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ABSTRACT 

The world’s energy resources on land are getting depleted, and mush attention is given to the 

development of offshore fields. Over the past years, new reserves located offshore have been 

regularly discovered. Once the hydrocarbons have been extracted, it is necessary then to 

transport them to the storage places, refineries or gas processing plants, and to deliver to the 

consumers. There are several ways of hydrocarbon transportation. One of the most cost-effective 

and popular means of oil and gas transportation is pipelines.  

Construction and operation of subsea pipelines are known to be very hazardous and risky 

processes. In order to ensure reliable and safe operation of submarine lines, it is essential to 

design them according to the international standards and codes. However, observance of rules 

sometimes does not guarantee safe pipeline operation. Some undesirable events can occur from 

time to rime. One of such events is dragging anchor incident, which poses great threat to the 

subsea lines. The consequences of this incident may be huge, involving environmental pollution, 

asset losses and even fatality. The mitigation of these outcomes becomes problematic, expensive 

and impossible. That is why it is recommended to carry out relevant investigations before the 

mitigation measures are planned and implemented.  

This work is mainly focused on the anchor damage assessment of subsea pipelines. The 

comprehensive discussion on a PARLOC 2001 database is done in order to determine major 

pipeline incidents, their causes and consequences. The questions regarding pipe-anchor 

interaction scenario have been studied a lot. It has been found that the extent of pipeline damage 

is heavily dependent on its unique properties. In addition, not only the pipeline data, but also a 

combination of vessel characteristics and anchoring equipment parameters has been very useful 

for the analyses.  

Based on the results of AIS ship traffic data processing, main pipe damage criteria checks have 

been performed.  The findings indicate that not all the anchors have potential of hooking and 

approaching the pipeline resting on the seafloor. Key parameters here are anchor class (size), 

chain length, ship speed and water depth. Moreover, the geometrical configuration of all the 

anchors has been taken into account as well. Not only a theoretical approach, but a model scale 

test has been carried out in order to understand the variation of anchor towing depth with 

different ship velocities. The comparison of analytical solution results with the experimental 

results is also included in this thesis.  

Anchor pulling consequences are established in accordance with the global scale analyses 

performed in the FE program SIMLA for a certain number of sensitivity cases for both small 

(16-inch) and large (40-inch) diameter pipelines. The pipelines responses have been determined, 

and their cross-sectional capacities have been checked.  In addition, pipelines failure frequencies 

have been estimated.  

This work shows how critical it is to have detailed ship and equipment class data for doing 

pipeline integrity assessment. In accordance with the results obtained, the dragging anchor 

interference assessment methodology is developed. 
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CHAPTER 1. INTRODUCTION 

1.1 BACKGROUND 

21
st
 century is a century of enormous energy consumption. The energy is arguably the spine of 

human life on our planet. The need for energy is insatiable and we need to constantly think of 

new ways to try to meet this need. However, resources on land are fast depleting, hence it is 

necessary to explore new reserves to extract oil and gas. Over the past couple of decades, we 

have seen that new reserves regularly discovered are located on offshore sites. As a result, 

offshore field development is receiving great interest. The new oil and gas fields on the 

continental shelf are fast becoming major global energy reserves. To move extracted energy 

resources to the storage places, refineries or gas processing plants, and to deliver them to the 

consumers, several means of products transportation are used.  One of the most popular means is 

pipeline. Submarine pipelines are laid across different territories of the world. For this reason a 

lot of attention should be given to their monitoring, considering safety and environmental 

questions.  

Construction and operation of pipelines are known to be very hazardous and risky processes. To 

mitigate the risks and to exclude the causes of pipeline failures, it is necessary to design, 

construct and manage the pipelines safely and in an appropriate way according to the 

international codes and standards. Sometimes even observance of necessary rules does not 

guarantee safe pipeline operation. Statistic shows that high-technology solutions and innovations 

help to decrease the probability of any failures. However, there are still some undesired events 

that cannot be completely avoided. One of such cases is pipeline anchor damage. This accident 

can lead to the consequences like fatality, fire, explosion, environmental pollution and asset 

losses. Mitigation of such outcomes becomes difficult, expensive and even impossible. Even in a 

best-case scenario, when the pipeline suffers minor damage, the consequences can be serious: 

extended pipeline shutdowns, disruption of a schedule and financial problems.    

1.2 PROBLEM STATEMENT 

In case if ship anchor is accidently dropped and dragged over the pipeline, the latter may suffer 

damage, lose its integrity and leak. Even though the pipeline failures and their causes are studied 

and discussed a lot, there are still some questions regarding anchor damage threats to submarine 

pipelines. An extent of damage strongly depends on pipe unique properties, vessel characteristics 

and anchor parameters. In addition, AIS ship traffic data with ship particularities (identification 

number, type, gross tonnage, equipment specifications, etc.) is to be included into the assessment 

as well. A combination of all these factors is of great importance for the dragged anchor 

interference analysis and failure frequency estimation. Based on the findings and results of the 

detailed investigation, risk reducing measures can be proposed and implemented if necessary. 

Eventually, the design methodology can be optimized and applied where appropriate for both 

existent and new pipeline projects.  

1.3 PURPOSE AND SCOPE 

The analysis is primarily focused on a given gas pipeline called “Pipeline 1”, which is located in 

the North Sea. Typical pipeline and ship traffic details are taken as a basis for the present work. 
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The emphasis is placed on the whole pipeline including all the KP sections and possible 

anchoring zones. Several sensitivity cases are distinguished along the pipeline route and selected 

in order to establish anchor dragging consequences and to estimate the pipeline failure 

frequencies. All the analyses are performed in the most conservative way, considering the worst 

cases.  

Scope of the thesis: 

1. Study of the design objectives and main aspects of pipeline route selection. 

2. Pipeline hazards investigation. Detailed definition and study of the PARLOC 2001 

database. 

3. Analysis of the ship anchoring effect on submarine pipelines by using the corresponding 

theoretical approach.  

4. Collection of relevant data needed for the assessment.   

5. Dragged anchor interference assessment. Anchor hook/hit/damage checks.  

6. Carrying out of model scale test on the variation of anchor towing depth with different 

towing speed. Verification of the results. 

7. Establishment of pipe-anchor interaction consequences by performing global scale 

analysis in SIMLA finite element program. Check of large and small diameter pipelines 

responses and cross-sectional capacities. 

8. Failure frequency estimation procedure for both large and small size pipelines. 

9. Discussion and methodology description. 

10. Drawing up of the conclusions with regard to the analysis and frequency estimation 

results. 

1.4 THESIS ORGANIZATION 

Chapter 2 presents pipeline design objectives. It points out the main factors influencing the 

selection of pipeline route, namely: environment, seabed features, facilities, landfall and third 

party activities.  

Chapter 3 describes possible pipeline threats, their causes and consequences. It also defines the 

purpose of pipeline databases. Detailed discussion of PARLOC 2001 database is included in this 

chapter. The most frequently encountered incidents, involving steel and flexible lines, are studied 

and analyzed as well.  

Chapter 4 explains the ship anchoring procedure and its effect on submarine pipelines. 

Comprehensive theoretical approach is presented here. The chapter defines vessel classification 

and its characteristics. Particularities of vessel equipment (anchor and chain) are discussed as 

well. In addition, the chapter provides complete description of pipeline damage criteria that is of 

great importance for further analysis. 

Chapter 5 presents dragged anchor interference assessment. The chapter includes AIS data 

processing based on the typical pipeline route. Collection of missing data for different ships with 

respect to IMO-no, name, type, EL, GT, speed and vessel coordinates is done as well. All the 

information is used for the anchor hook, hit and damage criteria checks. The chapter also 

provides a description of model scale test on the variation of anchor towing depth with different 

ship velocities. The comparison of analytical solution results with the experimental results is also 
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included. Anchor pulling consequences are established in accordance with the global scale 

analyses performed in finite element program for several sensitivity cases for both small and 

large diameter pipelines. The pipelines responses are determined, and the cross-sectional 

capacities are checked.  In addition, anchor dragging induced frequencies estimation is presented 

in this chapter. In accordance with the results obtained, the dragging anchor interference 

assessment methodology is developed. 

Chapter 6 comprises complete discussion based on the results and findings obtained from the 

studies, tests and analyses. All the assumptions taken for the present work are listed as well. 

Some recommendations for the further studies and analyses are given in this chapter.  
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CHAPTER 2. PIPELINE DESIGN BASIS  

2.1 DESIGN PHASES 

In order to ensure reliable and safe operation of submarine pipelines, it is essential to design 

them according to the international standards, codes and practices. Pipeline design procedure 

mainly consists of three stages (Bai, 2001): 

I. Conceptual engineering; 

II. Preliminary engineering; 

III. Detail engineering.  

Each stage is of great importance and has a set of basic objectives which are to be given below. 

Conceptual engineering objectives: 

 Establishment of technical feasibility and constraints on the system design and 

construction; 

 Elimination of non-viable options; 

 Identification of required information for the design and construction processes; 

 Preparation of the basic cost and scheduling exercises; 

 Identification of interfaces with planned or existent systems. 

Preliminary engineering objectives: 

 Pipeline design: verification of pipeline size, determination of grade and wall thickness; 

 Verification of pipeline against design and code requirements; 

 Authority applications preparation; 

 Material take-off and order of the line pipe. 

Detailed engineering objectives: 

 Route selection and optimization; 

 Wall thickness and coating selection; 

 Confirmation of code requirements on strength, vortex-induced vibrations, on-bottom 

stability, global buckling and installation; 

 Detailed design and drawings preparation: pipelines, tie-ins, crossings, risers, shore 

approaches and subsea structures; 

 Preparation of alignment sheets according to the recent survey data; 

 Preparation of specifications on materials, costs, construction works (laying, survey, 

welding, riser and spoolpiece installation, tie-ins, structures installation) and 

commissioning (flooding, pigging, hydrotest, drying); 

 Material take-off, procurement of materials; 

 Preparation of design data and necessary information for the certification authorities. 

There is a set of main pipeline design issues that is to be taken into account during pipeline 

design stages: 
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1. Environmental issues: water depth profile; weather conditions; information about 

currents, waves, and ambient temperature variations. Seasonal changes should be 

specified as well. 

2. Seabed particularities: geotechnical characteristics; tectonic movement details; seabed 

topography data.  

3. Flow issues: fluid type, flowrate, pressure and temperature information, water profile.  

Specifying the issues mentioned above, it is possible to design the pipeline in an appropriate 

way, so that its integrity is ensured through all the pipeline system phases: from the concept 

development to the pipeline abandonment (Figure 1). 
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Figure 1: Pipeline system phases (DNV-OS-F101, 2013) 

2.2 ROUTE SELECTION 

Route selection, being one of the objectives of the detailed pipeline engineering, is a critical 

aspect, affecting all the phases of pipeline project. The pipeline route shall be selected with due 

regard to safety of the public and personnel, protection of the environment, and the probability 

of damage to the pipe or other facilities (DNV-OS-F101, 2013). There are a lot of factors 

influencing the selection of the pipeline placement. These factors are mainly seabed features, 

geotechnical and environmental condition, seasonal changes, etc. The identification of pipe 

location particularities, issues and problems can be done by applying geographical information 

system and different route surveys techniques. As soon as all the relevant information is 

obtained, it becomes easier to suggest, select and develop successful pipeline route.  

Typical routing is influenced by a set of factors which are presented in the Table 1                 

below (DNV-OS-F101, 2013). 

Table 1: Factors influencing pipeline route selection 

Factor Factor identification and comments 
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Environment 

 archaeological sites; 

 exposure to environmental damage; 

 areas of natural conservation interest (oyster beds 

and coral reefs); 

 marine parks; 

 turbidity flows. 

Seabed 

characteristics 

 uneven and unstable seabed; 

 soil properties; 

 subsidence; 

 seismic activity. 

Facilities 

 offshore installations; 

 subsea structures and well heads; 

 platform anchor patterns; 

 existing pipelines and cables; 

 obstructions; 

 coastal protection works. 

Landfall 

 

 local constraints; 

 3
rd

 party requirements; 

 environmental sensitive areas; 

 vicinity to people; 

 limited construction period. 

Third party 

activities 

 ship traffic and fishing activity; 

 dumping areas for waste, ammunition, etc.; 

 mining activities; 

 military exercise areas. 

2.2.1 Environment  

Environmental and statistical data (wind, wave, tide, current, temperatures, ice, earthquake, etc.) 

should be determined and taken into account before the selection of pipeline route. 

Hydrodynamic loads induced by the relative motion between the pipe and surrounding water 

also affect the choice of pipeline routing. It is essential to take into account all the load sources, 

namely current, wave, etc. (DNV-OS-F101, 2013).  

Arctic seas are covered with ice in different forms. Presence of such ice features as ice ridges 

and icebergs may cause the scouring of the seabed and increase of hydrodynamic loads. Ice 

gouging leads to pipeline damage and rupture. The gouging is a special hazard, requiring 

appropriate route selection and design to minimize the risks of pipe failures.  

Geographical location is to be estimated and compared to other possible locations. Then it is 

necessary to assess the environmental conditions of chosen corridor: the pipeline can be divided 

into several sections in accordance with the water depth, seabed topography and geomorphology 

(DNV-OS-F101, 2013; Palmer & King, 2008). 
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Special focus is to be put on the seas of natural conservation interest because of tropical coral 

reefs, which form the ecosystem of the planet. Similar to reefs marine parks are to be protected 

as well. Thus, any kind of trenching or dredging works must be excluded.  

2.2.2 Seabed characteristics 

Alongside with the environmental data, it is important to utilize the seabed features. The latter 

should include the information about rocks, sand waves, pock marks, mud slides, mud 

volcanoes, and iceberg scars. Some surveys and laboratory tests are to be taken in order to obtain 

the list of geotechnical properties and soil parameters that are necessary for the selection of the 

design philosophy.  

Pipeline rests on the sea bottom. Ideal seabed is represented as flat, smooth and technically 

uniform one, consisting of stable clay. However, the seabed is usually uneven, and due to the 

presence of rocks and valleys there is a probability of free spans formation. In addition, the 

seabed with different kinds of obstacles the cobbles and boulders poses a threat and complicates 

the trenching procedure a lot.  

One of the challenging physical factors influencing pipeline behavior on the seabed is mobile 

sand waves. Since sand waves are unstable, the pipeline, resting on their crests, can lose the 

support of moving sand. That is why, it is recommended to avoid such territories. In case if it is 

impossible to evade sand waves, the route must be laid along the troughs of sand waves, and the 

pipeline has to be lowered in the trench below the troughs level, by using well-known pre-sweep 

method (Palmer & King, 2008). 

Moreover, soil is composed of several layers, the properties of which vary with the layers’ depth: 

the upper layer is known to be more uncertain than deeper one. Thus, both of them have to be 

emphasized during the pipeline design (DNV-OS-F101, 2013). 

2.2.3 Facilities 

An interaction of the pipeline with the platforms, offshore installations, subsea structures, 

existing pipelines and cables (power or communication) may become dangerous and 

challenging. In order to avoid probable pipeline damage it is better to locate the pipeline at a 

certain distance from such obstructions. Offshore Standard DNV-OS-F101 (2013) points out that 

minimum horizontal distance of 500 m shall be adopted in case if there are any facilities or 

manned areas close to the pipeline. If there is an FPSO, drilling rig or semisubmersible, it is 

essential to specify the size of anchor spreading or the distance of 2 km radius (Karunakaran, 

2014). 

A threat may be posed by the existing pipelines and cables. Before the final decision on pipeline 

routing is made, some monitoring procedures are to be taken to determine the placement of 

existing installations. Moreover, the following should be noticed: 

 The corridor shall be in a range of 50-100 meters, if it is an existing pipeline; and in a 

range of 20-30 meters, if the pipeline is constructed together with the new one; 

 Approach angle shall be more than 30
0
; 

 Size of crossing should be equal to the length of the part elevated off the seabed; 
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 Rock dumping is to be calculated to provide necessary protection; 

 Areas with the vulnerable submarine cables are to be avoided either. Otherwise, the 

pipeline should be laid through the gap of severed cable. Then the cable is to be spliced 

and lowered back over the pipeline (Karunakaran, 2014). 

2.2.4 Landfall 

Pipeline route selection is also dependent on the construction limitations: shore and platform 

approaches, pipeline crossings, and trenching. With regard to the landfall, the pipeline location is 

chosen in accordance with the lay barge draught (in terms of the barge generation), and 

environmental conditions. Concerning the platform approach, the minimum clearance of the 

vessel to platform and sufficient corridor must be specified.   

Political issues are also point of concern, especially for the export lines, interconnecting different 

countries or even continents. For both the design and operation of export pipelines it is important 

to use multiple code compliance and meet multiple reporting requirements (Karunakaran, 2014). 

2.2.5 Third party activities 

The focus of much attention is the third party activities mentioned in the Table 1. Pipelines 

resting on the seafloor are increasingly exposed to the loads arising due to high human activity 

on the sea. Deciding on a route, the inference between these activities and pipelines must be 

considered.  

Loads which are imposed on the pipeline system from 3
rd

 party activities shall be classified as 

interference loads. Typical interference load include trawl interference, anchoring, vessel 

impacts and dropped objects.  Along with the interference loads there are also accidental loads, 

and the main difference between them is the probability of occurrence. If the latter is less than 

10
-2 

throughout a year, then it can be defined as accidental load (DNV-OS-F101, 2013). 

One of the evident examples of the interference load is trawl impact (Figure 2). Due to great 

fishing activity nowadays, the loads from the trawl gears represent a real hazard to the pipeline 

integrity.  

 

Figure 2: Typical otter trawl gear crossing a pipeline (DNV-RP-F111, 2010) 
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The trawling scenario is usually divided into three interaction phases (Table 2) (DNV-RP-F111, 

2010; Bai, 2001): 

Table 2: Trawling scenario interaction phases 

Phase Explanation 
Duration of the 

phase 
Effect from the load 

Impact 

A pipeline is hit with the board, beam 

shoe or clump. The pipe shell is 

supposed to resist the impact load.  

Some 

hundredths of 

second. 

Local dents, damage of 

pipe coating. 

Pull-over 
A trawl board, beam shoe or clump is 

pulled over the pipeline.  
1-10 seconds.  

Global pipeline 

response. 

Hooking 
A trawl board is stuck and wedged 

under the pipeline.   
Several minutes.  

Extreme cases, large 

hooking loads are 

imposed to the pipeline.  

NB. Because of its small frequency, the hooking is classified as an accidental load. The reasons 

for such loads may be different, and some of them are the following: 

 Severe environment conditions: high wave and current loads, ice features loads; 

 Emergency situations: explosions and/or fire; 

 Operational failures: infrequent internal overpressure, accidental water filling; 

 The impact from various items: vessel impact, dropped objects, dragging anchors, etc. 

It is an era of a large amount and variety of ships (supply and construction vessels, ferries, 

tankers, etc.) passing different territories and performing different functions. The more these 

vessels are used, the greater danger is for the pipelines laid on the seabed. Dragged and dropped 

anchors, grounding and foundering vessels represent serious accidents the pipeline might 

experience. Significant consequences, such as scouring and rupture of the pipe section, 

subsequent leakage of the product arise out of accidental events. Thus, a lot of attention must be 

paid to the scenarios of pipeline routing in case of high ship traffic: pipeline shall be laid away 

from the harbor and shipping lanes. Ship data collection and analysis have to be taken prior to 

choosing the routing of the pipeline.  

Another area of concern is an outcome of military activities. The presence of non-recovered and 

undetonated mines; navigating submarines; weapons and bombs are very problematic and 

dangerous. Those places must be carefully examined for location of the military action items. All 

the explosive devices, bombs are to be defused (Palmer & King, 2008). 

In addition, there is a possibility of pipe damage due to material dumping. Ocean disposal of 

chemicals, nuclear wastes and obsolete equipment is a threat for both the environment and 

offshore pipelines. Although the disposal at sea is totally prohibited nowadays, disturbed 

remaining wastes may lead to undesirable and heavy consequences (Palmer & King, 2008). 
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2.3 ROUTE SURVEY 

The route survey is carried out with a view to data collection for further design and construction 

procedures. The survey is usually conducted within the corridor of preliminary route chosen in 

accordance with the existing data. Later on obtained details from the sea charts, topography and 

ROV surveys graphs are reviewed and modified in order to fulfil all the requirements in an 

appropriate manner. Desk study includes the investigations of the seabed profile and geology, 

presence of existing pipelines and cables, obstructions and wrecks, etc. All the investigations 

must be performed in an accurate way for the purpose of safety during pipeline design, 

construction and operation. Eventually, alignment sheets are to be prepared. Alignment sheets 

provide information of the facilities and pipeline location, its length and key features. Those 

drawings are very useful for final route selection, for the production of material takeoff, and for 

the installation process.  

Summarizing the part of pipeline route selection one shall understand how essential it is to obey 

the rules of routing design, follow the whole survey procedure sequence, define work purposes, 

and recognize the main features included in the alignment sheets. The more rational route is 

chosen, the more successful, safe and cost-effective construction, operation and management of 

pipeline system will be. 
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CHAPTER 3. PIPELINE THREATS 

Pipelines are thought to be one of the most popular and safest methods of oil and gas 

transportation. Otherwise, there are a lot of issues regarding design, installation and operation. 

As mentioned before, pipeline route selection being the first in pipeline design “chain”, reflects 

essential and basic procedures, which are very important for the next steps of the design 

sequence. Factors affecting the route design are described above. Taking into account all these 

factors for the route selection; the safety, reliability and integrity of the pipeline will be provided.  

However, different problems associated with subsea lines may arise throughout their design life. 

Pipeline failures are big area of concern, and they can result in the following (DNV-OS-F101, 

2013):  

 Loss of component or system function;  

 Deterioration of functional capability to such an extent that the safety of the installation, 

personnel or environment is significantly reduced. 

3.1 DATABASE. STATISTICS 

One or even several failures of the pipeline system can lead to huge incidents. Pipeline incident 

outcomes depend heavily on failure modes and its causes. There are different international 

databases and technical reports, which are commonly applied for the identification and analysis 

of undesired events and potential hazards. Each source may denote its own list of pipeline 

features, as well as failure causes and consequences correspondingly. Thus, rich information may 

be widely used by authorities, operating, service and other companies involved in the 

engineering works. The main characteristics of any database are to be defined by (Velez Vega et 

al., 2006): 

1. Database boundaries that are necessary to separate the incidents relating to the pipeline, 

equipment, and facilities; to distinguish offshore lines from onshore ones; to point out the 

life cycle phases of considered activities. 

2. Database population that presents the details of considered lines, equipment, and 

facilities. This information is primarily used for further statistical analysis. 

3. Incident with the corresponding list of its location, causes and consequences. 

3.1.1 PARLOC 2001 

The most informative and comprehensive example of existing databases related to the data of 

offshore pipeline incidents is PARLOC 2001 document, the latest version of which was updated 

in the far 2003.  

NB. The incident is defined here as an occurrence, which directly results or threatens to result 

in loss of containment of a pipeline (PARLOC 2001 Database, 2003 version). 

The document contains detailed information about pipelines sitting on the seabed of the North 

Sea, and the description of the incidents occurring from 1960 up to 2000. All the plots, charts, 

tables and diagrams, presented below, are compiled manually by using the data from different 

chapters of this database document. An example of the datasheet is illustrated below (Figure 3). 
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1567 

•Number of pipelines 

24,837 

•Total length of installed 
pipelines (km) 

328,858 

•Operating experience     
(km-years) 

 

Figure 3: Example of datasheet from the PARLOC 2001 (PARLOC 2001 Database, 2003 

version) 

The following database boundaries are identified in the PARLOC 2001 document (2003):  

 Operation phase – 396 lines (248 offshore lines, and 148 fittings); 

 Construction phase – 146 lines (118 offshore lines, and 28 fittings). 

The PARLOC 2001 database population flowchart is illustrated below (Figure 4).   

 

Figure 4: Database population flowchart of the PARLOC 2001 

Regarding the last and the major part of database characterization, it should include the 

definition and description of incident occurrence. The latter presents a list of causes, location and 

Database 
population 

Equipment 
type 

Pipelines and 
risers 

Fittings 

Material  
specification 

Steel lines 

Flexible lines 

Transporting 
fluid 

Oil 

Gas 

Condensate 

Other (water, 
chemicals, etc.) 

Type of coating 

Concrete outer 
coating 

Fusion bonded 
epoxy 

Polyethylene 

Neoprene 

Insulated 
coating 

Coal tar enamel 

Type of 
protection 

Lowered 
(trenched) 

Covered 
(buried) 

Both 

None 

Diameter 
(inch) 

0-9 

10-16 

18-24 

26-40 
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consequences of the incident correspondingly. The total number of pipeline incidents and further 

details of the database content are given below (Figure 5). 

 

Figure 5: PARLOC database incidents by numbers 

According to the presented flowchart, one can see that the total number of incidents is 542. 

There are 366 incidents involving lines, and 176 involving fittings. 248 out of 366 pipeline 

failures are seen during operation phase and the rest (118) are found during construction. It 

should be mentioned, that 209 incidents are associated with steel lines, and it represents 39% of 

all the 542 cases. As for the fittings, there are 148 and 28 incidents occurred on the lines under 

construction and operation respectively.  

NB. Since there is no exact and full-length information about fittings incidents, proper analysis 

on causes and consequences of fittings failures cannot be presented.   

Concerning the occurrences of failures, they are heavily dependent on failure causes. 12 main 

different causes may be found in that database: 

 Anchoring; 

 Impact; 

 Corrosion; 

 Material defect; 

 Fire/explosion; 

 Repair and maintenance; 

 Natural hazards; 

 Structural damage; 

 Construction fault; 

 Fitting fault; 

 Others. 

Using the data from the document, it is possible to plot the diagrams, which can be easily 

analyzed. As mentioned earlier, the pipelines become the subject of undesirable events two times 

more likely than the fittings. Furthermore, it is important to distinguish steel lines from flexible 

542 incidents 

366 to pipelines 

248 to lines under 
operation 

209 to steel 
pipelines 

39 to flexible 
pipelines 

118 to lines under 
construction 

176 to fittings 

148 to fittings  

on the lines 

 under operation 

28 to fittings  

on the lines                                    
uner construction 
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ones. That is why two diagrams are illustrated below in order to highlight their similarities and 

differences (Figure 6). Each diagram presents all incident causes (248) involving operating 

pipelines - steel (209) and flexible (39) ones.  

Incident Causes 

Steel lines Flexible lines 

 

 

 

 

 

Figure 6: Causes of incidents to operating steel and flexible pipelines 

In accordance with the diagrams above, it is seen that the most common incident causes for the 

rigid pipelines are impact (26.8 %), corrosion (24.9 %) and anchoring (19.1 %); while the most 

frequently detected incidents on the flexible lines are material (30.8 %) and impact (23.1 %).   

