grade

Low 
Grade

WHO04 Heatmap:

Tissue segmentation map:

4) Find and extract urothelium triplets

Find and extract all tile-triplets within the 
urothelium discriminative area

Triplet T1

Triplet T2

Triplet Tmax

Figure 7.2: This figure presents the pipeline for our proposed system, TRIgrade. Input)
A WSI of urothelial carcinoma is used as input. 1) A foreground discriminative mask is
found by evaluating the pixel intensity values and used as a reference to extract tiles
from the WSI. 2) The TRItissue-model is used to generate a tissue segmentation map.
3) The urothelium regions are used to create a urothelium discriminative mask. 4)
Using the urothelium mask, triplets consisting of tiles from three magnification levels
are extracted from the input WSI. 5) The urothelium triplets are fed sequentially to
the TRIWHO04-model, which outputs a probabilistic score for the two classes, low- and
high-grade carcinoma. Output) The system will output a WHO04 grade heatmap and
a slide-level WHO04 prediction.

frozen TRI-model, utilizing all scales, and achieved an average F1-score of
97.6% for the urothelium class.
Based on this result, we continued with the TRI-model and VGG16 as

feature extractors in Paper 5. We have not evaluated the MONO- or DI-
models on the diagnostic data. The model referred to as TRI-25x-100x-400x
in Paper 2 is in the current paper referred to as the TRItissue-model. It is
used for tissue extraction as shown in Figure 7.2. The name, architecture,
and base model have also been carried over to this paper and are the basis
for the TRIWHO04-model we propose here.
Because only the TRI-model is used throughout this paper, tiles will

always be extracted from all levels. For improved readability, we define
these tiles as a triplet. A triplet is denoted Ti and is defined as a set of
three tiles extracted from a WSI at three different magnification levels
(25x, 100x, and 400x). Let T denote a set of triplets in a WSI, where
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T = {T1, T2 . . . Ti . . . Tmax}, and the number of elements in the set is
given by the cardinality |T |. Example of tissue triples are shown in Figure
2.2, examples of low- and high-grade triplets are shown in Figure 2.3, and
finally, examples of how triplets are extracted from the image pyramid is
shown in Figures 4.3 and 6.2.
The CNN-based model assigns a prediction score to every tile. These

predictions are used to create a heatmap showing which regions were
predicted with low- or high-grade carcinoma. The final decision can further
be aggregated from the predictions into a slide-level prediction.

The proposed method is inspired by the behavior of a pathologist by com-
bining global context information and local details by utilizing a multiscale
model architecture.

7.3 Data material

Three datasets were used together with the slide-level labels as ground truth,
as shown in Figure 4.7. Dataset E was used to train the model, consisting
of 220 WSIs, and the 30 WSIs in Dataset F were used as validation dataset.
The method was evaluated on 50 WSIs from Dataset G. In addition, a
pathologist has carefully annotated low- and high-grade regions in 14 of the
50 WSIs in Dataset G. The 14 WSIs are a sub-set of the test set and are
referred to as the segmentation test set and will be used to evaluate the low-
and high-grade segmentation performance of the best TRIWHO04-model.
All WSIs were preprocessed with the TRItissue-model to create a tis-

sue segmentation map. From this segmentation, the urothelium regions
were extracted, filtered to suppress noise, and used to generate a binary
urothelium discriminative mask.

Using the urothelium mask as a reference, the method for tile extraction
described in Paper 4 was used to extract all the urothelium tiles from the
WSIs.

From the 220 WSIs used for training, five datasets were extracted with a
different number of triplets extracted from each WSI. A set of N triplets
was selected randomly from the predicted urothelium regions in each WSI,
where N was set to 250, 500, 1 000, 3 000, and 5 000 in different experiments.

An augmentation strategy was employed for WSIs with fewer than N
triplets. In these WSIs, randomly selected triplets were rotated, and
vertical/horizontal mirrored until the desired number of N triplets was
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reached, or the maximum of eight times augmentation was reached. The
aim of this process is for each WSI to contribute equally, or as close as
possible, to the number of triplets specified by N . No augmentation was
performed on the validation or test datasets.
Each extracted tile inherits the slide-level WHO04 grade as its label.

This is not ideal, as high-grade slides may contain regions with low-grade
tissue. Consequently, all the extracted datasets are thus regarded as weakly
labeled due to the inaccurate labels, which is consistent with what is called
a weak label in many tasks [27]. On the other hand, the segmentation test
set is considered strongly labeled.

7.4 Method

7.2 contains five steps explained here. The input to the pipeline consists
of a WSI. First, in step 1, a foreground discriminative mask is found on
the 400x level by evaluating the pixel intensity values as grey background
or not. Using the foreground mask as a reference, tiles of size 128 × 128
pixels were extracted from the WSI, such as the inner 16 × 16 pixels were
being classified for each tile. Three tiles were extracted in the WSI (25x,
100x, and 400x) for each location, forming a triplet.

In step 2, triplets are sequentially fed into the TRItissue-model from Paper
2. This model will evaluate the triplets and predict the tissue class for
the current triplet. After classifying all triplets, a segmented tissue map
is created, visualizing all tissue regions in the WSI. This tissue map can
also be presented to the clinician to help guide them more efficiently to the
specific tissue types in the WSI.
From the generated tissue map, all urothelium regions are extracted

in step 3. Small regions are filtered to suppress noise, and a urothelium
discriminative mask is created on the 400x level. In step 4, a grid of non-
overlapping tiles is overlayed on the WSI at the 400x level, this time using
tiles of dimension 256 × 256 pixels. The individual tiles in the grid are
checked against the discrimination mask. If 80% or more of a tile lay within
the discriminate mask, the position is saved, while the remaining tiles are
discarded. For the validation and test sets, triplets from all the saved
positions are extracted. Whereas for the training set, N randomly selected
triplets are extracted from the saved positions. If fewer than N positions
are saved, the augmentation strategy explained in the data material section
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is employed. The total number of extracted triplets for each dataset is
shown in Figure 4.7, as well as in Paper 5.

Tiles are extracted from the WSI as described in Paper 4. The parameters
used are the tile size parameter LT = 256. The overlap-ratio between a tile
and the discriminative mask is set to 80%, which corresponds to a value
of φ = 0.8. Tiles are checked at the 400x level by setting α = 0, and the
corresponding tiles in the triplets are found at level 25x and 100x, i.e.,
Sβ = {1, 2}. The binary mask Bk is set as the urothelium discriminative
mask, and the starting coordinate of the grid is at position (0, 0). With
these parameters and the methods described in Paper 4, extraction of the
triplets in the WSIs is repeatable and reproducible.
In step 5, the extracted urothelium triplets are fed to the TRIWHO04-

model, which outputs a probabilistic score for the two classes, low- and
high-grade carcinoma. Finally, all scores are used to generate a heatmap
which is overlayed on the WSI, and the aggregated predictions are measured
against the decision threshold Dt to get the final slide-level prediction.

For the heatmaps, only the model’s probabilistic score for the high-grade
class is used to generate the heatmaps. However, because there are only two
classes, a low probabilistic score of the high-grade class implicitly means
a high score for the low-grade class. I.e., red highlighted regions in the
heatmaps are associated with the high-grade class, and blue highlights
indicate the low-grade class.

Model architectures

A block diagram of the TRIWHO04-model architecture is depicted in Figure
7.3, and a block diagram of the TRItissue-model is depicted in Figure 5.6.
The architecture is almost the same, but the TRItissue-model has six output
classes instead of two.

Tile-level prediction

When a triplet Ti is fed to the TRIWHO04-model, the model outputs a list
of probabilities for the two classes, low- and high-grade. These probabilities
are denoted as [pil, pih], and ordered such as the low-grade class is located
at position 0, and the high-grade class at position 1. To find the class with
the largest predicted probability, the argmax function is used.

ci = argmax([pil, pih]) (7.1)
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Figure 7.3: Architecture of the TRIWHO04-model. Three separate VGG16 networks are
used to extract features from each magnification scale. The global average pooling layer
(GAP) is used to flatten the features into feature vectors, which are concatenated. The
classification network consists of fully-connected layers and dropout layers. The output
uses a softmax activation function to predict the input tiles to the two classes, low-grade
and high-grade carcinoma.

Where c is given the positional value of the class with the greatest
probability score of a triplet at position i. For the triplet in Figure 7.3, the
output prediction is [0.7, 0.3], which gives a value of c = 0.

Slide-level prediction

In addition to predicting the individual triplets, we also output a WHO04
slide-level prediction. A pathologist will often assign the worst case to a slide
during a clinical examination, meaning that if a high-grade region exists
in the WSI, the WHO04 grading should be high-grade. However, we must
assume some misclassification in the WSI from both the TRItissue-model
and TRIWHO04-model, so there must be a minimum amount of high-grade
triplets before the slide-level prediction becomes high-grade, and we would
like to find a decision threshold, Dt, which maximizes correct prediction of
the WSIs.
By summing over ci, the number of triplets predicted as high-grade is

counted since triplets predicted as low-grade is at index 0 and therefore
not adding to the sum. Thus, by dividing by the total number of triplets
in the WSI, we get the ratio of high-grade triplets referred to as Rhigh in
this paper:

Rhigh = 1
|T |

|T |∑
i=1

ci (7.2)

If Rhigh exceeds the decision threshold Dt, the slide is given the slide-level
prediction of high-grade; else, it is considered low-grade.
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Ŷ =

High-grade, if Rhigh ≥ Dt

Low-grade, otherwise
(7.3)

An algorithm is used to determine the optimal threshold value Dt by
looping through and testing all threshold values between 0-50%. The
decision threshold Dt is chosen as the threshold with the highest score,
or, if more than one value yielded the same maximum result, the average
integer value is selected as the decision threshold Dt. The algorithm and a
description of it, is shown in the paper.

Experiments

Two experiments were conducted in the paper, where the first experiment
is for evaluating the slide-level predictions and the second experiment for
tile-level predictions. First, ten identical versions of the TRIWHO04-model
was trained on ten different training datasets. All ten training dataset used
the same 220 WSIs, but N triplets were extracted per WSI, where N was
set to 250, 500, 1 000, 3 000, and 5 000. Each of these datasets was trained
with and without augmentation. This experiment was conducted to see if
it is preferable to utilize more of the available urothelium data from each
WSI as training data at the cost of additional training time or if a smaller
dataset could perform equally well.

The predictions from the individual triplets were aggregated into a slide-
level prediction of the WHO04 grading. A decision threshold Dt was found
for each model using Algorithm 1; then, equation 7.3 was used to provide
the final predicted grade.
Each model was trained until an early stopping criterion monitoring

the validation dataset loss stopped the training. Each model was then
evaluated on the test set. Next, the best model from the first experiment
was used to evaluate the segmentation test set, and the model is used to
create heatmaps, visualizing low- and high-grade regions in the WSI.

7.5 Result

Ten models were trained for the slide-level grading experiment, where the
best model correctly predicted 45 of the 50 WSIs in the test set, achieving
an accuracy of 90%. Slide-level results for all models are listed in Table 7.1.
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Table 7.1: Slide-level prediction results for automatic WHO04 grading tested on the 50
WSIs of the test set. Precision, recall, and F1-score is the weighted average score for the
two classes across all 50 WSIs in the test set. Dt is the decision threshold found using
Algorithm 1. Columns for trained epochs, time per epoch, and training time has been
omitted from the table to better fit the pages width. Full table available in Paper 5.

Model Precision Recall F1-Score Dt

TRIWHO04-250 0.86 0.84 0.84 49
TRIWHO04-250-AUG 0.89 0.86 0.85 47
TRIWHO04-500 0.89 0.86 0.85 43
TRIWHO04-500-AUG 0.77 0.76 0.76 49
TRIWHO04-1000 0.83 0.82 0.82 49
TRIWHO04-1000-AUG 0.80 0.80 0.80 49
TRIWHO04-3000 0.89 0.86 0.85 49
TRIWHO04-3000-AUG 0.78 0.78 0.78 49
TRIWHO04-5000 0.85 0.84 0.84 48
TRIWHO04-5000-AUG 0.92 0.90 0.90 48

The best model, TRIWHO04-5000-AUG, was further evaluated on the
smaller segmentation test set, where it achieved an average F1-score of 0.91
for both the low-grade and high-grade classes.

A direct comparison of results with others reported in the literature is not
straightforward, as the experiments performed in this paper are conducted
on a private dataset, which is often the case in many medical applications.
In the paper, the results of the TRIgrade pipeline were compared to the
work of Jansen et al. [59]. The works are performed on different datasets
but are otherwise quite similar; they are based on an NMIBC dataset of
similar size (328 WSIs from 232 patients vs. our dataset of 300 WSIs from
300 patients), a similar split of the dataset into training, validation, and
test, and the use of the same labels (WHO04). The results are shown in
table 6 in Paper 5. We achieve better results on all metrics, and with 45 of
the 50 WSIs correctly predicted, we achieve an accuracy of 90%.
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Figure 7.4: Ground truth annotations vs. model prediction. The WSIs with a black
background is the ground truth images with low- and high-grade annotations. The WSIs
with a grey background has superimposed a heatmap from the same area as the ground
truth and highlights the predictions from the TRIWHO04-model.

7.6 Conclusion

In this paper, we have proposed a TRIgrade pipeline for automatic grading
of urothelial carcinoma slides based on the WHO04 grading system. First,
the slide is segmented into the tissue classes (urothelium, stroma, muscle,
blood, damaged tissue, and background). Next, tiles are extracted from
the urothelium regions at three magnification levels (25x, 100x, and 400x).
The three tiles form a triplet, which is fed sequentially to a multiscale
CNN-based WHO04 grading model.
The proposed method will generate a tissue segmentation map, helpful

for the clinicians to easier find diagnostic relevant regions during an exami-
nation. The system will also output a WHO04 grade heatmap, highlighting
the most severe urothelium tissue regions, beneficial for the pathologists
who can focus their limited per-patient time on the most important re-
gions in the WSI. Finally, the system produces a slide-level WHO04 grade
that could potentially be used to prioritize high-grade patients for earlier
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examination, as well as suggest the diagnosis to the pathologist.
The system as a whole can be used by clinicians and pathologists to

potentially improve their decision-making and further help patients by
receiving correct diagnoses and treatment.
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Chapter 8

Discussion and conclusion
The following chapter will give an overview of the thesis as a whole. The
objectives of the thesis were established in Chapter 1 and will now be
discussed in light of what has been presented in Chapters 2-7. First, the
sub-objectives will be discussed, followed by the main objective. Then,
each subsystem will be discussed; the tissue segmentation, multilevel tile
extraction, and diagnosis prediction. Thereafter, a usage scenario is given,
showing how the proposed methods could be combined into a clinical setting.
Next, some future work is suggested. Finally, the thesis is summarized and
concluded.

SO1 - Create an automated system for distinguishing between the
different tissue types present in histological whole-slide images of
urothelial carcinoma.

As established in the previous work section in Chapter 1, no system for
classifying all tissue classes present in whole-slide images of urothelium
carcinoma existed prior to this work. In cooperation with pathologists at
Stavanger University Hospital, six classes were chosen to segment in the
WSIs. A small annotated dataset (Dataset B) was created together with
pathologists, and used to train different models for tissue segmentation.
Three papers, presented in Chapter 5, explored different techniques to train
models and successfully created a system for the task. The system is capable
of creating both heatmaps for individual tissue classes and segmentation
maps for all tissue classes in one image.
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SO2 - Explore different approaches for unsupervised and semi-
supervised learning techniques to deal with missing annotation
data.

With the histological images, we have access to a large amount of image
data to train deep learning models. However, annotations are scarce, and
due to the need for expert opinions, they are time-consuming and expensive
to make.
To mitigate the need for large annotated datasets, several alternative

methods were explored. In Paper 1, a large unlabeled dataset was used to
train an autoencoder model through unsupervised learning. This step was
performed to pre-train a CNN model from scratch and then fine-tuned it
to the much smaller labeled dataset. In Paper 2, models pre-trained on
the ImageNet dataset were utilized in a technique referred to as domain
adaptation. And lastly, in Paper 3, we explored two semi-supervised
techniques to train the tissue segmentation models.

SO3 - Investigate the use of multiscale models, by utilizing several
magnification scales.

Pathologists will zoom in and out of the tissue specimen to study the
tissue at several magnification levels. To try and mimic this behavior, we
implemented multiscale models in Paper 2. Three scales are embedded in
the WSIs in the dataset, and all three levels were used. First, each level was
used separately in the three MONO models. Then, combinations of two
levels were explored in three DI models. Lastly, a TRI model was trained
using all three magnification scales.

SO4 - Create a system that automatically extracts tiles from
multilevel whole-slide images.

With such a large dataset and automatically generated tissue maps, a system
for extracting tiles from specific tissue classes is needed. Furthermore, with
the use of multiscale models, tiles need to be extracted from all three scales
at the same area in the WSIs. For this, a system was implemented and
presented in Paper 4. The system is parameterized, meaning that a few
parameters determine the behavior of the system. Thus, the system is both
repeatable and reproducible, and easy to report.
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O1 - Create a system for automated grading of urothelial carci-
noma slides.

WSIs of urothelial carcinoma are graded manually by pathologists, but
this process suffers from intra- and interobserver variability. A system for
grading these WSIs automatically could aid pathologists by providing a
second opinion.
A system for grading WSIs was proposed in Paper 5. The system

uses the tissue model to extract the urothelium tissue, and the multilevel
tile extraction method to generate the diagnostic datasets. Because the
multiscale models utilizing all three magnification scales performed the
best, the diagnostic model inherits this property and also uses all scales.
In addition to providing a slide-level grade for the WSI, a heatmap is also
generated, visualizing low- and high-grade carcinoma areas in the WSIs.

8.1 Tissue segmentation

The topic of tissue segmentation was explored quite thoroughly, with three
papers devoted to the subject.
In Paper 1, an autoencoder method was used to train unsupervised on

a large unlabeled dataset. One of the drawbacks of this method, is the
difficulties in training the models, and also the amount of training time.
First, the encoder-decoder model is trained on the AE dataset. A large
hyperparameter search is necessary to explore most of the options, as it
is not clear which parameters to use. In addition, it is not as easy as by
looking at the loss between the input and generated output. It is possible
to make this loss go towards zero by using a large enough latent vector.
However, the goal is not perfect reconstruction, but rather classification,
which we need to train a new model on a different dataset to check. As
mentioned, training time is also considerable for training both the encoder-
decoder and encoder-classifier. The unlabeled dataset, Dataset A in Figure
4.7, is by far the largest dataset of all the datasets used in this thesis. The
models are also trained from scratch, resulting in many epochs.

To try and mitigate some of these difficulties, a new approach was taken
in Paper 2. Here, pre-trained models were used together with domain
adaptation. This reduced the number of necessary epochs and the total
training time. In addition, this paper introduced multiscale models, which
outperformed the single-scale models.
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The best model from Paper 2 was used in Paper 3 and used to explore
two semi-supervised learning techniques. Using the model itself to extract
a new and larger dataset and retrain the model on both datasets improved
the performance.
A significant amount of time was spent composing and implementing

techniques for visualization of the tissue classes. Heatmaps were tried
out first, which provided the intended information, but did not convey it
satisfactorily. The heatmaps were separate images from the WSI, so both
the WSI and the heatmap are needed to interpret them. In addition, one
heatmap is generated for each tissue class, making it unpractical. In Paper
2, a new tissue segmentation image was proposed, which displayed all tissue
classes on one image, and was a far better solution.

