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Abstract

In factor analysis and structural equation modeling non-normal data simulation is
traditionally performed by specifying univariate skewness and kurtosis together with the
target covariance matrix. However, this leaves little control over the univariate distribu-
tions and the multivariate copula of the simulated vector. In this paper we explain how
a more flexible simulation method called vine-to-anything (VITA) may be obtained from
copula-based techniques, as implemented in a new R package, covsim. VITA is based on
the concept of a regular vine, where bivariate copulas are coupled together into a full mul-
tivariate copula. We illustrate how to simulate continuous and ordinal data for covariance
modeling, and how to use the new package discnorm to test for underlying normality in
ordinal data. An introduction to copula and vine simulation is provided in the appendix.

Keywords: non-normal simulation, covariance model, vine copulas, ordinal covariance models,
R.

1. Introduction

Structural equation modeling (SEM) and factor analysis are regularly applied to data in the
psychological, educational, business, behavioral, and medical sciences. The central component
in these methods is the covariance matrix from which the model parameters are identified.
In this article we present software for simulating from a class of distributions with a fixed
covariance matrix, which therefore can be used in SEM simulation studies. This distributional
class is more flexible than the methods currently in use, and may therefore extend the range
of conditions investigated with simulations.
When the examined data are continuous, the most popular SEM estimation method used
is the normal-theory based maximum likelihood (NTML) method (Jöreskog 1967) which is
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asymptotically efficient when data are normally distributed. NTML estimation is a special
case of a class of moment based estimators known as minimum discrepancy function estimators
(see, e.g., Shapiro 1983), and is therefore known to be consistent also under non-normality.
When using classical standard errors with NTML, valid inference is attained mainly when the
data are normal. While several standard error and test statistic formulas have been proposed
in order to robustify inference with NTML and other minimum discrepancy estimators under
non-normality (e.g., Satorra and Bentler 1988; Wu and Lin 2016; Marcoulides, Foldnes, and
Grønneberg 2020), their performance depends heavily on the distribution and sample size of
the data (e.g., Curran, West, and Finch 1996; Fouladi 2000; Foldnes and Olsson 2015; Grøn-
neberg and Foldnes 2019b). In settings with ordered-categorical data, least squares estimation
based on polychoric correlations is the most prevalent estimation method (Christoffersson
1977; Muthén 1984). Polychoric correlations are essentially the correlations among continu-
ous bivariate normally distributed vectors underlying the observed ordinal data, but may be
heavily biased outside normality (Foldnes and Grønneberg 2019b, 2022b). Hence, under both
continuous and ordinal data analyses, the normality assumption is a central starting point
for estimation and inference.
Unfortunately, in most empirical research situations data are seldom drawn from populations
in which the normality assumption holds exactly (Micceri 1989; Cain, Zhang, and Yuan 2017).
And while several estimation and inference methods that do not assume normality have been
suggested (for an overview, see Tarka 2018), it is in most conditions not feasible to analyt-
ically derive results on their performance as a function of the data generating distribution.
Monte Carlo simulation studies have as a result become essential tools for evaluating the
behavior of various aspects of SEM techniques, such as parameter and standard error bias,
performance of test statistics, and power calculations, relative to distributional characteristics
(Boomsma 2013). The external validity of these studies is weakened if the chosen data gen-
eration mechanism does not resemble the real-world distributions encountered in the relevant
field of practice. To be able to model such distributions, we need simulation methods that
can match a given covariance matrix but still offer distributional flexibility.
The aims of the present paper are twofold. Firstly, to present the R (R Core Team 2021) pack-
age covsim (Foldnes and Grønneberg 2022a), available from the Comprehensive R Archive Net-
work (CRAN) at https://CRAN.R-project.org/package=covsim, which implements non-
normal data simulation methods proposed by Foldnes and Olsson (2016) and Grønneberg
and Foldnes (2017). Both methods generate data with a prescribed covariance matrix. Our
emphasis will be on the method called vine-to-anything (VITA), since it offers greater flexi-
bility that we deem particularly useful to SEM methodologists. For instance, the flexibility
of VITA renders it uniquely well-suited for being employed in simulation studies with ordinal
SEM, as further discussed in Section 6.2.
VITA is a simulation method based on vine copulas. Copulas are multivariate distributions
with uniform marginals, and vine copulas are a special type of copulas. Since copulas, vines
and multivariate simulation theory are not well known to SEM practitioners and methodol-
ogists, the second aim of the paper is to introduce these topics during our presentation of
the VITA method and the covsim package. We also include a technical appendix with an
elementary though mathematically complete introduction to multivariate simulation theory
with vine copulas, as this seems to be missing from the literature.
We next give an overview of statistical software for drawing data from non-normal multivariate
distributions with a predefined covariance matrix. The classical and still most frequently used
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approach is that of Vale and Maurelli (1983), where the user specifies the univariate skewness
and kurtosis. This method is currently the only option in popular commercial software such
as EQS (Bentler 2006) and LISREL (Jöreskog and Sörbom 2006), and in the widely used
R package lavaan (Rosseel 2012). Other approaches that also focus on controlling moments
have recently been proposed. The independent generator approach proposed by Foldnes and
Olsson (2016) can match pre-specified univariate skewness and kurtosis, and is more flexible
than the Vale-Maurelli method. This method is available in the rIG() function in package
covsim, and its use is described in a later section. Recently Qu, Liu, and Zhang (2019) used
independent generator variables in a method which controls multivariate skewness and kurto-
sis, at the expense of control over univariate skewness and kurtosis. This method is available
in package mnonr (Qu and Zhang 2020). A method that fully controls the univariate distribu-
tions (not only the lower-order moments) is the NORTA method of Cario and Nelson (1997),
which is implemented in package SimCorMultRes (Touloumis 2016). The Vale-Maurelli, in-
dependent generator and NORTA approaches have the great benefit of being technically easy
to analyze and implement. For instance, the technical tractability allows the asymptotic co-
variance matrix of the empirical covariances to be exactly calculated (Foldnes and Grønneberg
2017). The simplicity of the methods also allows for fast simulation. However, the simplicity
and speed of these methods come at a cost: NORTA always has a normal copula (Cario and
Nelson 1997), while Vale-Maurelli in most cases has a normal copula (Foldnes and Grønneberg
2015). This means that the true multivariate dependence structure does not depart from that
of the multivariate normal distribution. In addition, only NORTA completely controls the
univariate marginals. To the best of our knowledge, besides the approach taken in the present
article, there is only one method that offers some control of the copula when simulating from
distributions with a given covariance matrix. Mair, Satorra, and Bentler (2012) proposed a
two-stage data-generation process where a very large sample is first simulated from a copula
combined with marginal specification, whose distribution we denote by Fpre. Then the in-
verse of a square root of the sample covariance matrix from this large sample is computed. To
simulate data, in the second stage a sample of desired size is drawn from Fpre, and multiplied
by first the inverse of the square root matrix from the previous stage and then by a square
root matrix of the target covariance. The two-stage approach guarantees that the rows are
independent and identically distributed, and it follows from construction that the simulated
vector has the correct population covariance matrix. Also, the simulated vector has a non-
normal copula, provided Fpre was chosen to have a non-normal copula. However, both the
margins and the copula are distorted by the post-multiplication of square root matrices. That
is, although Fpre is fully specified in terms of multivariate copula and univariate distributions,
the simulated vector does not inherit this copula nor the margins and control is lost both in
terms of copula and marginal distributions. Mair et al. (2012) illustrated their code using
common multivariate copula families using Gumbel and Clayton copulas, as implemented in
package copula (Hofert, Kojadinovic, Maechler, and Yan 2020). An implementation of this
method is available in package simsem (Pornprasertmanit, Miller, Schoemann, and Jorgensen
2021). The flexibility of this implementation is presently limited to a rather restricted class
of multivariate copulas, comprising elliptical, Archimedean, extreme-value and some other
copula families available in package copula.

VITA improves upon the approach of Mair et al. (2012) by allowing complete control of the p
marginal distributions, of the bivariate copulas of a chosen set of p − 1 pairs of variables, and
of certain conditional bivariate copulas of the remaining (p − 1)(p − 2)/2 pairs of variables.
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The increased degree of control and flexibility of our approach relative to existing methods
is made possible by employing the powerful multivariate copula-based construction called a
regular vine. A primary aim of the present article is to present and illustrate our approach
using the newly developed covsim package.
The remainder of the article is organized in the following way. First, we explain the copula
approach in a two-dimensional setting. We then demonstrate a very flexible copula-based
approach to non-normal simulation in the two-dimensional case. An important advantage
of this approach is that the copula class and the exact marginal distributions of the two-
dimensional case may be fully specified by the user. Next, we develop the full multivariate
extension, which still allows for complete control of the marginal distributions, and consider-
able flexibility in the dependence structure. We then detail the implementation of the covsim
package, and end the paper with two additional examples: First, we show how to simulate
from a non-normal continuous SEM with fixed parameters, and then we show how to simu-
late data for an ordinal SEM. Example code is provided throughout the paper, and complete
replication code is available in the online supplementary material. The appendix provides an
introduction to implementing the simulations on a computer, and follows the progression of
the paper.
Throughout this article we illustrate the capacity of covsim in the context of simple structural
equation modeling settings. We use only a limited set of non-normal distributional conditions
in each illustration, and we caution that the external validity of our findings is therefore
limited. To enhance the validity a larger range of distributional and sample size conditions
must be included.

2. The bivariate case
We start by considering the bivariate case. Our aim is to introduce the concept of a copula
and how it can be used to simulate non-normal random variables with a given correlation.
In subsequent sections we extend our simulation procedure to the general multivariate case.
For a textbook treatment of copula theory, see Nelsen (2007). Note that this book, together
with most books on copulas, assume that the reader has a strong mathematical background,
including some measure theory, and that we do not assume such a background in the current
presentation. Some useful introductory papers on copulas which can be read without such a
background are Yan (2007); Genest and Favre (2007); Frees and Valdez (1998).
A copula is a distribution with uniform univariate margins. Copulas are used to describe
the dependency structure between variables, when taking the marginal distributions out of
the equation. There are many classes of copulas, and within each class there is typically a
parameter that controls the strength of dependence. We start with the normal copula. Let
Φ(x) denote the cumulative distribution function (CDF) of a standard normal distribution,
and let Φ2(x, y; ρ) denote the CDF of the bivariate standard normal distribution with correla-
tion parameter ρ, i.e., Φ2(x, y; ρ) = P (Z1 ≤ x, Z2 ≤ y) where Z1, Z2 are bivariate normal and
standardized, and have correlation ρ. Then the normal copula with parameter ρ ∈ (−1, 1) is
given by

CN (u1, u2; ρ) = Φ2(Φ−1(u1), Φ−1(u2); ρ).

As an example of a non-normal copula class, consider Clayton copulas, which are parameter-
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(a) Normal copula with ρ = 0.8.
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(b) Clayton copula with θ = 3.4.

Figure 1: Random samples of size n = 1000 drawn from two bivariate copulas.

ized by the dependence parameter θ ∈ (0, ∞):

CCl(u1, u2; θ) = (u−θ
1 + u−θ

2 − 1)−1/θ.

Clayton copulas are useful for modeling lower tail dependence, a measure of dependence
between two variables in the lower left tail of the joint distribution. Figure 1 depicts random
draws of size n = 1000 from each of these copulas. We set ρ = 0.8 for the normal copula
and θ = 3.4 for the Clayton copula. In both Figures 1a and 1b we see that the marginal
empirical distributions are close to uniform. A notable difference is the lower tail dependence
in Figure 1b which does not appear in Figure 1a.
Bivariate copulas are important since they constitute one of two fundamental building blocks
for bivariate distributions. The other building block consists of the two univariate marginal
distributions. A fundamental theorem (Sklar 1959) guarantees that any bivariate distribution
may be decoupled into a bivariate copula and the two marginal distributions, and vice versa;
given two marginal distributions F1(x1) and F2(x2) and a copula C(u1, u2; θ), then

F (x1, x2) := C(F1(x1), F2(x2); θ) (1)

is a valid bivariate CDF, whose univariate margins are distributed according to F1(x1) and
F2(x2). For instance, if F1 and F2 are the standard normal distribution, the bivariate distri-
butions stemming from the normal copula with ρ = 0.8, and from the Clayton copula with
θ = 3.4, will both result in bivariate distributions with standard normal marginals, and with
a Pearson correlation of 0.8. That is, setting θ = 3.4 yields a Clayton copula such that when
combined with standard normal marginals will yield a distribution with ρ = 0.8. Figure 2
shows random samples from these two distributions, obtained by applying the standard nor-
mal quantile function to the observations in Figure 1, which will change the marginals of the
simulated data to be standard normal. Figure 2 depicts two very different bivariate distri-
butions. Although sharing the same standard normal marginal distributions, and the same
correlation coefficient 0.8, it is clear that the distribution in Figure 2b is far from the bivariate
normal distribution in Figure 2a.
This illustration hints at the following process for a researcher that wants to simulate data
from a bivariate distribution with pre-specified covariance and univariate marginals:
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(a) Normal distribution with ρ = 0.8.
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(b) Clayton distribution with θ = 3.4.