It is also necessary to explain the consequences of all the incidents observed. All of them result 

in loss of system integrity, which leads to the leakages of oil and gas. As defined in the Offshore 

Standard DNV-OS-F101 (2013) the pipeline integrity is the ability of the submarine pipeline 

system to operate safely and withstand the loads imposed during the pipeline lifecycle. The 

flowchart illustrating the number of leaked and survived pipelines is presented on Figure 7.  
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Figure 7: Number of incidents (with and w/o loss of containment) involving pipelines and fittings 

Figure 7 points out on 244 leakage events associated with the pipelines and fittings. 188 of them 

are detected on the pipelines and fittings being under operation. Leaks are a big area of concern, 

since they poses a threat to the people, environment and assets. The leakages may be 

accompanied by the following ignition, fires and/or explosions. 

Interesting to note that loss of pipeline containment often occurs due to the same list of damage 

causes (impact, corrosion, anchoring and material). This fact is confirmed by a summary table 

below (Table 3). The reason why there are a lot of incidents with rigid lines is probably because 

there are more steel lines than flexible ones. Concerning fittings, main failure reason is observed 

to be the fitting itself. However, there is a certain amount of fittings suffered from anchor, 

impact, material and corrosion. Detailed discussion on each of these issues will be given further 

as the text goes.   

Table 3: Summary table of the main incidents causes 

Subject Consequence 

Cause 

CORROSION 
MATERIAL 

DEFECT 
IMPACT ANCHORING 

Steel pipeline 
Damaged 52 18 56 40 

Leaked 26 10 9 8 

Flexible pipeline 
Damaged 1 12 9 1 

Leaked 1 12 4 2 

Every loss of containment event may be examined by the size of damage, which is also a part of 

data. PARLOC 2001 classifies different hole diameters as following:  

 0 – 20 mm; 

 20 – 80 mm; 

 80 mm and more. 

542 
incidents 

No leak (298) 

230 pipelines 

152 under 
operation 

78 under 
construction 

68 fittings 

56 under 
operation 

12 under 
construction 

Leak (244) 

136 pipelines 

96 under 
operation 

65 steel  

31 flexible 

40 under 
cosntruction 

108 fittings 

92 under 
operation 

85 steel 

7 flexible 

16 under 
construction 
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In terms of the pipeline diameter, the ranges are presented in the database population (Figure 4). 

The relation of pipeline diameter and hole size is given below. As indicated in Table 4, both steel 

and flexible pipelines with 0-9 inches diameter suffer a lot as compared to the pipes with the 

diameters of 10 inches or even more. The same situation is evidenced with the ruptured lines. 

Thus, smaller diameter pipelines are more vulnerable and damageable.  

Table 4: Relation of pipeline diameter and hole size 

Pipeline 

diameter (inch) 

Hole size 

(mm) 

Leaked steel 

pipes 

Ruptured 

steel pipes 

Leaked 

flexible pipes 

Ruptured 

steel pipes 

0-9 0-20 26 0 18 0 

 
20-80 8 3 3 1 

 
>80 5 3 4 4 

10-16 0-20 7 0 1 0 

 
20-80 2 0 1 0 

 
>80 9 5 1 1 

>16 0-20 4 0 - - 

 
20-80 2 0 - - 

 
>80 2 2 - - 

Pipeline incident location is of great significance as well. There are 6 principle zones recognized 

in the database (Figure 8):  

 

Figure 8: Pipeline principle zones 

1
 Within a radius of 500 m from the platform; 

2
 Outside the 500 m zone from the platform; 

3
 Within a radius of 500 m from the well. 

Principle 
zones 

II. Riser 

III. Safety 
zone 1 

IV. Mid 
line 2 

V. Well 3 

VI. Shore 
approach 

I. Platform 



Anchor Damage Assessment of Subsea Pipelines 

17 
 

Summary table is compiled to show the most affected by incidents areas along the pipeline 

(Table 5). Table is complemented with land and SPM (single point mooring) zones.  

Table 5: Affected zones of the pipelines 

Subject Consequence 

Total 

number 

of 

incidents 

Zone 

I II III IV V VI Land SPM Unknown 

Steel lines 
Damaged 209 1 60 47 84 10 4 1 2 0 

Leaked 65 1 12 18 27 6 0 0 1 0 

Flexible lines 
Damaged 39 2 5 2 15 12 0 0 0 3 

Leaked 31 1 5 3 9 10 0 0 0 3 

Pipeline Mid Line is one of the most sensitive regions: large numbers of damages and leakages 

are observed there.  

Summarizing the part devoted to incidents statistic in accordance with the PARLOC 2001 

database, one shall understand the necessity of pipeline incidents information collection. Data 

may be analyzed in different ways, and the results of such analyzes may be used for various 

purposes during pipeline project planning, design, construction and management.  

Database boundaries, population and incident occurrence are defined. Steel and flexible pipelines 

are distinguished and studied. Special emphasis is made on the number of pipeline incidents, 

their causes, location and consequences.  So, damage sizes, number of leaked and ruptured pipes, 

as well as the area of incidents are graphically presented in tables and diagrams. The emphasis 

should be placed on the causes of pipeline failures, especially those, which lead to the loss of 

containment. That is why a detailed description of failure causes will be given in the following 

section of this paper.  

3. 2 MAIN PIPELINE INCIDENT CAUSES 

Discussed in a previous part pipeline incidents are characterized by their causes and 

consequences. Corrosion, material defect, impact and anchor damage are defined as the main 

reasons for loss of pipeline structural integrity (Figure 6, Table 5). That is why each of these 

causes is going to be discussed hereinafter. 

3.2.1 Spontaneous hazards. Corrosion 

Corrosion is one of the most leading causes of pipe failures, in particular ruptures and leakages. 

It is defined as the deterioration of a material, usually a metal, which results from a reaction 

with its environment (Jacobson, n.d.). Corrosion primarily affects the design life of pipelines. 

Pipes become weak, and they are less capable of resisting to the external forces. Two types of 

pipeline corrosion exist: external and internal. Once one or both of them are established, the 

mitigation procedures come to be more difficult. So that, corrosion process is to be controlled 

during design, fabrication, installation, commissioning and operation phases of pipeline life-

cycle. Along with the control, corrosion protection measures should be specified as well.  
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Internal corrosion is observed inside of the pipelines because of the oil, gas or water stream. 

Stream characteristics (operating pressure and temperature, flow regime, fluid composition, etc.) 

tend to change during the design life. That is why periodic inspection, cleaning and monitoring 

are required.  

Several mechanisms of internal corrosion are distinguished: 

 Sweet corrosion (due to the presence of dissolved CO2) progresses slowly in a form of 

pitting. 

 Sour corrosion (due to the presence of H2S in the product) progresses rapidly, resulting in 

the cracking of pipeline steel wall. 

 Corrosion due to oxygen is formed in the pipelines during water-injection, gas lift, 

pressure maintenance works.  

 Microbiological corrosion (due to the presence of sulfate-reducing bacteria) results in the 

overlapping pits located on the pipe bottom (Palmer & King, 2008; Corrosion problems 

in production, n.d.). 

External corrosion usually appears on the outer side of the pipeline because of corrosive ambient 

medium (e.g. seawater). External corrosion mechanisms may be classified as organic acid attack, 

oxygen or microbiological corrosion. Set of the following factors usually influences external 

corrosion (DNV-OS-F101, 2013):  

 Temperature profile along the pipeline; 

 Fabrication and installation peculiarities; 

 Design life; 

 Selected type of protection. 

Corrosion incidents. PARLOC 2001  

Nearly a quarter of all the incidents concerned with the operating steel pipelines occur due to 

corrosion: 52 out of 209 incidents. From the “Pipeline and Riser Loss of Containment” document 

it is seen that 24 of them are caused by internal corrosion, 22 – by external corrosion; and the 

reasons for the remaining 6 cases are unknown (Figure 9).  

 

Figure 9: Corrosion incidents involving rigid lines 
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Total number of leaked rigid pipelines being under operation phase is 26. 14 and 7 cases belong 

to internal and external corrosion respectfully, and 5 of them are unknown (Figure 10). There are 

4 incidents involving fittings. They are caused by internal corrosion, and all of them lead to 

pipeline loss of containment issue. Concerning the flexible pipelines, they also become subject to 

corrosion even if they are highly resistant to severe conditions. According to the database, only 

one flexible line is affected by corrosion. In terms of the fluid type, the most problematic ones 

are oil and water.  

 

Figure 10: Pipeline diameter (inches) and location of corrosion incidents resulted in leakage 

As seen from the Figure 10, a lot of corrosion incidents are established in II, III and IV zones, 

i.e. Riser, Safety Zone and Mid Line (Figure 8).  Dividing the pipeline into a set of certain 

segments (or 6 principle zones as shown on the figure) helps to get clear understanding of 

degradation mechanism location and to make proper risk analysis. In addition, such kind of “pipe 

failed zone” information may be relevant for the selection of corrosion prevention strategies 

(cathodic protection and coating systems) and for pipeline inspection planning procedures. Thus, 

zones can dictate what and where to inspect. Nevertheless, by analyzing different failure cases, 

one shall not exclude the fact that every pipeline system is unique and has its own properties. 

Interesting to note that smaller diameter pipelines are more susceptible to corrosion and 

subsequent leakage, than bigger ones. Smaller diameter pipes (3.5-16 inches) are usually used 

for the product gathering and distribution purposes. These lines connect subsea wells with the 

processing and treatment facilities. Fluid, being transported by them, is unprocessed and full of 

mechanical impurities. Presence of dissolved CO2, H2S or bacteria in the stream may react with 

the pipe material. Increase of reaction rate leads to the material deterioration. Such systematic 

phenomena can result in loss of pipeline system integrity and other significant consequences.  
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In order to ensure asset integrity and to optimize pipeline monitoring and inspection costs, the 

following corrosion mitigation measures are to be specified during pipeline design: 

 Material selection; 

 Chemical and inhibitors dosing; 

 Use of external and internal coatings; 

 Cathodic or anodic protection. 

In case of pipeline incident attributed to corrosion, the continuation of safe fluid transportation 

may be achieved by urgent measures. Pipeline repair, reduction of maximum allowable operating 

pressure (MAOP), and usage of necessary corrosion inhibitors seem to be the most indicative 

and useful methods in accordance with the PARLOC 2001 database. In addition to them, 

periodic maintenance service and monitoring are essential.  

3.2.2 Spontaneous hazards. Material defects 

Safe pipeline operation depends heavily on the type of pipe material and way of its fabrication. 

Despite proper material selection and line pipe manufacturing process, there are still plenty of 

defects that can threaten pipeline integrity. Failures may occur due to problems with the material 

itself (either rigid or flexible) or due to defects associated with welds.  

Different impurities, oxides or trapped gas are remained in steel. The presence of them leads to 

the deterioration of pipe material. Eventually, formed inclusions and raised spots may affect the 

wall thickness and thereby reduce the value of maximum allowable pressure in the pipeline.  

Pipeline manufacture procedure is an issue as well. Production of steel lines is known to be 

selected with or without welding (seamless pipes). Welding flaws or cracks on the pipeline wall 

are of common occurrence after pipe fabrication. Sometimes they become unavoidable and 

dangerous, because cracking size is never the same and it tends to change in time. The only way 

to check the pipeline for imperfections is pressure testing. At the same time, testing should be 

carried out carefully in order to exclude cracks size growing after several cycles of pipeline 

pressurization (U.S. Department of Transportation, 2014). Regarding flexible pipelines, number 

of all their defects is often lower than those, found on rigid ones. 

Material defect incidents. PARLOC 2001  

PARLOC database contains information about pipeline failures resulted from the material 

defects. There are 30 failures, where 18 are observed on steel lines, and the rest is on the flexible 

lines. Leakage of rigid lines happens in 10 cases out of 18, while leakage of flexible lines is 

found in all 12 cases.  Given pie diagram (Figure 11) shows, how many mechanical failures are 

caused by weld and steel defects.  As seen in a diagram below, steel defects represent a great 

danger in comparison with weld ones.  
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Figure 11: Material defect incidents involving rigid lines 

Defects in material and welds also affect the weakest points of pipeline such as connections and 

pipe fittings. In pursuance of the database, 3 cases involving fittings are registered on the rigid 

lines, while just 1 is tracked down on the flexible pipe.  

 

Figure 12: Pipeline diameter (inches) and location of material defect incidents resulted in 

leakage 

Both small and large diameter pipelines fail due to defective fabrication and manufacturing    

(Figure 12). Safety Zone and Mid Line seem to be the most susceptible to defects zones of the 

pipeline. As for the fittings, problems with them are usually detected in a Platform Zone.  

Reducing the number of mechanical failures may be achieved by implementation of appropriate 

pipe material procurement, fabrication, manufacture and welding processes. Improved 

technology and practice can have a positive effect on reduction of mechanical failures.  
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Hydrostatic pressure tests must be carried out periodically but in an accurate way to evade any 

uncontrolled and undesired events in the future.  

3.2.3 External hazards. Impact  

External hazards and harm coming from third party activities shall be taken to be the most severe 

incident scenarios for the offshore pipelines. These failures are usually caused by the following 

reasons: 

1. Impacts: 

1.1. Vessel and ship impact on risers; 

1.2. Fishing and trawling; 

1.3. Dropped objects; 

1.4. Wrecks; 

1.5. Activities of construction vessel; 

1.6. Dumping; 

1.7. Accidental grounding; 

1.8. Dredging operations; 

1.9. Ice gouging. 

All of them are potential consequences of activities such as pipeline, risers and modules 

installations; lifting procedures; subsea operations, fishing and ship traffic. A more detailed 

description of these reasons will be given in the next part of this paper. 

The submarine pipeline system shall be designed for impact forces caused by, e.g. dropped 

objects, fishing gear or collisions. The design may be achieved either by design of pipe, 

protection or means to avoid impacts (DNV-OS-F101, 2013) From time to time even advanced 

design philosophy, optimized methods of protection and mitigation measures do not help to 

completely exclude the possibility of pipeline damage and later loss of containment. So, it is 

really important to use and refer to the incident databases, which include necessary for the 

analysis information of pipeline failures.  

In order to describe main impact incidents causes Table 6 is drawn up and given below.  

Table 6: Impact incident causes 

Impact incident causes Description and mitigation measures 

Vessel and ship impact on 

risers 

It is very common when upper part of the riser is hit and damaged 

by various kinds of powered or drifting vessels (merchant, supply, 

fishing or standby vessels; shuttle tankers). For every riser vertical 

zone is more “attackable” than horizontal one. That part is subject 

to the impact from the ships and their collisions. That is why 

special attention shall be given to the ship traffic area around any 

offshore structure and platform with access to the braces in the 

splash zone. Some protection in a form of jackets, J-tubes or 

caissons is to be chosen and implemented for the upper parts of 
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the risers.  

Fishing and trawling 

This event is the most severe among those affecting the pipeline 

resting on the seafloor. Scenarios and phases of interaction 

between the pipeline and operating trawl/fish board or gear are 

presented in the part devoted to the pipeline route selection (Table 

2). The best way of protecting the pipeline from gear impact is to 

keep it buried in a trench, to use special coatings and rock cover in 

specified pipe sections.  

Dropped objects 

Drop object event is characterized by loss of any freights during 

lifting operation, construction activities etc. There is variety of 

objects that can be lost. They are classified by their shape 

(flat/long, box/round) and their weight (2-8 tons). Drill tubes, 

containers and/or huge objects like BOPs are generic examples of 

objects, which are able to hit both flexible and rigid lines resting 

on the seafloor. All the possible consequences from coating 

damage to pipeline exposure and product release may occur after 

the damage due to this undesired event. Concerning protection 

actions - rock filling, external coating or appropriate heavy wall 

thickness are to be selected.   

Ship grounding  

Ship grounding is the impact of a ship on seabed or waterway side 

(“Ship grounding”, 2015). 

Accidental grounding of the vessel may happen because of harsh 

weather conditions, waves and currents, incorrect vessel 

characteristics and parameters. All listed may affect navigation 

and control systems of the vessel. In case if such errors find place 

the ship can ground over the pipeline. After that the pipeline is 

moved from its initial position. In addition, pipe may be left 

exposed. Accurate routing design, trenching and pipe burying 

solution can save pipeline from the effect of grounding ship.  

Dredging operations 

Some pipeline failures occur during excavation activity usually 

taken in shallow water areas. Large equipment such as bucket 

dredge, suction tools, grab dredgers or stern spud can easily 

approach the pipeline and do much of harm to it. Some safeguards 

measures are quite similar to those used in other cases. In 

addition, marking marine chart may become useful for these 

purposes (“Quantitative risk assessment for submarine gas 

pipelines”, n.d.). 

Ice gouging 

With great interest to the oil and gas fields located in Arctic, 

special attention should be paid to the pipeline transportation in 

these regions. High risk is driven by the presence of ice of 

different shape, age and physical characteristics (fast ice, drift ice, 

http://en.wikipedia.org/wiki/Seabed
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ridges, stamuchas, etc.) as well as icebergs. Interaction of pipeline 

with ice features threatens the fluid transportation process a lot. 

Theoretically, design philosophy for the pipelines must be done in 

accordance with three main factors: maximum expected gouge 

depth, subgouge deformation, and pipeline strain. Pipeline shall 

resist all possible loads from ice. Highly effective method of 

submarine pipe protection from the ice gouge incident is to bury it 

until it is placed in the safest zone below the seabed.  

Impact incidents. PARLOC 2001  

Continuing with the impact issues, it is important to refer to the data info contained in the 

database. There are 56 out of 209 failures involving steel pipelines and 9 out of 39 involving 

flexible ones. From the diagram charts (Figure 13) it is easily seen that trawling and dropped 

object are serious problems for both types of lines. The fact can be proven by high fishing and 

trawling activities; by large amount of construction or related to that area works that require 

lifting of the cargo. Causes of certain number of failures are unidentified.  

Impact incidents 

Steel lines Flexible lines 

 

Figure 13: Causes of impact incidents to operating steel and flexible pipelines 

Mostly, loss of containment is observed after trawl and drop object impact on the pipeline. 

Generally, leakage occurs in 9 cases with steel and in 4 cases with flexible lines.  

6 incidents are related to the fittings: first four of them come from trawling action, the fifth one is 

due to snagging buoy chain and the last one is because of inaccurate anchor chain drop. Pipeline 

leakage over connector failure is recorded twice.  

Identification of incident zone points out that Mid Line (outside the 500 m from the platform) is 

the most affected by impacts area among all six zones. It can be explained by the location of 

marine passage. In accordance with the existent standards and codes, there must be sufficient 
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horizontal distance between ship lanes and offshore structures. That is why every marine passage 

commonly crosses the pipeline route sections situated in the Mid Line zone. It is also justified by 

the diagram (Figure 14). As to the line size, smaller diameter pipelines are more exposed to the 

loads from external hazards. These pipes are more vulnerable to damage than larger ones. Thus, 

trawl and fishing gears are able to hit and drag over them at an easy rate.  Statistics shows that 

2.4 and 6 inches pipes suffer a lot.  

 

Figure 14: Pipeline diameter (inches) and location of impact incidents resulted in leakage 

Recorded impact consequences are denting, ovalization, damaged coating, buckling, and pipeline 

displacement. Some of them are found on the same lines. In order to get rid of these outcomes - 

repair, pipe section replacement, and additional protection methods are used then. New safeguard 

procedures can be developed and applied as well. In addition, it is recommended to take periodic 

monitoring and survey along the pipeline in order to ensure its integrity and dependable service.   

3.2.4 External hazards. Anchoring 

Nowadays ship transport is getting more and more popular. It is still one of the most effective 

ways to carry the passengers and cargo from one place to another. Despite increasing 

attractiveness of sea transport, a lot of problems arise sometimes: sinking and grounding ships, 

collisions of vessels, incorrect ship anchoring and uncontrolled anchor drops over the subsea 

objects (pipelines, cables, manifolds, etc.). Several pipeline routes are crossed by ship traffic 

zone. So, unsuccessful ship anchoring may result in loss of pipeline integrity and other 

undesirable effects. Damage degree will change from case to case, depending on pipeline unique 

properties; type and parameters of the vessel; characteristics of anchor and anchor chain; water 

depth, environmental conditions and so on. Thus, a lot of attention should be paid to these factors 

as well as ship traffic information.  
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Since this part of the paper is mainly focused on the analysis of PARLOC database, more 

detailed discussion on vessel anchoring hazards will be presented in the next sections.  

Anchoring incidents. PARLOC 2001  

According to the data contained in the PARLOC 2001, 44 pipeline failures have occurred due to 

unsuccessful ship anchoring. 40 cases are recorded on the operating steel lines, 2 cases are 

detected on the flexible lines and remaining 2 have been found on the fittings of rigid pipelines.  

Most failures are caused either by anchoring of the ship (supply boat) or construction vessel.  It 

is shown in Figure 15 below. 

Anchoring Incidents 

Steel lines Flexible lines 

  

Figure 15: Causes of anchoring incidents to operating steel and flexible pipelines 

Charts present what types of vessels have greater impact on pipeline integrity. There are 19 

incidents attributed to incorrect ship anchoring (18 cases are recorded on steel pipes, and 1 case 

is recorded on flexible), and further 11 incidents (involving only rigid pipelines) are occurred 

due to anchoring procedure of construction vessels. Two fitting failure causes are not identified.  

With regard to the incident location data (Figure 16), Safety Zone and Mid Line are the most 

exposed to the anchor damage pipeline zones. Pipeline diameter is also a point of issue. Its size is 

one of the major criteria for the selection of protection philosophy. For instance, the pipeline can 

be buried, covered with the rock or coated with concrete, etc. Protection methods help to provide 

some resistance against third party loads (Verley, 1994). Decision pipeline protection philosophy 

is usually taken from case to case depending on the unique characteristics of pipeline and 

environment as well. Otherwise, according to PARLOC 2001, it is seen that the largest leaked 

pipeline affected by an anchor is 16 inch diameter line and the smallest one is 2.4 inch diameter 

pipe. So in practice, smaller diameter lines (that are supposed to be protected) are more 

vulnerable to harm.   
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Figure 16: Pipeline diameter (inches) and location of anchoring incidents resulted in leakage 

During anchoring activity, pipelines resting on the seafloor might be hooked and moved off from 

their initial position. It should be noted that theoretically not all the pipes can be hooked. 

Relation between pipeline diameter and geometrical parameters of anchor is quite significant. It 

is difficult to imagine that large diameter export line gets stuck inside the shank and flukes of 1
st
 

class anchor (the smallest one). Discussion on pipeline and anchor parameters will be given 

hereinafter.  

Consequences of interaction between the anchor and submarine pipeline vary a lot: from non-

visible effects defined as local to ruptures of pipe bodies and product leakages. Loss of 

containment is detected in 11 cases (9 in pipelines and 2 in fittings). Along with that, some rigid 

lines are dented, displaced, or have their concrete coating damaged. As to the flexible, one is 

broken, and another has external fault. Some repair procedures may be needed after such 

incidents, consequences of which are incompatible with future operation of pipelines.  

In order to ensure safe and continuous operation of pipelines, the following solutions may be 

implemented, especially in areas with high ship traffic (Brown, 1972): 

 Pipeline burial; 

 Using of high strength concrete coating; 

 Application of rock dumping; 

 Using of reinforcing steel/extra steel; 

 Installation of concrete sections. 

Prior to implementing one or another protection system, it is important to establish its technical 

feasibility. In such a way, it will guarantee pipe safety during its design life (Brown, 1972): 
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Summarizing the part devoted to the main incident causes, namely corrosion, material defect, 

impacts and anchoring, one shall see how many subsea pipelines suffer from spontaneous and 

external hazards even in era of technology growth. Some of these incidents occur more often 

than other. Some of them are recorded on the same lines.  

Various pie diagrams and bar charts are presented in order to illustrate the whole picture of 

failures consequences. These consequences are distinguished between rigid, flexible lines and 

pipe fittings. Special attention is given to leakages. Since the total number of steel pipelines 

exceeds the number of flexible lines, the leakage on steel lines is detected more often than on 

flexible ones. Incident cause and zone identification are determined and analyzed. The same 

procedure is done with regard to pipeline diameter. This kind of information is very useful for 

the selection of pipeline protection, which significantly reduces the extent of damage or 

eliminates it at all. Certain outcomes are huge and dangerous; they can result in pollution, fatality 

and loss of company reputation. Hereby, necessary safeguard measures for each type of incidents 

are to be specified during pipeline design and implemented before the start of the operation 

phase. In case of serious pipeline damage, some degree of repair is needed in an effort to return 

the pipeline to normal operational mode.   

Speaking about the databases, one shall understand how important it is to use them. Statistical 

studies are widely used for updating of standards and design practices. Pipeline databases 

contain different information that helps to recognize the factors affecting the safety of existent 

and new lines. Moreover, statistics is needed for risk analysis procedure, which is basic for any 

project start.  

There will always be failures or disasters (Spurrier, 2009). This statement may be confirmed by 

the bathtub curve, showing the relation between failure rate and age of the system (Figure 17).  

 

Figure 17: Bathtub curve (“Further information on ageing and life extension”, n.d.) 

As seen from the figure, bathtub curve characterizes three main phases of the system: 

I. Early-life failures – decreasing failure rate; 
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II. Random failures – stabilized failure rate; 

III. End-of-life failures – increasing failure rate.  

The first phase shows the possibility of pipeline failure due to design, fabrication or construction 

defects. The rate is very high at the beginning, but then it starts declining. The second phase 

points out failures coming from the external hazards, such as anchor damage, impact or harsh 

weather conditions. After that the curve behavior changes again, and the rate is increasing. End-

of-life failures are usually found because of pipeline ageing and wear. The most frequent causes 

here are corrosion, cracking, and welding issues etc. Mechanical system safety and integrity may 

be achieved by implementation of appropriate design, controlled manufacturing and construction 

works, as well as periodic maintenance and inspection. These measures also help to extend the 

useful life of the system (Figure 17).  

All mentioned above highlight how important it is to record disasters which can occur within the 

whole life of the pipeline system. Collection of incidents information provides an excellent 

opportunity to learn from past experience and to eliminate risks in the future.  
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CHAPTER 4. SHIP ANCHORING EFFECT ON SUBMARINE PIPELINES 

Pipelines are the most popular mean of hydrocarbon transportation. With the expansion of 

pipeline network system and large amount of maritime activities, the potential damage to subsea 

lines increases a lot. Analyzing pipeline failure database one can determine that incorrect ship 

anchoring may result in huge consequences for the pipeline (rupture, leakage), environment 

(pollution) and people around (fatality). Even if the anchor damage is categorized as accidental 

event with the probability of occurrence less than the probability of occurrence of other 

unplanned events, it is still one of the major threats to the pipeline integrity. Not only offshore 

pipelines suffer from the action of anchor arrangement. Submarine cables that function as 

communication lines, carrying data and Internet, can be hooked, damaged and/or torn by the 

anchors as well.  

