
TEXTURE CLASSIFICATION USING SPARSE FRAME BASED
REPRESENTATIONS

Karl Skretting and John H̊akon Husøy

Stavanger University College, Department of Electrical and Computer Engineering
P. O. Box 2557 Ullandhaug, N-4091 Stavanger, Norway

Phone: +47 51 83 20 16, Fax: +47 51 83 17 50, E-mail: karl.skretting@tn.his.no

ABSTRACT

In this paper a new method for texture classifica-
tion, denoted Frame Texture Classification Method
(FTCM), is presented. The main idea is that a frame
trained to make a sparse representation of a certain
class of signals is a model for this signal class. The sig-
nal class is given by many representative image blocks
of the class. Frames are trained for several textures,
one frame for each texture class. A pixel of an image
is classified by processing a block around the pixel, the
block size is the same as the one used in the training
set. Many sparse representations of this test block
are found, using each of the frames trained for the
texture classes under consideration. Since the frames
were trained to minimize the representation error, the
tested pixel is assumed to belong to the texture for
which the corresponding frame has the smallest rep-
resentation error.

The FTCM is applied to nine test images, yield-
ing excellent overall performance, for many test im-
ages the number of wrongly classified pixels is more
than halved, in comparison to state of the art texture
classification methods presented in [1].

1. INTRODUCTION

Most surfaces exhibit texture. For human beings it
is quite easy to recognize different textures, but it is
more difficult to precisely define a texture. A sim-
ple definition could be: a texture may be regarded
as a region where some elements or primitives are re-
peated and arranged according to a placement rule.
Tuceryan and Jain [2] list more possible definitions,
and give a more complete overview of texture clas-
sification. Texture classification using vector quan-
tization [3] is a quite interesting approach since the
method we propose here, FTCM, may be regarded as
a generalization of the vector quantization approach.

Texture is a local property of an image, but it
is not confined to a single point, this means that to
decide the texture of a point a small area around it
must be included. When we say that a pixel belong

to a certain texture we mean that a block around that
pixel has some properties that define it as belonging
to this texture. If the block must be large to properly
identify the texture, for example 100×100 pixels, the
texture is coarse, while if the texture is well defined
(recognizable) for a small block, for example 7 × 7
pixels, the texture is said to be fine. In FTCM the
block size should be rather small. We used 5×5, 7×7,
or 9 × 9, but since a later step in the classification
method includes smoothing of the features, a larger
neighborhood contributes to the final classification of
a pixel.

A set of N-dimensional vectors, spanning the space
RN , {fk}K

k=1 where K ≥ N , is a frame. In this paper
frames are represented as follows: A frame is given by
a matrix F of size N ×K, K ≥ N , where the columns
are the frame vectors, fk. A signal block, denoted
xl to indicate that it is one out of L available signal
blocks, can be represented by a weighted sum of these
frame vectors

x̃l =
K∑

k=1

wl(k)fk = Fwl. (1)

This is a signal expansion that, depending on the se-
lection of weights, wl(k), may be an exact or approxi-
mate representation of the signal block. In this paper
we use approximate sparse representations in which a
small number of the weights wl(k) are non-zero. The
weights, wl(k), can be represented by a column vec-
tor, wl, of length K. It is convenient to collect the
L signal vectors and the corresponding weight vectors
into matrices,

X = [x1 x2 x3 · · · xL],
W = [w1 w2 w3 · · · wL]. (2)

The synthesis equation, Equation 1, may now be writ-
ten as X̃ = FW. It is also convenient to let the frame
be normalized, i.e. each frame vector is scaled such
that its 2-norm is one.

Matching Pursuit algorithm:

1. Initialize: r := x, w := 0

2. Find the inner products: u := FT · r
3. Find k such that |u(k)| = maxi |u(i)|
4. Update weight k: w(k) := w(k) + u(k)

5. Update residual: r := r− u(k) · fk
6. Repeat step 2-5 until w has s non-zero

entries.

