
 1 

Array-Based Logic for Realizing Inference Engine in Mobile 
Applications 

 
Reggie Davidrajuh 

Deaprtment of Electrical & Computer Engineering 
University of Stavanger 

PO Box 8002, N-4036 Stavanger, Norway 
Tel: +47 51831700 Fax: +47 51831750 Email: reggie.davidrajuh@uis.no 

 
 

Biographical notes: 
Dr. Reggie Davidrajuh received a master’s degree in Control Systems Engineering in 1994 
and a PhD in Industrial Engineering in 2000, both from the Norwegian University of Science 
and Technology (NTNU). He is currently Associate Professor of Computer Science at the 
Department of Electrical and Computer Engineering at University of Stavanger, Norway. His 
current research interests include e-commerce, agile virtual enterprises, discrete event systems 
and modeling of distributed information systems.  

 

Abstract 
Mobile and wireless devices suffer from technological limitations such as limited battery life 
and limited memory size. Hence, use of technologies for mobile applications is confined to 
those technologies that are faster and take small footprint in memory. Firstly, this paper 
presents a survey of technologies that can be used for realization of inference engine, 
satisfying the qualities mentioned above. Secondly, this paper introduces a Scandinavian 
invention called Array-Based Logic that enables realization of inference engines for decision 
making that are compact and fast. Finally, a case study is presented to show how easy it is to 
use array-based logic for realizing inference engine in mobile applications.    
 
Keywords: Logic modeling, array-based logic, mobile applications, and mobile ad-hoc 
network 
 
 

1. INTRODUCTION  
Mobile devices have become indispensable tools these days. Since mobile devices have 
limited resources, the research and application of technologies in these areas are confined to 
those technologies that are: 
• Faster: in order to save battery life and to accommodate synchronous (blocking) 

communication,  
• Compact and memory friendly: mobile devices have limited memory thus embedded 

code shouldn’t take much memory.  
• Easy: the tools used for development should make it easy to design the mobile 

applications so that development can be done faster.    
 
 
This paper introduces a logic technology called array-based logic for realizing inference 
engines in mobile applications. The next section (section-2) presents a literature review of 
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technologies that can be used for realization of inference engines. Section-3 introduces array-
based logic.  
 
As mentioned above, among other issues, battery life and memory size are critical issues in 
mobile devices. Battery life and memory size and two dependent variables of the independent 
variables like processing time and program code size, respectively. Thus, if array-based logic 
minimizes processing time, it also implies that the usage of array-based logic saves battery 
life. Similarly, if array-based logic minimizes program code size, it also means that the usage 
of array-based logic demands less memory. The case study given in section-4 proves 
minimization of the two independent variables processing time and program code size; 
Implication is that battery life is increased and less memory is needed.  
 
The case study talks about developing an inference engine for evaluating a mobile host as the 
call manager in Mobile Ad-hoc wireless Network (MANET). This is a simple problem 
dealing with a small set of logic variables. Since the size of this problem is small, it is true 
that many logic technologies could be used to solve this problem, and the usage of array-
based logic will not make any considerable difference. The benefits of array-based logic will 
be apparent when large and complex problems with many logic variables are considered. 
However, the case study is intentionally made small to give emphasis also to the modeling 
and simulation approach behind array-based logic; this modeling and simulation approach is 
unique and is based on the “theory of connection” (e.g. Davidrajuh, 2000).  
 
 

2. LITERATURE REVIEW 
The aim of logic in industrial applications is to develop a formal method for modeling 
problems so that decisions can be made out of the models, and it can be made automatically 
e.g. by an inference engine. In order to create models, a language is needed with which 
sentences can be created in such a way that forms the logical structure of the model.  
 

2.1 Propositional Logic  
The first language that can be used for logic modeling is the language of prepositional logic. It 
is based propositions, or declarative sentences which can be argued as being true or false; 
thus, propositional logic is concerned with the validation of an argument consisting of a set of 
propositions that are split up into a number of premises and conclusions. The Boolean logical 
variables describe the facts in the premises, and the premises themselves describe the system 
when combined together (Davidrajuh, 2000; Huth & Ryan, 2000).   
 