8.2 Multilevel tile extraction

The methods presented in Paper 4 for extraction of tiles in multilevel
gigapixel images work exceptionally well. The methods are quick, effective,
and versatile. It was developed primarily for extracting tiles and visualizing
tiles from all levels on the same image. However, after some experimental
work, it was concluded that the method also works for post-processing and
is suitable for creating heatmaps.
Earlier, more primitive versions of the methods were used throughout

Paper 1-3 to extract tiles. However, it was not until the start of work on the
diagnosis dataset that the methods were further developed and completed
that we looked at the possibility of publishing it.
Only a few parameters are necessary to describe the behavior of the

methods. In Paper 5, a small section was included describing the parameters
used for tile extraction, demonstrating the simplicity of reporting the
method.

8.3 Diagnostic prediction

The whole work of this thesis leads up to the final objective, making an
automated diagnosis system for grading urothelial carcinoma slides.
In Paper 1, the generated heatmaps were separate images. Whereas in

Paper 5, the improved methods from Paper 4 were used to generate the
heatmaps. This means that the heatmaps could be superimposed upon the
WSI itself, generating more pleasing and easier to interpreter images.
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8.4 Usage scenario

The proposed system in this thesis could potentially be implemented in a
clinical setting. A rack of glass slides with prepared specimens is fed into
the slide scanner. The slide scanner will automatically scan and save each
of the glass slides in the rack to a connected computer, and the saved WSIs
are then ready for a pathologist for examination. The proposed system
could be installed on the connected computer, and when a new WSI is
detected, the proposed system will automatically start analyzing it. This is
a background process that can run 24 hours of the day without supervision.
When a pathologist is ready to examine the WSI, he or she will now also
have access to the segmented tissue map, a WHO04 grade heatmap, and
the slide-level WHO04 grade prediction. These are automatically provided
to the pathologist as tools to aid them during the examination, potentially
making their diagnosis more accurate and speeding up their examination
by increasing the efficiency.
It is also possible to take it one step further. Instead of every hospital

having its own GPU computer and software connected to the slide scanner,
it is possible to have the program running in the cloud. Each hospital can
then subscribe to a service where the slides they scan will be processed in
the cloud, and the resulting images and predictions will be presented to
them in the same way as described above. This has many benefits, like
reducing downtime due to failure of equipment, lower maintenance, and also
opens up the possibility for hospitals in low-income countries to subscribe
to the service, which would otherwise not have the option to buy expensive
computers necessary. A drawback, however, is the need for a high-speed
internet connection due to the large size of the WSIs.
With the suggested system above, it is possible to use the automatic

WHO04 grades to prioritize some patients in front of others. For example,
a patient with a prediction of high grade could have a shorter time before a
potential recurrence compared to a patient with a prediction of low grade.

8.5 Suggested future work

The work in this thesis covers a lot of different aspects. However, the
amount of unexplored items far outweighs the items covered. Therefore,
some suggested future work is discussed here.
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Deep learning models suffer from the "black box" aspect. That is, when a
model makes a prediction, it is unknown to us what made the model come
up with that prediction. Being used as a tool in a clinical setting, it would
be beneficial if the model could provide some insight into how that decision
was reached. For example, attention modules can help to give insight into
which parts of a classified image contribute to the predicted class. It could
be used as a tool for researchers to identify these regions, or to improve the
accuracy and create more robust models. Another aspect is explainable AI
(XAI), where the AI models provide interpretability and explainability for
its predictions. Amann et al. [2] explore the role of XAI in clinical decision
support systems.

At present, the WSI, segmented tissue maps, and WHO04 grade heatmaps
are separate images. However, this is not optimal as the user needs to
switch between the images. A better solution would be to incorporate the
tissue map and grade heatmap as overlays on the WSIs in a GUI software,
with a button to toggle the visibility of these on and off.

In the diagnostic model, the urothelium tissue is extracted and used
to predict the grade. However, the other classified tissue classes are left
untouched. This means that tiles of lower magnification scale (25x, 100x)
may cover an area outside the urothelium regions and may include tissue
classes like damaged tissue or blood. This is unwanted and may harm the
prediction accuracy. By using the tissue map, these classes can be masked
out and excluded from any predictions.
The quality of a WSIs can be divided into two parts, tissue and image

quality, and was presented in Chapter 4.4. Even though the data material
used in this thesis consisted of high-quality slides, if the system should be
used on new slides in the future, a quality control system could be used to
screen bad WSIs. This was not handled in the thesis but should be taken
into consideration in a clinical setting. Several methods for detection of
scanning artifacts such as out-of-focus areas have been proposed [63, 87, 109].
As well as open-source tools, such as HistoQC [58], could also be useful for
this task.
The stain color varies due to differences in tissue and dye, and is also

dependent on laboratory protocols and the slide scanner manufacturer.
Methods for stain color normalization have been proposed [48, 107], and
could be implemented as a preprocessing step. On the other hand, color
augmentation is a technique used during training to make the models more
robust against color changes, for example, as proposed by Wagner et al.
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[132]. In the work of Tellez et al. [121], both of these techniques were
quantified, and they concluded that "combining color augmentation and
color normalization achieves the best performance".

8.6 Conclusion

The ultimate goal is to develop new tools for pathologists by leveraging
digital pathology and digital versions of the tissue samples. This thesis
proposes several new tools, including tissue heatmaps, tissue segmenta-
tion maps, WHO04 grade heatmaps, and automatically slide-level WHO04
grading. These are all tools that can aid pathologists in becoming more
efficient in their work, saving precious time. It could further contribute to
the pathologists becoming more accurate in their diagnosis work and help
mitigate the problems related to intra- and interobserver variability and
inconsistent reproducibility between pathologists. More accurate diagnosis
would lead to a more accurate treatment program for the patients, poten-
tially reducing under- or overtreatment. Another potential benefit for the
patient is prioritizing high-grade patients based on the slide-level predic-
tions, where the patient who needs correct treatment quickly is diagnosed
first and does not have to wait in line.

Another proposed method in this thesis is extraction of tiles in multilevel
gigapixel images. It does not directly aid pathologists and patients but
could indirectly benefit them by supporting the researchers developing new
tools for histological images. The methods were a vital part of this thesis
and were used to extract the necessary dataset for the diagnostic models.
Many learning techniques were explored, including unsupervised, semi-

supervised, domain adaptation, and supervised learning. The combined
results from all these experiments may aid other researchers considering
similar approaches.
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Paper 1

Abstract:
Globally there has been an enormous increase in bladder cancer
incidents the past decades. Correct prognosis of recurrence and
progression is essential to avoid under- or over-treatment of the
patient, as well as unnecessary suffering and cost. To diagnose
the cancer grade and stage, pathologists study the histological im-
ages. However, this is a time-consuming process and reproducibility
among pathologists is low. A first stage for an automated diagnosis
system can be to identify the diagnostical relevant areas in the
histological whole-slide images (WSI), segmenting cell tissue from
damaged areas, blood, background, etc. In this work, a method for
automatic classification of urothelial carcinoma into six different
classes is proposed. The method is based on convolutional neural
networks (CNN), firstly trained unsupervised using unlabelled im-
ages by utilising an autoencoder (AE). A smaller set of labelled
images are used to train the final fully-connected layers from the
low dimensional latent vector of the AE, providing an output as a
probability score for each of the six classes, suitable for automati-
cally defining regions of interests in WSI. For evaluation, each tile is
classified as the class with the highest probability score. The model
achieved an average F1-score of 93.4% over all six classes.
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9.1 Introduction

Globally, bladder cancer resulted in 123 400 deaths in 1990, and in 2010
this number was 170 700 which is an increase of 38.3% taking population
growth into consideration [76]. The majority of bladder cancer incidents are
urothelial carcinoma with a representation as high as 90% in some regions
[37]. For patients diagnosed with bladder cancer, 50-70% will experience
one or more recurrences, and 10-30% will have disease progression to a
higher stage [81]. Patient treatment, follow-up and calculating the risk of
recurrence and disease progression depend primarily on the histological
grade and stage of cancer. Correct prognosis of recurrence and progression
is essential to avoid under- or over-treatment of the patient, as well as
unnecessary suffering and cost.

Figure 9.1: Example tiles from each class. A) Urothelium, B) Stroma, C) Damaged
tissue, D) Muscle tissue, E) Blood, and F) Background.

With the introduction of digital pathology, some computer-aided tools
to assist pathologists have been introduced, but still the assessment of
histopathological images to diagnose, grade and stage cancer is mainly
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done manually. This is a time-consuming process and reproducibility
among pathologists is in some cases low, for example within the prognostic
classification of urinary bladder cancer. Automatic extraction of the relevant
areas in large whole-slide images (WSI) would be an important first step
where the results could be used in automated diagnostic and prognostic
classification tools.
During the biopsy, parts of the tissue get both physical- and heating-

damage, and thus can not be used as relevant diagnostic information. The
WSI also contains stroma- and muscle-tissue as well as areas of blood. In
this paper we consider the task of automatic classification of tiles in WSI
into the six different classes; urothelium, stroma, damaged tissue, muscle,
blood and background. Examples from each class are shown in Figure 9.1.
The system uses the automatic classification tool to produce heat maps from
the model’s output. Such heat maps can provide useful information to help
the pathologist to focus on the diagnostic important part of the large WSI
during visual inspection. In addition, the heat maps are also suitable as
input for automatic region of interest (ROI) extraction of relevant areas in
the WSI, which can further be used in automated diagnostic and prognostic
classification tools.

9.1.1 Previous work

In recent literature, some methods for automatic tissue classification have
been suggested. However, most previous works have focused on classifying
only two classes, a binary problem set to differentiate between cancer-
patches and non-cancer patches.

Recent literature shows good results for binary tissue classification using
convolutional neural networks (CNN). Wang et al. [133] won both com-
petitions of the Camelyon16 grand challenge for automated detection of
metastatic breast cancer in WSI. As part of their model, GoogLeNet was
utilised to do patch classification. The model was trained to discriminate
between positive and negative patches and achieved an accuracy of 98.4%.

Some attempts of multiclass tissue classification can be found in recent
years. Araújo et al. classified patches of breast cancer into four classes using
convolutional neural networks [5]. The best patch-wise accuracy for four
classes was 66.7%. When the task was simplified as a two-classes problem,
non-carcinoma vs carcinoma, the accuracy was improved to 77.6%. The
work of Kather et al. [62] uses a combination of several hand-crafted feature
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Figure 9.2: Overview of the CNN-model. First, the unlabelled dataset is used to
train the encoder-decoder model. Then the labelled dataset is used to train the encoder-
classifier model. Finally, the trained encoder-classifier model are used to classify new
WSI into probability maps. These probability maps are further postprocessed to produce
the heat maps.

methods to classify different types of tissue in colorectal cancer, performing
tests on both a two-class and eight-class problem. They achieved the best
result on the two-class problem with a tumour-stroma separation accuracy
of 98.6%, while the multiclass problem achieved an accuracy of 87.4%.

To the author’s knowledge, there are no published results on multiclass
classification on WSI of bladder cancer.

Some few and recent work on ROI detection can be found. ROI detection
has been done by multi-scale real-time coarse-to-fine topology preserving
segmentation (CTFTPS) by utilising superpixel clustering technique [69,
145]. A RAPID (Regular and Adaptive Prediction-Induced Detection)
segmentation method for ROI detection in large WSI is presented by
Sulimowicz and Ahmad [118] while using the multi-scale CTFTPS technique
as a baseline. An SVM was utilised to classify the detected regions as ROI
vs non-ROI. For this task, the classifier achieved an F1-score of 89.8% for
the RAPID method, and 91.2% for the optimised multi-scale CTFTPS
method.

Deep CNN has shown to provide state of the art results in many computer
vision tasks in recent years [66] and has also found its way into medical
image assessment tasks. In this work, a method for automatic classification
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of WSI from urothelial carcinoma into six different classes is proposed.
The method is based on CNN, firstly trained unsupervised, using large
unlabelled image sets by utilising an autoencoder (AE). A set of labelled
images are used to train the final fully-connected layers from the low
dimensional latent vector of the AE, providing an output as a probability
score for each of the six classes, suitable for automatically defining ROI in
WSI. A visualisation of the system is depicted in Figure 9.2.

The novelty of the work lies both in the specific application of urinary
bladder WSI and in the method development, more specifically in a combi-
nation of using CNN, learned in a semi-supervised way, for the application
of automatic region of interest extraction in WSI by multiclass tissue
classification, tested on urinary bladder cancer.

9.2 Data material

The data material used in this paper consists of histopathological images
from patients with primary bladder cancer, collected in the period 2002-
2011 at the University Hospital of Stavanger in Norway. The biopsies are
formalin fixed and paraffin embedded, 4 µm slides are cut and stained with
Hematoxylin Eosin Saffron (HES). All slides are diagnosed and graded
according to WHO73 and WHO04, cancer stage (Tis, Ta or T1) and
follow-up data on recurrence and disease progression are recorded.
The slides are then scanned using a Leica SCN400 histological slide

scanner to produce a digital histological image. The images are in Leicas
data format called SCN and to be able to process these images the Vips
library [84] has been used, which is specially designed for image processing
of large images.

9.3 Proposed method

An overview of the proposed method can be seen in Figure 9.2. The different
parts will be explained in this section.

9.3.1 Preprocessing

Each WSI is sliced into smaller non-overlapping tiles of size 128 × 128
pixels, extracted at 400x magnification level. The background takes up as
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much as 70-80% of the WSI and is detected and discarded automatically by
computing the histogram of the tile and setting a fixed threshold value. This
removes tiles consisting of grey background, however, if the background
tile contains small parts of debris, tissue or similar it is not discarded.
Examples of tiles belonging to this class are illustrated in Figure 9.1-F.

The histological images are split into three datasets. First, an unlabelled
dataset is created in the manner explained above where the extracted
tiles have no label associated with it. In total 48 WSI all from different
patients were preprocessed resulting in 7 130 527 unlabelled tiles after the
pure background tiles are excluded. This set, called train-ae, is utilised as
training data for the AE-model.

Secondly, a labelled training dataset is created. A pathologist has manu-
ally annotated carefully selected regions in the WSI. The tiles in the regions
are preprocessed by evaluating the histogram to be sure not to include
background or boundaries and given a label corresponding to its class. The
number of patients and tiles produced are listed as train-set1 in Table 9.1.
Lastly, a labelled test set is created to assess the performance of the

classifier. The set is created in the same manner as the labelled training
set, but on separate WSI which has not been used in either the unlabelled
or labelled datasets to avoid cross-contamination between training and test
data. The dataset is listed as test-set in Table 9.1.
The texture of urothelium tissue will change for the different cancer

grades, and thus it is vital to include a wide variety of samples for this
class. The other five classes, however, will not change as a function of
cancer grade and may include fewer samples. Another issue is that the
occurrence of some classes is more sparse in the WSI, making it difficult
to extract a large amount of it. A disadvantage of these two issues is a
significant deviation in the number of samples in two of the classes, stroma
and muscle tissue, as seen in train-set1 in Table 9.1.

To compensate for the class-imbalance in train-set1, data augmentation
techniques have been utilised. Tiles in the muscle and stroma class are
extracted with 50% overlap, to produce more data from the same regions.
These extracted tiles are further augmented by randomly flipping and
rotating them to create new data. These techniques result in a more
balanced dataset, which is listed in Table 9.1 as train-set2. This dataset is
used to train the classifier in the presented experiments. The augmentation
techniques were not performed on the test-set, resulting in an unbalanced
test set. In this case, accuracy as a performance metric could be misleading.
Instead, precision, recall and F1-score are used to evaluate the performance.

119



Paper 1

Table 9.1: The resulting labelled datasets after preprocessing. Results show the total
number of tiles extracted for each class, and the number of WSI used are shown in
parenthese.

Train-set1 Train-set2 Test-set

Urothelium 25 635 (25) 25 635 (25) 3 612 (3)
Stroma 4 329 (4) 25 974 (4) 505 (1)
Damaged 30 714 (8) 30 714 (8) 2 679 (1)
Muscle 2 002 (3) 23 949 (3) 475 (1)
Blood 19 071 (4) 19 071 (4) 692 (1)
Background 20 000 (2) 20 000 (2) 500 (1)

9.3.2 CNN-Model

The system consists of an autoencoder model which is trained on the
unlabelled dataset train-ae. The autoencoder consists of two main parts;
the encoder and the decoder. The encoder will transform the input tile
into a latent vector of much lower dimension. A small latent space is
chosen which will force the network to extract the essential features of the
image and preserve these in the vector. The decoder will use the features
stored in the latent vector and reconstruct the input. During training, the
network compares the reduced mean of the squared difference between the
input image and reconstructed output image as given by the loss function∑

(input − output)2. The AE function is described in details in [8]. The
encoder consists of two convolutional-, two max-pooling- and four dropout-
layers, as well as three fully-connected layers as seen in Figure 9.2. The
decoder consists of the same layers, but in reverse order and uses unpooling
and deconvolutional layers instead.
After training, the encoder has learned to extract the features of the

input tile, which are now stored in the latent vector. To do classification,
the decoder part is discarded and exchanged with a classifier. The classifier
consists of three fully-connected layers connected to the output of the
encoder. This encoder-classifier model constitutes the proposed CNN-model
and is trained on the labelled training dataset train-set2 and evaluated on
the test-set.
For initialisation of the system, the bias is set to zero, and the weights

are taken from a truncated normal distribution. The convolutional layers
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use a filter kernel of 3 × 3 and a stride of 1, whereas the max-pooling layers
use a filter kernel of 2 × 2 with a stride of 2. The number of feature maps
is used to control the size of the latent vector space and is experimented on
as described in Section 9.4. The parameters of the network are optimised
using the Adam optimiser with a mini-batch of size 128. For the activation
function between layers, the rectified linear unit (ReLU) activation function
is used. For the last layer, the softmax activation function is utilised. This
will output a true probability distribution, meaning each output lays in
the interval 0 to 1 and all outputs combined sums up to one. Dropout is a
technique where randomly selected nodes are set to zero during training
to provide regularisation to the network. The portion of nodes set to zero
is specified by the dropout rate as a percentage. During evaluation of the
network, dropout is disabled.

The histological images are in Leicas data format called SCN and to be
able to process these images the Vips library [84] has been used. This is a
library specially designed for image processing of large images. The model
is written in Python 3.5 using the Tensorflow 1.7 machine learning library
[1]. For evaluation of the model, the Scikit-learn metric package [98] is used
which computes precision, recall and F1-score of each class in addition to
an average total score.

The model is used to predict the class of each tile in a WSI. The proba-
bility for each class provided by the model can be rearranged as probability
maps, one for each class, and will visualise the location in the histological
image where each class is present. An overview of this process is presented
in Figure 9.2.

9.4 Experiments and results

Two experiments were conducted, the first to find the best combination of
architecture and hyperparameters and the second to verify its performance
and use the final model on WSI.

9.4.1 Experiment 1: Architecture and hyperparameters

To find a suitable architecture and appropriate hyperparameters, a large
grid search was conducted. To reduce both computational time and search
space, a preliminary search was set up with some limitations. A reduced
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version of the train-ae dataset was used to decrease the processing time,
and each model was only trained for 50 epochs.
The encoder-decoder model was tested with two different sizes of the

latent vector, which was altered by changing the number of feature maps in
the convolutional layers. Latent vectors of size 512 and 1 024 were tested. A
learning rate of 10-3 and 10-4 was tested as well as dropout rates of 0%, 10%
and 20%. Each of these combinations was tested on network configuration
consisting of two, four and six convolutional layers in the autoencoder.

