
i

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Construction and materials, specialization

within mechanical constructions

Spring semester, 2015

 Open

Writer: Ola Sirevaag

…………………………………………
(Writer’s signature)

Faculty supervisor: Bjørn Helge Hjertager

External supervisor(s): Knut Erik Giljarhus

Thesis title:

CFD simulation of an offshore air intake and exhaust system

Credits (ECTS): 30

Key words:

Pressure loss

Fan

OpenFOAM

rhoSimpleFoam

CFD

 Pages: 61

 + enclosure: 58

 + CD

 Stavanger, 12.06.2015

ii

iii

ABSTRACT

The main purpose is to investigate whether the exhaust gases from an offshore turbine can be

rerouted to heat the air entering the turbine system, thus keeping air humidity concentration

above acceptable levels. To ensure this, temperature of the incoming airflow must be above 4,5

degrees Celsius. Currently the exhaust is vented out to the atmosphere and an electrical anti-icing

system is used to heat the air intake. The objective of this thesis is therefore to make a CFD

model in OpenFOAM to simulate the two proposed pipe designs that will connect the exhaust to

the air intake. By evaluating the results from the simulation, a conclusion shall be drawn to

whether the new pipe layout is a viable solution and can replace the current anti-icing system,

thus saving money and electrical power. A critical part of the new system is the existing exhaust

fan, which will be used to drive the exhaust gases towards the front of the air intake. With the

provided fan performance curve, time has been spent to find the appropriate boundary condition

that will simulate the fan behavior, and its effect on the flow conditions as accurately as possible.

The same goes for the exhaust heat dissipation through the pipe wall, and to the surrounding

environment. Operation conditions include cross winds up to 10m/s and atmospheric

temperatures down to negative 10 degrees Celsius. To incorporate this into the CFD model,

appropriate manual calculations had to be performed beforehand to find the local heat transfer

coefficient. The system size and air flow velocities, results in a relatively large mesh model.

Therefore, to ensure as low computational execution times as possible, multiple meshing settings

are explored to ensure as few excess cells as possible. Temperature and flow results from the

simulations shows that fan performance and both pipe designs are more than adequate to ensure

turbine operation. Mesh quality is also verified using the yPlus value. However, in the attempt to

confirm the simulated pressure loss with the Bernoulli equation, the loss coefficient found in

reference literature does not produce an accurate result. In addition, it is found that the

OpenFOAM documentation does not specify the unit of measurement used in the fan curve

specification. Without being able to determine whether the fan curve should be defined using

mass flow or volumetric flow, the final CFD models have a degree of inaccuracy regarding the

fan behavior. Nevertheless, simulation results have a high enough tolerance, relative to system

requirements, that the fan can be cleared suitable for operation.

iv

TABLE OF CONTENTS

ABSTRACT ... iii
TABLE OF CONTENTS .. iv
NOMENCLATURE .. vii

Latin symbols .. vii
Greek symbols .. viii

Abbreviations ... viii
1 INTRODUCTION .. 1

1.1 Background .. 1
1.2 Thesis objective ... 2

2 THEORY .. 3

2.1 Governing equations .. 3
2.1.1 Continuity equation .. 3

2.1.2 Momentum balance .. 3

2.1.3 Energy balance ... 4
2.1.4 Equation of state ... 4
2.1.5 Empirical relations ... 5

2.2 Reynolds-averaged Navier-Stokes .. 6

2.3 k-𝜀 model ... 7
2.4 Theoretical pressure loss ... 8
2.5 Heat transfer .. 11

2.6 Fan ... 12
2.7 Turbine ... 13

2.8 Technical data .. 14

2.8.1 Air properties at 1 atmospheric pressure .. 14

2.8.2 Constants for equation 17 ... 14
2.8.3 Properties of AISI 316 steel ... 14
2.8.4 Loss coefficient .. 15

3 OpenFOAM .. 16
3.1 Introduction ... 16

3.2 Mesh .. 17
3.2.1 Salome .. 17
3.2.2 SnappyHexMesh .. 18

3.3 rhoSimpleFoam ... 22
3.3.1 fvSchemes .. 22
3.3.2 fvSolution ... 23

3.3.3 Boundary conditions .. 23

3.3.3.1 Alphat ... 23

3.3.3.2 Epsilon ... 24

3.3.3.3 K ... 25

3.3.3.4 Mut ... 25

3.3.3.5 T ... 25

3.3.3.6 Pressure .. 26

v

4 DESIGN ... 27

4.1 Top entry .. 27
4.1 Side entry ... 28

5 PRE-PROCESSING .. 30
5.1 Mesh generation .. 30
5.2 Initial field values .. 33

5.2.1 Velocity .. 33
5.2.2 Pressure .. 33

5.2.3 Temperature ... 34
5.2.4 Turbulence energy .. 35
5.2.5 Turbulence dissipation ... 36

6 SOLVING .. 37
6.1 PyFoam .. 37

6.2 Parallel processing ... 38
6.3 Swak4Foam ... 38

7 POST-PROCESSING .. 40

7.1 ParaView ... 40
7.2 SampleDict .. 41
7.3 topoSetDict .. 41

7.4 YPlus ... 42
8 RESULTS AND DISCUSSION .. 43

8.1 Temperature ... 43
8.2 Pressure loss .. 46
8.3 Flow conditions ... 48

8.4 Fan performance .. 50
8.5 Mesh quality .. 52

8.6 Residuals .. 56
9 CONLUSION ... 57

9.1 Project conclusion .. 57
9.2 Future work .. 59

10 REFERENCES ... 60
APPENDIX A .. i

A.1 System dimensions, top entry design ... i
A.2 System dimensions, side entry design ... iii

APPENDIX B .. v
B.1 Boundary conditions .. v

B.1.1 Top entry, 273K ... v

B.1.2 Top entry, 263K .. xii

B.1.3 Side entry, 273K .. xix

B.1.4 Side entry, 263K .. xxvi
APPENDIX C .. xxxiii

C.1 Fan curve ... xxxiii
C.2 RASProperties .. xxxiv
C.3 thermophysicalProperties .. xxxv

APPENDIX D .. xxxvi
D.1 ControlDict ... xxxvi
D.2 decomposeParDict .. xxxix

vi

D.3 fvSchemes ... xl

D.4 fvSolution ... xli
D.5 Top entry ... xliii

D.5.1 sampleDict ... xliii
D.5.2 snappyHexMesh .. xlvi
D.5.3 topoSetDict .. xlix

D.6 Side entry .. li
D.6.1 sampleDict ... li

D.6.2 snappyHexMesh .. liv
D.6.3 topoSetDict ... lvii

APPENDIX E ... lix
E.1 Content of enclosed CD .. lix

vii

NOMENCLATURE

Latin symbols

a Channel width [m]

A Area [𝑚2]

b Channel height [m]

C Equation constant

𝐶𝜇 Equation constant

𝐶1 Equation constant

𝐶2 Equation constant

d Equation constant

𝑑ℎ Hydraulic diameter [m]

D Diameter [m]

e Internal energy [𝑚2 ∙ 𝑘𝑔/𝑠2]

𝑓 Friction factor

F Body forces

g Gravity [m/𝑠2]

h Enthalpy [J]

ℎ𝑎𝑖𝑟 Air heat transfer coefficient [𝑊/𝑚2 ∙ 𝐾]

ℎ𝑡𝑜𝑡𝑎𝑙 Total heat transfer coefficient [𝑊/𝑚2 ∙ 𝐾]

I Turbulence intensity

k Turbulent kinetic energy [𝑚2/𝑠2]

𝑘𝑇 Thermal conductivity [W/m∙ 𝐾]

𝑘𝑙𝑜𝑠𝑠 Loss coefficient

l Mixing length [m]

L Pipe length [m]

m Equation constant

𝑚̇ Mass flow [kg/s]

n Number of moles

Nu Nusselt number

p Pressure [N/𝑚2]
Pr Prandtl number

𝑃𝑟𝑡 Turbulent Prandtl number

𝑞 Heat flux [W/𝑚2]

r Surface roughness [mm]

R Universal gas constant [J/mol∙K]

Re Reynolds number

𝑅𝑒𝑑ℎ
 Reynolds number based on hydraulic diameter

S Wall thickness [m]

𝑆̇ Source term

t Time [s]

T Temperature [K]

U Velocity [m/s]

𝑈𝑊𝑖𝑛𝑑 Wind velocity [m/s]

viii

𝑈̃ Favre-averaged velocity [m/s]

V Volume [𝑚3]

𝑉̇ Volumetric flow [𝑚3/s]

𝑉̃ Favre-averaged velocity [m/s]

w Velocity in z-direction [m/s]

𝑊̃ Favre-averaged velocity [m/s]

Greek symbols

𝛼𝑡 Turbulent thermal diffusivity [𝑚2/𝑠]

𝛾 Weight density [kg/𝑚2 ∙ 𝑠2]

𝛿 Unit tensor

𝜀 Dissipation of turbulent kinetic energy [𝑚2/𝑠3]

𝜇 Viscosity [kg/m∙s]

𝜇𝑡 Turbulent viscosity [𝑚2/s]

𝜈 Kinematic viscosity [𝑚2/s]

𝜌 Density [kg/𝑚3]

𝜌𝑎𝑖𝑟 Density of air [kg/𝑚3]

𝜎𝜀 Prandtl number k-equation

𝜎𝑘 Prandtl number 𝜀-equation

𝜏 Viscous stress [N/𝑚2]

Abbreviations

RAM Random access memory

RANS Reynolds-averaged Navier-Stokes

STL Stereolithography

Rpm Revolutions per minute

1

1 INTRODUCTION

1.1 Background

Inspiration for this thesis was drawn from a project given by Conoco Phillips to Aibel in the

autumn of 2014. The original scope of work was to replace a set of corroded ducts that was a part

of the air intake for an offshore generator. The duct draws air from the atmosphere and directs it

down to the generator. However, when temperatures drop down towards the freezing point, the

air humidity levels get too high for generator operation. To solve the problem, an electrical heater

has been used to keep the air temperature at an acceptable level. The heater itself draws

electricity from the generators, leaving less power available for essential equipment on the

platform. A proposal was made to redirect the generators own exhaust flow, to the front air

intake. Using the exhaust flow to heat incoming air would make the electric anti-ice system

obsolete. Unfortunately, with the downsizing and cutbacks made in the oil industry during the

end of 2014 and start of 2015, work was never commenced on this project. This means that there

will be no official report or documentation available to build the thesis on. Instead, this thesis will

be written independently from Aibel and use the limited original scope of work as inspiration to

create and solve a theoretical case.

2

1.2 Thesis objective

The main objective of this thesis is to develop a simulation in OpenFOAM that describes the

pressure, mass flow and temperature conditions inside the duct. The model includes turbulent

flow and temperature loss to the environment. Two different design cases under different

operating conditions shall be tested to find the optimal duct layout. One key feature of the new

system is the existing fan driving the exhaust flow. Previously its only task was to vent exhaust

gases out into the atmosphere. Now it will have to drive the exhaust flow all the way towards the

air intake. The fan features has to be tested to see if they are sufficient to complete this task, and

thus save money by not replacing it with a new fan. The main criterion for the new system will be

the airflow temperature entering the generator. As long as the temperatures are kept above

recommended levels, then the new system will be an improvement to the existing electrical

heaters.

3

2 THEORY

2.1 Governing equations

In the following chapter, the equations have been gathered from Hjertager (2009A & 2009B) and

Versteeg et al. (2007). The governing equations in fluid dynamics are the mathematical

representation of the conservation laws of physics. There are eight unknown variables, and thus

there are eight equations to solve.

2.1.1 Continuity equation

The continuity equation describes mass conservation. Mass conservation implies that the rate of

increase of mass in a fluid element must be equal to the net rate of mass flow into the said fluid

element. Continuity equation on vector form:

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑢⃗) = 0

Equation 1

First term is transient, and describes the rate of change of density over time. Second term, the

convective term, describes the net flow of mass out of the fluid element across its boundaries. For

a steady state case, the transient term is neglected:

𝜕

𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0

2.1.2 Momentum balance

Momentum balance is derived from Newton’s second law and defines that the rate of change in

momentum of a fluid particle equals the sum of the forces on the particle. The momentum

balance on vector form:

 𝜌

𝐷𝑣

𝐷𝑡
= −∇⃗⃗ ∙ 𝑝 + ∇⃗⃗ ∙ 𝜏 + 𝐹

Equation 2

First term is the rate of increase of momentum in three dimensions per unit volume of a fluid

particle. First two terms on the right side of equation 2, account for the surface forces pressure

and viscosity. While the last term include the body forces.

4

2.1.3 Energy balance

The energy equation is derived from the first law of thermodynamics. The equation express that

the increase of energy in a fluid particle equals the rate of heat added to fluid particle in addition

to the rate of work done on said fluid particle.

𝜕(𝜌𝑒)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑒)

𝜕𝑥𝑖
= −

𝜕𝑞𝑗

𝜕𝑥𝑗
− 𝑝

𝜕𝑢𝑖

𝜕𝑥𝑖
+ 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝑆̇

Equation 3

Equation 3 is the first law of thermodynamics on differential form, where e, is the internal energy

as dependent variable. Often beneficial to use the relation:

𝑒 = ℎ −
𝑝

𝜌

To express the energy equation with enthalpy as dependent variable instead of energy. Now

referred to as the enthalpy equation:

𝜕(𝜌ℎ)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖ℎ)

𝜕𝑥𝑖
= −

𝜕𝑞𝑗

𝜕𝑥𝑗
+

𝐷𝑝

𝐷𝑡
+ 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝑆̇

Where 𝑆̇ is the source term. It can both be a source term and sink term depending on whether

there is, for example, radiation or a chemical reaction present.

2.1.4 Equation of state

The equation of state for an ideal gas:

 𝑝𝑉 = 𝑛𝑅𝑇 Equation 4

The equation of state provide an important relation between the energy balance and the

momentum and continuity equations, for compressible fluids.