Figure 1: The Matching Pursuit algorithm when the
frame is normalized. The stop criterium in step 6
could also be that a predefined number of iterations,
for example s, is done or that the norm of the error
is smaller than a given limit.

In a sparse representation many of the weights in
the signal expansion, Equation 1, are zero. To quan-
tify the degree of sparseness the sparseness factor is
defined as

S =
number of non-zero weights in wl

number of signal samples in xl
=

s

N
. (3)

To find the sparse weight vectors practical solutions
employ greedy vector selection algorithms such as Mat-
ching Pursuit (MP) [4], Orthogonal Matching Pursuit
(OMP) [5], and Fast Orthogonal Matching Pursuit
(FOMP) [6]. In the MP algorithm, Figure 1, the resid-
ual, r, is only orthogonal to the most recently selected
frame vector, but for OMP and FOMP the residual
will be orthogonal to all the previously selected frame
vectors.

This paper is organized as follows: In Section 2
we describe the process of designing frames for the
FTCM, and in Section 3 we describe the classification
part of FTCM. Finally, in in Section 4 the experimen-
tal results are presented.

2. TRAINING FRAMES FOR THE
TEXTURES

Training the frames for each of the available texture
example images is an important part of FTCM. It is a
computationally demanding process, but is only done
once for each frame. The process has three main steps
as shown in Figure 2. The very first step in the FTCM
is to decide the frame parameters. These parameters
can be chosen quite freely, they are:
a) The shape, usually rectangular, and size of the
block made around each pixel. The pixels within this
block are organized as a column vector of length N .

Frame parameters

Preprocessing

Training

Block size:
N1 ×N2

Frame size:
N = N1N2

and K

Number of
frame vectors
to use: s

The training
example
texture
images

The training
vectors, X.

One frame is trained
for each texture.

?

?

?

?

?

Figure 2: The setup for training of frames in FTCM
is very similar to the general frame training setup.

b) The number of vectors in the frame, K, may be cho-
sen quite freely. As a rule of thumb, found from the
comprehensive experiments done, we may use N ≤
K ≤ 5N .
c) The number of frame vectors that are used to ap-
proximate the signal vector, denoted by a lowercase
letter s. Since vector selection is more difficult, i.e.
computationally demanding, the larger s is, a small
value of s is usually preferred. But the main objec-
tive is to choose a value of s that provides a good
discrimination of the different textures.

Preprocessing is the task of generating the sets of
training vectors for the signal classes, given by some
texture example images. The many possible steps of
preprocessing can be grouped into two classes: (1)
The texture image may be processed to “improve”
the texture quality, i.e. make the texture clear and
uniform throughout the relevant image region. Then
L blocks, which may partly overlap each other, are
(randomly) picked from the texture example image
and reshaped into training vectors. (2) The individ-
ual training vectors may be scaled, translated and/or
normalized, i.e. scaled (after a possible translation)
such that each has norm one. The same preprocessing
steps should also be done on the test image and the
test vectors during classification in FTCM, Figure 3.

The last box in Figure 2 is for the actual training
of the frames. For each frame the parameter set, N ,
K and s, and the training vectors, X of size N×L, are
given. The frame design procedure [7] [8] is similar to
Generalized Lloyd Algorithm (GLA) [9] and has the
following steps

1. If s = 1, we start by choosing K arbitrary vec-

tors from the set of training vectors as the initial
frame.

2. If s > 1, the frame designed with s = 1 is used
as the initial frame.

3. For each training vector, xl, we find a sparse
representation, i.e. wl with s non-zero values
is found, typically applying an MP algorithm.
If s = 1 this is the same as finding the frame
vector closest to the training vector, i.e. nearest
neighbor. The training vectors associated to a
certain frame vector form a cluster. In standard
GLA there is only one non-zero value in each
column of W, wl, and this value is 1.