In the encoder-classifier model, the classifier consists of three dense layers.
The first layer after the encoder was tested with 256, 512 and 1 024 neurons,
and the second layer with 128, 256 and 512 neurons. The number of neurons
in the output layer is bounded to the number of classes. This results in 9
different configurations for the classifier layers. Each of these configurations
was tested with a learning rate of 10-3, 10-4 and 10-5. There are no dropout
layers in the classifier itself, but changing the dropout rate will affect how
the encoder codes the input tile into the latent vector. The encoder-classifier
was therefore also tested with the same dropout rates as above. The model
was tested both with and without freezing the pre-trained encoder-layers
to see how it affected the result.
The prediction accuracy on the test-set was used to compare the per-

formance of the different hyperparameter combinations. Hyperparameters
that showed poor performance on several models were excluded to narrow
down the search space.

The experiments showed an overall best result using an encoder-decoder
structure with two convolutional layers with a latent vector of 1 024 neurons
trained with 10-4 learning rate and 10% dropout rate. The results further
showed best performance while not freezing the encoder part of the encoder-
classifier model. A classifier with 256 neurons in the first layer and 512 in
the second layer was favourable, trained using a learning rate of 10-5 and
10% dropout rate. These hyperparameters and settings will be used as the
resulting model of this experiment. The model is depicted in Figure 9.2.

9.4.2 Experiment 2: Training, testing and using the result-
ing model

The resulting architecture after the first experiment was trained once more,
this time on the full dataset. First, the autoencoder was trained on the
unlabelled dataset train-ae for 100 epochs, then the encoder-classifier was
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fine-tuned on the augmented labelled dataset train-set2 for another 600
epochs. Since experiment 1 showed best results when the encoder was
not frozen during fine-tuning, both the encoder and classifier was trained
during this step. Evaluation using the Scikit-learn metric package on the
test-set was performed every 5th epoch. The model achieved the best result
after 540 epochs of training with an average F1-score of 93.4% over all six
classes. The precision, recall and F1-score of each class is shown in Table
9.2.

Table 9.2: Detailed classification results from the model trained using 10% dropout
rate.

Class Precision Recall F1-Score

Urothelium 0.924 0.952 0.938
Stroma 0.897 0.929 0.913
Damaged 0.925 0.927 0.926
Muscle 0.980 0.714 0.826
Blood 0.996 0.991 0.994
Background 0.990 0.988 0.989

Average total 0.936 0.935 0.934

The overall results in Table 2 are good. However, there are some obser-
vations.

In train-set2, which is used to train the classifier, the classes of blood
and background have the fewest number of samples. However, these are
the classes which perform best. This is probably because these classes have
the least within-class variance, e.g. most of the tiles have a similar visual
appearance.
Urothelium and damaged tissue both perform well, even though these

classes have a substantial visual variance in the form of colour and texture
in the tiles. The dataset for these classes contains the most number of
patients (25 and 8 patients, respectively), and therefore contains the most
diverse samples in the dataset, contributing to the good results.
The precision of stroma and recall of muscle is not performing as good

as the rest. The dataset for these classes contains few patients and are
also the two classes which needed augmentation due to small amounts of
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available data. The low recall of muscle tissue indicates that a large pro-
portion of the muscle tiles are misclassified as other classes, most probably
urothelium, stroma and damaged tissue (due to the high precision of blood
and background, these are not likely to include many misclassified tiles). It
is important to note that the muscle class achieves a very good precision
score, and stroma has an acceptable good recall score.

9.4.3 Heat maps

The resulting model was utilised to classify entire whole-slide images. Each
tile in the WSI was classified and the percentage for each class recorded.
These were then combined to create the probability maps. These maps
were then post-processed in MATLAB by applying a Gaussian filter kernel
with a standard deviation of σ = 0.6 to smooth the images. After filtering,
a thresholding operation was performed on the image with a limit of 0.8,
setting all predictions below this threshold to zero. This ensures that only
predictions of 0.8 or higher are visible in the final heat maps.
Figure 9.3 shows three example WSI with their corresponding heat

maps. By visual inspection performed by pathologists, this is considered to
look very promising. However, a quantitative measure for the WSI ROI
extraction is lacking since we do not have complete WSI manually labelled
into the six classes at the current time.

9.5 Conclusion

This paper proposes a method for automatic classification of tile-segments
of histopathological WSI of urinary bladder cancer into six different classes
using a CNN-based model. An encoder-decoder structure is trained on
a large set of unlabelled data. After training, the encoder part of the
autoencoder acts as a feature extractor making low dimensional latent
vectors. An encoder-classifier structure is then fine-tuned on a set of
labelled tiles. The finished model is able to classify input tiles from the
WSI into the classes urothelium, stroma, damaged tissue, muscle, blood and
background. The best model achieved an average F1-score of 93.4% over
all the six classes, an overall good result. However, future work will include
an effort to improve the classifier. Other methods such as a multiscale
approach are considered.
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The model is further used to classify entire WSI to produce heat maps,
which visualises each of the classes and their location in the image. These
maps can provide useful information to the pathologist during visual inspec-
tion. Future work consists of using the above model as an ROI extractor of
relevant tissue in the WSI to make a dataset suitable as training data for a
diagnostic and prognostic classification model.
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Figure 9.3: The original WSI together with the corresponding heat maps. The scale in
the rightmost column shows the confidence level given by the model. The background heat
maps are performing very good, but has been omitted from the heat map visualisation
since it is just removing the borders between background and tissue. The heat maps
have been smoothed with a Gaussian filter and thresholded to only contain predictions
of 0.8 and higher.
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Abstract:
In pathology labs worldwide, we see an increasing number of tissue
samples that need to be assessed without the same increase in the
number of pathologists. Computational pathology, where digital
scans of histological samples called whole-slide images (WSI) are
processed by computational tools, can be of help for the pathologists
and is gaining research interests. Most research effort has been given
to classify slides as being cancerous or not, localization of cancerous
regions, and to the “big-four” in cancer: breast, lung, prostate, and
bowel. Urothelial carcinoma, the most common form of bladder
cancer, is expensive to follow up due to a high risk of recurrence,
and grading systems have a high degree of inter- and intra-observer
variability. The tissue samples of urothelial carcinoma contain a
mixture of damaged tissue, blood, stroma, muscle, and urothelium,
where it is mainly muscle and urothelium that is diagnostically
relevant. A coarse segmentation of these tissue types would be useful
to i) guide pathologists to the diagnostic relevant areas of the WSI,
and ii) use as input in a computer-aided diagnostic (CAD) system.
However, little work has been done on segmenting tissue types in
WSIs, and on computational pathology for urothelial carcinoma
in particular. In this work, we are using convolutional neural
networks (CNN) for multiscale tile-wise classification and coarse
segmentation, including both context and detail, by using three
magnification levels: 25x, 100x, and 400x. 28 models were trained
on weakly labeled data from 32 WSIs, where the best model got an
F1-score of 96.5% across six classes. The multiscale models were
consistently better than the single-scale models, demonstrating the
benefit of combining multiple scales. No tissue-class ground-truth
for complete WSIs exist, but the best models were used to segment
seven unseen WSIs where the results were manually inspected by a
pathologist and are considered as very promising.
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10.1 Introduction

Worldwide, 549 393 new cases of bladder cancer were diagnosed in 2018,
in addition there were 199 922 deaths due to the disease. This makes
bladder cancer the 10th most common type of cancer in the world [15]. Men
are overrepresented, with approximately 75% of the cases [4]. The most
common type of bladder cancer is urothelial carcinoma, with over 90% of
the cases [37]. Of the patients diagnosed with bladder cancer, 50% to 70%
will experience recurrence, and 10% to 30% will advance to a higher disease
stage [81].

Treatment and follow up of urothelial carcinoma are primarily based upon
histological grade and stage, evaluated manually by an expert pathologist
studying the histological images of the tumor using the latest WHO16
classification system [7]. Correct grade and stage are essential to avoid
over- or under-treatment, and thereby unnecessary suffering for the patient.
For most pathology departments, evaluation of histological images is still
performed through a microscope, a time-consuming process, not always
reproducible [82]. Digital pathology has been introduced to improve diag-
nostic accuracy, and certain computer-aided diagnostic (CAD) tools are in
use for other diseases. However, such tools are currently not in use for the
assessment of urothelial carcinoma and could potentially be of great value
to patients and clinicians.

Non-muscle invasive bladder cancer is usually treated with transurethral
resection of the tumor. The removed tissue contains both atypical urothe-
lium from the tumor as well as stroma, but can also contain smooth muscle
from the bladder wall, normal urothelium from surrounding mucosa and
blood. During the procedure, parts of the tissue can get damaged, for
example in terms of heating damage induced by laser or electrically heated
wire loop. Areas on the whole-slide images (WSI) with blood and damaged
tissue will not be suitable for extracting diagnostic and prognostic infor-
mation, and a pathologist will discard such regions on inspection. CAD
systems processing WSI must be able to identify trustworthy interesting
areas of resected tissue, but also identify damaged areas and regions that
should be excluded from further analyses.

This paper proposes an automatic method for classifying WSI tiles from
urothelial carcinoma cases into the following categories: urothelium, stroma,
muscle, damaged tissue, blood, and background, utilizing different magni-
fication scales. Examples from each class are shown in Figure 10.1. The
output of such a system can be used as a guide for pathologists, providing
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a quick visualization of where the different tissue types can be found. To
the best of the author’s knowledge, a system for segmenting urothelial
carcinoma WSIs into each tissue class does not exist. For determination
of stage, pathologist wants to identify if muscle tissue is present or absent
in the WSI and whether the tumor has infiltrated it. As muscle tissue is
often sparse in the WSI, it can be time-consuming to get a full overview of
its locations. However, with the help of segmented tissue images, it can
be verified in a short amount of time. In the future, training data for a
CAD system will be created by utilizing the best model developed through
this paper by extracting diagnostic relevant features from the appropriate
and relevant regions in the WSI. As this problem is not strictly dependent
on classifying all six tissue classes, a binary approach is also experimented
with in this paper classifying only urothelium vs. non-urothelium tissue to
see if an increase in urothelium extraction can be achieved.

400x

100x

25x

BackgroundBloodMuscle StromaDamagedUrothelium

Figure 10.1: Example tiles of each class extracted at three magnification scales. Tiles at
each scale are extracted from the same center pixel. The magnification scale is increased
by a factor of four in each step, resulting in the tile covering 16 times as much area, even
though they have the same size of 128 × 128 pixels.

Tile-based classification of WSI has been done earlier [5]. However, by
only classifying a single tile, it leaves out information from the surrounding
area. Moreover, WSI viewed on different magnification scale identifies
different information. During an examination, a pathologist will integrate
information across several magnification levels before reaching a final deci-
sion. Low magnification (25x) will show global context information such as
papillary architecture, outline, and the border of the tissue, as well as color
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and texture. Nuclear polarity can be evaluated in the mid magnification
(100x), while high magnification (400x) will reveal cytological features like
cell size and shape, mitosis, as well as cell nucleus characteristics as contour,
size and colorization intensity, and distribution.
The proposed method combines global context information found at

lower magnifications (25x, 100x) with local information found at the highest
magnification (400x) using deep neural networks to extract features from
the different scales, thereafter concatenating the features feeding the last
classifier layers of the network. Different neural network models were tested
which utilized different combinations of the scales.

10.1.1 Related work

It is not possible to feed an entire gigapixel WSI into a deep neural network,
and a practical solution to this is to divide WSI into tiles and feed the tiles
sequentially to the deep neural network. There are primarily two methods
for semantic segmentation within medical applications. The first, which
utilizes models capable of providing pixel-wise classifications, can output
segmentations with high resolution. These networks are usually based on
the fully convolutional networks (FCN) introduced by Long et al. in [75].
Popular models are the U-net model by Ronneberger [104], and variants of
this [68, 70]. As these networks can detect small details, they are often used
in cell and nuclei segmentation [46, 131], but also on tumor segmentation
tasks [151]. The downside, however, is the need for pixel-wise ground-truth
annotation for supervised learning, which is difficult and time-consuming
to generate, especially in many medical applications. These networks are
typically trained and tested on small example-patches from WSIs, since no
dataset with a pixel-wise annotation of cells and tissue types on full WSI
exist.

The second approach is based on tile-wise classification, where the models
output a class label for each tile. This results in a coarser segmentation with
the resolution of the tile size, and thus are more often seen for classification
tasks rather than segmentation tasks. Nevertheless, it has been used in
tumor segmentation methods [19, 49, 55, 56, 142]. As every pixel within
the tile belongs to the same class, the tile-based ground-truth annotation
process is significantly simplified for classification and localization of regions
within histological images.

A combination of both tile-wise and pixel-wise classification has been
seen for segmentation of WSI by Guo et al. [47]. Firstly, a tile-based
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prediction using Inception-V3 gives a coarse segmentation of the WSI,
followed by a pixel-wise classification of only the tumor tiles for refined
segmentation of those areas. This approach can speed up the segmentation
process relative to a pixel-wise segmentation of the entire slide; however, the
need for pixel-wise ground-truth in all region of interests is still a significant
challenge.

A pathologist studying a slide would typically zoom in and out, looking at
both details and context. To similarly include these features in an artificial
intelligence (AI) model, some multiscale approaches have been suggested.
Models are trained with multiple input tiles, either taken from different
magnification scales or taken from the same scale but with varying sizes to
accommodate for a larger field of view. In the work of Sirinukunwattana
et al. [114], the author has performed a systematic comparison between
five single-scale and five multiscale architectures, tested on four classes of
prostate cancer and four classes of breast cancer. Both tiles extracted at
different magnification levels, as well as tiles of various sizes, were tested;
and the result supports the claim that incorporating a broader visual
context improves the outcomes. Another multiscale approach was used by
Vu et al. [131], which created a network named multiscale deep residual
aggregation network (MDRAN). First, a tile is extracted from the WSI at
200x magnification, and then resized to x0.5 and x2 the original size. The
three scales (0.5x, 1x, 2x) were then aggregated in the model and used to
accurately segment nuclei of non-small cell lung cancer (NSCLC). Since the
models uses multiple inputs, the architectures often become more complex,
and the total number of parameters within the models also goes up. This
affects both the training and inference time of the models.
Most previous work on WSI classification is targeted on segmenting

cancerous vs. non-cancerous areas of the WSI, and often the non-cancerous
class may include several tissue classes. E.g., the work just mentioned by Vu
et al. [131] also performed WSI classification of NSCLC into three classes:
NSCLC adeno (LUAD), NSCLC squamous cell (LUSC) and non-diagnostic
(ND). The ND regions, in this case, consisted of fat, lymphocytes, blood
vessels, red blood cells, normal stroma, cartilage, and necrosis without
any attempt to separate these classes. Sometimes, however, there can be
useful information in stroma, muscle, or other non-cancerous tissue types
as well. There are some very few reported works on segmenting various
tissue types. In [71], Li et al. propose a model with dual inputs trained
to segment WSI from the ICIAR2018 breast cancer dataset into normal,
benign, situ, and invasive regions. Also, a transfer learning model with
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multiple inputs was explored by Wang et al. [134] to segment histological
images of inflammatory bowel disease (IBD) into the four categories: muscle
regions, messy regions, messy + muscle regions and background. Kather et
al. [62] used a deep learning model to classify tiles from colorectal cancer
into eight different classes of tissue: tumor epithelium, simple stroma,
complex stroma, immune cell conglomerates, debris and mucus, mucosal
glands, adipose tissue, and background.

Relatively little work is aimed at segmentation of bladder cancer WSIs.
In the work of Xu et al. [142], a method for predicting low or high tumor
mutational burden (TMB) in bladder cancer patients was investigated. As
a preprocessing step, a tile-wise tumor vs. non-tumor classifier was used
to segment out the tumor regions from the surrounding tissue. An SVM
classifier was then used to predict the patient’s TMB state using extracted
histological image features from the tumor regions. A similar approach
was used by Zhang et al. [151], where a U-net like network was used to
predict each pixel into tumor or non-tumor as a preprocessing step before
using another neural network for predicting the slide level diagnosis. As
urinary bladder tumors are removed using a laser, burnt and damaged
tissue is often present at the WSI. Muscle, stroma, and blood will also
be part of the removed tissue and visible in the WSIs. But no effort is
aimed at identifying these regions, even though they may contain valuable
information for a pathologist.

The recent research efforts show promising results utilizing deep neural
networks in different configurations for classifying and localizing cancerous
areas. However, most effort is made on the "big four" in cancer (i.e., breast,
lung, prostate, and bowel), performed on some publicly available datasets.
Still, there is relatively little work done on other cancer types, on multiclass
classification, on tissue-type classification, and segmentation/heat maps of
full WSI.

10.1.2 Aims and contributions

In Wetteland et al. [138], we presented a method based on convolutional
neural networks (CNN) for classifying tiles of urothelial carcinoma WSI into
the six classes shown in Figure 10.1. The model utilized the autoencoder
architecture and was first pre-trained on a large unlabeled dataset, and
afterward fine-tuned on an annotated dataset. The models did not include
any context, as both the unlabeled and labeled dataset was extracted at
the full image resolution of 400x magnification.
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Level 0
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Figure 10.2: The WSI is stored in a pyramidal file format, including several down-
sampled versions of the base image. The annotated region (marked with red at level 0)
determines which tiles to extract. Tiles are then extracted at the desired location from
all three levels.

The main contribution of the current paper is to combine histological
images from different magnification scales into the model, giving the model
access to a greater field of view and more context of the surrounding tissue.
The resulting models are also used to generate segmented images of all
the tissue classes within bladder cancer WSIs. An extensive number of
experiments are conducted to find the best combination of inputs and
magnification levels for the given task. The method utilizes the pyramidi-
cal image file format to extract tiles from existing down-sampled versions
already present in the file, excluding any up- or down-sampling, limiting
the number of necessary computational operations. Transfer learning is
incorporated by building on the VGG16 network rather than the autoen-
coder model. To summarize, this paper proposes an automatic multiscale
system, merging inputs of 25x, 100x, and 400x magnification, based on a
CNN for classification of whole-slide histological images into six classes.
A preliminary study of this work was published by Wetteland et al. as

an abstract [139]. Here we present much more comprehensive experimental
work and a description of the method.
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10.2 Materials and methods

First, the data material will be introduced and explain how the datasets
are prepared. Afterward, the proposed system for tissue segmentation is
presented. Then the structure of the model is described, and finally, the
training procedure and model selection is explained.

10.2.1 Data material

The data material consists of digital whole-slide images from patients
diagnosed with primary papillary urothelial carcinoma, collected at the
University Hospital of Stavanger, Norway, in the period 2002-2011. The
biopsies are formalin-fixed and paraffin-embedded, from which 4 µm slices
are cut and stained with Hematoxylin Eosin Saffron (HES).
The prepared tissue samples are scanned at 400x magnification using

the Leica SCN400 slide scanner, producing image files in Leica’s SCN file
format. The images are stored as a pyramidal tiled image with several
down-sampled versions of the base image in the same file to accommodate
for rapid zooming. Each level in the file is down-sampled by a factor of
4 from the previous level. Figure 10.2 shows an example of a pyramidal
histological image with three levels. The Vips library [84] is capable of
extracting the base image as well as the down-sampled versions, making it
easy to extract the dataset at each resolution.
Two datasets were collected from the described data material, referred

to as the CV dataset and the inference dataset, both are described below.

