

 1

A SERVICE-ORIENTED APPROACH FOR DEVELOPING ADAPTIVE DISTRIBUTION

CHAIN

Reggie Davidrajuh

Department of Electrical & Computer Engineering,

University of Stavanger,

PO Box 8002, 4036 Stavanger, Norway

Email: reggie.davidrajuh@uis.no

Abstract: This paper presents a service-oriented approach for development of adaptive

distribution chain. The distribution chain presented in this paper achieves all the three objectives

of an adaptive chain: Firstly, to achieve variability, this paper proposes an approach that uses

iterations to fine-tune the modules that makeup the distribution chain. Secondly, to achieve

visibility, this paper proposes Web services based Service Component Architecture for

implementation of the distribution chain. Finally, mathematical modelling and simulation of the

distribution chain is proposed for assuring the velocity.

Keywords: Adaptive distribution chain, service-oriented approach, performance analysis, Petri

Net, GPenSIM

 2

Bibliographical notes: Reggie Davidrajuh received a PhD in Industrial Engineering in 2000

and a Masters Degree in Control Systems in 1994, both from the Norwegian University of

Science and Technology. He is currently an Associate Professor of Computer Science at the

University of Stavanger, Norway.

1. INTRODUCTION

This paper presents a service-oriented approach for development of adaptive distribution chain.

First, this paper talks about the design issues of an adaptive distribution chain, then about the

implementation issues. Finally, performance analysis of an adaptive distribution chain is

discussed.

Literature presents many definitions for adaptive supply (or distribution) chain; a formal

definition of an adaptive supply (or distribution) chain is: “An adaptive supply chain is one in

which participants are confident in their ability to recognize changing or unanticipated

conditions in their supply chain, in a timeframe that allows them to evaluate alternative

corrective actions, and react to mitigate the impact to their business. Due to the frequency and

volume of supply chain exceptions, the ability to monitor and respond must be highly efficient

and at least partly automated. The amount of reserve inventory in a supply chain is usually

indirectly proportional to the confidence operators have in their ability to recover from supply

chain failures without significant impact to schedules, delivery dates, or costs” (World Trade,

2004).

 3

The objective of an adaptive supply chain is to have the highest visibility, greatest velocity, and

best ability to manage variability (i2, 2004; SAP, 2002). Visibility is the ability of all the

collaborating partners to see vital data; velocity is the speed of information flow across the

supply chain; variability is the ability to withstand unpredictable events. Achieving these three

objectives is not easy, considering the complexity and diversity of the applications collaborating

partners are using (Smith, 2006; Shih et al, 2006; Wei at al, 2006). Thus, this paper presents a

unique design approach for distribution chain that is based service component architecture,

consisting modular components that are attuned by iterations.

Organisation of this paper:

The distribution chain presented in this paper achieves all the three objectives (variability,

visibility, and velocity) of an adaptive chain. Section 2 presents a unique design approach for

achieving variability. To achieve visibility, this paper proposes Web services based Service

Component Architecture (SCA) for implementation of the distribution chain; this is explained in

section 3. How fast the information flows across the distribution chain (velocity) is calculated by

means of modelling and simulation. Section 4 presents the details of the performance analysis.

 4

2. MODULAR COMPONENTS BASED DESIGN

This section presents a modular component based design to achieve variability - the ability of the

distribution chain to be adaptive to the quickly changing market conditions. The design mainly

involves an iterative cycle connecting two modules: the strategic module and the tactical

module; see figure 1. The tactical module is further divided into four distinct modules: two

modules for inventory control and two modules for transport. The author’s earlier paper Ma &

Davidrajuh (2005) presents complete mathematical details of all these modules; a summary is

given in the following subsections.

2.1 The Iterations

In the initialization module, all parameters (including operation related parameters) are assigned

initial values from the ongoing (and/or from the past) collaboration. Then, in the strategic

module, some strategic decisions are made (e.g. optimal number and location of wholesalers and

retailers). After this, from the output of strategic module, the tactical decisions are made (e.g.

optimal transportation schedules & routes, inventory control parameters) in the tactical module.