In an attempt to show all the significance of anchor damage incident analysis, two tables (Table 

7 and Table 8), containing information about worldwide offshore pipelines and submarine cables 

failures due to anchor hazards, have been compiled. As demonstrated, great number of accidents 

has occurred throughout XX and XXI centuries (Figures 18, 19). Dragged and dropped anchors 

are detected to be the main pipeline and cable failure causes.  

 

Figure 18: Pipeline anchor damage incidents number in XX-XXI centuries 

 

 

Figure 19: Cable anchor damage incidents number in XX-XXI centuries 
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Table 7: Collected data regarding to pipeline anchor damages 

Pipeline Year Location Cause Vessel type Consequence Source 

Natural gas 

pipeline  
2014 

Copano Bay, 

Gulf of 

Mexico (GoM) 

Dragging  

anchor 
Boat 

Snagging of the pipeline. 

Pipeline rupture. Fire on the 

water.  

(“Natural gas pipeline rupture causes 

fire on the water in Copano Bay, 

Texas”, 2014) 

West African Gas 

Pipeline 
2012 

Nigeria, Benin, 

Togo, Ghana 

waters 

Dragging 

anchor 

WAGPCo 

vessel taken 

over by pirates 

Damage of two pipeline 

sections.  

(“WAGPCo loses $30m to pipeline 

rupture, to resume operations soon”, 

2012) 

Trans 

Mediterranean 

(natural gas 

pipeline) 

2008 

The 

Mediterranean 

Sea 

Dragging 

anchor 
- 

Catastrophic failure and a 

simultaneous l4% reduction 

in a parallel subsea high-

pressure pipeline. 

(Sim, 2010) 

Submarine 

ethane gas 

pipeline 

2008 
Port Phillip, 

Australia 

Dragging  

anchor 

Containership 

"APL Sydney"  

Snagging of the pipeline. 

Pipeline displacement. Scour 

marks, and some blowout 

craters. 

(Australian Transport Safety Bureau, 

2008) 

Kvitebjørn gas 

pipeline 
2007 

Norwegian 

sector of the 

North Sea 

Dragging 

anchor (10 

ton)  

Large 80 000 - 

100 000 DWT 

vessel 

A localized and sharp 17 

degree dent and around half a 

meter of damaged coating 

exposing bare metal. The 

pipeline was dragged 53 m 

out of the installed position.  

(Gjertveit, Berge & Opheim, 2010) 

Central Area 

Transmission 

System  

2007 
UK sector of 

the North Sea  

Dragging 

anchor 

Motor Vessel 

"Young Lady" 

The pipeline was lifted out of 

the trench and dragged 6 m 

laterally. Damage of outer 

protective layers. 

(Woods, 2011) 

High Island 2006 The Galveston Dragging Liberian oil Rupture resulted in an oil (U.S. Department of the Interior 

http://www.sott.net/article/276326-Natural-gas-pipeline-rupture-causes-fire-on-the-water-in-Copano-Bay-Texas
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Pipeline System 

(oil pipeline) 

Lightering 

Area in the 

GoM 

anchor tanker leakage of approximately 870 

barrels. 

Minerals Management Service, 2008) 

Canyon Chief 

Gas Export 

Pipeline  

2005 GoM 
Dragging 

anchor 

Semi-

submersible oil 

rig 

Hook by an anchor. The 

resulting damage pulled the 

pipeline laterally 1 500 ft 

from its original path. 

(Alexander et al., 2014; Heallen, 2013) 

Equilon Pipeline 

Co. crude oil line 
2000 

Louisiana, 

GoM  

Dropped 

anchor (8 

ton) 

Ship 

About 2984.12 barrels of 

crude oil were spilled, 

creating a slick (2 miles wide 

by 7 miles long). 

(List of pipeline accidents in the United 

States in the 21st century, 2015) 

Natural gas 

distribution line 
1999 

Hudson River, 

New York 

Anchor and 

anchor chain, 

the flukes of 

the anchor 

caught the 

pipe 

Cement barge 

Maria T 

Gas escape from the pipe, 

"boiling water" effect. 
(United States Coast Guard, 1999) 

Condensate line 1998 
GoM, Block 

EC334 

Dragging 

anchor during 

rescue 

operations 

Service vessel 
Leakage of 1 211 barrels of 

condensate.  

(U.S. Department of the Interior 

Minerals Management Service, 2002) 

Amethyst gas 

pipeline 
1997 Humber estuar 

Dragging 

anchor 
Capella tanker 

The anchor snagged on the 

Amethyst gas pipeline. 

(United Kingdom. Marine Accident 

Investigation Branch, 2007) 
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Tennessee Gas 

Pipeline 
1996 

Tiger Pass, 

Louisiana, 

GoM 

Dropped 

stern spud 

(large steel 

shaft that is 

dropped into 

the river 

bottom to 

serve as an 

anchor  

during 

dredging 

operations)  

Dredge Dave 

Blackburn 

Rupture of natural gas steel 

pipeline. The pressurized 

(about 930 psig) natural gas 

released from the pipeline 

enveloped the stern of the 

dredge and an accompanying 

tug.  

(Washington National Transportation 

Safety Board, 1996) 

Amethyst gas 

pipeline 
1996 Humber estuar 

Dragging 

anchor 

Kandilousa oil 

tanker 

The anchor snagged the 

Amethyst pipeline, parted an 

ethylene feeder line 

and a power cable. The gas 

pipeline remained intact.  

(United Kingdom. Marine Accident 

Investigation Branch, 2007) 

Chevron 

Corporation 

pipeline offshore 

(oil line) 

1991 
El Segundo, 

California 
Anchor Ship 

1587.3 barrels of light oil 

spil. Wildlife was affected. 

(List of pipeline accidents in the United 

States 1975 to 1999, 2015) 

Condensate line 1990 
GoM, Block 

SS281 

Dragging 

anchor 
- 

Leakage of 14 423 barrels of 

condensate.  

(U.S. Department of the Interior 

Minerals Management Service, 2002) 

Amoco pipeline 

(oil line) 
1988 

Galveston 

Block A-2, 

GoM 

Anchor Sypply boat 
15 576 barrels leakage of 

crude oil into the Gulf. 

(List of pipeline accidents in the United 

States 1975 to 1999, 2015; Strating, 

1981) 

Oil pipeline 1981 
GoM, Block 

SP60 
Anchor Service vessel 

Leakage of 5 100 barrels of 

oil.  

(U.S. Department of the Interior 

Minerals Management Service, 2002) 
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Thistle-Dunlin 

(oil line) 
1980 North Sea 

Dragging 

anchor 
Vessel 1000 tons of oil leakage. (Orszulik, 2008) 

High pressure 

natural gas 

pipeline 

1979 
Mississippi 

River Delta 

Mooring 

spud  
Crane barge  

Four workers drowned 

attempting to escape a fire.  

(Washington National Transportation 

Safety Board, 1980) 

Norpipe oil 

pipeline (Ekofisk 

to Teesside) 

1977 North Sea 
Dragging 

anchor 

50 000 DWT 

tanker, 

Liberian 

Tanker Marion 

5-inch dent. (Gowen, Goetz & Waitsman, 1980) 

Pennzoil pipeline  1974 

GoM, Eugen 

Island Block 

317 

Dragging 

anchor 
- 19 833 barrels of oil spill. (Strating, 1981) 

Oil pipeline 1969 
GoM, Block 

MP299 

Dragging 

anchor 
- 

Leakage of 7 532 barrels of 

oil.  

(U.S. Department of the Interior 

Minerals Management Service, 2002) 

Oil pipeline 1968 
GoM, Block 

ST131 

Dragging 

anchor 
- 

Leakage of 6 000 barrels of 

oil.  

(U.S. Department of the Interior 

Minerals Management Service, 2002) 

Humble oil 

pipeline 
1967 

GoM, Block 

WD73 

Anchor tore a 

hole in a 

corroded 

pipeline 

- 
Leakage of 160 638 barrels of 

oil.  

(U.S. Congress, Office of Technology 

Assessment, 1990; U.S. Department of 

the Interior Minerals Management 

Service, 2002) 

Table 8: Collected data with regard to cable anchor damage 

Cable Year Location Cause Vessel type Consequence Source 

Transpower and 

a fibre-optic 

communication 

cable 

2015 Cook Strait  Anchoring Boat Damage of cable.  
(“Big fine for anchoring in zone”, 

2015) 
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Subsea fibre-

optic cables  
2014 Off Singapore 

Dropped 

anchor  

16,800-dwt 

products 

tanker Glory 

Star  

Damage of cable.  
(“Vietnamese tanker seized over 

damage to cable”, 2014) 

The 20,000-

kilometer-long 

Asia-America 

Gateway (AAG) 

cable 

2014 
Off the coast 

of Vietnam 

Dragging 

anchor  
Boat Damage of cable.   (Schatz, 2014) 

Subsea 

telecommunicatio

n cable  

2014 

Off the coast 

of Atlantic 

Canada 

Dragging 

anchor  

Newfoundland 

fishing vessel  
Cable break. (Cuthbertson, 2015) 

Power submarine 

cable  
2014 

Guimaras 

Island  

Dragging 

anchor  

Cargo vessel 

MV Ocean 

Prosperity 

Cable damage. 

(“Damaged power submarine cable 

causes blackout in Guimaras”, 2014) 

 

4 submarine 

cables linking 

East Africa to the 

Middle East and 

Europe 

2012 

The Red Sea 

near Mombasa, 

Kenya 

Dropped 

anchor  
Ship Damage of cables. (Madory, 2012) 

Major submarine 

cable  
2012 

60 kilometers 

off the coast of 

Singapore 

Anchoring Ship Cable damage. (Lavallee, 2013) 

 SEA-ME-WE 3  2011 
Suez canal, 

Egypt 
- - Cable was cut off. 

(2011 submarine cable disruption, 

2013) 
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I2i (submarine 

telecommunicatio

ns cable 

connecting India 

to Singapore) 

2011 

Between 

Chennai, India 

and Singapore 

line 

- - Cable was cut off. 
(2011 submarine cable disruption, 

2013) 

FALCON cable 

connects several 

countries in the 

Persian Gulf and 

India. 

2008 
Near Bandar 

Abbas, Iran 
Anchoring Ship Cable is cut off.  

(2008 submarine cable disruption, 

2015) 

SEA-ME-WE 4 

and FLAG 

Telecom cables in 

the 

Mediterranean 

Sea. 

2008 
Near 

Alexandria 

Dragging 

anchor  
Ship Damage of cables. 

(2008 submarine cable disruption, 

2015) 

FALCON cable  2008 

Between 

Muscat, Oman 

and Dubai, 

UAE 

Abandoned 

anchor 

weighing 5-6 

tonnes 

Ship Cable is cut off.  
(2008 submarine cable disruption, 

2015) 

DOHA-HALOUL 

cable connecting 

Qatar to the 

United Arab 

Emirates 

2008 

Between the 

Qatari island 

of Haloul and 

the UAE island 

of Das 

Anchoring Ship  Damage of cable.  
(2008 submarine cable disruption, 

2015) 

SEA-ME-WE-4 2008 
Near Penang, 

Malaysia 
Anchoring Ship Damage of cables. 

(2008 submarine cable disruption, 

2015) 
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FLAG Telecom, 

SEA-ME-WE 4, 

and SEA-ME-WE 

3 cables, linking 

Alexandria, 

Egypt, Sicily, and 

Malta; GO-1 

cable   

2008 Off Sicily 
Dragging 

anchor  

Oil tanker of 

244m length 

with a gross 

tonnage of 

58,000 tons  

Cables are cut. 
 (2008 submarine cable dispruption, 

n.d.; Green & Brooks, n.d.) 

6 cables: one 

power cable, 1 

electrode cable, 1 

fiber-optic cable 

and 3 

communication 

cables 

2006 The Baltic Sea 
Dragging 

anchor  
Cargo ship   Damage of cables. 

(“Cargo ship damages 6 submarine 

cables in the Baltic”, 2007) 

Submarine cable  2005 

Between 

Scania and 

Bornholm 

Anchor loss Barge Cable is torn in two parts.  (“Blackout on Bornholm”, n.d.) 

4 trans-Atlantic 

cables 
1986 

Off the coast 

of New Jersey 

Dragging 

anchor  

Cargo ship 

M/V 

Aconcagua 

Damage of hot-lines between 

the US and the USSR. 

(Burnett, Beckman & Davenport, 

2013) 

Electric cable  1955 Norway 
Dropped 

anchor  
Ship Cable damage. 

(Winiger, Koziol, Koch & Reinhard 

Zimmermann, 2011) 

Telegraph cable 1842 
East River, 

New York 
Anchoring Ship Cable damage.  

(Carter et al., 2009) 
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4.1 SHIP ANCHORING  

There are a lot of lines laid in shallow water. Some parts of their routes may be crossed by 

shipping lanes, and other parts may be located near to the port or harbour. (Figure 20) Such a 

common and controlled procedure as vessel anchoring may result in adverse effects for offshore 

pipelines.  

 

Figure 20: Offshore pipeline zones (Liu, HU & Zhang, 2013) 

Anchoring is defined as lowering of weight (anchor, anchor chain or rope) to the sea bottom in 

order to hold the ship in a certain position (“Anchors and anchoring”, 2012). Ship anchoring 

procedure is usually distinguished between two scenarios (Hvam, Bruschi, Tommez, & Vitali, 

1990):  

1. Ordinary (routine) anchorage is carried out in a prescribed and most suitable area, which 

extends 1 km on both sides of pipeline corridor. That is why ordinary procedure is not 

thought to be risky for the pipeline operation; 

2. Extraordinary anchorage may be carried out within unpredicted zone (shipping lanes or 

pipe corridor) in case of emergency (engine failure, ship collision, loss of control) and 

dangerous situation for the surrounding vessels and installations. Thus, emergency 

anchoring becomes very critical for the pipelines.  

Along with these two scenarios, there is also planned anchoring that is taken in the vicinity of 

offshore structures and pipelines during construction works. Extraordinary and planned 

operations need to be performed carefully and in accurate way. In spite of accumulated 

knowledge and experience, there are still a lot of incidents associated with incorrect and unsafe 

ship anchoring resulting in catastrophic damages to pipelines and submarine cables. The reasons 

for them may be different, but the main ones are human error, failure of navigational system, and 

harsh weather conditions.  

It is always a challenge to deploy the anchors, when the ship is on its way. Sometimes the 

problem resides in unsatisfactory maintenance of anchor winch arrangement: bad condition of 
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turnbuckle; break of the chain stopper; jerk in a chain; inadequate applications of chain lock, and 

band brakes (DNV Recommended Failure Rates for Pipelines, 2010). All these may lead to 

uncontrolled actions with three possible outcomes:  

1. Anchor is dropped within 1 km. The penetration depth is not large, so the anchor is easily 

recovered.  

2. Anchor is fully seated in the seabed. Maximum penetration and holding power are 

provided and it can result in chain and bitter end breaks; some problems in ship 

maneuvering system also arise. Anchor can be lost. 

3. Anchor is not seated and dragged for some distance along the seabed until it hooks the 

pipeline or structure. Ship anchor drags because the external forces are greater than 

holding power of the anchor and chain. Anchor is lost.  

Three outcomes denote that subsea pipeline may be hit from the top or displaced by dropped and 

dragged anchors correspondingly. In order to get a broad picture of pipeline damage, it is 

necessary to know key factors, particularly affecting the interaction between pipeline and anchor, 

namely: 

 Vessel characteristics: type, identification number, length, breadth, drought, speed, and 

vessel movements tracks, etc.; 

 Anchor arrangement parameters: anchor type, class and mass; chain type, length and 

diameter, etc.; 

 Pipeline characteristics: route identification, seabed profile, material type (steel or 

flexible) and grade, diameter, wall thickness, coating thickness, type of protection, etc. 

In addition to these factors, it is essential to take into account marine activity details such as ship 

traffic volume (intensity) and vessel population (composition). It should be mentioned that the 

number of emergency situations is heavily dependent on the number of ships passing the lines. 

Hence, the combination of these data becomes very useful.  

Moreover, not only anchoring issues, but also a set of other criteria, become an actual reason for 

pipeline failure. Set of key factors and criteria relevant to the pipeline damage will be covered 

hereinafter.   

4.1.1 Vessel characteristics 

A vast number of different vessels cross over huge territories. Passing vessels vary in class and 

area of use. Energy Report categorizes six ship classes with the ranges of Equipment Number 

(EN) and corresponding values of displacement, chain length and anchor mass (Table 9). 

Table 9: Ship class definition (DNV Recommended Failure Rates for Pipelines, 2010) 

Class 
Displacement, 

tonnes 

GRT 

from 

GRT 

to 

EN 

from 

EN 

to 

Length of  

anchor 

chain, in 

Anchor 

mass, kg 

I 1500 100 499 280 320 179 900 

II 3600 500 1599 450 500 207 1440 

III 10000 1600 9999 980 1060 248 3060 

IV 45000 10000 59999 2870 3040 317 8700 
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V 175000 60000 99999 5800 6100 372 17800 

VI 350000 100000 - 8400 8900 385 26000 

All of the vessels can be attributed to a certain category that is accepted by naval architects 

(Ship, 2015). Several types of the ships are shown in Figure 21. 

 

Figure 21: Illustration of vessel types 

Each ship has its name and unique numbers like IMO (International Maritime Organization) and 

MMSI (Maritime Mobile Service Identity). These numbers are used to identify vessel location 

and set of specific parameters: tonnage, hull, cargo, and machinery, etc. Such data may be found 

in Vessel Register sources (for instance, DNV GL). Moreover, the identification numbers also 

help to determine vessels movements’ details (in particular, shipping intensities and traffic 

composition), and tracking data, that can be retrieved from AIS (Automatic Identification 

System) surveys.  

Types of vessels 

High speed craft 

Offshore vessels 

Supply vessel 

Laying vessel 

Accomodation 
barge 

FPSO 

Drilling rigs 

Fishing vessel 

Harbour work craft 

Cable layers 

Tugboats 

Dredgers 

Floating cranes 

Passenger vessels 

Special-purpose 
vessels 

Warships 
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4.1.2 Anchoring equipment characteristics 

Equipment number 

Once the IMO-no is known, then it is possible to get information about anchoring equipment, 

which varies with the type of vessels. For the purpose of getting clear understanding of the 

equipment, some definitions and interpretations are taken from the DNV Rules for Classification 

of Ships document (DNV Rules for Classification of Ships, 2011).  

The anchoring equipment required is the minimum considered necessary for temporary mooring 

of a vessel in moderate sea conditions when the vessel is awaiting berth, tide, etc. The equipment 

is therefore not designed to hold a vessel off fully exposed coasts in rough weather or for 

frequent anchoring operations in open sea. In such conditions the loads on the anchoring 

equipment will increase to such a degree that its components may be damaged or lost owing to 

the high energy forces generated. The anchoring equipment required by the Rules is designed to 

hold a vessel in good holding ground in conditions such as to avoid dragging of the anchor. In 

poor holding ground the holding power of the anchors will be significantly reduced. It is 

assumed that under normal circumstances the vessel will use only one bower anchor and chain 

cable at a time. 

As noted before, each ship has its own anchoring system (anchor and its attachment to the ship), 

the size of which is directly dependent on the ship characteristics. To make decision on the 

anchor size it is needed to find an Equipment Number using specified formula from the Rules 

(DNV Rules for Classification of Ships, 2011): 

𝐸𝑁 = Δ2/3 + 2 ∙ 𝐵 ∙ 𝐻 + 0.1 ∙ 𝐴      (1) 

𝐻 - effective height from the summer load waterline to the top of the uppermost deckhouse, to be 

measured as follows: 

𝐻 = 𝑎 + ∑ℎ𝑖             (2) 

𝑎 - distance from summer load waterline amidships to the upper deck at side; 

ℎ𝑖 - height on the center line of each tier of houses having a breadth greater than 𝐵/4. For the 

lowest tier, ℎ𝑖  shall be measured at center line from the upper deck, or from a notional deck line 

where there is local discontinuity in the upper deck; 

𝐴 - area in profile view of the hull, superstructures and houses above the summer load waterline, 

which is within 𝐿 of the ship. Houses of breadth less than 𝐵/4 shall be disregarded; 

𝛥 – displacement. 

NB. The Equipment Numeral formula for required anchoring equipment is based on an assumed 

current speed of 2.5 m/s, wind speed of 25 m/s and a scope of chain cable between 6 and 10, the 

scope being the ratio between length of chain paid out and water depth (DNV Rules for 

Classification of Ships, 2011). 

As soon as the EN has been found, one can define what kinds of anchor and anchor chain 

correspond to a given vessel. Anchoring equipment may be selected according to the 

requirements from the Equipment Tables provided by the Rules (Figure 22).  
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Figure 22: Part of the Equipment Table from the DNV Rules for Classification of Ships 

document 

Anchor  

Speaking about the anchors in general, there are several types of them developed for temporary 

or permanent usage: gravity and drag embedment; pile and suction anchors. The most traditional 

one for the vessels is drag embedment anchor (DEA) designed to penetrate into the seafloor. 

DEA can be classified as stocked or stockless one (widely used). More detailed description of 

various anchor types is presented in Table 10 (Sriskandarajah & Wilkins, 2002; Aberdeen. 

Health & Safety Executive, 2009). 

Table 10: Anchor types 

Illustration Name Peculiarities 

 

 

Hook 

(traditional fisherman 

and grapnel) 

 Has small fluke surface and heavy, 

narrow arm; 

 Penetrates into rock, heavy kelp, eel 

grass, coral and hard sand; 

 May snag unprotected (unburied) 

pipelines. 

 

Plough  May bury itself in the sea bottom; 

 Penetrates in both soft mud and rock. 
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Fluke  Has large fluke areas; 

 Develops very large resistance to the 

loads; 

 Has less ability to penetrate; 

 Has light weight. 

 May threaten shallow trenched pipelines.  

Anchor rode 

The anchor is attached to the ship by the rode, which is quite critical item of anchoring system as 

well. Anchor rode can be rope, chain or a combination of them. Every type has its own 

advantages and disadvantages: wire rope is more flexible, while chain is more robust. 

Nevertheless, chain is supposed to be the most applicable mode of anchor and vessel connection 

(Sriskandarajah & Wilkins, 2002).  

One can distinguish between stud-link (for temporary purposes) and stud-less (for permanent 

purposes) chains (Figure 23). Each of them varies in size (diameter) and material grade, which 

are chosen in relation to the parameters of the anchor as shown in the Equipment Table (Figure 

22). 

 

Figure 23: Stud-link and stud-less chain configurations (“Mooring chain”, n.d.) 

4. 2 PIPELINE DAMAGE CRITERIA  

On the basis of ship, anchor and pipeline parameters it is possible then to highlight main damage 

criteria influencing effect of pipeline-anchor interaction. Six damage criteria are chosen to be 

principle for the assessment of the threats from anchors to the pipelines: 

1. Chain length; 

2. Anchor fluke size; 

3. Anchor penetration depth; 

4. Marine physical environment; 

5. Applied forces from the anchor; 

6. Pipeline resistance. 
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4.2.1 Anchor fluke size 

It is evident that not all the anchors are capable of hooking on to the offshore pipelines. The key 

parameter here is the anchor fluke (“teeth”) size.  There are two ways (a and b) of hooking the 

pipeline (Figure 24). The first figure below (a) shows the configuration of pipeline being stuck 

between one fluke and shank of the anchor. Pipe diameter and anchor size relation for this case is 

as written: 

𝐶⊥ ≥ 𝑑/2                        (3) 

𝛼 - angle between fluke and shank; 

𝐶 - length of fluke; 

𝐶⊥ − projected fluke length; 

𝑑 - outer diameter of steel pipe (w/o specifying the coating). 

Another way of line hook is presented on the second figure (b). It is shown that the pipeline can 

be stuck between the plane of two flukes and anchor shank correspondingly. The relation here is 

as specified: 

𝐶′⊥ ≥ 𝑑/2                        (4) 

𝛽 - angle between the plane of flukes and the shank;  

𝐶′ - median of flukes plane;  

𝐶′⊥ - projected median; 

𝑑 - outer diameter of steel pipe (w/o specifying the coating). 

 

Figure 24: Anchor size and pipeline diameter relation 

It is possible to determine the maximum hook diameter for each anchor size. Thus, pipe-anchor 

interaction studies are simplified a lot.  
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4.2.2 Relation between chain length and water depth 

Chain length is one of the topical questions. It should be kept in mind that the relation between 

water depth and chain length does not equal to one. In case if ship is moving forward with the 

deployed anchor arrangement, the chain and anchor will never be hanging vertically. That is 

precisely why the chain length has to be larger than the water depth, so that the relation should 

be less than one (Figure 25). 

𝑑

𝑙
< 1                                  (5) 

𝑑 – water depth; 

𝑙 – chain length. 

 

Figure 25: Relation between water depth and chain length (DNV Recommended Failure Rates 

for Pipelines, 2010) 

4.2.3 Anchor penetration depth 

Anchor parameters and soil conditions affect the anchor penetration depth. This value is 

significant for the damage assessment of buried lines. Since the pipeline is trenched, the anchor 

should penetrate deep enough to hook the pipe with its flukes. 

A lot of papers on the analysis of penetration depth exist.  Most of them are based on the 

comparison of analytical solution results with the test data. Core task here is to understand a 

relationship between the penetration depth, tension and drag force acting on the anchor. It is 

important to know how the relationship changes with different types of anchors and soil 

conditions. The easiest way to analyze the behavior of anchor flukes in the soil is to solve a set 

of equilibrium equations. One of such solutions is presented in the “Penetration and Load 

Capacity of Marine Drag Anchors in Soft Clay” article (1998). The equations are developed in 

accordance with the proposal that anchor movement does not occur until the soil resistant forces 
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are overcome (Figure 26). The first three equations govern anchor equilibrium during its 

penetration, while the fourth one describes chain performance (Thorne, 1998; DNV-RP-E301, 

2012).  

