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ABSTRACT 

 

The main purpose is to investigate whether the exhaust gases from an offshore turbine can be 

rerouted to heat the air entering the turbine system, thus keeping air humidity concentration 

above acceptable levels. To ensure this, temperature of the incoming airflow must be above 4,5 

degrees Celsius. Currently the exhaust is vented out to the atmosphere and an electrical anti-icing 

system is used to heat the air intake. The objective of this thesis is therefore to make a CFD 

model in OpenFOAM to simulate the two proposed pipe designs that will connect the exhaust to 

the air intake. By evaluating the results from the simulation, a conclusion shall be drawn to 

whether the new pipe layout is a viable solution and can replace the current anti-icing system, 

thus saving money and electrical power. A critical part of the new system is the existing exhaust 

fan, which will be used to drive the exhaust gases towards the front of the air intake. With the 

provided fan performance curve, time has been spent to find the appropriate boundary condition 

that will simulate the fan behavior, and its effect on the flow conditions as accurately as possible. 

The same goes for the exhaust heat dissipation through the pipe wall, and to the surrounding 

environment. Operation conditions include cross winds up to 10m/s and atmospheric 

temperatures down to negative 10 degrees Celsius. To incorporate this into the CFD model, 

appropriate manual calculations had to be performed beforehand to find the local heat transfer 

coefficient. The system size and air flow velocities, results in a relatively large mesh model. 

Therefore, to ensure as low computational execution times as possible, multiple meshing settings 

are explored to ensure as few excess cells as possible. Temperature and flow results from the 

simulations shows that fan performance and both pipe designs are more than adequate to ensure 

turbine operation. Mesh quality is also verified using the yPlus value. However, in the attempt to 

confirm the simulated pressure loss with the Bernoulli equation, the loss coefficient found in 

reference literature does not produce an accurate result. In addition, it is found that the 

OpenFOAM documentation does not specify the unit of measurement used in the fan curve 

specification. Without being able to determine whether the fan curve should be defined using 

mass flow or volumetric flow, the final CFD models have a degree of inaccuracy regarding the 

fan behavior. Nevertheless, simulation results have a high enough tolerance, relative to system 

requirements, that the fan can be cleared suitable for operation.  
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NOMENCLATURE 

 

Latin symbols 
 

a Channel width [m] 

A Area  [𝑚2] 

b Channel height [m] 

C Equation constant  

𝐶𝜇 Equation constant  

𝐶1 Equation constant  

𝐶2 Equation constant  

d Equation constant  

𝑑ℎ Hydraulic diameter [m] 

D Diameter [m] 

e Internal energy [𝑚2 ∙ 𝑘𝑔/𝑠2] 

𝑓 Friction factor  

F Body forces  

g Gravity [m/𝑠2] 

h Enthalpy [J] 

ℎ𝑎𝑖𝑟 Air heat transfer coefficient [𝑊/𝑚2 ∙ 𝐾] 

ℎ𝑡𝑜𝑡𝑎𝑙 Total heat transfer coefficient [𝑊/𝑚2 ∙ 𝐾] 

I Turbulence intensity  

k Turbulent kinetic energy [𝑚2/𝑠2] 

𝑘𝑇 Thermal conductivity [W/m∙ 𝐾] 

𝑘𝑙𝑜𝑠𝑠 Loss coefficient  

l Mixing length [m] 

L Pipe length  [m] 

m Equation constant  

𝑚̇ Mass flow [kg/s] 

n Number of moles  

Nu Nusselt number  

p Pressure [N/𝑚2] 
Pr Prandtl number  

𝑃𝑟𝑡 Turbulent Prandtl number  

𝑞 Heat flux [W/𝑚2] 

r Surface roughness [mm] 

R Universal gas constant  [J/mol∙K] 

Re Reynolds number  

𝑅𝑒𝑑ℎ
 Reynolds number based on hydraulic diameter  

S Wall thickness [m] 

𝑆̇ Source term  

t Time [s] 

T Temperature [K] 

U Velocity [m/s] 

𝑈𝑊𝑖𝑛𝑑 Wind velocity [m/s] 
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𝑈̃ Favre-averaged velocity [m/s] 

V Volume [𝑚3] 

𝑉̇ Volumetric flow [𝑚3/s] 

𝑉̃ Favre-averaged velocity [m/s] 

w Velocity in z-direction [m/s] 

𝑊̃ Favre-averaged velocity [m/s] 

 

Greek symbols 
 

𝛼𝑡 Turbulent thermal diffusivity [𝑚2/𝑠] 

𝛾 Weight density [kg/𝑚2 ∙ 𝑠2] 

𝛿 Unit tensor  

𝜀 Dissipation of turbulent kinetic energy [𝑚2/𝑠3] 

𝜇 Viscosity [kg/m∙s] 

𝜇𝑡 Turbulent viscosity [𝑚2/s] 

𝜈 Kinematic viscosity [𝑚2/s] 

𝜌 Density [kg/𝑚3] 

𝜌𝑎𝑖𝑟 Density of air [kg/𝑚3] 

𝜎𝜀 Prandtl number k-equation  

𝜎𝑘 Prandtl number 𝜀-equation  

𝜏 Viscous stress [N/𝑚2] 

 

Abbreviations 
 

RAM Random access memory 

RANS Reynolds-averaged Navier-Stokes 

STL Stereolithography 

Rpm Revolutions per minute 
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1 INTRODUCTION 

 

1.1 Background 
 

Inspiration for this thesis was drawn from a project given by Conoco Phillips to Aibel in the 

autumn of 2014. The original scope of work was to replace a set of corroded ducts that was a part 

of the air intake for an offshore generator. The duct draws air from the atmosphere and directs it 

down to the generator. However, when temperatures drop down towards the freezing point, the 

air humidity levels get too high for generator operation. To solve the problem, an electrical heater 

has been used to keep the air temperature at an acceptable level. The heater itself draws 

electricity from the generators, leaving less power available for essential equipment on the 

platform. A proposal was made to redirect the generators own exhaust flow, to the front air 

intake. Using the exhaust flow to heat incoming air would make the electric anti-ice system 

obsolete. Unfortunately, with the downsizing and cutbacks made in the oil industry during the 

end of 2014 and start of 2015, work was never commenced on this project. This means that there 

will be no official report or documentation available to build the thesis on. Instead, this thesis will 

be written independently from Aibel and use the limited original scope of work as inspiration to 

create and solve a theoretical case. 
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1.2 Thesis objective 
 

The main objective of this thesis is to develop a simulation in OpenFOAM that describes the 

pressure, mass flow and temperature conditions inside the duct. The model includes turbulent 

flow and temperature loss to the environment. Two different design cases under different 

operating conditions shall be tested to find the optimal duct layout. One key feature of the new 

system is the existing fan driving the exhaust flow. Previously its only task was to vent exhaust 

gases out into the atmosphere. Now it will have to drive the exhaust flow all the way towards the 

air intake. The fan features has to be tested to see if they are sufficient to complete this task, and 

thus save money by not replacing it with a new fan. The main criterion for the new system will be 

the airflow temperature entering the generator. As long as the temperatures are kept above 

recommended levels, then the new system will be an improvement to the existing electrical 

heaters.  
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2 THEORY 

 

2.1 Governing equations 
 

In the following chapter, the equations have been gathered from Hjertager (2009A & 2009B) and 

Versteeg et al. (2007). The governing equations in fluid dynamics are the mathematical 

representation of the conservation laws of physics. There are eight unknown variables, and thus 

there are eight equations to solve.  

 

2.1.1 Continuity equation 
 

The continuity equation describes mass conservation. Mass conservation implies that the rate of 

increase of mass in a fluid element must be equal to the net rate of mass flow into the said fluid 

element. Continuity equation on vector form: 

                    
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗ ) = 0 

 

Equation 1 

 

First term is transient, and describes the rate of change of density over time. Second term, the 

convective term, describes the net flow of mass out of the fluid element across its boundaries. For 

a steady state case, the transient term is neglected: 

𝜕

𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0 

 

2.1.2 Momentum balance 
 

Momentum balance is derived from Newton’s second law and defines that the rate of change in 

momentum of a fluid particle equals the sum of the forces on the particle. The momentum 

balance on vector form: 

 
                 𝜌

𝐷𝑣 

𝐷𝑡
= −∇⃗⃗ ∙ 𝑝 + ∇⃗⃗ ∙ 𝜏  + 𝐹  

Equation 2 

 

First term is the rate of increase of momentum in three dimensions per unit volume of a fluid 

particle. First two terms on the right side of equation 2, account for the surface forces pressure 

and viscosity. While the last term include the body forces. 
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2.1.3 Energy balance 
 

The energy equation is derived from the first law of thermodynamics. The equation express that 

the increase of energy in a fluid particle equals the rate of heat added to fluid particle in addition 

to the rate of work done on said fluid particle. 

 
     

𝜕(𝜌𝑒)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑒)

𝜕𝑥𝑖
= −

𝜕𝑞𝑗

𝜕𝑥𝑗
− 𝑝

𝜕𝑢𝑖

𝜕𝑥𝑖
+ 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝑆̇ 

Equation 3 

 

Equation 3 is the first law of thermodynamics on differential form, where e, is the internal energy 

as dependent variable. Often beneficial to use the relation: 

𝑒 = ℎ −
𝑝

𝜌
 

To express the energy equation with enthalpy as dependent variable instead of energy. Now 

referred to as the enthalpy equation: 

     
𝜕(𝜌ℎ)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖ℎ)

𝜕𝑥𝑖
= −

𝜕𝑞𝑗

𝜕𝑥𝑗
+

𝐷𝑝

𝐷𝑡
+ 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝑆̇ 

 

 

Where 𝑆̇ is the source term. It can both be a source term and sink term depending on whether 

there is, for example, radiation or a chemical reaction present. 

 

2.1.4 Equation of state 
 

The equation of state for an ideal gas: 

 𝑝𝑉 = 𝑛𝑅𝑇 Equation 4 

 

The equation of state provide an important relation between the energy balance and the 

momentum and continuity equations, for compressible fluids.  
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2.1.5 Empirical relations 
 

First of the empirical relations is Newton’s law of viscosity: 

 

 
𝜏𝑖𝑗 = 𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝜇 ∙

𝜕𝑢𝑖

𝜕𝑥𝑖
∙ 𝛿𝑖𝑗 

 

Equation 5 

 

Lastly, the second law of thermodynamics also known as Fourier’s law: 

 

 
𝑞𝑖 = −𝑘𝑇

𝜕𝑇

𝜕𝑥𝑖
 

 

Equation 6 
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2.2 Reynolds-averaged Navier-Stokes 

 

The chosen method of simulating turbulence is the RANS turbulence models. The models utilize 

a set of partial differential equations that relies on approximated mean values to be solved. These 

are known as the RANS equations, Versteeg et al. (2007): 

 𝜕(𝜌̅𝑈̃)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅𝑈̃𝑈̃)

= −
𝜕𝑝̅

𝜕𝑥
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑 𝑈̃)

+ [−
𝜕(𝜌̅𝑢′2̅̅ ̅̅ ̅̅ )

𝜕𝑥
−

𝜕(𝜌̅𝑢′𝑣′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑦
−

𝜕(𝜌̅𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑧
] + 𝑆𝑀𝑥 

Equation 7.1 

 

 

 𝜕(𝜌̅𝑉̃)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅𝑉̃𝑈̃)

= −
𝜕𝑝̅

𝜕𝑦
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑 𝑉̃)

+ [−
𝜕(𝜌̅𝑢′𝑣′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
−

𝜕(𝜌̅𝑣′2̅̅ ̅̅ ̅̅ )

𝜕𝑦
−

𝜕(𝜌̅𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑧
] + 𝑆𝑀𝑦 

Equation 7.2 

 

 

 𝜕(𝜌̅𝑊̃)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅𝑊̃𝑈̃)

= −
𝜕𝑝̅

𝜕𝑧
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑 𝑊̃)

+ [−
𝜕(𝜌̅𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑥
−

𝜕(𝜌̅𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑦
−

𝜕(𝜌̅𝑤′2̅̅ ̅̅ ̅̅ )

𝜕𝑧
] + 𝑆𝑀𝑧 

Equation 7.3 

 

When time averaging the momentum equations, additional terms appear. The extra terms are 

known as the Reynolds stresses; −𝜌𝑢′2̅̅ ̅̅ , −𝜌𝑣′2̅̅ ̅̅ , −𝜌𝑤′2̅̅ ̅̅ ̅, −𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ , −𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ , −𝜌𝑤′𝑣′̅̅ ̅̅ ̅̅  . These will be 

predicted with the k-𝜀 turbulence model. The main advantage of the k-𝜀 model is that it requires 

less processing power than the alternatives.  
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2.3 k-𝜀 model  

 

The k-𝜀 model utilize two extra transport equations deduced from the Navier Stokes equations. 

These equations have been sampled from Hjertager (2009B). The first is turbulent kinetic energy 

k and is described by the k-equation: 

 𝜕𝜌𝑘

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌𝑈𝑖𝑘) =
𝜕

𝜕𝑥𝑖
[
𝜇𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑖
] − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝜌 ∙ 𝜀 

Equation 8 

 

Here, first term is the transient term. Second is the convective term. Third term is the diffusive 

transport and must be modelled. Fourth term is turbulent kinetic energy based on the mean flow 

velocity. Fifth term is the viscous dissipation of turbulent kinetic energy, which also must be 

modelled.  

 

The second transport equation is the dissipation of turbulent kinetic energy and is named the 𝜀-

equation. Only the modelled form will be given: 

 𝜕𝜌𝜀

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌𝑈𝑖𝜀) =
𝜕

𝜕𝑥𝑖
[
𝜇𝑡

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑖
] + 𝐶1

𝜀

𝑘
[−𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑈𝑖

𝜕𝑥𝑗
] − 𝐶2𝜌

𝜀

𝑘
𝜀 

Equation 9 

 

Again, the first term is the transient. Second is the convective term. The third term represents 

diffusive transport. Fourth and fifth term is the production and destruction of 𝜀 respectively.  
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2.4 Theoretical pressure loss 

 

During this thesis, evaluating the overall pressure loss and system performance will be done with 

OpenFOAM simulations. However, to validate the results some manual calculations has to be 

done as well. The formulas used to calculate the system pressure loss has been gathered from 

ASHRAE (2009). Whenever there is a closed system like a pipe, the air movements will be 

controlled by the three fundamental laws of physics: conservation of mass, conservation of 

momentum and conservation of energy. Conservation of mass means that mass can be neither 

created nor destroyed. This means that the sum of mass flow entering at the fan inlet will be 

exiting the air intake outlet. Also for these calculations, it is assumed that the density remains 

constant throughout the pipe system. Therefore, the average air velocity remains constant as the 

cross sectional area is the same.  