Figure 2: Random samples of size n = 1000 drawn from two bivariate distributions with
standard normal marginals and correlation 0.8.

1. Specify marginal distributions F1 and F2 and specify a target covariance.

2. Specify a bivariate copula class C(u1, u2; θ), with dependence parameter θ.

3. Use a numerical procedure to determine θ0 so that C(F1(x1), F2(x2); θ0), the coupled
distribution, has the pre-specified covariance.

For a given set of marginals, and a given copula, the set of attainable covariances is usually
constrained. Then, in step 3 there is no solution θ0. In such a case, the copula class or the
marginal specifications should be adjusted.
The three steps are conducted in the covsim package in R as follows.

R> library("covsim")
R> mnorm <- list(list(distr = "norm"), list(distr = "norm"))
R> sigma.target <- matrix(c(1, 0.8, 0.8, 1), 2)
R> set.seed(1)
R> calibrated.vita <- vita(mnorm, sigma.target, family_set = "clayton")

Tree 1
1 - 2 ( 1 of 1 )

R> summary(calibrated.vita)

$margins
# A data.frame: 2 x 2
margin distr

1 norm
2 norm

$copula
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# A data.frame: 1 x 10
tree edge conditioned conditioning var_types family rotation parameters df

1 1 1, 2 c,c clayton 0 3.4 0
tau

0.63

We verify that the target covariance matrix has been attained, using the rvine() function
from package rvinecopulib (Nagler and Vatter 2021). This package offers fast simulation from
vines.

R> library("rvinecopulib")
R> cov(rvine(10^5, calibrated.vita))

[,1] [,2]
[1,] 0.9994719 0.8017954
[2,] 0.8017954 0.9985791

As indicated above, we may simulate from a distribution of the form C(F1(x1), F2(x2); θ)
by first simulating (U1, U2) from the copula C, and then apply the quantile functions of the
marginals to each coordinate. That is, (F −1

1 (U1), F −1
2 (U2)) has marginals F1, F2 and copula

C, meaning its full distribution equals C(F1(x1), F2(x2); θ). See the technical appendix for
an explanation for why this is so and how to simulate from a copula.

3. The trivariate case: Introducing vines
In the previous section we studied bivariate copulas, and the calibration of their dependence
parameter so that the coupling of given marginals will meet a target covariance. There are
many classes of bivariate copulas, but few classes of higher-dimensional copulas. In this section
we will circumvent the lack of parametric multivariate copula classes by using a statistical
construction called a regular vine (Bedford and Cooke 2002). Vines allow us to construct
multivariate copula distributions by combining two-dimensional copulas. For the purpose of
covariance modeling and simulation, the procedure detailed here was originally proposed by
Grønneberg and Foldnes (2017).
Let us first proceed to the case of three variables. Our goal is to construct distributions with
given marginal univariate distributions for each of the three variables, and with a given 3 × 3
covariance matrix. Imagine a researcher is concerned with whether non-normal correlated
errors in growth curve modeling may affect the quality of inference for the correlation ρ be-
tween the intercept and slope factors. The default in growth curve modeling is to assume
that residual errors are mutually independent across measurement occasions. However, cor-
related errors may be meaningful as they represent carryover effects from previous occasions
not accounted for by the intercept and the linear slope latent variable (Grimm and Widaman
2010; Marcoulides 2019). The issue of how residual error structures in latent growth curve
modeling should be specified (e.g., as constrained, free, independent, autocorrelated, homo-
geneous, or non-homogeneous) is currently of great concern in the SEM literature, as it is
now becoming much more recognized that considerable bias in the latent variable variance-
covariance matrix can arise from the improper specification of these errors (Dimitrov 2002;
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Figure 3: Linear growth curve population model with correlated residual errors.

Van De Schoot, Sijbrandij, Winter, Depaoli, and Vermunt 2017; Marcoulides 2019; Laenen,
Alonso, Molenberghs, and Vangeneugden 2009; Grimm and Widaman 2010).
The researcher wants to simulate data with correlated residual errors and sets up a simple
linear growth model, see Figure 3, where the population values are indicated: There is zero
correlation ρ between the slope and the intercept, all latent variables have unit variance, and
the errors δ = (δ1, δ2, δ3)⊤ are correlated with covariance matrix

Σδ =

 1 0.4 0.3
0.4 1 0.4
0.3 0.4 1

 .

The researcher is concerned with non-normality in the error vector δ, and therefore wants to
construct a trivariate non-normal distribution whose covariance is Σδ.
We remark that the illustrations in the present article do not discuss the reasons behind spe-
cific choices of marginal distributions and dependence structure. Such choices depend on the
purpose of the simulation study. Our aim in this and following illustrative analyses is simply
to demonstrate how vine constructions work. However, we note that routines exist to select
best-fitting vine structures and bicopula families relative to an existing real-world dataset
(e.g., function vinecop() in package rvinecopulib). This could be done to increase external
validity of simulation studies. For an example of how to construct a VITA distribution based
on a well-known empirical dataset, see Grønneberg and Foldnes (2017, Section 3.2). General
papers on the selection and usage of copulas are Yan (2007); Genest and Favre (2007); Em-
brechts, Lindskog, and Mcneil (2003); Grønneberg and Hjort (2014), an influential paper on
vine-based modeling is Aas, Czado, Frigessi, and Bakken (2009), and a book with practical
issues on vine modeling is Kurowicka and Joe (2011).
First, the researcher considers the three univariate error distributions, and decides that the
first error should be standard normally distributed, the second error should be a scaled chi-
squared distribution with one degree of freedom (DF), and the third error should follow
a scaled Student’s t distribution with five DFs. The scalings are necessary to obtain unit
variance in the two latter distributions. Clearly, it might be questioned whether the case
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of different error distributions for the same variable at different measurement occasions is
realistic, but since our main purpose here is to illustrate the flexibility of VITA, we proceed
with three different error distributions.
Even though the marginal distributions in δ have now been specified, there are still many
trivariate distributions with these marginals and with covariance Σδ. The specification will
be complete once the copula of δ is selected, but this must be done cautiously and in a way
that ensures δ has covariance Σδ. Let us denote the copula as V . The joint distribution of
δ will result when we couple together three marginals using V . That is, the CDF Fδ of δ is
given by

Fδ(a, b, c) = V (Φ(a), G1(b), G2(c)),
where G1 and G2 are the CDFs of the scaled chi-square and t distributions, respectively. As in
the bivariate case, simulation from the above distribution involves first simulating (U1, U2, U3)
from V , and then applying the quantile functions of the marginals to each coordinate of this
vector. That is, the final simulated vector will be δ = (Φ−1(U1), G−1

1 (U2), G−1
2 (U3)). To

construct the vine V the researcher decides to couple the uniform marginals U1 and U2 with
a Clayton copula, and U2 and U3 with a Joe copula. The dependence parameters of each of
these bivariate copulas is numerically determined as described in the previous section, so that
corr(Φ−1(U1), G−1

2 (U2)) = corr(G−1
2 (U2), G−1

3 (U3)) = 0.4. The hard part is now to couple U1
with U3 such that corr(δ1, δ3) = corr(Φ−1(U1), G−1

3 (U3)) = 0.3, and to achieve this we next
introduce the concept of a vine.
Vines are convenient graphical tree structure models that can be used to build up high-
dimensional distributions from conditional two-dimensional copulas. Vines therefore decom-
pose the multivariate copula into a hierarchy of bivariate copulas. A vine on p variables can
be represented as a set of connected trees V = {T1, . . . , Tp−1}, where the edges of tree j are
the nodes of tree j + 1, j = 1, . . . , p − 2 and are used to facilitate the picking out of various
distributional characteristics, see Figure 4 for our current illustration with p = 3. The first
tree has the variables as its nodes, and an edge between two variables means that these two
variables are unconditionally coupled as in the previous section. In our case, we chose at the
beginning to couple U1 with U2 and to couple U2 with U3. This corresponds to the tree at
the bottom of Figure 4. The second tree has the edges of the first tree as its nodes. In our
case the first tree has only two edges: U1, U2 and U2, U3. The second tree must therefore join
U1, U2 and U2, U3. This tree has one single edge, which is denoted by U1, U3|U2. That is, the
second tree specifies the copula between U1 and U3, conditional on U2. Note that we could
have chosen a different tree at the first level, with edges, say, U1, U2 and U1, U3, which would
yield a different distribution. Also the bivariate copulas chosen for coupling pairs of variables
could have been chosen differently, yielding other types of vine distributions. However, we
do not explore the flexibility of vines in the present paper. We see in Figure 4 that there are
a total of three edges in the vine, and that the edges correspond to the pairwise correlations
among the three variables. This holds also in higher-dimensional vines: There is an exact cor-
respondence between the edges in the set of trees, and pairs of variables. So each off-diagonal
element in the covariance matrix corresponds to a unique edge in the vine. The researcher’s
goal now is to define the distribution of U1 and U3. As suggested in Figure 4, this is done by
specifying the distribution of U1 and U3, conditional on U2. The researcher chooses a Frank
copula for this distribution.
In terms of the joint density function f of δ = (δ1, δ2, δ3)⊤, its general form is:
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Figure 4: A three-dimensional regular vine.

f(a, b, c) = f1(a)f2(b)f3(c) · c12(F1(a), F2(b)) · c13(F1(a), F3(c)) · c13|2(F1|2(a|b), F3|2(c|b)),

where f1, f2, f3 are chosen marginal density distributions of δ1, δ2, δ3 respectively, where
c12, c13, c13|2 are the chosen bivariate copulas of (δ1, δ2), (δ1, δ3) and (δ1, δ3) conditioned on δ2,
respectively. Also, F1, F2, F3 are CDFs of δ1, δ2, δ3 respectively, and F1|2, F3|2 are conditional
CDFs of δ1 given δ2, and of δ3 given δ2, respectively. These CDFs are consequences of the
chosen bivariate copulas and marginals. A full discussion with formulas for these conditional
CDFs and of the joint density is included in the appendix. An advantage of vine distribu-
tions, compared to other multivariate simulation approaches where covariance matrices are
specified (e.g, Ruscio and Kaczetow 2008; Qu et al. 2019), is the above explicit formula for
the distribution of the simulated vector.
Returning to the illustrative example, we sum up the researcher’s specifications for the residual
error vector δ:

• δ1 follows a standard normal distribution, δ2 follows a scaled chi-square distribution
with one DF, and δ3 follows a scaled t distribution with five DFs.

• The vine structure is given in Figure 4.

• A Clayton copula density for c12, with dependence parameter calibrated so that Φ−1(U1)
and G−1

2 (U2) have correlation 0.4.

• A Joe copula density for c23, with dependence parameter calibrated so that G−1
2 (U2)

and G−1
3 (U3) have correlation 0.4.

• A Frank copula density for c13|2, with dependence parameter calibrated so that Φ−1(U1)
and G−1

2 (U3) have correlation 0.3.