4. The new frame is found by the equation
F = XWT (WWT)−1 derived in [8].
This F matrix is the frame that minimize the
norm of the representation error, ‖X − FW‖,
when X and W are fixed. If s = 1 this gives
each column vector of F as the mean or centroid
(weighted mean if not all non-zero values of W
are 1) of the corresponding cluster.

5. The frame is normalized, i.e. scaled such that
each frame vector has norm one. This step is
not done in standard GLA.

6. Step 3 to 5 are repeated for a predefined num-
ber of times or until the method has converged,
i.e. no change, or only a minimal change, in the
frame since last iteration.

3. CLASSIFYING A TEST IMAGE

Texture classification of a test image is the task of
classifying each pixel of the test image to belong to a
certain texture. To do this, a small block around each
pixel to be tested must be made into a test vector.
The classifying process for the FTCM is illustrated in
Figure 3. A test image (of size M1 ×M2) is used to
generate M = M1M2 test vectors, one for each pixel.
For pixels near the edge of the image the reflection
of the edge pixel is used, i.e. when x(m) is defined
for m = 1, 2, . . . , M1 then x(1 −m) = x(1 + m) and
x(M1 + m) = x(M1 −m) for m = 1, 2, 3,

A test vector, x, is represented in a sparse way us-
ing an MP algorithm and each of the different frames
that were trained for the textures under considera-
tion, F(i) for texture class i and i = 1, 2, . . . , C. C is
the number of texture classes that are tested for this
image. Each sparse representation gives a representa-
tion error, r(i) = x − F(i)w(i). The norm squared of
each error, r(i)T r(i), is stored in a three dimensional
matrix R of size M1 ×M2 × C.

Direct classification based on the norm squared
of the representation error for each pixel (the values

Preprocessing

Sparse repr.

Nonlinearity

Smoothing

Classifier

Frames
Test image

Test vectors

Sparse repr. errors
for each pixel
represented in an
appropriate way.

Smoothed errors

Class map

?

?

?? ?
· · ·

?? ?
· · ·

?? ?
· · ·

?

-

Figure 3: The setup for the classification approach in
FTCM, this setup is similar to a common setup in
texture classification used in [1].

stored in the R matrix) gives quite large classification
errors, but the results can be substantially improved
by smoothing, i.e. low-pass filtering each of the C
error images (layers of R). For smoothing Randen
and Husøy [1] concluded that the separable Gaussian
low-pass filter is the better choice, and this is also the
filter used here. The unit pulse response for this filter
is

hG(n) =
1√
2πσ

e−
1
2

n2

σ2 . (4)

The parameter σ gives the bandwidth of the smooth-
ing filter. The effect of smoothing is illustrated in
Figure 4: Little smoothing, σ = 4, gives a lot of er-
ror regions scattered in the test image, while more
smoothing, σ = 12 gives better classification within
the texture regions but the cost is often more classi-
fication errors along the borders between texture re-
gions. Figure 4 also shows that the fine texture in the
upper region is easy to identify and the coarse texture
in the left region is more difficult to identify.

A nonlinearity may be included before the smooth-
ing filter is applied. This may be the square root to
get the magnitude of the error, or the inverse sine of
the magnitude which gives the angle between signal
vector and its sparse approximation, or a logarith-
mic operation. The effect of different nonlinearities is

σ = 4, 21.0% errors σ = 12, 12.8% errors

Figure 4: The wrongly classified pixels for the test
image (b) in Figure 6. The logarithmic nonlinearity
is used. The frame parameters are N = 25, K = 49,
and s = 3.

4 6 8 10 12 14 16
2

3

4

5

6

7

8

9

10

4 6 8 10 12 14 16
10

15

20

25

(a) (b)

Figure 5: The percentage wrongly classified pixels
along the y-axis for two of the test images, note that
the scale varies. Along the x-axis is σ used in the
smoothing filter. The nonlinearities are: logarithmic
as solid lines, magnitude as dotted lines, and energy
(the output after sparse representation) as dash-dot
lines. The frame parameters are N = 49, K = 98,
and s = 3.

shown in Figure 5. The results varied for the different
test images, and also for different sets of frame param-
eters, but in overall the logarithmic nonlinearity is the
better choice.