 

Mass conservation:   

𝑚̇ = ∫𝜌𝑈𝑑𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Then for two points within the same system: 

𝑚1̇ = 𝑚̇2 

𝜌1𝑈1𝐴1 = 𝜌2𝑈2𝐴2 

Assuming constant density and pipe cross section: 

𝑈1 = 𝑈2 

The second law, conservation of energy, implies that energy cannot disappear. Only transformed 

from one form to another. This is the basic principle behind the Bernoulli’s equation. The 

Bernoulli’s equation relates the system pressure, fluid velocity and elevation: 

𝑝

𝛾
+

𝑈2

2𝑔
+ ∆𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Where : 

𝛾 =  𝜌𝑔 

Insert and rearrange the Bernoulli’s equation: 

𝑝 +
𝜌𝑈2

2
+ 𝜌𝑔∆𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Now the three terms within the equation can be described accordingly:  
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𝑝 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

𝜌𝑉2

2
= 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

𝜌𝑔∆𝑧 = ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

Bernoulli’s equation for two points along the pipeline: 

 
           

𝑝1

𝛾
+

𝑈1
2

2𝑔
+ 𝑧1 =

𝑝2

𝛾
+

𝑈2
2

2𝑔
+ 𝑧2 

Equation 10 

 

Lastly, there is conservation of momentum, describes that the amount of momentum within a 

system remains constant unless acted upon by external forces. This will be used to calculate the 

friction losses through the pipe. Although the Bernoulli’s equation was derived for ideal 

frictionless flow along a streamline, it can be modified to analyze airflow with friction. To 

accomplish this, the Darcy equation is introduced:  

 
        𝛥𝑝 = 𝑓 (

𝐿

𝐷
)(

𝑈2

2𝑔
) 

 

Equation 11 

 

Here, 𝑓 is a dimensionless friction factor obtained by calculating Reynolds number:  

 

 
𝑅𝑒 =

𝐷𝑈

ν
 

Equation 12 

 

 

The relative roughness of the inside wall: 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 =
𝑟

𝐷
 

Equation 13 

 

The Reynolds number and relative roughness are then used in a Moody chart to find the friction 

factor, Hjertager (2013). 

The Darcy equation allows for calculation of pressure drop caused by friction in a fully 

developed flow. However, to account for pressure losses in fittings and bends there is need for a 

second equation: 

 
        𝛥𝑝 = 𝑘𝑙𝑜𝑠𝑠 (

𝑈2

2𝑔
) 

 

Equation 14 
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Where 𝑘𝑙𝑜𝑠𝑠 is a loss coefficient depending on the pipe bend angle, radius and pipe diameter. 

Combining the two equations, the total pressure loss due to friction is presented as following:  

 
    ∑ℎ𝑙𝑜𝑠𝑠 = (

𝑓𝐿

𝐷
+ ∑𝑘𝑙𝑜𝑠𝑠) (

𝑈2

2𝑔
) 

Equation 15 

 

Inserting this into the Bernoulli’s equation:  

𝑝1

𝛾
+

𝑈1
2

2𝑔
+ 𝑧1 =

𝑝2

𝛾
+

𝑈2
2

2𝑔
+ 𝑧2 + ∑ℎ𝑙𝑜𝑠𝑠 

𝑝1 − 𝑝2 = (𝑧2 − 𝑧1)𝜌𝑔 + 𝜌 (
𝑓𝐿

𝐷
+ ∑𝑘𝑙𝑜𝑠𝑠) (

𝑈2

2
) 

Finally, the total pressure drop within the pipe: 

 
𝛥𝑝 = 𝛥𝑧𝜌𝑔 + (

𝑓𝐿

𝐷
+ ∑𝑘𝑙𝑜𝑠𝑠) (

𝜌𝑈2

2
) 

 

Equation 16 
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2.5 Heat transfer 

 

As the exhaust flow from the fan towards the air inlet, some heat will dissipate through the 316L 

stainless steel wall of the pipe. The pipe itself has no insulation or shielding from wind. In the 

OpenFOAM model, it is possible to account for these environmental influences, but some of the 

factors need to be calculated by hand before it is used as input to the model. More specifically, it 

needs the heat transfer coefficient between the hot exhaust gas, steel pipe wall and the outside 

wind. The formulas used in this chapter was incorporated from Incropera et al. (2009). First, the 

Zukauskas relation is used to obtain the Nusselt number: 

 
𝑁𝑢 = 𝐶𝑅𝑒𝐷

𝑚𝑃𝑟𝑑 (
𝑃𝑟

𝑃𝑟𝑠
)
1/4

 
Equation 17 

 

The heat transfer coefficient for the air are as following: 

 
ℎ𝑎𝑖𝑟 = 𝑁𝑢

𝑘𝑇

𝐷
 

Equation 18 

 

Then the total heat transfer coefficient including the pipe wall is: 

 1

ℎ𝑡𝑜𝑡𝑎𝑙
=

1

ℎ𝑜𝑢𝑡𝑠𝑖𝑑𝑒
+ ∑

𝑆𝑖

𝑘𝑇𝑖

 
Equation 19 
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2.6 Fan 
 

One of the main aspects to this thesis is to investigate whether the old exhaust fan can be used to 

bring the exhaust gases to the front of the air intake. The fan in question is an axial fan type with 

a nominal duty of 15 𝑚3/s, airflow at a pressure of 1600Pa and speed of 1776 rpm. Two criteria 

needs to be fulfilled to make the current fan a viable option. First of all the total pressure loss 

from the fan location to the air intake must not be greater than 1800 Pa. Second, the flowrate 

must be great enough to deliver a high volume of hot air to heat up the cold air from the air 

intake. A representation of the fan performance curve provided by Aibel is shown in figure 1. 

 

  

Figure 1: fan performance curve 
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2.7 Turbine 
 

To ensure constant turbine operation, two criteria must be met. Firstly, the turbine requires a 

minimum air mass flow of 16 kg/s. Since the turbine was fully operational before the addition of 

exhaust flow, it is assumed that turbine suction is sufficient to maintain required mass flow at 

outlet without help of the fan. Unfortunately, there are no more available data describing the 

suction mechanism or pressure conditions. Secondly, the temperature of the air entering the 

turbine has to be above 4,5 degrees Celsius or 277,55 K. This is to ensure humidity levels below 

70%. Figure 2 describes the relative humidity based on air temperatures for the system and was 

provided by Aibel.  

 

  

Figure 2: relative humidity 
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2.8 Technical data 

 

2.8.1 Air properties at 1 atmospheric pressure 

 

Table 1: air properties collected from table A-9 Hjertager (2013) 

Temp  

T, Kelvin 

Density 

 𝜌, kg/𝑚3 

Dynamic 

Viscocity 

µ, kg/ms 

Kinematic 

Viscocity 

𝜐, 𝑚2/𝑠 

Prandtl 

Pr 

Thermal 

conductivity 

𝑘𝑇, W/m∙K 

263,15 1,341 1,68*10−5 1,252*10−5 0,7387 0,02288 

273,15 1,292 1,729*10−5 1,338*10−5 0,7362 0,02364 

283,15 1,246 1,944*10−5 1,778*10−5 0,7336 0,02439 

293,15 1,204 1,825*10−5 1,516*10−5 0,7309 0,02514 

333,15 1,059 2,008*10−5 1,896*10−5 0,7202 0,02808 

 

2.8.2 Constants for equation 17 

 

Table 2: equation constants sampled from table 7.4 Incropera et al. (2009) 

Re C m d 

1-40 0,75 0,4 0,37 

40-1000 0,51 0,5 0,37 

103-2 × 105 0,26 0,6 0,37 

2 × 105-106 0,076 0,7 0,37 

 

2.8.3 Properties of AISI 316 steel 

 

Table 3: material properties gathered from table A.1 Incropera et al. (2009) 

Stainless steel Density  

𝜌, kg/𝑚3 

Thermal conductivity 

𝑘𝑇, W/m∙K 

ASISI 316 8238 13,4 



15 
 

2.8.4 Loss coefficient 

 

Table 4: fittings loss coefficient according to appendix A CRANE (1982) 

Nominal size 

[mm] 

100 125 150 200-250 300-400 450-600 

Friction factor 0,017 0,016 0,015 0,014 0,013 0,012 

𝑘𝑙𝑜𝑠𝑠 90° elbow 0,51 0,48 0,45 0,42 0,39 0,36 

𝑘𝑙𝑜𝑠𝑠 45° elbow 0,272 0,256 0,24 0,224 0,208 0,192 

 

 

Table 5: fittings loss coefficients from table A 8 Chappalaz et al. (1992) 

Radius/Diameter 1 2 4 6 10 

𝑘𝑙𝑜𝑠𝑠 15° elbow 0,03 0,03 0,03 0,03 0,03 

𝑘𝑙𝑜𝑠𝑠  22,5° elbow 0,045 0,045 0,045 0,045 0,045 

𝑘𝑙𝑜𝑠𝑠  45° elbow 0,14 0,09 0,08 0,075 0,07 

𝑘𝑙𝑜𝑠𝑠  60° elbow 0,19 0,12 0,10 0,09 0,07 

𝑘𝑙𝑜𝑠𝑠  90° elbow 0,21 0,14 0,11 0,09 0,08 
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3 OpenFOAM 

 

3.1 Introduction 

 

OpenFOAM is an open source CFD software written with the computer language of C++ and 

runs in Linux based operating systems. By being open source, OpenFOAM allows the user to 

alter and customize the functionalities to match the case requirements. Building on this, 

OpenFOAM has very few shortcomings and is limited mostly by the users programming skills. 

The open source code has led to a lively forum where users together solve problems and 

contribute with their own solver modifications and solutions, available for anyone to use. 

OpenFOAM operates using text files and unix style commands. The structure is built upon 

libraries containing pieces of code that is used by the various solvers and utilities. For each case, 

a new folder structure is built containing at least the three main folders: 0, constant and system. 

Inside the 0 folder is all the initial field conditions for variables such as pressure and velocity. 

These will vary depending on the chosen solver. Constant contains information about fluid and 

turbulence properties. In addition, there are two more folders describing the case geometry. 

PolyMesh describes the mesh, and triSurface holds STL files if the geometry is imported from a 

CAD program. The system folder determines solver and solution settings for each field. There is 

also settings for the output format, runtime and time step. As the simulation runs, multiple time 

dump folders are created inside the case folder containing field solutions for fixed iteration 

intervals.  

 

Figure 3: case structure OpenFOAM 

case

0

p U

constant

polyMesh triSurface

system

controlDict fvSchemes fvSolution
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3.2 Mesh 

 

Mesh generation is an important part of OpenFOAM. Solution convergence and accuracy has a 

direct correlation to the mesh quality. OpenFOAM has its own built in mesh generation utility 

called blockMesh. BlockMesh is text based and works by defining hexahedral blocks in a local, 

right-handed coordinate system. By using these blocks, one can build more complex geometries. 

After running the blockMesh command, the mesh is built and geometry data is stored in the 

polyMesh folder. One challenge with the text-based construction of mesh is keeping track of the 

multiple coordinate points within a complex geometry. This can be negated by using a CAD 

software to produce the geometry described with STL surfaces. OpenFOAM can read these STL 

files and convert them in to mesh. This solution has been chosen as the strategy for this thesis.  

 

3.2.1 Salome 
 

The chosen CAD program is the open source software Salome. Salome is essentially a software 

for pre - and post-processing numerical solutions, but has a geometry feature suitable for 

exporting STL surfaces to OpenFOAM. The software has a graphical interface, and compared 

with the text-based blockMesh, makes it more comprehendible to work with. Salome is a simple 

CAD software with basic boolean operations such as cut and fuse. It allows the user to define 

vertices based on coordinates. These vertices are connected with lines, which then creates faces. 

To create pipes the extrusion feature is used. By defining a base surface, in this case a disc, the 

surface can be extruded along a path to create the pipe geometry. After all the surfaces are joined 

to finish the geometry, everything is converted to a completely solid figure. This is to be sure that 

there are no overlapping surfaces and non-real features. With a complete solid, the various 

surfaces can be extracted and placed in to groups. The surfaces are distinguished in groups so that 

different meshing options and field properties can be applied to different surfaces later on. These 

groups of surfaces are finally exported to OpenFOAM as STL files, and referred to in 

snappyHexMesh as patches.  
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3.2.2  SnappyHexMesh 
 

With the geometry stored as STL files, the blockMesh utility is used to define initial cell size of 

the mesh. This is done by creating a cube that extends the outer edges of the STL geometry and 

divided in to the desirable mesh size. A finer mesh results in more cells and longer computational 

time, but a more accurate solution. With blockMesh, it is ensured that a suitable background 

mesh is generated. However, to create a mesh that traces the outer edges of the STL surfaces, the 

snappyHexMesh utility is needed. SnappyHexMesh identifies the outer surfaces of the geometry 

from the STL files, and then starts a process of splitting the cells located around the boundaries. 

This results in a rough representation of the surfaces and makes it possible to distinguish between 

the cells needed to construct the geometry, and the ones that will be removed. Once the splitting 

process produce a closed boundary, the remaining cells are deleted. The next step is to identify 

the cells intersecting the boundary, and relocate the cell vertexes onto the geometry surface. This 

is called the “snapping” feature and deforms the cell surface to match the shape of the geometry. 

Thus creating a smooth boundary and an accurate meshed representation of the STL figure.  

As stated at the beginning of this chapter, the quality of the mesh is of great importance to the 

OpenFOAM solution. There are several quality parameters to be fulfilled before the mesh is 

considered ready for simulation. A few of them are values such as minimum cell volume, face 

skewness and concave. These can be evaluated by the checkMesh command straight after mesh 

generation. However, there are also restrains regarding the mesh refinement when it comes to the 

flow pattern one wishes to simulate. High-speed flow needs a finer mesh to create an accurate 

solution. The same goes for the non-dimensional distance yPlus when simulating with turbulence 

models. YPlus determines how coarse or fine a mesh is close to the domain walls, with respect to 

getting a correct representation of the flow field in this area. The two latter parameters can only 

be calculated once the simulation has been tested. To be able to control the mesh generation 

process, and fulfil these restraints, snappyHexMesh has many parameters that needs adjustment 

to obtain the desired result. The most important ones to this thesis will be discussed.  
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Figure 4: geometry section 

First, all the relevant STL files needs to be inserted to the geometry section and named. There is 

also an option to create a new refinement reference geometry directly in snappyHexMesh as seen 

on the last line of figure 4.  

 

Figure 5: refinement surfaces 

Then the surface refinement level is specified. Both the minimum and maximum refinement is 

selected, and each level represent an order of cell splitting. This means that level (2 2) refinement 

split all the cells twice for the given surface. Here the previously defined surface groups becomes 

important. As mentioned, it is not desirable to have more cells than necessary as it increases 

computational time. Therefore, it is useful to be able to refine only certain patches and not the 

entire geometry.  

 

The second main section is internal cell refinement. Here one defines the level of cell splitting for 

given regions of the mesh.  

 

Figure 6: refinement regions 
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As before, the already defined group of cells are selected and given a level of refinement. It is 

also required to specify the mode that will be used to refine. In this example, the mode distance is 

selected. This implies that the given level of refinement will be applied to a given distance from 

the surface boundary. So for levels (0.02 3), all the cells within a distance 0,02m from the surface 

boundary are split with a level 3 of refinement. If the distance mode is selected it is also required 

to specify the locationInMesh entry. Here one selects whether the internal or external cells, with 

respect to the boundary surfaces, are to be kept.  