To construct multivariate distributions where the marginals and the covariances are pre-
specified, Grønneberg and Foldnes (2017) proposed the use of vines, resulting in the vine-to-
anything (VITA) method. In our illustration, the researcher’s requests may be fulfilled by
constructing a VITA distribution using the covsim package as follows:

R> sigma.target <- matrix(c(1, 0.4, 0.3, 0.4, 1, 0.4, 0.3, 0.4, 1), 3)
R> margins <- list(list(distr = "norm"), list(distr = "chisq", df = 1),
+ list(distr = "t", df = 5))
R> pcs <- list(list(bicop_dist("clayton"), bicop_dist("joe")),
+ list(bicop_dist("frank")))
R> vine_cop <- vinecop_dist(pcs, structure = dvine_structure(1:3))
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R> margin.variances <- c(1, 2, 5/3)
R> pre <- diag(sqrt(margin.variances/diag(sigma.target)))
R> vita.target <- pre %*% sigma.target %*% pre
R> set.seed(1)
R> calibrated.vita <- vita(margins, vita.target, vc = vine_cop,
+ verbose = TRUE)

Tree 1
1 - 2 ( 1 of 3 )
2 - 3 ( 2 of 3 )

Tree 2
1 - 3 ( 3 of 3 )

R> post <- diag(1/diag(pre))
R> vita.sample <- rvine(10^5, calibrated.vita) %*% post
R> round(cov(vita.sample) - sigma.target, 2)

[,1] [,2] [,3]
[1,] -0.001 0.001 -0.004
[2,] 0.001 0.001 -0.002
[3,] -0.004 -0.002 0.002

In the last lines of code above, we simulated a n = 105 sample from the calibrated VITA
distribution using the function rvine() from the R package rvinecopulib (Nagler and Vatter
2021). The purpose of the last line is to confirm that the covariance matrix in the simulated
sample is close to the target matrix.
A visualization of n = 1000 randomly drawn error vectors is presented in Figure 5. Note
that, expectedly, the first marginal distribution is approximately standard normal, while the
second and third marginal distributions are in accordance with scaled chi-square and Student’s
t distributions.
Now, having constructed a VITA distribution for the residual errors, the researcher may use
simulation to assess whether the quality of NTML inference for ρ, the correlation between the
intercept and slope factors, deteriorates under non-normal residual errors. As a benchmark,
the researcher simulates from a fully normal distribution on the observed variables x1, x2, and
x3. For the non-normal case, the researcher first simulates VITA residual errors, and then
combines these with simulated intercept and slope values, each drawn from standard normal
distributions, to obtain simulated observations on x1, x2 and x3. The researcher replicates
1000 samples of size n = 1000 from both the fully normal distribution and the distribution
with residual errors stemming from VITA.1 The growth model was estimated with seven
free parameters: three correlated residual errors; the residual error variances, which were
constrained to be the same at each of the three measurement occasions; the correlation ρ;
and the means of the intercept and slope variables. The model has one DF. As a measure
of inference quality for ρ the researcher decides to calculate the confidence interval coverage
rate, at the 95% confidence level, for ρ = 0, using classical standard errors that assume exact

1Simulation code is provided in the online supplementary material.
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Figure 5: Scatterplots and histograms for a n = 1000 sample drawn from a three-dimensional
VITA distribution.

normality. Under full normality, the coverage rate of 0.94 was close to nominal. With a non-
normal error vector, the coverage rate was 0.905. Hence, the researcher found some support
for the claim that non-normality in the error vector may affect the quality of intercept-slope
correlation NTML inference.

3.1. The independent generator approach

The covsim package exports, in addition to vita(), the function rIG(). This simulation
function is not based on a copula perspective and does not allow for full specification of the
univariate marginal distributions. Instead it is closer in approach to the method of Vale
and Maurelli (Vale and Maurelli 1983), where only univariate skewness and kurtosis are
prespecified. However, the independent generator (IG) algorithm (Foldnes and Olsson 2016)
is more flexible than the Vale and Maurelli method, defining a larger class of non-normal
distributions for each set of skewness and kurtosis values. Although the main focus of the
present manuscript is the flexible use of bivariate copulas in simulating non-normal data with
given marginals and covariance matrix, we here for completeness give a short introduction to
the IG algorithm.
The IG transform represents the non-normal vector ξ stochastically as

ξ = AX,

where A is a square matrix and X a vector consisting of mutually independent generator
variables with unit variance. The user specifies desired skewness and kurtosis values in ξ, and
the IG algorithm numerically determines the skewness and kurtosis in each generator variable
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Figure 6: Scatterplots and histograms for a n = 1000 sample drawn from a three-dimensional
IG distribution.

to match the desired values. The matrix A is a square root of the specified covariance matrix Σ.
In rIG() the user may specify a triangular square or a symmetrical square root matrix, which
gives two different distributions. Also the marginal distributions for X may be freely chosen,
further expanding the distributional class defined by IG. In its current implementation, rIG()
uses the Pearson family of distributions (Pearson 1895). Let us reconsider the marginal
distributions used above. We note that the chi-square distribution with one DF and the
Student’s t distribution with five DFs have skewness

√
8 and 0, respectively, and kurtosis 12

and 6, respectively. In the following code we ask for an IG distribution that matches the
first four moments of the three marginal distributions considered in the previous section. The
scatterplot is given in Figure 6.

R> set.seed(1)
R> ig.sample <- rIG(N = 10^3, sigma.target = sigma.target, reps = 1,
+ skewness = c(0, sqrt(8), 0), excesskurtosis = c(0, 12, 6))

4. A six-dimensional growth curve illustration
In this section we use the flexibility of VITA to further study the effect of non-normality
in growth curve residual error vectors on normal-theory based inference. We focus on the
chi-square statistic of model fit. We consider a linear growth curve with scores across six
time-points. We assume that the errors δi, i = 1, . . . , 6, have unit variance, and that they are
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autocorrelated according to the following banded structure (i.e., a Toeplitz structure):

Σδ =



1
0.5 1
0.2 0.5 1
0 0.2 0.5 1
0 0 0.2 0.5 1
0 0 0 0.2 0.5 1


We calibrate the following three VITA distributions for the δ vector:

VITA1 δ1, δ2, δ3, δ4, δ5, and δ6 are standard normal, and all 18 bivariate copulas are of Clay-
ton type.

VITA2 δ1 is standard normal, while δ2, δ3, δ4, δ5, and δ6 are chi-square distributed with
5, 4, 3, 2, and 1 degrees of freedom, respectively. The chi-square distributions are scaled
to have unit variance. All 18 bivariate copulas are normal.

VITA3 δ1 is standard normal, while δ2, δ3, δ4, δ5, and δ6 are chi-square distributed with
5, 4, 3, 2, and 1 degrees of freedom, respectively. The chi-square distributions are scaled
to have unit variance. All 18 bivariate copulas are of type Clayton.

Using the vita() function in package covsim the code is as follows:

R> residual.covariance <- toeplitz(1:6)
R> residual.covariance[residual.covariance > 3] <- 0
R> residual.covariance[residual.covariance == 2] <- 0.5
R> residual.covariance[residual.covariance == 3] <- 0.2
R> margins.nonnorm <- list(list(distr = "norm"),
+ list(distr = "chisq", df = 5), list(distr = "chisq", df = 4),
+ list(distr = "chisq", df = 3), list(distr = "chisq", df = 2),
+ list(distr = "chisq", df = 1))
R> margins.norm <- list(list(distr = "norm"), list(distr = "norm"),
+ list(distr = "norm"), list(distr = "norm"),
+ list(distr = "norm"), list(distr = "norm"))
R> margin.variances <- c(1, 10, 8, 6, 4, 2)
R> sigma.target <- diag(sqrt(margin.variances)) %*% residual.covariance %*%
+ diag(sqrt(margin.variances))
R> set.seed(1)
R> vita1 <- vita(margins.norm, residual.covariance, family_set = "clayton")

Tree 1
1 - 2 ( 1 of 15 )

[...]

R> set.seed(1)
R> vita2 <- vita(margins.nonnorm, sigma.target, family_set = "gauss")
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Tree 1
1 - 2 ( 1 of 15 )

[...]

R> set.seed(1)
R> vita3 <- vita(margins.nonnorm, sigma.target, family_set = "clayton")

Tree 1
1 - 2 ( 1 of 15 )

[...]

Data generation first simulates independent random draws from the standard normal for
the intercept and slope variables, and then adds the residual errors simulated from VITA
distributions. A growth model with 15 degrees of freedom, which correctly specifies the
structure for Σδ, is fitted to the data. Our research question is to what extent non-normality
in the errors affects the sampling distribution, and in particular, the type I error control
of the regular normal-theory chi-square statistic TNTML. Since VITA1, VITA2, and VITA3
are different distributions, with different mixes of marginal and copula non-normality, there
might also be insights to draw from their differential effect on the chi-square test. One way
of conducting this research is to use conventional small-sample simulations and to calculate
rejection rates over many replications. Here we choose a different approach. We calculate the
exact asymptotic distribution of TNTML in each distributional condition. This will also give
us asymptotic type I error rates.2 First, we simulate a very large n = 106 sample from each of
the VITA distributions. Then the model is fitted to each of the three datasets, and we extract
the eigenvalues of the matrix UΓ (see, e.g., Foldnes and Grønneberg 2018 for further details).
Theory (Box 1954) dictates that TNTML is asymptotically distributed as the weighted sum
of independent chi-square distributions, each with one degree of freedom, where the weights
are the eigenvalues of UΓ. This allows us to calculate the density of TNTML under the three
distributional conditions. Under multivariate normality, this density is that of the nominal
chi-square distribution with 15 degrees of freedom, which is used to calculate asymptotic
type I error control of TNTML. Figure 7 depicts the asymptotic sampling distribution of
TNTML under four conditions, namely multivariate normality, and the distributions involving
the three VITA error distributions. It is seen that TNTML becomes inflated as we move
from multivariate normality, and as we progress through the three VITA error distributions.
The vertical line represents the critical value when referring TNTML to its critical value at
the α = 0.05 level of significance. VITA1 has standard normal marginals and a non-normal
copula. In this condition the asymptotic type I error control is 7.3%, quite close to the nominal
level. VITA2 has four non-normal marginals, and a normal copula, and affects TNTML to a
larger extent than VITA1. The asymptotic rejection rate under VITA2 is 29.4%, which is far
above the nominal 5% level. VITA3 introduces more non-normality compared to VITA2, by
having a non-normal copula. The effect on TNTML is critical, whose asymptotic rejection rate
is 50.6% under VITA3 errors. In sum we see that non-normality in the residual error vector
may markedly inflate the rejection rates of TNTML, but we may speculate that the effect is
mild as long as the univariate marginals are normally distributed.

2In the online supplementary material are given code for conventional small-sample simulations that con-
firms our upcoming findings.
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Figure 7: The asymptotic density of TNTML under four conditions. nominal = Chi-square
distribution with 15 degrees of freedom. VITA1, VITA2, and VITA3 denote three kinds of
non-normal residual distributions. Vertical line represents critical value at α = 0.05.

5. The implementation of VITA in covsim
In this section we briefly explain how the function vita() implements the VITA algorithm.
Grønneberg and Foldnes (2017) provided as supplementary material a VITA implementation
using package VineCopula (Schepsmeier, Stoeber, Brechmann, Graeler, Nagler, and Erhardt
2021) for constructing and simulating from regular vines. This package is no longer in active
development, and package rvinecopulib (Nagler and Vatter 2021) was instead used in vita().
The most important benefits of rvinecopulib relative to VineCopula for our purposes is a
sleeker and more modern application programming interface (API) and shorter simulation
runtimes. In experiments (see supplementary material) with a five-dimensional vine, on a
computer with 4 CPU cores, simulation runtimes at a sample size of n = 1000 were shorter
with rvinecopulib compared to VineCopula by a factor of four. Also, as explained below, the
initial calibration of VITA parameters involves a series of large-sample random draws from
regular vines, which means that VITA calibration is computationally demanding. The root-
finding routine provided by Grønneberg and Foldnes (2017) has been improved in vita(),
by splitting it into a high-speed routine which identifies an interval for the root, followed by
high-precision root-finding in this interval, based on curve-fitting. This two-stage root-finding
routine is faster than the basic method in Grønneberg and Foldnes (2017). Combined with
faster simulation times in package rvinecopulib, the calibration time for a five-dimensional
vine using vita() instead of the original code provided by Grønneberg and Foldnes (2017)
was reduced by a factor of 13.
The main arguments to vita() are

• margins. A list that specifies the univariate marginal distributions.

• sigma.target. The target covariance matrix.
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• vc. A vine copula structure in the format defined by package rvinecopulib. That
is, a specification of a hierarchy of p − 1 trees, and, for each tree node, a bivariate
copula family. If not provided by the user, vita() will initialize vc as follows. The
vine structure of vc is specified as the simplest regular vine, namely the D-vine on p
dimensions. See Figures 4 and 10 for the D-vine with p = 3 and p = 4, respectively.
In addition, the bivariate copula family in each node in the D-vine will be taken as the
first element of the argument family_set.

• family_set. A vector that specifies which bivariate copula families are to be calibrated.
If vc is provided by the user, and the algorithm can not identify a feasible solution for the
family dictated by vc, the algorithm instead tries to calibrate the dependence parameter
for the first family in family_set. If not successful, an attempt is made to calibrate
the parameter in the second family, and so forth. If vc is not provided, the algorithm
attempts first to calibrate the dependence parameter in the first member of family_set,
and if not successful, the second member, and so forth.