CV dataset. An expert pathologist carefully annotated selected regions
in the WSI, where each region includes one of the six classes. A total of 239
regions belonging to the five foreground classes was annotated in WSI from
32 unique patients. The background regions were extracted from seven
randomly selected patients.
The annotated regions contain tight corners and narrow passages to

accommodate the shape of the tissue regions in the WSI. When extracting
tiles from the WSI, a grid of non-overlapping tiles was superimposed upon
the annotated region at 400x magnification level. The tiles in the grid
which lie outside of the region are regarded as invalid and will not be used,
whereas tiles within the region are valid. By shifting the grid in the X- and
Y- direction, more or fewer tiles become valid. To maximize the number of
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valid tiles, an automatic search algorithm was developed. The algorithm
checks the number of valid tiles for all possible positions of the grid. The
grid location with the highest number of valid tiles was used to extract the
dataset from that region. This search was performed individually for each
region.

Tile sizes of 64 × 64, 128 × 128, and 256 × 256 pixels were tested when
extracting tiles with the automatic program. Using a tile size of 64 × 64
extracted the most extensive dataset, but the size may be too small as each
tile contain little context information. With a tile size of 256 × 256, the
extracted dataset became very small, especially for the stroma and muscle
class. A tile size of 128 × 128 was thus chosen as a trade-off between the
other two sizes. When a tile is saved from the region, the corresponding
tiles from 25x and 100x magnification were also extracted in such a manner
that the center pixel is the same in all three magnification levels, as can be
seen in the right-half of figure 10.2.

Table 10.1: The resulting CV dataset is listed in the table with the total number of
tiles extracted for each class. The number of tiles refers only to tiles extracted at 400x
magnification. For the DI- and TRI-CNN models, the numbers need to be multiplied by
two and three, respectively. Classes marked with an asterisk shows the number of tiles
after augmentation.

Class Tiles Patients
Urothelium 29 728 28
Damaged 33 607 9
Stroma* 9 750 5
Blood 19 832 5
Muscle* 19 932 4
Background 27 012 7

The extracted 400x magnification tiles are ensured to stay within the
region border. However, by keeping the tile size the same, the lower
magnification (25x, 100x) tiles will have a wider field of view, allowing for
more context of the surrounding tissue to be included. Consequently, these
tiles will, in some cases, include several classes. Because the annotation
process requires specific expertise input, the dataset contains a limited
number of samples. Furthermore, the labels are imprecise as they do not
include samples of the labeled border between tissue regions. This would
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require multi-label samples, an even more expensive annotation process. As
a result of this, the dataset is weakly labeled in both quantity and quality.
No normalization of the stain color is performed on the data, and the

raw pixel intensity is used to train the models.
Stroma- and muscle-tissue are more sparsely distributed in the WSI,

resulting in a smaller amount of data for these classes. Data augmentation
techniques have been utilized to balance the dataset. Tiles from these two
classes are extracted with 50% overlap, and further rotated and flipped
during training to achieve a more balanced dataset. The size of each class
is listed in Table 10.1.

Due to the low number of patients in the dataset, a traditional train/val-
idation/test split could potentially hurt both the training and evaluation
of the models. Instead, stratified 5-fold cross-validation is used. This
enables the usage of all WSIs in both training and testing of the models.
Stratification is performed on the patient-level to ensure that tiles from the
same patient are not present in both the training and test set. A random
seed is set to ensure that the folds are the same for each model, making
the included samples in the training and test sets identical for all models.

Inference dataset. In addition to the CV dataset, seven WSIs were
selected to be used as inference on the retrained models. The WSIs included
in the inference dataset is not part of the CV dataset, and thus unseen by
the models. As with the CV dataset, no normalization is performed on the
WSIs in the inference dataset.

Due to the large size of the histological images, the WSIs included
in the inference dataset do not have any annotations, and therefore any
quantitative measurements are lacking. However, the resulting segmented
images have been examined by a pathologist to be promising and confirm
that the models can go from predicting smaller regions of the WSI to
segment the full WSI.

10.2.2 Proposed system

An overview of the proposed system for tissue segmentation of whole slide
images is presented in Figure 10.3. The system accepts input WSI of any
size and outputs a corresponding segmentation image from the input. The
system is tested on the seven WSIs in the inference dataset. The system
consists of three main steps which will be described here. The multiscale
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Figure 10.3: Overview of the proposed system. A background mask is created from the
25x WSI to exclude the background from further processing. Areas in the WSI selected
as non-background is then extracted and fed through the multiscale model from Figure
10.4, which outputs tissue predictions. The prediction needs to exceed a set threshold to
be valid. Finally, the segmentation image is generated by giving each class a separate
color. The values shown in the figure are for illustration purposes only.

model in step 2 is described in more detail in the next section. Note that
the blue box in step 2 in Figure 10.3 marked with ’Multiscale Tissue Model’
can be exchanged with any of the models described in the model structure
section below.
First, a binary background mask is produced from the 25x level of the

WSI, generated by checking the pixel intensity value and splitting them
into background or non-background tiles. About 60 to 80% of the WSI is
covered by background, so this step reduces the number of tiles that needs
to be processed by the inference model. Tiles selected as non-background
are then extracted and fed to the multiscale model for further classification.
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VGG16

VGG16

VGG16

400x

100x
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GAP

Feature extractor
(VGG16-Global Average Pooling)
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(Concatenate-FC-Drop-FC-Drop)

Output
(Softmax)Input tiles

GAP
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Figure 10.4: A block diagram of the TRI-CNN model proposed in the current paper.
The input tiles are fed through individual pre-trained VGG16 network and global average
pooling (GAP) layer to create feature vectors. The feature vectors are concatenated and
fed through the classification network before entering the final output layer consisting of
a softmax function. The softmax function outputs a prediction score for each of the six
classes.

Depending on which model architecture is used (MONO, DI, or TRI),
one, two, or three tiles are extracted from the same location but with
different magnification. The extracted tile will always be 128 × 128 pixels,
as this is the required input size of the inference model. However, the
prediction only holds for a smaller area within the tile, typically 8 × 8
pixels, but can be set to any size. The input tiles are then overlapped, such
that the inner area is located next to each other with no overlap.

Tiles are classified according to the highest prediction score. The outcome
of a prediction may be equally split between multiple classes (e.g., two
classes getting a score of 0.5 each, or four classes getting 0.25 each). To
avoid such cases, a threshold value is set to determine if a prediction is
valid. To ensure that the majority of the predicted score falls to a single
class, the threshold needs to be above 0.51. Also, by setting the threshold
too high may result in removing too many tiles. A threshold value of
0.6 is therefore determined as a trade-off between removing the unwanted
conflicting predictions and not removing too much. Tiles with all prediction
scores below the threshold are labeled as undefined.
Finally, each class is given a separate color, and the final segmentation

image is saved. The segmentation images are ensured to only show classes
with prediction scores higher than 0.6 but do not show the exact score.
A method for creating heat maps has also been implemented, where no
thresholding is performed, and the score for each class is visualized. A
disadvantage of this is that one image must be created for each class. We
earlier showed this approach in Wetteland et al. [138], but have omitted it
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from this paper.

Multiscale model structure. This paper compares three architectures
referred to as the MONO-, DI-, and TRI-CNN models. The three archi-
tectures have one, two, and three inputs, respectively. To differentiate the
models from each other, they are named according to their main archi-
tecture, and the input scale, e.g., MONO-400x is a MONO-CNN model
trained on tiles extracted at 400x magnification. Tiles in the dataset
are extracted at three magnification levels, yielding three MONO models:
MONO-25x, MONO-100x, and MONO-400x. These three magnification
scales can further be combined in three configurations for the DI-CNN
model: DI-25x-100x, DI-25x-400x, and DI-100x-400x. The TRI-CNN model
has only one configuration: TRI-25x-100x-400x, and is depicted in Figure
10.4. The different MONO- and DI-CNN models can easily be derived from
the same figure. E.g., to create the DI-25x-400x model, remove the 100x
input and blue blocks, and to create the MONO-100x model, remove the
25x input, 400x input, red and yellow blocks.

The overall structure of each model is the same. Each input is fixed
at 128 × 128 × 3 pixels, which is the size of each tile. The input is fed
into a pre-trained VGG16 network [113] which acts as a feature extractor,
followed by a global average pooling (GAP) layer providing a feature
vector representation of the input. This feature vector is then fed into a
classification network consisting of two fully-connected (FC) layers, each
followed by a dropout layer, and a final softmax layer with one output node
for each class. The DI- and TRI-CNN models have two and three parallel
VGG16 branches, respectively, resulting in multiple feature vectors. These
feature vectors are concatenated before entering the classification network.
The FC-layers has the same size of 4 096 neurons as the original layers in
the VGG16 network. Dropout layers are added after each FC-layers to add
regularization to the network due to the small dataset.

Training procedure and model selection. All models were trained
using the SGD optimizer with a learning rate of 1.5e-4, batch size of 128, a
dropout rate of 0.3, and a cross-entropy loss function. Early stopping was
enabled, stopping the model when no increase in performance during the
past 10 epochs was seen. Due to the cross-validation training scheme, no
validation set was used, and the early stopping process was thus monitoring
the training loss. The model is written in Python 3.5 using the Keras
machine learning library [29], and Scikit-learn module [98] for evaluation.
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The models were trained in a stratified 5-fold cross-validation fashion.
To produce an unbiased evaluation score, the output from each fold was
summarized in a micro-average manner, as suggested by Forman and Scholz
[41]. All the true positive (TP), false positive (FP), and false negative (FN)
values were summarized for each class over all the folds to produce a final
micro-averaged F1-score.

The VGG16 network, which is used as a base model in our architectures,
is pre-trained on the ImageNet dataset [105]. It is possible to have the base
model fixed during training by freezing the parameters, preventing the base
model from being updated. Freezing the parameters will allow for faster
training as fewer parameters need to be learned, however, as the nature
of the histological images is not part of the ImageNet domain, it could
affect the model’s ability to fully grasp the new images. By unfreezing the
weights, it may allow to better adapt to the histological domain, at the
cost of longer training time. Both freezing and unfreezing the weights were
tested in the experiments.

As one of the objectives is to be able to automatically extract urothelium
tissue from the histological images, to be used in diagnostic systems in the
future, it is therefore not strictly necessary to classify all six tissue classes.
A possible easier problem would be to define a binary problem, classifying
urothelium vs. non-urothelium tissue. Each model was therefore also tested
with this binary-class approach to see if it improved classification results
for urothelium tissue. By simply combining the remaining five classes
into one non-urothelium class, the dataset becomes heavily unbalanced
towards the non-urothelium class. To counteract against this, augmentation
using rotation and flipping was applied to balance out the dataset. By
augmenting all the tiles from the muscle, stroma, and urothelium class 4x
during training, the dataset became evenly distributed between the two
classes urothelium and non-urothelium.
After evaluating the model using stratified cross-validation, a new and

final inference model was trained by utilizing all available data as training
data. The average number of epochs used during cross-validation was used
when training the inference model. This inference model was then used to
predict new WSIs from the inference dataset.

10.3 Results
This section will present the results for the different models. A total of
28 models were trained using stratified 5-fold cross-validation, including
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single- and multiscale, and binary- and multiclass models. Each model was
trained using weakly labeled data, with both frozen and unfrozen weights
in the VGG16 network.

A) DI-25x-100x-frozen B) TRI-CNN-frozen

D) TRI-CNN-Unfrozen

C) DI-25x-100x-Unfrozen
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Figure 10.5: Normalized confusion matrices for the best multiscale models. Aggregated
results across all five folds in the cross-validation test. A) Best multiclass DI-CNN,
B) Best multiclass TRI-CNN, C) Best binary-class DI-CNN, and D) Best binary-class
TRI-CNN.

Table 10.2 shows the cross-validation results for all the models. Aggre-
gated micro-average F1-score across all classes are included, as well as the
F1-score for only the urothelium class to better compare multiclass vs.
binary-class models. Figure 10.5 displays the confusion matrices for the
best multiclass models. The matrices are normalized to allow for more easy
comparison. For the number of samples in each class, refer to Table 10.1.
Some of the best models have been retrained on the entire CV dataset

and used to segment the seven WSIs included in the inference dataset.
The resulting segmented images have then been inspected by an expert
pathologist and are considered to be very promising. Figure 10.6 shows
four WSIs and their corresponding tissue segmented images generated
by the best multiclass model. Figure 10.7 shows a comparison between
segmentation images generated by the best binary-class model and the best
multiclass model. A DICE-score is calculated to measure the similarity
between the predicted urothelium tissue between these two models, with
an average DICE-score of 0.87 for the three WSIs. Figure 10.8 shows a
close-up region taken from the top-right corner of the first WSI in Figure
10.6. This region is then segmented with all the best MONO-, DI-, and
TRI-models for comparison.
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10.4 Discussion

The results in Table 10.2 are shown as micro-averaged F1-score across all
classes, as well as for the urothelium class. The results are overall good
for all models, and a discussion of each case follows below. Afterward, the
confusion matrices and the segmented images will be discussed, and finally,
different usage scenarios of the system will be considered as well as some
limitations of the study.

Binary-class vs. multiclass. As expected, the binary-class models
achieve a higher average F1-score than the multiclass models, with all 14 of
the binary models getting a higher score than their multiclass counterparts.
This is expected because five of the classes are now grouped, and misclassi-
fication within these classes is canceled out. The best multiclass model is
the frozen TRI-25x-100x-400x with an F1-score of 96.5% across six classes,
whereas the best binary model is the DI-25x-100x with unfrozen weights,
which got an F1-score of 99.3% across its two classes.

By looking at the F1-score for the urothelium class alone, the multiclass
models are now superior, with 9 of the 14 models being ahead of their binary-
class counterparts. The few binary-models which have a higher score, are
only marginally so, with the largest difference being the unfrozen MONO-
400x, where the binary version is 0.9% better than the multiclass version.
It is clear that by simplifying the problem into a two-class problem, did not
help with getting better urothelium extraction. The highest urothelium
score is achieved by the TRI model, where both the unfrozen multiclass
and unfrozen binary-class version each got an equal F1-score of 98.3% for
the urothelium class.

Frozen vs. unfrozen. The three architectures MONO, DI and TRI,
have 19M, 21M, and 23M trainable parameters, respectively, when the
VGG16 weights are frozen. By unfreezing the weights, the same models
get 34M, 50M, and 67M trainable parameters. When comparing results
for these models, there is on average an increase of +0.6% by unfreezing
the weights. Of the 14 unfrozen models, 10 get a higher score than the
corresponding frozen models. The largest increase is seen in the binary
MONO-25x model, which goes from an F1-score of 96.3% to 98.1% by
unfreezing the weights.
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The increase in the number of trainable parameters also affects the
training time of the models. The average time per epoch for all the frozen
models was 9 minutes, while the unfrozen models needed on average 10
minutes to compute one epoch. This is an increase of 11% processing time
per epoch. However, the frozen models needed on average 162 epochs to
reach the early stopping criteria, whereas the unfrozen models only needed
58 epochs. Thus, the models with unfrozen weights needed about 60% less
processing time during training.

Single-scale vs. multiscale. When comparing the single-scale MONO-
models with the multiscale DI- and TRI-models, the multiscale models
achieve better results across all columns in Table 10.2, with the exception
for the unfrozen MONO-25x model which matches the performance of the
TRI-scale model. If we limit ourselves to the multiclass models, the best
models for the three architectures are the unfrozen MONO-25x with 96.4%,
frozen DI-25x-100x with 96.5%, and frozen TRI-25x-100x-400x which got
an F1-score of 96.5%. The story is similar for the binary models, with
unfrozen MONO-100x being the best with 99.1%, unfrozen DI-25x-100x
with 99.3%, and unfrozen TRI-25x-100x-400x with 99.2%.

By looking at the single-scale models alone, it is clear that the two lower
scales (25x, 100x) are performing better than the 400x scale, and that having
a greater field of view is preferable. The multiscale models, consisting of
two and three VGG16 networks, have a more complex structure involving
more parameters than the MONO models. In addition, they have access to
a greater field of view in all its models. These two features seem to help
the performance of these models.
Naturally, the MONO models take the least amount of training time,

with an average of 4:40 minutes per epoch. The DI-models take 136% longer
with an average of 11:01 minutes, and finally, the TRI-models take the
most time with 19:38 minutes on average per epoch. That is 321% and 78%
longer than MONO and DI, respectively. The average number of epochs
before reaching the early stopping criterion for the three architectures was
147, 88, and 64 epochs for the MONO-, DI-, and TRI-models, respectively.

Confusion matrices. Figure 10.5 shows the resulting normalized con-
fusion matrices for the best multiscale models for both multiclass and
binary-class models.

147



Paper 2

In the two multiclass matrices (A) and (B), the models did an excellent
job at classifying background, blood, and urothelium correctly, and a great
job with the damaged class as well. Both models struggled mostly with the
muscle and stroma classes. These are the classes with the fewest number
of labeled samples in the dataset. As a result of this, the models may have
achieved a weaker generalization for these classes, and thus misclassified
them more often. Most notable misclassifications are related to muscle
and stroma being misclassified as damaged tissue, and also stroma being
misclassified as urothelium.
The two binary-class models in Figure 10.5 (C) and (D) got an equally

good performance. Five of the classes are now combined into one class
named other in the figure and thereby removing most of the misclassifica-
tions from the multiclass cases. However, this did not significantly increase
the performance of model (C) and (D). Model (D) got the same normalized
score as (A), and model (C) is only marginally better.

Inference dataset results. The seven WSIs included in the inference
dataset were processed with overlapping tiles according to Figure 10.3,
where only the inner 16 × 16 pixel of the tile was classified. The average
processing time was 7 hours 18 minutes, including all three steps in Figure
10.3. On average, only 0.9% of the WSIs were categorized as undefined.
Four of the WSIs are presented in Figure 10.6 and three in Figure 10.7.

Segmentation image results. The best multiclass model, according to
Table 10.2, is split between two models. The frozen DI-25x-100x and frozen
TRI-25x-100x-400x both have a similar F1-score of 96.5%, but the latter
model has a higher urothelium F1-score and is thus regarded as the best
multiclass model. The model was retrained and used to process four new
WSIs, not present in the training data, to demonstrate its usage. Figure
10.6 shows the original WSI with the corresponding segmentation images.
The segmented images are intuitive, easy to understand, and allow even
untrained personnel to both identify and locate the difficult to find regions,
e.g., like muscle tissue.
Fully multiclass-annotated WSI in our dataset is not available. The

resulting segmentation images for the WSI have, however, been manu-
ally inspected by an expert uropathologist and are considered to be very
promising, especially considering that the WSIs were only weakly annotated.
Large homogeneous areas with a certain tissue type are clearly recognized.
Most models are really challenged by smaller, more heterogeneous areas.

148



Paper 2

Original WSI TRI-25x-100x-400x-Freeze

Figure 10.6: The best multiclass model was retrained and used to generate segmentation
images from four WSI not present in the training data.
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Binary-class vs. multiclass segmentation images. The best Mul-
ticlass and binary-class models were retrained and used to create the
segmentation images seen in Figure 10.7. The multiclass segmentation
image may be of more interest to a pathologist, as it outlines regions of all
six classes, whereas the binary-class segmentation image only outlines the
urothelium class. However, both the multiclass and binary-class models
have about the same F1-score for the urothelium class, and the additional
information in the multiclass segmentation images favor the former model
in a final system.

After comparing the urothelium regions in the two segmented images for
each WSI, they are very similar. The DICE-score is calculated to measure
the similarity between the regions, and the three cases have an average
DICE-score of 0.87, which confirms that the two model’s prediction for
urothelium is quite similar. However, there is no truth annotation, so the
DICE-score does not reveal if one of the models is better than the other.