The final classification is very simple in the FTCM.
The frame, – remember the training resulted in one
frame for each texture class, that gives the best ap-
proximation to the test vector gives the class of the
test vector.

4. EXPERIMENT

In our experiments, we evaluate different parameter
sets for the FTCM by performing supervised segmen-
tation on nine test images of varying complexity. They
are denoted (a) to (i) in Figure 11 in [1], where also
a more detailed description of the test images can be

found1. Test images (a) and (b) are shown in Fig-
ure 6. Ten different frame parameter sets were used
in our experiments. The classification results, given
as percentage wrongly classified pixels, are presented
in Table 1, one column for each test image, the pa-
rameter sets are separated by horizontal lines.

Square blocks with side lengths of 5, 7 and 9 were
used to make the blocks around the pixels, this gave
the length of the training and test vectors to N = 25,
N = 49, and N = 81. The number of frame vectors in
each frame were K = 49 (and K = 100), K = 98 and
K = 144 respectively. The numbers of frame vectors
to use in the sparse representation were set to s = 1,
s = 3 and s = 5. For each parameter set a frame
was designed for all the textures of interest. Note
that the training vectors were made from separate
example images of each texture, not from blocks of
the test images. The number of textures used in the
nine test images is 77, and the number of parameter
sets used here is 10, thus it was necessary to design
770 frames. The design of all the frames needed many
weeks of computer time (in average one hour for each
frame), but this task must only be done once.

Some of the best results from the large compara-
tive study presented in [1] are shown in Table 2. The
table shows the classification errors, given as percent-
age wrongly classified pixels, for different methods
(rows) and the same nine test images as in Table 1
(columns).

The methods compared in [1] are now briefly ex-
plained: “f8a” and “f16b” use a tree structured bank
of quadrature mirror filters (QMF), the filters are fi-
nite input response (FIR) filters of length 8 and 16,
respectively. The method denoted “Daub-4” use the
Daubechies filters [10] of length 4, and the same struc-
ture as used for the QMF filters, the referred results
use the non-dyadic subband decomposition illustrated
in Figure 6d in [1]. The methods denoted “JMS” and
“JU” are FIR filters optimized for maximal energy
separation, [11]. For the JMS method the filters are
designed to maximize the ratio between the extracted
mean feature values, JMS = µv1/µv2 where µvi is the
mean feature value for texture i. For the JU method
optimization was done with respect to the criterium
JU = (µv1 − µv1)

2/µv1µv2 . The last two methods use
co-occurrence and autoregressive features. The clas-
sification results in Table 2 taken from [1] are directly
comparable to the results of the proposed method,
FTCM, Table 1.

The texture classification capabilities of the FTCM
were tested as described above. Test vectors were
made also for pixels near the edge. The nonlinearity
was logarithmic and Gaussian smoothing filters were

1The training images and the test images are available at
http://www.ux.his.no/˜tranden/.