The above arguments specify a class of VITA distributions, parameterized by the p(p −
1)/2 dependence parameters in the bivariate copulas. The task of vita() is to numerically
determine the values of these dependence parameters so that the resulting VITA distribution
has the required covariance matrix given by sigma.target. That is, vita() searches for
a dependence parameter value θ in each of the copulas, so that the covariance matrix of
the resulting full distribution is sigma.target, up to numerical precision. This search can
be done in the same order as when simulating from a vine, building our way up the tree,
connecting more and more distributions with pairwise conditional distributions. As shown in
Grønneberg and Foldnes (2017), the correlation of each pair of variables is typically a strictly
increasing function of θ for most single parameter copulas, making the numerical search well
behaved. Unfortunately, there is no simple formula for the correlation matrix of a vine. Worse
still, no simple formula can be derived for pairwise bivariate distributions connected at higher
levels of the vine tree. In the implementation of VITA in vita(), we resort to Monte Carlo
simulation to approximate the required correlation.
VITA calibrates each pairwise bivariate distribution and combines them to form the full vine
distribution in a specific order. A formal algorithmic description of the methodology is given
in Grønneberg and Foldnes (2017). We here informally summarize the main steps of the
method, and later describe in technical detail the new implementation of the root finding
procedure that underlies the calibration.
As explained in more detail in the appendix, each pair (i, j), where 1 ≤ i, j ≤ p, is connected
once in the vine. This is also the case in the covariance matrix. Let (σij) be the target
covariance matrix in sigma.target, and let the parameter of the bivariate copula connecting
the (i, j) distribution be parameterized by θij . The first pairs of bivariate distributions that
are calibrated are those connected at the lowest level of the vine tree. For illustration, we
consider the vine given in Figure 4 (p. 10). We see that (1, 2) are connected at the lowest tree.
We may therefore simulate directly from this bivariate distribution. This distribution depends
on a parameter θ12. We may choose this parameter in such a way that the covariance of the
resulting bivariate distribution matches the required covariance given in σ12. This matching
is non-trivial and is described in technical detail below. A similar matching may be done
for all other marginals connected at the lowest level of the vine, which here is only (2, 3).
These calibrations are done independently of each other. Now the vine in Figure 4 has only
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two levels, and there is only one bivariate margin left to be matched, namely (1, 3), which
is connected at the topmost level. The distribution of (1, 3) is derivable from the full vine
structure, and the conditional copula of (1, 3) given 2 is parameterized using a bivariate copula
with parameter θ13. To simulate realizations from (1, 3) we need to know the distributions
at the lower level of the tree, as well as specifying the value of θ13. The distributions of
the lowest level of the tree have already been fixed, and we may, for varying values of θ13,
simulate the full three-dimensional vine distribution, compute the covariance of (1, 3), and
select the θ13 value that yields a covariance equal to σ13. We have then calibrated the full
three-dimensional vine.
For higher dimensions, this idea has to be iterated several times to identify all parameters
in an order that enable us to always simulate from the required bivariate variables in the
vine. In order to briefly illustrate how to calibrate a higher-dimensional vine, consider the
four-dimensional vine in Figure 10 in the appendix (p. 41). Comparing the vine in Figures 4
and 10, we see that the three-dimensional vine in Figure 4 is included within the structure
of the vine of Figure 10 as a subset of its connections. That is, the vine in Figure 4 is a
sub-vine of the vine of Figure 10 that comprises the variables (1, 2, 3): The vines are equal,
with the exception that the four-dimensional vine also has to connect marginal 4 with the
remaining variables, which is done using the additional structure given in Figure 10. But to
simulate only (1, 2, 3) from the four-dimensional vine in Figure 10, we only need to know the
three-dimensional vine in Figure 4.
To calibrate the four-dimensional vine in Figure 10, we may therefore continue where we left off
when calibrating the three-dimensional vine in Figure 4. After calibrating the new bivariate
distribution connected at the lowest level, namely (3, 4), the next step is to calibrate all
distributions at the second level. Only one such distribution is left, namely (2, 4). By the same
reasoning as earlier, we may simulate from the sub-vine that enables the simulation of (2, 3, 4):
The parameters of the (2, 3) and (3, 4) distributions have already been fixed. Therefore, the
sub-vine expressing the full distribution of (2, 3, 4) only have one free parameter, namely θ24,
which may be varied to get a covariance between (2, 4) to match up with σ24. As in the
first level of the tree, the matching of the parameters at the second level of the tree are
done independently of each other, and can be done in any order. However, to calibrate all
connections at a given level, all connections at lower levels have already to be calibrated from
before.
The final matching required for the four-dimensional vine is then to work with the single
distribution connected at the third level of the vine, namely the (1, 4) distribution, so that
the (1, 4) marginal has covariance equal to σ14. All parameters of the vine are now fixed
with the exception of θ14, and this parameter may be varied until the required covariance is
induced.
The calibration order of variable pairs in vita() is as follows: All copulas at the lowest
level are calibrated, then the next level, and so on up to the highest level. As mentioned
in Grønneberg and Foldnes (2017), other orders are possible, as exemplified above, but the
order is immaterial as long as unique solutions for reaching the desired covariances exist.
In each calibration step, numerical integration done via Monte Carlo simulation and a search
for the solution of an equation must be performed. We now detail how this is done in the
implementation of vita(). Let (Ui, Uj) be distributed according to the copula of the sub-
vine required to simulate the (i, j) distribution as described above. Due to the order we
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have traversed the vine, there is always only one free parameter θij of this distribution that
is free, and is used to match up the required covariance σij . In the following description
we omit the ij subscript from θ, to reduce the notational burden. As explained in more
detail in the appendix, we apply the corresponding inverse quantile functions according to
the entries in margins to calculate the covariance induced by a given θ: Let us denote by
σij(θ) the covariance between the resulting variables F −1

i (Ui) and F −1
j (Uj). Our aim is

now to determine θ so that σij(θ) = σij . Unfortunately there are no analytical expressions
available for σij(θ) except in very special cases, but the covariance may be approximated by
simulating a large sample of size n of (Ui, Uj), applying the quantile functions F −1

i and F −1
j

to each simulated variable, and calculating the resulting sample covariance, which we denote
by σ̂ij(θ). Then σ̂ij(θ) will converge in probability to σij(θ) as n increases. However, with
large n, simulating these samples is time-consuming, so vita() is implemented in two stages.

1. Initial high-speed calibration. In this stage we use the modest sample size n = 1500 to
determine σ̂ij(θ), using function uniroot() in the stats package. That is, we approx-
imate θ by finding the root θ̂n of the discrepancy function σ̂ij(θ) − σij . We expect θ̂n

to be quite close to θ, but it contains random error, so we repeat this procedure and
approximate θ a small number of times (the argument numrootpoints). This results
in a number of root candidates θ̂1

n, θ̂2
n, . . . , θ̂

numrootpoints
n , which are independent and

identically distributed random variables. A standard t-based confidence interval for the
dependence parameter θ is then constructed from these approximate roots, using a high
level of confidence (as specified by the argument conflevel).

2. Final high-precision calibration. In this stage, we evaluate the discrepancy σ̂ij(θ) −
σij to a high precision at a small number (as specified by argument numpoints) of
equally spaced points across the confidence interval determined in the first stage. The
approximation is done by simulating from a very large sample (n is equal to the argument
Nmax) in each of these points. We then fit a second degree polynomial to the discrepancy
values and use uniroot() to locate the root of this polynomial, which yields our final
estimate for θ.

If, for any pair of variables, the calibration does not find a solution θ, the algorithm changes
the bivariate family to the next entry in family_set. If no solution is found, vita() termi-
nates with an error message. This means that there is no VITA distribution with the given
marginals, vine structure and bivariate families that can attain sigma.target. To proceed,
the user could then rerun vita() with, e.g., a different vine structure.
As mentioned in the introduction, traditional approaches to non-normal covariance modeling
only specify the lower-order univariate moments, and do not offer any control of the multivari-
ate aspects of the simulated vector, with the exception of covariance matching. As we have
demonstrated, the VITA approach is more flexible. However, the cost of increased flexibility
is increased computing time necessary to calibrate the VITA distribution. The default values
for arguments Nmax and numpoints in vita() guarantee a highly precise VITA calibration.
That is, the calibrated VITA distribution will have a covariance matrix almost numerically
indistinguishable from sigma.target. In higher dimensions, this precision comes at the cost
of long calibration running times. Table 1 gives calibration times on a computer (2.3 GHz
8-Core Intel Core i9) using the default options in vita(), with target correlation among all
variable pairs equal to ρ = 0.3, for increasing dimensionality. It is seen that approaching 20
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Dimension 5 10 15 20 25 30
Calibration (hrs) 0.006 0.065 0.401 1.447 3.675 8.100
Simulation (hrs) 0.001 0.004 0.009 0.015 0.024 0.034

Table 1: Calibration times in hours under the default Nmax = 106. Simulation of 1000 samples,
each of size n = 103.

dimensions, calibration time exceeds one hour, while simulating 1000 samples, each of size
n = 1000, requires less than a minute. So the calibration step, which is only executed once,
is time-consuming, while repeated simulation from the calibrated VITA is relatively fast.
Foldnes and Grønneberg (2022b) calibrated and simulated from VITA distributions in twenty
dimensions in an extensive simulation design. However, given that the median number of
observed variables in empirical SEM studies is close to 20 (Li 2016), using vita() for larger
models, with say 50 dimensions, will entail days of calibration time with the default options.
In such cases the user may lower the argument Nmax from 106 to 105, thereby reducing cali-
bration time by a factor of 10. For instance, for dimension 40 calibration was achieved in 6.2
hours using option Nmax = 105. Even with reduced precision, the calibrated VITA distribu-
tion has a covariance matrix almost equal to the target covariance. Among the 780 pair-wise
correlations estimated in a n = 106 sample drawn from the 40-dimensional calibrated VITA
distribution with Nmax = 105, 737 were within a 0.005 distance of the target ρ = 0.3, and all
(except for one) were within a 0.01 distance of ρ = 0.3.
If high precision is important in an application, a formal test of equality of covariance matrices
should be performed. This may be done by computing as test statistic the quadratic form of
the discrepancies between the sample covariances and the target covariances, weighted by the
inverse of the estimated asymptotic covariance matrix of the covariances (Mair et al. 2012).
To precisely (Nmax = 106) calibrate VITA distributions with 50 or more dimensions, our
current implementation will demand unrealistically long running times. The bottleneck of
the calibration algorithm consists of simulating a large sample (Nmax) from a regular vine.
This simulated sample is then used to compute a single covariance. If we distribute the large-
sample simulation to several computers, the desired covariance of all the simulated realizations
across computers can be computed based on sums, cross-products and sums of squares from
each computer. Hence, the VITA algorithm may conveniently be distributed across a network
of computers. Such functionality may be included in future versions of covsim.

6. Further examples
We here consider some further applications of VITA. In Section 6.1, we consider a 20-
dimensional SEM example with continuous data. In Section 6.2 we discuss simulation of
ordinal SEMs and show how this can be done with VITA.

6.1. Using VITA to simulate continuous data for SEM

In most SEM simulation studies the methodologist first specifies a SEM model together with
its population parameter values. Then the study is conducted by drawing random samples
from a distribution whose covariance matrix equals the model-implied covariance matrix. As
an example, consider the SEM whose structural part is depicted in Figure 8. The model
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Figure 8: Structural model for a medium-sized SEM. Indicator variables not depicted.

has five factors, and is representative of a medium-sized SEM in applied studies (Li 2016).
Each factor has four indicators, yielding a total of 20 dimensions. The factor loadings for the
indicators were set to 0.8, 0.7, 0.6 and 0.5 within each factor, and the corresponding residual
variances were set to 0.5. The correlation was set to 0.3 between the two exogenous factors,
each of which had unit variance. The residual variances for the endogenous factors were also
set to 0.5. Using the package lavaan we can compute the target covariance matrix implied by
these population parameters as follows.

R> sem.pop <- '
+ Ksi1 =~ start(.8) * x1 + start(.7) * x2 + start(.6) * x3 +
+ start(.5) * x4
+ Ksi2 =~ start(.8) * x5 + start(.7) * x6 + start(.6) * x7 +
+ start(.5) * x8
+ Eta1 =~ start(.8) * y1 + start(.7) * y2 + start(.6) * y3 +
+ start(.5) * y4
+ Eta2 =~ start(.8) * y5 + start(.7) * y6 + start(.6) * y7 +
+ start(.5) * y8
+ Eta3 =~ start(.8) * y9 + start(.7) * y10 + start(.6) * y11 +
+ start(.5) * y12
+ Eta1 ~ start(.4) * Ksi1 + start(.6) * Ksi2
+ Eta2 ~ start(.4) * Ksi1 + start(.2) * Ksi2 + start(.3) * Eta1
+ Eta3 ~ start(.1) * Ksi1 + start(.1) * Ksi2 + start(.2) * Eta1 +
+ start(.5) * Eta2
+ Ksi1 ~~ start(.3) * Ksi2; Eta1 ~~ start(.5) * Eta1;
+ Eta2 ~~ start(.5) * Eta2; Eta3 ~~ start(.5) * Eta3
+ x1 ~~ start(.5) * x1; x2 ~~ start(.5) * x2
+ x3 ~~ start(.5) * x3; x4 ~~ start(.5) * x4; x5 ~~ start(.5) * x5
+ x6 ~~ start(.5) * x6; x7 ~~ start(.5) * x7; x8 ~~ start(.5) * x8
+ y1 ~~ start(.5) * y1; y2 ~~ start(.5) * y2; y3 ~~ start(.5) * y3
+ y4 ~~ start(.5) * y4; y5 ~~ start(.5) * y5; y6 ~~ start(.5) * y6
+ y7 ~~ start(.5) * y7; y8 ~~ start(.5) * y8; y9 ~~ start(.5) * y9
+ y10 ~~ start(.5) * y10; y11 ~~ start(.5) * y11; y12 ~~ start(.5) * y12'
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R> sigma.target <- lavInspect(sem(sem.pop, data = NULL), "sigma.hat")

Next, we fit a VITA distribution with normal marginals to the target covariance matrix. This
is a variant of a data generating distribution used in the simulation study of Foldnes and
Grønneberg (2022b). First, the margins are scaled to match the target variances. Then, we
calibrate a VITA distribution. Note that we do not specify which family of copulae to use, so
the default Clayton copula is used. Finally, a list of 1000 samples, each of sample size 1000,
is drawn from the calibrated vita distribution.