Close-up segmentation regions. Even though the system is trained
on weakly labeled data, consisting of single-class samples, using tile-based
classification and not a per-pixel classification, it is still interesting to see
how the system performs on a detailed level. This also allows us to compare
the different models. Figure 10.8 shows a close-up region taken from the
top-right corner from the first WSI in Figure 10.6, processed using an 8 ×
8 pixel predict area.
All models do a decent job of outlining the major regions in the image.

The different models process the image on different scales, and so the
prediction tile covers a larger area for the smaller scales. The effect of
this is visible at the three MONO models, where the level of detail goes
up with each scale. The MONO-100x and MONO-400x models, with its
smaller field of view, are able to detect some of the small regions containing
blood in the middle of the image. The MONO-25x, however, is not able to
identify this. The DI-25x-100x model, which has access to both the mid
and broad field of view, barely identifies a small part of the blood, whereas
the TRI scale model does not identify it at all.

10.4.1 Usage scenarios

As seen from both Table 10.2 and the segmented images in Figure 10.6, the
model is fully capable of distinguishing between the different tissue types.
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DI-25x-100x-binary-unfrozen TRI-25x-100x-400x-multi-frozenOriginal WSI

Figure 10.7: The best binary-class model vs. the best multiclass model. A DICE-score
is calculated to measure the similarity between the predicted urothelium tissue between
the two models. DICE-score from top to bottom are 0.92, 0.85 and 0.85.

The presented system has several possible usage scenarios, which will be
discussed here.
The segmented images in Figure 10.6 can be used as a digital tool for

pathologists to help them become more efficient in their work. It can be
used to guide them to the diagnostic relevant areas of the WSI, such as
urothelium, muscle, and stroma tissue. It can also be used to find edges of
the urothelium tissue without damage more easily. During an examination,
a pathologist needs to verify if muscle tissue is present or not in the current
WSI. With the segmented images, this can be verified within a short amount
of time.

Another use case for the system is as a preprocessing step for an automatic
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WSI Region A) MONO-25x-unfrozen

B) MONO-100x-unfrozen C) MONO-400x-frozen

D) DI-25x-100x-frozen E) TRI-25x-100x-400x-frozen

New 2020.06

Figure 10.8: Segmentation of close-up region taken from the top-right corner from the
first WSI in Figure 10.6. A) Best MONO-25x, B) Best MONO-100x, C) Best MONO-
400x, D) Best DI-CNN model, E) Best TRI-CNN model. Arrows in the WSI region
points to small areas of blood that the models struggle to identify.
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diagnostic system. For instance, each patient has follow up records about
whether the patient experienced recurrence and progression. By training
a diagnostic model on the entire WSI, the dataset quickly becomes too
large if many patients are included. Also, by randomly selecting a subset of
tiles within each WSI, the dataset will include a large portion of damaged
tissue and blood, which will add noise to the diagnostic model. By using
the multiscale tissue model presented in this paper as a preprocessing step,
areas of clean, undamaged urothelium and other diagnostic relevant types
can easily be extracted and used as training data.

10.4.2 Limitations

One limitation of the current study is that the dataset is relatively limited
in size. A small training dataset may lead to overfitting of the model,
resulting in poor performance, and a small test set may cause an optimistic
estimate of the performance. Several measures have been taken to reduce
these negative effects. Pre-trained models, dropout, and early stopping was
used to reduce overfitting, and cross-validation was used to get a realistic
estimate of each model’s performance.

As mentioned in the data material section, the labels are accurate in the
highest resolution (400x) but are imprecise on the lower scales (25x, 100x),
meaning the ground-truth is based on weak annotations of the dataset,
which may impact the accuracy. The experimental results show that having
access to a greater field of view outweighs the potential negative effects of
imprecise labels.

It is difficult to compare the presented models against other approaches
or to perform a test on an independent dataset. To the best of the authors’
knowledge, no other open dataset exists with annotations of the same six
classes. As mentioned in the related work section, some research and models
exist for segmentation of histological images. However, these are based on
other cancer types or trained on other classes than the six classes used in
this paper.

10.5 Conclusion

This paper investigates the effect of using multiple scales during tissue
classification from WSI of urothelial carcinoma into six classes. The clas-
sification is performed on smaller tiles and can be useful for a coarse
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segmentation, or ROI-extraction, of WSI. Three main architectures are
presented: MONO-, DI-, and TRI-CNN model, and a total of 28 different
models were trained using weakly labeled data and evaluated in a stratified
5-fold cross-validation scheme.
The multiscale models achieved a better result than the MONO-CNN

models. There was not a substantial increase in urothelium classification by
using the binary-class models, neither by cross-validation or by inspection
of the segmented images. The best multiclass model was used to generate
intuitive and easy to understand segmented images from unseen WSIs, and
after inspection by a pathologist is considered to be very promising.
The segmented regions shown in Figure 10.8 demonstrates the impor-

tance of including the highest magnification scale (400x) during tile-wise
classification. The models which do not include this scale are not able to
identify the smaller details within the WSI.

As the three MONO models pick up different levels of details, we will in
the future experiment on employing them in a multiscale ensemble model
by combining their outputs, instead of combining the different scales within
the models, as the DI- and TRI-CNN models do. We also plan to use the
model for automatic ROI-extraction of relevant tissue in the WSI to create
training datasets for a diagnostic and prognostic classification model. By
only extracting the diagnostic relevant areas of the WSIs, a dataset of much
higher quality can be collected.

Authors’ note

Ethical approval from Regional Committees for Medical and Health Re-
search Ethics (REC), Norway, ref.no.: 2011/1539, regulated in accordance
to the Norwegian Health Research Act. As this is a retrospective study,
Ethical approval was given without written consent from the patients. All
insights in a patient’s journal are monitored electronically, and all except
the treating physician were required to state the reason why they needed to
read that patient’s journal. This log is always open for the patient to view.
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for research reservation from the National Institute of Health (Registry of
Withdrawal from Biological Research Consent, Norway).
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Abstract:
Supervised learning of convolutional neural networks (CNN) used
for image classification and segmentation has produced state-of-the-
art results, including in many medical image applications. In the
medical field, making ground truth labels would typically require an
expert opinion, and a common problem is the lack of labeled data.
Consequently, the models might not be general enough. Digitized
histological microscopy images of tissue biopsies are very large, and
detailed truth markings for tissue-type segmentation are scarce or
non-existing. However, in many cases, large amounts of unlabeled
data that could be exploited are readily accessible. Methods for
semi-supervised learning exists, but are hardly explored in the
context of computational pathology. This paper deals with semi-
supervised learning on the application of tissue-type classification in
histological whole-slide images of urinary bladder cancer. Two semi-
supervised approaches utilizing the unlabeled data in combination
with a small set of labeled data is presented. A multiscale, tile-based
segmentation technique is used to classify tissue into six different
classes by the use of three individual CNNs. Each CNN is presented
tissue at different magnification levels in order to detect different
feature types, later fused in a fully-connected neural network. The
two self-training approaches are: using probabilities and using a
clustering technique. The clustering method performed best and
increased the overall accuracy of the tissue tile classification model
from 94.6% to 96% compared to using supervised learning with
labeled data. In addition, the clustering method generated visually
better segmentation images.
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11.1 Introduction

In Norway, 1 748 patients were diagnosed, and 319 people died from bladder
cancer in 2018. The majority of these, at 73%, were male, while the
remaining 27% were female [64]. Worldwide in 2018, 199 922 people of both
sexes died of bladder cancer [123], and 549 393 new patients were diagnosed,
placing bladder cancer as the 10th most common cancer type in the world.
Since 2001, bladder cancer (including the urinary tract) has been the fourth
most common cancer diagnosis for men in Norway [20, 21, 22, 23]. In
addition, bladder cancer is known as one of the most recurring cancer types,
with the probability of recurrence for high-risk patients after one year at
61% [3].

An important step in determining the cancer stage and correct treatment
plan for bladder cancer patients is to examine the tissue samples that
are extracted during transurethral resection. The tissue samples contain
large amounts of information from individual cell characteristics, to specific
cell quantities in large tissue clusters. Scanning and digitalization of the
histological stains produce whole slide images (WSI), uncovering the field
of computational pathology. A significant increase is seen in the number of
tissue samples sent to pathologist labs, affecting the waiting time for patients
[116]. The increase in amount of specimens is unfortunately not seen in the
number of pathologists. Another aspect is that since the WSI is studied
manually, pathologists staging and grading of bladder cancer may differ in
relation to the same tissue as pathologists have a different set of subjective
expectations and experiences. With computational pathology, computerized
tools can aid the pathologist in diagnostic predictions, localization of
interesting regions, and segmentation, to name a few applications.

During the last decade, convolutional neural networks (CNN) have proven
very useful in image processing and image classification tasks [42, 147].
CNNs are gaining popularity also in medical image processing and in
computational pathology. The most common way to train neural networks
(NN) is by supervised learning (SL) and backpropagation. This requires a
large training set where all samples have associated relevant ground truth
labels. Labeled data within medicine is often limited, and producing it is
a time-consuming process that requires annotations made by experts. A
way around the lack of labels is clustering or unsupervised learning. One
method is the use of autoencoders, where a compression-decompression
setup is used, making the network try to reconstruct the original input [18].
The learned features are found at the most compressed state, and might
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ultimately be connected to a classification network. The drawback here
is that they rarely perform as well as models trained with a supervised
method.

CNNs are referred to as shift-invariant, meaning that a particular feature
can be detected wherever it may be located in the image. Intuitively, the
initial layers of a CNN can be viewed as feature extraction, while the
last layers can be viewed as the most task-specific object detection or
classification layers. There are many parameters to go about when setting
up a new CNN, and normally large quantities of labeled data are needed
to do so. Therefore, the first layers can be inherited from a pre-trained
network, and the last layers are trained from scratch, a process known as
transfer learning [94].

A consolidation of the above methods is semi-supervised learning (SSL),
where both labeled and unlabeled data is used to train a network. This
can be beneficial in cases where there are small amounts of labeled data,
but large quantities of unlabeled data. Different semi-supervised methods
exist, like graph-based learning methods that often implement clustering
algorithms to locate and distinguish inputs in feature space [143]. One
other semi-supervised method called self-training aims to first train a NN
on labeled data in a supervised manner. Thereafter, predictions are found
for new unlabeled data using the first model, and finally, a new model can
be trained on both the ground truth labels from annotations and the weak
labels from the predictions [129].
In very recent years, we find some works on semi-supervised learning

within computational pathology. In Dercksen et al. [61], a method based on
autoencoders and k-means clustering of features is presented. A combination
of contrastive predictive coding and multiple instance learning on breast
cancer data is presented in Lu et al. [77]. In Peikari et al. [99], a cluster-
then-label approach is taken using SVM classifiers. Our group presented
a method for multiclass tissue classification of urothelial carcinoma in
[138, 139, 140]. Encouraged by the results, but challenged by the lack of
labeled data to generalize the model further and utilize larger amounts
of unlabeled data, we propose to combine the TRI-CNN transfer-learning
based architecture with semi-supervised learning.
This paper presents two methods within self-training applied to tissue

segmentation of WSIs of urothelial carcinoma. The first method is a
probability-based method based on predicted probabilities from an initial
model. The second method is a cluster-based self-training method based on
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Figure 11.1: Tissue representing the different classes used in the AI models.
From left to right: Background, Blood, Damaged, Muscle, Stroma, Urothelium.

both predicted probability from the initial model and local neighborhood
in the predictions.

11.2 Material and methods

11.2.1 Data material

The material used in this paper consists of tissue samples from tumors of
patients with bladder cancer in the form of urothelial carcinoma. The tumor
is removed from the patient through Transurethral Resection of Bladder
Tumor (TURBT) by the use of a resectoscope. The resectoscope holds a
heated wire loop for removing the tumors, and the resulting tissue will
often bear marks with burnt or torn tissue. After the tumor is removed, it
is fixed in formalin before being embedded into paraffin. When the paraffin
is solidified, it has a similar consistency to tissue and can more easily be
sliced into 4 µm thick slides with a microtome. Variation in slice thickness
can occur, in turn sourcing problems like color variation and tissue folds
in the resulting image, opposing and extra challenge to the classifier. The
slices are then stained with Hematoxylin Eosin Saffron [36] and further
scanned with the digital slide scanner system, Leica SCN400, to produce
the WSI. This, as well as previous work done on the same dataset, leads to
the six classes which can be seen in Fig. 11.1.

The manually marked ground truth dataset, Dgt, consists of 37 patients,
from which 125 020 tiles have been extracted. The labels originate from
annotations made at 400x magnification by a pathologist at Stavanger
University Hospital, (VK), illustrated in Fig. 11.2. It is a private dataset,
however, reasonable requests may be made to the corresponding author.
The three extracted tiles have the same size of 128 × 128 pixels, but
are extracted at different magnification levels. The lower magnification
tiles (25x, 100x) have a larger field-of-view than the high magnification
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Figure 11.2: Origin of manually marked ground truth dataset, Dgt.

tile (400x), allowing the multiscale model to capture both details and
context of the input images. The coordinates are then saved with the three
magnification levels, accompanied by its corresponding ground truth label.
The dataset was divided into Dgt{train} consisting of 103 650 tiles from
29 patients, and Dgt{test} consisting of 21 370 tiles from 8 patients.

46 new patients from the unlabeled dataset were chosen to extract tiles
from, with the two self-training methods. For the probability-based method,
a total of 121 239 tiles were extracted from all 46 patients and formed the
probability-weak dataset, Dpw. For the cluster-based method, a total of
221 612 tiles were collected from 44 patients and formed the cluster-weak
dataset, Dcw. An overview is presented in Table 11.1.

11.2.2 Methods

This section presents the original model, which originates from the frame-
work developed by Wetteland et al. [140]. Afterwards, the methods behind
the two self-training approaches within semi-supervised learning are ex-
plained.
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Initial supervised approach

The original model arises from a traditional supervised learning method,
using the ground truth labels presented in Table 11.1. The dataset, Dgt, is
split between a train/test ratio of approximately 83/17, taking into account
that the same patient does not exist in both sets regardless of class. The
individual per-class train/test split varies from a 86/14 ratio for blood to a
74/26 ratio for stroma. All models trained using a SL approach are referred
to as TRI-SL.

Figure 11.3: Illustration of the multiscale TRI-architecture used in all models.

As illustrated in Fig. 11.3, the architecture of the TRI-CNN model
utilizes transfer learning by implementing three VGG16 models [113] in
parallel that operate individually. The VGG16 network converts a 128
× 128 × 3 input RGB image into a feature vector with dimension 1 ×
512. This is done by a sequence of five CNN blocks that each consist of
two or three CNN layers followed by a rectified linear unit (ReLU) layer
and finally an average pooling layer. The three 1 × 512 outputs from the
VGG16 models are then merged into a single 1 × 1 536 layer followed by a
fully-connected neural network (FCNN). The FCNN consists of two layers
with 4 096 neurons each, with one dropout layer between them. Thereafter,
another dropout layer before the final output layer classifies the tissue
with a Softmax activation function. Each VGG16 network is fed the input
tiles at the three different magnifications 25x, 100x and 400x, to allow for
different features to be detected at each level. The multiscale model is
therefore abbreviated with the name TRI-CNN, which originates from the
nomenclature in Wetteland et al. [140].
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Figure 11.4: Origin of probability-weak dataset, Dpw.

Probability-based self-training

The probability-based self-training method is the most straight forward
approach within self-training. Each of the 46 images is split up into tiles
of size 128 × 128 pixels, and each tile is classified by the original model,
TRI-SL-AF, which is trained on the ground truth labels. Every tile that
is classified with a minimum probability threshold of 60% is saved, while
tiles classified with lower probability are discarded. The 60% threshold
is a trade-off between acquiring enough tiles while having a large enough
probability. As illustrated in Fig. 11.4, the saved tiles are then selected
based on several criteria given in Table 11.2. All models trained using the
probability-based self-training method are referred to as TRI-P-SSL.

Table 11.2: Tile criteria for probability-weak dataset Dpw.
Ba = Background tiles, Bl = Blood tiles, Da = Damaged tissue tiles,
Mu = Muscle tissue tiles, St = Stroma tissue tiles, Ur = Urothelium tiles.

Criteria Ba Bl Da Mu St Ur
Min. tile probability 95% 80% 95% 95% 95% 95%
Max. tiles per WSI 1 900 8 000 710 5 000 5 000 480
Min. tiles per WSI 707 53 277 707 5 688 32 916
Max. tiles tot. 20 500 20 500 20 500 20 500 20 500 20 500

The method used to select tiles from the 46 patients is designed to select
the tiles only based on its probability score across all WSIs. First, a scan
runs through all the patients and counts the number of tiles per patient.
Patients with an insufficient number of tiles according to the minimum
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number of tiles per WSI are discarded, and tiles are collected from the
remaining patients. For each patient, tiles with the highest probability
are collected first, until the maximum number of tiles per WSI has been
collected, or no more sufficient tiles remain. All tiles from all WSIs are
then appended to an array and sorted based on probability. The tiles with
the highest probability are then selected from this array according to the
maximum total number of tiles. This is done for each class and later saved
to the probability-weak dataset Dpw, see Table 11.1.

Figure 11.5: Origin of cluster-weak dataset, Dcw.

Cluster-based self-training

Similar to the probability-based method, the cluster-based method uses
model TRI-SL-AF to classify the WSIs. The tiles are classified with a
minimum of 60% probability, and tiles with a lower probability are discarded.
The classified tiles are then selected based on several criteria listed in Table
11.3. A visual representation of this is illustrated in Fig. 11.5. All models
trained using the cluster-based self-training method are referred to as
TRI-C-SSL.

An algorithm searches through the tiles and groups them into clusters.
If, at any point in the search, the maximum number of tiles per cluster
is not reached, the difference is appended to the limit of the next cluster
in line. The average cluster probability is calculated per cluster, and the
clusters are sorted after the highest probability. Each cluster originating in
the WSI is then sorted into an array, and the program selects the clusters
based on the highest probability according to the maximum number of
clusters. The labels are then saved to the cluster-weak dataset Dcw, see
Table 11.1.
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Table 11.3: Tile criteria for cluster-weak dataset Dcw.
Ba = Background tiles, Bl = Blood tiles, Da = Damaged tissue tiles,
Mu = Muscle tissue tiles, St = Stroma tissue tiles, Ur = Urothelium tiles.

Criteria Ba Bl Da Mu St Ur
Min. tiles per WSI 50 20 50 20 50 50
Max. tiles per WSI 20 000 20 000 798 4 815 1 440 1 235
Max. clusters per WSI 100 100 100 100 100 100
Min. cluster size 50 20 50 20 50 50
Max. tiles per cluster 20 500 20 500 20 500 20 500 20 500 20 500
Min. avg. cluster prob. 60% 60% 60% 60% 60% 60%

11.3 Experimental setup

Six multiscale models are presented in this paper, and the following letters
are used to describe them: SL is short for supervised learning, and SSL
for semi-supervised learning. P indicates that the models are trained
through the probability-based self-training method, and C implies that the
cluster-based self-training method is used. A refers to that augmentation
by rotation of tiles is involved. F and U refer to the weights in the VGG16
models being frozen or unfrozen during training, respectively. An overview
is given in Table 11.4.