 

In addition to the refinement levels, the different quality settings may affect the mesh outcome. 

For this thesis, the majority of these settings are kept at default values. However, there is always 

the risk that snapping process may be hindered by these and not completely snap to the surface 

geometry. Alternatively, snappyHexMesh simply do not recognize the geometry surfaces due to 

poorly constructed STL files. Both these cases can be solved to some degree by further increasing 

the surface refinement. However, if this is not desirable, there is an additional tool in 

snappyHexMesh to help improve the snapping feature.  

 

To use the surface feature in snappyHexMesh, first include the surfaceFeatureExtractDict in the 

system folder. Then edit the text file to apply to the desired STL files as shown in figure 7, 

below. This allows the user to run the surfaceFeatureExtract command in the terminal window 

and produce a set of e.mesh files. These files describe the outer edges of the geometry and 

improve the snapping feature in snappyHexMesh. 

 

Figure 7: surface feature extract 

The e.mesh files are listed under features in snappyHexMesh. One thing to note with this feature 

is that geometrical shapes such as pipes are poorly converted in to e.mesh files. This is due to the 

lack of sharp edges along the pipe. The e.mesh file will only contain information about the inlet 

and outlet edges, and nothing about the potential bends along the pipe length. 
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Figure 8: surface features 

Last cell refinement step in snappyHexMesh is the add layers control. This feature is designed to 

expand an outer layer of cells that will follow the contour of the surface boundary.  

 

Figure 9: add layers 

Here it is required to define for which patch this feature should be applied, how many layers 

should be expanded and thickness of these layers. If the relative sizes option is turned on then the 

thickness is based on the size of the current outer cell size. Creating this outer layer can be 

challenging for complex geometry and lead to ill-defined cells. It is therefore recommended to 

leave this feature off, until a satisfactory mesh has been obtained by the previous refinement 

steps. Then run the snappyHexMesh again, leaving only the add layers feature on, and tweak the 

settings to expand a complete outer layer of cells.  
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3.3 rhoSimpleFoam 
 

RhoSimpleFoam is a steady-state solver used for simulating turbulent RANS flow of 

compressible solvers. This solver allows for simulating the mass flow through the system, as well 

as the temperature dissipation to the outer environment. The chosen solver is as mentioned steady 

state, as the important data for this case is obtained once the flow has stabilized. The time-period 

right after fan startup is not relevant to the case solution. When running a steady state solver in 

OpenFOAM, the time steps does not represent the elapsed time, but rather as an iteration counter. 

Furthermore, the time dumps created during the simulation does not contain usable data. Only the 

last converged results can be used for solution analysis. When running the rhoSimpleFoam solver 

there are a number of solvers and numerical schemes located in the system folder. These contain 

settings for how the equations are to be solved. 

 

3.3.1 fvSchemes 

 

Within the fvSchemes text file there are options to assign which numerical schemes used for the 

terms to be solved. First, the time derivate scheme will be specified as steady state as it is not 

applicable for this case. Then the gradient schemes are all assigned Gauss linear as method of 

discretization of the divergence. By specifying linear after the Gauss theorem selection, the 

chosen interpolation scheme is set as central differencing. Next is the convection scheme, 

identified under divSchemes. Here the bounded Gauss is used, but the interpolation method is 

upwind for all values except for one. The exception is a part of the momentum equation, 

div((muEff*dev2(T(grad(U))))), which only works with Gauss linear. The upwind differencing is 

the most stable interpolation method available in OpenFOAM. From here on, all the schemes are 

specified using a default value, which means that all the terms will be assigned identical settings. 

The laplacian schemes are solved with Gauss linear corrected. Corrected is an explicit non-

orthogonal correction. Lastly, the default interpolation schemes are linear, and the surface normal 

gradients set at corrected. The surface normal gradients are used to compute the gradients at cell 

faces.   
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3.3.2 fvSolution 
 

In fvSolution, the settings specify how to solve the equations based on matrix inversions. Often 

the equations to be solved in OpenFOAM result in large matrices. These matrices are however 

mostly built by zero entries. Therefore, the traditional algebraic techniques become inefficient 

and iterative methods are adopted instead. There are three types of solvers to invert matrices in 

OpenFOAM. The first one is preconditioned (bi-) conjugate gradient, PCG/PBiCG, which 

distinguishes between symmetric and asymmetric matrices. The second is geometric-

agglomerated algebraic multigrid, CAMG. CAMG requires a positive definite, diagonally 

dominant matrix to operate. Lastly, there is the smoothSolver, which operates for both symmetric 

and asymmetric matrices. The two last solvers has been chosen for this case, as it is 

recommended, Hjertager (2009A), to use the CAMG solver for pressure and smoothSolver for 

the remaining variables. As for smoothers, the Gauss Seidel and symmetric Gauss Seidel is 

recommended. Apart from the solvers and smoothers, there is also settings dedicated to the solver 

accuracy. Tolerance refers to how exact the solution is based on the initial residuals. The relative 

tolerance specifies how accurate the solution is solved for each iteration step.  

 

3.3.3 Boundary conditions 
 

In OpenFOAM, it is necessary to specify the initial field values and boundary conditions. All the 

values for these fields are stored in the 0 folder as text files. From earlier in the mesh generation 

process it is important to remember which boundary entries are defined as a patch type, and 

which are defined as a wall type. The equations used to describe the boundary conditions have 

been gathered from CFD-Wiki (2009, 2012A, 2012B & 2014) and OpenFOAM foundation 

(2011). 

 

3.3.3.1  Alphat 
 

Alphat describes the turbulent thermal diffusivity. The turbulent heat transfer is calculated using 

the equation: 

 𝛼𝑡 =
𝜇𝑡

𝑃𝑟𝑡
 Equation 20 
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Here, 𝛼𝑡 is turbulent thermal diffusivity. 𝜇𝑡 is mut, the turbulent viscosity. Lastly, 𝑃𝑟𝑡 is turbulent 

Prandtl number with a default value of 0,85. The wall entries are defined with the boundary 

condition compressible::aplhatWallFunction, and patch entries are set to calculated. 

 

3.3.3.2  Epsilon 
 

The epsilon field allows for describing the turbulence dissipation rate at a boundary inlet and 

walls. Epsilon is calculated by the formula: 

 
𝜀 =

𝐶𝜇
0,75𝑘1,5

𝑙
 

Equation 21 

 

𝐶𝜇 is a model constant with value of 0,09 and l is the mixing length. Mixing length is calculated 

using the formula: 

 𝑙 = 0,038𝑑ℎ Equation 22 

 

Where the value 𝑑ℎ, is the hydraulic diameter. For a circular inlet, such as a pipe, the hydraulic 

diameter equals the pipe diameter. However, with a rectangular duct the hydraulic diameter is 

calculated from: 

 
𝑑ℎ = 2

𝑎𝑏

𝑎 + 𝑏
 

Equation 23 

 

Here the value a is the duct width, and b is the duct height. The wall entries are defined with 

compressible::epsilonWallFunction and inlet patches have type 

compressible::turbulentMixingLengthDissipationRateInlet. Note that the outlet patch is given the 

inletOutlet boundary condition. This fixes the outlet field to a given inletValue to prohibit 

instability in case of inward flow during simulation. In addition, the Von Karman constant kappa 

and model coefficient E is defined with default value 0,41 and 9.8.  
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3.3.3.3  K 

 

Inside the k file, there is the boundary conditions for the turbulence energy. The value of 

turbulent kinetic energy k, can be calculated from the equation: 

 
𝑘 =

3

2
(𝑈𝐼)2 

Equation 24 

 

U is the mean flow velocity and I is the turbulence intensity calculated by: 

 𝐼 = 0,16 ∙ 𝑅𝑒𝑑ℎ

−0,125
 Equation 25 

 

Here, 𝑅𝑒𝑑ℎ
 is the Reynolds number based on the hydraulic diameter. The following equation is 

used to estimate Reynolds: 

 
𝑅𝑒𝑑ℎ

=
𝑈 ∙ 𝑑ℎ

𝜈
 

Equation 26 

 

The hydraulic diameter is the same as used for the epsilon value above. Only new value is the 

kinematic viscosity 𝜈. Inlet patches are given the boundary 

compressible::turbulentMixingLengthDissipationRateInlet and the outlet patch, inletOutlet. Walls 

are defined by compressible::epsilonWallFunction.  

 

3.3.3.4  Mut 
 

Mut is the turbulent kinematic viscosity and only needs to be defined at wall patches with 

mutkWallFunction. The remaining patches are calculated. 

 

3.3.3.5  T 
 

Temperature is fixed at the inlet patches and with inletOutlet on the outlet patch. The wall patch 

named pipe is applied with wallHeatTransfer. This boundary condition makes it possible to 

simulate heat loss to the surrounding environment. The alphaWall value is calculated in the heat 

transfer chapter 2.5, using equations 17 to 19.  

 

  



26 
 

3.3.3.6  Pressure 
 

To simulate the static pressure given by a fan, the inlet is given a fanPressure boundary. This 

boundary condition allows the user to enter a fan performance curve, and let OpenFOAM 

calculate the stabilized relation between pressure and volumetric flow. The fan curve file is 

located inside the constant folder, and contains a simple table of corresponding values for the 

system pressure drop and volumetric flow at inlet. In addition to the fan curve, it is necessary to 

define initial pressure value, environmental total pressure and direction of flow with respect to 

the boundary. The outlet is defined with fixed value, while the remaining patches are set with 

zeroGradient. 
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4 DESIGN 

 

The main parts of the cooling system consists of a fan, driving the exhaust flow, a series of pipes 

and the existing air intake ducting. There were two proposed designs to the new piping. One 

where the pipe enters the duct at the top of the duct, and one where it enters by the side. The 

original proposal did include some measurements to describe the overall shape of the designs. 

However, some had to be added as seemed fitted by a lack of information. Even though the 

geometry alters between the two cases, the name of the surface groups exported from Salome, 

remain the same. The boundary where the exhaust enters through the fan is named fan inlet. 

Similarly, where the outside air is drawn into the system is called air inlet. The two flows 

converge and exist the system through the outlet.  

 

4.1 Top entry 
 

The first design is shown in figure 10 below. The piping is marked in red and has a diameter of 

one meter. There has been incorporated a series of bends to avoid a cooling tower situated 

between the fan inlet and the ducting. Bend number 3 is of 45 degrees while the rest are 90 

degrees bends. Number 4 and 5 combine to create an s-bend. The existing ducting is displayed in 

blue. Marked in green is the air inlet and it is a direct opening to the surrounding atmosphere.  
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Figure 10: top entry design 

 

4.1 Side entry 

 
Second design is described in figure 11 and it proposes a pipe side entry to the ducting. Bend 

number 1, 2 and 5 is of 90 degrees. While bend 3 and 4 is of 45 degrees. As before the air inlet is 

marked in green and the ducting marked in blue. The exact location of the cooling tower is not 

known in detail, and therefore only the two proposed project designs will be explored in this 

thesis. A full overview of both system designs with dimensions can be found in appendix A.  
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Figure 11: side entry design 

  



30 
 

5  PRE-PROCESSING 

 

5.1 Mesh generation 

 

The meshing process involves a lot of trial and error. The goal is to create a mesh fine enough to 

accurately represent the STL geometry, but not create a mesh with an unnecessary high number 

of cells. With the blockMesh utility, the initial cell size is set to a square with side length of 0,1m. 

From there the snappyHexMesh surface refinement is found to be adequate at only refinement 

level (1 1). To create a smooth transition between the boundary and internal mesh, a level 2 

distance-based refinement is used. These settings seem to work well to represent the bends of the 

pipe, but the mesh would not properly snap to the sharp diagonal edges of the duct geometry. As 

seen in figure 12.  

 

Figure 12: inaccurate representation of edges 

The problem was however solved, by including the surfaceFeatureExtract feature. This was done 

by extracting an additional surface group including the duct surfaces, as well as the surfaces of air 

inlet and outlet. The e.mesh file was listed in snappyHexMeshDict with refinement level 2, and 

the resulting mesh was much more accurate.  
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Figure 13: accurate representation of edges 

After the base mesh was established, three surface layers were added. These surface layers are to 

extend the outer edges of the entire geometry. The layers add another level of refinement and 

ensure accurate solutions near the boundaries. However, creating the outer layers can be 

challenging, and often need very exact settings to form correctly. For both cases, the problem 

area is located in between the pipe and duct transition. As shown in figure 14, the layers collapse 

in on themselves around the tight 90 degrees angle.  

 

Figure 14: collapsed layer 
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By altering the settings for the addLayers feature, it was found that increasing the value for 

featureAngle the layers would form correctly. The featureAngle decides at what angle, between 

two existing cells, new layers should be extruded. In figure 15, the final internal mesh is depicted.  

 

Figure 15: fully formed outer layer 

The complete mesh result in a size of 1486140 cells for the top entry design, and a mesh size of 

1765704 cells for the side entry case.  
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5.2 Initial field values 

 

The initial field values are not affected by the two different design cases. Dimensions at inlets 

and outlet remain the same, and pipe diameter is unchanged. However, the change in outside 

temperature will have an impact on some of the initial conditions. 

 

5.2.1 Velocity 
 

The fan inlet velocity is not defined in boundary conditions, as the flow is pressure driven and 

governed by the fan curve. From initial simulations, the flow velocity at fan inlet is measured at 

approximately 20m/s. This velocity value will be the basis for further calculations at the fan inlet. 

At the air inlet, the mass flow is fixed at 2kg/s. Given the air density and area of the inlet: 

𝑈𝑎𝑖𝑟 =
𝑚̇

𝜌 ∙ 𝐴
=

2
𝑘𝑔
𝑠

1,292
𝑘𝑔
𝑚3 ∙ 4,32𝑚3

= 0,36 𝑚/𝑠 

5.2.2 Pressure 

 

The initial atmospheric pressure is set to 101325Pa. Pressure is fixed at the outlet, and adjusted 

by the fan curve at fan inlet.  

 

Table 6: fan curve 

  
Volumetric flow [𝑚3/𝑠] Static pressure [Pa] 

14 1800 

15 1600 

16 1400 

17 1200 

18 950 

19 700 

20 400 
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5.2.3 Temperature 

 

Cases are to be simulated for outside temperatures at both 263,15K and 273,15K. The exhaust 

entering the system through the fan inlet is fixed at 333,15K. In addition to the temperatures at 

the inlets and outlet, the heat loss through the pipe wall needs to be accounted for. To calculate 

this, one first needs to find the Nusselt number, and Reynolds number for the outside wind shear. 

In this thesis, the crosswind speed is set to 10m/s. 