R> marginsnorm <- lapply(X = sqrt(diag(sigma.target)),
+ function(X) list(distr = "norm", sd = sqrt(X)))
R> vitadist <- vita(marginsnorm, sigma.target)

Tree 1
1 - 2 ( 1 of 190 )

[...]

R> randomsamples <- replicate(10^3, rvine(10^3, vitadist))

As discussed previously, the calibration step is time-consuming in higher dimensions. Here,
with 20 variables, the calibration step required 1.8 hours (again using a 2.3 GHz 8-Core Intel
Core i9 CPU). This step is only performed once. When completed, random samples can be
drawn at a relatively fast rate. Producing 1000 samples each of size 1000 took one minute to
complete. Finally, we note that the calibration step may be performed faster by specifying
option Nmax = 105 when calling vita(), at the expense of reduced precision in covariance
matching.

6.2. Using VITA to simulate ordinal-categorical data for SEM

A major approach for SEM with ordinal data is to impose a threshold model to the data, which
postulates that the categorical data arise from discretization of an underlying continuous
vector which is multivariate normally distributed. Many influential simulation studies (e.g.,
Quiroga 1994; Rhemtulla, Brosseau-Liard, and Savalei 2012; Flora and Curran 2004; Li 2016)
have investigated the robustness of ordinal SEM against violation of non-normality, using
the Vale-Maurelli approach. However, Grønneberg and Foldnes (2019a) showed that the
Vale Maurelli approach is not suitable for ordinal data simulation in the context of covariance
modeling. We here briefly show how to simulate ordinal bivariate data by discretizing bivariate
VITA distributions. For an observed ordinal variable, there is no way to identify which
underlying univariate distribution produced the data, since the thresholds may be transformed
to accommodate all continuous univariate distributions.
As argued in Foldnes and Grønneberg (2019a, 2022b), it is advantageous to keep the marginals
fixed during simulation. Since VITA offers exact control of marginals, it is uniquely suited
for simulation studies with ordinal data for SEM. We will here set the marginals to standard
normal. When simulating fully normal data, both the marginals and the copula are normal.
We will let the copula be non-normal, but the marginals will be normal.
For illustration, we assume that the underlying correlation in a continuous bivariate distribu-
tion with standard normal marginals is ρ = 0.5, and we discretize into three categories using
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1 2 3
1 0.334 0.123 0.043
2 0.123 0.146 0.072
3 0.043 0.072 0.044

1 2 3
1 0.333 0.146 0.021
2 0.146 0.149 0.047
3 0.021 0.047 0.091

Table 2: Population contingency tables after discretizing the distribution with standard
normal marginals and a Clayton copula (left) and the distribution with standard normal
marginals and a Joe copula (right).

thresholds τ1 = 0 and τ2 = 1. This means that we consider simulated data of the form

Xi =


1, if ξi ≤ τ1
2, if τ1 < ξi ≤ τ2
3, if ξi > τ2

=


1, if ξi ≤ 0
2, if 0 < ξi ≤ 1
3, if ξi > 1

for i = 1, 2, where (ξ1, ξ2) is a continuous random vector simulated using VITA. Both ordinal
variables have proportions 0.5, 0.34, and 0.16. We inquire whether the polychoric correlation
estimator used in ordinal SEM becomes biased when we replace the bivariate normal with a
Clayton or a Joe copula. So first, we determine parameters for the latter two copulas such
that, when marginals are standard normal, the Pearson correlation is 0.5.

R> sigma.target <- matrix(c(1, 0.5, 0.5, 1), 2)
R> set.seed(1)
R> vita_clayton <- vita(list(list(distr = "norm"), list(distr = "norm")),
+ sigma.target, family_set = "clayton")

Tree 1
1 - 2 ( 1 of 1 )

R> set.seed(1)
R> vita_joe <- vita(list(list(distr = "norm"), list(distr = "norm")),
+ sigma.target, family_set = "joe")

Tree 1
1 - 2 ( 1 of 1 )

R> clayton.disc <- apply(rvine(10^3, vita_clayton), 2, cut,
+ breaks = c(-Inf, 0, 1, Inf), labels = FALSE)

Contour plots of these calibrated copulas are given in Figure 9.
After discretizing the distribution with standard normal marginals and a Clayton copula
shown in Figure 9a and the distribution with standard normal marginals and a Joe copula
in Figure 9b, the resulting population contingency tables are given in Table 2. The two
contingency tables in Table 2 indicate that under the Clayton and Joe copula the probabilities
that both ordinal variables take their maximum value are 4.4% and 9.1%, respectively. Such
discrepancies in the bivariate ordinal distribution affects the normal-theory based polychoric
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Figure 9: VITA distributions with standard normal marginals. The dashed lines represent
thresholds τ1 = 0 and τ2 = 1 used for discretization.

estimator: The population value of the polychoric correlation under the Clayton and Joe
copula is 0.42 and 0.60, respectively. Given that the true underlying Pearson correlation
for both distributions in Figure 9 is 0.5, this shows that the polychoric correlation may
become strongly (downwards or upwards) biased when underlying normality is violated. In
this illustration, the lower tail dependency in the Clayton copula, combined with the chosen
thresholds, results in strong downward bias. And the upper tail dependency in the Joe copula
leads to strong upward bias.
The sensitivity of the polychoric correlation to underlying non-normality poses a threat to
the popular practice of conducting SEM with ordinal data based on the polychoric correlation
matrix. Even though a proposed SEM model fits well to the underlying data, it might fit
poorly to the polychoric correlation matrix, since the latter might be biased due to non-
normality in the underlying data. The result might be biased estimates and inflated type I
error rates, and it is therefore important to assess whether the ordinal dataset is compatible
with the underlying normality assumption. Foldnes and Grønneberg (2019b) proposed a
bootstrap test for this purpose, which is implemented in the R package discnorm (Foldnes
and Grønneberg 2021). It is used as follows.

R> library("discnorm")
R> bootTest(clayton.disc)

We conducted a small simulation study on the type I error control and power of the bootstrap
test in the context of the present bivariate illustration. We generated 500 samples of size
n = 100 and of size n = 500 and collected the rejection rate of the bootstrap test for ordinal
data stemming from discretization of a normal distribution, the Clayton VITA, and the Joe
VITA, using the same set of thresholds as depicted in Figure 9. The rejection rates are given
in Table 3. The bootstrap test maintains type I error rates well, but has low power to detect
the underlying normality in both the Clayton and Joe VITA distributions at the smallest
sample size. Expectedly, at the larger sample size n = 500 the power to detect the underlying
non-normality is higher. The non-normality in the Joe VITA is more detectable than the
non-normality in the Clayton VITA at both sample sizes.
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Underlying distribution
Normal Clayton Joe

n = 100 0.088 0.162 0.242
n = 500 0.052 0.584 0.852

Table 3: Rejection rates of the bootstrap test for underlying normality.

7. Conclusion
The VITA approach, implemented in the R package covsim, is very flexible, since it accom-
modates user-specified marginal distributions and also offers a great deal of control over the
bivariate dependencies in the simulated vector. This control is in contrast to more established
methodology, like the Vale and Maurelli (1983) method. In most cases, Vale-Maurelli has an
exactly normal copula (Foldnes and Grønneberg 2015), and does not allow the specification of
the resulting distribution except the covariance matrix, skewness and kurtosis. The increased
flexibility of VITA, however, comes at a cost. VITA, being based on the statistical concept of
a regular vine, is a more complex construction than the Vale Maurelli transform. Also, VITA
calibration is more computationally demanding than is the case for the Vale-Maurelli trans-
form. In the appendix we have given an introduction to the statistical machinery underlying
vines and VITA, such as bivariate copulas and their use in constructing regular vines. We also
give an introduction to how VITA simulation is performed on a computer. Numerical illus-
trations of applying VITA to simulate non-normal residual error structures in growth curve
modeling were presented, demonstrating the effects of different kinds of non-normality on in-
ference. Also, we have illustrated how VITA may be used to simulate continuous non-normal
data from a SEM, and to simulate ordinal data in a way that properly violates the underlying
normality assumption. For ordinal data, we illustrated a new bootstrap test, implemented in
the R package discnorm, for the central assumption of underlying normality.
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A. How simulation is done on a computer

A.1. How uni- and bivariate simulations are performed on a computer

Throughout the paper, we assume that the marginals of the distribution we simulate from are
continuous. In SEM, this is mostly without loss of generality, as ordinal variables are usually
modeled as discretizations of a continuous random vector, see Section 6.2. Note that this also
applies to a large class of IRT models (see, e.g., Foldnes and Grønneberg 2019a; Takane and
de Leeuw 1987).

Univariate simulation

We first review a standard method to simulate from a continuous univariate distribution with
cumulative distribution function F1. This is covered in most standard statistics text books
(see, e.g., Rice 2006, Proposition D, Section 2.3).
We assume further that F1 is strictly increasing, and therefore has an inverse F −1

1 . Since F1
is a continuous distribution function, it will be continuous and increasing, but not necessarily
strictly increasing (i.e., there may be flat regions), necessitating the use of more complex
arguments, such as those in Chapter 1 of Shorack and Wellner (2009). We will throughout
the paper pedagogically assume such strict monotonicity, and thereby avoiding such complex
arguments.
Recall that the inverse function F −1

1 is defined as the solution to the equation F1(x) = u with
respect to x, and where 0 < u < 1. Clearly, this solution depends on u, and we therefore
denote the solution as a function of u, that is, F −1

1 (u). Since F −1
1 (u) = x where F1(x) = u

we get that F (F −1(u)) = F (x) = u. We may compute F −1
1 (u) by solving

F1(x) − u = 0 (2)

for u. Since F1 is increasing and continuous, with F1(−∞) = 0 and F1(∞) = 1, (2) has a
single solution, which can be found either analytically, or using any standard root finding
procedure.
Now let U be a univariate random variable with the uniform distribution on [0, 1], denoted
by U ∼ U [0, 1]. This means that P (U ≤ x) = xI{0 ≤ x ≤ 1} + I{x > 1} where I{A} is the
indicator function of A which is 1 if A is true, and zero otherwise. We may then let

X = F −1
1 (U).

The distribution of X is F1. To see this, we start with P (X ≤ x) = P (F −1
1 (U) ≤ x). Applying

F1 on both sides of the inequality is allowed since F1 is increasing. Since F (F −1
1 (U)) = U ,

this gives

P (F −1
1 (U) ≤ x) = P (F1(F −1

1 (U)) ≤ F1(x)) = P (U ≤ F1(x))
= F1(x)I{0 ≤ F1(x) ≤ 1} + I{F1(x) > 1}.

Since F1 is a cumulative distribution function, we have 0 ≤ F1(x) ≤ 1, and therefore the first
indicator function is always one, while the second is always zero. Therefore, we conclude that
P (X ≤ x) = F1(x) as required.
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Imposing required marginals on copula-distributions

Let us now consider the more complex bivariate case, which is not as well-known as the
univariate case. Firstly, let us assume that we are able to simulate from a copula C. That is,
suppose (U1, U2)⊤ ∼ C, meaning

P (U1 ≤ u1, U2 ≤ u2) = C(u1, u2). (3)

Recall that a copula has uniform marginals. This means that U1 ∼ U [0, 1] and U2 ∼ U [0, 1].
Therefore, following the argument above, we may let X1 = F −1

1 (U1) and X2 = F −1
2 (U2),

and see that the marginal distribution of X1 is F1 and the marginal distribution of X2 is
F2. This means P (Xi ≤ xi) = Fi(xi) for i = 1, 2, and does not say anything about the
dependence between X1 and X2. We now show that (X1, X2) has the distribution as in (1),
i.e., P (X1 ≤ x1, X2 ≤ X2) = C(F1(x1), F2(x2)). Using the definition of X1, X2 and applying
the functions F1 and F2 respectively on the two inequalities, we have

P (X1 ≤ x1, X2 ≤ x2) = P (F −1
1 (U1) ≤ x1, F −1

2 (U2) ≤ x2)
= P (U1 ≤ F1(x1), U2 ≤ F2(x2))
= C(F1(x1), F2(x2))

where the last equality uses (3).