After determining the tactical parameters, the parameter values are input into the strategic

module again, starting another re-optimization cycle. Successive design results are compared at

the end of each iteration-cycle. If there is no remarkable difference found between the successive

iteration results, this means that the iteration results converge and the distribution chain is

established.

 5

When the market conditions change, there may be changes in the values of some of the

parameters such as demand, transportation costs, etc. First, for these new values, the tactical

module is invoked (operation related parameters are re-calculated) to adapt to the new market

situation. If the resulting operation related parameter values significantly differ from the older

values, then the nucleus enterprise may start the iteration cycles until the iteration result

converges: at this point, a new distribution chain is found that is adapted to the new market.

Figure 1: Achieving variability: the iterative approach with modular components

Tactical Module

Inventory
Control
Module

(At retailers)

Transportation
Module
(From

wholesaler to
retailers)

Numbers and location of retailers, distribution
centers, wholesalers; Demands at retailers

Knowledge from past and present
Collaborations (Initial conditions)

Transportation
Module
(From

distribution
center to

wholesalers)

Inventory
Control
Module

(Wholesalers,
distribution

center)

Strategic Module

Initialization Module

Changing
Market
condition

Iteratio
n

s

 6

2.2 The Strategic Module

The strategic module is about finding optimal number and location of the collaborators, as the

performance of a distribution chain is mainly dependent on its structure (Caputo et al, 2004;

Childerhouse et al, 2003) and on the relationship that exist between the collaborators (Rahman,

2004; Wu et al, 2004).

The strategic module is modelled with mixed integer programming (MIP) composed of two

types of formulae: objective function and constraints. The objective function of the strategic

module is to maximize profit, while the constraints are like flexibility constraint, material flow

balance constraint, etc. In the objective function, profit equals total revenue minus total cost;

only four types of costs are considered: delivery cost from wholesalers to retailers, delivery cost

from distribution centres to wholesalers, inventory holding cost at wholesalers, and inventory

cost at the distribution centre.

2.3 The Tactical Module

The tactical module is determined based on the output of the strategic module. The tactical

module has the following four sub-modules:

The sub-module for inventory control at retailers: According to Tijms (1994), there are mainly

two types of inventory control models: periodic review model and continuous review model. Ma

and Davidrajuh (2005) propose use of continuous review model for the inventory control policy.

 7

Sub-module for transportation from a wholesaler to retailers: After determining optimal

inventory levels for each retailer, transportation between wholesalers and retailers can be

planned. In practice, the order quantity by a retailer is normally small, so it is possible for a

vehicle to serve several retailers in one journey. In such situation, following questions are raised:

How to cluster retailers? How to determine routes for vehicles? Ma and Davidrajuh (2005)

propose use of genetic algorithm for routing.

Sub-module for inventory control at wholesalers and at distribution centre: A wholesaler faces

several retailers; adding together random demands at retailers can generate the random demand

process at the wholesaler. For the distribution centre, the parameter determining process is same

as the one for wholesalers.

Sub-module for transportation from distribution centre to wholesalers: Normally, amount of

product demanded by a wholesaler is large and hence, a vehicle can only serve one wholesaler in

its journey. Thus, there is no routing problem in this transportation model (if there is routing

problem, then the mathematical model used for the sub-module “Transportation model from a

wholesaler to its retailers” can be used).

3. SERVICES-ORIENTED IMPLEMENTATION

The design presented in section 2 (summarized in figure 1) involves modules for achieving

variability. The same components can be utilized to achieve visibility too; this paper proposes

 8

Service Component Architecture (SCA) for implementation of the modules. Figure 2 shows

how visibility can be added to the distribution chain by implementing modules as services. SCA

is based on Web services. Beatty et al (2003) and Beisiegel et al (2005) explain the concepts

behind SCA.