2.1.1 Formal language 
In propositional logic, symbols are used to compress large set of English declarative 
statements into compact logic model.  Suppose a logic model consists of a set premises 

nφφφ ,,, 21 K and a conclusion ϕ , then the logic model is expressed by the sequent: 

nφφφ ,,, 21 K |- ϕ  

By applying proof rules on these premises, the validity of the conclusion is found (Huth & 
Ryan, 2000).  
 
2.1.2 Mathematical reasoning approach 
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By the use of propositional logic, modeling a logic system can be done exactly like modeling 
a physical system (Bjørke, 2000). First, the fundamental logic variables (also called primitive 
logic elements) are identified and each logic variable is assigned an axis; thus the logic 
variables span the whole universe of discourse (total space), see figure-1a. Then the logic 
variables are connected into premises, thus creating a subspace of the total space, see figure-
1b. Finally, the premises are combined to form the logic system, connecting subspaces 
spanned by the premises. There are some differences between the space span by the physical 
systems and logical systems; logical spaces are always linear and discrete.  

 
By connection, spaces that do not satisfy the constraints are removed, leaving a smaller space 
that represents the feasible solution (figure-1); this is after Lagrange, who in analytical 
mechanics developed the free variational method. Thus Lagrange developed the mathematical 
foundation for the basic procedures for logic modeling, and it was Pierce who applied these 
procedures (constraint satisfaction) to logical problems (Møller, 1995). 
 
2.1.3 Advantages & disadvantages of propositional logic 
This logic representation is useful in providing formal proofs as it offers clarity. Logic 
systems modeled with propositional logic is well defined and easily understood (Kusiak, 
1997). Also, by the mathematical approach for modeling logic systems, a Cartesian axis is 
assigned to each logic variable in the system, generating subspaces spanning all possible 
states of all the variables, thus providing a complete representation. However, there are two 
serious shortcomings of propositional logic that disqualify itself as the technology for 
realizing inference engine:  

 

Figure-1: Configuration space spanned by the logic variables 

Lets say that a logic system consists of three primitive logic variables, Temperature (with 
domain values 'low', 'high'), Alarm ('off', 'on'), and Power ('off', 'on'). 

5.2b: 
The subspace spanned by the combination 

((((Temp is 'low') AND (Alarm is 'off')) OR (Power is 'on'))  
=> (Power is 'on')) 

AND 
(((Alarm is 'on') OR (Power is 'off')) => (Power is 'off')) 
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1) Exponential growth: Though propositional logic offers complete systems, the 
representation is huge; this means, for M Boolean logic variables, the resulting space of M 
axes will contain 2M subspaces. This exponential growth (also known as 'combinatorial 
explosion') of the subspaces with increasing number of variables makes the modeling and 
simulation slower. Thus, propositional logic is not suitable for realizing the inference 
engine.  

2) Lack of quantifiers: Though propositional logic uses simple Boolean connectives like 
negation (‘not’), conjunction (‘and’), disjunction (‘or’), if-then (‘direct implication’), it 
lacks quantifies like ‘all’, ‘among’, ‘only’, ‘at least one’, etc. This limitation is restored in 
predicate logic.  

 

2.2 Predicate Logic  
This is much like propositional logic, but with its quantifiers, it is possible to express all 
arguments occurring in natural language. In other words, precise symbolic logic model 
equivalent of a set of English language statements is possible.  
 
2.2.1 Formal language  
A predicate logic formula has three entities: variables, functions that describe relationships 
between variables, and terms that are expressions consisting of constants, variables, and 
functions. Because of the power of predicate logic, the language is much more complex than 
that of propositional logic; interested reader is referred to Huth & Ryan (2000).  
 
2.2.2 Mathematical reasoning approach 
In the mathematical approach for modeling predicate logic systems is similar to that of 
propositional logic systems; a Cartesian axis is assigned to each logic variable in the system, 
generating subspaces spanning all possible states of all the variables, thus providing a 
complete representation making a huge representation if large number of logic variables are 
involved. Thus, advantages and disadvantages of predicate logic are similar for that of 
propositional logic.  
 