Bivariate copula simulation

Let us now review how to simulate (U1, U2) from C. We follow a general method described
in Nelsen (2007, Section 2.9), which uses the so-called multivariate quantile transform. In
the univariate case, the central step in simulating from F1 was to compute the function F −1

1 .
In the bivariate case, the central step is to compute a function h−1

u1 (u2), which will later be
shown to be the inverse of the distribution function of U2 conditional on U1. After having
written code which can evaluate this function, the details of which will be covered shortly, we
may simulate from C as follows: Let U1 ∼ U [0, 1] and V ∼ U [0, 1] be independent. Then set
U2 = h−1

U1
(V ). The pair (U1, U2) is then distributed according to the copula C (Nelsen 2007,

Section 2.9).
We now define h−1

u1 (u2). For each value 0 < u1 < 1, let

hu1(u2) = ∂

∂u1
C(u1, u2).

Then, for each 0 < u1 < 1, the function h−1
u1 is the (generalized) inverse of hu1(u2) as a

function of u2. Recall that for a function H(x), its generalized inverse is defined as H−1(y) =
inf{x : H(x) > y}, a definition which agrees with the standard inverse when H is invertible.
As in the univariate case, where it was simpler to work with the case when F1 was continuous
and strictly increasing, we will again assume that hu1 is continuous and strictly increasing
for all u1. We now show that this follows if C has a density c which is non-zero on (0, 1)2

and continuous in each coordinate. Both assumptions on c are fulfilled for all popular copula
classes, and will therefore be assumed also in the following. To see that these two assumptions
imply that hu1 is continuous and strictly increasing for any u1, notice that since

C(u1, u2) =
∫ u1

0

∫ u2

0
c(x1, x2) dx1dx2,
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we have hu1(u2) =
∫ u2

0 c(u1, x2) dx2 by the fundamental theorem of calculus. Since c(u1, u2) >
0, and since the function x2 7→ c(u1, x2) is continuous for a given u1, the integral is strictly
increasing and continuous in u2 and hence hu1(u2) is strictly increasing and continuous in
u2. Further, we have hu1(0) = 0 and hu1(1) = 1, and hu1 : [0, 1] 7→ [0, 1] is therefore a
bijection for each u1. That hu1(0) = 0 and hu1(1) = 1 can be seen from noticing that
hu1(0) = ∂

∂u1
C(u1, 0) = ∂

∂u1
0 = 0 since C(u1, 0) = P (U1 ≤ u1, U2 ≤ 0) = 0, and that since

C(u1, 1) = P (U1 ≤ u1, U2 ≤ 1) = P (U1 ≤ u1) = u1 we also have hu1(1) = ∂
∂u1

C(u1, 1) =
∂

∂u1
u1 = 1.

Finally, we show that (U1, U2)⊤ ∼ C. We have not found an elementary presentation of this
result in the literature (see Rüschendorf 2009, Section 3, for an authoritative account), and
include it for completeness and since the following argument is short, and will be generalized
progressively in the following. For compactness, we assume hu1(u2) is invertible with respect
to u2 for all 0 < u1 < 1. We have

P (U1 ≤ u1,U2 ≤ u2) = P (U1 ≤ u1, h−1
U1

(V ) ≤ u2)
(a)= P (U1 ≤ u1, V ≤ hU1(u2)) (b)= EE[I{U1 ≤ u1}I{V ≤ hU1(u2)}|U1]
(c)= EI{U1 ≤ u1}E[I{V ≤ hU1(u2)}|U1] (d)= EI{U1 ≤ u1}hU1(u2)

=
∫ 1

0
I{x1 ≤ u1}hx1(u2) dx1 =

∫ u1

0
hx1(u2) dx1 =

∫ u1

0

∂

∂x1
C(x1, u2) dx1

(e)= C(u1, u2) − C(0, u2) (f)= C(u1, u2)

Explanations: (a) Apply hU1 to both sides of the second inequality. (b) P (A) = EI{A}.
Double expectation. Also, I{A, B} = I{A}I{B}. (c): Use E[H(X)Y |X] = H(X)E[Y |X].
(d): Since V is independent to U1, we have E[I{V ≤ hU1(u2)}|U1] = EV I{V ≤ hU1(u2)},
where the expectation is with respect to V only, and U1 is fixed. Recalling that for a random
variable X with CDF FX we have FX(x) = P (X ≤ x) = EI{X ≤ x} we have that EV I{V ≤
hU1(u2)} = hU1(u2) since V is uniform on [0, 1], i.e., V has CDF FU (u) = u for 0 ≤ u ≤ 1. (e)
Fundamental theorem of calculus. (f) Since 0 ≤ U1 ≤ 1 and continuous we have C(0, u2) =
P (U1 ≤ 0, U2 ≤ u2) = P (U1 = 0, U2 ≤ u2) = 0.
Practically speaking, we may therefore simulate from any copula by computing h−1

u1 (u2), which
requires the computation of a partial derivative and the inversion of a function. This may be
done analytically in some cases, but in general, numerical approximation is required.

Identifying correlations from a bivariate distribution

We now consider how we may identify a θ0 such that the distribution F (x1, x2; θ0) = C(F1(x1),
F2(x2); θ0) has a Pearson correlation ρ. The Höffding (1940) formula for correlation ρ(θ) gives

ρ(θ) = sd(F1)−1 sd(F2)−1
∫ ∞

−∞

∫ ∞

−∞
C(F1(z1), F2(z2); θ)

− F1(z1)F2(z2) dz1dz2, (4)

where sd(F1), sd(F2) are the standard deviations of F1, F2. Most bivariate copula classes are
such that C(u1, u2; θ) is increasing in θ, a property fulfilled by all copulas cataloged in Section
5.1 of Joe (1997). This implies (Grønneberg and Foldnes 2017, Theorem 1) that ρ(θ) is an
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increasing function. It is therefore easy to solve for θ0 via numerical root finding methods.
The function ρ(θ) then has to be evaluated through numerical integration.

A.2. How trivariate vine simulations are performed on a computer

We here provide more technical details on how to simulate from the three-dimensional vine dis-
tribution used as an example in the main text. As is generally the case, we only need to simu-
late from the vine copula (which by definition has uniform marginals), as the marginals are eas-
ily transformed to any desired marginal distributions in the same way as explained in the uni-
variate and bivariate case, i.e., by applying the quantile functions of the marginals to each of
the coordinates of the simulated vector from a copula. When this is done, the resulting distri-
bution has the desired marginals, and the same copula as before transformation. That is, if C
is a d-dimensional copula, meaning C is a d-dimensional cumulative distribution function with
uniform marginals, and (U1, U2, . . . , Ud)⊤ ∼ C, then X = (F −1

1 (U1), F −1
2 (U2), . . . , F −1

d (Ud))
will have a distribution of the form

F (x1, x2, . . . , xd) = C(F1(x1), F2(xd), . . . , Fd(xd)),

meaning X has marginals F1, F2, . . . , Fd and C as its copula.
Let us first consider how to simulate from a three-dimensional copula in general. Constructing
multivariate distributions can be difficult, and vines provide a general construction which is
often useful. A useful feature of this class is that some of the properties of the resulting
distribution are well suited for computation, and in spite of the flexibility and simplicity of
constructing vine distributions, simulating from them is straightforward.
We first consider how to simulate from a general three-dimensional copula (U1, U2, U3)⊤ ∼ C,
which does not have to be a vine distribution. We first simulate (U1, U2) from the bivariate
copula C1,2 as described in the bivariate section above. Recall that C1,2 can be easily computed
from C, since 0 ≤ U3 ≤ 1 implies that C1,2(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) = P (U1 ≤
u1, U2 ≤ u2, U3 ≤ 1) = C(u1, u2, 1). We may now simulate U3 from the distribution of
(U1, U2, U3) after “conditioning away” the values of U1, U2. Again we may use the multivariate
quantile transform. We simulate V which is uniform on [0, 1] and independent from previously
generated variables, and then let

U3 = h−1
U1,U2

(V ),

where h−1
U1,U2

is the generalized inverse of hU1,U2 , which is the distribution of U3 conditional
on (U1, U2). That is,

hu1,u2(u3) = C3|12(u3|u1, u2).

Conditional distributions are conceptually complex, and will only be covered superficially
here. While we will give some more needed technical details for conditional distributions in
the next subsection, we follow common text-book treatments (e.g., Rice 2006), and use the
fact that if C has a density c1,2,3, which we will assume, C3|12 has density given by

c3|12(u3|u1, u2) = c1,2,3(u1, u2, u3)
c1,2(u1, u2) ,

where
c1,2(u1, u2) =

∫ 1

0
c1,2,3(u1, u2, x3) dx3.
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We then have that

C3|12(u3|u1, u2) =
∫ u3

0
c3|12(u3|u1, u2) dx3 =

∫ u3

0

c1,2,3(u1, u2, x3)
c1,2(u1, u2) dx3

=
∫ u3

0 c(u1, u2, x3) dx3
c1,2(u1, u2) .

As in the bivariate case, hu1,u2(u3) is seen to be invertible if we assume that c is continuous
and non-zero on (0, 1)3, and generalized inverses are not needed when computing U3. If a
simple formula for the copula CDF is available, which we note is often not the case, we may
avoid integration when computing hu1,u2 , since

C3|12(u3|u1, u2) =
∫ u3

0 c(u1, u2, x3) dx3
c1,2(u1, u2) =

∂2

∂u1∂u2
C1,2,3(u1, u2, u3)

∂2

∂u1∂u2
C1,2,3(u1, u2, 1)

. (5)

When only the joint density of C is available, integration is in general needed for computing
C3|12, and this is achieved by numerical approximations.
Following this recipe gives (U1, U2, U3)⊤ ∼ C1,2,3 by a similar argument as in the bivariate
case: Again we assume hu1,u2(u3) is invertible as a function of u3 for all 0 < u1, u2 < 1. We
then have

P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3) = EI{U1 ≤ u1, U2 ≤ u2}I{h−1
U1,U2

(V ) ≤ u3}
= EE[I{U1 ≤ u1, U2 ≤ u2}I{V ≤ hU1,U2(u3)}|U1, U2]
= EI{U1 ≤ u1, U2 ≤ u2}E[I{V ≤ hU1,U2(u3)}|U1, U2]
(a)= EI{U1 ≤ u1, U2 ≤ u2}EV [I{V ≤ hU1,U2(u3)}]
(b)= EI{U1 ≤ u1, U2 ≤ u2}hU1,U2(u3)

=
∫ u1

0

∫ u2

0
c12(x1, x2)hx1,x2(u3) dx1dx2

=
∫ u1

0

∫ u2

0

∂2

∂x1∂x2
C1,2,3(x1, x2, u3) dx1dx2

= C1,2,3(u1, u2, u3).

Explanations: (a) V is independent to U1, U2. (b) V is uniform.
Let us now apply this to three-dimensional regular vines. The idea behind vines is described
in Joe (1996) and Joe (2014, Sections 3.8 and 3.9), and is based on expressing cumulative
distribution functions as mixtures of conditional distributions. The motivation for its con-
struction will be sketched in the next subsection, and we here simply state the distribution
for a trivariate copula in terms of its CDF.
The three-dimensional vine copula illustrated in Figure 4 has cumulative distribution

C1,2,3(u1, u2, u3) =
∫ u2

0
C1,3;2(C1|2(u1|z2), C3|2(u3|z2)) dz2, (6)

where C1,3;2 is a chosen bivariate copula to bind marginals 1 and 3 together, when given 2,
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and where

C1|2(u1, u2) = ∂

∂u2
C1,2(u1, u2) =

∫ u2

0
c1,2(u1, x2) dx2,

C3|2(u3, u2) = ∂

∂u2
C3,2(u3, u2) =

∫ u2

0
c3,2(u3, x2) dx2,

with C1,2 and C3,2 the chosen copulas, directly giving the copula of marginals 1, 2 and 3, 2
respectively. Note that C1,3;2 is a standard bivariate copula, and does not depend on the
value x2 being integrated over in the above display. This is an important point which will be
discussed further in the next subsection.
There is an important distinction between C1,3|2, which is the conditional distribution of
(U1, U3) given U2, and C1,3;2, which as we will discuss later is the copula of C1,3|2. The
objects C1,3|2 and C1,3;2 need not be the same, and while C1,2,3 has all uniform marginals, the
marginals of the conditional distribution C1,3|2 need not be uniform, which in turn implies
that C1,3|2 need not be a copula. We will return to this issue in the following. In order to
further separate the two further, we will keep the C notation for functions such as C1,3;2 –
since these are actually copulas, but rather write F1,3|2 to refer to the conditional distribution
of (U1, U3) given U2. That is, we will from now on write F1,3|2 = C1,3|2.
Consider now how to simulate from this vine. Since (U1, U2) is simulated from C1,2 which is
directly specified in the lowest tree, its simulation procedure follows from the already described
bivariate case. We now need to compute F3|12. Recalling (5), we have

F3|12(u3|u1, u2) =
∂2

∂u1∂u2
C1,2,3(u1, u2, u3)
c12(u1, u2)

=
∂2

∂u1∂u2

∫ u2
0 C1,3;2(C1|2(u1|z2), C3|2(u3|z2)) dz2

c12(u1, u2)

=
∂

∂u1
C1,3;2(C1|2(u1|u2), C3|2(u3|u2))

c12(u1, u2) .