𝑅𝑒 273 =
𝑈𝑊𝑖𝑛𝑑 ∙ 𝐷

𝜐273𝐾
=

10
𝑚
𝑠 ∙ 1𝑚

1,338 ∙ 10−5𝑚2/𝑠
= 7,474 ∙ 105 

Using the formula constants defined in section 2.8.2, the Nusselt number is calculated with 

equation 17: 

𝑁𝑢273 = 0,076 ∙ (7,474 ∙ 105)0,7 ∙ 0,73620,37 ∙ (
0,7362

0,7202
)

1
4
= 882,013 

Now the convection heat coefficient is calculated from equation 18: 

ℎ𝑎𝑖𝑟,273 = 882,013 ∙
0,02364

𝑊
𝑚 ∙ 𝐾

1 𝑚
= 20,85 𝑊/𝑚2 ∙ 𝐾 

Equation 19 combines the pipe wall thickness and conductivity, thus the total heat transfer 

coefficient is found: 

1

ℎ𝑡𝑜𝑡𝑎𝑙,273
=

1

20,85 𝑊/𝑚2 ∙ 𝐾
+

0,003𝑚

13,4 𝑊/𝑚 ∙ 𝐾
 

ℎ𝑡𝑜𝑡𝑎𝑙,273 = 20,75 𝑊/𝑚2 ∙ 𝐾 

Heat loss for the second case, with outside temperature at 263,15K, is solved in similar fashion: 

𝑅𝑒 263 =
𝑈𝑊𝑖𝑛𝑑 ∙ 𝐷

𝜐263𝐾
=

10
𝑚
𝑠 ∙ 1𝑚

1,252 ∙ 10−5𝑚2/𝑠
= 7,987 ∙ 105 

𝑁𝑢263 = 0,076 ∙ (7,987 ∙ 105)0,7 ∙ 0,73870,37 ∙ (
0,7387

0,7202
)

1
4
= 925,911 

ℎ𝑎𝑖𝑟,263 = 925,911 ∙
0,02288

𝑊
𝑚 ∙ 𝐾

1 𝑚
= 21,19 𝑊/𝑚2 ∙ 𝐾 

1

ℎ𝑡𝑜𝑡𝑎𝑙,263
=

1

21,19 𝑊/𝑚2 ∙ 𝐾
+

0,003𝑚

13,4 𝑊/𝑚 ∙ 𝐾
 

ℎ𝑡𝑜𝑡𝑎𝑙,273 = 21,09 𝑊/𝑚2 ∙ 𝐾 
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The total heat transfer coefficient will be used as the alphaWall value for the wallHeatTransfer 

boundary condition. 

 

5.2.4 Turbulence energy 

 

To calculate turbulence energy and intensity, one first need to define the hydraulic Reynolds 

number. The Reynolds number will vary for the two inlets, as the shape of the inlets differs. 

When estimating the Reynolds number for a cylindrical pipe the hydraulic diameter equals the 

pipe diameter, hence the Reynolds number for fan inlet is calculated with equation 26: 

𝑅𝑒𝑑ℎ,𝑓𝑎𝑛
=

20𝑚/𝑠 ∙ 1𝑚

1,896 ∙ 10−5𝑚2/𝑠
= 1,055 ∙ 106 

The air inlet has a rectangular shape, and therefore equation 23 is used to find the hydraulic 

diameter: 

𝑑ℎ,𝑎𝑖𝑟 = 2
3,6𝑚 ∙ 1.2𝑚

3,6𝑚 + 1,2𝑚
= 1,8𝑚 

This gives the Reynolds number: 

𝑅𝑒𝑑ℎ,𝑎𝑖𝑟
=

0,36 𝑚/𝑠 ∙ 1,8𝑚

1,338 ∙ 10−5 𝑚2/𝑠
= 4,843 ∙ 104 

Given the Reynolds number, the turbulence intensity is now calculated from equation 25: 

𝐼𝑓𝑎𝑛 = 0,16 ∙ 1,055 ∙ 106−0,125
= 0,028 

𝐼𝑎𝑖𝑟 = 0,16 ∙ 4,843 ∙ 104−0,125
= 0,042 

Finally, equation 24 yields the two turbulence energy values: 

𝑘𝑓𝑎𝑛 =
3

2
(20𝑚/𝑠 ∙ 0,028)2 = 0,470 𝑚2/𝑠2 

𝑘𝑎𝑖𝑟 =
3

2
(0,36𝑚/𝑠 ∙ 0,042)2 = 0,0003 𝑚2/𝑠2 
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5.2.5 Turbulence dissipation 

 

The turbulence dissipation rate is estimated from the turbulence mixing length. Again, the mixing 

length is calculated from the hydraulic diameter, which has been defined in the above turbulence 

energy section 5.2.4. This means that there will be two different values for the two inlets. 

Entering the hydraulic diameter into equation 22, yields the two mixing lengths: 

𝑙𝑓𝑎𝑛 = 0,038𝑑ℎ = 0,038 ∙ 1𝑚 = 0,038𝑚 

𝑙𝑎𝑖𝑟 = 0,038𝑑ℎ = 0,038 ∙ 1,8𝑚 = 0,068𝑚 

Now the two dissipation rates are calculated with equation 21: 

𝜀𝑓𝑎𝑛 =
𝐶𝜇

0,75𝑘1,5

𝑙
=

0,090,75 ∙ (0,470𝑚2/𝑠2)1,5

0,038𝑚
= 1,39𝑚2/𝑠3 

𝜀𝑎𝑖𝑟 =
𝐶𝜇

0,75𝑘1,5

𝑙
=

0,090,75 ∙ (0,0003𝑚2/𝑠2)1,5

0,038𝑚
= 0,00002𝑚2/𝑠3 
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6 SOLVING 

 

Inside the controlDict text file there are entries regarding the simulation settings. Settings that 

control for what time step to start and stop the simulation, as well as which time step to write the 

temporary results, also known as time dumps. Since this is a steady state solver, the time step 

simply refers to number of iterations instead of seconds of simulation time. Only once the 

solution has converged, can the data be used for analysis. The previous intermediate data is not 

accurate. As the simulation starts, OpenFOAM produces information regarding the solving of the 

different equations. By monitoring this information, one can deduce whether or not the solution 

has converged. The first piece of information is the initial residual. The initial residual should 

approach zero when the solution convergence. Second, the final residual should always remain 

small and always be less than the initial residual. This value describes the residual of the current 

equation being solved. Lastly, the number of iterations show how many times the matrix was 

solved for the current equation. This value should also start to decrease once the solution 

approach convergence. Monitoring the residuals as they move over the screen may in some cases 

prove difficult and time consuming. To help with this task the third party program PyFoam is 

utilized. 

 

6.1 PyFoam 

 

PyFoam allows for real time plotting of residuals, Gschaider (2015A). Once installed the plotting 

utility starts when the OpenFOAM solver is initialized. The PyFoam plotter makes it a lot easier 

to keep track of the information displayed by the OpenFOAM solver and help notice trends as 

they appear. The graphs in PyFoam should ideally flatten out and become straight lines once the 

solution is fully converged. 
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Figure 16: example of the PyFoam plotter 

 

6.2 Parallel processing 
 

Even though best efforts where used to try and keep the mesh size as small as possible, the final 

mesh requires a significant amount of computational power and time to be solved. To help speed 

up the solving process, one can split up the workload and manually assign it to different 

processing cores. This helps OpenFOAM to utilize the available processing power as efficient as 

possible. To accomplish this, the decomposeParDict needs to be added to the system folder. 

Inside the number of available processor cores are specified. After running the decomposePar 

command, additional folders are constructed inside the case folder, representing the number of 

cores. These need to be reconstructed in to one whole solution again, once the solver is 

completed.   

 

6.3 Swak4Foam 
 

Swak4Foam is an OpenFOAM library with many additional utilities. The library is installed 

separately as it is not included in standard OpenFOAM software. Swak4Foam combines the 

functionality of groovyBC and funkySetFields. This allows the user to create expressions and 

boundary conditions based on field values. With the ability to create such expressions, the 
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swak4Foam can be tailored to fit most situations. Hence why swak4Foam stands for SWiss Army 

Knife for Foam, Gschaider (2015B). The option of swak4Foam was explored in this thesis, with 

regards to create an expression to control the total mass flow entering the system over both inlets. 

This was never implemented for reasons that will be discussed in detail later on. However, a 

secondary function of swak4Foam was included in the final simulation. Function objects can 

carry out a variety of tasks, such as data sampling and monitoring, while the OpenFOAM 

simulation is running. They are defined inside the controlDict file and can be customized with 

swak4Foam expressions. The most useful for this thesis are the utility to define the face-flow 

field phi, and sum over the patches. This then gives the total mass flow for each inlet and outlet, 

OpenFOAM Wiki (2012). In addition, expressions are created to directly calculate the pressure 

drop between inlets and outlet.  
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7 POST-PROCESSING 

 

Once the OpenFOAM solver is complete, the field values are stored separately in text files. Inside 

each file, the value for each cell of the given field is listed. Analyzing these values as they are 

presented, without any positional data, does not offer much insight. However, OpenFOAM 

comes with its own post-processing software called ParaView. ParaView is an open-source 

software capable of performing data analysis and visualization.  

 

7.1 ParaView 
 

ParaView combines the field values and positional data with the mesh model to create a visual 

representation of the OpenFOAM simulation. All the fields included in the simulation can be 

inspected and colored according to magnitude. In addition, there are several tools to closer 

inspect the results, such as graphing tools, hiding parts of the mesh and so on.  

 

 

Figure 17: example of the paraView interface 
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7.2 SampleDict 

 

The sample feature, in some ways serve the same purpose as the function objects. It is manly 

used to collect data samples from the simulation. One key difference from the function objects is 

that the sample feature can collect the data after the simulation process has ended. Usually the 

data collected are used to analyze the obtained results. One alternative use of sampleDict 

however, is to collect all of the relevant field values for an outlet patch, and then use these values 

as the starting conditions for the inlet patch of a different case. This is useful in situations where 

the mesh becomes too big for the computer to handle. More specifically, OpenFOAM runs out of 

available RAM. Then the mesh needs to be split in two halves and simulated separately. To 

accomplish this, a new folder structure named boundaryData/inlet/0 must be created inside the 

constant directory of the new case. The sampled faceCentres file is renamed to points, and placed 

inside the constructed boundaryData/inlet directory. Then the sampled fields are transferred to the 

boundaryData/inlet/0 directory. The text files containing the field values do not have the correct 

file headers and these need to be constructed according to standard headers for vectors and 

scalars. Now the new case can be simulated based on the previous results from the old case. The 

boundary condition for the inlet patch in the new case is defined with 

timeVaryingMappedFixedValue. This method was researched but not implemented in this thesis, 

as the mesh size was kept at a manageable size.   

 

7.3 topoSetDict 

 

The feature topoSet operates using boolean operations to create new cell or face sets within the 

existing mesh. These cells and faces can then be defined into specific zones, faces and patches. 

The topoSet will be used in this thesis to supplement the sample feature. To extract temperature 

values from the cases, the sample feature defines a plane from coordinates. Cells that then 

intersects with the plane will be extracted. The need for the topoSet feature arises when the mesh 

geometry intersects the plane at multiple locations. This will lead to incorrect data where 

unwanted cell values are included in the sample. By defining zones within the mesh, the topoSet 

can restrict the plane sample within the desired boundaries.   
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7.4 YPlus 

 

As mentioned earlier, yPlus is a non-dimensional wall distance value. To ensure that the mesh 

cell size is fine enough near the wall boundary, it is recommended to keep the yPlus value below 

within the range of 0 to 300. The yPlus value can be evaluated by running the yPlus command in 

the terminal window and opening the yPlus field values in ParaView.  

 

Figure 18: yPlus in ParaView 
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8 RESULTS AND DISCUSSION 

 

The goal of the OpenFOAM model is to create a simulation that mimics real life conditions. This 

then becomes a test bench for the fan in question, to see whether it can fulfill the required criteria. 

In the following chapter, the results from the simulation will be presented along with estimations 

and calculations. 

 

8.1 Temperature 
 

Temperature is the main deciding factor for the simulations. If all other variables are found to be 

reliable, then the temperature readings will show whether the design cases are suitable for turbine 

operation. First to be evaluated is the top entry design case. The temperature is sampled at the 

inlets and outlet, as well as at cross sections along the geometry. Sample locations are shown in 

figure 19. Table 7 shows the results for outside temperature at both 273,15K and 263,15K. Even 

though the air entering the system experiences a temperature drop of 10 degrees, the air leaving 

the system only drop a maximum of 2 degrees. This then means that for the top entry case, the 

lowest air temperature entering the turbine is 321,2K 

 

Table 7: temperature samples, top entry case 

 Fan 

inlet 

T1 T2 T3 T4 Air 

inlet 

T5 T6 Outlet 

Temperature 

[K] 

333,15 330,7 329,2 328,1 327,4 273,2 323,0 323,0 323,0 

333,15 330,2 328,5 327,1 326,4 263,2 321,2 321,2 321,2 
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Figure 19: temperature sample, top entry case 
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As before, the side entry case have the temperature values sampled from the inlets, outlet and 

along the geometry path. Temperature readings show that the 10 degrees drop in atmospheric 

temperature, only results in a 1,5 degree drop in air temperature at the outlet.  

 

Table 8: temperature data, side entry case 

 Fan 

inlet 

T1 T2 T3 Air 

inlet 

T4 T5 Outlet 

Temperature 

[K] 

333,15 330,9 329,2 328,3 273,15 324,7 324,9 324,8 

333,15 330,5 328,5 327,5 263,15 323,2 323,4 323,3 

 

For both cases, the air temperatures leaving the system is well above the 277,65K temperature 

level that ensures reasonable humidity values, according to figure 2.  

 

 

Figure 20: temperature sample, side entry case 
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8.2 Pressure loss 
 

To evaluate the results given by the OpenFOAM simulation, the theoretical pressure loss between 

the fan inlet and air inlet is calculated. The calculated pressure loss for the two cases are then 

compared to the pressure loss indicated by the simulations. Theoretical pressure loss is estimated 

with equation 16. By examining the equation, one can see that the pressure loss is particularly 

susceptible to change in velocity. Therefore, the fan inlet velocity used in these calculations are 

drawn directly from the simulation to ensure an as accurate result as possible. As can be observed 

in table 12 and 13, the fan inlet velocity for the top entry case is measured at 23,1m/s and 

24,4m/s for the side entry case. Using the measured velocities, and loss coefficients from table 4, 

the theoretical pressure is calculated: 

∆𝑝𝑡𝑜𝑝𝐸𝑛𝑡𝑟𝑦 = 1,255𝑚 ∙ 1,059𝑘𝑔/𝑚3 ∙ 9,81𝑚/𝑠2

+ (
0,0235 ∙ 24,3𝑚

1𝑚
+ 1,94) (

1,059𝑘𝑔/𝑚3 ∙ (23,1𝑚/𝑠)2

2
) = 722,5 𝑃𝑎 

∆𝑝𝑠𝑖𝑑𝑒𝐸𝑛𝑡𝑟𝑦 = 0,655𝑚 ∙ 1,059𝑘𝑔/𝑚3 ∙ 9,81𝑚/𝑠2

+ (
0,0235 ∙ 22,9𝑚

1𝑚
+ 1,43) (

1,059𝑘𝑔/𝑚3 ∙ (24,4𝑚/𝑠)2

2
) = 627,3 𝑃𝑎 

Comparing the two results in table 9, one can see that the pressure results for the top entry case 

deviate with about 188 Pa. Even more for the side entry case, which have a deviation of 

approximately 328 Pa. These results suggest that one of the two methods are faulty. 

