PARTIAL SEARCH VECTOR SELECTION
FOR SPARSE SIGNAL REPRESENTATION

Karl Skretting and John Hakon Husgy

Stavanger University College, Department of Electrical and Computer Engineering
P. O. Box 8002, N-4068 Stavanger, Norway
Phone: +47 51 83 20 16, Fax: 447 51 83 17 50, E-mail: karl.skretting@tn.his.no

ABSTRACT

In this paper a new algorithm for vector selection in
signal representation problems is proposed, we call it
Partial Search (PS). The vector selection problem is
described, and one group of algorithms for solving this
problem, the Matching Pursuit (MP) algorithms, is
reviewed. The proposed algorithm is based on the Or-
der Recursive Matching Pursuit (ORMP) algorithm,
it extends ORMP by searching a larger part of the
solution space in an effective way. The PS algorithm
tests up to a given number of possible solutions and
returns the best, while ORMP is a greedy algorithm
testing and returning only one possible solution. A
detailed description of PS is given. In the end some
examples of its performance are given, showing that
PS performs very well, that the representation error
is considerable reduced and that the probability of
finding the optimal solution is increased compared to
ORMP, even when only a small part of the solution
space is searched.

1. INTRODUCTION

An overcomplete set of N-dimensional vectors, span-
ning the space RY, is a frame. The frame vectors,
denoted {f}X |, can be regarded as columns in an
N x K matrix F, where K > N. A signal vector,
X, can be represented, or approximated if the repre-
sentation is not exact, as a linear combination of the
frame vectors,

b1

M=

w(k)fk =Fw. (1)

k=1

The expansion coeflicients, or weights, are col-
lected into a vector w of length K. The original signal
vector is the sum of the signal approximation and an
error which may be zero, x = X+r. A frame is uniform
if all the frame vectors are normalized, i.e. |fx] = 1.
Without loss of generality we may assume that the
frame in Equation 1 is uniform. The representation
is sparse when only some few, say s, of the expansion

coefficients are non-zero, the sparseness factor S, is
then given by S = s/N.

The vector selection problem (for a sparseness fac-
tor given by the maximum number of non-zero weights
allowed, s) is to find the weights in Equation 1 such
that the norm of the error, ||r|| = ||x — Fw|, is as
small as possible. Generally no exact, x = Fw, solu-
tion exists when s < NN. The choice of weights that
minimizes the 2-norm of the residual (error) is called
the “optimal solution” or the optimal approximation
in the least squares sense. An e-solution is a choice of
weights such that the 2-norm of the residual is smaller
than a given limit, e. Davis [1] has proved that finding
whether an e-solution exists or not is an NP-complete?
problem, and that finding the optimal approximation
for a given s is an NP-hard problem when the 2-norm
is used.

The only way to find the optimal solution to the
vector selection problem is to examine all the possi-
ble combinations for selecting s vectors out of the K
frame vectors available. The number of different com-
binations is (I:) Thus a full search algorithm is only
practical for small problems. A large amount of work
has been done on alternative non-optimal algorithms,
the two main alternatives are:

1) Thresholding of the weights found by algorithms
returning generally non-sparse solutions. Examples
are Basis Pursuit (BP) [2] and FOCal Under-deter-
mined System Solver (FOCUSS) [3,4].

2) Greedy algorithms, collectively referred to as
Matching Pursuit (MP) algorithms. These algorithms
involves the selection of one vector at each step. Vari-
ants are Basic Matching Pursuit (BMP), Orthogo-
nal Matching Pursuit (OMP) and Order Recursive
Matching Pursuit (ORMP). We will examine them
closer in the next section.

Some vector selection algorithms are described and
compared in [5-7].

L An NP-complete problem is as hard as (can be transformed
in polynomial time into) another problem known to be NP-
complete. An NP-hard problem is at least as hard as an NP-
complete problem.

Basic Matching Pursuit (BMP) algorithm:
1 w =BMP(F,x,s)

2 w:=0,r:=x

3 while not Finished

4 c:=F.r

5 find k : |e(k)| = max; |c(j)|

6 w(k) == w(k) + c(k)

7 r:=r—c(k) fi

8a Finished := (||r|] < some Limit)
8b Finished := (s non-zero entries in w)
9 end

10 return

Figure 1: The Basic Matching Pursuit algorithm.