A notable feature is that this expression only depends on bivariate distributions, which are
usually computationally well-behaved.

A.3. More details on the vine construction in the trivariate case

We here provide a sketch of the vine construction of Joe (1996). We are unaware of an
elementary presentation of this material in the literature, and presentations such as those in
Joe (1996); Bedford and Cooke (2002); Joe (2014) require considerable technical training to
read. We therefore include an elementary presentation of this material here, restricted to the
trivariate case.
Using operations similar to the derivation on the validity of the general trivariate simu-
lation method, we see that for any trivariate continuous copula C, we have for variables
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(U1, U2, U3)⊤ ∼ C that

C(u1, u2, u3) = P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3)
= EI{U1 ≤ u1, U2 ≤ u2, U3 ≤ u3}
= EI{U2 ≤ u2}I{U1 ≤ u1, U3 ≤ u3}
= EE[I{U2 ≤ u2}I{U1 ≤ u1, U3 ≤ u3}|U2]
= EI{U2 ≤ u2}E[I{U1 ≤ u1, U3 ≤ u3}|U2]
= EI{U2 ≤ u2}P (U1 ≤ u1, U3 ≤ u3|U2)

=
∫ 1

0
I{x2 ≤ u2}P (U1 ≤ u1, U3 ≤ u3|U2 = x2) dx2

=
∫ u2

0
P (U1 ≤ u1, U3 ≤ u3|U2 = x2) dx2.

This calculation provides an expansion of the full distribution of (U1, U2, U3) in terms of
the conditional distribution of (U1, U3) given U2. This conditional bivariate distribution
F1,3|2(u1, u3|x2) = P (U1 ≤ u1, U3 ≤ u3|U2 = x2) has marginals F1|2(u1|x3) and F3|2(u3|x2),
which can be derived using properties of conditional distributions. A non-rigorous heuristic
argument for the formula for F1|2(u1|x2) is that

F1|2(u1|x2) = P (U1 ≤ u1|U2 = x2)

= lim
h→0

P (U1 ≤ u1, x2 ≤ U2 ≤ x2 + h)
P (x2 ≤ U2 ≤ x2 + h)

= lim
h→0

C1,2(u1, u2 + h) − C1,2(u1, u2)
x2 + h − x2

= lim
h→0

C1,2(u1, u2 + h) − C1,2(u1, u2)
h

= ∂

∂u2
C1,2(u1, u2),

using the uniformity of U2. Similarly, F3|2(u3|x2) = ∂
∂u2

C3,2(u3, u2). A formal argument
justifying the formulas for F1|2 and F3|2 requires the general and rather complex mathematical
framework of conditional probability, as developed by Kolmogorov, see Kallenberg (2002). A
nice feature following from our focus on simulation is that an alternative justification for the
formula for conditional distributions is provided by its successful application in simulation.
Sklar’s theorem applied for each given x2 value to the conditional distribution

F1,3|2(u1, u3|x2) = P (U1 ≤ u1, U3 ≤ u3|U2 = x2)

shows that there is a class of copulas C13;2(u1, u3; x2) varying with x2, which is such that

F1,3|2(u1, u3|x2) = C13;2(F1|2(u1|x2), F3|2(u3|x2); x2).

Using the formulas we identified for F1|2(u1|x2), F3|2(u3|x2) and recalling that we started with
an expansion for C(u1, u2, u3), we have shown that

C(u1, u2, u3) =
∫ u2

0
C13;2

(
∂

∂u2
C1,2(u1, u2), ∂

∂u2
C3,2(u3, u2); x2

)
dx2, (7)
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which holds in general. This expression can also be used to construct multivariate distribu-
tions from bivariate distributions: Based on bivariate copulas C1,2 and C3,2 we may com-
pute ∂

∂u2
C1,2(u1, u2), ∂

∂u2
C3,2(u3, u2), and they may be combined using a family of copulas

C13;2(u1, u3; x2) for every x2. For each x2, the Sklar theorem implies that

C13;2

(
∂

∂u2
C1,2(u1, u2), ∂

∂u2
C3,2(u3, u2); x2

)
is a proper distribution. However, the family of copulas C13;2(u1, u3; x2) has to be linked
together via their x2 dependence in such that the resulting C in (7) is a proper CDF. This
may be challenging, and does not have a simple solution.
The vine copula construction assumes that the family C13;2(u1, u3; x2) is constant in x2, i.e.,
does not depend on x2. This is known as the simplifying assumption (Joe 2014). We therefore
write

C13;2(u1, u3; x2) = C13;2(u1, u3), (8)
and see that we re-gain the vine CDF of (6). Since C13;2(u1, u3) does not vary with x2, the
combination from (6) always results in a valid CDF, as may be seen as follows. We may
consider the algorithm for simulating from C1,2,3. After having simulated from (U1, U2) using
previously described bivariate techniques, we define U3 = h−1

U1,U2
(V ) from an independent V ∼

U [0, 1]. Clearly, U3 is a random variable, and by the above argument, the joint distribution of
(U1, U2, U3) is precisely C1,2,3 from (6), and hence C1,2,3 is indeed a valid distribution function
since it is the CDF of a random vector. By (7) the constructed distribution has C13;2 as the
copula of the conditional distribution of (U1, U3) given U2.

A.4. The density of a four-dimensional vine

In the main text, we gave the density of the three-dimensional vine in Figure 4 without
a complete technical description. We here rectify this by deriving the density of the more
general four-dimensional vine as depicted in Figure 10, and sketch how to form such densities
in general. How to simulate from this four-dimensional vine will be the topic of the next
section. Our discussion of this four-dimensional example ought to be sufficient to prepare
the reader to understand general descriptions of simulation in, e.g., Dissmann, Brechmann,
Czado, and Kurowicka (2013); Joe (2014), as well as fully understanding the vine based VITA
simulation methodology of Grønneberg and Foldnes (2017).
The copula density of a vine is found by multiplying all copulas that are chosen as edge
copulas. These copulas are evaluated at rather specific points, which will be discussed in
the following. The edge copulas are the copulas of bivariate conditional distributions from
the resulting full copula, with conditioning set indicated by the edge names. For example,
the top-most edge connects (U1, U4) and conditions on (U2, U3), and represents the copula of
F1,4|2,3. Its contribution to the full density therefore includes a multiplicative factor c1,4;2,4,
where the use of a semi-colon indicates that this is the copula of a conditional distribution.
As explained in the previous section, we write all conditional distributions of c such as the
actual conditional distribution (here, a density) of (U1, U4) conditional on (U2, U3) using the
notation f1,4|2,3 for the density and F1,3|2,3 for the CDF.
Conditional marginals are the key to the general description of writing down the density of
a vine copula based on its vine, such as Figure 10, as they are included in the multiplicative
contribution from each edge. For any edge on the vine, the edge may be denoted by (i, j|v)
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where i, j are the marginals connected by this edge, and v may contain several indices (or
none, as is the case at the lowest tree) which are conditioned on. For example, the top-most
tree in Figure 10 contains only one edge, where i = 1, j = 4 and v = {2, 3}. In contrast, the
second tree in Figure 10 contains two edges. For the left-most edge, we have i = 1, j = 3 and
v = {2}. For the right-most edge, we have i = 2, j = 4 and v = {3}. For the lowest tree, we
do not condition on any indices, and so v is always empty. Going from left to right, the first
edge has i = 1, j = 2, the next edge has i = 2, j = 3, and the final edge has i = 3, j = 4.
The multiplicative contribution of every edge i, j|v is ci,j|v(Fi|v(ui|uv), Fj|v(uj |uv)), where
uv = (uk : k ∈ v), and where Fi|v(ui|uv) is the conditional cumulative distribution of Ui

given {Uk : k ∈ v}.
When v is empty, Fi|v(ui|uv) is the actual cumulative distribution of Ui, which is uniform
since c is a copula. In these cases, we have Fi|v(ui|uv) = ui. Therefore, the contributions of
the lowest tree are simply c1,2(u1, u2)c2,3(u2, u3)c3,4(u3, u4).
Combining this description for the vine in Figure 10, we see that

c1,2,3,4(u1, u2, u3, u4) = c1,2(u1, u2)c2,3(u2, u3)c3,4(u3, u4)
c1,3;2(F1|2(u1|u2), F3|2(u3|u2))
c2,4;3(F2|3(u2|u3), F4|3(u4|u3))
c1,4;2,3(F1|2,3(u1|u3, u3), F4|2,3(u4|u2, u3))

Now each of the bivariate copulas, i.e., each ci,j;v are chosen by us, and therefore does not
require further calculation to be evaluated. In contrast, the conditional marginal distributions
have to be computed, and we now explain how this is done. We note that for general regular
vines, there is a simple recursive method to calculate the required conditional densities, see
Section 2.4 of Dissmann et al. (2013).
For the lowest tree, the marginals are uniform, and we do not need to deal with them. For
the second tree, use

Fi|j(ui|uj) = ∂

∂uj
Ci,j(ui, uj)

as discussed above. For the third, and here highest tree, we need to compute F1|2,3 and F4|2,3.
Since we assume the vine copula has a density, F1|2,3 is the cumulative distribution function
of the density

f1|23(u1|u2, u3) = c1,2,3(u1, u2, u3)
c2,3(u2, u3) . (9)

Now, (U1, U2, U3) is also generated from a vine, and this vine can be found by removing
everything that has to do with the other variables. Here, this sub-vine results in exactly the
three-dimensional vine we used in earlier examples, see Figure 4. Therefore, we know that
the joint distribution of (U1, U2, U3) has joint density

c1,2,3(u1, u2, u3) = c1,2(u1, u2)c2,3(u2, u3)c1,3;2(F1|2(u1|u2), F3|2(u3|u2)).
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Inserting this into (9) gives

f1|23(u1|u2, u3) = c1,2,3(u1, u2, u3)
c2,3(u2, u3)

= c1,2(u1, u2)c1,3;2(F1|2(u1|u2), F3|2(u3|u2))

= c1,2(u1, u2)c1,3;2

(
∂

∂u2
C1,2(u1, u2), ∂

∂u2
C2,3(u2, u3)

)
Recalling that we wish to identify not the density f1|23 but instead the cumulative distribution
function F1|23, we integrate with respect to u1. Now for u1 < 0 or u1 > 1 we have c1,2(u1, u2) =
0, and therefore we start integrating at 0, and get, for u1 ≤ 1, that

F1|23(u1|u2, u3) =
∫ u1

0
c1,2(x1, u2)c1,3;2

(
∂

∂u2
C1,2(x1, u2), ∂

∂u2
C2,3(u2, u3)

)
dx1.

Using the substitution
y = ∂

∂u2
C1,2(x1, u2),

which has derivative
d

dx1
y = ∂2

∂x1∂u2
C1,2(x1, u2) = c1,2(x1, u2),

integration with substitution gives

F1|23(u1|u2, u3) =
∫ y(u1)

0
c1,3;2

(
y,

∂

∂u2
C2,3(u2, u3)

)
dy (10)

=
∫ y(u1)

0

∂2

∂u1∂u2
C1,3;2

(
y,

∂

∂u2
C2,3(u2, u3)

)
dy

= D2C1,3;2 (y(u1), D2C2,3(u2, u3))
= D2C1,3;2 (D2C1,2(u1, u2), D2C2,3(u2, u3)) .

where we, to avoid notational ambiguity, use the notation DiH(x1, x2) = (∂/∂xi)H(x1, x2).
By a similar argument, we identify F4|23. We have that

f4|23(u4|u2, u3) = c2,3,4(u2, u3, u4)
c2,3(u2, u3) ,

where the density of the sub-vine (U2, U3, U4) is deduced by the previously described general
technique, giving

c2,3,4(u2, u3, u4) = c2,3(u2, u3)c3,4(u3, u4)c2,4;3(F2|3(u2|u3), F4|3(u4|u3))

and therefore

f4|23(u4|u2, u3) = c3,4(u3, u4)c2,4;3(D2C2,3(u2, u3), D1C3,4(u3, u4)).