 

Table 9: theoretical and simulated pressure loss between fan inlet and air inlet 

Top entry Side entry 

Theoretical Simulated Theoretical Simulated 

273,15 K 263,15 K 273,15 K 263,15 K 

722,5 Pa 534,3 Pa 533,8 Pa 627,3 Pa 299,8 Pa 299,3 

 

Reevaluating equation 16, one can see that one other constant has a relatively large impact on the 

equation outcome. The loss coefficient, also known as minor losses, needs to be found in 

reference literature. By evaluating different literature sources, the loss coefficient seem to vary in 

value. Another unforeseen challenge was to find a loss coefficient suitable for the pipe diameter 
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used in this thesis. Most available lists, does not extend up to a pipe diameter of 1 meter. This is 

also true for the loss coefficient used in the theoretical pressure calculations above. As can be 

seen in table 4, the loss coefficient is only given for the maximum diameter of 0,6m. To 

circumvent the problem, a new reference that bases the loss coefficient on the relative value 

between the bend radius and pipe diameter is utilized. The theoretical pressure is calculated with 

revised loss coefficients from table 5:  

 

∆𝑝𝑡𝑜𝑝𝐸𝑛𝑡𝑟𝑦 = 1,255𝑚 ∙ 1,059𝑘𝑔/𝑚3 ∙ 9,81𝑚/𝑠2

+ (
0,0235 ∙ 24,3𝑚

1𝑚
+ 1,19) (

1,059𝑘𝑔/𝑚3 ∙ (23,1𝑚/𝑠)2

2
) = 510,6 𝑃𝑎 

∆𝑝𝑠𝑖𝑑𝑒𝐸𝑛𝑡𝑟𝑦 = 0,655𝑚 ∙ 1,059𝑘𝑔/𝑚3 ∙ 9,81𝑚/𝑠2

+ (
0,0235 ∙ 22,9𝑚

1𝑚
+ 0,91) (

1,059𝑘𝑔/𝑚3 ∙ (24,4𝑚/𝑠)2

2
) = 463,3 𝑃𝑎 

The new theoretical pressure calculations show similarities to the simulated results. As seen in 

table 10, the variation for the top entry case is only at 24 Pa. However, the side entry case still 

have a relatively large deviation of approximately 164 Pa. This leads to believe that the loss 

coefficients are not accurate enough for these type of calculations.  

 

Table 10: revised theoretical and simulated pressure loss  

Top entry Side entry 

Theoretical Simulated Theoretical Simulated 

273,15 K 263,15 K 273,15 K 263,15 K 

510,6 Pa 534,3 Pa 533,8 Pa 463,3 Pa 299,8 Pa 299,3 Pa 

 

 
Table 11: simulated total system pressure loss 

Top entry Side entry 

273,15 K 263,15 K 273,15 K 263,15 K 

651,2 Pa 649,8 Pa 381,2 Pa 380,4 Pa 
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8.3 Flow conditions 

 

With the fanPressure boundary condition, the mass flow of the fan inlet is pressure driven. Static 

pressure of the fan stabilizes to match the total pressure drop within the system, and then deliver 

the corresponding volumetric flow from the fan curve. Tables 12 and 13 show the flow readings 

from the two cases. Mass flow differences between the two temperature setups within each case 

are marginal, and the difference in mass flow between the two cases are relatively small. Both 

cases are able to deliver well above the required 16 kg/s airflow at the outlet.  

 

Table 12: flow conditions top entry 

Atmospheric 

temperature 

273,15K 263,15K 

Patch Fan inlet Air inlet Outlet Fan inlet Air inlet Outlet 

Mass flow 

[kg/s] 

19,20 2,00 21,20 19,21 2,00 21,21 

Density 

[kg/𝑚3] 

1,06 1,29 1,09 1,06 1,34 1,10 

Volumetric 

flow [𝑚3/s] 

18,11 1,55 19,45 18,12 1,49 19,28 

Velocity 

[m/s] 

23,09 0,36 9,39 23,09 0,35 9,34 
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Table 13: flow conditions side entry 

Atmospheric 

temperature 

273,15 263,15 

Patch  Fan inlet Air inlet Outlet Fan inlet Air inlet Outlet 

Mass flow 

[kg/s] 

20,17 2,00 22,17 20,17 2,00 22,17 

Density 

[kg/𝑚3] 

1,06 1,29 1,08 1,06 1,34 1,09 

Volumetric 

flow [𝑚3/s] 

19,03 1,55 20,53 19,03 1,49 20,34 

Velocity 

[m/s] 

24,37 0,36 11,30 24,37 0,35 11,25 
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8.4 Fan performance 

 

By inspecting the pressure and volumetric flow results from chapter 8.2 and 8.3, the fan 

performance can be evaluated. The fanPressure boundary condition, coupled with the fan curve, 

should ensure similar fan conditions as the fan performance curve in figure 1. Table 14 show 

again the fan curve table used for the OpenFOAM simulation. 

Table 14: fan curve 

Volumetric flow [𝑚3/𝑠] Static pressure [Pa] 

14 1800 

15 1600 

16 1400 

17 1200 

18 950 

19 700 

20 400 

 

The results of the total system pressure drop are shown in table 11. First result for the top entry 

case is a pressure drop of 650Pa. To compare the corresponding volumetric flowrate, the fan 

curve in table 14 is interpolated: 

𝑝 − 𝑝1

𝑝2 − 𝑝1
=

𝑉̇ − 𝑉̇1

𝑉̇2 − 𝑉̇1

 

Rearrange to solve for the volumetric flow: 

𝑉̇ =
𝑝 − 𝑝1

𝑝2 − 𝑝1
(𝑉̇2 − 𝑉̇1) + 𝑉̇1 

𝑉̇ =
650 − 700

400 − 700
(20 − 19) + 19 = 19,17 

Comparing the volumetric flowrate found by interpolating the fan curve, and the measured fan 

inlet flow rate from table 12, they do not coincide. The variance between the two values are 

relatively small, 1,06𝑚3/𝑠, and may be contributed to inaccuracy in either the OpenFOAM 

model or manual calculations. However, the interpolated value of expected volumetric flow does 

match the value of measured mass flow at fan inlet, also shown in table 12. This therefore points 
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towards a theory that the fan curve in OpenFOAM does not specify the relations between 

pressure loss and volumetric flow. But rather the connection between pressure loss and mass 

flow. Unfortunately, attempts to find the specified unit of measurement within the OpenFOAM 

documentation has failed. Regardless of this error in assumption, if the fan curve should have 

been specified in mass flow, the resulting changes in fan performance are not that significant. 

This is due to the air density value being close to 1, at the fan inlet temperature. The fan curve 

with mass flow values instead of volumetric flow are shown in table 15 below.  

 

 

Table 15: fan curve mass flow 

Mass flow [kg/s] Static pressure [Pa] 

14,8 1800 

15,9 1600 

16,9 1400 

18,0 1200 

19,1 950 

20,1 700 

21,2 400 
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8.5 Mesh quality 

 

To ensure accurate results, the mesh is verified using the yPlus value. Both meshes with 

temperature variations are tested and the results are shown in table 16. The recommended yPlus 

value is within the range of 0 to 300. Which is true for the largest portion of the mesh, however 

the maximum values are relatively high. 

Table 16: yPlus 

Case Top entry Side entry 

Atmospheric 

temperature 

273,15 K 263,15 K 273,15 K 263,15 K 

yPlus Max: 1080 

Min: 6 

Average: 107 

Max: 1090 

Min: 6 

Average: 108 

Max: 805 

Min: 3 

Average: 107 

Max: 815 

Min: 3 

Average: 108 

Mesh size 1486140 cells 1486140 cells 1765704 cells 1765704 cells 

 

The cells outside the recommended yPlus range are mostly located in the transition area between 

the pipe and duct. As can be seen in figure 21, the pipe form a sharp edge where it meets the duct. 

The elevated yPlus values are a result of high flow velocity around the edge, and subsequently 

the mesh not being fine enough in this particular part of the geometry.  
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Figure 21: yPlus values top entry case 

High yPlus values might indicate that the simulated cases are inaccurate. Therefore, to validate 

the obtained results, a refined mesh of the top entry case is constructed. The purpose of this 

improved mesh is to run the case with the same boundary conditions and compare it to the 

previous results. As seen in figure 22, mesh refinement is focused around where the pipe and duct 

merges. The mesh is now so big in size that it is important to limit the generation of unnecessary 

cells.  
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Figure 22: Refined mesh top entry 

 
Table 17: Results of top entry case with finer mesh compared to original mesh 

Mesh Refined Original 

Patch Fan inlet Air inlet Outlet Fan inlet Air inlet Outlet 

Mass flow 

[kg/s] 

19,22 2,00 21,22 19,20 2,00 21,20 

Density 

[kg/𝑚3] 

1,06 1,29 1,09 1,06 1,29 1,09 

Temperature 

[K] 

333,15 273,15 323,26 333,15 273,15 323,0 

 

The results with the new mesh is compared to the results from the original mesh. As can be seen 

in table 17, there is an elevation in mass flow and temperature between the two meshes. The 

increase is small, and assumed not relevant when it comes to mesh quality. Reasons for this 

deviation in the results will be discussed further in chapter 8.6.  
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Figure 23: yPlus value for top entry case with refined mesh 

The new mesh in figure 23 show lower yPlus values and deliver a satisfactory result. Even 

though there are still some high value zones, they are not enough to question the simulation 

outcome. The low yPlus value and similar field results from table 17 are both proof of an 

accurate OpenFOAM model. 

Table 18: yPlus from refined mesh 

Case Top entry with refined mesh 

Atmospheric temperature 273,15 K 

yPlus Max: 576 

Min: 7 

Average: 89 

Mesh size 2454899 cells 
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8.6 Residuals 

 

In the previous chapters, some of the evaluated values show some minor deviations from the 

expected result. As mentioned, they may stem from OpenFOAM inaccuracy or user error. 

However, by inspecting the behavior of the equation residuals as the simulation is being solved, 

the variable results may be traced back to the automatically adjusting fanPressure boundary. As 

the residuals reach acceptable levels and convergence, some of the values start oscillating. This 

may be due to the fanPressure constantly adjusting the mass flow to match the total system 

pressure drop. The adjustment of static pressure and flow velocity may cause OpenFOAM to 

persistently alter the results and not find one steady state solution. Attempts to run the case for 

longer simulation times does not yield any difference in behavior. In figure 24, a test case was 

run for 30000 iterations and the residuals did not show any trends to stop oscillating. These 

oscillations are then what may cause the minor deviation in field values discussed in chapter 8.5.  

 

 

Figure 24: Example of oscillating residuals 
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9 CONLUSION 

 

9.1 Project conclusion 

 

Evaluating the results obtained from the OpenFOAM model, the fan in question passes all the 

necessary criteria set by the system requirements. For both designs, the performance is well 

above the temperature and mass flow limits for even the lowest atmospheric temperature. Still, 

the side entry design did produce a slightly more favorable result compared to the top entry 

design. Initially there were some problems finding the correct boundary conditions to simulate 

the system behavior. Since one of the requirements where a minimum mass flow leaving the 

system, it would be ideal to fix the flow rate at the outlet and let the air inlet adjust accordingly. 

This would however, result in an unstable model. The substitute solution of utilizing mass 

conservation and fixing the mass flow to air inlet did nevertheless produce a satisfactory result. 

As pointed out in chapter 2.7 information regarding the mechanism drawing air into the turbine is 

unavailable. Therefore, as long as the two inlet flows add up to more than the required minimum 

mass flow at outlet, the simulation functions as intended. In addition, the swak4Foam boundary 

condition could have been used if no other solution had presented itself. The second challenge 

was to find a boundary condition that could accurately recreate the fan behavior. The fanPressure 

boundary fulfilled all of the criteria, but the lacking documentation did present some additional 

problems. A lack of knowledge in C++ language limited the usefulness of the OpenFOAM code 

and exploring this as a source of information, did not yield any significant results. Unfortunately, 

this lack of information did manifest itself in the final results. The fan curve text-file was 

assumed to use volumetric flow as input and was not questioned until all the final OpenFOAM 

models had been completed. This leaves some uncertainty in the resulting values. Another issue 

that did arise was the inaccuracy for the chosen method of verifying pressure loss in the 

simulations. The Bernoulli’s equation coupled with Darcy’s equation was found to be heavy 

reliant on the loss coefficient. Finding a reliable value for the loss coefficient did turn out to be a 

challenge as the different sources did not use similar values. Thus leading to such a wide range of 

pressure loss values that it could not accurately validate simulation results. Regardless, the 

OpenFOAM models where validated with the yPlus value and found to have a high quality mesh. 
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The same is true for solution convergence, reliable results was achieved even though there was 

some issues with the residuals oscillating.  

By evaluating all of the results, it is concluded that the fan in question is fit for system operation. 