𝑀: −𝑇𝑎 ∙ 𝑆𝑖𝑛(𝜃 + 𝜃𝑎) ∙ 𝑆𝑥 +𝑊 ∙ 𝐶𝑜𝑠(𝜃) ∙ 𝑋𝑤 +𝑀 − 𝑇𝐷𝐹𝑀 + 𝑇𝑎 ∙ 𝐶𝑜𝑠(𝜃 + 𝜃𝑎) ∙ 𝑆𝑦 +𝑊 ∙

𝑆𝑖𝑛(𝜃) ∙ 𝑌𝑤 = 0              (6) 

𝑂𝑥: 𝑇𝑎 ∙ 𝐶𝑜𝑠(𝜃 + 𝜃𝑎) − 𝑇𝐷𝐹𝑃 +𝑊 ∙ 𝑆𝑖𝑛(𝜃) = 0    (7) 

𝑂𝑦: 𝑇𝑎 ∙ 𝑆𝑖𝑛(𝜃 + 𝜃𝑎) − 𝐹𝑛 − 𝑇𝐷𝐹𝑁 −𝑊 ∙ 𝐶𝑜𝑠(𝜃) = 0   (8) 

𝜃𝑎 = √
2 ∙ 𝑍 ∙ �̅�

𝑇𝑎
+ 𝜃0

2
 

𝑇𝑎  – chain tension in attachment point; 

𝜃 – angle of fluke to horizontal; 

𝜃𝑎 – angle of chain at anchor attachment to horizontal; 

𝑆𝑥 – x-coordinate of anchor shackle; 

𝑊 – submerged weight of anchor; 

𝑋𝑤 – x-coordinate of anchor center of gravity; 

𝑀 – moment exerted on fluke by soil; 

𝑇𝐷𝐹𝑀 – total moment of drag forces about center of fluke area; 

𝑆𝑦 – y-coordinate of anchor shackle; 

𝑌𝑤 – y-coordinate of anchor center of gravity; 

𝑇𝐷𝐹𝑃 – total drag force parallel to fluke; 

𝐹𝑛– normal force exerted on the fluke by the soil; 

𝑇𝐷𝐹𝑁 - total drag force normal to fluke; 

𝑄 – average normal force per unit length of chain; 

𝑍 – depth from the mud line to the anchor shackle; 

𝜃0– angle of the chain at the mud line to the horizontal. 

 

Figure 26: Equilibrium of anchor 
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Good studies results for both hard and soft soil are presented in DNV Recommended Failure 

Rates for Pipelines document (Table 11). Table shows the variation of anchor penetration depth 

and fluke length for different ship classes.  

Table 11: Estimation of anchor penetration depth (DNV Recommended Failure Rates for 

Pipelines, 2010) 

 

Displacement, 

tons 

Penetration 

depth, m 

Fluke 

length, m 

Hard soil 

(sand/hard 

clay) 

1500 0.60 0.84 

3600 0.65 0.91 

10000 0.89 1.26 

45000 1.30 1.83 

175000 1.64 2.31 

350000 1.87 2.64 

Soft soil 

(mud/soft 

clay) 

1500 1.79 0.84 

3600 1.94 0.91 

10000 2.68 1.26 

45000 3.89 1.83 

175000 4.91 2.31 

350000 5.62 2.64 

It is seen from the table that the maximum penetration depth of the flukes is found in soft clay 

and mud.  

NB. Anchor penetration depth check is not going to be included into the analyses. In the case 

study it is assumed that all the anchors have already broken out of the sea bottom prior to 

hooking the pipe.  

4.2.4 Marine physical environment 

Action of the external forces on the vessel (sometimes exceeding the value of anchor holding 

power) can lead to unfavorable events. These forces are usually created by the marine physical 

environment. So that wind, currents and waves are capable of generating horizontal and vertical 

forces that give rise to various vessel motions. (Figure 27) In such cases the anchor can be 

broken free and then dragged along the seabed. The latter may result in huge consequences for 

both anchor arrangement system itself (break of the rode, loss of the anchor, etc.) and submarine 

pipelines and cables as well (damage, rupture, etc.) (Gudmestad, 2014).  
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Figure 27: Vessel motions (Gudmestad, 2014) 

4.2.5 Applied forces from the anchor 

Mainly two anchoring operation modes characterize pipe-anchor interaction scenario. These 

modes are dropped and dragged anchors; and they are supposed to be the dominant causes of 

pipeline failure among all other external hazards.  

Dropped anchors  

Dropped from the vessel anchor is capable of hitting the pipeline vertically and causing localized 

deformations like coating crush and deflection of the steel shell (dent) (Figure 28). The duration 

of this mode is milliseconds. Assuming that all the impact energy is absorbed by the capacity of 

the pipeline and its protection, one shall find out that kinetic energy of the dropped anchor is 

very critical for the assessment of pipe local damage (Hvam, Bruschi, Tommez, & Vitali, 1990). 

 

Figure 28: Dropped anchor mode (Hvam, Bruschi, Tommez, & Vitali, 1990) 

From the basis of classical mechanics it is known that kinetic energy (𝐸𝑘) of any object is a 

function of its mass (𝑚) and impact velocity (𝑣):  

𝐸𝑘 =
1

2
∙ 𝑚 ∙ 𝑣2     (9) 

𝑣 = 𝑣𝑇        (10) 
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Impact velocity is to be defined as terminal velocity of the object falling free in the water 

medium. The value of the terminal velocity is affected by the object shape and mass, and may be 

calculated from the Newton’s second low:  

(𝑚 − 𝑉 ∙ 𝜌𝑤) ∙ 𝑔 =
1

2
∙ 𝜌𝑤 ∙ 𝐶𝐷 ∙ 𝐴 ∙ 𝑣𝑇

2    (11) 

𝑣𝑇 = √
2∙(𝑚−𝑉∙𝜌𝑤)∙𝑔

𝜌𝑤∙𝐶𝐷∙𝐴
      (12) 

𝑚 – object mass; 

𝑔 – acceleration of gravity; 

𝑉 – object volume (equals to the volume of the displaced water); 

𝜌𝑤  – water density; 

𝐶𝐷  – object drag coefficient; 

𝐴 – object area in the direction of the flow; 

𝑣𝑇 – terminal velocity. 

Moreover, there is an added hydrodynamic mass parameter that should be specified as well:  

𝑚𝑎 = 𝜌𝑤 ∙ 𝐶𝑎 ∙ 𝑉      (13) 

𝑚𝑎 – object added mass; 

𝐶𝑎 – object mass coefficient.  

Drag and mass coefficients can be taken from Table 12. 

Table 12: Drag and mas coefficients for specified objects shapes (DNV-RP-F107, 2010) 

Shape description Drag coefficient, CD Mass coefficient, Ca 

Slender 0.7-1.5 0.1-1.0 

Box 1.2-1.3 0.6-1.5 

Complex 0.6-2.0 1.0-2.0 

Taking into account terminal velocity and added mass, the formula of kinetic energy of dropped 

object can be rewritten as following: 

𝐸𝑘 = (𝑚 +𝑚𝑎) ∙ 𝑣𝑇
2             (14) 

When the kinetic energy of the impact object is determined, then it is possible to find the size of 

local damage (Figure 29). It is obvious that the impact scenario consequences vary based on the 

type of pipeline protection (DNV-RP-F107, 2010).  

 Bare pipeline: 

𝐸 = 16 ∙ (
2𝜋

9
)

1

2
∙ 𝑚𝑝 ∙ (

𝐷

𝑡
)

1

2
∙ 𝐷 ∙ (

𝛿

𝐷
)

3

2
      (15) 

𝐸 - absorbed energy; 

𝑚𝑝 - plastic moment capacity of the wall; 
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𝛿 - pipe deformation, dent depth; 

𝑡 - wall thickness (nominal); 

D - steel outer diameter. 

 

Figure 29: Schematic view of dent prediction model (DNV-RP-F107, 2010) 

 Pipeline with the concrete coating: 

𝐸 = Υ ∙ 𝑏 ∙ ℎ ∙ 𝑥0               (16) 

𝐸 = Υ ∙ 𝑏 ∙ 4/3 ∙ √𝐷 ∙ 𝑥0
3                                 (17) 

𝐸 – absorbed energy; 

Υ – crushing strength of concrete; 

𝑏 – breath of the impacting object; 

ℎ – depth; 

𝑥0 – penetration; 

𝐷 – pipeline diameter. 

 Gravel cover: 

𝐸 =
2

3
∙ 𝛾′ ∙ 𝐿 ∙ 𝑁𝛾 ∙ 𝑧

3                                            (18) 

𝐸 =
√2

4
∙ 𝛾′ ∙ 𝑠𝛾 ∙ 𝑁𝛾 ∙ 𝑧

4                                  (19) 

𝐸 – absorbed energy; 

γ′ – effective unit weight of the fill material; 

𝐿 – length of the impacting side; 

𝑠𝛾 – shape factor; 

z – penetration depth; 

Nγ – bearing capacity coefficient. 

Dragged anchors  

If the vessel is moving with the deployed anchor, the latter can hit and snag the pipeline resting 

beneath or laid on the seafloor (Figure 30). As the result, pipeline becomes dented, bended, 
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and/or lifted up from the bottom, and/or displaced from its initial position. In most cases pipeline 

loses its integrity and leaks.  

 

Figure 30: Dragged anchor mode (Hvam, Bruschi, Tommez, & Vitali, 1990) 

The interaction of the pipeline with the dragging anchor can be divided into two stages. Firstly, 

the anchor hits the pipeline with its kinetic energy. The outcome here will be just a break of the 

coating, since steel pipe absorbs the impact energy. The impact energy of dragged anchor is 

related to the velocity of slowing down vessel. Velocity of decelerating vessels can be 

distinguished between different vessel sizes: for large ships it is usually in range of 0.2-0.5 m/s, 

and for small ships it is in range of 1.0-1.5 m/s (Hvam, Bruschi, Tommez, & Vitali, 1990). 

Secondly, the anchor gets in contact with the pipeline, and applies a point load (snagging load) to 

it. In this case the line will be deflected, and the shell will be dented. When the line is snagged by 

the anchor, ship kinetic energy will be transferred to the pipeline until the rode, connecting 

anchor to the ship, breaks. Besides, anchor can catch the line, rotate over it and get released later. 

So, instead of snagging load, a pullover load will be applied to the line. The value of this load is 

smaller than value of snagging load. Pullover interaction may result in dents or gouges, and 

sometimes in line displacement. The duration of pull-over is 1-10 seconds, while the duration of 

anchor snagging is several minutes (Palmer-Jones, Turner, John & Nespeca, 2011). 

From the basis of work-energy principle, the work done by all forces acting on a particle (the 

work of the resultant force) equals the change in the kinetic energy of the particle (Work 

(physics), 2015). 

𝑊 = Δ𝐸𝑘                                               (20) 

𝑊 – work done; 

𝛥𝐸𝑘 – change in the kinetic energy. 

At that time, the work done by a constant force of magnitude F on a point that moves a 

displacement 𝑠 in the direction of the force is the product (Work (physics), 2015). 

𝑊 = 𝐹 ∙ 𝑠                                               (21) 

The parameter 𝑠 here may be explained as a distance needed to make the vessel to stop. 

Interesting to note that the larger the distance traveled by the ship the larger the lateral 

displacement of caught pipeline will be. Once the limiting strain is exceeded, the pipeline will 

damage after the interaction with the anchor. Moreover, not only the force from the kinetic 
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energy is to be considered. Another significant parameter is ship’s thrust force. So, the 

contribution of both forces becomes a factor for the pipe damage assessment (DNV 

Recommended Failure Rates for Pipelines, 2010). 

Furthermore, special attention should be given to the chain breaking load, which is the anchor 

dragging force applied to the pipeline. Checking the criteria for pipeline damage, it is safe to say 

that break load of the chain becomes basic parameter for the determination of damage 

occurrence for different cases. Breaking force value is related to the mass of anchor and varies 

with the diameter and material grade of the chain. The values of chain breaking load for six main 

ship classes are presented below (Table 13): 

Table 13: Chain breaking loads for the defined ship classes (DNV Recommended Failure Rates 

for Pipelines, 2010) 

Class 
Displacement, 

tonnes 

Anchor 

mass, kg 

Chain breaking load, kN 

Grade 

NV K1 

Grade 

NV K2 

Grade 

NV K3 

I 1500 900 368 389 476 

II 3600 1440 581 655 735 

III 10000 3060 1220 1370 1540 

IV 45000 8700 3230 3610 3990 

V 175000 17800 5720 6510 7320 

VI 350000 26000 - 9030 10710 

4.2.6 Pipeline resistance 

Limit state design 

Submarine pipelines are to be designed to withstand all the loads acting on them throughout its 

design life. Governing principle here is to define an acceptable limit or limit state. Once the 

acceptable limit is reached, the pipeline will not satisfy mandatory requirements any more.  

Four categories of limit state exist (Karunakaran, 2014): 

 Ultimate Limit State (ULS) involves the structural integrity or strength. The pipeline is 

designed to reach this limit state with very low probability.   

o Burst; 

o Collapse; local, global and propagating buckling. 

 Fatigue Limit State (FLS) involves the fatigue damage coming from accumulated cyclic 

dynamic loads. The pipeline is designed in such a way, so that its life (considering fatigue 

damage) meets or exceeds its design life. 

o Currents and waves; 

o Slugging. 

 Serviceability Limit State (SLS) involves the disruption of the pipeline use as planned. 

The pipeline is designed to be suitable for normal equipment operations.  
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o Extreme ovality of cross section; 

o Extreme deflection or vibration. 

 Accidental Limit State (ALS) involves pipeline failure due to accidental (infrequent 

loads).  

o Dropped objects; 

o Incidental overpressure; 

o Natural hazards; 

o Explosion and/or fire. 

One of the fundamentals of Limit State Design is Load and Resistance Factor Design (LRFD) 

format (Figure 31) (DNV-OS-F101, 2013). The principle is to verify that the design resistance is 

not exceeded by the design load effects: 

𝑓 ((
𝐿𝑆𝑑

𝑅𝑅𝑑
)
𝑖
) ≤ 1                                               (22) 

𝐿𝑆𝑑  – design load; 

𝑅𝑅𝑑  – design resistance; 

𝑖 – loading type. 

𝐿𝑆𝑑 = 𝐿𝐹 ∙ 𝛾𝐹 ∙ 𝛾𝐶 + 𝐿𝐸 ∙ 𝛾𝐸 + 𝐿𝐼 ∙ 𝛾𝐹 ∙ 𝛾𝐶 + 𝐿𝐴 ∙ 𝛾𝐴 ∙ 𝛾𝐶                        (23) 

𝑅𝑅𝑑 =
𝑅𝑐(𝑓𝑐,𝑡𝑐,𝑓0)

𝛾𝑚∙𝛾𝑆𝐶
                                               (24) 

𝛾𝐹, 𝛾𝐶 , 𝛾𝐸 , 𝛾𝐶 – load factors; 

𝛾𝑚, 𝛾𝑆𝐶 – resistance factors; 

𝐿𝑐 – characteristic load; 

𝑅𝑐 – characteristic resistance; 

𝑓𝑐 – characteristic material strength; 

𝑡𝑐 – characteristic thickness; 

o 𝑓0 – out-of-roundness of the pipe. 

 

Figure 31: Fundamentals of Limit State Design 
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Pipeline capacity 

As found above, large impact forces and snagging loads are applied to the pipeline during the 

interaction with the anchor. Even if the pipeline is designed properly, no one can exclude 

occurrence of failures due to external hazards that can introduce large forces and moments to the 

pipe. 

Capacity of the pipeline is heavily dependent on the amount of bending moment, axial force 

(tensile or compressive) and pressure (internal or external). These loads can affect the pipeline 

integrity singularly or in combination. Possible effects of pure loads are shown in Table 14 (Bai, 

2001; Hauch & Bai, 2000).  

Table 14: Pure load case description 

Pure load and effect 

on the pipeline 

Effect description 

Bending moment 

 

 Increased ovalisation of the cross-section;  

 Increased pipe wall stress; 

 Cross-sectional collapse; 

 Low D/t leads to failure on the tensile side of the pipe; 

 High D/t leads to failure (inward buckling) on the compressive 

side of the pipe. 

𝑀𝑙 = (1.05 − 0.0015
𝐷

𝑡
) ∙ 𝑆𝑀𝑌𝑆 ∙ 𝐷2 ∙ 𝑡              (25) 

𝑀𝑙– ultimate bending moment for pure bending; 

𝑀𝑙 – average diameter; 

𝑡 – wall thickness; 

𝑆𝑀𝑌𝑆 – specified minimum yield strength in longitudinal direction. 

External pressure 

 

 The deviation from circular to elliptical form; 

 Total cross-sectional collapse; 

 Radial displacement; 

 Low D/t leads to cross-section yield; 

 High D/t leads to elastic buckling. 

𝑃𝑙
3 − 𝑃𝑒𝑙 ∙ 𝑃𝑙

2 − (𝑃𝑝
2 + 𝑃𝑒𝑙 ∙ 𝑃𝑃 ∙ 𝑓0 ∙

𝐷

𝑡𝑐𝑜𝑟𝑟
) ∙ 𝑃𝑙 + 𝑃𝑒𝑙 ∙ 𝑃𝑝

2 = 0   

𝑃𝑒𝑙 =
2𝐸

(1−𝜗2)
∙ (
𝑡𝑐𝑜𝑟𝑟

𝐷
)
3

                                 (27) 

𝑃𝑝 = 𝜂𝑓𝑎𝑏 ∙ 𝑆𝑀𝑌𝑆 ∙
2𝑡𝑐𝑜𝑟𝑟

𝐷
                               (28) 

𝑡𝑐𝑜𝑟𝑟 =
𝑡−𝑑

1−
𝑑

𝑡∙√1+0.8(
𝐿

√𝐷∙𝑡
)
2

                                (29) 

𝑃𝑙  –ultimate external overpressure (collapse pressure); 

𝑃𝑒𝑙 – elastic collapse pressure; 

𝑃𝑝 – plastic collapse pressure; 

𝑓0 – initial out-of-roundness; 

𝑓0 - average diameter; 
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𝑡 – wall thickness; 

𝑡𝑐𝑜𝑟𝑟 – corrosion thickness;  

𝑑 – defect depth; 

𝐿 - defect length; 

𝑆𝑀𝑌𝑆 – specified minimum yield strength in hoop direction; 

𝐸 – Young’s modulus; 

𝜐 – Poisson’s ratio; 

𝜂𝑓𝑎𝑏 – material strength de-rating factor. 

Internal pressure 

 

 Bursting and expansion of the pipe cross-section; 

 Wall thickness decrease. 

𝑃𝑏𝑢𝑟𝑠𝑡 = 0.5(𝑆𝑀𝑇𝑆 + 𝑆𝑀𝑌𝑆) ∙
2∙𝑡𝑐𝑜𝑟𝑟

𝐷
                        (30) 

𝑃𝑏𝑢𝑟𝑠𝑡 – ultimate internal overpressure (burst pressure); 

𝑆𝑀𝑌𝑆 – specified minimum yield strength in hoop direction; 

𝑆𝑀𝑇𝑆 – specified minimum tensile strength in hoop direction; 

𝐷 - average diameter; 

𝑡𝑐𝑜𝑟𝑟 – corrosion thickness. 

Tensile longitudinal 

force 

 

 Pipe bursting; 

 Wall thinning; 

 Narrowed pipe cross-section. 

𝐹𝑙 = 0.5(𝑆𝑀𝑇𝑆 + 𝑆𝑀𝑌𝑆) ∙ (𝜋 − (1 − 𝑘𝑙) ∙ 𝛽) ∙ 𝐷 ∙ 𝑡          (31) 

𝑘𝑙 = (1 −
𝑑

𝑡
) ∙ (1 +

𝑑

𝐷
)                              (32) 

𝐹𝑙  – ultimate true longitudinal force for pure tension; 

𝐷 - average diameter; 

𝑡 – wall thickness; 

𝑘𝑙 – constant depending on defect size; 

𝑆𝑀𝑌𝑆 – specified minimum yield strength in longitudinal direction; 

𝑆𝑀𝑇𝑆 – specified minimum tensile strength in longitudinal direction; 

𝛽 – defect width; 

𝑑 – defect depth. 

Compressive 

longitudinal force 

 

 Euler or local buckling. 

Ultimate compressive force is found by the previous equation with the 

opposite sign. 

Along with the single loads mentioned above, the pipeline is usually subjected to the combined 

loading (e.g. pressure, moment, tension) as very often happens during the anchor dragging 

(hooking) event (Figure 32). In fact, there are a lot of analyses focused on the capacity of 

pipelines to resist plastic collapse and/or geometrical instabilities. Due to great numerical and 

experimental approach of these studies some parametric equations are developed in order to 

predict pipeline geometrical and mechanical behavior under different modes of combined 

loading (Table 15) (Kenedi, Borges & Vaz, 2009). 
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Figure 32: Pipe exposed to the pressure, bending moment and axial force (Bai, Igland & Moan, 

1992) 

Table 15: Combined load case description  

Combined loading Expression for the evaluation of pipeline strength capacity 

Axial force – bending 

moment (Bai, Igland 

& Moan, 1993) 

𝑀

𝑀𝑐
− cos (

𝜋

2
∙
𝑁

𝑁𝑐
) = 0                                       (33) 

𝑀𝑐 – ultimate bending moment capacity; 

𝑁𝑐  – ultimate true longitudinal force capacity. 

Axial force – pressure 

(Bai, 2001)  
(
𝜎𝑙

𝜎𝑙𝑙
)
2

− 2𝛼 ∙
𝜎𝑙∙𝜎ℎ

𝜎𝑙𝑙∙𝜎ℎ𝑙
+ (

𝜎ℎ

𝜎ℎ𝑙
)
2

= 1                        (34) 

𝜎𝑙 – longitudinal stress; 

𝜎ℎ – hoop stress; 

𝜎𝑙𝑙 – limit longitudinal stress for pure longitudinal force; 

𝜎ℎ𝑙 – limit hoop stress for pure pressure; 

𝛼 - correction factor depending on the ratio between the limit stress in 

the longitudinal and hoop direction correspondingly. 

Pressure – bending 

moment (Bai & 

Hauch, 2001) 

(
𝑀

𝑀𝑐
)
2

+ (
𝑃

𝑃𝑐
)
2

≤ 1                                          (35) 

𝑀𝑐 – ultimate bending moment capacity; 

𝑃𝑐 – ultimate pressure capacity. 

Pressure – axial force 

– bending moment 

(Nozarian, 2011) 𝑀 = 𝑀𝑐 ∙ √1 − (1 − 𝛼2) ∙ (
𝑃

𝑃𝑐
)
2

∙ cos

(

 
 𝜋
2
∙

(
𝑁

𝑁𝑐
−𝛼∙

𝑃

𝑃𝑐
)

√1−(1−𝛼2)∙(
𝑃

𝑃𝑐
)
2

)

 
 

            (36)   

𝑀𝑐 – ultimate bending moment capacity; 

𝑃𝑐 – ultimate pressure capacity; 

𝑁𝑐  – ultimate true longitudinal force capacity. 

Design check 

One of the serious outcomes of excessive combined loading, which is often observed because of 

pull-over-hooking scenario, is pipeline local buckling. Local buckling occurs when loads applied 

to the pipeline are equal to or greater than its internal resistance over cross-section. Two design 

criteria for local buckling are proposed by Offshore Standard DNV-OS-F101 (2013): 
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 Load Controlled Condition (LCC). The pipeline response is governed by the loads.  

o Combined loading: internal overpressure, bending moment, effective axial force. 

{𝛾𝑚 ∙ 𝛾𝑆𝐶 ∙
|𝑀𝑆𝑑|

𝛼𝑐∙𝑀𝑝(𝑡)
+ {𝛾𝑚 ∙ 𝛾𝑆𝐶 ∙

𝑆𝑆𝑑(𝑝𝑖)

𝛼𝑐∙𝑆𝑝(𝑡)
}
2

}

2

+ (𝛼𝑝 ∙
𝑝𝑖−𝑝𝑒

𝛼𝑐∙𝑝𝑏(𝑡)
)
2

≤ 1                 (37) 

𝛾𝑚, 𝛾𝑆𝐶 – resistance factors; 

𝛼𝑐 – flow stress parameter; 

𝑀𝑆𝑑 – design moment; 

𝑆𝑆𝑑 – design effective axial force; 

𝑝𝑖 – internal pressure; 

𝑝𝑒 – external pressure; 

𝑝𝑏 – burst pressure 

𝑆𝑝, 𝑀𝑝 – plastic capacities of pipe. 

o Combined loading: external overpressure, bending moment, effective axial force. 

{𝛾𝑚 ∙ 𝛾𝑆𝐶 ∙
|𝑀𝑆𝑑|

𝛼𝑐∙𝑀𝑝(𝑡)
+ {𝛾𝑚 ∙ 𝛾𝑆𝐶 ∙

𝑆𝑆𝑑(𝑝𝑖)

𝛼𝑐∙𝑆𝑝(𝑡)
}
2

}

2

+ (𝛾𝑚 ∙ 𝛾𝑆𝐶 ∙
𝑝𝑒−𝑝𝑚𝑖𝑛

𝛼𝑐∙𝑝𝑐(𝑡)
)
2

≤ 1              (38) 

𝑝𝑚𝑖𝑛 – minimum internal pressure that can be sustained; 

𝑝𝑐 – characteristic collapse pressure.  

 Displacement Controlled Condition (DCC). The pipeline response is governed by 

geometric displacements. 

o Combined loading: longitudinal compressive strain (bending moment and axial force) 

and internal overpressure. 

휀𝑆𝑑 ≤ 휀𝑅𝑑 =
𝑐(𝑡,𝑝𝑚𝑖𝑛−𝑝𝑒)

𝛾𝑒
                                                      (39) 

휀𝑐(𝑡, 𝑝𝑚𝑖𝑛 − 𝑝𝑒) = 0.78 ∙ (
𝑡

𝐷
− 0.01) ∙ (1 + 5.75 ∙

𝑝𝑚𝑖𝑛−𝑝𝑒

𝑝𝑏(𝑡)
) ∙ 𝛼ℎ

−1.5 ∙ 𝛼𝑔𝑤             (40) 

휀𝑆𝑑 – design compressive strain; 

휀𝑐 – characteristic bending strain; 

𝛼ℎ – strain hardening; 

𝛼𝑔𝑤 – girth weld factor; 

𝛾𝑒 – strain resistance factor. 

o Combined loading: longitudinal compressive strain (bending moment and axial force) 

and external overpressure. 

(

𝜀𝑆𝑑
𝜀𝑐(𝑡,0)

𝛾𝑒
)

0.8

+

𝑝𝑒−𝑝𝑚𝑖𝑛
𝑝𝑐(𝑡)

𝛾𝑚∙𝛾𝑆𝐶
≤ 1                                                 (41) 
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In case if these criteria are not met, the pipeline will have increased ovalisation and experience 

collapse of its cross-section or even rupture.  

Global and local scale performance 

In order to analyze the pipeline response, it is necessary to distinguish between global and local 

scale performances.  

 Global scale analysis is usually done to estimate the pipeline displacement while being 

hooked and dragged by the anchor. The emphasis here is put on recognizing the force-

displacement relationship. 

 Local scale analysis is performed in order to understand how severe the damage is in the 

area of pipe-anchor interference. The accent here is put on a strain and dent size 

estimation.  