5

2.1.5 Empirical relations

First of the empirical relations is Newton’s law of viscosity:

𝜏𝑖𝑗 = 𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝜇 ∙

𝜕𝑢𝑖

𝜕𝑥𝑖
∙ 𝛿𝑖𝑗

Equation 5

Lastly, the second law of thermodynamics also known as Fourier’s law:

𝑞𝑖 = −𝑘𝑇

𝜕𝑇

𝜕𝑥𝑖

Equation 6

6

2.2 Reynolds-averaged Navier-Stokes

The chosen method of simulating turbulence is the RANS turbulence models. The models utilize

a set of partial differential equations that relies on approximated mean values to be solved. These

are known as the RANS equations, Versteeg et al. (2007):

 𝜕(𝜌̅𝑈̃)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅𝑈̃𝑈̃)

= −
𝜕𝑝̅

𝜕𝑥
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑 𝑈̃)

+ [−
𝜕(𝜌̅𝑢′2̅̅ ̅̅ ̅̅)

𝜕𝑥
−

𝜕(𝜌̅𝑢′𝑣′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑦
−

𝜕(𝜌̅𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅)

𝜕𝑧
] + 𝑆𝑀𝑥

Equation 7.1

 𝜕(𝜌̅𝑉̃)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅𝑉̃𝑈̃)

= −
𝜕𝑝̅

𝜕𝑦
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑 𝑉̃)

+ [−
𝜕(𝜌̅𝑢′𝑣′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
−

𝜕(𝜌̅𝑣′2̅̅ ̅̅ ̅̅)

𝜕𝑦
−

𝜕(𝜌̅𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅)

𝜕𝑧
] + 𝑆𝑀𝑦

Equation 7.2

 𝜕(𝜌̅𝑊̃)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅𝑊̃𝑈̃)

= −
𝜕𝑝̅

𝜕𝑧
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑 𝑊̃)

+ [−
𝜕(𝜌̅𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅)

𝜕𝑥
−

𝜕(𝜌̅𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅)

𝜕𝑦
−

𝜕(𝜌̅𝑤′2̅̅ ̅̅ ̅̅)

𝜕𝑧
] + 𝑆𝑀𝑧

Equation 7.3

When time averaging the momentum equations, additional terms appear. The extra terms are

known as the Reynolds stresses; −𝜌𝑢′2̅̅ ̅̅ , −𝜌𝑣′2̅̅ ̅̅ , −𝜌𝑤′2̅̅ ̅̅ ̅, −𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ , −𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ , −𝜌𝑤′𝑣′̅̅ ̅̅ ̅̅ . These will be

predicted with the k-𝜀 turbulence model. The main advantage of the k-𝜀 model is that it requires

less processing power than the alternatives.

7

2.3 k-𝜀 model

The k-𝜀 model utilize two extra transport equations deduced from the Navier Stokes equations.

These equations have been sampled from Hjertager (2009B). The first is turbulent kinetic energy

k and is described by the k-equation:

 𝜕𝜌𝑘

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌𝑈𝑖𝑘) =
𝜕

𝜕𝑥𝑖
[
𝜇𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑖
] − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝜌 ∙ 𝜀

Equation 8

Here, first term is the transient term. Second is the convective term. Third term is the diffusive

transport and must be modelled. Fourth term is turbulent kinetic energy based on the mean flow

velocity. Fifth term is the viscous dissipation of turbulent kinetic energy, which also must be

modelled.

The second transport equation is the dissipation of turbulent kinetic energy and is named the 𝜀-

equation. Only the modelled form will be given:

 𝜕𝜌𝜀

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌𝑈𝑖𝜀) =
𝜕

𝜕𝑥𝑖
[
𝜇𝑡

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑖
] + 𝐶1

𝜀

𝑘
[−𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅
𝜕𝑈𝑖

𝜕𝑥𝑗
] − 𝐶2𝜌

𝜀

𝑘
𝜀

Equation 9

Again, the first term is the transient. Second is the convective term. The third term represents

diffusive transport. Fourth and fifth term is the production and destruction of 𝜀 respectively.

8

2.4 Theoretical pressure loss

During this thesis, evaluating the overall pressure loss and system performance will be done with

OpenFOAM simulations. However, to validate the results some manual calculations has to be

done as well. The formulas used to calculate the system pressure loss has been gathered from

ASHRAE (2009). Whenever there is a closed system like a pipe, the air movements will be

controlled by the three fundamental laws of physics: conservation of mass, conservation of

momentum and conservation of energy. Conservation of mass means that mass can be neither

created nor destroyed. This means that the sum of mass flow entering at the fan inlet will be

exiting the air intake outlet. Also for these calculations, it is assumed that the density remains

constant throughout the pipe system. Therefore, the average air velocity remains constant as the

cross sectional area is the same.

Mass conservation:

𝑚̇ = ∫𝜌𝑈𝑑𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Then for two points within the same system:

𝑚1̇ = 𝑚̇2

𝜌1𝑈1𝐴1 = 𝜌2𝑈2𝐴2

Assuming constant density and pipe cross section:

𝑈1 = 𝑈2

The second law, conservation of energy, implies that energy cannot disappear. Only transformed

from one form to another. This is the basic principle behind the Bernoulli’s equation. The

Bernoulli’s equation relates the system pressure, fluid velocity and elevation:

𝑝

𝛾
+

𝑈2

2𝑔
+ ∆𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where :

𝛾 = 𝜌𝑔

Insert and rearrange the Bernoulli’s equation:

𝑝 +
𝜌𝑈2

2
+ 𝜌𝑔∆𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Now the three terms within the equation can be described accordingly:

9

𝑝 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝜌𝑉2

2
= 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝜌𝑔∆𝑧 = ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

Bernoulli’s equation for two points along the pipeline:

𝑝1

𝛾
+

𝑈1
2

2𝑔
+ 𝑧1 =

𝑝2

𝛾
+

𝑈2
2

2𝑔
+ 𝑧2

Equation 10

Lastly, there is conservation of momentum, describes that the amount of momentum within a

system remains constant unless acted upon by external forces. This will be used to calculate the

friction losses through the pipe. Although the Bernoulli’s equation was derived for ideal

frictionless flow along a streamline, it can be modified to analyze airflow with friction. To

accomplish this, the Darcy equation is introduced:

 𝛥𝑝 = 𝑓 (

𝐿

𝐷
)(

𝑈2

2𝑔
)

Equation 11

Here, 𝑓 is a dimensionless friction factor obtained by calculating Reynolds number:

𝑅𝑒 =

𝐷𝑈

ν

Equation 12

The relative roughness of the inside wall:

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 =
𝑟

𝐷

Equation 13

The Reynolds number and relative roughness are then used in a Moody chart to find the friction

factor, Hjertager (2013).

The Darcy equation allows for calculation of pressure drop caused by friction in a fully

developed flow. However, to account for pressure losses in fittings and bends there is need for a

second equation:

 𝛥𝑝 = 𝑘𝑙𝑜𝑠𝑠 (

𝑈2

2𝑔
)

Equation 14

10

Where 𝑘𝑙𝑜𝑠𝑠 is a loss coefficient depending on the pipe bend angle, radius and pipe diameter.

Combining the two equations, the total pressure loss due to friction is presented as following:

 ∑ℎ𝑙𝑜𝑠𝑠 = (

𝑓𝐿

𝐷
+ ∑𝑘𝑙𝑜𝑠𝑠) (

𝑈2

2𝑔
)

Equation 15

Inserting this into the Bernoulli’s equation:

𝑝1

𝛾
+

𝑈1
2

2𝑔
+ 𝑧1 =

𝑝2

𝛾
+

𝑈2
2

2𝑔
+ 𝑧2 + ∑ℎ𝑙𝑜𝑠𝑠

𝑝1 − 𝑝2 = (𝑧2 − 𝑧1)𝜌𝑔 + 𝜌 (
𝑓𝐿

𝐷
+ ∑𝑘𝑙𝑜𝑠𝑠) (

𝑈2

2
)

Finally, the total pressure drop within the pipe:

𝛥𝑝 = 𝛥𝑧𝜌𝑔 + (

𝑓𝐿

𝐷
+ ∑𝑘𝑙𝑜𝑠𝑠) (

𝜌𝑈2

2
)

Equation 16

11

2.5 Heat transfer

As the exhaust flow from the fan towards the air inlet, some heat will dissipate through the 316L

stainless steel wall of the pipe. The pipe itself has no insulation or shielding from wind. In the

OpenFOAM model, it is possible to account for these environmental influences, but some of the

factors need to be calculated by hand before it is used as input to the model. More specifically, it

needs the heat transfer coefficient between the hot exhaust gas, steel pipe wall and the outside

wind. The formulas used in this chapter was incorporated from Incropera et al. (2009). First, the

Zukauskas relation is used to obtain the Nusselt number:

𝑁𝑢 = 𝐶𝑅𝑒𝐷

𝑚𝑃𝑟𝑑 (
𝑃𝑟

𝑃𝑟𝑠
)
1/4

Equation 17

The heat transfer coefficient for the air are as following:

ℎ𝑎𝑖𝑟 = 𝑁𝑢

𝑘𝑇

𝐷

Equation 18

Then the total heat transfer coefficient including the pipe wall is:

 1

ℎ𝑡𝑜𝑡𝑎𝑙
=

1

ℎ𝑜𝑢𝑡𝑠𝑖𝑑𝑒
+ ∑

𝑆𝑖

𝑘𝑇𝑖

Equation 19

12

2.6 Fan

One of the main aspects to this thesis is to investigate whether the old exhaust fan can be used to

bring the exhaust gases to the front of the air intake. The fan in question is an axial fan type with

a nominal duty of 15 𝑚3/s, airflow at a pressure of 1600Pa and speed of 1776 rpm. Two criteria

needs to be fulfilled to make the current fan a viable option. First of all the total pressure loss

from the fan location to the air intake must not be greater than 1800 Pa. Second, the flowrate

must be great enough to deliver a high volume of hot air to heat up the cold air from the air

intake. A representation of the fan performance curve provided by Aibel is shown in figure 1.

Figure 1: fan performance curve

13

2.7 Turbine

To ensure constant turbine operation, two criteria must be met. Firstly, the turbine requires a

minimum air mass flow of 16 kg/s. Since the turbine was fully operational before the addition of

exhaust flow, it is assumed that turbine suction is sufficient to maintain required mass flow at

outlet without help of the fan. Unfortunately, there are no more available data describing the

suction mechanism or pressure conditions. Secondly, the temperature of the air entering the

turbine has to be above 4,5 degrees Celsius or 277,55 K. This is to ensure humidity levels below

70%. Figure 2 describes the relative humidity based on air temperatures for the system and was

provided by Aibel.

Figure 2: relative humidity

14

2.8 Technical data

2.8.1 Air properties at 1 atmospheric pressure

Table 1: air properties collected from table A-9 Hjertager (2013)

Temp

T, Kelvin

Density

 𝜌, kg/𝑚3

Dynamic

Viscocity

µ, kg/ms

Kinematic

Viscocity

𝜐, 𝑚2/𝑠

Prandtl

Pr

Thermal

conductivity

𝑘𝑇, W/m∙K

263,15 1,341 1,68*10−5 1,252*10−5 0,7387 0,02288

273,15 1,292 1,729*10−5 1,338*10−5 0,7362 0,02364

283,15 1,246 1,944*10−5 1,778*10−5 0,7336 0,02439

293,15 1,204 1,825*10−5 1,516*10−5 0,7309 0,02514

333,15 1,059 2,008*10−5 1,896*10−5 0,7202 0,02808

2.8.2 Constants for equation 17

Table 2: equation constants sampled from table 7.4 Incropera et al. (2009)

Re C m d

1-40 0,75 0,4 0,37

40-1000 0,51 0,5 0,37

103-2 × 105 0,26 0,6 0,37

2 × 105-106 0,076 0,7 0,37

2.8.3 Properties of AISI 316 steel

Table 3: material properties gathered from table A.1 Incropera et al. (2009)

Stainless steel Density

𝜌, kg/𝑚3

Thermal conductivity

𝑘𝑇, W/m∙K

ASISI 316 8238 13,4

15

2.8.4 Loss coefficient

Table 4: fittings loss coefficient according to appendix A CRANE (1982)

Nominal size

[mm]

100 125 150 200-250 300-400 450-600

Friction factor 0,017 0,016 0,015 0,014 0,013 0,012

𝑘𝑙𝑜𝑠𝑠 90° elbow 0,51 0,48 0,45 0,42 0,39 0,36

𝑘𝑙𝑜𝑠𝑠 45° elbow 0,272 0,256 0,24 0,224 0,208 0,192

Table 5: fittings loss coefficients from table A 8 Chappalaz et al. (1992)

Radius/Diameter 1 2 4 6 10

𝑘𝑙𝑜𝑠𝑠 15° elbow 0,03 0,03 0,03 0,03 0,03

𝑘𝑙𝑜𝑠𝑠 22,5° elbow 0,045 0,045 0,045 0,045 0,045

𝑘𝑙𝑜𝑠𝑠 45° elbow 0,14 0,09 0,08 0,075 0,07

𝑘𝑙𝑜𝑠𝑠 60° elbow 0,19 0,12 0,10 0,09 0,07

𝑘𝑙𝑜𝑠𝑠 90° elbow 0,21 0,14 0,11 0,09 0,08

16

3 OpenFOAM

3.1 Introduction

OpenFOAM is an open source CFD software written with the computer language of C++ and

runs in Linux based operating systems. By being open source, OpenFOAM allows the user to

alter and customize the functionalities to match the case requirements. Building on this,

OpenFOAM has very few shortcomings and is limited mostly by the users programming skills.

The open source code has led to a lively forum where users together solve problems and

contribute with their own solver modifications and solutions, available for anyone to use.

OpenFOAM operates using text files and unix style commands. The structure is built upon

libraries containing pieces of code that is used by the various solvers and utilities. For each case,

a new folder structure is built containing at least the three main folders: 0, constant and system.

Inside the 0 folder is all the initial field conditions for variables such as pressure and velocity.

These will vary depending on the chosen solver. Constant contains information about fluid and

turbulence properties. In addition, there are two more folders describing the case geometry.

PolyMesh describes the mesh, and triSurface holds STL files if the geometry is imported from a

CAD program. The system folder determines solver and solution settings for each field. There is

also settings for the output format, runtime and time step. As the simulation runs, multiple time

dump folders are created inside the case folder containing field solutions for fixed iteration

intervals.

Figure 3: case structure OpenFOAM

case

0

p U

constant

polyMesh triSurface

system

controlDict fvSchemes fvSolution

17

3.2 Mesh

Mesh generation is an important part of OpenFOAM. Solution convergence and accuracy has a

direct correlation to the mesh quality. OpenFOAM has its own built in mesh generation utility

called blockMesh. BlockMesh is text based and works by defining hexahedral blocks in a local,

right-handed coordinate system. By using these blocks, one can build more complex geometries.

After running the blockMesh command, the mesh is built and geometry data is stored in the

polyMesh folder. One challenge with the text-based construction of mesh is keeping track of the

multiple coordinate points within a complex geometry. This can be negated by using a CAD

software to produce the geometry described with STL surfaces. OpenFOAM can read these STL

files and convert them in to mesh. This solution has been chosen as the strategy for this thesis.

3.2.1 Salome

The chosen CAD program is the open source software Salome. Salome is essentially a software

for pre - and post-processing numerical solutions, but has a geometry feature suitable for

exporting STL surfaces to OpenFOAM. The software has a graphical interface, and compared

with the text-based blockMesh, makes it more comprehendible to work with. Salome is a simple

CAD software with basic boolean operations such as cut and fuse. It allows the user to define

vertices based on coordinates. These vertices are connected with lines, which then creates faces.

To create pipes the extrusion feature is used. By defining a base surface, in this case a disc, the

surface can be extruded along a path to create the pipe geometry. After all the surfaces are joined

to finish the geometry, everything is converted to a completely solid figure. This is to be sure that

there are no overlapping surfaces and non-real features. With a complete solid, the various

surfaces can be extracted and placed in to groups. The surfaces are distinguished in groups so that

different meshing options and field properties can be applied to different surfaces later on. These

groups of surfaces are finally exported to OpenFOAM as STL files, and referred to in

snappyHexMesh as patches.