2.3 Production Rules 
Production rules are in effect subsets of predicate calculus with an added prescriptive 
component indicating how the information in the rules is to be used in reasoning. A 
production rule has the following form (Kusiak, 1997): 

IF  (condition) 
THEN  (conclusion) 

 
2.3.1 Mathematical reasoning approach  
The basic reasoning approach employed for production rule is searching: starting with a set of 
facts and look for those rules in which the IF clause matches the facts; if such rules are found 
('hit'), then proceed to the THEN clause. This reasoning is known as 'forward reasoning'. In 
'backward-reasoning', searching starts with a set of desired goals and to look for those rules in 
which the THEN clause (conclusion) matches the goals. Figure-2 shows an example with 6 
rules, using forward reasoning (or bottom-up search). As shown in figure-2, it is usual to use 
AND/OR tree to illustrate the inference process.   
 
2.3.2 Advantages and disadvantages of production rules 
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The main advantage is that the simple rules are easy to understand, modify, and extend. 
However, there are some shortcomings: In production rules, a logic system is evaluated with a 
couple of 'if-then' statements, taking a linguistic view than a mathematical approach. This 
means, for M multi-valued logic variables with N values NM  'if-then' statements are needed to 
span all combinations of the variables; missing any of these statements may cause unexpected 
results. For a large system of many logic variables, it will be impossible to write so many if-
then statements to take care of all possible combinations of variables; thus creating a complete 
model is not easy and prone to errors. In addition to this shortcoming, there is another serious 
problem: the reasoning approach based on searching is slow. 

 

2.4 Fuzzy Logic 
In relation to classical logic, Fuzzy logic, in a narrow sense, can be considered as an extension 
and generalization of classical multi-valued logic (Klir & Yuan, 1995). Fuzzy logic is a 
promising technology to realize inference engines and it used in diverse industrial 
applications. For a detailed study about Fuzzy logic, see (Adcock, 1993; Meridian, 1997; 
Tsoukalas & Uhrig, 1997; Yager & Zadeh, 1991). 
 
2.4.1 Formal language 

 

Figure-2: Forward reasoning inference process 

The logic system is represented here by the following six rules: 
 
Rule-1:   IF ((Temp is 'low') AND (Alarm is 'off')  THEN  (R1) 
Rule-2:   IF (R1) OR  (Power is 'on')   THEN  (R2) 
Rule-3:  IF (R2)     THEN  (Power is 'on') 
Rule-4:   IF ((Alarm is 'on') OR (Power is 'off'))  THEN  (R3) 
Rule-5:  IF (R3)     THEN  (Power is 'off') 
Rule-6:  IF ((Power is 'off') OR (Power is 'on')  THEN  (Goal)  
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Fuzzy logic is a methodology for expressing operational laws of a system in linguistic terms 
instead of mathematical equations. Systems that are too complex to model accurately using 
mathematics, can be easily modeled using fuzzy logic’s linguistic terms. These linguistic 
terms are most often expressed in the form of logical implications, such as fuzzy if–then rules. 
For example, a fuzzy if-then rule (or simply a fuzzy rule) looks like: 

IF delivery_time is LATE 
THEN supplier_preference is LOW. 

 
The terms LATE and LOW are actually sets that define ranges of values known as 
membership functions. By choosing a range of values instead of a single discrete value to 
define the input parameter “delivery_time”, we can compute the output value 
“supplier_preference” more precisely.  
 
2.4.2 Inference mechanism 
Inference mechanism in fuzzy logic is based on fuzzy rules that connect input and output 
parameters (fuzzy rule base), and the membership functions for input and output parameters. 
To create an inference engine, first the membership functions for input and output parameters 
are developed; both a range of values and a degree of membership define membership 
functions.  

 
Inference mechanism in Fuzzy logic is implemented in three phases (see figure-3): 
• Phase-1: Fuzzification phase (converting crisp input value into fuzzy value). 
• Phase-2: Inference phase (computing fuzzy output value by the fuzzy rules base). 
• Phase-3: Defuzzification phase (converting fuzzy output value into crisp value). 
 