The accuracy of the simulation solution is questioned, but not to a degree that outweighs the 

tolerance shown in the results compared to system requirements. Throughout this thesis, there has 

not been found any evidence that the OpenFOAM model is faulty. Therefore, with only a few 

inaccuracy issues it is concluded that the OpenFOAM models perform as expected and delivers 

answers to the questions one set forth to find at the beginning of this thesis.  
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9.2 Future work 

 

In this thesis, a complete model of the air intake system has been created. The OpenFOAM 

models cover all of the established system requirements. However, before starting work on such 

an OpenFOAM analysis, a more complete information gathering should be carried out. The 

assumptions made regarding current turbine operation may be inaccurate. As for validation of 

pressure calculations, access to accurate data regarding the loss coefficient would improve the 

results and verify the integrity of the OpenFOAM model. Lastly, with the lack of official 

OpenFOAM documentation, more knowledge regarding the C++ language would lead to a 

greater understanding of the boundary conditions. Being able to read the OpenFOAM code would 

open up a new source of reliable information, otherwise unavailable or found as less reliable 

second hand information on the OpenFOAM forums.  
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APPENDIX A 

 

A.1 System dimensions, top entry design 
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A.2 System dimensions, side entry design 
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APPENDIX  B 

 

B.1 Boundary conditions 

 

B.1.1 Top entry, 273K 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      alphat; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -1 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            compressible::alphatWallFunction; 

        Prt             0.7309; 

        value           uniform 0; 

    } 

    duct 

    { 

        type            compressible::alphatWallFunction; 

        Prt             0.7309; 

        value           uniform 0; 

    } 

    air 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    inlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    outlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

} 

 

 

// ************************************************************************* // 
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/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      epsilon; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 2 -3 0 0 0 0]; 

 

internalField   uniform 1; 

 

boundaryField 

{ 

    pipe 

    { 

        type            compressible::epsilonWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 1.39; 

    } 

    duct 

    { 

        type            compressible::epsilonWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0.00002; 

    } 

    inlet 

    { 

        type            compressible::turbulentMixingLengthDissipationRateInlet; 

        mixingLength    0.038; 

        value           uniform 1.39; 

    } 

    air 

    { 

        type            compressible::turbulentMixingLengthDissipationRateInlet; 

        mixingLength    0.068; 

        value           uniform 0.00002; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      uniform 1.39; 

        value           uniform 1.39; 

    } 

} 

 

 

// ************************************************************************* // 
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/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      k; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 2 -2 0 0 0 0]; 

 

internalField   uniform 1; 

 

boundaryField 

{ 

    pipe 

    { 

        type            compressible::kqRWallFunction; 

        value           uniform 1; 

    } 

    duct 

    { 

        type            compressible::kqRWallFunction; 

        value           uniform 1; 

    } 

    inlet 

    { 

        type            fixedValue; 

 intensity 0.028; 

        value           uniform 0.47; 

    } 

    air 

    { 

        type            fixedValue; 

 intensity 0.042; 

        value           uniform 0.0003; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      0.028; 

        value           uniform 0.47; 

    } 

} 

 

 

// ************************************************************************* // 
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/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      mut; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -1 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            mutkWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0; 

    } 

    duct 

    { 

        type            mutkWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0; 

    } 

    inlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    air 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    outlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

 

} 

 

 

// ************************************************************************* // 
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/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      p; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -2 0 0 0 0]; 

 

internalField   uniform 101325; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            zeroGradient; 

    } 

     

    duct 

    { 

        type            zeroGradient; 

    } 

 

    inlet 

    { 

        type            fanPressure; 

 patchType totalPressure; 

 fileName "./constant/fanCurve"; 

 outOfBounds clamp; 

 direction in; 

 U  U; 

 phi  phi; 

 psi  none; 

 rho  rho; 

 p0  uniform 101325; //environmental total pressure 

 value  uniform 101325; //initial pressure 

 gamma  1; 

    } 

     

    air 

    { 

        type            zeroGradient; 

    } 

 

     

    outlet 

    { 

        type            fixedValue; 

 value  uniform 101325; 

    } 

 

} 

 

// ************************************************************************* // 
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/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      T; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 0 0 1 0 0 0]; 

 

internalField   uniform 293.15; 

 

boundaryField 

{ 

    pipe 

    { 

        type            wallHeatTransfer; 

 alphaWall uniform 20.75; 

 Tinf  uniform 273.15; 

 value  uniform 273.15; 

    } 

    duct 

    { 

        type            zeroGradient; 

    } 

    inlet 

    { 

        type            fixedValue; 

        value           uniform 333.15; 

    } 

    air 

    { 

        type            fixedValue; 

        value           uniform 273.15; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      uniform 293.15; 

        value           uniform 293.15; 

    } 

} 

 

// ************************************************************************* // 
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/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volVectorField; 

    object      U; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 1 -1 0 0 0 0]; 

 

internalField   uniform (0 0 0); 

 

boundaryField 

{ 

    pipe 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

    duct 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

    inlet 

    { 

        type            pressureInletOutletVelocity; 

        value           uniform (0 0 0); 

    } 

    air 

    { 

        type            flowRateInletVelocity; 

        massFlowRate 2; 

 value  uniform (0 0 0); 

     } 

     outlet 

    { 

        type             inletOutlet; 

 inletValue  uniform (0 0 0);   //m³/s 

        value            uniform (0 0 0); 

    } 

} 

 

// ************************************************************************* // 
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B.1.2 Top entry, 263K 
 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      alphat; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -1 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            compressible::alphatWallFunction; 

        Prt             0.7309; 

        value           uniform 0; 

    } 

    duct 

    { 

        type            compressible::alphatWallFunction; 

        Prt             0.7309; 

        value           uniform 0; 

    } 

    air 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    inlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    outlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

} 

 

 

// ************************************************************************* // 
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/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      epsilon; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 2 -3 0 0 0 0]; 

 

internalField   uniform 1; 

 

boundaryField 

{ 

    pipe 

    { 

        type            compressible::epsilonWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 1.39; 

    } 

    duct 

    { 

        type            compressible::epsilonWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0.00002; 

    } 

    inlet 

    { 

        type            compressible::turbulentMixingLengthDissipationRateInlet; 

        mixingLength    0.038; 

        value           uniform 1.39; 

    } 

    air 

    { 

        type            compressible::turbulentMixingLengthDissipationRateInlet; 

        mixingLength    0.068; 

        value           uniform 0.00002; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      uniform 1.39; 

        value           uniform 1.39; 

    } 

} 

 

 

// ************************************************************************* // 
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/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      k; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 2 -2 0 0 0 0]; 

 

internalField   uniform 1; 

 

boundaryField 

{ 

    pipe 

    { 

        type            compressible::kqRWallFunction; 

        value           uniform 1; 

    } 

    duct 

    { 

        type            compressible::kqRWallFunction; 

        value           uniform 1; 

    } 

    inlet 

    { 

        type            fixedValue; 

 intensity 0.028; 

        value           uniform 0.47; 

    } 

    air 

    { 

        type            fixedValue; 

 intensity 0.042; 

        value           uniform 0.0003; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      0.028; 

        value           uniform 0.47; 

    } 

} 

 

 

// ************************************************************************* // 
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/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      mut; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -1 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            mutkWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0; 

    } 

    duct 

    { 

        type            mutkWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0; 

    } 

    inlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    air 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    outlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

 

} 

 

 

// ************************************************************************* // 

  



xvi 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      p; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -2 0 0 0 0]; 

 

internalField   uniform 101325; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            zeroGradient; 

    } 

     

    duct 

    { 

        type            zeroGradient; 

    } 

 

    inlet 

    { 

        type            fanPressure; 

 patchType totalPressure; 

 fileName "./constant/fanCurve"; 

 outOfBounds clamp; 

 direction in; 

 U  U; 

 phi  phi; 

 psi  none; 

 rho  rho; 

 p0  uniform 101325; //environmental total pressure 

 value  uniform 101325; //initial pressure 

 gamma  1; 

    } 

     

    air 

    { 

        type            zeroGradient; 

    } 

 

     

    outlet 

    { 

        type            fixedValue; 

 value  uniform 101325; 

    } 

 

} 

 

// ************************************************************************* // 

  



xvii 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      T; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 0 0 1 0 0 0]; 

 

internalField   uniform 263.15; 

 

boundaryField 

{ 

    pipe 

    { 

        type            wallHeatTransfer; 

 alphaWall uniform 21.09; 

 Tinf  uniform 263.15; 

 value  uniform 263.15; 

    } 

    duct 

    { 

        type            zeroGradient; 

    } 

    inlet 

    { 

        type            fixedValue; 

        value           uniform 333.15; 

    } 

    air 

    { 

        type            fixedValue; 

        value           uniform 263.15; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      uniform 333.15; 

        value           uniform 263.15; 

    } 

} 

 

// ************************************************************************* // 

  



xviii 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volVectorField; 

    object      U; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 1 -1 0 0 0 0]; 

 

internalField   uniform (0 0 0); 

 

boundaryField 

{ 

    pipe 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

    duct 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

    inlet 

    { 

        type            pressureInletOutletVelocity; 

        value           uniform (0 0 0); 

    } 

    air 

    { 

        type            flowRateInletVelocity; 

        massFlowRate 2; 

 value  uniform (0 0 0); 

     } 

     outlet 

    { 

        type             inletOutlet; 

 inletValue  uniform (0 0 0);   //m³/s 

        value            uniform (0 0 0); 

    } 

} 

 

// ************************************************************************* // 

  



xix 
 

B.1.3 Side entry, 273K 
 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      alphat; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -1 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            compressible::alphatWallFunction; 

        Prt             0.7309; 

        value           uniform 0; 

    } 

    duct 

    { 

        type            compressible::alphatWallFunction; 

        Prt             0.7309; 

        value           uniform 0; 

    } 

    air 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    inlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    outlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

} 

 

 

// ************************************************************************* // 

  



xx 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      epsilon; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 2 -3 0 0 0 0]; 

 

internalField   uniform 1; 

 

boundaryField 

{ 

    pipe 

    { 

        type            compressible::epsilonWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 1.39; 

    } 

    duct 

    { 

        type            compressible::epsilonWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0.00002; 

    } 

    inlet 

    { 

        type            compressible::turbulentMixingLengthDissipationRateInlet; 

        mixingLength    0.038; 

        value           uniform 1.39; 

    } 

    air 

    { 

        type            compressible::turbulentMixingLengthDissipationRateInlet; 

        mixingLength    0.068; 

        value           uniform 0.00002; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      uniform 1.39; 

        value           uniform 1.39; 

    } 

} 

 

 

// ************************************************************************* // 

  



xxi 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      k; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 2 -2 0 0 0 0]; 

 

internalField   uniform 1; 

 

boundaryField 

{ 

    pipe 

    { 

        type            compressible::kqRWallFunction; 

        value           uniform 1; 

    } 

    duct 

    { 

        type            compressible::kqRWallFunction; 

        value           uniform 1; 

    } 

    inlet 

    { 

        type            fixedValue; 

 intensity 0.028; 

        value           uniform 0.47; 

    } 

    air 

    { 

        type            fixedValue; 

 intensity 0.042; 

        value           uniform 0.0003; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      0.028; 

        value           uniform 0.47; 

    } 

} 

 

 

// ************************************************************************* // 

  



xxii 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      mut; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -1 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            mutkWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0; 

    } 

    duct 

    { 

        type            mutkWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0; 

    } 

    inlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    air 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    outlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

 

} 

 

 

// ************************************************************************* // 

  



xxiii 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      p; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -2 0 0 0 0]; 

 

internalField   uniform 101325; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            zeroGradient; 

    } 

     

    duct 

    { 

        type            zeroGradient; 

    } 

 

    inlet 

    { 

        type            fanPressure; 

 patchType totalPressure; 

 fileName "./constant/fanCurve"; 

 outOfBounds clamp; 

 direction in; 

 U  U; 

 phi  phi; 

 psi  none; 

 rho  rho; 

 p0  uniform 101325; //environmental total pressure 

 value  uniform 101325; //initial pressure 

 gamma  1; 

    } 

     

    air 

    { 

        type            zeroGradient; 

    } 

 

     

    outlet 

    { 

        type            fixedValue; 

 value  uniform 101325; 

    } 

 

} 

 

// ************************************************************************* // 

  



xxiv 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      T; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 0 0 1 0 0 0]; 

 

internalField   uniform 273.15; 

 

boundaryField 

{ 

    pipe 

    { 

        type            wallHeatTransfer; 

 alphaWall uniform 20.75; 

 Tinf  uniform 273.15; 

 value  uniform 273.15; 

    } 

    duct 

    { 

        type            zeroGradient; 

    } 

    inlet 

    { 

        type            fixedValue; 

        value           uniform 333.15; 

    } 

    air 

    { 

        type            fixedValue; 

        value           uniform 273.15; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      uniform 333.15; 

        value           uniform 273.15; 

    } 

} 

 

// ************************************************************************* // 

  



xxv 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volVectorField; 

    object      U; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 1 -1 0 0 0 0]; 

 

internalField   uniform (0 0 0); 

 

boundaryField 

{ 

    pipe 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

    duct 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

    inlet 

    { 

        type            pressureInletOutletVelocity; 

        value           uniform (0 0 0); 

    } 

    air 

    { 

        type            flowRateInletVelocity; 

        massFlowRate 2; 

 value  uniform (0 0 0); 

     } 

     outlet 

    { 

        type             inletOutlet; 

 inletValue  uniform (0 0 0);   //m³/s 

        value            uniform (0 0 0); 

    } 

} 

 

// ************************************************************************* // 

  



xxvi 
 

B.1.4 Side entry, 263K 
 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      alphat; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -1 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            compressible::alphatWallFunction; 

        Prt             0.7309; 

        value           uniform 0; 

    } 

    duct 

    { 

        type            compressible::alphatWallFunction; 

        Prt             0.7309; 

        value           uniform 0; 

    } 

    air 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    inlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    outlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

} 

 

 

// ************************************************************************* // 

  



xxvii 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      epsilon; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 2 -3 0 0 0 0]; 

 

internalField   uniform 1; 

 

boundaryField 

{ 

    pipe 

    { 

        type            compressible::epsilonWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 1.39; 

    } 

    duct 

    { 

        type            compressible::epsilonWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0.00002; 

    } 

    inlet 

    { 

        type            compressible::turbulentMixingLengthDissipationRateInlet; 

        mixingLength    0.038; 

        value           uniform 1.39; 

    } 

    air 

    { 

        type            compressible::turbulentMixingLengthDissipationRateInlet; 

        mixingLength    0.068; 

        value           uniform 0.00002; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      uniform 1.39; 

        value           uniform 1.39; 

    } 

} 

 

 

// ************************************************************************* // 

  



xxviii 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      k; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 2 -2 0 0 0 0]; 

 

internalField   uniform 1; 

 

boundaryField 

{ 

    pipe 

    { 

        type            compressible::kqRWallFunction; 

        value           uniform 1; 

    } 

    duct 

    { 

        type            compressible::kqRWallFunction; 

        value           uniform 1; 

    } 

    inlet 

    { 

        type            fixedValue; 

 intensity 0.028; 

        value           uniform 0.47; 

    } 

    air 

    { 

        type            fixedValue; 

 intensity 0.042; 

        value           uniform 0.0003; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      0.028; 

        value           uniform 0.47; 

    } 

} 

 

 

// ************************************************************************* // 

  



xxix 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      mut; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -1 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            mutkWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0; 

    } 

    duct 

    { 

        type            mutkWallFunction; 

        Cmu             0.09; 

        kappa           0.41; 

        E               9.8; 

        value           uniform 0; 

    } 

    inlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    air 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    outlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

 

} 

 

 

// ************************************************************************* // 

  



xxx 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      p; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [1 -1 -2 0 0 0 0]; 

 

internalField   uniform 101325; 

 

boundaryField 

{ 

 

    pipe 

    { 

        type            zeroGradient; 

    } 

     

    duct 

    { 

        type            zeroGradient; 

    } 

 

    inlet 

    { 

        type            fanPressure; 

 patchType totalPressure; 

 fileName "./constant/fanCurve"; 

 outOfBounds clamp; 

 direction in; 

 U  U; 

 phi  phi; 

 psi  none; 

 rho  rho; 

 p0  uniform 101325; //environmental total pressure 

 value  uniform 101325; //initial pressure 

 gamma  1; 

    } 

     

    air 

    { 

        type            zeroGradient; 

    } 

 

     

    outlet 

    { 

        type            fixedValue; 

 value  uniform 101325; 

    } 

 

} 

 

// ************************************************************************* // 

  



xxxi 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      T; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 0 0 1 0 0 0]; 

 

internalField   uniform 263.15; 

 

boundaryField 

{ 

    pipe 

    { 

        type            wallHeatTransfer; 

 alphaWall uniform 21.09; 

 Tinf  uniform 263.15; 

 value  uniform 263.15; 

    } 

    duct 

    { 

        type            zeroGradient; 

    } 

    inlet 

    { 

        type            fixedValue; 

        value           uniform 333.15; 

    } 

    air 

    { 

        type            fixedValue; 

        value           uniform 263.15; 

    } 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      uniform 333.15; 

        value           uniform 263.15; 