NB. A global scale analysis will be done in the following assessment study. 

Summarizing the part about ship anchoring activity and its effect on submarine pipelines and 

cables one can see how many basic damage criteria and key factors are to be taken into account. 

Combination of vessel and anchor arrangement parameters, marine activity details and pipeline 

data are very helpful for the assessment of pipeline potential danger. Even if the pipeline is 

designed in accordance with all the standards, codes and guidelines, no one can exclude the fact 

that pipeline will experience a failure due to uncontrolled anchor drop and loss while the ship is 

in underway. Hence, it is of great importance to specify all the significant criteria that shall be 

met during each stage of pipeline life cycle. Moreover, different sensitivity cases are to be 

performed and analyzed in order to develop a generic conclusion with respect to the pipeline 

response and damage frequency of pipeline system. Analysis on pipeline-anchor interference 

scenario based on the theoretical approach written above is going to be done and presented in the 

following chapter.  

4.2.7 Pipeline protection 

In case if the pipeline has potential to be hooked and damaged by the dragging anchors, some 

pipeline protection measures can be implemented then (DNV-RP-F107, 2010): 

1. Concrete coating; 

2. Polymer coating; 

3. Gravel dump and natural backfill; 

4. Protection structures; 

5. Trenching; 

6. Higher wall thickness. 
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CHAPTER 5. CASE STUDY - DRAGGED ANCHOR INTERFERENCE ASSESSMENT  

5.1 SCOPE OF THE CASE STUDY 

The scope of the “Dragged anchor interference assessment” case study is to present the 

methodology of anchor damage assessment of subsea pipelines. Several sensitivity cases are to 

be performed in order to gain a complete understanding of pipe-anchor interaction scenario. 

Detailed step by step procedure of dragged anchor interference investigation is given below.  

1. AIS data processing based on the typical pipeline route: collection of data for different 

ship/vessel types with respect to IMO-no, name, type, EL, GT, speed and vessel 

coordinates. 

2. Data analyzes: development of various diagrams, graphs and distribution charts for a 

considered pipeline route on the basis of collected data.  

3. Anchor hook criteria check: relation between pipeline diameter and anchor size (2 

configurations). 

4. Anchor hit criteria check (MATLAB): relation between vessel speed, chain length and 

water depth. 

5. Carrying out a model scale test on anchor towing depth: scaling of required physical 

values; preparation for the experiment; comparison of experimental data and analytical 

solution (MATLAB). 

6. Establishment of anchor pulling consequences in accordance with global scale analyses 

performed in SIMLA; determination of pipeline response; pipeline capacity check (or 

anchor damage criteria) for both 40 and 16-inch pipelines. 

7. Frequencies of pipe-anchor interaction modes in accordance with the criteria 

(hook/hit/damage) checks for 40 and 16-inch pipelines. 

8. Methodology description; 

9. General conclusions with regard to pipeline properties, water depth, vessel speed and EL: 

whether the pipeline is hooked/hit/damaged by the anchor; total frequency estimation. 

5.2 DEFINED DATA 

5.2.1 Pipeline data 

In order to make comprehensive study on subsea pipeline damage assessment in accordance with 

the designated objectives, the Pipeline 1 is chosen for that purpose. The Pipeline 1 is a 40-inch 

gas transporting line, running through the sector of the North Sea. All the relevant information 

concerning pipeline design and operational characteristics are provided by Statoil Company. 

Generalized data of Pipeline 1 is prepared and presented in Table 16. 
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Table 16: Data of Pipeline 1 

Item Unit Value 

Location - The North Sea 

Length km 305 

Design life years 50 

Nominal size inch 40 

Internal Diameter mm 966.4 

Wall thickness mm 26.1 

Material - X-65 

Transport medium - Dry gas 

Corrosion Allowance mm 0 

Corrosion coating - Asphalt enamel 

Protection and weight coating - Concrete coating 

Density of gas kg/m
3
 177 

Density of corrosion coating kg/m
3
 1300 

Density of concrete kg/m
3
 3040 

The seabed profile of Pipeline 1 is shown below (Figure 33). One can see how the water depth 

varies with each KP section of the pipe route.  

 

Figure 33: Seabed depth profile of the Pipeline 1 

Part of the Pipeline 1 route and extracted AIS ship track density plot for the specified area is 

presented in Figure 34.  

-175 

-350 

-132 
-78 

-400

-350

-300

-250

-200

-150

-100

-50

0

0
-1

0

1
5

-2
0

2
5

-3
0

3
5

-4
0

4
5

-5
0

5
5

-6
0

6
5

-7
0

7
5

-8
0

8
5

-9
0

9
5

-1
0

0

1
0

5
-1

1
0

1
1

5
-1

2
0

1
2

5
-1

3
0

1
3

5
-1

4
0

1
4

5
-1

5
0

1
5

5
-1

6
0

1
6

5
-1

7
0

1
7

5
-1

8
0

1
8

5
-1

9
0

1
9

5
-2

0
0

2
0

5
-2

1
0

2
1

5
-2

2
0

2
2

5
-2

3
0

2
3

5
-2

4
0

2
4

5
-2

5
0

2
5

5
-2

6
0

2
6

5
-2

7
0

2
7

5
-2

8
0

2
8

5
-2

9
0

2
9

5
-3

0
0

W
at

e
r 

d
e

p
th

, m
 

KP section, km 

Seabed Depth Profile 
Pipeline 1 



Anchor Damage Assessment of Subsea Pipelines 

61 
 

  

Figure 34: Part of the Pipeline 1 route and ship track density plot 

North Sea 
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5.2.2 AIS data  

Automatic Identification System is an automatic tracking system used on ships and by vessel 

traffic services (VTS) for identifying and locating vessels by electronically exchanging data with 

other nearby ships, AIS base stations, and satellites (Automatic Identification System, 2105). 

There are a lot of services that provide a real-time and historical AIS data. Such kind of 

databases is very useful for the extraction of important information about ships: individual 

identification number, position, destination, speed, etc. As explained before, once the 

identification number of passing ship is known, one can get any particularities of these vessels. 

Moreover, ship traffic pattern around an area of interest can be obtained as well (Figure 35). 

 

Figure 35: Illustration of ship track density plot retrieved from MarineTraffic.com 

All the AIS data required for the assessment of pipeline-anchor interaction scenario have been 

provided by the Statoil Company. A total of 127006 table lines contained in the data list describe 

the motion of 824 vessels. For the simplification of data processing, all the information has been 

exported to the EXCEL sheet (Figure 36).  

 

Figure 36: EXCEL data list example 

http://en.wikipedia.org/wiki/Vessel_traffic_service
http://en.wikipedia.org/wiki/Vessel_traffic_service
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Each vessel, crossing the route of Pipeline 1, is described by its MMSI-no (column A). 

Furthermore, the movement of each ship is explained by the latitude and longitude coordinates 

(columns C and D), and corresponding speed value given in knots (column B). As seen from 

above, the database does not include other significant details of passing ships. Thus, in order to 

get copious information, it is necessary to complete the table with missing data. Missing vessel 

details such as IMO-no, name and type, Equipment Letter, Equipment Number (if available), and 

Gross Tonnage are essential for the data analyzing process as well as future investigation work. 

In view of this, for every ship six additional parameters have been found and compiled manually 

using different online web-based sources like Vessel Register for DNV GL, Marine Traffic, 

Vessel Finder, etc. Full description of the ship data compilation procedure is presented in the 

chart (Figure 37): 

 

Figure 37: Ship data collection procedure description 

NB. There are some vessels (22 out of 824), the information on which is not available in the 

vessel register books. These vessels cannot be identified by their individual IMO-no and hull 

classification particularities. That is why it has been decided to focus on data processing of 

identified ships only, the total number of which is 802. Moreover, prior to starting data analyses, 

it shall be noted that all the vessels are assumed to be equipped with appropriate anchoring 

system (anchor and chain) capable of approaching the pipeline laid on the seabed.  

5.3 SHIP TRAFFIC DATA ANALYZES 

As soon as the compilation process has been finished, the data processing is started. Firstly, the 

pipeline is divided into 60 KP sections, where the first section is of 10 km, and the rest 59 are of 

5 km each. Thereafter, using known coordinates of the first and last KP endpoints, the 

coordinates of intermediate KP points can be determined by applying the Web Plot Digitizer 

Software. Once the new sections have been digitized, their latitude and longitude coordinates 

may be found after. With obtained coordinate values it is possible then to define an exact 

Vessel Name, Type, Equipment Letter, Equipment Number, Gross Tonnage 

http://vesselregister.dnvgl.com/ 

https://www.eagle.org/ 

IMO-no 

http://www.marinetraffic.com/ 

http://www.vesselfinder.com/ 

http://shipais.co.uk/ 

MMSI-no 
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position of one or another vessel crossing over a certain section of the pipeline route. A part of 

the resultant ship traffic data list with determined KP sections (column K) is displayed below 

(Figure 38). All the following analyses are done according to this collected database.   

 

Figure 38: Ship traffic data list example 

One of the important vessel parameters is its gross tonnage. The GT is an index that describes an 

overall internal ship volume. Gross tonnage should not be mixed up with the gross register 

tonnage (GRT). The latter had been used long time ago until it was replaced by the GT index. 

Seven GT categories are usually distinguished in order to classify the ships with respect to this 

parameter.  The present analyses are based on the classification given in Table 17.  

Table 17: Ship classification with respect to gross tonnage 

Class GT range 

1 <1000 

2 1000-4999 

3 5000-9999 

4 10000-24999 

5 25000-49999 

6 50000-99999 

7 >=100000 

In order to see the distribution of the most frequently observed ship class; the data sorting 

procedure is implemented. The resultant ship class pie diagram is presented below (Figure 39). 

 

Figure 39: Distribution of passing ships with respect to GT value 
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It is visible that the most commonly encountered ship class is Class 2 (49%), the GT value of 

which varies between 1000 and 4999. Additionally, 14% of all the vessels fall into the Class 3. 

Other classes are distributed almost uniformly, except the last one that is about 1% of all the 

vessels passing the line.   

As explained before, all the ships have their individual anchor arrangement system specified by 

either Equipment Number or Equipment Letter. The larger the vessel, the greater the value of the 

EN will be. This is quite logical, because the EN value is heavily dependent on vessel 

displacement and other parameters. In addition to the EN, the vessel can be characterized by the 

EL, which is found in accordance with the generalized Equipment Tables (Figure 22). Since 

compiled ship traffic database contains information about vessels’ gross tonnage, it is interesting 

to show an illustrative case of the relation between GTs and ELs correspondingly (Figure 40). 

 

Figure 40: Vessel GT and EL relation illustration 

The next part of this case study is devoted to the juxtaposition of every KP section with the ships 

classified by the GT index. Furthermore, the seabed profile is also taken into account. The water 

depth profile helps to understand, what kind of sections are more susceptible to anchor hitting 

event. Thus, Figure 41 demonstrates which vessel classes are in the majority with regard to 

designated KP section endpoints and proper values of the water depth.  
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Figure 41: Total number of crossing ships within certain KP sections and defined water depth 
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Figure 41 shows that the highest marine activity falls between pipeline KP sections 0-60 and 65-

95, where ship Class 2 (GT 1000-4999) is observed more often than other ship classes. 

According to this evaluation, the line between those endpoints may be subjected to incident 

coming from dragging anchor. However, these pipeline sections are situated in the deepest areas. 

So, at this stage no one can draw precise conclusion whether the ship anchors are capable of 

hooking the pipeline or not.   

Not only gross tonnage is to be included into assessment, but an equipment letter shall be 

considered as well. The following column chart (Figure 42) points out the number of all the 

equipment letters assigned to the defined ships. Another significant detail here is speed value, 

which has been retrieved from the AIS ship database. In order to simplify the analyses, an 

average speed for a corresponding equipment specification is calculated and used for the 

following estimation work.  

 

Figure 42: Total number of various ELs with the corresponding average vessel speed value 

(knots) 

In general, 49 different Equipment Letters characterize given passing ships. From the Figure 42 

above it is understood that the most commonly detected crossings are done by the ships with the 

Equipment Letter “o”, which accounts for 9% (75 out of 802) of total number of passing over the 

pipe vessels. Both the variation of the average speed (black line) and medium speed (red line) are 

illustrated on the chart above.  

There are three groups of Latin letters used for the classification of anchor arrangement. The 

explanation of each group is presented in the Figure 43. Small letters usually point small 

dimension anchors (120-3780 kg), while capital letters and letters marked with the star denote 

large (4050-16900 kg) and huge (17800-46000 kg) anchoring systems. Along with the anchor 

mass, the chain length and diameter changes as well.  
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Figure 43: Equipment Specification Letter grouping 

Development of the charts and diagrams gives a strong notion of ship distribution along the route 

of Pipeline 1. Along with the specified KP sections, the seabed profile is considered. The water 

depth values over the Pipeline 1 vary significantly, especially in 0-150 KP sectors. Additionally, 

the densest area in terms of the ship traffic volume is in between 0-95 KP sections. It should be 

mentioned, that not all the vessel types are capable of getting in contact with the pipe situated in 

the deepest areas: the limitation here is the length of the anchor chain and speed of the vessel. 

Speaking about the vessel speed, it should also be included into analysis. The combination of 

water depth value, chain length and speed is very important for the detailed analyses, which are 

going to be discussed in further parts.  

Two key vessel parameters are taken as basis for the relevant ship classification algorithms, 

namely GT index and Equipment Letter. So that classified ships are included into distribution 

charts in order to show which kind of vessels cross one or another KP pipe section. The most 

frequently observed class of the ship is Class 2, while the most commonly encountered EL is 

letter “o”. 

NB. Additional tables used for the present analysis are included in the Appendix. 

Summarizing this part, one shall see how many details are essential for the data analyzing 

process. The more particularities are taken into account during the initial steps, the more 

comprehensive assessment can be done hereafter.  

5.4 ANCHOR HOOK CRITERIA CHECK 

Not only the anchor mass, but its geometrical configuration is critical for the assessment of pipe-

anchor interaction. It is obvious that small dimension vessel equipment is not even capable of 

hooking large diameter pipelines. That is precisely why hook criteria check shall be performed. 

As written in the previous chapter, there are mainly two ways of hooking the line. The pipeline 

may either stick between one fluke and anchor shank or between the plane of two flukes and 

shank of the anchor. Two sketches demonstrating the geometrical interpretation of hooking event 

are given before in Figure 24. 

NB. For the present case study it is assumed that every moving ship is equipped with the 

stockless anchor, the information on which is easily found in the Rules for Ship document and 

relevant catalogues. 
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One of the most popular and conventional stockless anchor types is Spek anchor, which is 

widely used for the positioning of different vessels. Spek anchor is taken as basic example for 

the study and criteria check. The minimum size of anchor, capable of catching the Pipeline 1, can 

be determined for both cases by applying the formulas in the Tables 18 and 19. The formulas 

present the most conservative way of hook criteria check.  

Table 18: I case Spek stockless anchor hook check 

Formula and geometry of hook Item Symbol Unit Value 

𝐶⊥ ≥ 𝑑/2    (42) 

 

Angle between one fluke and 

anchor shank 
𝛼 deg 27 

Pipeline diameter 𝑑 mm 1018.6 

Projected fluke length 𝐶⊥ mm 509.3 

Fluke length 𝐶 mm 1138.8 

E-parameter (Figure 44) 𝐸 mm 1018.6 

Table 19: II case Spek stockless anchor hook check 

Formula and geometry of hook Item Symbol Unit Value 

 

𝐶′⊥ ≥ 𝑑/2    (43) 

 

Angle between the plane of 

two flukes and the shank 
𝛽 deg 40 

Pipeline diameter 𝑑 mm 1018.6 

Projected median 𝐶′⊥ mm 509.3 

Median of flukes plane 𝐶′ mm 792.3 

E-parameter (Figure 44) 𝐸 mm 792.3 

d 

d 

E 



Anchor Damage Assessment of Subsea Pipelines 

70 
 

There is a parameter 𝐸 that is designated to be the key one for the selection of minimum anchor 

size (Figure 44). According to the results from the tables above it is observed that the minimum 

anchor size after the 1
st
 check falls into the value of 2100 kg, while after the 2

nd
 check the anchor 

size falls into the value of 900 kg. In order to be more conservative, the value from the 2
nd

 check 

is taken as the minimum size of anchor capable of hooking the Pipeline 1. Hence, all the anchors 

with the EL starting from the letter “j” can be thought dangerous for the pipe.  

  

Figure 44: Part of the Spek anchor characteristics retrieved from the anchor catalogue (“Spek 

Anchor”, n.d.) 

5.5 ANCHOR HIT CRITERIA CHECK 

When moving ship suddenly loses its anchor, the anchor-chain arrangement will stabilize after 

some time, but it will never be perfectly vertical due to an interaction between anchor-chain 

arrangement and surrounding water. The questions that have to be answered here are what a 

shape of the chain will take place and what a distance between the anchor and vessel itself will 

be (Figure 45).  In case, if this distance (determined by Y-axis) is less than the water depth at the 

location of pipeline, it is obvious that the anchor does not have a potential to approach and hit the 

line.   

Assuming that all the ships passing the Pipeline 1 route are moving with the constant velocity, 

one shall see that the steady flow will force the anchoring system in the opposite direction. Since 

the flow is steady one, the acceleration term becomes equal to zero. That is why an added mass 

and inertia terms are not considered in this case. Moreover, the drag force of the anchor is 

assumed to be negligible in comparison with its weight.  

Consequently, the equation of the motion can be written in accordance with the 2
nd

 Newton’s 

Law as follows (De Silva, 2007): 

II 

I 
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∑ �⃗� = 𝑚�⃗�(𝑙, 𝑡) = 0⃗⃗               (44) 

𝑚�⃗�(𝑙, 𝑡) =
𝜕

𝜕𝑙
(𝑇𝑡) + 𝑓𝑛 �⃗⃗� + 𝑓𝑡𝑡 + 𝑚𝑔�⃗⃗�             (45) 

0⃗⃗ =
𝜕

𝜕𝑙
(𝑇𝑡) + 𝑓𝑛 �⃗⃗� + 𝑓𝑡𝑡 + 𝑚𝑔�⃗⃗�                  (46) 

𝑚 – mass of the chain per unit length; 

𝑔 – acceleration of gravity; 

�⃗�(𝑙, 𝑡) – acceleration of the chain; 

𝑙 – coordinate along the anchor chain; 

𝑇 – tension force; 

𝑓𝑛 – normal drag force per unit length; 

𝑓𝑡   –  tangential drag force per unit length; 

�⃗⃗� – normal unit vector; 

𝑡 – tangential unit vector; 

�⃗⃗� – unit vector in the direction of gravity. 

 

Figure 45:  Anchor-chain system configuration illustration 

As seen from the formula, there are two components of drag force: normal (dominant) and 

tangential. The formulas on both of them are presented below: 

𝑓𝑛 = 𝐶𝐷𝑛 ∙ 𝜌𝑤 ∙
𝐷

2
∙ 𝑣2 ∙ 𝐶𝑜𝑠2𝛼                  (47) 

𝑓𝑡 = 𝐶𝐷𝑡 ∙ 𝜌𝑤 ∙
𝐷

2
∙ 𝑣2 ∙ 𝑆𝑖𝑛2𝛼                            (48) 

CDn – normal drag coefficient; 

CDt – tangential drag coefficient; 

ρw – seawater density; 

D – anchor chain diameter; 
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v – water flow velocity; 

𝛼 – angle between the vertical axes and tangential vector. 

Normal and tangential drag coefficients of the stud-link and stud less chains are given in the 

Offshore Standard DNV-OS-E301 (2010) (Table 20). 

Table 20: Anchor chain drag coefficients 

Chain types Normal drag coefficient Tangential drag coefficient 

Stud-link 2.6 1.4 

Stud less 2.4 1.15 

To continue with the calculations needed for the criteria check, the equation of motion should be 

rewritten in the scalar form: 

{

𝑑𝑇

𝑑𝑙
− 𝐶𝐷𝑡 ∙ 𝜌𝑤 ∙

𝐷

2
∙ 𝑣2 ∙ 𝑆𝑖𝑛2𝛼 −𝑚 ∙ 𝑔 ∙ 𝐶𝑜𝑠𝛼 = 0

−𝑇 ∙
𝑑𝛼

𝑑𝑙
+ 𝐶𝐷𝑛 ∙ 𝜌𝑤 ∙

𝐷

2
∙ 𝑣2 ∙ 𝐶𝑜𝑠2𝛼 −𝑚 ∙ 𝑔 ∙ 𝑆𝑖𝑛𝛼 = 0

     (49) 

It is a system of two ordinary differential equations that can be solved numerically to find 𝑇(𝑙) 

and 𝛼(𝑙). For that purpose, two initial conditions must be specified: 

𝑇(0) = 𝑊𝑎𝑛𝑐ℎ𝑜𝑟                                    (50) 

𝛼(0) = 0                                     (51) 

  𝑊𝑎𝑛𝑐ℎ𝑜𝑟 – weight of the anchor in the water: 

𝑊𝑎𝑛𝑐ℎ𝑜𝑟 = 𝑚𝑎𝑛𝑐ℎ𝑜𝑟 ∙ 𝑔 ∙ (1 −
𝜌𝑤

𝜌𝑠𝑡𝑒𝑒𝑙
)                       (52) 

In addition to the previous system, the relation between the Cartesian coordinates and angle 𝛼 is 

to be included either: 

{

𝑑𝑥

𝑑𝑙
= 𝑆𝑖𝑛𝛼

𝑑𝑦

𝑑𝑙
= 𝐶𝑜𝑠𝛼

                                      (53) 

Where the initial conditions are: 

𝑥(0) = 0                                      (54) 

𝑦(0) = 0                                     (55) 

Thus, solving the system of four ordinary differential equations with specified set of initial 

conditions, it is possible to understand how an equilibrium configuration of anchor-chain 

arrangement looks like. Moreover, the distance between the towed anchor and the ship is 

determined as well.  For the present case study, the anchor towing depth calculation can be done 

by applying MATLAB software. With this objective in view, an effort has been made to create 

appropriate code. An ode-45 function, based on an explicit Runge-Kutta formula, is included. 

According to the Equipment Specification Letter grouping (Figure 43) all 49 various ELs are 
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taken for the calculation: for every EL the combination of corresponding anchor mass; chain 

length, chain diameter; and average speed (in m/s) are put into the prepared code. All the results 

have been exported to the EXCEL sheet in order to use them for the development of essential 

graphs and future analyses. 

Obtained data helps to identify, whether the anchoring systems of given passing ships are 

capable of hitting the Pipeline 1 or not.  The anchor towing depth variations in terms of different 

Equipment Letter groups are illustrated in Figures 46-48.  

 

Figure 46: Tow depth of anchors classified by Small Letters and water depth lines (dashed) of 

certain KP sections 

Figure 46 shows that not all the anchors classified by Small Letters will reach the sea bottom in 

case if passing ships lose their anchors. The majority of intersections are observed only where 

the water depth value is about 140 m and less.  

Figure 47 demonstrates the same sort of estimation for Capital Letter class of anchors. One can 

see that this kind of anchors have the potential to reach even deeper sections of 250 m depth. It is 

quite obvious, because larger anchors have longer and heavier chains, which easily approach 

even deeper areas. 
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Figure 47: Tow depth of anchors classified by Capital Letters and water depth lines (dashed) of 

certain KP sections 

Finally, an assessment of the 3
rd

 anchor EL group is presented in Figure 48. In this case the 

anchor tow depth is increased up to 280 m. So, almost all the pipeline sections can be reached 

and hit by huge anchoring equipment of crossing ships.  

 

Figure 48: Tow depth of anchors classified by Letters marked with star and water depth lines 

(dashed) of certain KP sections 
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Summarizing the part of the hit criteria check, it should be said that all the anchors with the EL 

starting from “l” are dangerous for the Pipeline 1. Thus, not all the anchors pose threat to the 

pipeline resting on the seabed. The key elements here are anchor mass, chain length, and ship 

speed. The larger the anchor, the longer the chain will be. The anchor hanging on the longer 

chain has more chances to approach the seabed. Regarding vessel speed, it also affects the 

anchor towing depth value. In case of high velocity the anchor-chain arrangement will stabilize 

at less depth than in case of low velocity. A combination of anchor size, chain length, water 

depth and vessel speed is of great importance for the assessment of anchor towing depth while 

the ship is underway.  

In order to verify the results of analytical solution explained above, it has been decided to take a 

model scale test. Detailed description of taken experiment is given hereinafter.  

5.6 MODEL SCALE TEST 

The main objective of the experimental work is to determine how the anchor towing depth 

changes with different values of ship velocity.  

5.6.1 The scope of the experiment 

1. Scaling of required physical values; 

2. Preparation for the experiment; 

3. Experiment itself; 

4. Comparison of experimental data with the results of analytical solution found by using 

MATLAB. 

5.6.2 Site description 

An experiment has been taken in the education laboratory belonging to the University of 

Stavanger. One of the two tanks (Figure 49) has been chosen and used for the present test. 

Technical equipment like underwater lights and underwater cameras are provided by UiS Subsea 

team.  

 

Figure 49: The laboratory tank geometry 

5.6.3 Scaling procedure 

Due to some limitations with the tank size it is impossible to carry out an experiment using full-

scale anchor and chain. That is why it has been decided to scale down all necessary parameters 
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of randomly chosen anchor-chain arrangement. Anchor class “z” is taken as full scale model, and 

scaling factor 21 is used for scale operation. Parameters of full-scale anchor and chain are 

presented in the Tables 21 and 22. 

Table 21: Initial data of “z” class Spek anchor (“Spek Anchor”, n.d.) 

 

Item Unit Value 

𝑚 kg 3780 

𝐴 mm 2430 

𝐵 mm 1850 

𝐶 mm 810 

𝐷 mm 393 

𝐸 mm 1350 

𝐹 mm 1350 

𝐺 mm 310 

𝐻 mm 385 

𝐴𝑟𝑒𝑓−𝑎 m
2
 2.95 

A rough value of anchor reference area (m
2
) is found by using the formula: 

𝐴𝑟𝑒𝑓−𝑎 = (𝐺 ∙ (𝐴 + 𝐻) + 2 ∙ 𝐸 ∙ (𝐵 − 𝐹) ∙ 𝐶𝑜𝑠(40
0) + 𝐷 ∙ 𝐵) ∙ 10−6   (56) 

Table 22: Initial data of the chain of “z” class Spek anchor (“Stud Link Chain”, n.d.) 