2.4.3 Advantages and disadvantages of fuzzy logic 
Fuzzy logic offers fast inference, offers compact executable code that can be downloaded into 
micro-controllers for embedded applications. Fuzzy logic is also easy to learn and use. 
However, it has some limitations too. 
 
The first limitation of fuzzy logic is tuning; if one wanted to change the pattern the output 
parameters that are computed from the input parameters, then in-addition to changes in the 
fuzzy rule base, the membership functions of the input and output parameters must be 
changed too. The second limitation is that fuzzy logic does not guarantee completeness; it is 
up to the designer to include all the fuzzy rules connecting all possible combinations between 
the input and output parameters.  
 
The third limitation is the difficulty in generating fuzzy rule base. The fuzzy rules generated 
for an application must be consistent; they must properly adhere to the process dynamics with 
no contradictions between the rules. Generating the antecedent (the IF part) of a fuzzy rule is 

 

Outputs
Defuzzification 

(output interface) 
Fuzzification 

(input interface) 
Inference 

Inputs 

Figure-3: The three phases of inference mechanism in fuzzy logic 
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easy; but generating the consequent of a fuzzy rule (the THEN part) is not easy, as it demands 
deep understanding of the process dynamics (Davidrajuh, 2000).   
 

2.5 Array-Based Logic 
The previous subsections state that a complete representation of M multi-valued logic 
variables with a domain of N values contains MN subspaces. This exponential growth of the 
subspaces with increasing number of variables makes the modeling and simulation slower. 
Array-Based Logic developed by G. L. Møller avoids this exponential problem by 
compressing NM subspaces into M x N linear representation (Møller, 1995). Array-based logic 
also provides mechanisms for operations to operate on the compressed representation in linear 
time.  
 
2.5.1 Formal language 
In addition to Boolean variables and multi-valued variables, array-based logic allows also 
quantitative (intervals, for example) to be treated as logic variables. There are three types of 
variables in array-based logic: the nominal logic variables (Boolean and multi-valued), 
ordinal logic variables (e.g. Coordinate is [2,2], [4,2], or [3,3]) and intervals (e.g. Cost is 
between <50 and 100>).  
 
Structured Array-based Logic (SABL) is a formal language of array-based logic for modeling, 
logic programming, and implementation of logic systems; interested reader is referred to 
Davidrajuh (2000). 
 
 
2.5.2 Inference mechanism  
The inference mechanism used in array-based logic is geometry or topology of connections 
between the fundamental components of a system. A system consists of three fundamental 
components, namely elements, connections, and sources. Elements carry all the physical 
properties of the system; thus, elements are the fundamental building blocks of a system.  
Connections reflect how elements in a system influence each other; thus, connections 
represent the structure of a system. Finally, sources reflect the influence between a system and 
its environment. Sources are the environment's influence on a system.  
 
The inference mechanism consists of three phases; see Davidrajuh (2000) for details: 
• Phase-1: identifying the primitive system 
• Phase-2: making the connected system 
• Phase-3: applying the sources, and solving the connected system 
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2.6 Summary 
Table-1 presents the summary of the literature review.  
 

Technology Property 
(Relation) 

Inference 
mechanism 

Inference 
cycle 
time 

Complete 
system 

Implementation 

Propositional 
logic 

Boolean 
truth values 

modus ponus 
etc. 

slow yes not compact 

Predicate logic any 
predicate 

same as 
propositional 

slow yes not compact 

Production 
Rules 

IF - THEN searching slow no not compact 

Fuzzy logic fuzzy rules  membership 
functions & 
fuzzy rule 

base 

fast no compact 

Array-based 
logic 

any 
predicate 

geometry fast yes compact 

 
Table-1: Summary of the survey on approaches for modeling logic systems 

 
 
Table-1 reveals that array-based logic satisfies all the requirements on the qualities for 
realizing an inference engine (such as high processing speed, and compact size) for mobile 
applications. However, this does not mean that array-based logic is the only or the best option 
for realization of every inference engines. On the contrary, the type of the inference engine or 
the modeling problem under scrutiny determines the technology for realization. For example, 
if the model could be best expressed by a set English statement that approximately describe 
the dynamics of the system, then fuzzy logic is perhaps the best technology for realization of 
the system. 
 