    } 

} 

 

// ************************************************************************* // 

  



xxxii 
 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volVectorField; 

    object      U; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 1 -1 0 0 0 0]; 

 

internalField   uniform (0 0 0); 

 

boundaryField 

{ 

    pipe 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

    duct 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

    inlet 

    { 

        type            pressureInletOutletVelocity; 

        value           uniform (0 0 0); 

    } 

    air 

    { 

        type            flowRateInletVelocity; 

        massFlowRate 2; 

 value  uniform (0 0 0); 

     } 

     outlet 

    { 

        type             inletOutlet; 

 inletValue  uniform (0 0 0);   //m³/s 

        value            uniform (0 0 0); 

    } 

} 

 

// ************************************************************************* // 
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APPENDIX C 

 

C.1 Fan curve 

 
7 

( 

(14 1800) 

(15 1600) 

(16 1400) 

(17 1200) 

(18 950) 

(19 700) 

(20 400) 

) 
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C.2 RASProperties 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "constant"; 

    object      RASProperties; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

RASModel        kEpsilon; 

 

turbulence      on; 

 

printCoeffs     on; 

 

 

// ************************************************************************* //  
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C.3 thermophysicalProperties 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "constant"; 

    object      thermophysicalProperties; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

thermoType 

{ 

    type            hePsiThermo; 

    mixture         pureMixture; 

    transport       sutherland; 

    thermo          hConst; 

    equationOfState perfectGas; 

    specie          specie; 

    energy          sensibleInternalEnergy; 

} 

 

mixture 

{ 

    specie 

    { 

        nMoles      1; 

        molWeight   28.9; 

    } 

    thermodynamics 

    { 

        Cp          1005; 

        Hf          0; 

    } 

    transport 

    { 

        As          1.4792e-06; 

        Ts          116; 

    } 

} 

 

 

// ************************************************************************* //  
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APPENDIX D 

 

D.1 ControlDict 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      controlDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

application     rhoSimpleFoam; 

 

startFrom       startTime; 

 

startTime       0; 

 

stopAt          endTime; 

 

endTime         10000; 

 

deltaT          1; 

 

writeControl    timeStep; 

 

writeInterval   500; 

 

purgeWrite      0; 

 

writeFormat     ascii; 

 

writePrecision  8; 

 

writeCompression off; 

 

timeFormat      general; 

 

timePrecision   6; 

 

runTimeModifiable true; 

 

libs ( 

    "libgroovyStandardBCs.so" 

    "libOpenFOAM.so" 

    "libgroovyBC.so" 

    "libsimpleSwakFunctionObjects.so" 

    "libswakFunctionObjects.so" 

    "libswakTopoSources.so" 

    "libcompressibleRASModels.so" 

    "libswakPythonIntegration.so" 

) ; 

 

functions { 

patchMassFlow 

    { 

        type patchExpression; 

        accumulations ( 
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            sum 

        ); 

        patches ( 

            inlet 

            outlet 

     air 

        ); 

        expression "phi"; 

        verbose true; 

    } 

patchDensity 

    { 

        type patchExpression; 

        accumulations ( 

            average 

        ); 

        patches ( 

            inlet 

            outlet 

     air 

        ); 

        expression "rho"; 

        verbose true; 

    } 

patchVelocity 

    { 

        type patchExpression; 

        accumulations ( 

            average 

        ); 

        patches ( 

            inlet 

            outlet 

     air 

        ); 

        expression "U"; 

        verbose true; 

    } 

pressureDropInletOutlet 

    { 

        type patchExpression; 

 variables ( "pOut{patch'outlet}=sum(p*area())/sum(area());"); 

        accumulations ( 

            average 

        ); 

        patches ( 

            inlet 

        ); 

        expression "p-pOut"; 

        verbose true; 

    } 

pressureDropInletAir 

    { 

        type patchExpression; 

 variables ( "pAir{patch'air}=sum(p*area())/sum(area());"); 

        accumulations ( 

            average 

        ); 

        patches ( 

            inlet 

        ); 

        expression "p-pAir"; 

        verbose true; 

    } 

patchPressure 

    { 

        type patchExpression; 

        accumulations ( 

            average 

        ); 

        patches ( 
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            inlet 

            outlet 

     air 

        ); 

        expression "p"; 

        verbose true; 

    } 

} 

 

 

// ************************************************************************* // 
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D.2 decomposeParDict 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    note        "mesh decomposition control dictionary"; 

    object      decomposeParDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

numberOfSubdomains 2; // # of CPU cores 

 

method          simple; 

 

simpleCoeffs 

{ 

    n               ( 2 1 1 ); // needs to multiply to = # cores 

    delta           0.001; 

} 

 

hierarchicalCoeffs 

{ 

    n               ( 1 1 1 ); 

    delta           0.001; 

    order           xyz; 

} 

 

manualCoeffs 

{ 

    dataFile        "cellDecomposition"; 

} 

 

// ************************************************************************* // 
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D.3 fvSchemes 
 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvSchemes; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

ddtSchemes 

{ 

    default         steadyState; 

} 

 

gradSchemes 

{ 

    default         Gauss linear; 

} 

 

divSchemes 

{ 

    default         none; 

 

    div(phi,U)      bounded Gauss upwind; 

    div((muEff*dev2(T(grad(U))))) Gauss linear; 

    div(phi,e)      bounded Gauss upwind; 

    div(phi,epsilon) bounded Gauss upwind; 

    div(phi,k)      bounded Gauss upwind; 

    div(phi,Ekp)    bounded Gauss upwind; 

} 

 

laplacianSchemes 

{ 

    default         Gauss linear corrected; 

} 

 

interpolationSchemes 

{ 

    default         linear; 

} 

 

snGradSchemes 

{ 

    default         corrected; 

} 

 

fluxRequired 

{ 

    default         no; 

    p               ; 

} 

 

 

// ************************************************************************* // 
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D.4 fvSolution 
 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvSolution; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

solvers 

{ 

    p 

    { 

        solver          GAMG; 

        tolerance       1e-08; 

        relTol          0.05; 

        smoother        GaussSeidel; 

        cacheAgglomeration on; 

        nCellsInCoarsestLevel 20; 

        agglomerator    faceAreaPair; 

        mergeLevels     1; 

    } 

 

    U 

    { 

        solver          smoothSolver; 

        smoother        GaussSeidel; 

        nSweeps         2; 

        tolerance       1e-06; 

        relTol          0.1; 

    } 

 

    e 

    { 

        solver          smoothSolver; 

        smoother        symGaussSeidel; 

        tolerance       1e-06; 

        relTol          0.1; 

    } 

 

    "(k|epsilon)" 

    { 

        $U; 

        tolerance       1e-07; 

        relTol          0.1; 

    } 

} 

 

SIMPLE 

{ 

    nNonOrthogonalCorrectors 0; 

    rhoMin          rhoMin [ 1 -3 0 0 0 ] 0.5; 

    rhoMax          rhoMax [ 1 -3 0 0 0 ] 1.5; 

     

    residualControl 

    { 

        p               1e-9; 

        U               1e-10; 

        e               1e-10; 
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        // possibly check turbulence fields 

        "(k|epsilon|omega)" 1e-6; 

    } 

} 

 

relaxationFactors 

{ 

    fields 

    { 

        p               0.5; 

        rho             0.05; //0.01 

    } 

    equations 

    { 

        U               0.5; 

        "(k|epsilon)"   0.7; //0.01 

        e               0.5; //0.01 

    } 

} 

 

 

// ************************************************************************* // 
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D.5 Top entry 

 

D.5.1 sampleDict 

 

/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    object      sampleDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

// Set output format : choice of 

//      xmgr 

//      jplot 

//      gnuplot 

//      raw 

//      vtk 

//      ensight 

//      csv 

setFormat raw; 

 

// Surface output format. Choice of 

//      null        : suppress output 

//      ensight     : Ensight Gold format, one field per case file 

//      foamFile    : separate points, faces and values file 

//      dx          : DX scalar or vector format 

//      vtk         : VTK ascii format 

//      raw         : x y z value format for use with e.g. gnuplot 'splot'. 

// 

// Note: 

// other formats such as obj, stl, etc can also be written (by proxy) 

// but without any values! 

surfaceFormat foamFile; 

 

// optionally define extra controls for the output formats 

formatOptions 

{ 

    ensight 

    { 

        format  ascii; 

    } 

} 

 

// interpolationScheme. choice of 

//      cell          : use cell-centre value only; constant over cells 

//                      (default) 

//      cellPoint     : use cell-centre and vertex values 

//      cellPointFace : use cell-centre, vertex and face values. 

//      pointMVC      : use point values only (Mean Value Coordinates) 

//      cellPatchConstrained : like 'cell' but uses cell-centre except on 

//                             boundary faces where it uses the boundary value. 

//                             For use with e.g. patchCloudSet. 

// 1] vertex values determined from neighbouring cell-centre values 

// 2] face values determined using the current face interpolation scheme 

//    for the field (linear, gamma, etc.) 

interpolationScheme cellPoint; 
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// Fields to sample. 

fields 

( 

    T 

); 

 

// Set sampling definition: choice of 

//      uniform             evenly distributed points on line 

//      face                one point per face intersection 

//      midPoint            one point per cell, inbetween two face intersections 

//      midPointAndFace     combination of face and midPoint 

// 

//      polyLine            specified points, not nessecary on line, uses 

//                          tracking 

//      cloud               specified points, uses findCell 

//      triSurfaceMeshPointSet  points of triSurface 

// 

// axis: how to write point coordinate. Choice of 

// - x/y/z: x/y/z coordinate only 

// - xyz: three columns 

//  (probably does not make sense for anything but raw) 

// - distance: distance from start of sampling line (if uses line) or 

//             distance from first specified sampling point 

// 

// type specific: 

//      uniform, face, midPoint, midPointAndFace : start and end coordinate 

//      uniform: extra number of sampling points 

//      polyLine, cloud: list of coordinates 

//      patchCloud: list of coordinates and set of patches to look for nearest 

//      patchSeed: random sampling on set of patches. Points slightly off 

//                 face centre. 

// Surface sampling definition 

// 

// 1] patches are not triangulated by default 

// 2] planes are always triangulated 

// 3] iso-surfaces are always triangulated 

surfaces 

( 

    plane1 

    { 

        type            plane;    // always triangulated 

        basePoint       (1.26 2.55 0); 

        normalVector    (1 0 0); 

 

        //- Optional: restrict to a particular zone 

        zone         zone1; 

    } 

    plane2 

    { 

        type            plane;    // always triangulated 

        basePoint       (3.24 5.815 4.5); 

        normalVector    (0 0 1); 

 

        //- Optional: restrict to a particular zone 

        zone         zone2; 

    } 

    plane3 

    { 

        type            plane;    // always triangulated 

        basePoint       (1.3 3.875 10); 

        normalVector    (0 0 1); 

 

        //- Optional: restrict to a particular zone 

        zone         zone2; 

    } 

    plane4 

    { 

        type            plane;    // always triangulated 

        basePoint       (1.3 1.3 14.465); 

        normalVector    (0 1 0); 
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        //- Optional: restrict to a particular zone 

        zone         zone2; 

    } 

    plane5 

    { 

        type            plane;    // always triangulated 

        basePoint       (0.7 0.87 8.985); 

        normalVector    (0 0 1); 

 

        //- Optional: restrict to a particular zone 

        zone         zone3; 

    } 

    plane6 

    { 

        type            plane;    // always triangulated 

        basePoint       (0.7 -1 7.385); 

        normalVector    (0 1 0); 

 

        //- Optional: restrict to a particular zone 

        zone         zone3; 

    } 

 

    inlet 

    { 

        type            patch; 

        patches         ( ".*inlet.*" ); 

        interpolate     false; 

    } 

    air 

    { 

        type            patch; 

        patches         ( ".*air.*" ); 

        interpolate     false; 

    } 

    outlet 

    { 

        type            patch; 

        patches         ( ".*outlet.*" ); 

        interpolate     false; 

    } 

 

 

); 

 

 

// *********************************************************************** // 
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D.5.2 snappyHexMesh 
 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.2.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    object      snappyHexMeshDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

// Which of the steps to run 

castellatedMesh false;    // make basic mesh ? 

snap            false;    // decide to snap back to surface ? 

addLayers       true;   // decide to add viscous layers ? 

 

 

geometry // Load in STL files here 

{ 

 inlet.stl {type triSurfaceMesh; name inlet;} 

 outlet.stl {type triSurfaceMesh; name outlet;} 

 air.stl {type triSurfaceMesh; name air;} 

 pipe.stl {type triSurfaceMesh; name pipe;} 

 duct.stl {type triSurfaceMesh; name duct;} 

 refinementArea.stl {type triSurfaceMesh; name refinementArea;} 

 volume.stl {type triSurfaceMesh; name volume;} 

 refinementBox {type searchableBox; min (-0.5 0.055 13.3); max (3.1 1.6 15.165);} 

}; 

 

castellatedMeshControls 

{ 

    maxLocalCells 100000;  //max cells per CPU core 

    maxGlobalCells 2000000; //max cells to use before mesh deletion step 

    minRefinementCells 10;  //was 0 - zero means no bad cells are allowed during refinement 

stages 

    maxLoadUnbalance 0.10; 

    nCellsBetweenLevels 1;  // expansion factor between each high & low refinement zone 

 

    // Explicit feature edge refinement 

    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

    features // taken from STL from each .eMesh file created by "SurfaceFeatureExtract" command 

    ( 

     {file "ductClosed.eMesh"; level 2;} 

    ); 

 

    // Surface based refinement 

    // ~~~~~~~~~~~~~~~~~~~~~~~~ 

 

    refinementSurfaces // Surface-wise min and max refinement level 

    { 

 inlet {level (0 0);} 

        outlet {level (0 0);} 

 air {level (1 1);} 

 pipe {level (1 1);} 

 duct {level (1 1);} 

    }   

 

 

    resolveFeatureAngle 30;  // Resolve sharp angles // Default 30 

    refinementRegions        // In descending levels of fine-ness 

    {pipe {mode distance; levels ((0.05 2));} // was ((0.001 4) (0.003 3) (0.01 2)) 

    duct {mode distance; levels ((0.05 2));} 
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    air {mode distance; levels ((0.05 2));}} 

    locationInMesh (0 1 0);  //to decide which side of mesh to keep ** 

    allowFreeStandingZoneFaces true; 

} 

 

 

// Settings for the snapping. 

snapControls 

{ 

    nSmoothPatch 3; 

    tolerance 4.0; 

    nSolveIter 30; 

    nRelaxIter 5; 

    nFeatureSnapIter 15; // default is 10 

     

// New settings from openfoam 2.2 onwards for SHMesh 

 

implicitFeatureSnap true; // default is false - detects without doing surfaceFeatureExtract 

explicitFeatureSnap true; // default is true 

multiRegionFeatureSnap false; // deafault is false - detects features between multiple surfaces 

 

} 

 

 

 

// Settings for the layer addition. 

addLayersControls //add the PATCH names from inside the STL file so STLpatchName_insideSTLName  

{ 

    relativeSizes true; // was true 

    layers 

    { 

 pipe 

          {nSurfaceLayers 3;} // was 3 

 duct 

  {nSurfaceLayers 3;} // was 3 

 air 

  {nSurfaceLayers 3;} // was 3 

    } 

 

    expansionRatio 1.3; 

    finalLayerThickness 0.3; //was 0.00016 

    minThickness 0.1; //was 0.00008 

    nGrow 0; // was 1  

 

 

    // Advanced settings 

 

    featureAngle 180; // was 70 //- When not to extrude surface. 0 is flat, 90 is right angle. 

    nRelaxIter 3;  //- Max# of snapping relaxation iter. Should stop before upon reaching a 

correct mesh. 

    nSmoothSurfaceNormals 1;  // Number of smoothing iterations of surface normals 

    nSmoothNormals 3; // Number of smoothing iterations of interior mesh movement direction 

    nSmoothThickness 10;  // Smooth layer thickness over surface patches 

    maxFaceThicknessRatio 0.5; // Stop layer growth on highly warped cells 

    maxThicknessToMedialRatio 0.3; // Reduce layer growth where ratio thickness to medial 

distance is large 

    minMedianAxisAngle 130;  // Angle used to pick up medial axis points 

    nBufferCellsNoExtrude 0;   // Create buffer region for new layer terminations 

    nLayerIter 50; // Overall max number of layer addition iterations 

} 

 

 

 

// Generic mesh quality settings. At any undoable phase these determine 

// where to undo. 

meshQualityControls 

{ 

    maxNonOrtho 65; 

    maxBoundarySkewness 20; 

    maxInternalSkewness 4; 

    maxConcave 80; 
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    minFlatness 0.5; 

    minVol 1e-13; 

    minTetQuality 1e-20; 

    minArea -1; 

    minTwist 0.02; 

    minDeterminant 0.001; 

    minFaceWeight 0.02; 

    minVolRatio 0.01; 

    minTriangleTwist -1; 

 

    // Advanced 

 

    nSmoothScale 4; 

    errorReduction 0.75; 

} 

 

// Advanced 

 

debug 0; 

 

 

// Merge tolerance. Is fraction of overall bounding box of initial mesh. 