N ×K s σ a b c d e f g h i Mean
25× 49 1 4 8.9 29.5 28.6 41.3 37.4 35.9 55.3 43.0 53.9 37.1
25× 49 1 8 9.1 23.6 18.1 29.5 27.6 30.3 46.4 36.7 39.3 29.0
25× 49 1 12 10.8 21.2 19.1 29.2 26.7 29.9 45.9 36.9 35.0 28.3
49× 98 1 4 7.9 27.6 30.5 38.2 33.7 34.4 54.1 42.4 56.5 36.1
49× 98 1 8 8.0 18.5 21.2 28.0 24.4 28.2 43.7 34.0 45.5 27.9
49× 98 1 12 9.4 16.0 22.5 27.0 21.9 27.6 40.5 32.7 43.6 26.8
81× 144 1 4 7.3 29.5 29.9 36.0 35.6 34.5 55.2 42.1 58.5 36.5
81× 144 1 8 7.1 22.3 21.9 26.8 28.3 27.9 45.8 33.7 49.0 29.2
81× 144 1 12 8.0 20.4 22.3 26.5 27.7 26.9 42.8 31.6 46.8 28.1
N ×K s σ a b c d e f g h i Mean
25× 49 3 4 2.1 21.0 28.4 27.1 18.6 29.2 39.3 35.2 43.1 27.1
25× 49 3 8 3.6 14.2 12.1 12.6 8.7 21.0 24.0 24.3 26.7 16.4
25× 49 3 12 5.5 12.8 9.3 10.5 7.6 19.2 21.5 21.6 21.2 14.4
25× 100 3 4 2.3 13.8 22.7 25.8 20.2 28.7 33.8 33.2 39.3 24.4
25× 100 3 8 3.9 7.6 10.1 12.2 11.8 21.8 18.2 21.8 23.9 14.6
25× 100 3 12 5.9 6.5 9.8 8.9 10.8 21.1 16.3 18.9 20.1 13.2
25× 100 3 16 8.3 6.8 12.0 10.9 11.9 21.7 17.0 18.6 18.6 14.0
49× 98 3 4 3.0 18.8 23.6 26.6 22.7 27.6 38.5 33.1 42.0 26.2
49× 98 3 8 4.1 13.5 12.0 12.0 11.5 19.2 21.1 22.9 25.8 15.8
49× 98 3 12 6.2 11.5 10.0 10.3 10.4 17.1 19.2 20.4 21.6 14.1
81× 144 3 4 3.5 19.3 21.6 27.0 22.6 27.8 43.0 32.8 43.7 26.8
81× 144 3 8 3.9 14.0 10.4 12.3 13.2 19.2 29.9 21.6 27.1 16.8
81× 144 3 12 5.8 12.2 9.8 10.3 12.5 17.3 25.6 18.2 22.9 15.0
N ×K s σ a b c d e f g h i Mean
25× 49 5 4 2.2 19.2 29.9 31.4 31.0 32.5 44.1 40.3 47.5 30.9
25× 49 5 8 3.5 12.7 17.1 20.7 24.8 26.6 32.4 36.4 32.7 23.0
25× 49 5 12 5.2 12.9 13.5 20.0 24.2 26.4 30.7 36.8 28.8 22.1
49× 98 5 4 2.5 16.1 23.4 22.7 17.4 28.5 35.9 33.0 41.7 24.6
49× 98 5 8 3.6 9.7 11.6 9.0 11.4 21.5 24.5 24.3 27.3 15.9
49× 98 5 12 5.4 9.1 9.6 7.4 10.1 21.1 23.3 22.6 23.7 14.7
81× 144 5 4 3.4 17.7 21.9 23.2 18.7 26.4 37.2 31.1 38.7 24.2
81× 144 5 8 3.8 11.8 11.1 9.3 10.6 18.1 24.0 20.6 23.6 14.8
81× 144 5 12 5.7 11.2 10.0 7.2 10.9 15.6 22.8 18.1 20.0 13.5

Table 1: Classification errors, given as percentage wrongly classified pixels, for different sets of frame parameters
and smoothing filters (rows) and different test images (columns). The logarithmic nonlinearity was used before
smoothing. The first three columns are the frame parameters and σ used in the Gaussian smoothing filter. The
next nine columns show the results for the test images, Figure 11 in [1]. The last column is the mean for these
test images.