 

Item Unit Value 

𝐷 m 0.048 

𝐿 m 261.2 

𝑤 kg/m 50.4 

𝑚 kg 13182.05 

𝐴𝑟𝑒𝑓−𝑐 = 𝐷 ∙ 𝐿 m
2
 12.54 

Where the weight of the chain per meter is calculated by the following formulas (“The future of 

mooring”, n.d.): 

𝑤𝑠𝑡𝑢𝑑−𝑙𝑖𝑛𝑘 = 0.0219 ∙ 𝐷
2     (57) 

𝑤𝑠𝑡𝑢𝑑 𝑙𝑒𝑠𝑠 = 0.02 ∙ 𝐷
2            (58) 
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To scale down an anchor-chain system in appropriate way, some relevant input parameters are to 

be chosen. By using certain principle written below, corresponding model scale values can be 

obtained then (Tables 23 and 24). 

Table 23: Scaling procedure for anchor (scaling factor is equal to 21) 

Full scale (input) 
Formula 

Model scale (output) 

Item Unit Value Item Unit Value 

𝐴𝑟𝑒𝑓−𝑎 m 2.95 𝐴𝑟𝑒𝑓̅̅ ̅̅ ̅̅ =
𝐴𝑟𝑒𝑓

𝐴𝑟𝑒𝑓
= 1 𝐴𝑟𝑒𝑓′ m 0.01 

𝑚 kg 3780.00 �̅� =
𝑚

𝑚
= 1 𝑚′ kg 0.40 

𝑣 m/s 5.23 �̅� =
𝑣

𝑣
= 1 𝑣′ m/s 1.14 

𝑝 kg/m
3
 1000.00 �̅� =

𝜌 ∙ 𝐴
𝑟𝑒𝑓

3
2

𝑚
= 𝑁 = 1.34 

 

𝑝′ kg/m
3
 1000.00 

𝑔 m/s
2
 9.81 �̅� = 𝑔 ∙

√𝐴𝑟𝑒𝑓

𝑣2
=
1

𝐹𝑟
= 0.62 

𝐹𝑟 = 1.62 

𝑔′ m/s
2
 9.81 

Table 24: Scaling procedure for chain (scaling factor is 21) 

Full scale (input) 
Formula 

Model scale (output) 

Item Unit Value Item Unit Value 

𝐴𝑟𝑒𝑓−𝑐 m 12.54 𝐴𝑟𝑒𝑓̅̅ ̅̅ ̅̅ =
𝐴𝑟𝑒𝑓

𝐴𝑟𝑒𝑓
= 1 𝐴𝑟𝑒𝑓′ m 0.028 

𝑚 kg 13182.05 �̅� =
𝑚

𝑚
= 1 𝑚′ kg 1.41 

𝑣 m/s 5.23 �̅� =
𝑣

𝑣
= 1 𝑣′ m/s 1.14 

𝑝 kg/m
3
 1000.00 �̅� =

𝜌 ∙ 𝐴
𝑟𝑒𝑓

3
2

𝑚
= 𝑁 = 3.37 

 

𝑝′ kg/m
3
 1000.00 

𝑔 m/s
2
 9.81 �̅� = 𝑔 ∙

√𝐴𝑟𝑒𝑓

𝑣2
=
1

𝐹𝑟
= 1.27 

𝐹𝑟 = 0.78 

𝑔′ m/s
2
 9.81 

All the scaling procedure has been performed as written in the paper “Similarity criteria” 

(Gerasimato, 2012). Special attention should be paid to the water density and acceleration of 

gravity, the values of which are constant. That is why such similarity parameters as 𝑁 and 1/𝐹𝑟 

(where 𝐹𝑟 is Froude Number) are to be implemented.  
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𝐹𝑟 =
𝑣2

𝑔∙√𝐴𝑟𝑒𝑓
      (59) 

In the result, output mass of the anchor (0.4 kg) and output mass of the chain (1.41 kg) are taken 

as reference parameters. According to them, model anchor and chain, having almost the same 

masses, are found and bought from the car and boat shop Biltema. The final form (view) of the 

equipment is shown below (Figure 50). 

 

Figure 50: Anchor and chain (stud less) chosen for the experiment 

5.6.4 Preparation for the experiment 

Prior to carrying out an experiment, the laboratory tank should be prepared for that. It has been 

kind of long and routine task. Step by step description of the test preparation objectives is written 

hereinafter. 

1. To empty and to dispose the trash and foreign objectives from the top and inside of the 

tank (Figure 51). 

 

Figure 51: Removal of steel bars from the top of the tank 

2. To clean the concrete walls and bottom with fresh water, to wait till the tank is totally 

dry. 

0.43 kg 

anchor 

1.28 kg chain (𝐷 = 4 𝑚𝑚, 𝐿 = 4 𝑚) 
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3. To purchase and prepare the grid plates (1x1 m) and white material for the walls and 

bottom (Figures 52 and 53). 

 

Figure 52: 1x1 m steel mesh reinforcement and 15x15 cm grid size 

 

Figure 53: Waterproof white material 

NB. Since all the surfaces are made of concrete, they are grey. So, it has been decided to cover 

them with white waterproof material, which can give more reflection from the walls and bottom 

during the test. Concerning grid plates, they are used to act as coordinated map inside the tank.  

4. To assemble the plates so that the size of assembled mesh is three by three meters.  

5. To paint the grid plates (steel mesh reinforcement) in blue color (Figure 54). 

3m 

http://www.multitran.ru/c/m.exe?t=5126636_1_2&s1=%F1%F2%E0%EB%FC%ED%E0%FF%20%F1%E5%F2%F7%E0%F2%E0%FF%20%E0%F0%EC%E0%F2%F3%F0%E0
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Figure 54: Painted in blue grid plates 

NB. The painting is necessary here, because purchased mesh is of bad quality and can 

contaminate the water.  

6. To cover the tank inside with white waterproof material (Figure 55). 

 

Figure 55: Process of covering the walls with the reflective material 

7. To install new grid plates (3x3 meters) on top of the material (Figure 56). 

 

Figure 56: The tank inner surface covered with material and grid plates on top of it 

3m 

3m 
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8. To mark each grid inside in order to understand the position of towing anchor during the 

test (Figure 57). 

 

Figure 57: Marked with letters and numbers grid 

9. To paint the anchor and chain in yellow color (Figure 58).  

 

Figure 58: Painted in yellow anchor and chain 

10. To install the underwater lights and to fill the tank with water (Figure 59). 

 

Figure 59: Tank filled with water 
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5.6.5 Experiment 

Once the preparation stage has been finished, the main experimental part can be started then. In 

order to pull the anchoring system (0.43 kg anchor and 4-meter chain) in water, special electric 

winch has been installed for that purpose. The winch includes a high torque electric motor joined 

to a gear box that drives a rotating drum, so that the rode is wound onto the winch, and anchor-

chain arrangement is moved across the tank. Using controller, it is possible to change the mode 

of towing speed. Two kinds of modes are set during the test: mode 1.5 and 2. An illustrative 

view of winch system is given below (Figure 60). 

  

  

Figure 60: Electric winch system 

A total of 65 towing anchor runs have been done. All the experimental runs are captured on 

video by applying two GoPro – Hero cameras. The cameras are decided to be fixed by special 

tape on massive steel bars and submerged into the water, so that the shooting process is held 

from one of the walls. One camera has been installed at the beginning and another one in the 

middle of the tank.  Several screenshots are taken to show how the configuration of anchor- 

chain arrangement changes with different speed value. The position of the anchor is visible due 

to marked grid acting as coordinated map. The reference table showing the distance between the 

tank bottom and precise letter on the grid is compiled and used for the identification of anchor 

towing depth value (Table 25).  

Drum with wound rope (a) Fixed pulley and rope (b) 

Laboratory power supply (c) Mode controller (d) 
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Table 25: Reference table for the identification of anchor towing depth 

Reference letter 
Position of the letter 

on the grid, cm 

Anchor towing 

depth, cm 

A 285 7.5 

B 270 22.5 

C 255 37.5 

D 240 52.5 

E 225 67.5 

F 210 82.5 

G 195 97.5 

H 180 112.5 

I 165 127.5 

J 150 142.5 

K 135 157.5 

L 120 172.5 

M 105 187.5 

N 90 202.5 

O 75 217.5 

P 60 232.5 

Q 45 247.5 

R 30 262.5 

S 15 277.5 

Using this table, one can easily see, at which letter the anchor-chain arrangement stabilizes. The 

most commonly observed anchor stabilization points refer to the letters K, M, O and Q; they are 

presented on the Figures 61-64 below.  

  

Figure 61: Snapshot from the video: anchor towing depth – position K (157.5 cm); 𝑣 = 2.3 𝑚/𝑠  

K 
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Figure 62: Snapshot from the video: anchor towing depth – position M (185.0 cm); 𝑣 = 1.9 𝑚/𝑠 

 

Figure 63: Snapshot from the video:  anchor towing depth – position O (217.5 cm); 𝑣 = 1.6 𝑚/𝑠 

 

Figure 64: Snapshot from the video: anchor towing depth – position Q (247.5 cm); 𝑣 = 1.4 𝑚/𝑠 

M 

O 

Q 
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Every towing depth can be characterized by certain velocity value. The pulling velocity is 

calculated by using simple formula (Table 26): 

𝑣 =
𝑠

𝑡
               (60) 

Where 𝑠 is the distance travelled by the anchor after its stabilization, and 𝑡 is time in seconds 

measured during each anchor-chain system run.  

Table 26: Anchor towing depth versus velocity 

Velocity, m/s 
Anchor towing 

depth, m 

2.3 1.575 

1.9 1.85 

1.6 2.175 

1.4 2.475 

As seen from the table, anchor towing depth value increases with decreasing velocity.  

5.6.6 Comparison of test results with the results of analytical solution 

For the verification of experimental measurements, four different anchor-chain configurations 

(Figures 61-64) have been digitized by applying the Web Plot Digitizer Software; and obtained 

points have been graphed in the EXCEL application.  

Concerning analytical solution, it is found by using the same principle as described in anchor hit 

criteria check part. Input data that are required for the present calculation is given below (Table 

27). In addition, towing velocity values for 4 different cases are taken as input as well. 

Table 27: Input data  

Characteristics Item Unit Value 

Model anchor mass 𝑚𝑎 kg 0.43 

Chain length 𝑙 m 4 

Chain diameter 𝐷 m 0.004 

Normal drag 

coefficient of stud-less 

chain 

𝐶𝐷𝑛 - 2.4 

Tangential drag 

coefficient of stud-less 

chain 

𝐶𝐷𝑡 - 1.15 

Acceleration of gravity 𝑔 m/s
2
 9.81 

Water density 𝜌𝑤 kg/m
3
 1000 

Steel density 𝜌𝑠𝑡𝑒𝑒𝑙 kg/m
3
 7850 

All the results of analytical solution are presented on the same graph (Figure 65). The absolute 

error of the measurements in x-direction falls between 0.003-0.059 m.  
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Figure 65: Comparison of results 

Summarizing this part, it is safe to say that anchor hit criterion is one of the most important 

criteria that have to be checked and discussed in every detail prior to continuing with anchor 

damage performance analyses. The graph gives good answers on two major questions – the chain 

shape after its stabilization and anchor towing depth variations with changing velocity values. 

Both, analytical and experimental approaches point out that the anchor will never be hanging 

vertically from the bow of the moving ship. It is due to an interaction between the water and 

anchor-chain arrangement: there will always be the hydrodynamic drag forces acting on the 

system in a direction opposite to the movement of the vessel. It should be mentioned, that the 

drag forces are proportional to the velocity squared (as presented in the formulas above). That is 

precisely why the position of anchor is heavily affected by the value of ship speed. The higher 

the velocity, the smaller the value of anchor towing depth will be. Moreover, not only the 

velocity, but anchor and chain masses are significant for this investigation. It is obvious that 

large and huge anchoring systems (classified by Capital Letters and Letters marked with star) are 

very heavy, so that they stabilize at greater towing depths as compared to Small Letters anchors.  

5.7 ANCHOR DRAGGING CONSEQUENCES 

In order to investigate the response of the pipeline interacted by the anchor suddenly lost and 

dragged over the line, a model developed by the IKM Ocean Design in the finite element (FE) 

program SIMLA is used. A full access to the program SIMLA is provided by the IKM Ocean 

Design Company as well. Dragged anchor analysis on a given Pipeline 1 with defined 

parameters is done for a number of sensitivity cases.  

5.7.1 Sensitivity cases 

Based on the results obtained after the double hook and hit criteria checks, the summary column 

diagram is drawn up (Figure 66). 
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Figure 66: Total number of crossing ships within certain KP sections and defined water depth (after hook/hit criteria checks) 
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As seen from the diagram, the most critical Pipeline 1 KP sections are the following: 0-10, 75-

95, 145-150, 170-215, 225-255, and 265-295. Each of these sections is laid at various water 

depths. That is why all of them are a point of interest.  Every pipe segment is crossed by different 

number and different classes of anchoring systems (as illustrated on the legend).  In view of this, 

several anchor types that are commonly occurred in every dangerous KP segments are selected 

for the anchor damage assessment procedure (Table 28).  

Table 28: Selected anchors within each critical Pipeline 1 section and specified average water 

depth 

Number of critical 

KP section 

Critical KP 

section 

Average water 

depth, m 

Selected anchor classes 

within KP section 

1 0-10 175 G, Y 

2 145-150 224.5 B* 

3 170-215 119 E 

4 225-255 115.25 z, v, F 

5 260-295 89 o, x, B, D 

One can see that the number of sensitivity cases needed for the analysis of pipe-anchor 

interaction scenario is equal to 11. Moreover, all anchor types are chosen for the analysis: both 

small and large ones.  

5.7.2 Parameters for the anchor hooking analysis 

Relevant pipeline parameters essential for the analyses in SIMLA are summarized in Table 29.  

Table 29: 40-inch pipeline data for FE analysis 

Characteristics Unit Value 

Outer diameter m 1.019 

Wall thickness m 0.026 

Material - Statoil grade X-65 

Steel density kg/m
3
 7850 

Young’s modulus GPa 207 

SMYS MPa 450 (0.5% strain) 

SMTS MPa 680 (20% strain) 

Poisson’s ratio - 0.3 

Coefficient of linear expansion 
0
C

-1
 11.7 x 10

-6
 

Internal temperature 
0
C 50 

Internal pressure barg 170 

Content density kg/m
3
 177 

Submerged weight (empty) kg/m 409.17 

Submerged weight (operation) kg/m 539.00 

Special attention should be paid to the pipeline material definition that is included into the finite 

element model. For the present case study a Ramberg-Osgoord stress-strain relationship is used 

(Figure 67): 
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휀(𝜎) =
𝜎

𝐸
∙ (1 +

3

7
∙ (

𝜎

𝜎𝑟
)
𝑛−1

)      (61) 

𝜎𝑟 - Ramberg-Osgood yield parameter; 

𝑛 – hardening parameter. 

Parameters 𝜎𝑟 and 𝑛 are found by using this relationship, so that for the current material 𝜎𝑟 is 

equal to 399.3 MPa, and 𝑛 is equal to 10.  

 

Figure 67: Pipeline stress-strain relationship curve 

Regarding anchor and chain data, a complete table of each anchor class characteristics is given 

below (Table 30). All the information about vessel equipment is taken from the Rules for Ship 

document. Anchor pulling angle value is found during the calculations of anchor towing depth 

(in anchor hit criteria check part). And anchor pulling velocity is as shown on the diagram “EL 

vs Average Ship Speed” (Figure 42).   

Table 30: Input anchor data for FE analysis 

Case # 

Anchor 

arrangement 

class (EL) 

Anchor 

mass, kg 

Chain 

length, m 

Chain 

capacity, 

kN 

Anchor 

pulling 

angle, deg 

Velocity, 

m/s 

1 G 6000 288.75 2770 33 4.97 

2 Y 16100 371.25 6690 34 6.05 

3 B* 18800 371.25 7960 38 5.70 

4 E 5250 288.75 2430 25 6.33 

5 z 3780 261.25 1810 28 5.23 

6 v 2850 247.5 1400 25 5.58 

7 F 5610 288.75 2600 39 4.07 

8 o 1590 206.25 735 23 5.27 

9 x 3300 247.5 1680 28 5.21 

10 B 4320 225 1960 27 5.68 

11 D 4890 225 2270 29 5.51 
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NB. Conventional stockless anchor type and the most commonly used stud-link chain (steel 

grade NV K3) are selected for the present analysis.  

5.7.3 Global scale analyses 

Anchor hooking analyses for all the distinguished sensitivity cases are performed by employing 

FE program SIMLA.  

Modeling particularities 

1. 10000-meter pipeline segment is modeled in the finite element program. By considering 

SIMLA element library, an element type PIPE33 has been chosen to describe elasto-

plastic behavior of pipeline material. All the corresponding pipeline design and 

operational characteristics are also set into the computer code in SIMLA.  

2. An anchor is modeled as a 3D beam, and a chain is modeled as a single beam. An 

element type PIPE31 is used to describe a linear elastic behavior of anchor and chain 

materials. Relevant input characteristics of anchor arrangement given in the Table 30 are 

included into the code as well. Special emphasis should be placed on the axial stiffness 

(in N) of the chain, which is the function of its diameter (𝐷) and found by formula: 

𝐸𝐴𝑠𝑡𝑢𝑑−𝑙𝑖𝑛𝑘 = 1.01 ∙ 10
11 ∙ 𝐷2      (62) 

3. The analyses are performed for several critical KP sections, which are situated at 

different seawater depths. The depth value has been changed for every individual case in 

accordance with the Table 28. SEA150 element is taken to simulate the sea properties.  

4. As for the seabed, it is flat in the model. The seabed properties are described in two 

directions (axial and lateral) by using contact element types CONT126 in order to show 

the contact between the pipeline and seabed.  

5. The model simulates a pipe-anchor interaction using an elastic spring connection. At a 

given springtime the spring (material of which is explained by the element spring137) 

will be activated effectively “gluing” itself to the pipeline and simulating that it hooks the 

line. After that the spring connection is capable of emulating the break of the chain at 

relevant chain breaking load. The analysis is continued until the pipeline comes to rest 

after being interfered by dragging anchor.  

6. Global type boundary conditions are specified in the model. The pipeline is modeled with 

finite length and fixed ends in x- and y-directions (translation), and in torsional direction 

(rotation about x) as well.  

Schematic illustration of the pipe-anchor interaction simulation is presented below (Figure 68).  
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Figure 68: Schematic view of overall pipe-anchor interaction model 

NB. To be more conservative the interaction between the Pipeline 1 and dragging anchor is 

assumed to be perpendicular.  

40-inch Pipeline 1 modeling results 

Following the main objective of the present case study, relevant SIMLA analysis input files have 

been prepared individually for all the sensitivity cases, a total number of which is 11. Once, 

every input file is run, the output data concerning moments, forces, displacements and strains are 

determined and exported to the individual EXCEL sheets. Using obtained data, it becomes 

possible to investigate 40-inch Pipeline 1 response after being hooked by the dragging anchor.   

Displacements 

Special attention is paid to the vertical and lateral displacements of the 40-inch pipeline. For that 

purpose, summarized table with the relevant values is compiled. Corresponding graphs, showing 

how the displacements of the Pipeline 1 changes from case to case, are developed and presented 

below (Figures 69 and 70).  

NB. One shall take into account that all the parameters used for the analysis in SIMLA are not 

generalized or averaged; they are specific for every single case. So, values of the velocity, 

chain length and anchor pulling angle are individual and vary only with certain anchor class and 

water depth (Table 31).  

Table 31: Resultant table 

Anchor 

class (EL) 

Vertical 

displacement, m 

Lateral 

displacement, m 

Ship 

speed, m/s 

Anchor pulling 

angle, deg 

Water 

depth, m 

o 0.11 8.62 5.3 23 89 

v 1.43 16.99 5.6 25 115 

x 1.62 19.49 5.2 28 89 
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z 1.91 20.33 5.2 28 115 

B 1.88 20.53 5.7 27 89 

D 2.79 23.53 5.5 29 89 

E 2.36 21.93 6.3 25 119 

F 5.52 32.39 4.1 39 115 

G 4.13 26.55 5.0 33 175 

Y 6.61 49.23 6.0 34 175 

B* 7.71 61.60 5.7 38 225 

 

Figure 69: Pipeline 1 vertical displacement for specified cases 

 

Figure 70: Pipeline 1 lateral displacement for specified cases 

It is visible that the behavior of the graphs is quite similar. Large vertical and lateral 

displacements refer to the anchor classes “Y” and “B*” (Figures 71 and 72). Moreover, one can 

see here that the displacement values are not distributed smoothly as they are thought to be (it is 

observed for the “E” and “G” anchor classes). The reason for this is that not only the anchor size, 

but a combination of the chain length, ship speed and water depth strongly influence the value of 

anchor pulling angle, which greatly affects the resultant value of the pipeline displacements. In 
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order to confirm this statement, the following table (Table 32) is compiled to show the 

comparison between four adjacent equipment classes: “D” - “E” - “F” - “G”. 

 

Figure 71: Pipeline displacement in case of anchor class “Y” 

 

Figure 72: Pipeline displacement in case of anchor class “B*” 

Table 32: Comparison between four adjacent equipment classes: “D” - “E” - “F” - “G” 

 D 
Comparison 

character 
E 

Comparison 

character 
F 

Comparison 

character 
G 

Vertical 

displacement, m 
2.79 > 2.36 < 5.52 > 4.13 

Lateral 

displacement, m 
23.53 > 21.93 < 32.39 > 26.55 

Anchor pulling 

angle, deg 
29 > 25 < 39 > 33 

Velocity, m/s 5.51 < 6.33 > 4.07 < 4.97 
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Strains 

Along with the displacement, strain is also a point of interest while assessing the pipeline 

response. In the analysis 5% strain is chosen as a limit value. Once it is exceeded, the pipeline 

will suffer damage. The graph below presents the variation of pipeline strain with different 

anchor types (Figure 73). 

 

Figure 73: Pipeline 1 strain for specified cases 

As seen from above the anchor classes “Y” (16100 kg) and “B*” (18800 kg) are very dangerous 

for the Pipeline 1. These classes refer to the ships, crossing KP 0-10 and 145-150.  

Bending moment, axial force and internal pressure 

Evaluation of cross-sectional capacity of the Pipeline 1 is to be included in the analysis as well. 

Being hooked by the dragging anchor, the pipeline is subjected to large axial forces and bending 

moments. Moreover, taking into account the fact that the pipeline is under operation, no one can 

exclude an effect from the internal pressure. Detailed discussion on combined loading effect has 

been given in the previous part (Table 15).  So, an assessment of pipeline cross-sectional 

capacity can be performed by applying plastic interaction curves, which account for maximum 

combined axial force, bending moment and internal pressure. The plastic capacity curves can be 

gotten by solving the following equation (Vitali, Bruschi, Mork, Levold & Verley, 1999): 

𝑀 = (𝐷 − 𝑡)2 ∙ 𝑡 ∙ 𝜎𝑦 ∙ √1 −
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𝑀 – full plastic bending moment; 

𝑁 – axial force applied in steel; 

𝑞ℎ - hoop stress ratio equal to 𝜎ℎ/𝜎𝑦; 
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𝐷 - pipe outer diameter; 

𝑡 - pipe wall thickness; 

𝜎𝑦- yield stress; 

𝑁𝑦 – yield axial force equal to 𝜋 ∙ (𝐷 − 𝑡) ∙ 𝑡 ∙ 𝜎𝑦. 

Once the plastic interaction curves are ready, an axial force – bending moment relationship can 

be plotted as well. In case, if force - moment relationship falls within the plastic interaction curve 

related to 5% limit strain, the pipeline is supposed to survive. Otherwise, it will suffer damage. 

Cross-sectional capacity (black line) of the Pipeline 1 is checked for all the anchor types 

specified before. Green dashed line corresponds to SMYS; red dashed line refers to SMTS; while 

blue dashed line is plastic capacity curve relates to 5% limit strain value. The results of this 

check are presented below in Figures 74-84. 

 

Figure 74: Capacity check for EL “o” 

 

Figure 75: Capacity check for EL “v” 

 

Figure 76: Capacity check for EL “x” 

 

Figure 77: Capacity check for EL “z” 
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Figure 78: Capacity check for EL “B” 

 

Figure 79: Capacity check for EL “D” 

 

Figure 80: Capacity check for EL “E” 

 

Figure 81: Capacity check for EL “F” 

 

Figure 82: Capacity check for EL “G” 

 

Figure 83: Capacity check for EL “Y” 
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Figure 84: Capacity check for EL “B*” 

As observed from the plots above, in case if pipeline is interfered by the dragging anchors 

classified by “Y” and “B*”, the axial force – bending moment relationship curve intersects the 

plastic capacity curve corresponding to 5% limit strain (blue dashed line). So, the Pipeline 1 will 

suffer damage in 0-10 KP and 145-150 KP sections respectively. In order to understand, how the 

axial force has been changing in time until the anchor chain is broken, the following graphs are 

shown below (Figures 85-87).  

 

Figure 85: Change in axial force in time, EL “Y” 
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Figure 86: Change in axial force in time, EL “B*” 

 

Figure 87: Change in axial force in time, EL “o” 
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In case of huge anchor interactions (“Y”, “B*”), the ends of modeled 10 km pipeline are affected 

by the axial force. The latter is not observed in case of small anchors (Figure 87). This 

phenomenon can be explained by the effect of large membrane terms in the pipeline that steadily 

increase until the anchor chain is broken. Hence, it is better to model longer pipeline for the 

assessment of its damage due to huge anchoring systems.    

Summarizing the part about anchor pulling consequences, one shall see how important it is to 

perform anchor hooking analysis on a global scale. A lot of attention should be given here to the 

pipeline displacements and strains. The analysis shows interesting variation of vertical and 

lateral pipeline displacements with different anchor sizes. It is found that not only the anchor 

mass, but also a vessel speed becomes key parameter affecting the resultant pipeline response. 

The larger the velocity, the less the anchor pulling angle and the less the pipeline displacements 

(both vertical and lateral) will be. Regarding pipeline strain, the limit value of 5% strain is used 

in the present case study. The analysis indicates that the strain criterion has been exceeded in 

cases of anchor class “Y” and “B*”. So, 40-inch Pipeline 1 is supposed to be damaged if it is 

hooked by these anchors. The same results are obtained from the pipeline cross-sectional 

capacity check. Combined axial force, bending moment and internal overpressure are taken into 

account for this evaluation. Eleven plots give good demonstration on pipeline capability to 

survive or fail. According to them, the Pipeline 1 will not survive after the “attack” of huge 

anchors such as “Y” and “B*”, which are found on the ships, crossing Pipeline 1 KP 0-10 and 

145-150 sections.  

16-inch pipeline analysis 

40-inch gas pipeline response and cross-sectional capacity check are studied above for various 

sensitivity cases chosen on the basis of the anchor hook and hit criteria check results. It has been 

observed that a 40-inch line will not survive if it is “attacked” by huge anchors like “Y” and 

“B*”. Thus, it is interesting to see what the effect of considered dragging anchors on a smaller 

diameter pipeline is. By applying the same modeling and analysis procedures, a limited set of 

sensitivity cases is used for the damage assessment of a 16-inch gas pipeline. Relevant pipeline 

data is given below (Table 33). Other specific pipe parameters remain the same as for the 40-

inch line.  