18

3.2.2 SnappyHexMesh

With the geometry stored as STL files, the blockMesh utility is used to define initial cell size of

the mesh. This is done by creating a cube that extends the outer edges of the STL geometry and

divided in to the desirable mesh size. A finer mesh results in more cells and longer computational

time, but a more accurate solution. With blockMesh, it is ensured that a suitable background

mesh is generated. However, to create a mesh that traces the outer edges of the STL surfaces, the

snappyHexMesh utility is needed. SnappyHexMesh identifies the outer surfaces of the geometry

from the STL files, and then starts a process of splitting the cells located around the boundaries.

This results in a rough representation of the surfaces and makes it possible to distinguish between

the cells needed to construct the geometry, and the ones that will be removed. Once the splitting

process produce a closed boundary, the remaining cells are deleted. The next step is to identify

the cells intersecting the boundary, and relocate the cell vertexes onto the geometry surface. This

is called the “snapping” feature and deforms the cell surface to match the shape of the geometry.

Thus creating a smooth boundary and an accurate meshed representation of the STL figure.

As stated at the beginning of this chapter, the quality of the mesh is of great importance to the

OpenFOAM solution. There are several quality parameters to be fulfilled before the mesh is

considered ready for simulation. A few of them are values such as minimum cell volume, face

skewness and concave. These can be evaluated by the checkMesh command straight after mesh

generation. However, there are also restrains regarding the mesh refinement when it comes to the

flow pattern one wishes to simulate. High-speed flow needs a finer mesh to create an accurate

solution. The same goes for the non-dimensional distance yPlus when simulating with turbulence

models. YPlus determines how coarse or fine a mesh is close to the domain walls, with respect to

getting a correct representation of the flow field in this area. The two latter parameters can only

be calculated once the simulation has been tested. To be able to control the mesh generation

process, and fulfil these restraints, snappyHexMesh has many parameters that needs adjustment

to obtain the desired result. The most important ones to this thesis will be discussed.

19

Figure 4: geometry section

First, all the relevant STL files needs to be inserted to the geometry section and named. There is

also an option to create a new refinement reference geometry directly in snappyHexMesh as seen

on the last line of figure 4.

Figure 5: refinement surfaces

Then the surface refinement level is specified. Both the minimum and maximum refinement is

selected, and each level represent an order of cell splitting. This means that level (2 2) refinement

split all the cells twice for the given surface. Here the previously defined surface groups becomes

important. As mentioned, it is not desirable to have more cells than necessary as it increases

computational time. Therefore, it is useful to be able to refine only certain patches and not the

entire geometry.

The second main section is internal cell refinement. Here one defines the level of cell splitting for

given regions of the mesh.

Figure 6: refinement regions

20

As before, the already defined group of cells are selected and given a level of refinement. It is

also required to specify the mode that will be used to refine. In this example, the mode distance is

selected. This implies that the given level of refinement will be applied to a given distance from

the surface boundary. So for levels (0.02 3), all the cells within a distance 0,02m from the surface

boundary are split with a level 3 of refinement. If the distance mode is selected it is also required

to specify the locationInMesh entry. Here one selects whether the internal or external cells, with

respect to the boundary surfaces, are to be kept.

In addition to the refinement levels, the different quality settings may affect the mesh outcome.

For this thesis, the majority of these settings are kept at default values. However, there is always

the risk that snapping process may be hindered by these and not completely snap to the surface

geometry. Alternatively, snappyHexMesh simply do not recognize the geometry surfaces due to

poorly constructed STL files. Both these cases can be solved to some degree by further increasing

the surface refinement. However, if this is not desirable, there is an additional tool in

snappyHexMesh to help improve the snapping feature.

To use the surface feature in snappyHexMesh, first include the surfaceFeatureExtractDict in the

system folder. Then edit the text file to apply to the desired STL files as shown in figure 7,

below. This allows the user to run the surfaceFeatureExtract command in the terminal window

and produce a set of e.mesh files. These files describe the outer edges of the geometry and

improve the snapping feature in snappyHexMesh.

Figure 7: surface feature extract

The e.mesh files are listed under features in snappyHexMesh. One thing to note with this feature

is that geometrical shapes such as pipes are poorly converted in to e.mesh files. This is due to the

lack of sharp edges along the pipe. The e.mesh file will only contain information about the inlet

and outlet edges, and nothing about the potential bends along the pipe length.

21

Figure 8: surface features

Last cell refinement step in snappyHexMesh is the add layers control. This feature is designed to

expand an outer layer of cells that will follow the contour of the surface boundary.

Figure 9: add layers

Here it is required to define for which patch this feature should be applied, how many layers

should be expanded and thickness of these layers. If the relative sizes option is turned on then the

thickness is based on the size of the current outer cell size. Creating this outer layer can be

challenging for complex geometry and lead to ill-defined cells. It is therefore recommended to

leave this feature off, until a satisfactory mesh has been obtained by the previous refinement

steps. Then run the snappyHexMesh again, leaving only the add layers feature on, and tweak the

settings to expand a complete outer layer of cells.

22

3.3 rhoSimpleFoam

RhoSimpleFoam is a steady-state solver used for simulating turbulent RANS flow of

compressible solvers. This solver allows for simulating the mass flow through the system, as well

as the temperature dissipation to the outer environment. The chosen solver is as mentioned steady

state, as the important data for this case is obtained once the flow has stabilized. The time-period

right after fan startup is not relevant to the case solution. When running a steady state solver in

OpenFOAM, the time steps does not represent the elapsed time, but rather as an iteration counter.

Furthermore, the time dumps created during the simulation does not contain usable data. Only the

last converged results can be used for solution analysis. When running the rhoSimpleFoam solver

there are a number of solvers and numerical schemes located in the system folder. These contain

settings for how the equations are to be solved.

3.3.1 fvSchemes

Within the fvSchemes text file there are options to assign which numerical schemes used for the

terms to be solved. First, the time derivate scheme will be specified as steady state as it is not

applicable for this case. Then the gradient schemes are all assigned Gauss linear as method of

discretization of the divergence. By specifying linear after the Gauss theorem selection, the

chosen interpolation scheme is set as central differencing. Next is the convection scheme,

identified under divSchemes. Here the bounded Gauss is used, but the interpolation method is

upwind for all values except for one. The exception is a part of the momentum equation,

div((muEff*dev2(T(grad(U))))), which only works with Gauss linear. The upwind differencing is

the most stable interpolation method available in OpenFOAM. From here on, all the schemes are

specified using a default value, which means that all the terms will be assigned identical settings.

The laplacian schemes are solved with Gauss linear corrected. Corrected is an explicit non-

orthogonal correction. Lastly, the default interpolation schemes are linear, and the surface normal

gradients set at corrected. The surface normal gradients are used to compute the gradients at cell

faces.

23

3.3.2 fvSolution

In fvSolution, the settings specify how to solve the equations based on matrix inversions. Often

the equations to be solved in OpenFOAM result in large matrices. These matrices are however

mostly built by zero entries. Therefore, the traditional algebraic techniques become inefficient

and iterative methods are adopted instead. There are three types of solvers to invert matrices in

OpenFOAM. The first one is preconditioned (bi-) conjugate gradient, PCG/PBiCG, which

distinguishes between symmetric and asymmetric matrices. The second is geometric-

agglomerated algebraic multigrid, CAMG. CAMG requires a positive definite, diagonally

dominant matrix to operate. Lastly, there is the smoothSolver, which operates for both symmetric

and asymmetric matrices. The two last solvers has been chosen for this case, as it is

recommended, Hjertager (2009A), to use the CAMG solver for pressure and smoothSolver for

the remaining variables. As for smoothers, the Gauss Seidel and symmetric Gauss Seidel is

recommended. Apart from the solvers and smoothers, there is also settings dedicated to the solver

accuracy. Tolerance refers to how exact the solution is based on the initial residuals. The relative

tolerance specifies how accurate the solution is solved for each iteration step.

3.3.3 Boundary conditions

In OpenFOAM, it is necessary to specify the initial field values and boundary conditions. All the

values for these fields are stored in the 0 folder as text files. From earlier in the mesh generation

process it is important to remember which boundary entries are defined as a patch type, and

which are defined as a wall type. The equations used to describe the boundary conditions have

been gathered from CFD-Wiki (2009, 2012A, 2012B & 2014) and OpenFOAM foundation

(2011).

3.3.3.1 Alphat

Alphat describes the turbulent thermal diffusivity. The turbulent heat transfer is calculated using

the equation:

 𝛼𝑡 =
𝜇𝑡

𝑃𝑟𝑡
 Equation 20

24

Here, 𝛼𝑡 is turbulent thermal diffusivity. 𝜇𝑡 is mut, the turbulent viscosity. Lastly, 𝑃𝑟𝑡 is turbulent

Prandtl number with a default value of 0,85. The wall entries are defined with the boundary

condition compressible::aplhatWallFunction, and patch entries are set to calculated.

3.3.3.2 Epsilon

The epsilon field allows for describing the turbulence dissipation rate at a boundary inlet and

walls. Epsilon is calculated by the formula:

𝜀 =

𝐶𝜇
0,75𝑘1,5

𝑙

Equation 21

𝐶𝜇 is a model constant with value of 0,09 and l is the mixing length. Mixing length is calculated

using the formula:

 𝑙 = 0,038𝑑ℎ Equation 22

Where the value 𝑑ℎ, is the hydraulic diameter. For a circular inlet, such as a pipe, the hydraulic

diameter equals the pipe diameter. However, with a rectangular duct the hydraulic diameter is

calculated from:

𝑑ℎ = 2

𝑎𝑏

𝑎 + 𝑏

Equation 23

Here the value a is the duct width, and b is the duct height. The wall entries are defined with

compressible::epsilonWallFunction and inlet patches have type

compressible::turbulentMixingLengthDissipationRateInlet. Note that the outlet patch is given the

inletOutlet boundary condition. This fixes the outlet field to a given inletValue to prohibit

instability in case of inward flow during simulation. In addition, the Von Karman constant kappa

and model coefficient E is defined with default value 0,41 and 9.8.

25

3.3.3.3 K

Inside the k file, there is the boundary conditions for the turbulence energy. The value of

turbulent kinetic energy k, can be calculated from the equation:

𝑘 =

3

2
(𝑈𝐼)2

Equation 24

U is the mean flow velocity and I is the turbulence intensity calculated by:

 𝐼 = 0,16 ∙ 𝑅𝑒𝑑ℎ

−0,125
 Equation 25

Here, 𝑅𝑒𝑑ℎ
 is the Reynolds number based on the hydraulic diameter. The following equation is

used to estimate Reynolds:

𝑅𝑒𝑑ℎ

=
𝑈 ∙ 𝑑ℎ

𝜈

Equation 26

The hydraulic diameter is the same as used for the epsilon value above. Only new value is the

kinematic viscosity 𝜈. Inlet patches are given the boundary

compressible::turbulentMixingLengthDissipationRateInlet and the outlet patch, inletOutlet. Walls

are defined by compressible::epsilonWallFunction.

3.3.3.4 Mut

Mut is the turbulent kinematic viscosity and only needs to be defined at wall patches with

mutkWallFunction. The remaining patches are calculated.

3.3.3.5 T

Temperature is fixed at the inlet patches and with inletOutlet on the outlet patch. The wall patch

named pipe is applied with wallHeatTransfer. This boundary condition makes it possible to

simulate heat loss to the surrounding environment. The alphaWall value is calculated in the heat

transfer chapter 2.5, using equations 17 to 19.

26

3.3.3.6 Pressure

To simulate the static pressure given by a fan, the inlet is given a fanPressure boundary. This

boundary condition allows the user to enter a fan performance curve, and let OpenFOAM

calculate the stabilized relation between pressure and volumetric flow. The fan curve file is

located inside the constant folder, and contains a simple table of corresponding values for the

system pressure drop and volumetric flow at inlet. In addition to the fan curve, it is necessary to

define initial pressure value, environmental total pressure and direction of flow with respect to

the boundary. The outlet is defined with fixed value, while the remaining patches are set with

zeroGradient.

27

4 DESIGN

The main parts of the cooling system consists of a fan, driving the exhaust flow, a series of pipes

and the existing air intake ducting. There were two proposed designs to the new piping. One

where the pipe enters the duct at the top of the duct, and one where it enters by the side. The

original proposal did include some measurements to describe the overall shape of the designs.

However, some had to be added as seemed fitted by a lack of information. Even though the

geometry alters between the two cases, the name of the surface groups exported from Salome,

remain the same. The boundary where the exhaust enters through the fan is named fan inlet.

Similarly, where the outside air is drawn into the system is called air inlet. The two flows

converge and exist the system through the outlet.

4.1 Top entry

The first design is shown in figure 10 below. The piping is marked in red and has a diameter of

one meter. There has been incorporated a series of bends to avoid a cooling tower situated

between the fan inlet and the ducting. Bend number 3 is of 45 degrees while the rest are 90

degrees bends. Number 4 and 5 combine to create an s-bend. The existing ducting is displayed in

blue. Marked in green is the air inlet and it is a direct opening to the surrounding atmosphere.

28

Figure 10: top entry design

4.1 Side entry

Second design is described in figure 11 and it proposes a pipe side entry to the ducting. Bend

number 1, 2 and 5 is of 90 degrees. While bend 3 and 4 is of 45 degrees. As before the air inlet is

marked in green and the ducting marked in blue. The exact location of the cooling tower is not

known in detail, and therefore only the two proposed project designs will be explored in this

thesis. A full overview of both system designs with dimensions can be found in appendix A.

29

Figure 11: side entry design

30

5 PRE-PROCESSING

5.1 Mesh generation

The meshing process involves a lot of trial and error. The goal is to create a mesh fine enough to

accurately represent the STL geometry, but not create a mesh with an unnecessary high number

of cells. With the blockMesh utility, the initial cell size is set to a square with side length of 0,1m.

From there the snappyHexMesh surface refinement is found to be adequate at only refinement

level (1 1). To create a smooth transition between the boundary and internal mesh, a level 2

distance-based refinement is used. These settings seem to work well to represent the bends of the

pipe, but the mesh would not properly snap to the sharp diagonal edges of the duct geometry. As

seen in figure 12.

Figure 12: inaccurate representation of edges

The problem was however solved, by including the surfaceFeatureExtract feature. This was done

by extracting an additional surface group including the duct surfaces, as well as the surfaces of air

inlet and outlet. The e.mesh file was listed in snappyHexMeshDict with refinement level 2, and

the resulting mesh was much more accurate.

31

Figure 13: accurate representation of edges

After the base mesh was established, three surface layers were added. These surface layers are to

extend the outer edges of the entire geometry. The layers add another level of refinement and

ensure accurate solutions near the boundaries. However, creating the outer layers can be

challenging, and often need very exact settings to form correctly. For both cases, the problem

area is located in between the pipe and duct transition. As shown in figure 14, the layers collapse

in on themselves around the tight 90 degrees angle.