In this paper we present the partial search method
for vector selection. It may be seen as a reduction of
the full search method, instead of searching all the
possible combinations it only searches the combina-
tions containing the most promising frame vectors.
Alternatively it may be seen as an extension of the
ORMP method: Instead of only selecting the most
promising frame vector in each step, it may try several
frame vectors in each step. The proposed algorithm
use QR factorization the same way as the fast variants
of OMP and ORMP. The partial search method was
first presented as a recursive function without the fast
QR factorization in [8]. In Section 2 we present the
MP algorithms and the proposed algorithm for partial
search is described in Section 3. In Section 4 some im-
plementation details for the fast variants based on QR
factorization are presented. And finally, in Section 5,
some numerical examples illustrate the performance
of PS compared to BMP, OMP and ORMP.

2. MATCHING PURSUIT ALGORITHMS

The simplest of the Matching Pursuit algorithms is
Basic Matching Pursuit (BMP), presented and an-
alyzed in [1] and [9]. An overview of the algorithm is
in Figure 1. This variant of the BMP algorithm as
well as the other algorithms presented here, requires
that the frame, F, is uniform. The BMP algorithm
has the following four main steps: Initialize, Loop,
Select and Update.

In the initialize step the weights, w, are set to
zero, and the residual, i.e. the representation error
using the current weights, r = x — Fw, is set to the
given signal vector, line 2 in Figure 1. The main loop,
line 3-9, is done until some stop criterion is met. It
may be that the representation error is small enough,
line 8a, or that the desired number of non-zero entries
in w is reached, line 8b, or that the loop has been
executed many times, this third test is not included

in Figure 1.

A (new) frame vector is selected to be used in the
linear combination which makes up the approxima-
tion. As this is a greedy algorithm we select the vec-
tor that looks best at the current stage. Within the
loop the inner products of the current residual and the
frame vectors are calculated, line 4, and the one with
the largest absolute value is identified, line 5. Frame
vector k is selected. It may happen that this is a vec-
tor selected earlier, and thus the number of non-zero
entries in w is not increased but one of the already
selected entries is updated and the error is reduced.
In fact, we may use this to reduce the error without
selecting new frame vectors (as long as the error is
not orthogonal to the space spanned by the selected
frame vectors) by only considering the frame vectors
already selected in line 5.

The weight for the selected frame vector is up-
dated, line 6, and the residual is updated, line 7. We
should note that the calculation in line 7 makes the
residual orthogonal to the frame vector just selected,
but it also add components in the same directions as
previously selected frame vectors since these are not
orthogonal to the frame vector just selected.

The BMP algorithm is quite simple, but it is not
very effective. The loop may be executed many times,
often more than s times, and the calculation of the
inner products, line 4, is demanding, approximately
N K multiplications and additions are done.

Orthogonal Matching Pursuit (OMP) [1,10] is
a refinement of BMP. The only difference is in the up-
date step, line 6 and 7 in Figure 1. The approximation
after a new frame vector has been selected is made by
projecting the signal vector onto the space spanned
by the selected frame vectors. When ¢ frame vectors
are selected the index set of the selected frame vectors
is denoted I = {kq, ka,...,k;} and they are collected
into a matrix A = [fy,, fk,, ..., fx,] of size N x i. The
approximation is X = A(ATA)"!ATx = Ab and the
error is as before r = x —%. Here, b= (ATA)"1ATx
is the values of the non-zero entries in w given by the
index set I. With this change the residual will always
be orthogonal to the selected frame vectors, and the
select step will always find a new vector. This en-
sures that the loop is at most executed s times, but,
in a straight forward implementation, the orthogonal-
ization of the residual add extra calculations to the
loop.

Order Recursive Matching Pursuit (ORMP)
[12-15] is another MP variant. Like OMP this one
always keeps the residual orthogonal to all the selected
frame vectors. The only difference between ORMP
and OMP is that ORMP adjust the inner products
before the largest is found, line 5 in Figure 1 will be
“find k : |c(k)/u(k)] = max;|c(j)/u(j)|” instead of
“find k : |e(k)| = max; |c(j)|”. Let us explain this in

1 =0

K i=1

ki =2

kD ek ek eplV g epl9i—3

3 3 3
71 72 73 74 7(5) 7(6)

Figure 2: Search tree for the example in Section 3.

more detail:

We denote the subspace of RYY spanned by the col-
umn vectors in A, i.e. the selected frame vectors, as
A, and its orthogonal complement as A+. A frame
vector, f;, can be divided into two orthogonal com-
ponents, the part in A of length a(j), and the part
in AL of length u(j), and a(j)? + u(j)? = ||f;||* = 1,
where the latter equality follows since the frame is
uniform. Lengthening each remaining or not yet se-
lected frame vector f; by a factor 1/u(j), makes the
lengths of the component in AL equal to 1. This
part is the only one we need to consider since the
residual, r, is in A*. Thus, finding maximum of
cG)l/ut) = (ETr)/u(j) = (€7 /u(j)r, instead of
only |c(j)|, when selecting the next frame vector is
like selecting a vector from a uniform frame in A~
i.e. the frame vectors are orthogonalized to A and nor-
malized. ORMP will generally select different frame
vectors than OMP, and often the total residual will
be smaller. A 7straight forward” implementation of
ORMP will be even more demanding than OMP.

3. THE PARTIAL SEARCH ALGORITHM

The idea of the Partial Search (PS) algorithm is to
search many combinations, i.e. many sets of frame
vectors, to find the best solution. In PS we let the
number of combinations, NoC| to search be given as
an input argument. A particular combination, num-
bered m, has index set (™) = {kgm), kém)7 . kgm)}
and the matrix of the selected frame vectors is de-
noted A(™). Each combination gives an error, r(™ =
x — %M = x — A (AMTAM)N=TAI Ty The
index set that gives the smallest error also gives the
solution, i.e. the sparse weights as in OMP.

The different combinations can be ordered in a
search tree as in Figure 2, here NoC = 6. Each node,
except the root, in the tree represent the selection of
one frame vector. The index set given by each leaf is
given by the path from the root to the leaf. An index
set may have the same start for the index sequence as

another index set, i.e. k:f’) = k{” = kgl) and kf) =
k§4). In the PS algorithm the tree is searched in a
depth-first way. The current state is saved each time,
on the way down, a node with more than one child
is reached, and on the way up the state is retrieved
before visiting the next child. At each leaf the norm of
the error is calculated and compared to the smallest
error found until now.

One important part of the PS algorithm is to de-
cide which frame vectors to select, the indexes k;m) to
include in the search tree. A function, named “Dis-
tributeM”, does this task each time a new node is
visited, starting at the root where i = 0 and at all
the levels down to ¢ = s — 1. This function distribute
the number of combinations available M, at the root
(¢ = 0) this is M = NoC, by returning a sequence
of non-negative integers, My, for k =1,2,..., K, such
that My > 0 if frame vector k is to be included and
Zle My = M. M, is used as the M value at the
next level. This is done according to the rules decided
when building the function and it always uses the in-
ner products ¢ (actually the adjusted inner products
d where d(j) = |c(j)|/u(j) since the ORMP variant is
the preferred one), and M. The function may also de-
pend on the number of vectors already selected i, the
maximum number of vectors to select s, or the frame
size N and K. The best (criterium as in ORMP)
frame vector should be the first one, and thus make
sure that the ORMP index set is 1), also the selected
indexes should be the best ones in d. In the exam-
ple in Figure 2 NoC = 6 combinations are available
at the root, these are distributed so that M,) = 3,

Mk(4> = 2 and Mk(G) = 1 and M = 0 for tlhe rest
1 1

of the k’s. At level ¢ = 1 and for node kgl) the
M = 3 combinations to search are distributed such

that Mku) =1, Mk(z) =1 and Mk(s) = 1.
2 2 2

We can note that all the leafs in the tree are at
level i = s and that none of the leafs has any siblings.
At level i = s — 1 it makes no sense to try more than
the best frame vector since this is the one that will
give the smallest error.

An effective implementation of the PS algorithm
should exploit the tree structure to avoid doing the
same calculations several times. It is also important
that as few calculations as possible is done to find the
norm of the error at each leaf, it is not necessary to
form the matrices A nor to do matrix inversion.
The same technique as used in QR factorization in
OMP and ORMP can be applied in the PS algorithm.
The details are in the next section.