Table 33: 16-inch pipeline data for FE analysis 

Characteristics Unit Value 

Outer diameter m 0.406 

Wall thickness m 0.016 

Submerged weight (empty) kg/m 98.29 

Submerged weight (operation) kg/m 122.81 

Four different classes of vessel equipment are specified for the investigation: “o”, “z”, “G”, and 

“B*”. The results are presented in the same way as it has been done with a 40-inch pipeline.  

Displacements 

Summary graphs illustrating the variation of small diameter pipeline displacements (vertical and 

lateral) are shown in Figures 88, 89.  
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Figure 88: 16-inch pipeline vertical displacement for specified cases 

 

Figure 89: 16-inch pipeline lateral displacement for specified cases 

It is obvious that the displacements will be greater as the anchor size increases: the maximum 

values are obtained when the line is dragged by the anchor class “B*”. In addition, Table 34 is 

compiled to demonstrate how different the vertical and lateral displacements of 16-inch and 40-

inch pipelines are.  

Table 34: Comparison table for vertical and lateral displacements of 40 and 16-inch pipelines 

Anchor 

class (EL) 

40-inch line 

vertical 

displacement, m 

16-inch line 

vertical 

displacement, m 

40-inch line lateral 

displacement, m 

16-inch line lateral 

displacement, m 

o 0.11 3.17 8.62 24.80 

z 1.91 5.73 20.33 51.02 

G 4.13 7.60 26.55 79.59 

B* 7.71 10.11 61.60 134.87 
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It is seen that the lateral displacements of smaller pipeline have increased approximately 2.5 

times.  

Strain 

Strain is taken into account as well. 5% strain is chosen as a limit value. The graph below 

presents the variation of a 16-inch pipeline strain with 4 different anchor types (Figure 90). 

 

Figure 90: 16-inch pipeline strain for specified cases 

The graph illustrates that the anchors, classified by the EL starting from “G”, have potential to 

damage a small diameter pipeline. Strain results for both 16 and 40-inch pipelines are presented 

in Table 35.  

Table 35: Comparison table for strain values of 40 and 16-inch pipelines 

Anchor class 

(EL) 

40-inch line 

strain, % 

16-inch line 

strain, % 

o 0.9 3.5 

z 2.3 3.9 

G 2.9 5.7 

B* 8.2 15.1 

16-inch pipe strain values, corresponding to anchor type “G” and “*B”, have almost doubled in 

contrast with the same values for a 40-inch line.  

Bending moment, axial force and internal pressure 

Regarding combined loading effect due to bending moment, axial force and internal 

overpressure; it is observed that the pipeline will probably not survive after being interacted by 

the anchor class “G” and higher. It is proven by the graphs below (Figures 91-94), where green 

dashed line corresponds to SMYS; red dashed line refers to SMTS; while blue dashed line is 

plastic capacity curve relates to 5% limit strain value. 
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Figure 91: Capacity check for EL “o” 

 

Figure 92: Capacity check for EL “z” 

 

Figure 93: Capacity check for EL “G” 

 

Figure 94: Capacity check for EL “B*” 

Both predicted strain results and combined loading effect outcomes correspond to each other. 

Thus, it is safe to say that a 16-inch gas pipeline may suffer serious damage if it is hooked by all 

the anchors classified by “G” and higher.  So, the pipeline KP 0-10, 75-95, 135-140, 145-150 are 

the most critical sections in terms of pipe-anchor interaction event.   

Resultant tables indicate that the smaller diameter pipelines (especially those, which are not 

protected) are very vulnerable to the damages from dragging anchors. It is understandable, since 

thin-walled, small diameter lines are known to have negligible cross-sectional capacities in 

comparison with the larger diameter pipelines.  

5.8 ANCHOR DRAGGING FREQUENCY 

Prior to drawing main conclusion consistent with the results of dragged anchor analysis on a 

given Pipeline 1, it has been decided to estimate the pipe-anchor interaction frequencies. 

Frequency estimation is done in accordance with the procedure written in the Energy Report 

(DNV Recommended Failure Rates for Pipelines, 2010).  Since all the information (namely AIS 

ship traffic data) is given only for the 1
st
 quarter of 2013, the frequencies are calculated for a 
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quarter at first. Then an assumption is taken that the same marine activity is observed for the 

remaining quarters of the year, and an annual failure frequency is also calculated. 

5.8.1 Frequency estimation procedure 

It is assumed that there are two incidents of anchor loss per 200 ships and year. And the 

frequency for this event will be equal to 1·10
-2

 per ship and year, or 2.5·10
-3

 per ship and quarter. 

Hence, the estimated frequency of uncontrolled anchor drops per vessel and quarter is as follows: 

𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 𝑎𝑛ℎ𝑐𝑜𝑟 𝑑𝑟𝑜𝑝𝑠

𝑞𝑢𝑎𝑟𝑡𝑒𝑟
=
𝐴𝑛𝑐ℎ𝑜𝑟 𝑙𝑜𝑠𝑠

𝑞𝑢𝑎𝑟𝑡𝑒𝑟
∙ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.0025 ∙ 0.46 =

                            1.15 ∙ 10−3/𝑞𝑢𝑎𝑟𝑡𝑒𝑟              (64) 

NB. Correction factor (0.46) is used, because not all the anchors are lost due to accidental anchor 

drop event. In addition, just a few lost anchors relate to the uncontrolled anchor drops (DNV 

Recommended Failure Rates for Pipelines, 2010).  

An estimated frequency of accidental anchor drops per vessel and travelled distance in km is 

calculated in this manner: 

𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 𝑎𝑛ℎ𝑐𝑜𝑟 𝑑𝑟𝑜𝑝𝑠

𝑘𝑚
=
𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 𝑎𝑛ℎ𝑐𝑜𝑟 𝑑𝑟𝑜𝑝𝑠/𝑞𝑢𝑎𝑟𝑡𝑒𝑟

𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
=

1.15∙10−3/𝑞𝑢𝑎𝑟𝑡𝑒𝑟

70%∙2190
ℎ

𝑞𝑢𝑎𝑟𝑡𝑒𝑟
∙15

𝑛𝑚𝑖

ℎ
∙1.852

𝑘𝑚

𝑛𝑚𝑖

=

          2.7 ∙ 10−8/𝑘𝑚          (65) 

Where 70% are accounted for utilization and 15 knots are taken as average vessel speed value.  

The pipe-anchor interaction phenomenon may happen due to three different outcomes that are 

presented in the Table 36. The total frequency for this scenario is equal to the sum of the 

frequencies for every outcome (DNV Recommended Failure Rates for Pipelines, 2010).  

Table 36: The frequency for pipe - anchor interaction scenario for different anchor drop 

situations 

# Anchor drop description 
Frequency for pipe-anchor 

interaction per ship crossing 

1 

Anchor is dropped within 1 km. The penetration depth is 

not large, so the anchor is easily recovered. 2.01·10
-8

 

2 

Anchor is fully seated in the seabed. Maximum 

penetration and holding power are provided and it can 

result in chain break. Anchor can be lost. 
1.68·10

-9
 

3 

Anchor is not seated and dragged for some distance until 

it hooks the pipeline or structure. Ship anchor drags 

because the external forces are greater than holding 

power of the anchor and chain. Anchor is lost. 

1.66·10
-7

 

Thus, the sum of the frequencies for every outcome equals to: 
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𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑝𝑖𝑝𝑒 − 𝑎𝑛𝑐ℎ𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑠ℎ𝑖𝑝 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 = 2.01 · 10−8 + 1.68 · 10−9 +

1.66 · 10−7 = 1.9 · 10−7                                     (66) 

This value is established to be base failure frequency per ship crossing.  

Summary table, showing the failure frequency distribution for every KP section of Pipeline 1, is 

compiled below (Table 37). Frequency estimation procedure is done for the total number of ship 

crossings, and also for the ship crossings found after each criterion check: 

1. Anchor hook criteria check (on the basis of geometrical configuration of vessel 

equipment); 

2. Anchor hit criteria check (in terms of the relation between the water depth value, ship 

velocity and chain length); 

3. Anchor damage criteria check (based on pipeline response analysis and check of cross-

sectional capacity). 

Furthermore, exactly the same methodology is implemented for the failure frequency estimation 

for a 16-inch gas pipeline case.  Thus, Table 38 is compiled in order to demonstrate the total 

estimated failure frequency for a 16-inch pipeline.  

NB. It is assumed that a 16-inch pipeline route is the same as for the Pipeline 1. That is why the 

traffic data for a 16-inch line is considered to be identical to the ship traffic data of Pipeline 1 

(40-inch). Another assumption is that the results of the anchor hook/hit criteria checks remain the 

same as for the 40-inch pipeline. The latter will indicate how the total failure frequencies for 

both large and small size pipelines differ from one another.  
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Table 37: Failure frequency estimation for the 40-inch Pipeline 1 KP sections per 1Q 

KP 

section 

Failure 

frequency 

per ship 

crossing 

Total ship crossings I criteria hook check II criteria hit check III criteria damage check 

Total # 

of ship 

crossings 

Failure 

frequency per 

KP and 1Q 

# of ship 

crossings 

with 

potential to 

hook the pipe 

Failure 

frequency per 

KP and 1Q 

# of ship 

crossings 

with 

potential to 

hit the pipe 

Failure 

frequency per 

KP and 1Q 

# of ship 

crossings 

with 

potential to 

damage the 

pipe 

Failure 

frequency per 

KP and 1Q 

0-10 1.9E-07 8 1.5E-06 8 1.5E-06 7 1.3E-06 1 1.9E-07 

10-15 1.9E-07 11 2.1E-06 10 1.9E-06 0 - 0 - 

15-20 1.9E-07 20 3.8E-06 18 3.4E-06 0 - 0 - 

20-25 1.9E-07 20 3.8E-06 19 3.6E-06 0 - 0 - 

25-30 1.9E-07 26 4.9E-06 25 4.7E-06 0 - 0 - 

30-35 1.9E-07 26 4.9E-06 26 4.9E-06 0 - 0 - 

35-40 1.9E-07 48 9.0E-06 48 9.0E-06 0 - 0 - 

40-45 1.9E-07 35 6.6E-06 35 6.6E-06 0 - 0 - 

45-50 1.9E-07 27 5.1E-06 25 4.7E-06 0 - 0 - 

50-55 1.9E-07 16 3.0E-06 16 3.0E-06 0 - 0 - 

55-60 1.9E-07 8 1.5E-06 8 1.5E-06 0 - 0 - 

60-65 1.9E-07 12 2.3E-06 11 2.1E-06 0 - 0 - 

65-70 1.9E-07 14 2.6E-06 14 2.6E-06 0 - 0 - 

70-75 1.9E-07 50 9.4E-06 50 9.4E-06 0 - 0 - 

75-80 1.9E-07 19 3.6E-06 19 3.6E-06 1 1.9E-07 0 - 

80-85 1.9E-07 68 1.3E-05 68 1.3E-05 1 1.9E-07 0 - 

85-90 1.9E-07 114 2.1E-05 112 2.1E-05 1 1.9E-07 0 - 

90-95 1.9E-07 57 1.1E-05 54 1.0E-05 1 1.9E-07 0 - 

95-100 1.9E-07 2 3.8E-07 2 3.8E-07 0 - 0 - 
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100-105 1.9E-07 9 1.7E-06 9 1.7E-06 0 - 0 - 

105-110 1.9E-07 4 7.5E-07 4 7.5E-07 0 - 0 - 

110-115 1.9E-07 2 3.8E-07 2 3.8E-07 0 - 0 - 

115-120 1.9E-07 2 3.8E-07 2 3.8E-07 0 - 0 - 

120-125 1.9E-07 3 5.6E-07 3 5.6E-07 0 - 0 - 

125-130 1.9E-07 1 1.9E-07 1 1.9E-07 0 - 0 - 

130-135 1.9E-07 5 9.4E-07 4 7.5E-07 0 - 0 - 

135-140 1.9E-07 6 1.1E-06 5 9.4E-07 1 1.9E-07 0 - 

140-145 1.9E-07 3 5.6E-07 3 5.6E-07 0 - 0 - 

145-150 1.9E-07 2 3.8E-07 2 3.8E-07 1 1.9E-07 1 1.9E-07 

150-155 1.9E-07 2 3.8E-07 2 3.8E-07 0 - 0 - 

165-170 1.9E-07 1 1.9E-07 1 1.9E-07 0 - 0 - 

170-175 1.9E-07 6 1.1E-06 6 1.1E-06 2 3.8E-07 0 - 

175-180 1.9E-07 2 3.8E-07 1 1.9E-07 0 - 0 - 

180-185 1.9E-07 5 9.4E-07 5 9.4E-07 1 1.9E-07 0 - 

185-190 1.9E-07 13 2.4E-06 11 2.1E-06 7 1.3E-06 0 - 

190-195 1.9E-07 11 2.1E-06 10 1.9E-06 7 1.3E-06 0 - 

195-200 1.9E-07 11 2.1E-06 10 1.9E-06 6 1.1E-06 0 - 

200-205 1.9E-07 9 1.7E-06 9 1.7E-06 4 7.5E-07 0 - 

205-210 1.9E-07 7 1.3E-06 5 9.4E-07 2 3.8E-07 0 - 

210-215 1.9E-07 6 1.1E-06 5 9.4E-07 2 3.8E-07 0 - 

215-220 1.9E-07 7 1.3E-06 6 1.1E-06 0 - 0 - 

220-225 1.9E-07 4 7.5E-07 4 7.5E-07 0 - 0 - 

225-230 1.9E-07 10 1.9E-06 9 1.7E-06 4 7.5E-07 0 - 

230-235 1.9E-07 8 1.5E-06 8 1.5E-06 6 1.1E-06 0 - 

235-240 1.9E-07 4 7.5E-07 4 7.5E-07 1 1.9E-07 0 - 

240-245 1.9E-07 10 1.9E-06 10 1.9E-06 3 5.6E-07 0 - 

245-250 1.9E-07 15 2.8E-06 14 2.6E-06 6 1.1E-06 0 - 
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250-255 1.9E-07 4 7.5E-07 3 5.6E-07 2 3.8E-07 0 - 

255-260 1.9E-07 2 3.8E-07 2 3.8E-07 0 - 0 - 

260-265 1.9E-07 3 5.6E-07 2 3.8E-07 1 1.9E-07 0 - 

265-270 1.9E-07 4 7.5E-07 3 5.6E-07 2 3.8E-07 0 - 

270-275 1.9E-07 4 7.5E-07 4 7.5E-07 3 5.6E-07 0 - 

275-280 1.9E-07 9 1.7E-06 7 1.3E-06 5 9.4E-07 0 - 

280-285 1.9E-07 23 4.3E-06 20 3.8E-06 14 2.6E-06 0 - 

285-290 1.9E-07 2 3.8E-07 2 3.8E-07 1 1.9E-07 0 - 

290-295 1.9E-07 2 3.8E-07 2 3.8E-07 1 1.9E-07 0 - 

 
Total 802 1.5E-04 768 1.4E-04 93 1.7E-05 2 3.8E-07 

Table 38: Failure frequency estimation for the 16-inch gas pipeline KP sections per 1Q 

KP 

section 

Failure 

frequency 

per ship 

crossing 

Total ship crossings I criteria hook check II criteria hit check III criteria damage check 

Total # 

of ship 

crossings 

Failure 

frequency per 

KP and 1Q 

# of ship 

crossings 

with 

potential to 

hook the pipe 

Failure 

frequency per 

KP and 1Q 

# of ship 

crossings 

with 

potential to 

hit the pipe 

Failure 

frequency per 

KP and 1Q 

# of ship 

crossings 

with 

potential to 

damage the 

pipe 

Failure 

frequency per 

KP and 1Q 

0-10 1.9E-07 8 1.5E-06 8 1.5E-06 7 1.3E-06 7 1.3E-06 

10-15 1.9E-07 11 2.1E-06 10 1.9E-06 0 - 0 - 

15-20 1.9E-07 20 3.8E-06 18 3.4E-06 0 - 0 - 

20-25 1.9E-07 20 3.8E-06 19 3.6E-06 0 - 0 - 

25-30 1.9E-07 26 4.9E-06 25 4.7E-06 0 - 0 - 

30-35 1.9E-07 26 4.9E-06 26 4.9E-06 0 - 0 - 

35-40 1.9E-07 48 9.0E-06 48 9.0E-06 0 - 0 - 

40-45 1.9E-07 35 6.6E-06 35 6.6E-06 0 - 0 - 
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45-50 1.9E-07 27 5.1E-06 25 4.7E-06 0 - 0 - 

50-55 1.9E-07 16 3.0E-06 16 3.0E-06 0 - 0 - 

55-60 1.9E-07 8 1.5E-06 8 1.5E-06 0 - 0 - 

60-65 1.9E-07 12 2.3E-06 11 2.1E-06 0 - 0 - 

65-70 1.9E-07 14 2.6E-06 14 2.6E-06 0 - 0 - 

70-75 1.9E-07 50 9.4E-06 50 9.4E-06 0 - 0 - 

75-80 1.9E-07 19 3.6E-06 19 3.6E-06 1 1.9E-07 1 1.9E-07 

80-85 1.9E-07 68 1.3E-05 68 1.3E-05 1 1.9E-07 1 1.9E-07 

85-90 1.9E-07 114 2.1E-05 112 2.1E-05 1 1.9E-07 1 1.9E-07 

90-95 1.9E-07 57 1.1E-05 54 1.0E-05 1 1.9E-07 1 1.9E-07 

95-100 1.9E-07 2 3.8E-07 2 3.8E-07 0 - 0 - 

100-105 1.9E-07 9 1.7E-06 9 1.7E-06 0 - 0 - 

105-110 1.9E-07 4 7.5E-07 4 7.5E-07 0 - 0 - 

110-115 1.9E-07 2 3.8E-07 2 3.8E-07 0 - 0 - 

115-120 1.9E-07 2 3.8E-07 2 3.8E-07 0 - 0 - 

120-125 1.9E-07 3 5.6E-07 3 5.6E-07 0 - 0 - 

125-130 1.9E-07 1 1.9E-07 1 1.9E-07 0 - 0 - 

130-135 1.9E-07 5 9.4E-07 4 7.5E-07 0 - 0 - 

135-140 1.9E-07 6 1.1E-06 5 9.4E-07 1 1.9E-07 1 1.9E-07 

140-145 1.9E-07 3 5.6E-07 3 5.6E-07 0 - 0 - 

145-150 1.9E-07 2 3.8E-07 2 3.8E-07 1 1.9E-07 1 1.9E-07 

150-155 1.9E-07 2 3.8E-07 2 3.8E-07 0 - 0 - 

165-170 1.9E-07 1 1.9E-07 1 1.9E-07 0 - 0 - 

170-175 1.9E-07 6 1.1E-06 6 1.1E-06 2 3.8E-07 0 - 

175-180 1.9E-07 2 3.8E-07 1 1.9E-07 0 - 0 - 

180-185 1.9E-07 5 9.4E-07 5 9.4E-07 1 1.9E-07 0 - 

185-190 1.9E-07 13 2.4E-06 11 2.1E-06 7 1.3E-06 0 - 

190-195 1.9E-07 11 2.1E-06 10 1.9E-06 7 1.3E-06 0 - 
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195-200 1.9E-07 11 2.1E-06 10 1.9E-06 6 1.1E-06 0 - 

200-205 1.9E-07 9 1.7E-06 9 1.7E-06 4 7.5E-07 0 - 

205-210 1.9E-07 7 1.3E-06 5 9.4E-07 2 3.8E-07 0 - 

210-215 1.9E-07 6 1.1E-06 5 9.4E-07 2 3.8E-07 0 - 

215-220 1.9E-07 7 1.3E-06 6 1.1E-06 0 - 0 - 

220-225 1.9E-07 4 7.5E-07 4 7.5E-07 0 - 0 - 

225-230 1.9E-07 10 1.9E-06 9 1.7E-06 4 7.5E-07 0 - 

230-235 1.9E-07 8 1.5E-06 8 1.5E-06 6 1.1E-06 0 - 

235-240 1.9E-07 4 7.5E-07 4 7.5E-07 1 1.9E-07 0 - 

240-245 1.9E-07 10 1.9E-06 10 1.9E-06 3 5.6E-07 0 - 

245-250 1.9E-07 15 2.8E-06 14 2.6E-06 6 1.1E-06 0 - 

250-255 1.9E-07 4 7.5E-07 3 5.6E-07 2 3.8E-07 0 - 

255-260 1.9E-07 2 3.8E-07 2 3.8E-07 0 - 0 - 

260-265 1.9E-07 3 5.6E-07 2 3.8E-07 1 1.9E-07 0 - 

265-270 1.9E-07 4 7.5E-07 3 5.6E-07 2 3.8E-07 0 - 

270-275 1.9E-07 4 7.5E-07 4 7.5E-07 3 5.6E-07 0 - 

275-280 1.9E-07 9 1.7E-06 7 1.3E-06 5 9.4E-07 0 - 

280-285 1.9E-07 23 4.3E-06 20 3.8E-06 14 2.6E-06 0 - 

285-290 1.9E-07 2 3.8E-07 2 3.8E-07 1 1.9E-07 0 - 

290-295 1.9E-07 2 3.8E-07 2 3.8E-07 1 1.9E-07 0 - 

 
Total 802 1.5E-04 768 1.4E-04 93 1.7E-05 13 2.44E-06 
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To sum up the results of the frequency analysis in the 1
st
 quarter of 2013 for 40-inch gas line, a 

total of 802 passing ships are taken for the analysis. After the 1
st
 criteria check, this number is 

reduced to 768, after the 2
nd

 check it is dropped to 93, and after the 3
rd

 criteria check the number 

of dangerous ship crossings is decreased to 2. The failure frequencies are calculated for every 

pipe KP section after every criterion check. Resultant damage frequency of the 40-inch    

Pipeline 1 for the 1
st
 quarter of 2013 is equal to 3.8·10

-7
; and an annual failure frequency is 

1.5·10
-6

 (assuming that the ship traffic volume has been the same in the remaining quarters of the 

year). In accordance with the DNV-OS-F101, the nominal target failure frequency is of 

magnitude 10
-4

 per pipeline and year. Thus, one can see that the total estimated frequency is less 

than the acceptance criterion for pipeline damage.  Concerning a 16-inch gas pipeline, after the 

3
rd

 criteria check the number of critical crosses has decreased up to 13. So, the resultant damage 

frequency of smaller diameter pipeline is equal to 2.44·10
-6

 per quarter, and an annual one is 

9.76·10
-6

, which is also less than acceptance value. The comparison of obtained frequencies for 

both pipelines is shown below: 

1.5 · 10−6 < 9.76 · 10−6       (67) 

Consequently, the smaller the pipeline, the greater the potential for damage from dragging 

anchor will be.  

5.9 ANCHOR DAMAGE ASSESSMENT METHODOLOGY 

The anchor dragging interference assessment methodology is presented below (Table 40). 

Table 40: Anchor damage assessment methodology 

Data 

Processing 

Pipeline Data 

and 

Characteristics 

 General pipeline data; 

 Operational characteristics; 

 Material properties (steel, concrete); 

 Seabed characteristics along the route; 

 Seabed depth profile along the route; 

 Segmentation of the route. 

Ship Traffic 

Data 

 Total number of ship crossings; 

 Identification number (IMO-no and/or MMSI-no); 

 Types and/or classes of ships; 

 Gross Tonnage index; 

 Equipment Number and/or Equipment Letter; 

 Vessel speed; 

 Vessel direction; 

 Latitude and longitude coordinates. 

Screening 

Analyses 

Anchor Hook 

Criteria Check 

On the basis of anchor geometrical configuration. Two 

scenarios are to be analyzed: 

 The pipeline is stuck between one fluke and anchor 

shank; 

 The pipeline is stuck between the plane of both flukes 

and anchor shank. 
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NB. The minimum anchor size value and corresponding 

equipment class should be determined from both scenarios. 

Lower class anchors are to be excluded from the analyses. 

Anchor Hit 

Criteria Check 

On the basis of the vessel speed, water depth, and anchor 

class (anchor size and chain length). It allows checking if the 

anchor is capable of approaching the pipeline or not. The 

following parameters are to be found: 

 Anchor pulling angle; 

 Anchor towing depth. 

NB. The minimum chain length value and corresponding 

equipment class should be determined. Lower class anchors 

are to be excluded from the further analyses. 

Global 

Scale 

Analyses 

Anchor 

Damage 

Criteria Check 

On the basis of several sensitivity cases selected from the 

outcomes from anchor hook & hit criteria checks. The 

following is to be assessed then: 

 Pipeline vertical and lateral displacements; 

 Pipeline strain; 

 Pipeline cross sectional capacity check for the case of 

combined loading effect (e.g. axial force, bending 

moment, and internal overpressure). 

NB. The anchor damage assessment of the pipeline can be 

performed by employing the FE program SIMLA. 

Frequency Estimation  Frequency estimation in accordance with the base 

failure frequency per ship crossing (1.9·10
-7

); 

 Comparison of total estimated frequency for damage 

with the nominal annual target failure frequency for 

ALS (10
-4

 per pipeline). 

General Conclusions Which pipeline sizes (as a function of water depth, vessel 

size, speed etc.) will typically: 

 Withstand anchor impact; 

 Will be damaged. 
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CHAPTER 6. DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

6.1 DISCUSSION ON STUDY AND ANALYSES RESULTS 

Prior to drawing a conclusion from the performed analyses and estimations, a complete 

discussion based on the results and findings from the previous chapters is presented hereinafter. 

PARLOC 2001 database 

A comprehensive study on pipeline failure database PARLOC 2001 is prepared in this work. The 

emphasis has been placed on the identification and subsequent evaluation of pipeline incidents. 

Database boundaries, its population and incidents occurrence are defined and highlighted. The 

main pipeline failures, their causes, locations and consequences have been found and analyzed. 

The analyses show that the most frequently observed incidents involving both rigid and flexible 

lines are corrosion, material defect, impact and anchoring. It has been detected that each of these 

hazards can cause a lot of pipeline damages, ruptures and leakages. That is why complete 

definition and detailed evaluation of them is presented in this paper. Corresponding graphs, 

diagrams and charts are prepared with the purpose of illustrating which pipeline size is the most 

vulnerable to damage. In addition, the location of incidents is graphically presented as well. Both 

spontaneous and external hazards mostly occur in the pipeline Mid Line (a lot of threats from 

high marine and fishing activities) and Safety Zone (a lot of threats from the dropped objects 

during installation works). Concerning the pipeline size, it has been found that smaller diameter 

lines (2.4-16 inches) are susceptible to damage a lot more since their capacity is almost 

negligible in comparison with the capacity of larger lines. Identified pipeline size and zones can 

be used for the selection of safeguard measures and pipeline protection philosophy, which 

significantly reduces the extent of damage or eliminates it at all. Hence, it is important to record 

all the threats observed throughout the whole life of the pipeline system. Collection of pipeline 

failures information provides an excellent opportunity to learn from every single experience and 

to exclude the failures in the future.  