Models TRI-SL and TRI-SL-AU were trained through supervised learning
on dataset Dgt{train} and tested on Dgt{test}, see Table 11.1. The models
based on the probability-based self-training method, TRI-P-SSL and TRI-
P-SSL-AU, were trained on the labels in both Dgt{train} and Dpw. TRI-
C-SSL and TRI-C-SSL-AU were trained with the cluster-based self-training
method on labels from both datasets Dgt{train} and Dcw. The models
TRI-SL-F, TRI-P-SSL-F, and TRI-C-SSL-F were trained with VGG16
frozen, meaning only the FCNN and output layer was trained. For models
TRI-SL-AU, TRI-P-SSL-AU, and TRI-C-SSL-AU, the VGG16 model was
unfrozen during training, and weight in the whole network was adjusted.
For the original model, TRI-SL-F, stroma and muscle tissue tiles were

augmented by rotation to produce two times as many tiles in an effort
to equalize the dataset with respect to tiles per class. For models TRI-P-
SSL-F and TRI-C-SSL-F, no augmentation was used. Models TRI-SL-AU,
TRI-P-SSL-AU, and TRI-C-SSL-AU were all trained with 3x augmentation
of tiles in all classes except background, as the background is filtered out
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such that only the foreground is processed by the models. This is done to
save processing time, however, background tiles containing debris were not
filtered out, and needs to be processed.

During training of all six models the learning rate was set to 1.5e-4 at a
batch-size of 128. The stochastic gradient descent (SGD) backpropagation
algorithm was used as optimizer, and the dropout rate was set to 20%. An
early-stopping criterion was set to end training when the change in validation
loss was smaller than 1e-6 for six consecutive epochs. No weighting of
the different labels in the datasets was used during training. All methods
were implemented in Python 3.5, with TensorFlow 1.13 [1] and Keras 2.3
[29]. Scikit-learn [98] was used for evaluation, and PyVips [84] was used to
process the images.

11.4 Results

All six multiscale models were tested on dataset Dgt{test}, yielding the re-
sults in Table 11.5. To further investigate the individual model performance
with regards to segmentation, a new WSI was segmented by all six models
by tile-wise classifying all foreground regions without overlap. The WSI
has been annotated by a pathologist and has not been used during training
before. This WSI is referred to as WSI_segment_test, and the predictions
of the WSI is compared to the ground truth annotations in it. Fig. 11.6
shows the close-up 400x image of an area in WSI_segment_test, where the
whole foreground is labeled as blood, with the corresponding prediction by
all six models. A visual comparison of an area in WSI_segment_test with
multiple tissue classes is presented at a lower magnification in Fig. 11.7a.
Predictions of the corresponding area made by both the models with the
lowest and highest accuracy are compared in Fig. 11.7b and 11.7c.

11.5 Discussion and limitations

The most accurate model is the SSL based model TRI-C-SSL-AU, which
improved the accuracy by 1.38% compared to the model from a pure
supervised approach, TRI-SL-AF. Through a comparison of the predictions
of TRI-C-SSL-AU with the other models, it also appears superior with
regards to segmentation, being the model with the least faulty predictions
in the annotated regions in Fig. 11.7. In addition, the prediction map in
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Fig. 11.7c, produced with model C-SSL-AU, appears to have less noise
when compared to the others for WSI_segment_test.

Comparing the results in Table 11.5 with the different predictions in Fig.
11.6, it would be reasonable to assume that the model with the highest F1-
Score for blood, TRI-SL-AU, would produce the most accurate prediction.
TRI-SL-AU is trained through a traditional supervised approach on dataset
Dgt{train} that contains a relatively large amount of urothelium tiles,
and achieves the 2nd highest F1-Score for urothelium. This is, however,
quite the opposite of the situation, as it is the model that predicted the
most urothelium tiles in the blood area in Fig. 11.6. This is most likely
an outcome with several underlying factors: The labeled training set
Dgt{train} is quite small, with an even smaller test set Dgt{test}. It is
also possible that the area in Fig. 11.6 contains features not present in the
ground truth dataset.

Each WSI will typically produce hundreds of thousands of tiles, opposing
a challenge when selecting tiles through a probability-based self-training
method. A large number of tiles will have a high probability if the specific
class is trained with many labels in the original model, i.e., more features
have been learned for that class. To counter this, a minimum tile per
patient threshold was set to discard WSI containing a small number of
tiles, as they are most likely misclassified. This does, however, not prevent
over-representation of the top-left portion of the WSIs, which will occur
when a WSI contains large amounts of sufficient tiles of a certain class.
One might also argue that the model will not learn that many new features
from tiles it already is 100% certain about and that the method becomes
more of an alternative to augmentation.
By using the cluster-based approach, it is safer to include tiles of lower

probability, as it is safe to assume that tiles closer to each other are more
likely to hold the same label. Also, the method ensures that tiles are
distributed more evenly across the WSIs in comparison to the probability-
based self-training method. This can also be seen as augmentation, and
an unfrozen VGG16 model has a significant improvement when comparing
the two cluster-based models TRI-C-SSL-F and TRI-C-SSL-AU, where
accuracy increases from 95.12% to 95.99% respectively. The opposite
effect is observed for augmenting and unfreezing with the probability-based
models, decreasing the accuracy from 95.19% for TRI-P-SSL-F to 94.85%
for TRI-P-SSL-AU. The SSL models without augmentation, TRI-P-SSL-F
and TRI-C-SSL-F, performed relatively equal with regards to classification,
however, TRI-C-SSL-F performs best with regards to segmentation.
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As the models are fed three levels of magnification, where the ground
truth marking is based on the 400x magnification, the corresponding 100x
and 25x images contain very little of the same tissue type in some cases.
This causes problems for the models, especially if the 100x and 25x images
are both of a different tissue class than the 400x image. An example of this
is how several tiles of ground truth label blood are predicted as background
in Fig. 11.6, as this area is rather isolated from nearby tissue.
A limiting factor of this study is the small size of muscle and stroma

compared to the other classes in the ground truth dataset. Augmentation
techniques are implemented to try and mitigate this issue, but still, the
accuracy of muscle is not as high as the other classes.

11.6 Conclusion and future work

The supervised model, TRI-SL-AF, trained only on the ground truth dataset,
Dgt{train}, achieved an accuracy of 94.61%, with 2x augmentation of the
two classes with the lowest representation. By including the cluster-weak
dataset, Dcw, the model TRI-C-SSL-AU improved the accuracy by 1.38%.
Furthermore, F1-Score stayed the same or increased for every single class,
and a distinct improvement is seen when comparing the prediction maps in
Fig. 11.6 and 11.7.

The probability-based model TRI-P-SSL-AU saw a significant improve-
ment in classifying urothelium, with an increase of 1.44% in F1-Score, from
an initial 98.08%. The accuracy was, however, only increased by 0.24%, as
the model had a large reduction in F1-Score for blood.
The two different semi-supervised methods tested, both outperformed

the supervised methods with regards to classification and segmentation.
This shows that the combination of clusters and probability is better
than only probability. The lack of labeled data makes both methods well
suited to increase the training data, however, our experiments conclude
that no augmentation and frozen VGG16 weights are preferred to using
augmentation and unfrozen weights in a pure probability-based approach.
For the probability-based self-training method, better distribution of

tiles in the WSI is needed for this method to be improved. This can be
achieved by implementing linear spacing between all tiles of a sufficient
probability score per WSI. For the cluster-based self-training method,
several things can be considered for future work: a) implementing a random
selection of clusters with sufficient average probability, b) selecting clusters
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more evenly spaced, or c) increase criteria for stroma and muscle tissue
classes. Implementing mixup [149] to generate more training data of under-
represented classes could be a viable method for improving segmentation
capabilities with regards to tiles of several tissue types.

A viable segmentation method for histological images can assist patholo-
gists in faster evaluation speeds, as pre-segmented images can immediately
point out regions of interest. In addition, the system could contribute to
computer-aided diagnosis systems, which can improve the rate of grading
and staging of cancer and result in a more unison and objective diagnosis.
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(a) Region location in WSI_segment_test.

(b) TRI-SL-AF. (c) TRI-SL-AU-F.

(d) TRI-P-SSL-F. (e) TRI-P-SSL-AU.

(f) TRI-C-SSL-F. (g) TRI-C-SSL-AU.

Figure 11.6: Predictions for a region in WSI_segment_test with ground truth label
blood. Color specifies predicted tile class: Blue = Urothelium tissue, Red = Blood cells,
Black = Background.



(a) Ground truth annotations. Colours represent ground truth annotated areas: Green = Blood,
Black = Urothelium, Cyan = Damaged.

(b) TRI-SL-AF. (c) TRI-C-SSL-AU.

Figure 11.7: Low magnification region in WSI_segment_test.
(b,c) Colours represent predicted labels: Red = Blood, Black = Background, Orange =
Urothelium, Blue = Damaged, Pink = Stroma, Green = Muscle, Grey = Undefined.
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Abstract:
The most common type of bladder cancer is urothelial carcinoma,
which is among the cancer types with the highest recurrence rate and
lifetime treatment cost per patient. Diagnosed patients are stratified
into risk groups, mainly based on grade and stage. However, it
is well known that correct grading of bladder cancer suffers from
intra- and interobserver variability and inconsistent reproducibility
between pathologists, potentially leading to under- or overtreatment
of the patients. The economic burden, unnecessary patient suffer-
ing, and additional load on the health care system illustrate the
importance of developing new tools to aid pathologists. We propose
a pipeline, called TRIgrade, that will identify diagnostic relevant
regions in the whole-slide image (WSI) and collectively predict the
grade of the current WSI. The system consists of two main models,
trained on weak slide-level grade labels. First, a WSI is segmented
into the different tissue classes (urothelium, stroma, muscle, blood,
damaged tissue, and background). Next, tiles are extracted from
the diagnostic relevant urothelium tissue from three magnification
levels (25x, 100x, and 400x) and processed sequentially by a con-
volutional neural network (CNN) based model. Ten models were
trained for the slide-level grading experiment, where the best model
achieved an F1-score of 0.90 on a test set consisting of 50 WSIs.
The best model was further evaluated on a smaller segmentation
test set, consisting of 14 WSIs where low- and high-grade regions
were annotated by a pathologist. The TRIgrade pipeline achieved
an average F1-score of 0.91 for both the low-grade and high-grade
classes.
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13.1 Introduction

Bladder cancer is the 10th most commonly diagnosed cancer disease world-
wide, with 573 278 new cases in 2020 [119]. The most common type of
bladder cancer is urothelial carcinoma, in which men are overrepresented. It
is among the cancer types with the highest recurrence rate, approximatly 50
to 70%, which makes it especially challenging [81]. It requires an intensive
treatment and follow-up plan, which results in it being one of the cancer
types with the highest lifetime treatment cost per patient [12, 111]. In
the case of muscle-invasive bladder cancer (MIBC), where the cancer has
invaded the muscle wall of the bladder, a cystectomy is often required.
However, cancers that stay confined in the bladder mucosa are referred to
as non-muscle-invasive bladder cancer (NMIBC) and are easier to treat.

In histopathological diagnostics, pathologists use grading and staging to
describe the tumor. These parameters are used to stratify patients into
risk groups and form a suitable treatment and follow-up plan. The grade
of a tumor describes the differentiation state of the tumor cells under a
microscope. Different cancers have different grading scales, but in general,
if the cancer cells are similar to that of healthy non-cancerous cells, the
grade will be low, and the cancer will have a lower likelihood of spreading.
On the other hand, if the cells have a more abnormal appearance and are
disorganized, the grade will be higher. In addition to the grade, tumor
stage is also important and is determined by the size of the primary tumor,
how far it has spread into the surrounding tissue, and the number of
primary tumors present. In this paper, we focus on grading of NMIBC.
However, it is well known that correct grading of bladder cancer suffers from
intra- and interobserver variability and inconsistent reproducibility between
pathologists [65, 82], which can lead to both under- or overtreatment of
the patients. New tools to aid pathologists are therefore desired.
The World Health Organization (WHO) has proposed three grading

systems for bladder cancer. The first grading system was introduced in
1973, referred to as WHO73, which is still somewhat used today. It consists
of three categories, grade 1, grade 2, and grade 3, where grade 3 is the
most severe state. A revised edition of the grading system was introduced
in 2004 called WHO04, and further updated in 2016 as WHO16. In these
versions, cases are split into low- and high-grade carcinoma. Some examples
of low- and high-grade areas are shown in Fig. 13.1. Grade 1 patients
are referred to as low-grade patients, and grade 3 patients are high-grade
patients. Patients diagnosed as grade 2, however, are now split into either
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Figure 13.1: Examples of low-grade and high-grade tiles extracted from a WSI. The
tiles are extracted from three magnification levels (25x, 100x, and 400x) and all have the
same size of 256 × 256 pixels.

the low- or high-grade case. This might seem like a minor change, but for
a patient to be diagnosed as low- or high-grade may result in very different
follow-up regimes and local treatment with potential adverse events. A
patient falsely diagnosed as a high-risk patient is an example of unnecessary
patient suffering by overtreatment, additional load on the health care
system, and extra cost. The data material used in this paper was collected
and diagnosed prior to 2016 and will therefore focus on the WHO04 grading
system.
After the tumor is removed, it is placed on an object glass and stained

before a pathologist examines it. This is usually done through a microscope;
however, with the introduction of digital pathology, digital versions of the
stained specimen are also available in the form of whole-slide images (WSI).
This has multiple advantages, such as remote access, storage and sharing
cases between institutes, cloud computing, improved workflow, as well as
computational pathology, which enables the use of new tools to process
and interpret the tissue samples. All of which can improve the diagnostic
accuracy and the clinical outcome of the patients [10, 16, 51, 79, 90].
Recent years have seen a rapid increase in both interest and usage of

machine learning applications. Such tools could potentially be used to
assist pathologists and help reduce the increasing workload. Also, because

188



Paper 5

the errors made by a machine learning system may be different from
that of a pathologist, the two may be combined for improved accuracy
by the pathologist, as shown by Wang et al. [133]. Low reproducibility
and variability in interpretations may also be reduced if a trustworthy
computer-aided diagnosis (CAD) system could be implemented in a clinical
setting.

With a CAD system, we want to map a WSI input to one of the disease
output categories. The traditional machine-learning method to achieve
this is by supervised learning. A set of known image and label pairs are
shown to the model, which uses a gradient descent algorithm to optimize
its parameters. For these algorithms to work efficiently and create ro-
bust models, a large set of image-label pairs are needed. Within digital
pathology, we have access to a large amount of image data in the form of
WSIs. However, annotated data is limited, challenging the practicability
of supervised learning approaches. The nature of the images also calls
for expert input to be able to annotate them. This is a time-consuming
and, in some cases, challenging task. To create enough of the image-label
pairs necessary to train these models and avoid the expensive annotation
process, one possibility is to utilize data already available in the form of the
slide-level diagnosis information. The WSIs are split into smaller images in
the form of tiles, and the slide-level diagnosis will be assigned to each of
the tiles.
For patients diagnosed with NMIBC, the tumor is usually removed

through transurethral resection of bladder tumor (TURBT). During this
process, parts of the tissue get damaged, either heating damage from the
cauterization process or physical damage from tearing. Other tissue types,
like stroma or muscle, as well as blood, are also often present in the slides
of urothelial carcinoma. For the purpose of grading NMIBC, urothelium
is the most diagnostic relevant tissue. For staging, both urothelium and
stroma, and particularly the border between them, is essential. The pres-
ence of muscle tissue also has importance for correct staging. However,
cauterized tissue from the TURBT process, as well as areas containing
blood, have no diagnostic relevance. Feeding a deep learning model with
these irrelevant tissue classes, e.g., blood or damaged tissue, may harm the
diagnostic model’s accuracy. To avoid this, we have previously proposed a
method based on convolutional neural networks (CNN), which automati-
cally segments NMIBC slides into background and five foreground classes
(urothelium, stroma, muscle, blood, and damaged tissue). This tissue
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classification model is referred to as the TRItissue-model in the following
and is explained in detail in Wetteland et al. [140].

In the current paper, we propose a system called TRIgrade for automati-
cally grading WSI according to the WHO04 grading system. The proposed
system uses the TRItissue-model as a first-stage network for preprocessing
the WSI to find regions of urothelium tissue. The extracted urothelium tis-
sue is then fed through a second-stage network called the TRIWHO04-model
for automatic grading.
The large size of the gigapixel images causes some challenges. It is not

possible to feed the entire image into a deep learning algorithm; instead,
tiles of a suitable size are extracted from the WSI and fed to the algorithm
sequentially. The CNN-based model assigns a prediction score to every tile.
These predictions are used to create a heatmap showing which regions were
predicted with low- or high-grade carcinoma. The final decision can further
be aggregated from the micro predictions into a slide-level prediction.

A WSI is stored in a pyramid format with multiple magnification levels,
where the different levels will give different information. An example of such
a pyramidal WSI is shown in Fig. 13.2. A pathologist will typically zoom
in and out of a WSI to gather information at several scales before reaching
a final decision. Our proposed method mimics this behavior by combining
global context information and local details by utilizing a multiscale model
architecture.

13.1.1 Previous work

With the introduction of digital pathology, there has been an increase in
medical application research utilizing machine learning and deep learning
approaches. Most research is related to cancer diseases such as breast, lung,
prostate, brain, and skin cancer [88]. By looking at the list of US Food
& Drugs Administration (FDA) approved artificial intelligence (AI) based
medical technologies, most are in the fields of radiology, cardiology, and
Internal Medicine/General Practice [9]. Still, a lot of effort is also aimed
towards histological images [19, 25, 45, 57, 117].
The majority of CAD research conducted on histological images utilize

two or more seperate models in their methods [19, 59, 78, 115, 151]. First,
a segmentation algorithm or region of interest (ROI) selection step is
performed to narrow down the area which needs additional processing.
This is an important step that helps in several ways. Compared to standard
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Figure 13.2: WSI images are stored in a pyramidal format, where the base image
corresponds to the highest magnification level. The right-hand side shows a set of three
tiles extracted so that the center of the tile corresponds to the same physical area in the
WSI, forming a triplet.

images, the WSIs are very large in size, and it is computationally expensive
to process the entire WSI. By limiting the number of extracted tiles, the
classification runtime is reduced, speeding up the classification step. Also,
by removing the unwanted and diagnostically irrelevant areas, the extracted
datasets will consist of higher quality tiles, which aids the classification
algorithm in the following steps. After segmentation, tiles from the ROI
are processed, usually by a classification model, which will predict the
class of the tiles. Examples of tile classes can be cancer vs. non-cancer,
recurrence vs. no recurrence, cancer grading or staging, or other classes
related to cancer diagnosis. After all the selected tiles have been classified,
the predictions are aggregated into a final slide-level prediction, usually
using statistical or machine-learning methods.
Some research has been aimed towards urothelial carcinoma, otherwise

known as bladder cancer. In Jansen et al. [59], they utilized two individual
single-scale neural networks to detect and grade 328 cases of bladder
cancer collected from 232 patients. A U-net-based segmentation network
was trained to detect and segment the urothelium tissue, used as input
to a second network trained to grade the urothelium tissue according
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Table 13.1: Overview of how the data material in this study is distributed into training,
validation, and test sets. For triplets in the training dataset, see Table 13.2.

Low-grade
WSIs

High-grade
WSIs

Total WSIs Total triplets

Training 124 96 220 Table 13.2
Validation 17 13 30 301 775
Test 28 22 50 473 678

to the WHO04 grading system. The classification network assessed the
WHO04 grading on slide-level, using the majority vote of all classified
tiles. The predictions were compared with the grading of three experienced
pathologists. According to the consensus reading, the classification model
achieved an accuracy score of 74%. The included whole-slide images were
all exported at 20x magnification (0.5 µm per pixel).
From the same research group, the work of Lucas et al. [78] utilized

the same urothelium segmentation model as presented in [59]. Regions of
urothelium were then fed into a selection network which classified tiles into
recurrence vs. no recurrence. A strategy was applied to select features
from 200 tiles fed into a final bidirectional gated recurrent unit (GRU)
classification network that predicts 1-year and 5-year recurrence-free survival
(RFS) in bladder cancer patients.