OMP/ORMP with QR factorization:

1w =OMPqr/ORMPqr(F,x, s)

2 R:=0

3 1:=0,I:={}, J:={1,2,...,K}
4 e:=1,u:=1

5 c:=FTx d :=|c|

6 ne = x°x, neLim = nx - 1071°
7

8

while 1
find k : d(k) = max; d(j)

9 t:=14+1, I:=1U{k}, J:=J\ {k}
10 R(i, k) := u(k)
11 nx :=nx — c(k)?
12 if (¢ > s) or (nx < nzLim) exit loop
13 forjeJ
14 R(i,j) = fLf;
15 forn:=1to (i—1)
16 R(i,7) := R(3,j) — R(n,k)R(n, j)
17 end
18 R,) = R,) /u(k)
19 e(G) = c(i)u()) — c(k)RG,)
20 lf OMP d(y) := |e()]
21 e(j) := e(j) — R(i,5)*
22 U(j) = /le(d)]
23 c(4) = e(g)/u(j)
24 if ORMP d(j5) := |c(j)|
25 end
26 d(k) =0
27 end
28 w:=0

29 w(l):=R(1:4,1)"! c(I)
30 return

Partial Search with QR factorization:
1 w =PSqr(F,x,s, NoC)
2 Initialize R, M, e, u, c, d, nx, nxLim,
nxBest, GoingDown, i, I and J
3 while 1
4 if GoingDown
5 increment ¢
6 find k : d(k) = max; d(j)
7 call “DistributeM” function
8 if “two or more children” store state
9 end
10 GoingDown = true
11 I:=1U{k}, J:=J\{k}
12 R(i, k) := u(k)
13 nx = nzx — c(k)?
14 if (nx < nzLim) find w by back-
substitution and exit loop
15 if (i < s)
16 Update R(i,J), ¢, d, e and u
17 else
18 if (nz < nxBest) update nxBest and
find w by back-substitution
19 decrement i, set I, J
until (“sibling” found) or (i = 0)
20 if (i = 0) exit loop
21 set k to index of “sibling”
22 retrieve state
23 GoingDown = false
24 end
25 end
26 return

Figure 3: The OMP/ORMP algorithm using QR fac-

torization.

4. IMPLEMENTATION DETAILS

Fast algorithms based on QR factorization have
been presented for both OMP and ORMP, [1,13,15].
One such algorithm is given in Figure 3. QR factor-
ization is done on the matrix of the selected frame
vectors, denoted A above. Actually the Q matrix is
not explicitly formed, only the R matrix is stored.
QR factorization is done as in the stable Modified
Gram-Schmidt algorithm [15], after the selection of a
new frame vector all the remaining frame vectors are
orthogonalized to the one just selected.

We will now look closer into the algorithm shown
in Figure 3. The matrix R is of size s x K, where R(1
i, I) is the R matrix in QR factorization of matrix A.
I is the index set for the selected vectors and .J is the
index set of the remaining frame vectors. The vectors
e, u, c and d in line 4 and 5 are all of length K, e(k) is
the length squared of f), projected into A+ and wu(k)
is the length. c contains the inner products of the
frame vectors and the residual, and d theirs absolute

Figure 4: The Partial Search algorithm using QR fac-
torization. More explanation in text.

values (OMP) or the absolute values diveded by the
lengths u(k) (ORMP). nz will be updated in line 11
to be nz = ||r||? after the selection of each new frame
vector.

The main loop, line 7-27, selects one frame vector
each time it is executed, line 8 and 9. If allowed num-
ber of vectors are selected, or the norm of the residual
is small, the loop is ended. To prepare for selection
of more frame vector more work is needed, line 13-26.
First (entries for unselected frame vectors in) row ¢ of
R is updated, line 14-18, then vectors c, d, e and u
are updated, line 19-24. Finally, d(k) is set to zero to
ensure that new vectors are selected. When then de-
sired (or needed) number of frame vectors are selected
a linear equation system must be solved to find the
weights. Since the matrix R(1 : 4, I) is triangular this
can be solved quite simply by backward substitution,
line 29.