Figure 14: collapsed layer

32

By altering the settings for the addLayers feature, it was found that increasing the value for

featureAngle the layers would form correctly. The featureAngle decides at what angle, between

two existing cells, new layers should be extruded. In figure 15, the final internal mesh is depicted.

Figure 15: fully formed outer layer

The complete mesh result in a size of 1486140 cells for the top entry design, and a mesh size of

1765704 cells for the side entry case.

33

5.2 Initial field values

The initial field values are not affected by the two different design cases. Dimensions at inlets

and outlet remain the same, and pipe diameter is unchanged. However, the change in outside

temperature will have an impact on some of the initial conditions.

5.2.1 Velocity

The fan inlet velocity is not defined in boundary conditions, as the flow is pressure driven and

governed by the fan curve. From initial simulations, the flow velocity at fan inlet is measured at

approximately 20m/s. This velocity value will be the basis for further calculations at the fan inlet.

At the air inlet, the mass flow is fixed at 2kg/s. Given the air density and area of the inlet:

𝑈𝑎𝑖𝑟 =
𝑚̇

𝜌 ∙ 𝐴
=

2
𝑘𝑔
𝑠

1,292
𝑘𝑔
𝑚3 ∙ 4,32𝑚3

= 0,36 𝑚/𝑠

5.2.2 Pressure

The initial atmospheric pressure is set to 101325Pa. Pressure is fixed at the outlet, and adjusted

by the fan curve at fan inlet.

Table 6: fan curve

Volumetric flow [𝑚3/𝑠] Static pressure [Pa]

14 1800

15 1600

16 1400

17 1200

18 950

19 700

20 400

34

5.2.3 Temperature

Cases are to be simulated for outside temperatures at both 263,15K and 273,15K. The exhaust

entering the system through the fan inlet is fixed at 333,15K. In addition to the temperatures at

the inlets and outlet, the heat loss through the pipe wall needs to be accounted for. To calculate

this, one first needs to find the Nusselt number, and Reynolds number for the outside wind shear.

In this thesis, the crosswind speed is set to 10m/s.

𝑅𝑒 273 =
𝑈𝑊𝑖𝑛𝑑 ∙ 𝐷

𝜐273𝐾
=

10
𝑚
𝑠 ∙ 1𝑚

1,338 ∙ 10−5𝑚2/𝑠
= 7,474 ∙ 105

Using the formula constants defined in section 2.8.2, the Nusselt number is calculated with

equation 17:

𝑁𝑢273 = 0,076 ∙ (7,474 ∙ 105)0,7 ∙ 0,73620,37 ∙ (
0,7362

0,7202
)

1
4
= 882,013

Now the convection heat coefficient is calculated from equation 18:

ℎ𝑎𝑖𝑟,273 = 882,013 ∙
0,02364

𝑊
𝑚 ∙ 𝐾

1 𝑚
= 20,85 𝑊/𝑚2 ∙ 𝐾

Equation 19 combines the pipe wall thickness and conductivity, thus the total heat transfer

coefficient is found:

1

ℎ𝑡𝑜𝑡𝑎𝑙,273
=

1

20,85 𝑊/𝑚2 ∙ 𝐾
+

0,003𝑚

13,4 𝑊/𝑚 ∙ 𝐾

ℎ𝑡𝑜𝑡𝑎𝑙,273 = 20,75 𝑊/𝑚2 ∙ 𝐾

Heat loss for the second case, with outside temperature at 263,15K, is solved in similar fashion:

𝑅𝑒 263 =
𝑈𝑊𝑖𝑛𝑑 ∙ 𝐷

𝜐263𝐾
=

10
𝑚
𝑠 ∙ 1𝑚

1,252 ∙ 10−5𝑚2/𝑠
= 7,987 ∙ 105

𝑁𝑢263 = 0,076 ∙ (7,987 ∙ 105)0,7 ∙ 0,73870,37 ∙ (
0,7387

0,7202
)

1
4
= 925,911

ℎ𝑎𝑖𝑟,263 = 925,911 ∙
0,02288

𝑊
𝑚 ∙ 𝐾

1 𝑚
= 21,19 𝑊/𝑚2 ∙ 𝐾

1

ℎ𝑡𝑜𝑡𝑎𝑙,263
=

1

21,19 𝑊/𝑚2 ∙ 𝐾
+

0,003𝑚

13,4 𝑊/𝑚 ∙ 𝐾

ℎ𝑡𝑜𝑡𝑎𝑙,273 = 21,09 𝑊/𝑚2 ∙ 𝐾

35

The total heat transfer coefficient will be used as the alphaWall value for the wallHeatTransfer

boundary condition.

5.2.4 Turbulence energy

To calculate turbulence energy and intensity, one first need to define the hydraulic Reynolds

number. The Reynolds number will vary for the two inlets, as the shape of the inlets differs.

When estimating the Reynolds number for a cylindrical pipe the hydraulic diameter equals the

pipe diameter, hence the Reynolds number for fan inlet is calculated with equation 26:

𝑅𝑒𝑑ℎ,𝑓𝑎𝑛
=

20𝑚/𝑠 ∙ 1𝑚

1,896 ∙ 10−5𝑚2/𝑠
= 1,055 ∙ 106

The air inlet has a rectangular shape, and therefore equation 23 is used to find the hydraulic

diameter:

𝑑ℎ,𝑎𝑖𝑟 = 2
3,6𝑚 ∙ 1.2𝑚

3,6𝑚 + 1,2𝑚
= 1,8𝑚

This gives the Reynolds number:

𝑅𝑒𝑑ℎ,𝑎𝑖𝑟
=

0,36 𝑚/𝑠 ∙ 1,8𝑚

1,338 ∙ 10−5 𝑚2/𝑠
= 4,843 ∙ 104

Given the Reynolds number, the turbulence intensity is now calculated from equation 25:

𝐼𝑓𝑎𝑛 = 0,16 ∙ 1,055 ∙ 106−0,125
= 0,028

𝐼𝑎𝑖𝑟 = 0,16 ∙ 4,843 ∙ 104−0,125
= 0,042

Finally, equation 24 yields the two turbulence energy values:

𝑘𝑓𝑎𝑛 =
3

2
(20𝑚/𝑠 ∙ 0,028)2 = 0,470 𝑚2/𝑠2

𝑘𝑎𝑖𝑟 =
3

2
(0,36𝑚/𝑠 ∙ 0,042)2 = 0,0003 𝑚2/𝑠2

36

5.2.5 Turbulence dissipation

The turbulence dissipation rate is estimated from the turbulence mixing length. Again, the mixing

length is calculated from the hydraulic diameter, which has been defined in the above turbulence

energy section 5.2.4. This means that there will be two different values for the two inlets.

Entering the hydraulic diameter into equation 22, yields the two mixing lengths:

𝑙𝑓𝑎𝑛 = 0,038𝑑ℎ = 0,038 ∙ 1𝑚 = 0,038𝑚

𝑙𝑎𝑖𝑟 = 0,038𝑑ℎ = 0,038 ∙ 1,8𝑚 = 0,068𝑚

Now the two dissipation rates are calculated with equation 21:

𝜀𝑓𝑎𝑛 =
𝐶𝜇

0,75𝑘1,5

𝑙
=

0,090,75 ∙ (0,470𝑚2/𝑠2)1,5

0,038𝑚
= 1,39𝑚2/𝑠3

𝜀𝑎𝑖𝑟 =
𝐶𝜇

0,75𝑘1,5

𝑙
=

0,090,75 ∙ (0,0003𝑚2/𝑠2)1,5

0,038𝑚
= 0,00002𝑚2/𝑠3

37

6 SOLVING

Inside the controlDict text file there are entries regarding the simulation settings. Settings that

control for what time step to start and stop the simulation, as well as which time step to write the

temporary results, also known as time dumps. Since this is a steady state solver, the time step

simply refers to number of iterations instead of seconds of simulation time. Only once the

solution has converged, can the data be used for analysis. The previous intermediate data is not

accurate. As the simulation starts, OpenFOAM produces information regarding the solving of the

different equations. By monitoring this information, one can deduce whether or not the solution

has converged. The first piece of information is the initial residual. The initial residual should

approach zero when the solution convergence. Second, the final residual should always remain

small and always be less than the initial residual. This value describes the residual of the current

equation being solved. Lastly, the number of iterations show how many times the matrix was

solved for the current equation. This value should also start to decrease once the solution

approach convergence. Monitoring the residuals as they move over the screen may in some cases

prove difficult and time consuming. To help with this task the third party program PyFoam is

utilized.

6.1 PyFoam

PyFoam allows for real time plotting of residuals, Gschaider (2015A). Once installed the plotting

utility starts when the OpenFOAM solver is initialized. The PyFoam plotter makes it a lot easier

to keep track of the information displayed by the OpenFOAM solver and help notice trends as

they appear. The graphs in PyFoam should ideally flatten out and become straight lines once the

solution is fully converged.

38

Figure 16: example of the PyFoam plotter

6.2 Parallel processing

Even though best efforts where used to try and keep the mesh size as small as possible, the final

mesh requires a significant amount of computational power and time to be solved. To help speed

up the solving process, one can split up the workload and manually assign it to different

processing cores. This helps OpenFOAM to utilize the available processing power as efficient as

possible. To accomplish this, the decomposeParDict needs to be added to the system folder.

Inside the number of available processor cores are specified. After running the decomposePar

command, additional folders are constructed inside the case folder, representing the number of

cores. These need to be reconstructed in to one whole solution again, once the solver is

completed.

6.3 Swak4Foam

Swak4Foam is an OpenFOAM library with many additional utilities. The library is installed

separately as it is not included in standard OpenFOAM software. Swak4Foam combines the

functionality of groovyBC and funkySetFields. This allows the user to create expressions and

boundary conditions based on field values. With the ability to create such expressions, the

39

swak4Foam can be tailored to fit most situations. Hence why swak4Foam stands for SWiss Army

Knife for Foam, Gschaider (2015B). The option of swak4Foam was explored in this thesis, with

regards to create an expression to control the total mass flow entering the system over both inlets.

This was never implemented for reasons that will be discussed in detail later on. However, a

secondary function of swak4Foam was included in the final simulation. Function objects can

carry out a variety of tasks, such as data sampling and monitoring, while the OpenFOAM

simulation is running. They are defined inside the controlDict file and can be customized with

swak4Foam expressions. The most useful for this thesis are the utility to define the face-flow

field phi, and sum over the patches. This then gives the total mass flow for each inlet and outlet,

OpenFOAM Wiki (2012). In addition, expressions are created to directly calculate the pressure

drop between inlets and outlet.

40

7 POST-PROCESSING

Once the OpenFOAM solver is complete, the field values are stored separately in text files. Inside

each file, the value for each cell of the given field is listed. Analyzing these values as they are

presented, without any positional data, does not offer much insight. However, OpenFOAM

comes with its own post-processing software called ParaView. ParaView is an open-source

software capable of performing data analysis and visualization.

7.1 ParaView

ParaView combines the field values and positional data with the mesh model to create a visual

representation of the OpenFOAM simulation. All the fields included in the simulation can be

inspected and colored according to magnitude. In addition, there are several tools to closer

inspect the results, such as graphing tools, hiding parts of the mesh and so on.

Figure 17: example of the paraView interface

41

7.2 SampleDict

The sample feature, in some ways serve the same purpose as the function objects. It is manly

used to collect data samples from the simulation. One key difference from the function objects is

that the sample feature can collect the data after the simulation process has ended. Usually the

data collected are used to analyze the obtained results. One alternative use of sampleDict

however, is to collect all of the relevant field values for an outlet patch, and then use these values

as the starting conditions for the inlet patch of a different case. This is useful in situations where

the mesh becomes too big for the computer to handle. More specifically, OpenFOAM runs out of

available RAM. Then the mesh needs to be split in two halves and simulated separately. To

accomplish this, a new folder structure named boundaryData/inlet/0 must be created inside the

constant directory of the new case. The sampled faceCentres file is renamed to points, and placed

inside the constructed boundaryData/inlet directory. Then the sampled fields are transferred to the

boundaryData/inlet/0 directory. The text files containing the field values do not have the correct

file headers and these need to be constructed according to standard headers for vectors and

scalars. Now the new case can be simulated based on the previous results from the old case. The

boundary condition for the inlet patch in the new case is defined with

timeVaryingMappedFixedValue. This method was researched but not implemented in this thesis,

as the mesh size was kept at a manageable size.

7.3 topoSetDict

The feature topoSet operates using boolean operations to create new cell or face sets within the

existing mesh. These cells and faces can then be defined into specific zones, faces and patches.

The topoSet will be used in this thesis to supplement the sample feature. To extract temperature

values from the cases, the sample feature defines a plane from coordinates. Cells that then

intersects with the plane will be extracted. The need for the topoSet feature arises when the mesh

geometry intersects the plane at multiple locations. This will lead to incorrect data where

unwanted cell values are included in the sample. By defining zones within the mesh, the topoSet

can restrict the plane sample within the desired boundaries.

42

7.4 YPlus

As mentioned earlier, yPlus is a non-dimensional wall distance value. To ensure that the mesh

cell size is fine enough near the wall boundary, it is recommended to keep the yPlus value below

within the range of 0 to 300. The yPlus value can be evaluated by running the yPlus command in

the terminal window and opening the yPlus field values in ParaView.

Figure 18: yPlus in ParaView

43

8 RESULTS AND DISCUSSION

The goal of the OpenFOAM model is to create a simulation that mimics real life conditions. This

then becomes a test bench for the fan in question, to see whether it can fulfill the required criteria.

In the following chapter, the results from the simulation will be presented along with estimations

and calculations.

8.1 Temperature

Temperature is the main deciding factor for the simulations. If all other variables are found to be

reliable, then the temperature readings will show whether the design cases are suitable for turbine

operation. First to be evaluated is the top entry design case. The temperature is sampled at the

inlets and outlet, as well as at cross sections along the geometry. Sample locations are shown in

figure 19. Table 7 shows the results for outside temperature at both 273,15K and 263,15K. Even

though the air entering the system experiences a temperature drop of 10 degrees, the air leaving

the system only drop a maximum of 2 degrees. This then means that for the top entry case, the

lowest air temperature entering the turbine is 321,2K

Table 7: temperature samples, top entry case

 Fan

inlet

T1 T2 T3 T4 Air

inlet

T5 T6 Outlet

Temperature

[K]

333,15 330,7 329,2 328,1 327,4 273,2 323,0 323,0 323,0

333,15 330,2 328,5 327,1 326,4 263,2 321,2 321,2 321,2

44

Figure 19: temperature sample, top entry case

45

As before, the side entry case have the temperature values sampled from the inlets, outlet and

along the geometry path. Temperature readings show that the 10 degrees drop in atmospheric

temperature, only results in a 1,5 degree drop in air temperature at the outlet.