 

3. STRUCTURED ARRAY-BASED LOGIC 
Array-based logic guarantees complete solutions (explained below), compact code, as well as 
fast computation (for real-time applications). Array-based logic was written in APL language; 
APL is a primitive symbolic language that is hard to learn and use. Davidrajuh (2000) ported 
array-based logic to MATLAB environment with some additional functions, and named it 
“structured array-based logic”. 
 
Structured array-based logic toolbox consists of two types of functions:  

1) Propositional logic functions, and 
2) Array-based logic functions  

 
Propositional logic functions are for basic mathematical treatment of the logic system after 
Lagrange and Pierce. By using the propositional logic functions, though the configuration 
spaces will be large (exponential growth with increasing number of variables), it will be 
complete; that is, the configuration space includes all possible combinations of the logic 
variables. Array-based logic functions are enhanced logic functions for modeling and 
simulation of logic systems using a compression technology that provides compact 
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representation of configuration space and faster simulation, without loosing completeness. 
The following subsections present these two types of logic functions. 
 

3.1 Propositional logic functions 
All the logic variables (primitive elements) that are used in a system are to be declared first; it 
is the function element that is used for declaration. Relevant to the function element is the 
function assign; this function changes the values of a logic variable.   
 
E.g. Declaration of a multi-valued logic variable 'Color' with a domain of three values 'red', 
'green', and 'blue':  

Color = element('n',{'red','green','blue'},{'green'}, 'Color'); 
 
The first argument 'n' indicates that the variable is multi-valued (or boolean). The second 
group of input argument are values (of domain), the third group is the default values selected 
at the time of declaration (in this example, default value is 'green'), and the final input 
argument is the label or name of the variable. After declaring a logic variable, values of the 
variable could be changed with the function assign: 

ColorRED = assign({'red'}, Color); 
 
Definition-1: Basic operations  
A logic system can be built by applying the following four basic operations on variables: 
disjunction (V), direct-implication (=>), nand, and converse-implication. These four 
operations are known as the Klein four group. Other logic operations can be derived from 
these four basic operations. The functions for these four operations are, disjunct, dimp, nand, 
and cimp respectively. ���� 
 
E.g. If Premise1 = (ColorRED => AlarmON) then Premise-1 is declared as: 

Premise1 = dimp(ColorRED, AlarmON); 
 
Definition-2: Colligation 
If the same variable occurs more than once in a premise or in a combination of premises, then 
duplicate axes will be found in the configuration space. The process of removing superfluous 
axes without losing any information is called Colligation. The function that performs 
colligation is fuse. ���� 
 
E.g. if System =disjunct(Premise1,Premise2), where 

Premise1 = dimp(ColorRED, AlarmON), and 
Premise2 = dimp(ColorGREEN, AlarmOFF) 

Then, the System contains two copies of the logic variables Color and Alarm (or 
mathematically, two axes each for Color and Alarm). Duplicates of Color and Alarm must be 
removed (or the axes are fused together):  

System = fuse(System); 
 

3.2 Array-based logic functions 
The following definitions present the main functions for array-based logic.  
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Definition-3: Compressed representation  
Compressed representation is to keep the relation (premises, subsystems, or system; see 
figure-2) to a minimal size without loosing any information. The function used for 
compression is compress. ���� 
 
In compressed form, functions like join, deduct, etc. make use of the compressed (compact) 
representation for faster computation. The function join connects premises together via the 
common variables they posses; the resulting relation (subsystem, or system) will be in 
compressed form. Compression technique is similar to the Karnaugh map (K-map) reduction 
done in digital electronics.  
 
In addition to boolean variables and multi-valued variables, array-based logic allows also 
quantitative (intervals, for example) to be treated as logic variables. There are three types of 
variables in array-based logic: the nominal logic variables (boolean and multi-valued), ordinal 
logic variables (e.g. Coordinate is [2,2], [4,2], or [3,3]) and intervals (e.g. Cost is between <50 
and 100>).  
 