Figure 2: Achieving visibility with Web services

Tactical Decisions
(Transportation costs, inventory levels & costs)

Inventory
Control
Module

(At retailers)

Transportation
Module
(From

wholesaler to
retailers)

Knowledge from past and present
Collaborations

Transportation
Module
(From

distribution
center to

wholesalers)

Inventory
Control
Module

(Wholesalers,
distribution

center)

Strategic Decisions
(Numbers and location of retailers, distribution

centers, wholesalers; Demands at retailers)

Initialization Module

Web Services Interface

Tactical Module

Strategic Module

 9

3.1 A Brief Introduction to Service Component Architecture (SCA)

A model of a business application (known as ‘SCA Assembly Model’) consists of a series of

artefacts: The basic artefact is the ‘module’, which is the unit of deployment for SCA and which

holds ‘services’ that can be accessed remotely. A module contains one or more ‘components’,

which contain the business logic (function) provided by the module. Components offer their

function as services, which can either be used by other components within the same module or

which can be made available for use outside the module through ‘entry points’. Components

may also depend on services provided by other components - these dependencies are called

‘ references’. References can either be linked to services provided by other components in the

same module, or references can be linked to services provided outside the module, which can be

provided by other modules. References to services provided outside the module, including

services provided by other modules, are defined by ‘External Services’ in the module. ‘Wires’

represent the linkages between references and services. Thus, the building of a business solution

can be progressed as follows:

1. Component building: the implementation of components which provide services and

consume other services

2. Module building: Components are assembled together as modules; Modules are deployed

within an SCA System. An SCA System represents a set of services providing an area of

business functionality within a single organization (e.g. inventory control in distributor ‘i’).

3. Subsystem building: To help build and configure an SCA system, subsystems are used to

group and configure related modules. Subsystems contain ‘Module Components’, which are

configured instances of modules. Subsystems, like modules, also have Entry Points and

 10

External Services. Subsystems can also contain Wires that connect together the module

components, entry points and external services.

4. System building: the assembly of subsystems to build the business application through the

wiring of service references to services; that is, the subsystems are then linked together to

form a cohesive solution.

3.2 Model of the Proposed Distribution Chain

Figure 3 shows the assembly model of the proposed distribution chain. The system consists of

four subsystems: the first subsystem is the ‘InitSystem’, which is the Entry Point of the system.

InitSystem has only one module component called ‘Initialization’, which loads the necessary

enterprise data and the market data through Service Data Objects (Beatty et al, 2003); for

brevity, these details are not shown.

The second subsystem is the ‘IterativeProcess’ subsystem that is responsible for executing the

iterative process; the module component ‘HandleIterativeProcess’ of this subsystem realizes the

iterative process by starting the iterative process for the first time, get the services of the

necessary subsystems (subsystems ‘StrategicDecisions’ and ‘TacticalDecisions’) during

successive iterations, and finally, terminates the iterative process when the iterative process

converges.

The third subsystem is the StrategicDecisions subsystem that will compute the strategic design

values. This subsystem has a component module called ‘StrategicBusinessProcess’, which is the

 11

realization of the business logic represented by the strategic module in figure 2. The fourth

subsystem is the TacticalDecisions subsystem which is responsible for computing tactical

values; for this purpose, this subsystem get the services of four other module components, such

as ‘InventoryWholeSDist’ (meaning inventory control at wholesalers and distribution centres),

‘ InventoryRetailers’ (inventory control at retailers), ‘TransportWholeSDist’ (transport

scheduling from wholesalers to distribution centres), and ‘TransportDistRetail’ (transport

scheduling from distribution centres to retailers). The subsystem TacticalDecisions gets the

services of the four other modules locally. However, another design may place these four

module components as remote service references to TacticalDecisions.

3.3 Advantages of the Service-Oriented Implementation

The main reason for using SCA for implementing modules is to achieve visibility across the

distribution chain. In addition to visibility, using SCA offers many other benefits too such as:

• Conquering complexity: the assembly model greatly reduces complexity associated with

developing large business applications by providing a modular way to unify services

provided by the application. The subsystems can be run on different machines, maintained

and updated by different enterprises. New components can be added or existing components

can be updated in an incremental way at runtime.

• Structured line of business offers agility: By structuring applications as a series of services,

IT assets become more agile and enterprises are better able to adapt to the dynamic business

environments. Components are coded with distinctive mathematics so that it will make them

easy to adapt to new and changing requirements - this is a fundamental issue in the modern

 12

distribution chain; the distribution chain must be continuously adapting to changing market

conditions.