Table 8: temperature data, side entry case

 Fan

inlet

T1 T2 T3 Air

inlet

T4 T5 Outlet

Temperature

[K]

333,15 330,9 329,2 328,3 273,15 324,7 324,9 324,8

333,15 330,5 328,5 327,5 263,15 323,2 323,4 323,3

For both cases, the air temperatures leaving the system is well above the 277,65K temperature

level that ensures reasonable humidity values, according to figure 2.

Figure 20: temperature sample, side entry case

46

8.2 Pressure loss

To evaluate the results given by the OpenFOAM simulation, the theoretical pressure loss between

the fan inlet and air inlet is calculated. The calculated pressure loss for the two cases are then

compared to the pressure loss indicated by the simulations. Theoretical pressure loss is estimated

with equation 16. By examining the equation, one can see that the pressure loss is particularly

susceptible to change in velocity. Therefore, the fan inlet velocity used in these calculations are

drawn directly from the simulation to ensure an as accurate result as possible. As can be observed

in table 12 and 13, the fan inlet velocity for the top entry case is measured at 23,1m/s and

24,4m/s for the side entry case. Using the measured velocities, and loss coefficients from table 4,

the theoretical pressure is calculated:

∆𝑝𝑡𝑜𝑝𝐸𝑛𝑡𝑟𝑦 = 1,255𝑚 ∙ 1,059𝑘𝑔/𝑚3 ∙ 9,81𝑚/𝑠2

+ (
0,0235 ∙ 24,3𝑚

1𝑚
+ 1,94) (

1,059𝑘𝑔/𝑚3 ∙ (23,1𝑚/𝑠)2

2
) = 722,5 𝑃𝑎

∆𝑝𝑠𝑖𝑑𝑒𝐸𝑛𝑡𝑟𝑦 = 0,655𝑚 ∙ 1,059𝑘𝑔/𝑚3 ∙ 9,81𝑚/𝑠2

+ (
0,0235 ∙ 22,9𝑚

1𝑚
+ 1,43) (

1,059𝑘𝑔/𝑚3 ∙ (24,4𝑚/𝑠)2

2
) = 627,3 𝑃𝑎

Comparing the two results in table 9, one can see that the pressure results for the top entry case

deviate with about 188 Pa. Even more for the side entry case, which have a deviation of

approximately 328 Pa. These results suggest that one of the two methods are faulty.

Table 9: theoretical and simulated pressure loss between fan inlet and air inlet

Top entry Side entry

Theoretical Simulated Theoretical Simulated

273,15 K 263,15 K 273,15 K 263,15 K

722,5 Pa 534,3 Pa 533,8 Pa 627,3 Pa 299,8 Pa 299,3

Reevaluating equation 16, one can see that one other constant has a relatively large impact on the

equation outcome. The loss coefficient, also known as minor losses, needs to be found in

reference literature. By evaluating different literature sources, the loss coefficient seem to vary in

value. Another unforeseen challenge was to find a loss coefficient suitable for the pipe diameter

47

used in this thesis. Most available lists, does not extend up to a pipe diameter of 1 meter. This is

also true for the loss coefficient used in the theoretical pressure calculations above. As can be

seen in table 4, the loss coefficient is only given for the maximum diameter of 0,6m. To

circumvent the problem, a new reference that bases the loss coefficient on the relative value

between the bend radius and pipe diameter is utilized. The theoretical pressure is calculated with

revised loss coefficients from table 5:

∆𝑝𝑡𝑜𝑝𝐸𝑛𝑡𝑟𝑦 = 1,255𝑚 ∙ 1,059𝑘𝑔/𝑚3 ∙ 9,81𝑚/𝑠2

+ (
0,0235 ∙ 24,3𝑚

1𝑚
+ 1,19) (

1,059𝑘𝑔/𝑚3 ∙ (23,1𝑚/𝑠)2

2
) = 510,6 𝑃𝑎

∆𝑝𝑠𝑖𝑑𝑒𝐸𝑛𝑡𝑟𝑦 = 0,655𝑚 ∙ 1,059𝑘𝑔/𝑚3 ∙ 9,81𝑚/𝑠2

+ (
0,0235 ∙ 22,9𝑚

1𝑚
+ 0,91) (

1,059𝑘𝑔/𝑚3 ∙ (24,4𝑚/𝑠)2

2
) = 463,3 𝑃𝑎

The new theoretical pressure calculations show similarities to the simulated results. As seen in

table 10, the variation for the top entry case is only at 24 Pa. However, the side entry case still

have a relatively large deviation of approximately 164 Pa. This leads to believe that the loss

coefficients are not accurate enough for these type of calculations.

Table 10: revised theoretical and simulated pressure loss

Top entry Side entry

Theoretical Simulated Theoretical Simulated

273,15 K 263,15 K 273,15 K 263,15 K

510,6 Pa 534,3 Pa 533,8 Pa 463,3 Pa 299,8 Pa 299,3 Pa

Table 11: simulated total system pressure loss

Top entry Side entry

273,15 K 263,15 K 273,15 K 263,15 K

651,2 Pa 649,8 Pa 381,2 Pa 380,4 Pa

48

8.3 Flow conditions

With the fanPressure boundary condition, the mass flow of the fan inlet is pressure driven. Static

pressure of the fan stabilizes to match the total pressure drop within the system, and then deliver

the corresponding volumetric flow from the fan curve. Tables 12 and 13 show the flow readings

from the two cases. Mass flow differences between the two temperature setups within each case

are marginal, and the difference in mass flow between the two cases are relatively small. Both

cases are able to deliver well above the required 16 kg/s airflow at the outlet.

Table 12: flow conditions top entry

Atmospheric

temperature

273,15K 263,15K

Patch Fan inlet Air inlet Outlet Fan inlet Air inlet Outlet

Mass flow

[kg/s]

19,20 2,00 21,20 19,21 2,00 21,21

Density

[kg/𝑚3]

1,06 1,29 1,09 1,06 1,34 1,10

Volumetric

flow [𝑚3/s]

18,11 1,55 19,45 18,12 1,49 19,28

Velocity

[m/s]

23,09 0,36 9,39 23,09 0,35 9,34

49

Table 13: flow conditions side entry

Atmospheric

temperature

273,15 263,15

Patch Fan inlet Air inlet Outlet Fan inlet Air inlet Outlet

Mass flow

[kg/s]

20,17 2,00 22,17 20,17 2,00 22,17

Density

[kg/𝑚3]

1,06 1,29 1,08 1,06 1,34 1,09

Volumetric

flow [𝑚3/s]

19,03 1,55 20,53 19,03 1,49 20,34

Velocity

[m/s]

24,37 0,36 11,30 24,37 0,35 11,25

50

8.4 Fan performance

By inspecting the pressure and volumetric flow results from chapter 8.2 and 8.3, the fan

performance can be evaluated. The fanPressure boundary condition, coupled with the fan curve,

should ensure similar fan conditions as the fan performance curve in figure 1. Table 14 show

again the fan curve table used for the OpenFOAM simulation.

Table 14: fan curve

Volumetric flow [𝑚3/𝑠] Static pressure [Pa]

14 1800

15 1600

16 1400

17 1200

18 950

19 700

20 400

The results of the total system pressure drop are shown in table 11. First result for the top entry

case is a pressure drop of 650Pa. To compare the corresponding volumetric flowrate, the fan

curve in table 14 is interpolated:

𝑝 − 𝑝1

𝑝2 − 𝑝1
=

𝑉̇ − 𝑉̇1

𝑉̇2 − 𝑉̇1

Rearrange to solve for the volumetric flow:

𝑉̇ =
𝑝 − 𝑝1

𝑝2 − 𝑝1
(𝑉̇2 − 𝑉̇1) + 𝑉̇1

𝑉̇ =
650 − 700

400 − 700
(20 − 19) + 19 = 19,17

Comparing the volumetric flowrate found by interpolating the fan curve, and the measured fan

inlet flow rate from table 12, they do not coincide. The variance between the two values are

relatively small, 1,06𝑚3/𝑠, and may be contributed to inaccuracy in either the OpenFOAM

model or manual calculations. However, the interpolated value of expected volumetric flow does

match the value of measured mass flow at fan inlet, also shown in table 12. This therefore points

51

towards a theory that the fan curve in OpenFOAM does not specify the relations between

pressure loss and volumetric flow. But rather the connection between pressure loss and mass

flow. Unfortunately, attempts to find the specified unit of measurement within the OpenFOAM

documentation has failed. Regardless of this error in assumption, if the fan curve should have

been specified in mass flow, the resulting changes in fan performance are not that significant.

This is due to the air density value being close to 1, at the fan inlet temperature. The fan curve

with mass flow values instead of volumetric flow are shown in table 15 below.

Table 15: fan curve mass flow

Mass flow [kg/s] Static pressure [Pa]

14,8 1800

15,9 1600

16,9 1400

18,0 1200

19,1 950

20,1 700

21,2 400

52

8.5 Mesh quality

To ensure accurate results, the mesh is verified using the yPlus value. Both meshes with

temperature variations are tested and the results are shown in table 16. The recommended yPlus

value is within the range of 0 to 300. Which is true for the largest portion of the mesh, however

the maximum values are relatively high.

Table 16: yPlus

Case Top entry Side entry

Atmospheric

temperature

273,15 K 263,15 K 273,15 K 263,15 K

yPlus Max: 1080

Min: 6

Average: 107

Max: 1090

Min: 6

Average: 108

Max: 805

Min: 3

Average: 107

Max: 815

Min: 3

Average: 108

Mesh size 1486140 cells 1486140 cells 1765704 cells 1765704 cells

The cells outside the recommended yPlus range are mostly located in the transition area between

the pipe and duct. As can be seen in figure 21, the pipe form a sharp edge where it meets the duct.

The elevated yPlus values are a result of high flow velocity around the edge, and subsequently

the mesh not being fine enough in this particular part of the geometry.

53

Figure 21: yPlus values top entry case

High yPlus values might indicate that the simulated cases are inaccurate. Therefore, to validate

the obtained results, a refined mesh of the top entry case is constructed. The purpose of this

improved mesh is to run the case with the same boundary conditions and compare it to the

previous results. As seen in figure 22, mesh refinement is focused around where the pipe and duct

merges. The mesh is now so big in size that it is important to limit the generation of unnecessary

cells.

54

Figure 22: Refined mesh top entry

Table 17: Results of top entry case with finer mesh compared to original mesh

Mesh Refined Original

Patch Fan inlet Air inlet Outlet Fan inlet Air inlet Outlet

Mass flow

[kg/s]

19,22 2,00 21,22 19,20 2,00 21,20

Density

[kg/𝑚3]

1,06 1,29 1,09 1,06 1,29 1,09

Temperature

[K]

333,15 273,15 323,26 333,15 273,15 323,0

The results with the new mesh is compared to the results from the original mesh. As can be seen

in table 17, there is an elevation in mass flow and temperature between the two meshes. The

increase is small, and assumed not relevant when it comes to mesh quality. Reasons for this

deviation in the results will be discussed further in chapter 8.6.

55

Figure 23: yPlus value for top entry case with refined mesh

The new mesh in figure 23 show lower yPlus values and deliver a satisfactory result. Even

though there are still some high value zones, they are not enough to question the simulation

outcome. The low yPlus value and similar field results from table 17 are both proof of an

accurate OpenFOAM model.

Table 18: yPlus from refined mesh

Case Top entry with refined mesh

Atmospheric temperature 273,15 K

yPlus Max: 576

Min: 7

Average: 89

Mesh size 2454899 cells

56

8.6 Residuals

In the previous chapters, some of the evaluated values show some minor deviations from the

expected result. As mentioned, they may stem from OpenFOAM inaccuracy or user error.

However, by inspecting the behavior of the equation residuals as the simulation is being solved,

the variable results may be traced back to the automatically adjusting fanPressure boundary. As

the residuals reach acceptable levels and convergence, some of the values start oscillating. This

may be due to the fanPressure constantly adjusting the mass flow to match the total system

pressure drop. The adjustment of static pressure and flow velocity may cause OpenFOAM to

persistently alter the results and not find one steady state solution. Attempts to run the case for

longer simulation times does not yield any difference in behavior. In figure 24, a test case was

run for 30000 iterations and the residuals did not show any trends to stop oscillating. These

oscillations are then what may cause the minor deviation in field values discussed in chapter 8.5.

Figure 24: Example of oscillating residuals

57

9 CONLUSION

9.1 Project conclusion

Evaluating the results obtained from the OpenFOAM model, the fan in question passes all the

necessary criteria set by the system requirements. For both designs, the performance is well

above the temperature and mass flow limits for even the lowest atmospheric temperature. Still,

the side entry design did produce a slightly more favorable result compared to the top entry

design. Initially there were some problems finding the correct boundary conditions to simulate

the system behavior. Since one of the requirements where a minimum mass flow leaving the

system, it would be ideal to fix the flow rate at the outlet and let the air inlet adjust accordingly.

This would however, result in an unstable model. The substitute solution of utilizing mass

conservation and fixing the mass flow to air inlet did nevertheless produce a satisfactory result.

As pointed out in chapter 2.7 information regarding the mechanism drawing air into the turbine is

unavailable. Therefore, as long as the two inlet flows add up to more than the required minimum

mass flow at outlet, the simulation functions as intended. In addition, the swak4Foam boundary

condition could have been used if no other solution had presented itself. The second challenge

was to find a boundary condition that could accurately recreate the fan behavior. The fanPressure

boundary fulfilled all of the criteria, but the lacking documentation did present some additional

problems. A lack of knowledge in C++ language limited the usefulness of the OpenFOAM code

and exploring this as a source of information, did not yield any significant results. Unfortunately,

this lack of information did manifest itself in the final results. The fan curve text-file was

assumed to use volumetric flow as input and was not questioned until all the final OpenFOAM

models had been completed. This leaves some uncertainty in the resulting values. Another issue

that did arise was the inaccuracy for the chosen method of verifying pressure loss in the

simulations. The Bernoulli’s equation coupled with Darcy’s equation was found to be heavy

reliant on the loss coefficient. Finding a reliable value for the loss coefficient did turn out to be a

challenge as the different sources did not use similar values. Thus leading to such a wide range of

pressure loss values that it could not accurately validate simulation results. Regardless, the

OpenFOAM models where validated with the yPlus value and found to have a high quality mesh.

58

The same is true for solution convergence, reliable results was achieved even though there was

some issues with the residuals oscillating.

By evaluating all of the results, it is concluded that the fan in question is fit for system operation.

The accuracy of the simulation solution is questioned, but not to a degree that outweighs the

tolerance shown in the results compared to system requirements. Throughout this thesis, there has

not been found any evidence that the OpenFOAM model is faulty. Therefore, with only a few

inaccuracy issues it is concluded that the OpenFOAM models perform as expected and delivers

answers to the questions one set forth to find at the beginning of this thesis.