The kernel of the PS algorithm is ORMPqr, it is
wrapped in a walk through the search tree. The PS

161

Frame Fl
14+ 14.55
13.59
121
*
3 11.34 11.10
©
S ol 10.74
24
z
n S=6 * *
9.17
8 5= 8.32
s=5 * 8.17
*
7.17
s=4 *
6L
. — s ses
s=3 * 534
4 , , , , , , ,
BMP OMP ORMP PS20 100 500 5000

Figure 5: The approximation errors for the random
Gaussian data using the “random” frame F;.

algorithm is summarized in Figure 4. Initialization
in line 2 is like line 2-6 in Figure 3, but some few
extra variables are included. M is a matrix or a ta-
ble used to store the different M values found by the
“DistributeM” function. The state stored in line 8
and retrieved in line 22 is the variables ¢, e, u and
nx. Note that the state is assumed to be stored in
a table, where 7 is the position, that allows a state
stored once to be retrieved several times. Line 16 up-
dates R(i, J), ¢, d, e and u like line 13-26 in Figure 3.
When the walk through the search tree has reached a
leaf lines 18-23 are executed, we go up in the search
tree (decrement ¢) until a sibling to the right of the
current node is found. The search is finished when
the root is reached.

5. SIMULATION EXAMPLES

In this section we will give some examples of the per-
formance of the Partial Search (PS) algorithm. The
vector selection algorithms that will be used are BMP,
OMP, ORMP, and Partial Search with the allowed
number of combinations to search, NoC, set as 20,
100, 500 and 5000. The methods will be along the
x-axis in Figures 5 and 6. For a given sparseness fac-
tor the results of BMP, OMP and ORMP are loosely
connected by a dotted line and the results of ORMP
and PS with different values for NoC' are connected
by a solid line since here intermediate values can be
assumed using different values for NoC. Note that
ORMP can be regarded as PS with NoC' = 1.
Having a set of L test vectors, x; for [= 1 to
L, we find sparse approximations to each of the test
vectors using the different vector selection methods.
The ideal situation now would be if we could compare
these results to the optimal solution, but this is only
possible for very small problems. Thus we can not

211

20 Frame F2
19.93
19.16

18.49 18.57

s=9 17.99

-
=
T

SNR value
=
[J
T
*
*

17.29

s=7 * 16.76
16 16.33
* 15.63
15F g=5 «
14
BMP OMP ORMP PS20 100 500 5000

Figure 6: The approximation errors for the AR(1)
signal vectors using the “designed” frame Fs.

find for how many of these L test vectors the optimal
solution were found, or how close the resulting error is
to the error of the optimal solution. The approxima-
tion error for each test vector can be used to compare
the different methods to each other. It can be quan-
tified by the Signal to Noise Ratio (SNR) defined (eg.
estimated) as

S lm? E,
SNR = —10log;y =7——— = —10log;p — (2)
2z lIxl? Eo

where r; = x; — X; and the 2-norm is used. The de-
nominator in this fraction is constant for a given set
of test vectors. Thus, an increase in the SNR value by
1 is a reduction of the energy in the error, E,., by 20%.
The SNR will be along the y-axis in Figures 5 and 6.
As more combinations are searched, NoC' increases,
the optimal solution is more likely to be found, and
the total approximation error will be smaller (higher
SNR). When a (considerable) increase in NoC' does
not give a higher SNR we may expect that the optimal
solution is found for most of the test vectors.

In the first example a set of L = 5000 random
Gaussian vectors is generated. The test vectors are
of length N = 16, each entry is independent and
Gaussian distributed (zero mean and variance o = 1).
Each of these vectors is approximated by a sparse rep-
resentation, s = 3,...,6 frame vectors were used for
these approximations. The frame vectors in F, size
16 x 48, are selected similar to the test vectors, i.e.
they are random Gaussian vectors which are normal-
ized, ||fx]| = 1. The results are presented in Figure 5.

It is perhaps more interesting to look at the vec-
tor selection capabilities for not completely random
signals. This is done in the second example. A long

AR(1) signal?, with p = 0.95 is divided into L = 5000
non-overlapping blocks, each with length N = 32,
these make up the other set of test vectors, which
in Figure 6 is approximated by a sparse representa-
tion using s = 5, 7 or 9 frame vectors. The frame
Fs, of size 32 x 80, is a frame specially designed for
AR(1) signals, the frame design method is described
in [8]. The sparse representation results are presented
in Figure 6.

The conclusions we can draw from these examples
are: 1) Comparing the MP algorithms we see that
OMP and ORMP both give better approximations
than BMP, and that ORMP is the better one. 2)
The PS algorithm is considerable better than the MP
algorithms, already for NoC' = 20 the probability of
finding a better (the optimal) solution is considerable
higher. 3) For values of s < 5, or not a large number
of different possible combinations (%), it seems that
PS is likely to find the optimal solution with a small
or moderate value of NoC.