Definition-4: Intervals as logic variables  
Array-based logic facilitates intervals to be treated as logic variables too. An interval 
variable may contain many intervals, each of which may be true or false. ���� 
 
To declare an interval, the function interval is used. E.g.:  

LowerInterval = interval('ge', 85, 'lt', 98)  
This means, the LowerInterval is greater than or equal to 85, and less than 98. 
 
An interval variable is created using the function element. E.g.:  

InputPrice = element('i', {LowerInterval, UpperInterval}, 'Input Price') 
where the first argument 'i' indicates that the variable to be created is an interval variable,  and 
the final argument is a label of the variable. 

 

Figure-4: System perspective of  
modeling a logic system 
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Definition-5: Deducing conclusions  
Deduction (or inference) is to draw conclusion from a connected system. Deduction is 
performed by the function deduct, which makes the OR - projection of all the axes 
complementary to the variables concerned, on the axes of the variables. ���� 
 
The final definition is about the state of a system.  
 
Definition-6: state of system 
The state of a system is the information required of the system to uniquely determine an 
output for an input to the system. The output is a vector of output variables, which is 
computed from the input vector of variables and the system (see figure-4), using the function 
state. ���� 
 
Allowing quantitative variables to be treated as logic variables facilitates numerous 
advantages in modeling large logic systems. Use of propositional and array-basic logic 
functions will become clear in the next section where a case study is done on mobile platform. 
See Davidrajuh (2000) for more elaborate explanation of the logic functions.  
 
 

4. CASE STUDY 
The previous section proved that array-based logic provides fast computation and compact 
code. In this section, a case study is provided to show whether it is also easy to develop 
(program) an inference engine. Case study deals with an inference engine that is to be used to 
evaluate a mobile host (MH) as the call manager; the call manager is to manage MHs in a 
specified area in Mobile Ad-hoc Network (MANET). MANET is a mobile network where any 
mobile device (mobile phones, personal digital assistants, etc.) located inside a specified area 
can act as the call manager. Selecting a call manager is an important problem and is discussed 
widely in literature; see for example Yan et al (2004).  
 

4.1 The Best MH 
Yan et al (2004) proposes an algebraic equation for selection of the best MH as the call 
manager in a specified area in MANET. The equation computes the total cost of a MH that is 
under evaluation. After calculating the total costs of all the MHs, the one with the minimal 
cost is selected as the call manager in the specified area. The equation is:  

( ) ( ) ( )iiii pw  sw  dw c ×+×+×= 321  

Where d is the distance between the MH to the center of the specified area, s is the average of 
speed of the MH, and p is power cost; w1, w2, and w3 are coefficients (weighting factors). 
Thus, the equation calculates total cost of an MH in terms of its distance from the center, its 
speed and its battery power. In summary: using the equation proposed by the Yan et al (2004) 
demands calculation of total cost of all the MHs in the specified area so that the best MH (the 
one with minimal cost) can be selected as the call manager.  
 
Since, calculating total costs of all the MHs in the area to find the best MH takes time, this 
paper proposes selection of an optimal MH (rather than the best MH) as the call manager. If 
an MH under evaluation satisfies the selection criteria, then it is selected as the call manager, 
and the selection process is terminated; this means the selection process does not evaluate all 
the MH in that area.  
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4.2 The optimal MH 
This paper proposes a selection process that uses a logical equation rather than an algebraic 
equation. The logical equation is based Yan et al (2004) in the sense that the logical approach 
uses distance, speed, and power as input parameters for the selection process. In the logical 
approach, first the primitive logic variables (elements) are identified. Then these variables are 
grouped into premises using the logic operators like disjunct, dimp, etc. Finally, the premises 
are joined to make the compete system. 
 
It is assumed that the inference engine receives information from MHs in the specified area 
about their distance from the area center, their speed, and about their power capacities (figure-
5). For brevity, how the information is sent to the inference engine is not discussed here.  
 