Method a b c d e f g h i Mean
f8a 7.2 21.1 23.7 18.6 18.6 37.5 43.2 40.1 29.7 26.6
f16b 8.7 18.9 23.3 18.4 17.2 36.4 41.7 39.8 28.5 25.9

Daub-4 8.7 22.8 25.0 23.5 21.8 38.2 45.2 40.9 30.1 28.5
JMS 16.9 36.3 32.7 41.1 43.0 47.3 51.1 59.7 49.9 42.0
JU 12.7 33.0 26.5 34.3 43.4 45.6 46.5 35.9 30.5 34.3

Co-occurrence 9.9 27.0 26.1 51.1 35.7 49.6 55.4 35.3 49.1 37.7
Autoregressive 19.6 19.4 23.0 23.9 24.0 58.0 46.4 56.7 28.7 33.3

Table 2: Classification errors, given as percentage wrongly classified pixels, for different methods and different
test images as presented by Randen and Husøy in [1].

(a) (b)

Figure 6: Two of the test images also used in [1].

used, the bandwidths used were σ = 4, σ = 8 and
σ = 12, and for one parameter set also σ = 16. The
classification results are presented in Table 1.

Let us start by looking at the case where s = 1.
This is the same as vector quantization classification,
or nearest neighbor classification. These results are
quite similar to the best results of [1]. The mean for
the method “f16b” was 25.9 percent wrongly classified
pixels, while the parameter setup 49 × 98 for N ×K
and σ = 12 gave 26.8 percent wrongly classified pixels.
Even though the means are comparable, the results
for the individual test images may be more different.
For the test image (h) the result is 39.8 for the “f16b”
filtering method, and 32.7 for the 49× 98 and σ = 12
method, while for the test image (i) the results are
28.5 and 43.6 respectively. Generally, we note that
the different filtering methods and the autoregressive
method perform better on test image (i) than on test
image (h), and that the co-occurrence method and the
FTCM with s = 1 perform better on test image (h)
than on test image (i).

For the tests with the FTCM and s > 1 much bet-
ter results are achieved. The number of wrongly clas-
sified pixels is almost divided by two, and this is very
good. We do not have a good explanation for why the
sparse representation model using s > 1 should be so
much better than using s = 1, but the many exper-
iments are quite conclusive. One interesting thing is
noteworthy: The number of vectors used in the repre-
sentation, s, should be increased when the parameter
N is increased. For N = 25 the frames where s = 3
perform better than the frames where s = 5. For
N = 49 the two different values of s perform almost
equal, and for N = 81 the frames where s = 5 are
better that the frames where s = 3. This observation
can be explained by the fact that when N is larger the
number of vectors to select must be larger to have the
same sparseness factor, Equation 3, or to have a rea-
sonable good representation of the test vectors. Best
results were found using three or five frame vectors to
represent each test vector, this indicates that “the op-

timal” number of vectors to use, s, probably is in the
N-range explored: for N = 25 the best s may be 3 or
4, for N = 49 the best s may be 4 and for N = 81 the
best s may be 5 or 6. The block size should probably
be larger for coarse textures than what is necessary
for the more fine textures. The case where N = 25 is
best for the fine textures in the test image (a), while
the cases with larger values for N perform better for
the test images (c) and (d) which also contain regions
with coarser textures.

5. CONCLUSION

In this paper we have presented the Frame Texture
Classification Method. For the simple case, using only
one frame vector for each test vector, it is like the vec-
tor quantizing method, and the classification results is
comparable to other state of the art texture classifica-
tion methods. Utilizing the capabilities of the FTCM,
approximating each test vector by a linear combina-
tion of three to five frame vectors, the FTCM provides
superior classification performance.

6. REFERENCES

[1] T. Randen and J. H. Husøy, “Filtering for texture clas-
sification: A comparative study,” IEEE Transaction on
Pattern Analysis and Machine Intelligence, vol. 21, no. 4,
pp. 291–310, April 1999.

[2] M. Tuceryan and A. K. Jain, “Texture analysis,” in Hand-
book of Pattern Recognition and Computer Vision, C. H.
Chen, L. F. Pau, and P. S. P. Wang, Eds., chapter 2.1, pp.
207–248. World Scientific Publishing Co, Singapore, 1998.