Theoretical approach 

In accordance with the database study, one of the major threats to the pipeline integrity is 

incorrect ship anchoring. Not only the pipelines but also the submarine cables are susceptible to 

damage from lost and dragged anchors. All the significance of anchor damage incidents is 

presented in two tables (Tables 7 and 8) containing information of worldwide offshore pipelines 

and submarine cables failures due to anchoring hazard. Suddenly dropped and dragged anchors 

are supposed to be one of the main causes of pipeline and cable damages in XX and XXI 

centuries. The total number of incidents for pipeline and cables are demonstrated in Figures 17, 

18. It is seen that the number of pipeline damages has decreased. On the other hand, the number 

of cable failures has increased. The latter may be explained by the widespread use of fiber-

optical lines from the end of the last century to the present day. Therefore, even though there are 

a lot of technological developments and achievements in the sphere of marine activity control 

and monitoring, the incidents still occur from time to time.  

A theoretical approach of ship anchoring effect on submarine pipelines is given in the present 

work. A comprehensive discussion on vessel anchoring procedure, its variation from case to case 
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and explanation of different uncontrolled anchor drop outcomes are reviewed and studied as 

well. Along with that, the importance of main key factors such as pipe unique properties, vessel 

characteristics and anchor parameters is emphasized for the assessments. A combination of these 

factors is found to be governing for the set of relevant pipeline damage criteria, which is also 

discussed in this paper.  

Data analyses 

Dragged anchor interference assessment has been performed in order to identify potential for 

anchor induced damage of the 40-inch gas pipeline (Pipeline 1). Focus is placed for the entire 

pipeline length, including all the pipe KP sections for the analysis. Ship traffic data collection 

and compilation has been done by screening procedure in accordance with the steps given in the 

flowchart in Figure 37. Marine traffic data has been processed to develop various diagrams and 

distribution charts for a considered pipeline route on the basis of collected information. From the 

pie diagram (Figure 39) it is observed that the most commonly encountered ship class is Class 2, 

which accounts for 49% of total vessel crossings over the pipeline route. Regarding other ship 

classes, they are distributed almost uniformly, excepting the ship Class 7 that accounts only for 

1% of total crossings. Anchoring equipment specification is also included for the data analysis. It 

is found that the equipment class (EL) “o” is the most common one. Furthermore, the 

distribution of total number of ships passing the pipe route has been included into the analyses as 

well. The investigation shows that the greatest marine activity (with the majority of ship Class 2) 

falls between the pipeline KP 0-60 and 65-95 sections, which are situated at the deepest sea area. 

That is why it has been decided to continue with a detailed analyses in order to draw precise 

conclusion whether the anchors of passing ships are capable of hooking the Pipeline 1 or not.   

Anchor hook check 

Three main criteria are chosen for the check. The 1
st
 criterion corresponds to the geometrical 

configuration of the Spek stockless anchors. It is understandable that small dimension equipment 

is not capable of catching large diameter pipeline. The anchor hook check has been performed 

for two cases: when the pipeline is thought to be caught between one fluke and anchor shank (I 

case); or between the plane of two flukes and anchor shank (II case). It has been found that the 

most conservative results are obtained when the pipeline is supposed to stick between the plane 

of flukes and the shank. According to the outcome from the 2
nd

 case check; all the anchors 

specified by the EL starting from “j” can pose threat to the Pipeline 1.   

Anchor hit check 

The 2
nd

 criterion check is performed in terms of the relation between the ship speed, equipment 

class, and water depth. Following the theoretical justification presented in the corresponding 

part, it is proven that the anchor will never be hanging vertically after its stabilization at a certain 

depth. What is governing here is that there are always the hydrodynamic drag forces acting on 

the anchor-chain arrangement in the direction opposite to the movement of the vessel. Moreover, 

the drag forces are proportional to the velocity squared. Hence, it follows that the anchor 

stabilization point is greatly affected by the value of ship velocity. The size of anchoring 

equipment is also leading here: heavy anchor, hanging on long chain, will stabilize at greater 

depth than small dimension equipment. That is why a lot of attention should be paid to huge 
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anchoring systems, which are generally specified by the Equipment Letters from A* to O*. In 

accordance with the results obtained from the analytical solution of the anchor hit criterion 

check, the anchors characterized by the ELs from “l” and higher are dangerous for the pipeline, 

since all of them are capable of approaching the seabed and catching the line while the ship is 

underway.  

Model scale test 

Not only the analytical approach, but also a model scale test has been applied for the 

identification of anchor towing depth. The test mainly focuses on the determination of anchor 

towing depth variations with different values of towing velocity. Every item has been scaled 

down; and the experimental site has been prepared for the test. Obtained results give strong 

notions on how the velocity affects the stabilization point of hanging anchor. The higher the 

speed, the larger the components of hydrodynamic forces will be, and the anchor will stabilize at 

less towing depth. The verification of test and analytical solution results has been done as well. 

The calculated absolute error in the x-direction falls in a range of 0.003-0.05 m. The errors find 

their place because the tests are not taken in a perfect way. For instance, the quality of most 

video shots is not so high, so it has become difficult to distinguish exact position of the anchor-

chain arrangement in the water tank. Moreover, the velocity measurements are also not ideal, 

since just usual manual timer has been used for the time record of each test run.   

Pipeline response and cross-sectional capacity check 

After the anchor hook and hit criteria checks, the present assessment has been continued with the 

global analysis performed in the FE program SIMLA. Eleven sensitivity cases are chosen for the 

assessment. It has been decided not to generalize but to take all the parameters individually for 

every case. The emphasis is placed on the structural response and capacity check in terms of the 

axial force, bending moment and internal overpressure. An attention is given to the pipeline 

displacement results. What is important to notice is that the values of both vertical and lateral 

displacements are observed to be affected by the anchor pulling angle, greatly dependent on the 

value of ship velocity. Thus, the higher the ship speed, the less the pipeline displacements will 

be. Huge vertical and lateral displacements are found in case of “Y” and “B*” anchor classes 

(Figures 71, 72). Pipeline strain is also a point of interest; and 5% strain is chosen as a limit. 

From the graph (Figure 73) it is seen that if huge anchors such as “Y” and “B*” hook Pipeline 1, 

the strain values will exceed the limit, and the pipeline will not survive. The same results are 

obtained from the cross-sectional pipeline capacity check.  Combined loading effect is included 

into the assessment. It should be noted that there are two dominant terms characterizing pipeline 

force-displacement response. The first term is bending, which is not dependent on pipeline 

displacements. Another one is membrane term, which increases linearly with the displacements 

of the pipe. In case of anchor hooking/dragging scenario, the pipeline membrane forces increase 

until the value of applied force reaches the value of chain breaking load. By applying plastic 

interaction curve accounted for 5% limit strain it is visible, that in 2 out of 11 sensitivity cases 

the Pipeline 1 will not survive. These cases refer to “Y” and “B*” anchor ELs. Thus, pipeline KP 

0-10 and 135-140 sections have potential to be damaged by dragging anchor.  

Not only the 40-inch gas pipeline but a smaller diameter line has been chosen for the 

investigation of pipeline response and capacity check. By using the same methodology, 
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implemented for the modeling and analysis procedures, a pipe-anchor interaction scenario 

assessment has been performed for a considered 16-inch gas pipeline. 5% strain value is taken as 

limit as well. Based on the results from the predicted strains and outcomes from the pipeline 

cross-sectional capacity check, it is found that the pipeline may fail after the interaction with 

large anchors classified by the ELs “G” and higher. It is because thin-walled and small diameter 

lines have almost negligible cross-sectional capacities in comparison with the larger lines. Thus, 

16-inch pipeline KP 0-10, 75-95, 135-140 and 145-150 are the most critical zones that can be 

interacted and damaged by the equipment of crossing vessels.  

Thus, only huge anchors (classified by the Capital Letters marked with star) are capable of 

damaging the large diameter pipeline. Regarding a small size line, it can lose its integrity even if 

small dimension anchors are snagged over it.   

Anchor dragging induced frequency 

By using AIS ship traffic data given for the 1
st
 quarter (1Q) of 2013 a pipe-anchor interaction 

frequency is estimated in accordance with the methodology presented in the Energy Report. The 

assessment results point out that the pipeline KP 0-10 and 135-140 can be damaged by the 

anchoring equipment of crossing ships. Focus has been placed on these sections. The frequency 

of pipeline failure due to dragging anchor interference is calculated based on the number of ship 

crossings per KP and 1Q, obtained from the anchor hook/hit/damage criteria checks. This 

number has been multiplied by a base failure frequency taken as 1.9·10
-7

 per ship crossing.  It 

has been found that there are only two anchors classified as “Y” and “B*”, which have potential 

to hook and damage the Pipeline 1. Thus, calculated annual pipeline failure frequency is equal to 

1.5·10
-6

. It is less than the nominal target frequency accounted for 10
-4

 per pipeline (DNV-OS-

F101, 2013), so anchor dragging is not critical for the 40-inch Pipeline 1 for given level of ship 

traffic.  

Regarding the 16-inch line case, it has been found that an annual failure frequency is equal to   

9.76·10
-6

. Since it is less than a target failure probability, small size pipeline is thought to 

survive.  

Since the pipeline capacity checks has revealed several sections that can be damaged by passing 

ship anchors, potential risk reducing measures may be implemented then.  

6.2 ASSUMPTIONS  

Some assumptions have been taken during the dragged anchor interference analysis.  

 The pipelines sections are supposed to be exposed in the present case study.   

 All the anchors are assumed to be broken out of the seafloor prior to approaching and 

catching exposed lines. For that reason, an anchor penetration depth check has not been 

included into the analyses. However, this check can be significant for the damage 

assessment of trenched and/or covered lines.  

 Another assumption is that every moving ship is equipped with the Spek stockless anchor 

and stud-link chain, the information on which is easily found in the Rules for Ship (2011) 

document and relevant catalogues.  
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 Average velocity has been taken for every ship equipped with a certain class of anchor 

equipment (distinguished by Equipment Letters). Thus, every EL is characterized by the 

corresponding value of average ship speed.  

 It has been assumed that all the vessels passing the pipelines routes are moving with the 

constant velocity; and the flow forcing the anchoring system in the opposite direction is 

steady. Hence, the acceleration term is excluded; so that the anchor and chain inertia and 

added mass terms are not considered for the present case study. Moreover, the drag force of 

the anchor is assumed to be negligible in contrast to its weight.  

 To be more conservative an interaction between the pipelines and corresponding dragging 

anchors is chosen to be perpendicular. In reality the angle between the ship’s course and 

pipeline may be less than 90 degrees, or even equal to 0; so that the probability of pipeline 

damage will be less for those cases.  

 For the assessment of a 16-inch pipeline, it has been assumed that its route is the same as the 

route of a 40-inch line. That is why the traffic data for a 16-inch pipe is believed to be 

identical to the ship traffic data of Pipeline 1 (40-inch). Another assumption is that the 

results of the anchor hook & hit criteria checks for a small size pipe are taken the same as 

obtained results from a large line assessment. The latter indicates how the total failure 

frequencies for both large and small size pipelines differ from one another depending only 

on the outcomes of pipelines capacity checks.   

 A set of relevant assumptions for the frequency assessment procedure is taken as written in 

the DNV Recommended Failure Rates for Pipelines (2010) report. 

Regarding the model scale test, one shall understand that its results are not 100% perfect due to 

some limitations encountered during the experiment. The water tank is not designed for carrying 

out such kind of operation, because it usually serves for concrete material tests only. That is 

why the experiment site preparation took a lot of time and efforts. Not only special but alternate 

equipment and tools were used for that purpose. Furthermore, it was quite problematic to 

measure the distance travelled by the anchor after its stabilization, and to record the travel time 

corresponding to each test run. Processing of the experimental results became very complex as 

well, since the identification of anchor position was limited sometimes by poor visibility inside 

of the tank and insufficient lighting.  

6.3 CONCLUSION  

In accordance with the anchor pulling consequences and failure frequency analyses, it can be 

concluded that the dragging anchor interference is not critical for a 40-inch Pipeline 1 and 16-

inch line for a considered lever of marine activity (802 ships) per 3 months.  

Firstly, the results of the anchor hook criteria check show that not all the anchors are capable of 

hooking the pipeline. The governing parameters here are pipeline diameter and anchor 

dimensions.  It has been found that anchor classes, lower than “g”, are not large enough to hook 

the Pipeline 1.  

Secondly, the anchor towing depth has to be such a value as to be able to reach the sea bottom. 

What is important to know is that the combination of water depth, anchor size, chain length and 

ship transit speed dictates the value of predicted depth. The higher the vessel speed, the less the 
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anchor towing depth will be. For the Pipeline 1 the vessels’ equipment classes, lower than “l” 

have been excluded from the studies after the anchor hit criteria check.  

After two criteria checks, a total number of ships capable of both hooking and approaching the 

Pipeline 1 have reduced from 802 to 93. Based on the information of these vessels, the anchor 

damage criteria have been performed. Global scale analyses results have indicated that only huge 

size anchors (“Y” and “B*”) have potential to cause Pipeline 1 failure. The ships with such 

equipment type cross Pipeline 1 KP 0-10 (175 m depth) and KP 145-150 (233 m depth). An 

average speed of the vessels is 5.9 m/s. An attention is given to vertical and lateral pipeline 

displacements, strain and cross-sectional capacity due to combined loading effect (axial force, 

bending moment and internal overpressure). It is observed that vessel transit speed also affects 

the value of pipeline displacements: the higher the speed, the less the anchor pulling angle and 

pipeline displacements will be.  

The emphasis is placed not only on a 40-inch line, but also on a 16-inch pipeline. Assuming that 

small pipeline route runs along the same path, the same volume of ship traffic as for the 40-inch 

line has been chosen for the analyses. Several sensitivity cases of crossings out of total number 

of threatening crossings (93) have been taken for the global scale analyses of a 16-inch pipe. The 

results have shown that all the anchor classes higher than “G” may pose threat to the line. It can 

be noted that thin-walled and smaller diameter pipelines are more vulnerable to damage from 

dragging anchors, because their capacity is almost negligible compared to the capacity of large 

size pipelines.  

According to the results of pipeline response and capacity check, a failure frequency for each 

pipeline for the 1
st
 quarter of 2013 has been estimated. Assuming the same ship traffic for the 

rest of the year, the total annual damage frequency for large and small diameter pipelines are 

1.5·10
-6

 and 9.76·10
-6

 correspondingly. These values are less than the nominal annual target 

failure probability (10
-4

 per pipeline). Thus, it is concluded that the anchor dragging event is not 

critical for both lines for a given level of ship traffic.  

6.4 RECOMMENDATIONS 

It would be wrong to state that the pipe-anchor interaction assessment is perfectly performed.  

There are still some recommendations for the future studies and assessments: 

1. To specify more sensitivity cases with respect to pipeline diameter, wall thickness, 

internal overpressure effect, water depth values. 

2. To perform not only a global scale, but also a local scale analyses in order to understand 

the potential for local buckling and denting, and/or fractures.  

3. To give detailed study on risk reducing measures. 

4. To take into account other damage criteria, e.g. anchor penetration depth. 
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APPENDIX A 

Table A.1: Total number of crossing ships over the route of Pipeline 1 

Number of ships in KP KP 

GT category 

<1000  
1000-

4999  

5000-

9999  

10000-

24999  

25000-

49999  

50000-

99999  
>=100000  N/a Sum 

8 0-10 2 4 2 0 0 0 0 0 8 

15 10-15 4 7 0 0 0 0 0 4 15 

21 15-20 4 14 2 0 0 0 0 1 21 

20 20-25 2 16 2 0 0 0 0 0 20 

26 25-30 2 22 1 1 0 0 0 0 26 

27 30-35 2 21 2 1 0 0 0 1 27 

50 35-40 3 42 2 0 1 0 0 2 50 

37 40-45 0 32 3 0 0 0 0 2 37 

28 45-50 3 22 1 0 1 0 0 1 28 

17 50-55 0 15 1 0 0 0 0 1 17 

8 55-60 0 7 0 0 1 0 0 0 8 

12 60-65 3 7 1 1 0 0 0 0 12 

14 65-70 0 12 2 0 0 0 0 0 14 

51 70-75 1 16 4 7 17 5 0 1 51 

19 75-80 1 5 3 1 6 3 0 0 19 

71 80-85 0 24 21 11 4 8 0 3 71 

114 85-90 2 20 23 23 26 17 3 0 114 

57 90-95 2 9 5 16 15 9 1 0 57 

2 95-100 0 1 0 0 0 0 1 0 2 

9 100-105 2 6 1 0 0 0 0 0 9 

4 105-110 0 4 0 0 0 0 0 0 4 

2 110-115 0 1 0 0 1 0 0 0 2 

2 115-120 0 1 0 0 0 1 0 0 2 

3 120-125 0 0 1 1 0 1 0 0 3 
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1 125-130 0 0 0 0 0 1 0 0 1 

5 130-135 0 1 2 1 0 1 0 0 5 

6 135-140 0 3 0 2 0 1 0 0 6 

3 140-145 0 2 0 0 1 0 0 0 3 

2 145-150 0 0 0 0 1 1 0 0 2 

2 150-155 0 1 0 0 0 1 0 0 2 

0 155-160 0 0 0 0 0 0 0 0 0 

0 160-165 0 0 0 0 0 0 0 0 0 

1 165-170 0 0 0 0 1 0 0 0 1 

6 170-175 0 1 2 2 0 1 0 0 6 

2 175-180 0 1 0 1 0 0 0 0 2 

5 180-185 0 2 2 0 0 1 0 0 5 

13 185-190 2 6 3 0 0 2 0 0 13 

11 190-195 1 4 3 0 0 3 0 0 11 

11 195-200 1 5 2 1 1 1 0 0 11 

9 200-205 2 3 2 0 0 2 0 0 9 

7 205-210 1 3 1 1 1 0 0 0 7 

8 210-215 1 2 3 0 0 0 0 2 8 

7 215-220 1 6 0 0 0 0 0 0 7 

4 220-225 0 4 0 0 0 0 0 0 4 

10 225-230 2 4 2 2 0 0 0 0 10 

8 230-235 0 6 2 0 0 0 0 0 8 

4 235-240 0 2 1 0 1 0 0 0 4 

11 240-245 1 8 0 1 0 0 0 1 11 

15 245-250 0 5 6 1 2 1 0 0 15 

4 250-255 1 2 0 0 1 0 0 0 4 

2 255-260 0 1 0 0 1 0 0 0 2 

4 260-265 1 1 0 1 0 0 0 1 4 

4 265-270 1 2 0 0 0 1 0 0 4 

4 270-275 0 3 0 0 0 1 0 0 4 

9 275-280 1 3 1 3 0 1 0 0 9 
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24 280-285 4 4 4 3 6 2 0 1 24 

2 285-290 1 1 0 0 0 0 0 0 2 

2 290-295 0 1 1 0 0 0 0 0 2 

1 295-300 0 0 0 0 0 0 0 1 1 

0 300-305         0 

Table A.2: The distribution of the ships classified by the gross tonnage index 

 

<1000 

(1) 

1000-

4999 (2) 

5000-

9999 (3) 

10000-

24999 

(4) 

25000-

49999 

(5) 

50000-

99999 

(6) 

>=100000 

(7) 

n/a  

54 395 114 81 88 65 5 22 824 

6,73% 49,25% 14,21% 10,10% 10,97% 8,10% 0,62%  100,00% 

 

Table A.3: Total number of different anchors classified by their EL and average speed 

EL Number of EL Average Speed, 

knots 

Average Speed, 

m/s 

e 6 10 5,30 

f 4 12 6,14 

g 8 9 4,64 

h 3 11 5,81 

i 13 10 5,32 

j 9 11 5,75 

k 22 11 5,62 

l 21 11 5,63 

m 23 11 5,53 

n 22 11 5,88 

o 75 10 5,27 

p 31 11 5,77 

q 29 11 5,74 
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r 35 10 5,36 

s 19 11 5,49 

t 22 12 6,13 

u 31 11 5,73 

v 31 11 5,58 

w 28 12 6,03 

x 18 10 5,21 

y 19 12 5,94 

z 13 10 5,23 

A 10 13 6,43 

B 22 11 5,69 

C 21 10 5,32 

D 18 11 5,51 

E 16 12 6,34 

F 17 8 4,08 

G 6 10 4,98 

H 9 12 6,30 

I 14 10 5,36 

J 16 11 5,71 

K 14 10 4,89 

L 12 10 4,99 

M 8 10 5,11 

N 11 11 5,41 

O 12 10 4,92 

P 22 11 5,50 

Q 17 10 5,11 

S 1 9 4,42 

T 16 11 5,42 

U 9 11 5,90 
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V 12 11 5,81 

X 11 11 5,54 

Y 5 12 6,05 

Z 3 12 6,36 

A* 6 9 4,66 

B* 7 11 5,70 

E* 5 16 8,25 

 

Table A.4: Small Letter anchor classes capable of approaching the pipeline 

 

KP 

 

WD, m 

e f g h i j k l m n o p q r s t u v w x y z 

-52 -47 -67 -57 -68 -70 -73 -80 -83 -86 -96 -96 -99 -107 -112 -103 -111 -122 -116 -134 -127 -143 

0-10 -175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10-15 -262,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15-20 -350 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20-25 -321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

25-30 -292 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30-35 -274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35-40 -256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40-45 -274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

45-50 -292 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

50-55 -288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

55-60 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

60-65 -287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

65-70 -290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

70-75 -287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

75-80 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

80-85 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

85-90 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

90-95 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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95-100 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

100-105 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

105-110 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

110-115 -280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

115-120 -276 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

120-125 -268 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

125-130 -260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

130-135 -255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

135-140 -250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

140-145 -233 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

145-150 -216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

150-155 -188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

155-160 -160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

160-165 -150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

165-170 -140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

170-175 -136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

175-180 -132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

180-185 -126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

185-190 -120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

190-195 -118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

195-200 -116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

200-205 -118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

205-210 -120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

210-215 -119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

215-220 -118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

220-225 -118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

225-230 -119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

230-235 -116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

235-240 -114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
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240-245 -110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 

245-250 -106 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 

250-255 -103 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

255-260 -100 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

260-265 -99 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

265-270 -98 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 

270-275 -95 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

275-280 -92 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

280-285 -86 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

285-290 -80 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

290-295 -79 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

295-300 -78 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

300-305 -78 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

Table A.5: Capital Letters anchor classes capable of approaching the line 

 

 

KP 

 

WD, 

m 

A B C D E F G H I J K L M N O P Q S T U V X Y Z 

-

122 

-

143 

-

154 

-

151 

-

142 

-

205 

-

179 

-

156 

-

181 

-

174 

-

207 

-

206 

-

205 

-

206 

-

224 

-

207 

-

230 

-

260 

-

235 

-

222 

-

227 

-

248 

-

233 

-

226 

0-10 -175 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10-15 -262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15-20 -350 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20-25 -321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

25-30 -292 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30-35 -274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35-40 -256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

40-45 -274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

45-50 -292 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

50-55 -288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

55-60 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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60-65 -287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

65-70 -290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

70-75 -287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

75-80 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

80-85 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

85-90 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

90-95 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

95-100 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

100-105 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

105-110 -284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

110-115 -280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

115-120 -276 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

120-125 -268 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

125-130 -260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

130-135 -255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

135-140 -250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

140-145 -233 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 

145-150 -216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 

150-155 -188 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

155-160 -160 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

160-165 -150 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

165-170 -140 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

170-175 -136 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

175-180 -132 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

180-185 -126 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

185-190 -120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

190-195 -118 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

195-200 -116 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

200-205 -118 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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205-210 -120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

210-215 -119 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

215-220 -118 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

220-225 -118 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

225-230 -119 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

230-235 -116 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

235-240 -114 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

240-245 -110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

245-250 -106 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

250-255 -103 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

255-260 -100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

260-265 -99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

265-270 -98 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

270-275 -95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

275-280 -92 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

280-285 -86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

285-290 -80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

290-295 -79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

295-300 -78 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

300-305 -78 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Table A.6: Capital Letters with star anchor classes capable of hooking the pipeline 

 

KP 

 

WD, m 

A* B* E* 

-284,928 -251,631 -200,756 

0-10 -175 1 1 1 

10-15 -262,5 1 0 0 

15-20 -350 0 0 0 

20-25 -321 0 0 0 

25-30 -292 0 0 0 
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30-35 -274 1 0 0 

35-40 -256 1 0 0 

40-45 -274 1 0 0 

45-50 -292 0 0 0 

50-55 -288 0 0 0 

55-60 -284 1 0 0 

60-65 -287 0 0 0 

65-70 -290 0 0 0 

70-75 -287 0 0 0 

75-80 -284 1 0 0 

80-85 -284 1 0 0 

85-90 -284 1 0 0 

90-95 -284 1 0 0 

95-100 -284 1 0 0 

100-105 -284 1 0 0 

105-110 -284 1 0 0 

110-115 -280 1 0 0 

115-120 -276 1 0 0 

120-125 -268 1 0 0 

125-130 -260 1 0 0 

130-135 -255 1 0 0 

135-140 -250 1 1 0 

140-145 -233 1 1 0 

145-150 -216 1 1 0 

150-155 -188 1 1 1 

155-160 -160 1 1 1 

160-165 -150 1 1 1 

165-170 -140 1 1 1 

170-175 -136 1 1 1 



Anchor Damage Assessment of Subsea Pipelines 

133 
 

175-180 -132 1 1 1 

180-185 -126 1 1 1 

185-190 -120 1 1 1 

190-195 -118 1 1 1 

195-200 -116 1 1 1 

200-205 -118 1 1 1 

205-210 -120 1 1 1 

210-215 -119 1 1 1 

215-220 -118 1 1 1 

220-225 -118 1 1 1 

225-230 -119 1 1 1 

230-235 -116 1 1 1 

235-240 -114 1 1 1 

240-245 -110 1 1 1 

245-250 -106 1 1 1 

250-255 -103 1 1 1 

255-260 -100 1 1 1 

260-265 -99 1 1 1 

265-270 -98 1 1 1 

270-275 -95 1 1 1 

275-280 -92 1 1 1 

280-285 -86 1 1 1 

285-290 -80 1 1 1 

290-295 -79 1 1 1 

295-300 -78 1 1 1 

300-305 -78 1 1 1 

 