It then follows that

F4|2,3(u4|u2, u3) = D1C2,4;3(D2C2,3(u2, u3), D1C3,4(u3, u4)). (11)
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Figure 10: A four-dimensional regular vine.

Combining the above derivations gives a complete expression for the density of the vine in
Figure 10. A notable feature is that numerical integration is avoided, at least when the
densities and cumulative distribution functions of the bivariate copulas chosen by the user
can be evaluated without numerical integration, which is usually the case for commonly used
bivariate copulas. In cases where numerical integration is required, only bivariate numeri-
cal integration is needed, which is considerably less complex than general high-dimensional
integration.

A.5. How to simulate from a vine

Since the three-dimensional case considered earlier is too simple to easily see the general
pattern of how to simulate from a general multivariate regular vine, we here consider the
four-dimensional vine of Figure 10. The four-dimensional case is sufficiently complex for the
general case to be within reach after having studied it.

Simulation from a general p-dimensional copula

We start by providing a general algorithm for simulating from an arbitrary p-dimensional
copula. This method, while general, will in high dimensions often be numerically infeasible,
as there are no closed form expressions for the quantities required for applying the algorithm
and numerical approximations have to be employed. In contrast, we will see that simulating
from vines is computationally simpler, since high-dimensional numerical integration is not
required in most cases. Vine simulation, illustrated via a four-dimensional example, will be
explained in the next section.
The general simulation method we now present extends the bivariate and trivariate examples
given above, and continues to use the multivariate quantile transformation. For p variables
this transform takes the following form (Rüschendorf 2009, Section 3). We want to simulate
from a p-dimensional copula CDF C. We simulate V1, V2, . . . , Vp which are independent and
uniform on [0, 1]. Then we let U1 = V1 (the marginals are already uniform), and recursively
define

Uj = F −1
j|1,2,...,j−1(Vj |U1, U2, . . . , Uj−1),
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where F −1
j|1,2,...,j−1 is the generalized inverse of the conditional distribution function

Fj|1,2,...,j−1(uj |u1, u2, . . . , uj−1).

For simplicity, we will assume that C has a density. Let C1,2,...,j denote the distribution
of (U1, U2, . . . , Uj), given by C1,2,...,j(u1, u2, . . . , uj) = C(u1, u2, . . . , uj , 1, 1, . . . , 1), and let
c1,2,...,j denote its density. For simplicity, we assume that the density c1,2,...,j is strictly
positive for all inner points in the unit cube [0, 1]j . Recall that the density of a sub-
set of the variables, such as the density c1,2,...,j can be found by c1,2,...,j(u1, u2, . . . , uj) =
∂jC(u1, u2, . . . , uj , 1, 1, . . . , 1)/(∂u1 · · · ∂uj). We have

Fj|1,2,...,j−1(uj |u1, u2, . . . , uj−1)

=
∫ uj

0

c1,2,...,j(u1, . . . , xj)
c1,2,...,j−1(u1, . . . , uj−1) dxj =

∫ uj

0 c1,2,...,j(u1, . . . , xj) dxj

c1,2,...,j−1(u1, . . . , uj−1)

= ∂j−1

∂u1∂u2 · · · ∂uj−1
C1,2,...,j(u1, u2, . . . , uj) (c1,2,...,j−1(u1, . . . , uj−1))−1

Notice that if, say, only the density c of C is known, the computation of Fj|1,2,...,j−1 requires
numerical integration routines in order to approximate the integral

∫ uj

0 c1,2,...,j(u1, . . . , xj) dxj .
The bivariate and trivariate simulation methods also follow the above pattern, and we have
shown earlier that they work as intended. We may therefore conclude that the general method
is valid using a proof by induction: Supposing this works for generating (U1, U2, . . . , Uj−1), we
prove that it also works for (U1, U2, . . . , Uj). By the induction hypothesis, (U1, U2, . . . , Uj−1)
is already generated as required. Then we generate

Uj = h−1
U1,U2,...,Uj−1

(Vj),

where h−1
u1,u2,...,uj−1(uj) is the (generalized) inverse function of Fj|1,2,...,j−1(uj |u1, u2, . . . , uj−1).

Again we restrict attention to the cases where h is in invertible in the regular sense. We have

P (U1 ≤ u1, . . . , Uj−1 ≤ uj−1, Uj ≤ uj)
= E

(
I{U1 ≤ u1, . . . , Uj−1 ≤ uj−1}E[I{h−1

U1,U2,...,Uj−1
(Vj) ≤ uj}|U1, . . . , Uj−1]

)
= E

(
I{U1 ≤ u1, . . . , Uj−1 ≤ uj−1}E[I{Vj ≤ hU1,U2,...,Uj−1(uj)}|U1, . . . , Uj−1]

)
= EI{U1 ≤ u1, . . . , Uj−1 ≤ uj−1}hU1,U2,...,Uj−1(uj)
= EI{U1 ≤ u1, . . . , Uj−1 ≤ uj−1}F1,...,j−1(uj |U1, U2, . . . , Uj−1)

=
∫ u1

0
· · ·

∫ uj−1

0
c1,...,j−1(x1, . . . , xj−1)F1,...,j−1(uj |x1, x2, . . . , xj−1) dx1 · · · dxj−1

=
∫ u1

0
· · ·

∫ uj−1

0

∂j−1

∂u1∂u2 · · · ∂uj−1
C1,2,...,j(x1, x2, . . . , xj−1, uj) dx1 · · · dxj−1

= C1,2,...,j(u1, u2, . . . , uj).

as required.

Simulating from a four-dimensional vine

Let us now see how to apply this general technique to the four-dimensional vine copula dis-
tribution represented in Figure 10. Again, simulation can be performed without needing
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numerical integration. The general simulation approach from the multivariate quantile trans-
form always simulates from Fj|1,2,...,j−1 with j starting at 1 and increasing up to p. This will
always work, but for vines, we may simulate directly from the bivariate conditional distribu-
tions specified in the vine. Simulating from a bivariate conditional distribution will amount
to simulate from two conditional distributions that are connected via bivariate copulas. This
will in total lead to the same steps as the multivariate quantile transform, but has the ad-
vantage of having computations that are simpler to follow, as we follow the structure of the
vine. A general simulation algorithm for regular vines is given in Algorithm 2.2 of Dissmann
et al. (2013).
The main insight we need is that we have direct knowledge of certain conditional distributions
from how the vine distribution is specified. We have easy access to the following conditional
(and unconditional) distributions

F1,4|2,3,

F1,3|2, F2,4|3,

F1,2, F2,3, F3,4.

These distributions are all bivariate, and, as we have seen from constructing the joint density
of (U1, U2, U3, U4), can be joined to produce the full joint distribution of (U1, U2, U3, U4).
We already know how to simulate from bivariate distributions. Let us see how this can be
extended to simulating from bivariate conditional distributions. Suppose therefore, that we
have simulated (U2, U3) in such a way that it has the required bivariate distribution, i.e.,
it has the cumulative distribution function C2,3(u2, u3) = C(1, u2, u3, 1). We may do this
directly using previously described techniques, since the copula and marginals of U2, U3 are
known and directly specified.
To simulate the remaining coordinates U1, U4 we start by simulating from the conditional
distribution of U1, U4 when conditioning on U2, U3, whose conditional CDF is denoted by
F1,4|2,3. By the simplifying assumption, the copula C1,4;2,3(u1, u4; u2, u3) of F1,4|2,3 does not
depend on u2, u3, and we therefore write C1,4;2,3(u1, u4; u2, u3) = C1,4;2,3(u1, u4). Due to
the simplifying assumption, C1,4;2,3 is further a bivariate copula that we have chosen, which
connects U1, U4 when conditioning on U2, U3. This implies that

F1,4|2,3(u1, u3|u2, u3) = C1,4;2,3(F1|2,3(u1|u2, u3), F4|2,3(u4|u2, u3)).

How should we simulate from F1,4|2,3? We will show that if u2 and u3 are fixed to the already
simulated U2 and U3 respectively, we may treat F1,4|2,3 as if it is a standard (non-conditional)
distribution, and use already described techniques to simulate from this bivariate distribution.
The resulting variables will be valid simulations of the remaining U1, U4.
Since F1,4|2,3 is a bivariate distribution with non-uniform marginals, we will as before split this
simulation into two steps. Firstly, we simulate W1, W4 from its copula, which is C1,4;2,3. By
the simplifying assumption, this copula is a standard bivariate copula which does not depend
on variables simulated earlier. We will then transform W1, W4 using univariate quantile
transforms so that they have distributions F1|2,3 and F4|2,3 respectively.
Let us first simulate W1, W4 from the bivariate copula C1,4;2,3. How this is done has been
explained earlier: We simulate independent V1, V4 from U [0, 1]. Then we set W4 = V4 and

W1 = h
(1,4;2,3)
W4

(V1),
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where
h(1,4;2,3)

w4 (v1) = D1C1,4;2,3(v1, w4).

Again note that due to the simplifying assumption, this step does not depend on the already
simulated U2, U3.
We next transform W1, W4 so that they are F1|2,3 and F3|2,3 distributed respectively. An
important point here is that this is where dependence from U2 and U3 is introduced. We
again use the univariate quantile transform and set

U1 = F −1
1|2,3(W1|U2, U3), U4 = F −1

4|2,3(W4|U2, U3),

where F1|2,3 is given in (10) (p. 40) and F4|2,3 is given in (11) (p. 40), considering the al-
ready simulated U2, U3 as fixed. It is not immediately apparent that U1, U4 have uniform
marginals. This can be shown directly, but we will now show the more general fact that
(U1, U2, U3, U4)⊤ ∼ C, and since all marginals in C are uniform, this also implies that U1, U4
have uniform marginals.
Let us for completeness (and since we do not know an elementary reference for this fact)
show the formal validity of this simulation method. That is, let the variables generated in
this fashion be denoted U1, U2, U3, U4. We will show that the joint CDF of these variables
is C. Again, all inverse functions are assumed to be traditional inverse functions. Since
(W1, W4)⊤ ∼ C1,4;2,3 is independent to (U2, U3) we have

P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3, U4 ≤ u4)
=EI{U2 ≤ u2, U3 ≤ u3}E[I{F −1

1|2,3(W1|U2, U3) ≤ u1, F −1
4|2,3(W4|U2, U3) ≤ u4}|(U2, U3)]

=EI{U2 ≤ u2, U3 ≤ u3}E[I{W1 ≤ F1|2,3(u1|U2, U3), W4 ≤ F4|2,3(u4|U2, U3)}|(U2, U3)]
(a)=EI{U2 ≤ u2, U3 ≤ u3}EW1,W2 [I{W1 ≤ F1|2,3(u1|U2, U3), W4 ≤ F4|2,3(u4|U2, U3)}]

=EI{U2 ≤ u2, U3 ≤ u3}PW1,W2

(
W1 ≤ F1|2,3(u1|U2, U3), W4 ≤ F4|2,3(u4|U2, U3)

)
(b)=EI{U2 ≤ u2, U3 ≤ u3}C1,4;2,3(F1|2,3(u1|U2, U3), F4|2,3(u4|U2, U3))

=
∫ u2

0

∫ u3

0
c2,3(x2, x3)C1,4;2,3(F1|2,3(u1|x2, x3), F4|2,3(u4|x2, x3)) dx2dx3

Explanations: (a) Use that (W1, W4) is independent to (U2, U3). EW1,W2 and PW1,W2 means
that we integrate only over W1, W2. (b) Use that (W1, W4)⊤ ∼ C1,4;2,3.
Since

C1,4;2,3(F1|2,3(u1|x2, x3), F4|2,3(u4|x2, x3)) = F1,4|2,3(u1, u4|x2, x3),

where F1,4|2,3 is the conditional distribution of (U1, U4) conditional on (U2, U3), we have that

C1,4;2,3(F1|2,3(u1|x2, x3), F4|2,3(u4|x2, x3)) =
∫ u1

0

∫ u4

0
c1,4|2,3(x1, x4|x2, x3) dx1x4

=
∫ u1

0

∫ u4

0

c1,2,3,4(x1, x2, x3, x4)
c2,3(x2, x3) dx1x4.
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Therefore,

P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3, U4 ≤ u4)

=
∫ u2

0

∫ u3

0
c2,3(x2, x3)C1,4;2,3(F1|2,3(u1|x2, x3), F4|2,3(u4|x2, x3)) dx2x3

=
∫ u2

0

∫ u3

0
c2,3(x2, x3)

∫ u1

0

∫ u4

0

c1,2,3,4(x1, x2, x3, x4)
c2,3(x2, x3) dx1x4dx2x3

=
∫ u1

0

∫ u2

0

∫ u3

0

∫ u4

0
c1,2,3,4(x1, x2, x3, x4)dx1dx2dx3dx4

= C(u1, u2, u3, u4),

showing the validity of the simulation.
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