[3] G. F. McLean, “Vector quantization for texture classifica-
tion,” IEEE Trans. Systems, Man, Cybernetics, vol. 23,
no. 3, pp. 637–649, May/June 1993.

[4] S. G. Mallat and Z. Zhang, “Matching pursuit with time-
frequency dictionaries,” IEEE Trans. Signal Processing,
vol. 41, no. 12, pp. 3397–3415, Dec. 1993.

[5] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive nonlin-
ear approximations,” 1994, Similar to Davis’ Ph.D. thesis.

[6] M. Gharavi-Alkhansari and T. S. Huang, “A fast orthog-
onal matching pursuit algorithm,” in Proc. ICASSP ’98,
Seattle, USA, May 1998, pp. 1389–1392.

[7] K. Engan, S. O. Aase, and J. H. Husøy, “Method of op-
timal directions for frame design,” in Proc. ICASSP ’99,
Phoenix, USA, Mar. 1999, pp. 2443–2446.

[8] K. Skretting, J. H. Husøy, and S. O. Aase, “Gen-
eral design algorithm for sparse frame expan-
sions,” Submitted for publication, available at
http://www.ux.his.no/˜karlsk/.

[9] A. Gersho and R. M. Gray, Vector Quantization and Sig-
nal Compression, Kluwer Academic Publishers, Norwell,
Mass., USA, 1992.

[10] I. Daubechies, Ten Lectures on Wavelets, Society for
Industrial and Applied Mathematics, Philadelphia, USA,
1992, Notes from the 1990 CBMS-NSF Conference on
Wavelets and Applications at Lowell, MA.

[11] T. Randen and J. H. Husøy, “Texture segmentation using
filters with optimized energy separation,” IEEE Trans.
Image Processing, vol. 8, no. 4, pp. 571–582, April 1999.

	Home Page
	Conference Info
	Welcome Message
	Committees

	Sessions
	Saturday, 5 October, 2002
	SatAmOR1-OFDM
	SatAmOR3-Image and Video Processing I
	SatAmPO1-Filters and Filter Banks
	SatAmPO2-DSP Algorithms, VLSI, and Hardware
	SatAmOR2-Modulation and Channel Modelling I
	SatAmOR4-Image and Video Processing II
	SatPmOR1-Filter Design I
	SatPmOR3-Hardware, Architectures and Algorithms
	SatPmPO1-Image and Video Processing
	SatPmPO2-Modulation and Channel Modelling
	SatPmOR2-Filter Design II
	SatPmOR4-Radar and Sonar

	Sunday, 6 October, 2002
	SunAmOR1-Adaptive Filters
	SunAmOR2-CDMA and Space Time Coding
	SunAmPO1-Speech and Audio Processing
	SunAmOR3-Time-Frequency Analysis
	SunAmOR4-Multimedia Systems
	SunPmOR2-Image and Video Processing III
	SunPmOR1-Modulation and Channel Modelling II
	SunPmPO3-Multimedia Systems and Applications
	SunPmPO1-Non-Linear and Non-Gaussian SP
	SunPmPO2-Radars, array and spatial processing
	SunPmOR3-Compression and Error Control Coding
	SunPmOR4-Biomedical Signal Processing

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1-Detection, estimation, and adaptive filters
	2-Filter design, wavelets and filterbanks
	3-Time-frequency representations and analysis
	4-Non-linear and non-Gaussian signal processing
	5-Neural networks and pattern recognition
	6-Source separation and independent component analysis
	7-Modulation and channel modeling
	8-CDMA and space-time coding
	9-Compression and error control coding
	10-Speech and audio processing
	11-Image and video processing
	12-Multimedia systems and applications
	13-Bioinformatics and biomedical signal processing
	14-DSP algorithms and architectures
	15-ASIC, FPGA, and hardware design
	16-Radar, sonar, and seismic signal processing
	17-Other

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Karl Skretting
	John Håkon Husøy