One disadvantage of PS is that the execution time
is larger than for ORMP (and OMP). This can be
seen in the following table for frame F5 used on 5000
test vectors with s = 9.

frame Fa, s =9 Running Time for each
Method Time combination
ORMP, (NoC =1) 3.23 s 3.23 s
PS, NoC = 20 53.6 s 2.68 s
PS, NoC = 100 4 min 9 s 249 s
PS, NoC = 500 19 min 45 s 2.37s
PS, NoC = 5000 3 h 13 min 2.32's

The execution time increases almost linearly with the
number of combinations searched. The time for search-
ing one combination decreases as more combinations
are searched, this is natural since a new combination
usually has some of the first vectors in common with
the previously searched combination, and this is ex-
ploited it the algorithm.

6. CONCLUSION

The partial search algorithm presented in this paper
finds a solution to the vector selection problem at least
as good as the ORMP algorithm. The optimal solu-
tion is often found by searching relatively few combi-
nations, often 20 to 100 combinations seems enough.
The search among the different combinations is done
in a fast and effective way. The improvement in rep-
resentation when going from ORMP to partial search
is the same size as the improvement when going from
BMP to ORMP, or better if we allow to search many
combinations.

2An AR(1) signal is the output of an autoregressive (AR)
process of order 1.

[6]

[7]

(8]

[9]

[10]

[11]

7. REFERENCES

G. Davis, Adaptive Nonlinear Approzimations, Ph.D.

thesis, New York University, Sept. 1994.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM Journal of Scien-
tific Computing, vol. 20, no. 1, pp. 33-61, 1998.

I. F. Gorodnitsky and B. D. Rao, “Sparse signal recon-
struction from limited data using FOCUSS: A re-weighted
minimum norm algorithm,” IEEE Trans. Signal Process-
ing, vol. 45, no. 3, pp. 600-616, Mar. 1997.

K. Engan, Frame Based Signal Representation and Com-
pression, Ph.D. thesis, Norges teknisk-naturvitenskapelige
universitet (NTNU)/Hggskolen i Stavanger, Sept. 2000,
Available at http://www.ux.his.no/ kjersti/.

B. D. Rao, “Signal processing with the sparseness con-
straint,” in Proc. ICASSP 98, Seattle, USA, May 1998,
pp. 1861-1864.

B. D. Rao and K. Kreutz-Delgado, “Sparse solutions
to linear inverse problems with multiple measrement vec-
tors,” in Proc. DSP Workshop, Bryce Canyon, Utah, USA,
Aug. 1998.

S. F. Cotter, J. Adler, B. D. Rao, and K. Kreutz-Delgado,
“Forward sequential algorithms for best basis selection,”
IEE Proc. Vis. Image Signal Process, vol. 146, no. 5, pp.
235—244, Oct. 1999.

K. Skretting, Sparse Signal Representation using Over-
lapping Frames, Ph.D. thesis, NTNU Trondheim
and Hggskolen i Stavanger, Oct. 2002, Available at
http://www.ux.his.no/ karlsk/.

S. G. Mallat and Z. Zhang, “Matching pursuit with time-
frequency dictionaries,” IEEE Trans. Signal Processing,
vol. 41, no. 12, pp. 3397-3415, Dec. 1993.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Or-
thogonal matching pursuit: Recursive function approxi-
mation with applications to wavelet decomposition,” Nov.
1993, Proc. of Asilomar Conference on Signals Systems
and Computers.

S. Singhal and B. S. Atal, “Amplitude optimization
and pitch prediction in multipulse coders,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 37, no. 3, pp. 317—
327, Mar. 1989.

S. Chen and J. Wigger, “Fast orthogonal least squares al-
gorithm for efficient subset model selection,” IEEE Trans.
Signal Processing, vol. 43, no. 7, pp. 1713-1715, July 1995.

B. K. Natarajan, “Sparse approximate solutions to linear
systems,” SIAM journal on computing, vol. 24, pp. 227—
234, Apr. 1995.

M. Gharavi-Alkhansari and T. S. Huang, “A fast orthog-
onal matching pursuit algorithm,” in Proc. ICASSP ’98,
Seattle, USA, May 1998, pp. 1389-1392.

L. N. Trefethen and D. Bau, Numerical Linear Algebra,
Siam, Philadelphia, PA, USA, 1997.