59

9.2 Future work

In this thesis, a complete model of the air intake system has been created. The OpenFOAM

models cover all of the established system requirements. However, before starting work on such

an OpenFOAM analysis, a more complete information gathering should be carried out. The

assumptions made regarding current turbine operation may be inaccurate. As for validation of

pressure calculations, access to accurate data regarding the loss coefficient would improve the

results and verify the integrity of the OpenFOAM model. Lastly, with the lack of official

OpenFOAM documentation, more knowledge regarding the C++ language would lead to a

greater understanding of the boundary conditions. Being able to read the OpenFOAM code would

open up a new source of reliable information, otherwise unavailable or found as less reliable

second hand information on the OpenFOAM forums.

60

10 REFERENCES

ASHRAE. 2009. ASHRAE handbook, fundamentals, ASHRAE Inc, p. 3.1-3.7.

CFD-WIKI. 2008. Hydraulic diameter [Online]

Available: http://www.cfd-online.com/Wiki/Hydraulic_diameter

 [Accessed 05.02.2015]

CFD-WIKI. 2012A. Turbulence length scale [Online]

Available: http://www.cfd-online.com/Wiki/Turbulence_length_scale

 [Accessed 05.02.2015]

CFD-WIKI. 2012B. Turbulence intensity [Online]

Available: http://www.cfd-online.com/Wiki/Turbulence_intensity

 [Accessed 05.02.2015]

CFD-WIKI. 2014. Turbulence free-stream boundary conditions [Online]

Available: http://www.cfd-online.com/Wiki/Turbulence_free-

stream_boundary_conditions

[Accessed 05.02.2015]

CHAPALLAZ, J. M., EICHENBERGER, P. & FISCHER, G. 1992. Manual on pumps used as

turbines, MHPG series, harnessing water power on a small scale, appendix A, section 5.3

[online]

 Available: http://www.nzdl.org/gsdlmod?e=d-00000-00---off-0hdl--00-0----0-10-0---0---

0direct-10---4-------0-0l--11-en-50---20-help---00-0-1-00-0-0-11-1-0utfZz-8-00-0-0-11-

10-0utfZz-8-00&cl=CL3.46&d=HASH011f05bf8734d88d1a080257>=1

 [Accessed 15.05.2015]

CRANE, 1982. Flow of fluids through valves, fittings and pipe, Crane Co, New York, p. A26-

A29.

GSCHAIDER, B. 2015A. PyFoam [Online]

Available: https://openfoamwiki.net/index.php/Contrib/PyFoam

 [Accessed 23.03.2015]

GSCHAIDER, B. 2015B. swak4Foam [Online]

Available: https://openfoamwiki.net/index.php/Contrib/swak4Foam

 [Accessed 01.05.2015]

http://www.cfd-online.com/Wiki/Hydraulic_diameter
http://www.cfd-online.com/Wiki/Turbulence_length_scale
http://www.cfd-online.com/Wiki/Turbulence_intensity
http://www.cfd-online.com/Wiki/Turbulence_free-stream_boundary_conditions
http://www.cfd-online.com/Wiki/Turbulence_free-stream_boundary_conditions
http://www.nzdl.org/gsdlmod?e=d-00000-00---off-0hdl--00-0----0-10-0---0---0direct-10---4-------0-0l--11-en-50---20-help---00-0-1-00-0-0-11-1-0utfZz-8-00-0-0-11-10-0utfZz-8-00&cl=CL3.46&d=HASH011f05bf8734d88d1a080257>=1
http://www.nzdl.org/gsdlmod?e=d-00000-00---off-0hdl--00-0----0-10-0---0---0direct-10---4-------0-0l--11-en-50---20-help---00-0-1-00-0-0-11-1-0utfZz-8-00-0-0-11-10-0utfZz-8-00&cl=CL3.46&d=HASH011f05bf8734d88d1a080257>=1
http://www.nzdl.org/gsdlmod?e=d-00000-00---off-0hdl--00-0----0-10-0---0---0direct-10---4-------0-0l--11-en-50---20-help---00-0-1-00-0-0-11-1-0utfZz-8-00-0-0-11-10-0utfZz-8-00&cl=CL3.46&d=HASH011f05bf8734d88d1a080257>=1
https://openfoamwiki.net/index.php/Contrib/PyFoam
https://openfoamwiki.net/index.php/Contrib/swak4Foam

61

HJERTAGER, B. H. 2009A. Lecture notes in OpenFOAM, University of Stavanger, Stavanger,

p. 11-24, 37-55, 73-85, 111-121.

HJERTAGER, B. H. 2009B. Computational analysis of fluid flow processes, University of

Stavanger, Stavanger, p. 7-29.

HJERTAGER, B. H. 2009C. Turbulence theory and modelling, University of Stavanger,

Stavanger, p. 13-26.

HJERTAGER, B. H. 2013. Fluid dynamics, McGraw-Hill, New York, p. 420-424.

INCROPERA, F. P., DEWITT, D. P., BERGMAN, T. L. & LAVINE, A. S. 2009. Introduction to

heat transfer, John Wiley & Sons, Hoboken, p. 399-409, 840-841.

OPENFOAM FOUNDATION. 2011. Compressible turbulence wall functions [Online]

 Available: http://openfoam.github.io/Documentation-dev/html/a00043.html#details

 [Accessed 02.04.2015]

OPENFOAM WIKI. 2012. Example calcMassFlow [Online]

Available:

https://openfoamwiki.net/index.php/Contrib/swak4Foam/Example_calcMassFlow

[Accessed 03.05.2015]

VERSTEEG, H. K. & MALALASEKERA, W. 2007. An introduction to computational fluid

dynamics, the finite volume method, Pearsons Education Limited, Harlow, p. 9-26, 62-76.

http://openfoam.github.io/Documentation-dev/html/a00043.html#details
https://openfoamwiki.net/index.php/Contrib/swak4Foam/Example_calcMassFlow

i

APPENDIX A

A.1 System dimensions, top entry design

ii

iii

A.2 System dimensions, side entry design

iv

v

APPENDIX B

B.1 Boundary conditions

B.1.1 Top entry, 273K

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object alphat;

}

// * //

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

 pipe

 {

 type compressible::alphatWallFunction;

 Prt 0.7309;

 value uniform 0;

 }

 duct

 {

 type compressible::alphatWallFunction;

 Prt 0.7309;

 value uniform 0;

 }

 air

 {

 type calculated;

 value uniform 0;

 }

 inlet

 {

 type calculated;

 value uniform 0;

 }

 outlet

 {

 type calculated;

 value uniform 0;

 }

}

// *** //

vi

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object epsilon;

}

// * //

dimensions [0 2 -3 0 0 0 0];

internalField uniform 1;

boundaryField

{

 pipe

 {

 type compressible::epsilonWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 1.39;

 }

 duct

 {

 type compressible::epsilonWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0.00002;

 }

 inlet

 {

 type compressible::turbulentMixingLengthDissipationRateInlet;

 mixingLength 0.038;

 value uniform 1.39;

 }

 air

 {

 type compressible::turbulentMixingLengthDissipationRateInlet;

 mixingLength 0.068;

 value uniform 0.00002;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 1.39;

 value uniform 1.39;

 }

}

// *** //

vii

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object k;

}

// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 1;

boundaryField

{

 pipe

 {

 type compressible::kqRWallFunction;

 value uniform 1;

 }

 duct

 {

 type compressible::kqRWallFunction;

 value uniform 1;

 }

 inlet

 {

 type fixedValue;

 intensity 0.028;

 value uniform 0.47;

 }

 air

 {

 type fixedValue;

 intensity 0.042;

 value uniform 0.0003;

 }

 outlet

 {

 type inletOutlet;

 inletValue 0.028;

 value uniform 0.47;

 }

}

// *** //

viii

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object mut;

}

// * //

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

 pipe

 {

 type mutkWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0;

 }

 duct

 {

 type mutkWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0;

 }

 inlet

 {

 type calculated;

 value uniform 0;

 }

 air

 {

 type calculated;

 value uniform 0;

 }

 outlet

 {

 type calculated;

 value uniform 0;

 }

}

// *** //

ix

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p;

}

// * //

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 101325;

boundaryField

{

 pipe

 {

 type zeroGradient;

 }

 duct

 {

 type zeroGradient;

 }

 inlet

 {

 type fanPressure;

 patchType totalPressure;

 fileName "./constant/fanCurve";

 outOfBounds clamp;

 direction in;

 U U;

 phi phi;

 psi none;

 rho rho;

 p0 uniform 101325; //environmental total pressure

 value uniform 101325; //initial pressure

 gamma 1;

 }

 air

 {

 type zeroGradient;

 }

 outlet

 {

 type fixedValue;

 value uniform 101325;

 }

}

// *** //

x

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object T;

}

// * //

dimensions [0 0 0 1 0 0 0];

internalField uniform 293.15;

boundaryField

{

 pipe

 {

 type wallHeatTransfer;

 alphaWall uniform 20.75;

 Tinf uniform 273.15;

 value uniform 273.15;

 }

 duct

 {

 type zeroGradient;

 }

 inlet

 {

 type fixedValue;

 value uniform 333.15;

 }

 air

 {

 type fixedValue;

 value uniform 273.15;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 293.15;

 value uniform 293.15;

 }

}

// *** //

xi

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volVectorField;

 object U;

}

// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 pipe

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 duct

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 inlet

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 air

 {

 type flowRateInletVelocity;

 massFlowRate 2;

 value uniform (0 0 0);

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform (0 0 0); //m³/s

 value uniform (0 0 0);

 }

}

// *** //

xii

B.1.2 Top entry, 263K

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object alphat;

}

// * //

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

 pipe

 {

 type compressible::alphatWallFunction;

 Prt 0.7309;

 value uniform 0;

 }

 duct

 {

 type compressible::alphatWallFunction;

 Prt 0.7309;

 value uniform 0;

 }

 air

 {

 type calculated;

 value uniform 0;

 }

 inlet

 {

 type calculated;

 value uniform 0;

 }

 outlet

 {

 type calculated;

 value uniform 0;

 }

}

// *** //

xiii

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object epsilon;

}

// * //

dimensions [0 2 -3 0 0 0 0];

internalField uniform 1;

boundaryField

{

 pipe

 {

 type compressible::epsilonWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 1.39;

 }

 duct

 {

 type compressible::epsilonWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0.00002;

 }

 inlet

 {

 type compressible::turbulentMixingLengthDissipationRateInlet;

 mixingLength 0.038;

 value uniform 1.39;

 }

 air

 {

 type compressible::turbulentMixingLengthDissipationRateInlet;

 mixingLength 0.068;

 value uniform 0.00002;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 1.39;

 value uniform 1.39;

 }

}

// *** //

xiv

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object k;

}

// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 1;

boundaryField

{

 pipe

 {

 type compressible::kqRWallFunction;

 value uniform 1;

 }

 duct

 {

 type compressible::kqRWallFunction;

 value uniform 1;

 }

 inlet

 {

 type fixedValue;

 intensity 0.028;

 value uniform 0.47;

 }

 air

 {

 type fixedValue;

 intensity 0.042;

 value uniform 0.0003;

 }

 outlet

 {

 type inletOutlet;

 inletValue 0.028;

 value uniform 0.47;

 }

}

// *** //

xv

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object mut;

}

// * //

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

 pipe

 {

 type mutkWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0;

 }

 duct

 {

 type mutkWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0;

 }

 inlet

 {

 type calculated;

 value uniform 0;

 }

 air

 {

 type calculated;

 value uniform 0;

 }

 outlet

 {

 type calculated;

 value uniform 0;

 }

}

// *** //

xvi

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p;

}

// * //

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 101325;

boundaryField

{

 pipe

 {

 type zeroGradient;

 }

 duct

 {

 type zeroGradient;

 }

 inlet

 {

 type fanPressure;

 patchType totalPressure;

 fileName "./constant/fanCurve";

 outOfBounds clamp;

 direction in;

 U U;

 phi phi;

 psi none;

 rho rho;

 p0 uniform 101325; //environmental total pressure

 value uniform 101325; //initial pressure

 gamma 1;

 }

 air

 {

 type zeroGradient;

 }

 outlet

 {

 type fixedValue;

 value uniform 101325;

 }

}

// *** //

xvii

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object T;

}

// * //

dimensions [0 0 0 1 0 0 0];

internalField uniform 263.15;

boundaryField

{

 pipe

 {

 type wallHeatTransfer;

 alphaWall uniform 21.09;

 Tinf uniform 263.15;

 value uniform 263.15;

 }

 duct

 {

 type zeroGradient;

 }

 inlet

 {

 type fixedValue;

 value uniform 333.15;

 }

 air

 {

 type fixedValue;

 value uniform 263.15;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 333.15;

 value uniform 263.15;

 }

}

// *** //

xviii

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volVectorField;

 object U;

}

// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 pipe

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 duct

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 inlet

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 air

 {

 type flowRateInletVelocity;

 massFlowRate 2;

 value uniform (0 0 0);

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform (0 0 0); //m³/s

 value uniform (0 0 0);

 }

}

// *** //

xix

B.1.3 Side entry, 273K

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object alphat;

}

// * //

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

 pipe

 {

 type compressible::alphatWallFunction;

 Prt 0.7309;

 value uniform 0;

 }

 duct

 {

 type compressible::alphatWallFunction;

 Prt 0.7309;

 value uniform 0;

 }

 air

 {

 type calculated;

 value uniform 0;

 }

 inlet

 {

 type calculated;

 value uniform 0;

 }

 outlet

 {

 type calculated;

 value uniform 0;

 }

}

// *** //

xx

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object epsilon;

}

// * //

dimensions [0 2 -3 0 0 0 0];

internalField uniform 1;

boundaryField

{

 pipe

 {

 type compressible::epsilonWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 1.39;

 }

 duct

 {

 type compressible::epsilonWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0.00002;

 }

 inlet

 {

 type compressible::turbulentMixingLengthDissipationRateInlet;

 mixingLength 0.038;

 value uniform 1.39;

 }

 air

 {

 type compressible::turbulentMixingLengthDissipationRateInlet;

 mixingLength 0.068;

 value uniform 0.00002;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 1.39;

 value uniform 1.39;

 }

}

// *** //

xxi

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object k;

}

// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 1;

boundaryField

{

 pipe

 {

 type compressible::kqRWallFunction;

 value uniform 1;

 }

 duct

 {

 type compressible::kqRWallFunction;

 value uniform 1;

 }

 inlet

 {

 type fixedValue;

 intensity 0.028;

 value uniform 0.47;

 }

 air

 {

 type fixedValue;

 intensity 0.042;

 value uniform 0.0003;

 }

 outlet

 {

 type inletOutlet;

 inletValue 0.028;

 value uniform 0.47;

 }

}

// *** //

xxii

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object mut;

}

// * //

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

 pipe

 {

 type mutkWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0;

 }

 duct

 {

 type mutkWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0;

 }

 inlet

 {

 type calculated;

 value uniform 0;

 }

 air

 {

 type calculated;

 value uniform 0;

 }

 outlet

 {

 type calculated;

 value uniform 0;

 }

}

// *** //

xxiii

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p;

}

// * //

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 101325;

boundaryField

{

 pipe

 {

 type zeroGradient;