The work of Zhang et al. [151] was also performed on bladder cancer.
They used three different neural networks referred to as s-net, d-net, and
a-net. The s-net model is a U-net-like architecture that classifies each pixel
as tumor vs. non-tumor. The d-net then characterizes the tumor ROIs
and generates an interpretable diagnosis and low-dimensional encodings.
Finally, the a-net uses the ROI encodings and predicts a slide-level WHO04
grading.
Multiscale cancer subtype classification, where two or more different

magnification scales are fed to the classification model, has been shown
to improve the accuracy compared to single-scale models [114, 140]. This
mimics the pathologist’s process, which will zoom in and out to investigate
the tissue area at several scales.

In Skrede et al. [115] the WSI is first segmented, before tiles are extracted
at 10x and 40x resolution. The tiles from each scale are fed to an ensemble
of 5 models, using a total of ten CNN-based models. The average score
from the ensembles is used to predict the prognosis of colorectal patients.
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Table 13.2: Extracted triplets for the training dataset.

N
Total triplets
before aug.

Total triplets
after aug.

Percentage
increase

250 54 564 55 000 0.8%
500 106 577 110 000 3.1%
1 000 202 904 219 560 7.6%
3 000 534 734 647 368 17.4%
5 000 812 588 1 051 752 22.7%

In the work of Hashimoto et al. [52] WSIs from malignant lymphoma
were fed to a multiscale CNN-based model. They compared the results of
models using tiles extracted at 10x or 20x resolution. However, the best
result was achieved by combining the two scales into a multiscale model.
The authors of this study also confirm that class-specific features exist at
different magnification scales.
Previous work from our group, on bladder cancer, included tissue seg-

mentation [32, 138, 140], and prediction of recurrence in NMIBC patients
[127]. In Wetteland et al. [140], we experimented with three magnification
scales and any combination of these. We proposed three MONO-models
(Mono-25x, Mono-100x, and Mono-400x), three DI-models (DI-25x-100x,
DI-25x-400x, and DI-100x-400x), and finally a model utilizing all three
magnification scales, TRI-25x-100x-400x. All models used the VGG16
network as a feature extractor and were trained and evaluated on six tissue
classes. The MONO-models performed worst, and the best result was
achieved with the TRI-model utilizing all scales, supporting the claim that
multiscale models achieve better results. Both frozen and unfrozen weights
were experimented with, but the TRI-model trained with frozen weights in
the VGG16 models performed best and achieved an average F1-score of
96.5% when evaluated on all six classes, and an average F1-score of 97.6%
for the urothelium class alone.
Based on this result, we continued with the TRI-model and VGG16

as feature extractors in the current paper. We have not evaluated the
MONO- or DI-models on the diagnostic data. The model referred to
as TRI-25x-100x-400x in [140] is in the current paper referred to as the
TRItissue-model. It is used for tissue extraction as shown in Fig. 13.4. The
name, architecture, and base model have also been carried over to this
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paper and are the basis for the TRIWHO04-model we propose here.

13.1.2 Our contributions

The current study’s main contributions is listed below.

• A novel, fully automated pipeline called TRIgrade is proposed. The sys-
tem consists of a tissue segmentation model and a diagnostic WHO04
grade model. The system’s output consists of a tissue segmentation
map, a WHO04 heatmap, and a predicted slide-level WHO04 grade.
The proposed TRIgrade system correctly predicted 45 of the 50 WSIs
in the test set, achieving an accuracy of 90%.

• The TRIgrade system-generated heatmaps are both visualized and
evaluated against a segmentation test set. This helps to demonstrate
the usage of such a system for a pathologist in a clinical setting.

• An algorithm for finding the optimal value of a decision threshold for
classifying WSIs at slide-level is proposed.

• We trained models on differently sized training sets. The results for
this provide insight on how dataset sizes affect the performance of the
models, training time per epoch, and trained epochs before reaching
stopping criteria during early stopping.

• Source code for this paper is accessible at the following URL address
https://git.io/J3OdW.

13.2 Methods

The proposed TRIgrade system presented in this paper utilizes multiscale
models, which use tiles extracted at multiple magnification levels as input.
For improved readability, we define these tiles as a triplet. A triplet is
denoted Ti and is defined as a set of three tiles extracted from a WSI at
three different magnification levels (25x, 100x, and 400x). Let T denote
a set of triplets in a WSI, where T = {T1, T2 . . . Ti . . . Tmax}, and the
number of elements in the set is given by the cardinality |T |. An example
of a triplet is shown in Fig. 13.2.
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Figure 13.3: A close-up image from a WSI with a superimposed urothelium ROI mask
(semi-purple). As N increases, the density of the tiles (red squares) also increases. The
illustrated tiles are shown on 400x magnification level, but tiles from 25x and 100x are
also extracted.

13.2.1 Data material

The data material consists of 300 digital whole-slide images from patients
diagnosed with NMIBC, where the tissue is removed from the patient
through transurethral resection of bladder tumor. The data was collected
at the University Hospital of Stavanger, Norway, in the period 2002-2011.
All non-muscle invasive bladder cancers are included in the dataset, making
it a true population based dataset. The biopsies were formalin-fixed and
paraffin-embedded, from which 4 µm thick sections were cut and stained
with Hematoxylin, Eosin, and Saffron (HES).

The slides were diagnosed and graded according to WHO73 and WHO04
[7]. All slides have the label low-grade or high-grade in the WHO04 system.
In addition, cancer stage and follow-up data on recurrence and disease
progression are recorded, and all patients have stage Ta or T1, i.e., non-
muscle invasive. We have, however, no annotated regions with healthy
non-cancerous urothelium available. All WSI have gone through a manual
quality check at the department of pathology, Stavanger University Hospital,
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Filter out background to 
extract a foreground 
discriminative mask

3) Urothelium mask

Extract all urothelium regions, filter 
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urothelium discriminative mask

2) Use tissue model to predicted tissue classes

All tiles within the foreground discriminative mask is processed by the tissue 
model to generate a tissue segmentation map

Whole-slide image used as 
input to the system

5) Use diagnostic model to predict WHO04 grade

The urothelium triplets are processed sequentially by the WHO04 grade model. 
Individual probabilities are used to generate the heatmap and afterward 
aggregated into a slide-level prediction.

Output

Slide-level prediction: Low-grade

TRItissue Model

25x

100x

400x

TRIWHO04 Model
High 

Grade

Low 
Grade

WHO04 Heatmap:

Tissue segmentation map:

4) Find and extract urothelium triplets

Find and extract all tile-triplets within the 
urothelium discriminative area

Triplet T1

Triplet T2

Triplet Tmax

Figure 13.4: This figure presents the pipeline for our proposed system, TRIgrade.
Input) A WSI of urothelial carcinoma is used as input. 1) A foreground discriminative
mask is found by evaluating the pixel intensity values and used as a reference to extract
tiles from the WSI. 2) The TRItissue-model is used to generate a tissue segmentation
map. 3) The urothelium regions are used to create a urothelium discriminative mask. 4)
Using the urothelium mask, triplets consisting of tiles from three magnification levels
are extracted from the input WSI. 5) The urothelium triplets are fed sequentially to
the TRIWHO04-model, which outputs a probabilistic score for the two classes, low- and
high-grade carcinoma. Output) The system will output a WHO04 grade heatmap and
a slide-level WHO04 prediction.

and only high-quality slides, with little or no blur, have been included in
the dataset. However, as mentioned, NMIBC is removed by cauterization,
which will leave burned and damaged tissue areas. All WSI are from the
same laboratory, and the variation in staining color is relatively low. Ethical
approval from Regional Committees for Medical and Health Research Ethics
(REC), Norway, ref.no.: 2011/1539, regulated according to the Norwegian
Health Research Act.
The glass slides were digitized using a Leica SCN400 slide scanner,

producing WSI images in the vendor-specific scn file format. These WSI
images are gigapixel images with a typical resolution of 100 000× 100 000
pixels, stored as a pyramidal tiled image with several down-sampled versions
of the base image in the same file to accommodate for rapid panning and
zooming. The pyramidal structure of the WSI is depicted in Fig. 13.2.
The Vips library [84] can extract the base image and the down-sampled
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Figure 13.5: Architecture of the TRIWHO04-model. Three separate VGG16 networks
are used to extract features from each magnification scale. The global average pooling
layer (GAP) is used to flatten the features into feature vectors, which are concatenated.
The classification network consists of fully-connected layers and dropout layers. The
output uses a softmax activation function to predict the input tiles to the two classes,
low-grade and high-grade carcinoma.

versions, making it easy to extract the dataset at each resolution.
Tiles are extracted from the image pyramid at levels corresponding

to 25x, 100x and 400x magnification, which is equivalent to a spatial
resolution of 4 µm/pixel, 1 µm/pixel and 0.25 µm/pixel, respectively. For
the TRItissue-model, we used a tile size of 128 × 128 pixels, which for the
three magnification levels correspond to (512 µm × 512 µm), (128 µm ×
128 µm), and (32 µm × 32 µm). For the TRIWHO04-model, we had access
to a much larger library of WSIs, and thus a larger tile size of 256 × 256
pixels was chosen. For the three magnification levels, this corresponds to
(1 024 µm × 1 024 µm), (256 µm × 256 µm), and (64 µm × 64 µm).

The 300 WSIs included in this study were split into 220/30/50 WSIs for
training, validation, and testing, respectively. Demographic characteristics
of the data material were not used when splitting the data material into
the different datasets. Instead, the WSIs were randomly selected and
stratified to include the same ratio of all diagnostic outcomes based on the
WHO73 and WHO04 grading, stage, recurrence, and disease progression, to
represent the data material best. The distribution of low- and high-grade
WSIs in each dataset, as well as the number of triplets in the validation
and test set, can be seen in Table 13.1.

The 50 WSIs in the test set will use the slide-level label as ground truth
to evaluate the TRIWHO04-model. In addition, a pathologist has carefully
annotated low- and high-grade regions in 14 of the 50 WSIs. The 14 WSIs
are a sub-set of the test set and are referred to as the segmentation test
set and will be used to evaluate the low- and high-grade segmentation
performance of the best TRIWHO04-model.
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From the 220 WSIs used for training, five datasets were extracted with a
different number of triplets extracted from each WSI. A set of N triplets
was selected randomly from the predicted urothelium regions in each WSI,
where N was set to 250, 500, 1 000, 3 000, and 5 000.

Some of the WSIs in the data material contain only small amounts of
urothelium, either because the tissue sample itself is small or because most
of the tissue sample consists of damaged tissue or other tissue classes. For
these WSIs, an augmentation strategy was employed, where a randomly
selected set of triplets were augmented. The aim of this process is for
each WSI to contribute equally, or as close as possible, to the number
of triplets specified by N . Augmentation was performed by rotation and
vertical/horizontal mirroring of the individual tiles in the triplet. All tiles in
the triplet were augmented in the same manner. By combining rotation and
mirroring, a tile can be oriented in eight uniquely defined ways, making this
the maximum number a particular tile can be augmented. For N ≥ 1 000,
some WSIs did not reach the desired number of triplets, even with 8x
augmentation. No augmentation was performed on the validation or test
datasets. Table 13.2 shows a list of total triplets extracted, before and after
augmentation, for each value of N .
Fig. 13.3 shows a region from one WSI with the extracted tiles su-

perimposed. The semi-transparent purple color indicates the predicted
urothelium region. From this region, N randomly selected tiles are extracted
as indicated by the red tiles on the image. As N increase, the density of
extracted tiles also increases. Also, note that only the tile extracted at
magnification level 400x is visualized in the figure. At each tile position,
tiles from all three magnification levels (25x, 100x, and 400x) are extracted
in such a manner that the center position of each tile corresponds to the
same physical location, as illustrated in Fig. 13.2.

For preprocessing, all pixel intensity values were normalized from 0-255
values into 0-1 values, and the order of the color channels was altered from
RGB to BGR. These steps ensure that the input data is presented to the
VGG16 network in the same fashion as when it was pre-trained on the
ImageNet data. No stain normalization was performed on the extracted
tiles.

Our data material contains slide-level diagnostic information; however, no
location annotations exist, showing where in the WSI the low- or high-grade
regions are found, except on our segmentation test set, as explained. As
manual annotation is time-consuming, expensive, and requires expert input,
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it is not feasible to get this type of detailed annotations on large datasets
as needed for training such models, particularly considering both the size
of each WSI and the total number of WSIs in the data material. Instead,
each extracted tile inherits the slide-level WHO04 grade as its label. This
is not ideal, as high-grade slides may contain regions with low-grade tissue.
Consequently, all the extracted datasets are thus regarded as weakly labeled
due to the inaccurate labels, which is consistent with what is called a weak
label in many tasks [27]. The segmentation test set is considered strongly
labeled.

13.2.2 Proposed system

We propose a pipeline, called TRIgrade, that takes a WSI as input and
outputs a tissue segmentation map, a WHO04 grading heatmap, and a
slide-level WHO04 grade prediction. The pipeline consists of two main
models, denoted as TRItissue-model and TRIWHO04-model. The task of
the TRItissue-model is to classify an input triplet as a tissue type which
then can be used to make a tissue segmentation map. The task of the
TRIWHO04-model is predicting the cancer grade, i.e., low- or high-grade,
based on the urothelium tissue. The TRIgrade pipeline is depicted in Fig.
13.4 and explained in detail below.

TRIgrade Pipeline

The TRIgrade pipeline depicted in Fig. 13.4 contains five steps explained
here. The input to the pipeline consists of a WSI file in the vendor-specific
.scn file format. First, in step 1, a foreground discriminative mask is found
on the 400x level by evaluating the pixel intensity values as grey background
or not. Using the foreground mask as reference, tiles with dimension 128
× 128 pixels were extracted from the WSI with 87.5% overlap, resulting
in the inner 16 × 16 pixels being classified for each tile. Three tiles were
extracted in the WSI (25x, 100x, and 400x) for each location, forming a
triplet. All tiles in each triplet have the same dimension of 128 × 128 pixels
and are extracted such as the center point corresponds to the same physical
location in the WSI for all three tiles, as shown in Fig. 13.2.

In step 2, triplets are sequentially fed into the TRItissue-model we proposed
in Wetteland et al. [140]. This model will evaluate the triplets and predict
which of the six tissue classes (urothelium, stroma, muscle, blood, damaged
tissue, and background) the current triplet belongs. In our case, the class
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of damaged tissue is a collection of all tissue that is not one of the other
classes, and in our dataset, this is mainly cauterized or torn tissue areas. If
blurred regions are a problem in the dataset, this can be made as a separate
class or included in the damaged tissue class. After predicting all triplets,
a segmented tissue map is created, visualizing all tissue regions in the WSI.
This tissue map can also be presented to the clinician to help guide them
more efficiently to the specific tissue types in the WSI.
From the generated tissue map, all urothelium regions are extracted

in step 3. Small regions are filtered to suppress noise, and a urothelium
discriminative mask is created on the 400x level. In step 4, a grid of
non-overlapping tiles is overlayed on the WSI at the 400x level, this time
using tiles of dimension 256 × 256 pixels. The individual tiles in the grid
are checked against the discrimination mask. If 80% or more of a tile lay
within the discriminate mask, the position is saved, while the remaining
tiles are discarded. For the validation and test sets, triplets from all the
saved positions are extracted. Whereas for the training set, N randomly
selected triplets are extracted from the saved positions, where training sets
are formed with N set to 250, 500, 1 000, 3 000, and 5 000. If fewer than
N positions are saved, the augmentation strategy explained in the data
material section is employed. The total number of extracted triplets for
each dataset is shown in Tables 13.1 and 13.2.

A comprehensive description of how triplets are extracted from the WSI
is given in Wetteland et al. [137], where a parameterized method for
extracting tiles in multilevel images is given. The parameters used in this
paper are the tile size parameter LT = 256. The overlap-ratio between
a tile and the discriminative mask is set to 80%, which corresponds to a
value of φ = 0.8. Tiles are checked at the 400x level by setting α = 0, and
the corresponding tiles in the triplets are found at level 25x and 100x, i.e.,
Sβ = {1, 2}. The binary mask Bk is set as the urothelium discriminative
mask, and the starting coordinate of the grid is at position (0, 0). With
these parameters and the methods described in [137], extraction of the
triplets in the WSIs is repeatable and reproducible.
In step 5, the extracted urothelium triplets are fed to the TRIWHO04-

model, which outputs a probabilistic score for the two classes, low- and
high-grade carcinoma. Finally, all scores are used to generate a heatmap
which is overlayed on the WSI, and the aggregated micro-predictions are
measured against the decision threshold Dt to get the final slide-level
prediction.
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Model architectures

The proposed pipeline in Fig. 13.4 contains two CNN-based models used
for different tasks; the TRItissue-model is used for tissue classification and
the TRIWHO04-model for grading of urothelium tissue. The models are
built upon the same architecture but have different inputs and outputs.
The architecture consists of three separate VGG16 networks, one for each
input scale. Both the model architecture and the TRI-terminology comes
from our previous work on the tissue model in Wetteland et al. [140].
The input to the TRItissue-model is a triplet consisting of three 128

× 128 pixel tiles (25x, 100x, and 400x). The model can predict triplets
extracted from anywhere in the WSI, but a foreground discriminative mask
is usually used to save processing time by removing the background. The
output of the TRItissue-model is a probability distribution over the six
predicted classes (urothelium, stroma, muscle, blood, damaged tissue, and
background). The input to the TRIWHO04-model is a triplet consisting of
three 256 × 256 pixel tiles (25x, 100x, and 400x) extracted from urothelium
tissue regions. The model outputs a probability distribution over the two
predicted classes, low- and high-grade carcinoma. A block diagram of the
TRIWHO04-model architecture is depicted in Fig. 13.5. The TRItissue-model
has almost the same architecture but has six output classes instead of two.
The individual tiles in the input triplet are fed to separate VGG16

networks. The VGG16 networks are used as base models with weights
pre-trained on the ImageNet dataset, a large dataset containing annotated
photographs used for computer vision research. Each VGG16 network
acts as a feature extractor and takes a high dimensional tile as input
(128×128×3 or 256×256×3 pixels) and compresses it down to a feature
volume (8×8×512). A global average pooling (GAP) layer is used as the
output layer for each VGG16 network, transforming the feature volume
into a feature vector of length 512. The three feature vectors, one for each
scale, are concatenated into one final feature vector of length 1 536 and fed
to the classification network.
The classification network consists of two fully-connected (FC) layers

using a rectified linear unit (ReLU) activation function, each followed by
a dropout layer for regularisation. Lastly, an output layer with a softmax
activation function is used to provide the prediction of the model. The
two FC-layers and the two dropout layers each have a dimension of 4 096
neurons, and the output layer has one output neuron for each class. The
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TRIWHO04-model consists of 67M parameters, where 23M of the parameters
are trainable parameters belonging to the classification network.