// Note: the write tolerance needs to be higher than this. 

mergeTolerance 1E-6; 

 

 

// ************************************************************************* // 
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D.5.3 topoSetDict 
 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    object      topoSetDict; 

} 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

actions 

( 

    { 

        name    zone1; 

        type    cellSet; 

        action  new; 

        source  boxToCell; 

        sourceInfo 

        { 

            box  (-1 -0.5 -1) (4 7 3.835); 

 } 

    } 

    { 

        name    zone1; 

        type    cellZoneSet; 

        action  new; 

        source  setToCellZone; 

        sourceInfo 

        { 

            set  zone1; 

        } 

    } 

     

    { 

        name    zone2; 

        type    cellSet; 

        action  new; 

        source  boxToCell; 

        sourceInfo 

        { 

            box  (-1 1.255 3.835) (4 7 16); 

 } 

    } 

    { 

        name    zone2; 

        type    cellZoneSet; 

        action  new; 

        source  setToCellZone; 

        sourceInfo 

        { 

            set  zone2; 

        } 

    } 

     

    { 

        name    zone3; 

        type    cellSet; 

        action  new; 

        source  boxToCell; 

        sourceInfo 

        { 
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            box  (-1 -5 2) (4 1.255 16); 

 } 

    } 

    { 

        name    zone3; 

        type    cellZoneSet; 

        action  new; 

        source  setToCellZone; 

        sourceInfo 

        { 

            set  zone3; 

        } 

    } 

 

 

); 

 

// ************************************************************************* // 
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D.6 Side entry 

 

D.6.1 sampleDict 
 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    object      sampleDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

// Set output format : choice of 

//      xmgr 

//      jplot 

//      gnuplot 

//      raw 

//      vtk 

//      ensight 

//      csv 

setFormat raw; 

 

// Surface output format. Choice of 

//      null        : suppress output 

//      ensight     : Ensight Gold format, one field per case file 

//      foamFile    : separate points, faces and values file 

//      dx          : DX scalar or vector format 

//      vtk         : VTK ascii format 

//      raw         : x y z value format for use with e.g. gnuplot 'splot'. 

// 

// Note: 

// other formats such as obj, stl, etc can also be written (by proxy) 

// but without any values! 

surfaceFormat foamFile; 

 

// optionally define extra controls for the output formats 

formatOptions 

{ 

    ensight 

    { 

        format  ascii; 

    } 

} 

 

// interpolationScheme. choice of 

//      cell          : use cell-centre value only; constant over cells 

//                      (default) 

//      cellPoint     : use cell-centre and vertex values 

//      cellPointFace : use cell-centre, vertex and face values. 

//      pointMVC      : use point values only (Mean Value Coordinates) 

//      cellPatchConstrained : like 'cell' but uses cell-centre except on 

//                             boundary faces where it uses the boundary value. 

//                             For use with e.g. patchCloudSet. 

// 1] vertex values determined from neighbouring cell-centre values 

// 2] face values determined using the current face interpolation scheme 

//    for the field (linear, gamma, etc.) 

interpolationScheme cellPoint; 

 

// Fields to sample. 
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fields 

( 

    T 

); 

 

// Set sampling definition: choice of 

//      uniform             evenly distributed points on line 

//      face                one point per face intersection 

//      midPoint            one point per cell, inbetween two face intersections 

//      midPointAndFace     combination of face and midPoint 

// 

//      polyLine            specified points, not nessecary on line, uses 

//                          tracking 

//      cloud               specified points, uses findCell 

//      triSurfaceMeshPointSet  points of triSurface 

// 

// axis: how to write point coordinate. Choice of 

// - x/y/z: x/y/z coordinate only 

// - xyz: three columns 

//  (probably does not make sense for anything but raw) 

// - distance: distance from start of sampling line (if uses line) or 

//             distance from first specified sampling point 

// 

// type specific: 

//      uniform, face, midPoint, midPointAndFace : start and end coordinate 

//      uniform: extra number of sampling points 

//      polyLine, cloud: list of coordinates 

//      patchCloud: list of coordinates and set of patches to look for nearest 

//      patchSeed: random sampling on set of patches. Points slightly off 

//                 face centre. 

// Surface sampling definition 

// 

// 1] patches are not triangulated by default 

// 2] planes are always triangulated 

// 3] iso-surfaces are always triangulated 

surfaces 

( 

    plane1 

    { 

        type            plane;    // always triangulated 

        basePoint       (1.8 2.55 0); 

        normalVector    (1 0 0); 

 

        //- Optional: restrict to a particular zone 

        zone         zone1; 

    } 

    plane2 

    { 

        type            plane;    // always triangulated 

        basePoint       (4.47 5.815 5.9); 

        normalVector    (0 0 1); 

 

        //- Optional: restrict to a particular zone 

        zone         zone2; 

    } 

    plane3 

    { 

        type            plane;    // always triangulated 

        basePoint       (3.11 0.655 13.64); 

        normalVector    (1 0 0); 

 

        //- Optional: restrict to a particular zone 

        zone         zone2; 

    } 

    plane4 

    { 

        type            plane;    // always triangulated 

        basePoint       (0.7 0.87 8.985); 

        normalVector    (0 0 1); 

 

        //- Optional: restrict to a particular zone 
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        zone         zone3; 

    } 

    plane5 

    { 

        type            plane;    // always triangulated 

        basePoint       (0.7 -1 7.385); 

        normalVector    (0 1 0); 

 

        //- Optional: restrict to a particular zone 

        zone         zone3; 

    } 

 

    inlet 

    { 

        type            patch; 

        patches         ( ".*inlet.*" ); 

        interpolate     false; 

    } 

    air 

    { 

        type            patch; 

        patches         ( ".*air.*" ); 

        interpolate     false; 

    } 

    outlet 

    { 

        type            patch; 

        patches         ( ".*outlet.*" ); 

        interpolate     false; 

    } 

 

 

); 

 

 

// *********************************************************************** // 

 

  



liv 
 

D.6.2 snappyHexMesh 
 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.2.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    object      snappyHexMeshDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

// Which of the steps to run 

castellatedMesh false;    // make basic mesh ? 

snap            false;    // decide to snap back to surface ? 

addLayers       true;   // decide to add viscous layers ? 

 

 

geometry // Load in STL files here 

{ 

 inlet.stl {type triSurfaceMesh; name inlet;} 

 outlet.stl {type triSurfaceMesh; name outlet;} 

 air.stl {type triSurfaceMesh; name air;} 

 pipe.stl {type triSurfaceMesh; name pipe;} 

 duct.stl {type triSurfaceMesh; name duct;} 

 volume.stl {type triSurfaceMesh; name volume;} 

 refinementBox {type searchableBox; min (-0.5 0.055 13.3); max (3.1 1.6 15.165);} 

}; 

 

castellatedMeshControls 

{ 

    maxLocalCells 100000;  //max cells per CPU core 

    maxGlobalCells 2000000; //max cells to use before mesh deletion step 

    minRefinementCells 10;  //was 0 - zero means no bad cells are allowed during refinement 

stages 

    maxLoadUnbalance 0.10; 

    nCellsBetweenLevels 1;  // expansion factor between each high & low refinement zone 

 

    // Explicit feature edge refinement 

    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

    features // taken from STL from each .eMesh file created by "SurfaceFeatureExtract" command 

    ( 

     {file "ductClosed.eMesh"; level 2;} 

    ); 

 

    // Surface based refinement 

    // ~~~~~~~~~~~~~~~~~~~~~~~~ 

 

    refinementSurfaces // Surface-wise min and max refinement level 

    { 

 inlet {level (0 0);} 

        outlet {level (0 0);} 

 air {level (1 1);} 

 pipe {level (1 1);} 

 duct {level (1 1);} 

    }   

 

 

    resolveFeatureAngle 5;  // Resolve sharp angles // Default 30 

    refinementRegions        // In descending levels of fine-ness 

    {pipe {mode distance; levels ((0.1 2));} // was ((0.001 4) (0.003 3) (0.01 2)) 

    duct {mode distance; levels ((0.1 2));} 
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    air {mode distance; levels ((0.05 2));}} 

    locationInMesh (0 1 0);  //to decide which side of mesh to keep ** 

    allowFreeStandingZoneFaces true; 

} 

 

 

// Settings for the snapping. 

snapControls 

{ 

    nSmoothPatch 3; 

    tolerance 4.0; 

    nSolveIter 30; 

    nRelaxIter 5; 

    nFeatureSnapIter 15; // default is 10 

     

// New settings from openfoam 2.2 onwards for SHMesh 

 

implicitFeatureSnap true; // default is false - detects without doing surfaceFeatureExtract 

explicitFeatureSnap true; // default is true 

multiRegionFeatureSnap false; // deafault is false - detects features between multiple surfaces 

 

} 

 

 

 

// Settings for the layer addition. 

addLayersControls //add the PATCH names from inside the STL file so STLpatchName_insideSTLName  

{ 

    relativeSizes true; // was true 

    layers 

    { 

 pipe 

          {nSurfaceLayers 3;} // was 3 

 duct 

  {nSurfaceLayers 3;} // was 3 

 air 

  {nSurfaceLayers 3;} // was 3 

    } 

 

    expansionRatio 1.3; 

    finalLayerThickness 0.3; //was 0.00016 

    minThickness 0.1; //was 0.00008 

    nGrow 0; // was 1  

 

 

    // Advanced settings 

 

    featureAngle 220; // was 70 //- When not to extrude surface. 0 is flat, 90 is right angle. 

    nRelaxIter 3;  //- Max# of snapping relaxation iter. Should stop before upon reaching a 

correct mesh. 

    nSmoothSurfaceNormals 1;  // Number of smoothing iterations of surface normals 

    nSmoothNormals 3; // Number of smoothing iterations of interior mesh movement direction 

    nSmoothThickness 10;  // Smooth layer thickness over surface patches 

    maxFaceThicknessRatio 0.5; // Stop layer growth on highly warped cells 

    maxThicknessToMedialRatio 0.3; // Reduce layer growth where ratio thickness to medial 

distance is large 

    minMedianAxisAngle 130;  // Angle used to pick up medial axis points 

    nBufferCellsNoExtrude 0;   // Create buffer region for new layer terminations 

    nLayerIter 50; // Overall max number of layer addition iterations 

} 

 

 

 

// Generic mesh quality settings. At any undoable phase these determine 

// where to undo. 

meshQualityControls 

{ 

    maxNonOrtho 65; 

    maxBoundarySkewness 20; 

    maxInternalSkewness 4; 

    maxConcave 80; 
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    minFlatness 0.5; 

    minVol 1e-13; 

    minTetQuality 1e-20; 

    minArea -1; 

    minTwist 0.02; 

    minDeterminant 0.001; 

    minFaceWeight 0.02; 

    minVolRatio 0.01; 

    minTriangleTwist -1; 

 

    // Advanced 

 

    nSmoothScale 4; 

    errorReduction 0.75; 

} 

 

// Advanced 

 

debug 0; 

 

 

// Merge tolerance. Is fraction of overall bounding box of initial mesh. 

// Note: the write tolerance needs to be higher than this. 

mergeTolerance 1E-6; 

 

 

// ************************************************************************* // 
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D.6.3 topoSetDict 
 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.3.0                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    object      topoSetDict; 

} 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

actions 

( 

    { 

        name    zone1; 

        type    cellSet; 

        action  new; 

        source  boxToCell; 

        sourceInfo 

        { 

            box  (-1 -0.5 -1) (5.5 7 3.835); 

 } 

    } 

    { 

        name    zone1; 

        type    cellZoneSet; 

        action  new; 

        source  setToCellZone; 

        sourceInfo 

        { 

            set  zone1; 

        } 

    } 

     

    { 

        name    zone2; 

        type    cellSet; 

        action  new; 

        source  boxToCell; 

        sourceInfo 

        { 

            box  (3.1 0 3.835) (5.5 7 16); 

 } 

    } 

    { 

        name    zone2; 

        type    cellZoneSet; 

        action  new; 

        source  setToCellZone; 

        sourceInfo 

        { 

            set  zone2; 

        } 

    } 

     

    { 

        name    zone3; 

        type    cellSet; 

        action  new; 

        source  boxToCell; 

        sourceInfo 

        { 
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            box  (-1 -5 2) (3.1 1.255 16); 

 } 

    } 

    { 

        name    zone3; 

        type    cellZoneSet; 

        action  new; 

        source  setToCellZone; 

        sourceInfo 

        { 

            set  zone3; 

        } 

    } 

 

 

); 

 

// ************************************************************************* // 
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APPENDIX E 

 

E.1 Content of enclosed CD 

 

 

The CD contains the case folders used in OpenFOAM in a ZIP format. There are five cases 

which describe the two design cases run at both 273,15K and 263,15K atmospheric temperature. 

In addition, the case which utilized a refined mesh to rerun the top entry case at 273,15K, to 

ensure the mesh quality. All cases include complete 0, constant, system and postProcessing 

folders. Also included is a copy of the thesis in a pdf and docx format. 

 

 