 }

 duct

 {

 type zeroGradient;

 }

 inlet

 {

 type fanPressure;

 patchType totalPressure;

 fileName "./constant/fanCurve";

 outOfBounds clamp;

 direction in;

 U U;

 phi phi;

 psi none;

 rho rho;

 p0 uniform 101325; //environmental total pressure

 value uniform 101325; //initial pressure

 gamma 1;

 }

 air

 {

 type zeroGradient;

 }

 outlet

 {

 type fixedValue;

 value uniform 101325;

 }

}

// *** //

xxiv

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object T;

}

// * //

dimensions [0 0 0 1 0 0 0];

internalField uniform 273.15;

boundaryField

{

 pipe

 {

 type wallHeatTransfer;

 alphaWall uniform 20.75;

 Tinf uniform 273.15;

 value uniform 273.15;

 }

 duct

 {

 type zeroGradient;

 }

 inlet

 {

 type fixedValue;

 value uniform 333.15;

 }

 air

 {

 type fixedValue;

 value uniform 273.15;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 333.15;

 value uniform 273.15;

 }

}

// *** //

xxv

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volVectorField;

 object U;

}

// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 pipe

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 duct

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 inlet

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 air

 {

 type flowRateInletVelocity;

 massFlowRate 2;

 value uniform (0 0 0);

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform (0 0 0); //m³/s

 value uniform (0 0 0);

 }

}

// *** //

xxvi

B.1.4 Side entry, 263K

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object alphat;

}

// * //

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

 pipe

 {

 type compressible::alphatWallFunction;

 Prt 0.7309;

 value uniform 0;

 }

 duct

 {

 type compressible::alphatWallFunction;

 Prt 0.7309;

 value uniform 0;

 }

 air

 {

 type calculated;

 value uniform 0;

 }

 inlet

 {

 type calculated;

 value uniform 0;

 }

 outlet

 {

 type calculated;

 value uniform 0;

 }

}

// *** //

xxvii

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object epsilon;

}

// * //

dimensions [0 2 -3 0 0 0 0];

internalField uniform 1;

boundaryField

{

 pipe

 {

 type compressible::epsilonWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 1.39;

 }

 duct

 {

 type compressible::epsilonWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0.00002;

 }

 inlet

 {

 type compressible::turbulentMixingLengthDissipationRateInlet;

 mixingLength 0.038;

 value uniform 1.39;

 }

 air

 {

 type compressible::turbulentMixingLengthDissipationRateInlet;

 mixingLength 0.068;

 value uniform 0.00002;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 1.39;

 value uniform 1.39;

 }

}

// *** //

xxviii

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object k;

}

// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 1;

boundaryField

{

 pipe

 {

 type compressible::kqRWallFunction;

 value uniform 1;

 }

 duct

 {

 type compressible::kqRWallFunction;

 value uniform 1;

 }

 inlet

 {

 type fixedValue;

 intensity 0.028;

 value uniform 0.47;

 }

 air

 {

 type fixedValue;

 intensity 0.042;

 value uniform 0.0003;

 }

 outlet

 {

 type inletOutlet;

 inletValue 0.028;

 value uniform 0.47;

 }

}

// *** //

xxix

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object mut;

}

// * //

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

 pipe

 {

 type mutkWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0;

 }

 duct

 {

 type mutkWallFunction;

 Cmu 0.09;

 kappa 0.41;

 E 9.8;

 value uniform 0;

 }

 inlet

 {

 type calculated;

 value uniform 0;

 }

 air

 {

 type calculated;

 value uniform 0;

 }

 outlet

 {

 type calculated;

 value uniform 0;

 }

}

// *** //

xxx

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p;

}

// * //

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 101325;

boundaryField

{

 pipe

 {

 type zeroGradient;

 }

 duct

 {

 type zeroGradient;

 }

 inlet

 {

 type fanPressure;

 patchType totalPressure;

 fileName "./constant/fanCurve";

 outOfBounds clamp;

 direction in;

 U U;

 phi phi;

 psi none;

 rho rho;

 p0 uniform 101325; //environmental total pressure

 value uniform 101325; //initial pressure

 gamma 1;

 }

 air

 {

 type zeroGradient;

 }

 outlet

 {

 type fixedValue;

 value uniform 101325;

 }

}

// *** //

xxxi

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object T;

}

// * //

dimensions [0 0 0 1 0 0 0];

internalField uniform 263.15;

boundaryField

{

 pipe

 {

 type wallHeatTransfer;

 alphaWall uniform 21.09;

 Tinf uniform 263.15;

 value uniform 263.15;

 }

 duct

 {

 type zeroGradient;

 }

 inlet

 {

 type fixedValue;

 value uniform 333.15;

 }

 air

 {

 type fixedValue;

 value uniform 263.15;

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform 333.15;

 value uniform 263.15;

 }

}

// *** //

xxxii

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volVectorField;

 object U;

}

// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 pipe

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 duct

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 inlet

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 air

 {

 type flowRateInletVelocity;

 massFlowRate 2;

 value uniform (0 0 0);

 }

 outlet

 {

 type inletOutlet;

 inletValue uniform (0 0 0); //m³/s

 value uniform (0 0 0);

 }

}

// *** //

xxxiii

APPENDIX C

C.1 Fan curve

7

(

(14 1800)

(15 1600)

(16 1400)

(17 1200)

(18 950)

(19 700)

(20 400)

)

xxxiv

C.2 RASProperties

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object RASProperties;

}

// * //

RASModel kEpsilon;

turbulence on;

printCoeffs on;

// *** //

xxxv

C.3 thermophysicalProperties

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object thermophysicalProperties;

}

// * //

thermoType

{

 type hePsiThermo;

 mixture pureMixture;

 transport sutherland;

 thermo hConst;

 equationOfState perfectGas;

 specie specie;

 energy sensibleInternalEnergy;

}

mixture

{

 specie

 {

 nMoles 1;

 molWeight 28.9;

 }

 thermodynamics

 {

 Cp 1005;

 Hf 0;

 }

 transport

 {

 As 1.4792e-06;

 Ts 116;

 }

}

// *** //

xxxvi

APPENDIX D

D.1 ControlDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

}

// * //

application rhoSimpleFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 10000;

deltaT 1;

writeControl timeStep;

writeInterval 500;

purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

libs (

 "libgroovyStandardBCs.so"

 "libOpenFOAM.so"

 "libgroovyBC.so"

 "libsimpleSwakFunctionObjects.so"

 "libswakFunctionObjects.so"

 "libswakTopoSources.so"

 "libcompressibleRASModels.so"

 "libswakPythonIntegration.so"

) ;

functions {

patchMassFlow

 {

 type patchExpression;

 accumulations (

xxxvii

 sum

);

 patches (

 inlet

 outlet

 air

);

 expression "phi";

 verbose true;

 }

patchDensity

 {

 type patchExpression;

 accumulations (

 average

);

 patches (

 inlet

 outlet

 air

);

 expression "rho";

 verbose true;

 }

patchVelocity

 {

 type patchExpression;

 accumulations (

 average

);

 patches (

 inlet

 outlet

 air

);

 expression "U";

 verbose true;

 }

pressureDropInletOutlet

 {

 type patchExpression;

 variables ("pOut{patch'outlet}=sum(p*area())/sum(area());");

 accumulations (

 average

);

 patches (

 inlet

);

 expression "p-pOut";

 verbose true;

 }

pressureDropInletAir

 {

 type patchExpression;

 variables ("pAir{patch'air}=sum(p*area())/sum(area());");

 accumulations (

 average

);

 patches (

 inlet

);

 expression "p-pAir";

 verbose true;

 }

patchPressure

 {

 type patchExpression;

 accumulations (

 average

);

 patches (

xxxviii

 inlet

 outlet

 air

);

 expression "p";

 verbose true;

 }

}

// *** //

xxxix

D.2 decomposeParDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 note "mesh decomposition control dictionary";

 object decomposeParDict;

}

// * //

numberOfSubdomains 2; // # of CPU cores

method simple;

simpleCoeffs

{

 n (2 1 1); // needs to multiply to = # cores

 delta 0.001;

}

hierarchicalCoeffs

{

 n (1 1 1);

 delta 0.001;

 order xyz;

}

manualCoeffs

{

 dataFile "cellDecomposition";

}

// *** //

xl

D.3 fvSchemes

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

}

// * //

ddtSchemes

{

 default steadyState;

}

gradSchemes

{

 default Gauss linear;

}

divSchemes

{

 default none;

 div(phi,U) bounded Gauss upwind;

 div((muEff*dev2(T(grad(U))))) Gauss linear;

 div(phi,e) bounded Gauss upwind;

 div(phi,epsilon) bounded Gauss upwind;

 div(phi,k) bounded Gauss upwind;

 div(phi,Ekp) bounded Gauss upwind;

}

laplacianSchemes

{

 default Gauss linear corrected;

}

interpolationSchemes

{

 default linear;

}

snGradSchemes

{

 default corrected;

}

fluxRequired

{

 default no;

 p ;

}

// *** //

xli

D.4 fvSolution

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

}

// * //

solvers

{

 p

 {

 solver GAMG;

 tolerance 1e-08;

 relTol 0.05;

 smoother GaussSeidel;

 cacheAgglomeration on;

 nCellsInCoarsestLevel 20;

 agglomerator faceAreaPair;

 mergeLevels 1;

 }

 U

 {

 solver smoothSolver;

 smoother GaussSeidel;

 nSweeps 2;

 tolerance 1e-06;

 relTol 0.1;

 }

 e

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-06;

 relTol 0.1;

 }

 "(k|epsilon)"

 {

 $U;

 tolerance 1e-07;

 relTol 0.1;

 }

}

SIMPLE

{

 nNonOrthogonalCorrectors 0;

 rhoMin rhoMin [1 -3 0 0 0] 0.5;

 rhoMax rhoMax [1 -3 0 0 0] 1.5;

 residualControl

 {

 p 1e-9;

 U 1e-10;

 e 1e-10;

xlii

 // possibly check turbulence fields

 "(k|epsilon|omega)" 1e-6;

 }

}

relaxationFactors

{

 fields

 {

 p 0.5;

 rho 0.05; //0.01

 }

 equations

 {

 U 0.5;

 "(k|epsilon)" 0.7; //0.01

 e 0.5; //0.01

 }

}

// *** //

xliii

D.5 Top entry

D.5.1 sampleDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object sampleDict;

}

// * //

// Set output format : choice of

// xmgr

// jplot

// gnuplot

// raw

// vtk

// ensight

// csv

setFormat raw;

// Surface output format. Choice of

// null : suppress output

// ensight : Ensight Gold format, one field per case file

// foamFile : separate points, faces and values file

// dx : DX scalar or vector format

// vtk : VTK ascii format

// raw : x y z value format for use with e.g. gnuplot 'splot'.

//

// Note:

// other formats such as obj, stl, etc can also be written (by proxy)

// but without any values!

surfaceFormat foamFile;

// optionally define extra controls for the output formats

formatOptions

{

 ensight

 {

 format ascii;

 }

}

// interpolationScheme. choice of

// cell : use cell-centre value only; constant over cells

// (default)

// cellPoint : use cell-centre and vertex values

// cellPointFace : use cell-centre, vertex and face values.

// pointMVC : use point values only (Mean Value Coordinates)

// cellPatchConstrained : like 'cell' but uses cell-centre except on

// boundary faces where it uses the boundary value.

// For use with e.g. patchCloudSet.

// 1] vertex values determined from neighbouring cell-centre values

// 2] face values determined using the current face interpolation scheme

// for the field (linear, gamma, etc.)

interpolationScheme cellPoint;

xliv

// Fields to sample.

fields

(

 T

);

// Set sampling definition: choice of

// uniform evenly distributed points on line

// face one point per face intersection

// midPoint one point per cell, inbetween two face intersections

// midPointAndFace combination of face and midPoint

//

// polyLine specified points, not nessecary on line, uses

// tracking

// cloud specified points, uses findCell

// triSurfaceMeshPointSet points of triSurface

//

// axis: how to write point coordinate. Choice of

// - x/y/z: x/y/z coordinate only

// - xyz: three columns

// (probably does not make sense for anything but raw)

// - distance: distance from start of sampling line (if uses line) or

// distance from first specified sampling point

//

// type specific:

// uniform, face, midPoint, midPointAndFace : start and end coordinate

// uniform: extra number of sampling points

// polyLine, cloud: list of coordinates

// patchCloud: list of coordinates and set of patches to look for nearest

// patchSeed: random sampling on set of patches. Points slightly off

// face centre.

// Surface sampling definition

//

// 1] patches are not triangulated by default

// 2] planes are always triangulated

// 3] iso-surfaces are always triangulated

surfaces

(

 plane1

 {

 type plane; // always triangulated

 basePoint (1.26 2.55 0);

 normalVector (1 0 0);

 //- Optional: restrict to a particular zone

 zone zone1;

 }

 plane2

 {

 type plane; // always triangulated

 basePoint (3.24 5.815 4.5);

 normalVector (0 0 1);

 //- Optional: restrict to a particular zone

 zone zone2;

 }

 plane3

 {

 type plane; // always triangulated

 basePoint (1.3 3.875 10);

 normalVector (0 0 1);

 //- Optional: restrict to a particular zone

 zone zone2;

 }

 plane4

 {

 type plane; // always triangulated

 basePoint (1.3 1.3 14.465);

 normalVector (0 1 0);

xlv

 //- Optional: restrict to a particular zone

 zone zone2;

 }

 plane5

 {

 type plane; // always triangulated

 basePoint (0.7 0.87 8.985);

 normalVector (0 0 1);

 //- Optional: restrict to a particular zone

 zone zone3;

 }

 plane6

 {

 type plane; // always triangulated

 basePoint (0.7 -1 7.385);

 normalVector (0 1 0);

 //- Optional: restrict to a particular zone

 zone zone3;

 }

 inlet

 {

 type patch;

 patches (".*inlet.*");

 interpolate false;

 }

 air

 {

 type patch;

 patches (".*air.*");

 interpolate false;

 }

 outlet

 {

 type patch;

 patches (".*outlet.*");

 interpolate false;

 }

);

// *** //

xlvi

D.5.2 snappyHexMesh

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object snappyHexMeshDict;

}

// * //

// Which of the steps to run

castellatedMesh false; // make basic mesh ?

snap false; // decide to snap back to surface ?

addLayers true; // decide to add viscous layers ?

geometry // Load in STL files here

{

 inlet.stl {type triSurfaceMesh; name inlet;}

 outlet.stl {type triSurfaceMesh; name outlet;}

 air.stl {type triSurfaceMesh; name air;}

 pipe.stl {type triSurfaceMesh; name pipe;}

 duct.stl {type triSurfaceMesh; name duct;}

 refinementArea.stl {type triSurfaceMesh; name refinementArea;}

 volume.stl {type triSurfaceMesh; name volume;}

 refinementBox {type searchableBox; min (-0.5 0.055 13.3); max (3.1 1.6 15.165);}

};

castellatedMeshControls

{

 maxLocalCells 100000; //max cells per CPU core

 maxGlobalCells 2000000; //max cells to use before mesh deletion step

 minRefinementCells 10; //was 0 - zero means no bad cells are allowed during refinement

stages

 maxLoadUnbalance 0.10;

 nCellsBetweenLevels 1; // expansion factor between each high & low refinement zone