The selection is based on three data (figure-5): distance of MH from the center of the area, 
speed of the MH, and the power cost of the MH. To make decisions based on the data, the 
inference engine needs three set points (on for each input). These set points are fine-tuned to 
make the selection process agile; suppose, all MHs fail in the selection process, then the set 
points are relaxed a little, to make some MHs pass the selection process.  
 
Figure-6 shows the logic variables and the premises that make up the complete system. The 
first three premises deal with the input values. The input (numeric) values for distance, speed, 
and power cost, are used to assign values to some auxiliary logic variables. In effect, the first 
three premises are about converting interval variables into nominal (Boolean or multi-valued) 
variables. Premises 4- to- 5 uses the auxiliary logic variables to compute the conclusion. 
 

4.3 Premises 1-To-3: Dealing with the Input Values 
Premises 1 to 3 deal with the input values named as inputDistance, inputSpeed, and 
inputPower. Premises 1-to-3 are to convert the input numerical values into auxiliary logic 
variables named distance, speed, and power respectively.  

 

 

Figure-5: The inputs and outputs of the inference engine 
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4.3.1 Dealing with inputDistance 
If the distance is greater than the set point for distance, then the distance is 'long'. If the 
distance is less than or equal to the set point for distance, then the distance is 'short'. To 
formulate this logic statement, two logic variables are needed: a multi-valued logic variable 
“distance” with the domain values of 'long' and 'short', and an interval logic variable 
“InputDistance” with two intervals, one interval between minimum possible distance to set 
point and the other interval between set point to maximum possible distance.  
 
To declare the logic variable distance:  

distance = element('n',{'short', 'long'},{}, 'distance'); 
 
Before declaring the interval variable InputDistance, a value should be assigned to the set 
point for distance. It is assumed that the given value for set point is 2 km, the minimum 
possible value for distance is 0 km, and the maximum possible value is 5 km. 

DistanceSetPoint = 2; MinDistance = 0; MaxDistance = 5; 
 
To declare two intervals, the lower interval and the upper interval: 

LowerInterval = interval('ge', MinDistance, 'le', DistanceSetPoint); 
UpperInterval = interval('gt', DistanceSetPoint,'le', MaxDistance); 

 
Declaraing the interval variable InputDistance input distance: 

InputDistance = element('i', {LowerInterval, UpperInterval},'Input Distance'); 
 
Finally, declaring the premise-1: (DistanceIsFair) if and only if (FairDistanceRange) 

ShortDistanceRange = assign(InputDistance, LowerInterval);  
DistanceIsShort = assign(distance, {'short'});  
Premise_1 = bimp(ShortDistanceRange, DistanceIsShort); 

 

 

Figure-6: Logic model of the inference engine 
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4.3.2 Dealing with speed 
If the speed is between the minimum possible speed and the first set point for speed, then the 
speed is 'slow'. If the speed is between the first and second set points, then the speed is 
'moderate'. On the other hand, if the speed is between the second set point and the maximum 
speed, then the speed of the MH is  'fast'. To formulate this logic statement, again two logic 
variables are needed: a multi-valued logic variable “speed” with the domain values of 'slow', 
'moderate', and 'fast', and an interval logic variable “InputSpeed” with three intervals. The 
first interval (LowerInterval) is between the minimum possible speed and set point-1, the 
second interval (MiddleInterval) is between the set points, and the third interval 
(UpperInterval) is between set point-2 and anticipated maximum speed. 
 
Formulating the premise-2 that deals with the inputSpeed is very similar to premise-1 for 
inputDistance. The only difference is that, speed has three intervals whereas distance has two 
intervals. For brevity, detailed formulations are not shown here. 
 

4.3.3 Dealing with power cost 
Premise-3 for power is formulated very similar to that of premise-1.  
 

4.4 Premise - 4 and 5: Accepting or Rejecting a MH 
The auxiliary logic variables distance, speed, and cost are used to compute premise-4. 
Premise-4 is about the conditions for accepting a MH as the call manager. A MH should be 
selected if and only if all three inputs values are within the acceptable regions, like distance is 
'short', speed is 'moderate' or 'fast', and power is 'moderate' or 'superior'.  
 