Tile-level prediction

When a triplet Ti is fed to the TRIWHO04-model, the model outputs a list of
probabilities for the two classes, low- and high-grade. These probabilities are
denoted as [pil, pih]. To find the class with the largest predicted probability,
the argmax function is used.

ci = argmax([pil, pih]) (13.1)

Where ci is the index to the predicted class for the triplet at position
Ti. The low-grade class has an index of 0, and the high-grade class has an
index of 1.
The proposed system can also produce a heatmap from the individual

triplet probabilities, which indicates the location of low- and high-grade
regions. This is useful for pathologists who can focus their limited per-
patient investigation time on the diagnostic relevant areas in the WSI. A
color mapping function converts the high-grade probability pih into a color
based on its value. This color is then superimposed on the WSI at the
current triplet’s position, covering the same area as the 400x magnification
tile in the triplet. This results in the heatmap, as seen in the bottom-right
of Fig. 13.4. Only the model’s probabilistic score for the high-grade class
is used to generate the heatmaps. However, because there are only two
classes, a low probabilistic score of the high-grade class implicitly means
a high score for the low-grade class. I.e., red highlighted regions in the
heatmaps are associated with the high-grade class, and blue highlights
indicate the low-grade class.

Slide-level prediction

In addition to predicting the individual triplets, we also output a WHO04
slide-level prediction. A pathologist will often assign the worst case to a slide
during a clinical examination, meaning that if a high-grade region exists
in the WSI, the WHO04 grading should be high-grade. However, we must
assume some misclassification in the WSI from both the TRItissue-model
and TRIWHO04-model, so there must be a minimum amount of high-grade
triplets before the slide-level prediction becomes high-grade, and we would
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like to find a decision threshold, Dt, which maximizes correct prediction of
the WSIs.
By summing over ci, the number of triplets predicted as high-grade is

counted, since triplets predicted as low-grade is at index 0 and thus not
adding to the sum. By dividing by the total number of triplets in the WSI,
we get the ratio of high-grade triplets referred to as Rhigh in this paper:

Rhigh = 1
|T |

|T |∑
i=1

ci (13.2)

If Rhigh exceeds the decision threshold Dt, the slide is given the slide-level
prediction of high-grade; else, it is considered low-grade.

Ŷ =

High-grade, if Rhigh ≥ Dt

Low-grade, otherwise
(13.3)

Algorithm 1 describes how to find the optimal threshold value Dt. Y
is considered the ground truth grading of a slide and consists of a single
value, whereas Y is a list of all the ground truth values. The same holds
for Ŷ and Ŷ, which holds a single slide-level prediction and a list of all
the predictions, respectively. First, all WSIs are processed, and the ratio
Rhigh for each WSI is appended to the list R. The true grade Y of each
WSI is also saved in the list Y. All WSIs in the dataset are processed
before proceeding to the next step. A set of candidate threshold values,
Dc, between 0-50% are tested one at a time. For each candidate threshold,
the slide-level prediction Ŷ for all WSIs is saved to the list Ŷ. The total
accuracy score is then calculated for the dataset. The decision threshold
Dt is chosen as the candidate threshold with the highest score, or, if more
than one Dc value yielded the same maximum result, the average integer
value is selected as the decision threshold Dt.

Training parameters

The TRIWHO04-model was trained using a stochastic gradient descent (SGD)
optimizer with a learning rate of 1×10-3, learning rate decay of 1×10-6,
and momentum set to 0.9. The batch size used during training was set to
128. Both dropout layers had a dropout rate of 0.5. The cross-entropy loss
function was used to optimize the model during training. The pre-trained
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Algorithm 1: Find optimal threshold value Dt

Initialize: Y, Ŷ, R, Dcbest are empty lists
Initialize: Accmax = 0
for WSI ← training set do
Feed WSI through pipeline in Fig. 13.4
Rhigh = 1

|T |
∑|T |
i=1 ci

Append Rhigh to the list R
Append the true grade Y of WSI to the list Y

end for
for Dc ← 0 to 50 do
for Rhigh ← R do

Ŷ =

 High-grade, if Rhigh ≥ Dc

Low-grade, otherwise
Append the slide-level prediction Ŷ to the list Ŷ

end for
AccDc = sklearn.metrics.accuracy_score(Y, Ŷ)
if AccDc > Accmax then
Accmax ← AccDc
Clear list Dcbest

end if
if AccDc ≥ Accmax then
Append Dc to list Dcbest

end if
end for
Dt = d 1

|Dcbest |
∑
Dcbest e

weights of the VGG16 networks were held frozen during training. To avoid
overfitting the models on the training set, an early-stopping rule monitored
the validation loss and stopped the training when no improvements were
seen for ten epochs. The best epoch was restored when testing the models
on the test set.
To train the models, a program was written in Python 3.6 using Keras

2.2.4 together with the Tensorflow 1.14 as backend [1, 29]. The PyVips
2.1 library was used for handling the WSI [84], and Scikit-learn 0.19 for
evaluation [98]. The models were training on a Ubuntu 18.04 server, running
on dual Xeon E5-2650 v5 @ 2.2GHz with a total of 48 cores. An Nvidia
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Tesla P100 16GB GPU was used for the training. Training parameters for
the TRItissue-model can be found in Wetteland et al. [140].

13.3 Experiments

We have conducted two experiments, listed here.
Experiment 1 : is for slide-level prediction of WHO04 grade and is tested

on the test set of 50 WSIs. As training of the TRIWHO04-model is very
time-consuming, we wanted to see if it is preferable to utilize more of the
available urothelium data from each WSI as training data at the cost of
additional training time or if a smaller dataset could perform equally well.
This is interesting, both for our research group as well as other researchers
working with large WSI datasets. If the optimal number of tiles used from
each WSI during training can be lowered, then time can be saved in future
experiments. To investigate this, we created several datasets where we
extracted N triplets per WSI, as shown in Table 13.2. In this experiment,
ten versions of the TRIWHO04-model, all with the same architecture, were
trained on training sets of various sizes, listed in Table 13.2. The micro
predictions from the individual triplets were aggregated into a slide-level
prediction of the WHO04 grading. A decision threshold Dt was found for
each model using Algorithm 1; then, equation 13.3 was used to provide the
final predicted grade.
Experiment 2 : is testing the tile-level prediction and compare that in

detail with the 14 WSIs of the segmentation test set. This set contains
pathologist annotated regions belonging to either low- or high-grade which
are considered the ground truth. The best model from experiment 1 is
used for this, and the model’s performance will be visualized as heatmaps.
Calculation of recall and F1-score will be presented for each WSI, in addition
to a total score across all WSIs.

13.4 Results

In experiment 1, slide-level test results for the ten models are listed in
Table 13.3, showing trained epochs, time, precision, recall, F1-score, and
the threshold value Dt. For precision, recall, and F1-score, the weighted
average score is presented as reported by the classification report function
from the scikit-learn library [98].
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For experiment 2, the TRIWHO04-5000-AUG model was used, as it per-
formed best in experiment 1. The predicted heatmaps for each WSI in
the segmentation test set are shown in Fig. 13.6 together with the ground
truth. Recall, and F1-score for each WSI is listed in Table 13.4. As each
ground truth WSIs only contain annotations for one of the two classes, the
precision score will always be 1.00 because whenever the model predicts
the ground truth class, it will be correct. The precision column in Table
13.4 is thus discarded. The last row in Table 13.4 shows the average value
of all scores for each class together with the standard deviation. Table 13.5
shows the total aggregated results for all 14 WSIs. Here, the predictions
for all WSIs are accumulated before the score is calculated.

A slide-level comparison between the proposed TRIgrade system and the
model presented in Jansen et al. [59] is shown in Table 13.6. The TRIgrade
system consists of the TRItissue-model followed by the TRIWHO04-5000-
AUG model. Values for sensitivity, specificity, and accuracy are shown for
easier comparison with the reported results from [59]. These values are
unweighted and calculated using values for true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). Note that these results
are based on models trained and evaluated on different datasets.

13.5 Discussion

The three VGG16 networks are identical copies as we have used frozen
(pre-trained) weights in this work. Thus, it would be possible to use only
one copy of the model, with the appropriate change in the architecture,
keeping in mind that the feature vectors from the different magnifications
are concatenated before the classification network. However, utilizing three
versions of the VGG16 network allows us to train the entire multiscale
model end-to-end and allows unfreezing the weights if a larger training set
is available. We have experimented with unfreezing weights, but we quickly
get overfitting problems with the available data material, this is therefore
omitted from the paper.
Experiment 1 was conducted using ten training sets with a different

number of triplets extracted from the same 220 WSI. From the result in
Table 13.3, we see that the best performing model is trained on the largest
dataset. However, the other models are not far behind. Even with a small
value of N , the models do a good job at correctly predicting the WHO04
grade of WSIs.
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Table 13.4: Tile-level prediction for each individual WSI in the segmentation test set,
using the TRIWHO04-5000-AUG model. The WSI numbering is referring to the WSIs in
Fig. 13.6. The last row shows the average value and standard deviation for its respective
column.

Low-grade High-grade

WSI Recall F1-
score

Recall F1-Score

WSI A - - 0.79 0.88
WSI B - - 0.90 0.95
WSI C - - 0.86 0.92
WSI D 0.87 0.93 - -
WSI E - - 0.94 0.97
WSI F 0.83 0.91 - -
WSI G 0.86 0.92 - -
WSI H - - 0.90 0.95
WSI I 0.85 0.92 - -
WSI J 0.79 0.88 - -
WSI K - - 0.92 0.96
WSI L 0.92 0.96 - -
WSI M 0.68 0.81 - -
WSI N - - 0.58 0.73

Average 0.83 ± 0.07 0.91 ± 0.04 0.84 ± 0.12 0.91 ± 0.08

Table 13.5: Aggregated tile-level result for all WSIs in the segmentation test set using
the TRIWHO04-5000-AUG model.

Precision Recall F1-score

Low-grade 0.83 0.79 0.81
High-grade 0.90 0.81 0.85

Weighted Average 0.87 0.80 0.83
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Table 13.6: Comparison table for automatic slide-level grading between our proposed
method and the method presented in Jansen et al. [59]. Note that these results are based
on models trained and evaluated on different datasets.

Model Sensitivity Specificity Accuracy

TRIgrade 0.85 1.00 0.90
Jansen et al. [59] 0.71 0.76 0.74

Regarding overfitting, we tried training the models using unfrozen weights
in the VGG16 networks, but this led to instantaneous overfitting of the
model and had no improvements on the validation set. However, by freezing
the weights, we see that all models improve on the validation dataset before
reaching a plateau and eventually triggering the early stopping trigger. E.g.,
as shown in Fig. 13.7, the best model, TRIWHO04-5000-AUG, improved
its performance for seven epochs before training stopped after epoch 17.
The weights from epoch seven were restored when using the model on
the test sets. The number of trained epochs before the early stopping
criteria is triggered decreases as the training dataset increases. This can
be explained by the models trained on the larger datasets having more
parameter updates per epoch than that of the smaller dataset models, thus
reaching the plateau faster. Similarly, we see that the duration of one
epoch is increasing as the dataset size increases. There is about a 60-hour
difference in the smallest and largest model by comparing the total training
time. Even though we would advise utilizing the most data to train a
production model, it could be helpful to do an extended hyperparameter
search and train multiple models on a smaller dataset.

Experiment 2, tile-level prediction, was conducted using the TRIWHO04-
5000-AUG model, which had a slide-level F1-score of 0.90. As seen in Fig.
13.6, Table 13.4 and 13.5, the results are overall excellent. The model does
a very good job at correctly identifying both the low-grade and high-grade
regions in the different WSIs. Table 13.4 shows that the model achieved
an average F1-score of 91% for both the low-grade and high-grade classes.
The aggregated score for all WSIs in Table 13.5 shows a small decrease
in performance, with an F1-score of 81% and 85% for the two classes,
respectively.
The largest misclassification in Fig. 13.6 is one of the regions in WSI-

N, where the ground truth is high-grade, but the model predicts low-
grade. When reevaluated by the pathologist, the misclassified area was
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Ground truth legend
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Figure 13.6: Ground truth annotations vs. model prediction. The WSI with a black
background is the ground truth images with low- and high-grade annotations. The WSI
with a grey background has superimposed a heatmap from the same area as the ground
truth and highlights the predictions from the TRIWHO04-model. For quantitative results,
see Table 13.4 and 13.5.

found to be heterogenous, showing mixed low- and high-grade features,
consequently regarded as high-grade initially. This illustrates one of the
challenges with automatic grading of urothelial carcinoma, that grading
between low- and high-grade is not two distinct binary classes but rather a
continuous spectrum with a floating transition, making it difficult to set a
hard threshold between the two.
To correct such misclassifications, and also avoid the costly task of

annotating a large dataset, one possible solution is human-assisted learning.
For example, the proposed TRIgrade system could be used to find and
predict urothelium regions into the low-grade and high-grade classes, e.g.,
like the regions seen in Fig. 13.6. Then, a pathologist could verify the
regions in each WSI and correct misclassified regions. This way, a large,
strongly labeled dataset could be created, and the TRIWHO04-model could
be fine-tuned on the new dataset.

A direct comparison of results with others reported in the literature is not
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straightforward, as the experiments performed in this paper are conducted
on a private dataset, which is often the case in many medical applications.
To our knowledge, there exists no publically available NMIBC dataset or
any publically available models from other researchers that we can evaluate
on our dataset. The work of Jansen et al. [59] is based on the same labels
but evaluated on a private dataset using different methods. Unfortunately,
their models are not available for us to evaluate, and we do not have access
to labels to train a Unet segmentation model from scratch, hence we cannot
test the same approach by training the models ourselves. However, even
though the dataset or model used in Jansen et al. [59] are not publically
available, a comparison is still included as both research results are based
on an NMIBC dataset of similar size (328 WSIs from 232 patients vs. our
dataset of 300 WSIs), a similar split of the dataset into training, validation,
and test, and the use of the same labels (WHO04). The results in Table
13.6 compare the slide-level sensitivity, specificity, and accuracy for our
proposed TRIgrade pipeline, to the results reported in table 3 from [59]. We
achieve better results on all metrics, and with 45 of the 50 WSIs correctly
predicted, we achieve an accuracy of 0.90.
Training and validation accuracy from the training of the TRIWHO04-

5000-AUG model is shown in Fig. 13.7. The model uses frozen pre-trained
weights for the VGG16 networks, and only the last layers in the model
have random weights which are being optimized. The model uses the
largest training dataset from Table 13.2 with a mini-batch size of 128,
resulting in a large number of weight updates per epoch, and the majority
of the accuracy is achieved from the first epoch. After the initial epoch,
the validation accuracy is not improving too much. This is most likely
because the datasets use imprecise weak labels (e.g., all urothelium triplets
extracted from a high-grade WSI will have the class label high-grade, but
not all triplets from this WSI will represent high-grade tissue). Note also
that all the urothelium triplets from all the WSIs in the validation set are
predicted before Tensorflow computes the accuracy score for the validation
set.

13.5.1 Usage scenarios

The automatic TRIgrade system presented in this paper has many potential
applications. The tissue model we presented in Wetteland et al. [140] pro-
vides the tissue segmentation maps, which clinicians can use to discriminate
urothelium regions from other tissue classes. This can be a valuable tool
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Figure 13.7: Training and validation accuracy for the TRIWHO04-5000-AUG model.
The model is trained on imprecise weak labels, using the largest training set in Table
13.2. Results are shown for tile-level prediction on the entire training and validation sets.
Validation accuracy is computed at the end of each epoch.

to aid pathologists in examining the whole-slide images by focusing their
attention on the diagnostic relevant areas of the stained specimen. With
the addition of the TRIWHO04-model presented in this paper, the focus can
not only be aimed towards the urothelium regions in general but be further
narrowed down to the most severe urothelium regions.

The automated slide-level prediction can potentially be used to prioritize
high-grade patients for earlier examination. Also, it can be used as input to
an automatic prognostic tool and output a measure of the patient’s overall
clinical outcome, such as the risk of recurrence, 1-yr and 5-yr survival rate,
and mortality. In the future, it is also a possibility to use it in an automatic
system that predicts how a patient will respond to a given treatment and
therapy program.

13.5.2 Limitations

In the paper, we train a model to classify urothelium tissue into two classes,
low- and high-grade carcinoma. However, it is also a possibility that the
urothelium tissue can be healthy non-cancerous tissue. Since our models are
dependent on the weak slide-level label, and all cases in the data material
are diagnosed with cancer, we currently do not have any training material
containing non-cancerous samples.

All WSIs in this study are collected from the same laboratory and consists
of high quality with relatively small variations in stain colors and little blur.
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This is both a strength in the sense that we have produced good models
and reliable predictions, but also a limitation in the sense that we do not
know how the system will perform on slides of lower quality.

13.5.3 Future work

In future work, preprocessing steps might be added to deal with color
variations, blur, and folded tissue, or the tissue segmentation model can be
updated with a new class for blur, providing a more generalized system.
From [140] it was concluded that for the tissue segmentation task, the

multiscale TRI-25x-100x-400x model (which is used as the TRItissue-model
in this work) provided the best performance. Following, a multiscale model
was adopted for the grading task as well, with the masking of the urothelium
tissue performed at the 400x level. However, the large field-of-view provided
by the 25x and 100x magnification will bring neighboring tissue types into
the triplet, like, for example, damaged tissue, which might affect the
performance in such areas. In future work, we would like to use the tissue
segmentation maps and not only extract the urothelium tissue but also
mask out unwanted regions of damaged tissue and blood. Incorporating
attention modules is also something we will try, which would further help
explain what parts of the WSI are responsible for the predictions.

Cells of low-grade cancer often resemble that of non-cancerous cells, and
high-grade cells have a more abnormal appearance and are disorganized.
Thus, we expect that non-cancerous tissue would be predicted as low-grade
carcinoma. However, this is our expectation as we do not have verified
material to test this on. To better detect these non-cancerous regions in the
future, we would have to expand our training dataset to include examples
of non-cancerous urothelium. The TRIWHO04-model architecture must be
updated to include one additional class on the output and then be trained
on the updated dataset.

The proposed model uses three VGG16 networks as feature extractors. In
the future, we would like to experiment with other deep learning networks
for our base model. Newer deep learning models continuously improve the
results on datasets like ImageNet, and could potentially improve feature
extraction of urothelium tissue. We also plan to look into different ways of
fusing the multiscale information, both for the tissue classifier (TRItissue)
and grade-classifier (TRIWHO04).
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13.6 Conclusion

In this paper, we have proposed a TRIgrade pipeline for automatic grading
of urothelial carcinoma slides based on the WHO04 grading system. First,
the slide is segmented into the tissue classes (urothelium, stroma, muscle,
blood, damaged tissue, and background). Next, tiles are extracted at three
magnification levels (25x, 100x, and 400x) from the urothelium regions.
The three tiles form a triplet, which is fed sequentially to a multiscale
CNN-based WHO04 grading model.
The proposed method will generate a tissue segmentation map, helpful

for the clinicians to easier find diagnostic relevant regions during an exami-
nation. The system will also output a WHO04 grade heatmap, highlighting
the most severe urothelium tissue regions, beneficial for the pathologists
who can focus their limited per-patient time on the most important re-
gions in the WSI. Finally, the system produces a slide-level WHO04 grade
that could potentially be used to prioritize high-grade patients for earlier
examination, as well as suggest the diagnosis to the pathologist.

Ten WHO04 grade models were trained on datasets of varying sizes. Note
that all the same number of WSI were used all the time, but a different
number of triplets were extracted from each WSI, constituting the training
set. The model trained on the largest training dataset achieved the best
result, a weighted average F1-score of 0.90 on the test set. This model was
further evaluated on a segmentation test set, where low- and high-grade
regions were annotated by a pathologist. On this task, the model got an
average F1-score of 0.91 on both the low-grade and high-grade classes.
The system as a whole can be used by clinicians and pathologists to

potentially improve their decision-making and further help patients by
receiving correct diagnoses and treatment.
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