 // Explicit feature edge refinement

 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 features // taken from STL from each .eMesh file created by "SurfaceFeatureExtract" command

 (

 {file "ductClosed.eMesh"; level 2;}

);

 // Surface based refinement

 // ~~~~~~~~~~~~~~~~~~~~~~~~

 refinementSurfaces // Surface-wise min and max refinement level

 {

 inlet {level (0 0);}

 outlet {level (0 0);}

 air {level (1 1);}

 pipe {level (1 1);}

 duct {level (1 1);}

 }

 resolveFeatureAngle 30; // Resolve sharp angles // Default 30

 refinementRegions // In descending levels of fine-ness

 {pipe {mode distance; levels ((0.05 2));} // was ((0.001 4) (0.003 3) (0.01 2))

 duct {mode distance; levels ((0.05 2));}

xlvii

 air {mode distance; levels ((0.05 2));}}

 locationInMesh (0 1 0); //to decide which side of mesh to keep **

 allowFreeStandingZoneFaces true;

}

// Settings for the snapping.

snapControls

{

 nSmoothPatch 3;

 tolerance 4.0;

 nSolveIter 30;

 nRelaxIter 5;

 nFeatureSnapIter 15; // default is 10

// New settings from openfoam 2.2 onwards for SHMesh

implicitFeatureSnap true; // default is false - detects without doing surfaceFeatureExtract

explicitFeatureSnap true; // default is true

multiRegionFeatureSnap false; // deafault is false - detects features between multiple surfaces

}

// Settings for the layer addition.

addLayersControls //add the PATCH names from inside the STL file so STLpatchName_insideSTLName

{

 relativeSizes true; // was true

 layers

 {

 pipe

 {nSurfaceLayers 3;} // was 3

 duct

 {nSurfaceLayers 3;} // was 3

 air

 {nSurfaceLayers 3;} // was 3

 }

 expansionRatio 1.3;

 finalLayerThickness 0.3; //was 0.00016

 minThickness 0.1; //was 0.00008

 nGrow 0; // was 1

 // Advanced settings

 featureAngle 180; // was 70 //- When not to extrude surface. 0 is flat, 90 is right angle.

 nRelaxIter 3; //- Max# of snapping relaxation iter. Should stop before upon reaching a

correct mesh.

 nSmoothSurfaceNormals 1; // Number of smoothing iterations of surface normals

 nSmoothNormals 3; // Number of smoothing iterations of interior mesh movement direction

 nSmoothThickness 10; // Smooth layer thickness over surface patches

 maxFaceThicknessRatio 0.5; // Stop layer growth on highly warped cells

 maxThicknessToMedialRatio 0.3; // Reduce layer growth where ratio thickness to medial

distance is large

 minMedianAxisAngle 130; // Angle used to pick up medial axis points

 nBufferCellsNoExtrude 0; // Create buffer region for new layer terminations

 nLayerIter 50; // Overall max number of layer addition iterations

}

// Generic mesh quality settings. At any undoable phase these determine

// where to undo.

meshQualityControls

{

 maxNonOrtho 65;

 maxBoundarySkewness 20;

 maxInternalSkewness 4;

 maxConcave 80;

xlviii

 minFlatness 0.5;

 minVol 1e-13;

 minTetQuality 1e-20;

 minArea -1;

 minTwist 0.02;

 minDeterminant 0.001;

 minFaceWeight 0.02;

 minVolRatio 0.01;

 minTriangleTwist -1;

 // Advanced

 nSmoothScale 4;

 errorReduction 0.75;

}

// Advanced

debug 0;

// Merge tolerance. Is fraction of overall bounding box of initial mesh.

// Note: the write tolerance needs to be higher than this.

mergeTolerance 1E-6;

// *** //

xlix

D.5.3 topoSetDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object topoSetDict;

}

// * //

actions

(

 {

 name zone1;

 type cellSet;

 action new;

 source boxToCell;

 sourceInfo

 {

 box (-1 -0.5 -1) (4 7 3.835);

 }

 }

 {

 name zone1;

 type cellZoneSet;

 action new;

 source setToCellZone;

 sourceInfo

 {

 set zone1;

 }

 }

 {

 name zone2;

 type cellSet;

 action new;

 source boxToCell;

 sourceInfo

 {

 box (-1 1.255 3.835) (4 7 16);

 }

 }

 {

 name zone2;

 type cellZoneSet;

 action new;

 source setToCellZone;

 sourceInfo

 {

 set zone2;

 }

 }

 {

 name zone3;

 type cellSet;

 action new;

 source boxToCell;

 sourceInfo

 {

l

 box (-1 -5 2) (4 1.255 16);

 }

 }

 {

 name zone3;

 type cellZoneSet;

 action new;

 source setToCellZone;

 sourceInfo

 {

 set zone3;

 }

 }

);

// *** //

li

D.6 Side entry

D.6.1 sampleDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object sampleDict;

}

// * //

// Set output format : choice of

// xmgr

// jplot

// gnuplot

// raw

// vtk

// ensight

// csv

setFormat raw;

// Surface output format. Choice of

// null : suppress output

// ensight : Ensight Gold format, one field per case file

// foamFile : separate points, faces and values file

// dx : DX scalar or vector format

// vtk : VTK ascii format

// raw : x y z value format for use with e.g. gnuplot 'splot'.

//

// Note:

// other formats such as obj, stl, etc can also be written (by proxy)

// but without any values!

surfaceFormat foamFile;

// optionally define extra controls for the output formats

formatOptions

{

 ensight

 {

 format ascii;

 }

}

// interpolationScheme. choice of

// cell : use cell-centre value only; constant over cells

// (default)

// cellPoint : use cell-centre and vertex values

// cellPointFace : use cell-centre, vertex and face values.

// pointMVC : use point values only (Mean Value Coordinates)

// cellPatchConstrained : like 'cell' but uses cell-centre except on

// boundary faces where it uses the boundary value.

// For use with e.g. patchCloudSet.

// 1] vertex values determined from neighbouring cell-centre values

// 2] face values determined using the current face interpolation scheme

// for the field (linear, gamma, etc.)

interpolationScheme cellPoint;

// Fields to sample.

lii

fields

(

 T

);

// Set sampling definition: choice of

// uniform evenly distributed points on line

// face one point per face intersection

// midPoint one point per cell, inbetween two face intersections

// midPointAndFace combination of face and midPoint

//

// polyLine specified points, not nessecary on line, uses

// tracking

// cloud specified points, uses findCell

// triSurfaceMeshPointSet points of triSurface

//

// axis: how to write point coordinate. Choice of

// - x/y/z: x/y/z coordinate only

// - xyz: three columns

// (probably does not make sense for anything but raw)

// - distance: distance from start of sampling line (if uses line) or

// distance from first specified sampling point

//

// type specific:

// uniform, face, midPoint, midPointAndFace : start and end coordinate

// uniform: extra number of sampling points

// polyLine, cloud: list of coordinates

// patchCloud: list of coordinates and set of patches to look for nearest

// patchSeed: random sampling on set of patches. Points slightly off

// face centre.

// Surface sampling definition

//

// 1] patches are not triangulated by default

// 2] planes are always triangulated

// 3] iso-surfaces are always triangulated

surfaces

(

 plane1

 {

 type plane; // always triangulated

 basePoint (1.8 2.55 0);

 normalVector (1 0 0);

 //- Optional: restrict to a particular zone

 zone zone1;

 }

 plane2

 {

 type plane; // always triangulated

 basePoint (4.47 5.815 5.9);

 normalVector (0 0 1);

 //- Optional: restrict to a particular zone

 zone zone2;

 }

 plane3

 {

 type plane; // always triangulated

 basePoint (3.11 0.655 13.64);

 normalVector (1 0 0);

 //- Optional: restrict to a particular zone

 zone zone2;

 }

 plane4

 {

 type plane; // always triangulated

 basePoint (0.7 0.87 8.985);

 normalVector (0 0 1);

 //- Optional: restrict to a particular zone

liii

 zone zone3;

 }

 plane5

 {

 type plane; // always triangulated

 basePoint (0.7 -1 7.385);

 normalVector (0 1 0);

 //- Optional: restrict to a particular zone

 zone zone3;

 }

 inlet

 {

 type patch;

 patches (".*inlet.*");

 interpolate false;

 }

 air

 {

 type patch;

 patches (".*air.*");

 interpolate false;

 }

 outlet

 {

 type patch;

 patches (".*outlet.*");

 interpolate false;

 }

);

// *** //

liv

D.6.2 snappyHexMesh

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object snappyHexMeshDict;

}

// * //

// Which of the steps to run

castellatedMesh false; // make basic mesh ?

snap false; // decide to snap back to surface ?

addLayers true; // decide to add viscous layers ?

geometry // Load in STL files here

{

 inlet.stl {type triSurfaceMesh; name inlet;}

 outlet.stl {type triSurfaceMesh; name outlet;}

 air.stl {type triSurfaceMesh; name air;}

 pipe.stl {type triSurfaceMesh; name pipe;}

 duct.stl {type triSurfaceMesh; name duct;}

 volume.stl {type triSurfaceMesh; name volume;}

 refinementBox {type searchableBox; min (-0.5 0.055 13.3); max (3.1 1.6 15.165);}

};

castellatedMeshControls

{

 maxLocalCells 100000; //max cells per CPU core

 maxGlobalCells 2000000; //max cells to use before mesh deletion step

 minRefinementCells 10; //was 0 - zero means no bad cells are allowed during refinement

stages

 maxLoadUnbalance 0.10;

 nCellsBetweenLevels 1; // expansion factor between each high & low refinement zone

 // Explicit feature edge refinement

 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 features // taken from STL from each .eMesh file created by "SurfaceFeatureExtract" command

 (

 {file "ductClosed.eMesh"; level 2;}

);

 // Surface based refinement

 // ~~~~~~~~~~~~~~~~~~~~~~~~

 refinementSurfaces // Surface-wise min and max refinement level

 {

 inlet {level (0 0);}

 outlet {level (0 0);}

 air {level (1 1);}

 pipe {level (1 1);}

 duct {level (1 1);}

 }

 resolveFeatureAngle 5; // Resolve sharp angles // Default 30

 refinementRegions // In descending levels of fine-ness

 {pipe {mode distance; levels ((0.1 2));} // was ((0.001 4) (0.003 3) (0.01 2))

 duct {mode distance; levels ((0.1 2));}

lv

 air {mode distance; levels ((0.05 2));}}

 locationInMesh (0 1 0); //to decide which side of mesh to keep **

 allowFreeStandingZoneFaces true;

}

// Settings for the snapping.

snapControls

{

 nSmoothPatch 3;

 tolerance 4.0;

 nSolveIter 30;

 nRelaxIter 5;

 nFeatureSnapIter 15; // default is 10

// New settings from openfoam 2.2 onwards for SHMesh

implicitFeatureSnap true; // default is false - detects without doing surfaceFeatureExtract

explicitFeatureSnap true; // default is true

multiRegionFeatureSnap false; // deafault is false - detects features between multiple surfaces

}

// Settings for the layer addition.

addLayersControls //add the PATCH names from inside the STL file so STLpatchName_insideSTLName

{

 relativeSizes true; // was true

 layers

 {

 pipe

 {nSurfaceLayers 3;} // was 3

 duct

 {nSurfaceLayers 3;} // was 3

 air

 {nSurfaceLayers 3;} // was 3

 }

 expansionRatio 1.3;

 finalLayerThickness 0.3; //was 0.00016

 minThickness 0.1; //was 0.00008

 nGrow 0; // was 1

 // Advanced settings

 featureAngle 220; // was 70 //- When not to extrude surface. 0 is flat, 90 is right angle.

 nRelaxIter 3; //- Max# of snapping relaxation iter. Should stop before upon reaching a

correct mesh.

 nSmoothSurfaceNormals 1; // Number of smoothing iterations of surface normals

 nSmoothNormals 3; // Number of smoothing iterations of interior mesh movement direction

 nSmoothThickness 10; // Smooth layer thickness over surface patches

 maxFaceThicknessRatio 0.5; // Stop layer growth on highly warped cells

 maxThicknessToMedialRatio 0.3; // Reduce layer growth where ratio thickness to medial

distance is large

 minMedianAxisAngle 130; // Angle used to pick up medial axis points

 nBufferCellsNoExtrude 0; // Create buffer region for new layer terminations

 nLayerIter 50; // Overall max number of layer addition iterations

}

// Generic mesh quality settings. At any undoable phase these determine

// where to undo.

meshQualityControls

{

 maxNonOrtho 65;

 maxBoundarySkewness 20;

 maxInternalSkewness 4;

 maxConcave 80;

lvi

 minFlatness 0.5;

 minVol 1e-13;

 minTetQuality 1e-20;

 minArea -1;

 minTwist 0.02;

 minDeterminant 0.001;

 minFaceWeight 0.02;

 minVolRatio 0.01;

 minTriangleTwist -1;

 // Advanced

 nSmoothScale 4;

 errorReduction 0.75;

}

// Advanced

debug 0;

// Merge tolerance. Is fraction of overall bounding box of initial mesh.

// Note: the write tolerance needs to be higher than this.

mergeTolerance 1E-6;

// *** //

lvii

D.6.3 topoSetDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object topoSetDict;

}

// * //

actions

(

 {

 name zone1;

 type cellSet;

 action new;

 source boxToCell;

 sourceInfo

 {

 box (-1 -0.5 -1) (5.5 7 3.835);

 }

 }

 {

 name zone1;

 type cellZoneSet;

 action new;

 source setToCellZone;

 sourceInfo

 {

 set zone1;

 }

 }

 {

 name zone2;

 type cellSet;

 action new;

 source boxToCell;

 sourceInfo

 {

 box (3.1 0 3.835) (5.5 7 16);

 }

 }

 {

 name zone2;

 type cellZoneSet;

 action new;

 source setToCellZone;

 sourceInfo

 {

 set zone2;

 }

 }

 {

 name zone3;

 type cellSet;

 action new;

 source boxToCell;

 sourceInfo

 {

lviii

 box (-1 -5 2) (3.1 1.255 16);

 }

 }

 {

 name zone3;

 type cellZoneSet;

 action new;

 source setToCellZone;

 sourceInfo

 {

 set zone3;

 }

 }

);

// *** //

lix

APPENDIX E

E.1 Content of enclosed CD

The CD contains the case folders used in OpenFOAM in a ZIP format. There are five cases

which describe the two design cases run at both 273,15K and 263,15K atmospheric temperature.

In addition, the case which utilized a refined mesh to rerun the top entry case at 273,15K, to

ensure the mesh quality. All cases include complete 0, constant, system and postProcessing

folders. Also included is a copy of the thesis in a pdf and docx format.