First the logic variable Conclusion is declared:  

Conclusion = element('n', {'reject', 'select'}, {},'Conclusion'); 
 
Now the acceptable conditions:   

AcptDIS = assign(distance, {'short'});  
AcptSPE = assign(speed, {'moderate', 'fast'});  
AcptPOW = assign(power, {'moderate', 'superior'});  
AcptCondtion = conjunct(AcptDIS, AcptSPE, AcptPOW); 

 
For these acceptable inputs, the conclusion is 'select': 

Action = assign(Conclusion, {'select'}); 
 
Finally, the premise-4 is for accepting a MH (selecting a MH): Conclusion is 'select' if and 
only if ((distance is 'short') AND (speed is 'moderate'/'fast') AND (power is 
'moderate'/'superior')): 

Premise_4 = bimp(AcptCondition, Action); 
 

4.4.1 Premise - 5: Rejecting a MH 
A MH should be rejected if any one of the following conditions is met: either distance is 
'long', or speed is 'slow' or power is 'inferior'.  
 
The conditions for rejection:   

RejtDIS = assign(distance, {'long'});  
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RejtSPE = assign(speed, {'slow'});  
RejtPOW = assign(power, {'inferior'});  
RejtCondtion = disjunct(RejtDIS, RejtSPE, RejtPOW); 

 
For these inputs, conclusion is 'reject': 

Action  = assign(Conclusion, {'reject'}); 
 
Finally, the premise-5 for rejecting a MH: (Conclusion is 'reject') if and only if ((distance is 
'long') OR (speed is 'slow') OR (power is 'inferior')):  

Premise_5 = bimp(RejtCondition, Action); 
 

4.4.2 The Connected System 
The system is the combination of the five premises. That is, 

System = join(Premise_1,Premise_2,Premise_3,Premise_4,Premise_5); 
 
When the five premises are joined using the function join, it removes duplicate variables in 
the connected system, and leaves the connected system in compressed form; the three 
auxiliary variables (distance, speed, and power) are only to help compute the conclusion from 
the input numeric values, thus in the final system. Thus, they must be removed. 

Inputs  = [InputDistance InputSpeed InputPower]; 
SYSTEM_F = deduct([Inputs Conclusion], System); 

  
The final system (SYSTEM_F) is compact and complete. This is the core of the inference 
engine. Because it is operates in linear time, the decision made by the inference engine is also 
fast.  
 

4.4.3 Simulations on the connected system 
Some sample input values are input to the inference engine: 

InputDIS = assign(InputDistance, 1);   
InputSPE = assign(InputSpeed, 4);   
InputPOW = assign(InputPower, 8.2);  

 
Making a source vector of sample inputs:  

TestInputVector =  [InputDIS InputSPE InputPOW]; 
 
Applying the source (vector of sample inputs) to the system, the outputs are generated:  

output = state(TestInputVector, SYSTEM_F); 
 
Using the print system, the output is echoed on the screen: 

print(output); 
 
 
The output of the system (printed on the screen) is: 

** Conclusion ** : select :         
This means, for the given input values and for the given set points, the MH is selected as the 
call manager.  
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5. Managerial Implications 
The most difficult aspect of developing applications for the mobile platform is that the 
applications must satisfy at least three basic criteria: they must be memory friendly (compact 
code), they must run fast (take minimal execution time; for example - to save battery), and the 
tools for development must facilitate fast and easy development. This paper presents a logic 
technology called array-based logic that guarantees applications developed by this technology 
fulfill the three criteria; array-based logic operates on a linear (compact) space thus the code 
size is small, the operations on it are faster (takes linear time), and it is also easy to use this 
tool.  
 
This paper also presents a structured language of array-based logic called ‘structured array-
based logic’, which is a toolbox of functions written in MATLAB language. This toolbox can 
be used for modeling and simulation of logic programs as shown in the case study; the case 
study deals with developing an inference engine for selection of a mobile device as the call 
manager in MANET mobile wireless network. The case study is intentionally kept small just 
to give emphasis to the modeling and simulation approach behind array-based logic; this 
approach is unique and is based on the theory of connection.  
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