• Integration with ease: In principle, every component is reusable independent of its context;

this means, a component representing a module should be ready to be used by any other

components (modules) running at a remote location. Clients of a component do not need any

knowledge of how the component is implemented; they need to know only the interface to

the component. As long as the interface remains unchanged, a component can be modified

without affecting the clients (Beatty et al, 2003; Kozaczynski, 1999).

 13

Figure 3: The System Assembly

 Initialization
 Distribution

Chain
Design

HandleIterativeProcess

Subsystem IterativeProcess

Subsystem TacticalDecisions

InventoryWholeSDist

InventoryRetailer

TransportWholeSDist

TransportDistRetail

TacticalBusinessProcess

 StrategicBusinessProcess

Subsystem StrategicDecisions

Subsystem InitSystem

 14

4. PERFORMANCE ANALYSIS

The previous two sections explain how the design and implementation of the proposed

distribution chain achieves variability and visibility, the two objectives of an adaptive

distribution chain. This section deals with the third objective, namely velocity. In this section, a

performance analysis is done in order to investigate whether the information flow across the

proposed distribution chain is fast enough.

4.1 Scenario Description

A distributor wants to know how its inventory level influences the distribution chain. First, the

distribution chain will process the input data by feeding it to the strategic module and then to the

tactical modules and sub-modules. The strategic module decides whether the input data adheres

to the strategic goals; the tactical modules make sure that the input data adheres to the tactical

goals too.

Thus, when a collaborator (or client, in client-server paradigm) sends details (a request) to the

distribution chain (server), it gets the response after going through the strategic module and the

tactical modules, repetitively (iterations). The number of iterations depends on the input data

and therefore not pre-fixed. Thus, the response time is not constant.

The response time is a very important design parameter that determines how the interface

between the collaborator and the distribution chain can be implemented. For example, if the

response time is in the order of tens of seconds meaning velocity is not fast enough, then the

 15

interface should be realized as a non-blocking asynchronous messaging service. On the other

hand, if the response time is in the order of seconds, then blocking and synchronous Web service

is the best option for realizing the interface.

4.2 Brief Overview of the Choices of Modelling Tools

A mathematical model of the distribution chain is needed to measure the response time.

Generally, Automata, Sateflow, and Petri nets, are the tools that are most suitable for modelling

distributed systems, e.g. the distribution chain; interested reader is referred to Davidrajuh and

Molnar (2006) for a short survey of tools. In this paper, a Petri net tool called General Purpose

Petri Net Simulator (GPenSIM, 2006) is used for the modelling. GPenSIM is a non-graphic

program written in MATLAB.

4.3 Performance Analysis

To calculate the response time from the distribution chain to the distributor, first the distribution

chain should be mathematically modelled, so that simulations can be run on the model. The

following steps are involved in the modelling and simulation:

1. Creating a Petri net (mathematical) model of the distribution chain

2. Creating a simulation program for the model

3. Running the program (simulations)

 16

Figure 4: The Petri net model for performance analysis

an3 ax3

an1

ITERATIONS

Response to
Client

(pRTC)

Request from
Client

(pRFC)

SERVER
(Service Implementation Layer)

Aggregator
(tSUM)

Tactical
sub-decisions
(tTSUB1 –
tTSUB4)

TACTICAL MODULE AND
SUB-MODULES

Iterator
(tIT)

Number of
iterations
(pNOI)

. . .

Send Request
(pSR)

CLIENT

Receive
Response

(pRR)

ax1

ax4

Buffer
(pB2)

Buffer
(pB1)

Buffer
(pB3)

Buffer
(pB4)

Buffer
(pB5)

an2

an4

ai1

ai5

ai4

ai2
ai3

an3

as1 as2

at1
at7

at10

at12

at11

at9

at8

at5 at6

at4
at3

at2

INTERNET

ax2

Transmission
Server to Client

(tSC)

Transmission
Client to Server

(tCS)

Initialization
(tINIT)

Strategic
Decisions

 (tSD)

Tactical
Decisions

 (tTD)

Create Response
(tRES)

STRATEGIC
MODULE

.

4 4
.

Buffer
(pB6)

SERVER
(Service Interaction Layer)

an2

 17

4.3.1 Mathematical model

The distribution chain that is shown in figure 3 should be converted into a Petri net model. The

Petri net model is shown in figure 4. It is relatively easy to convert a discrete event based system

like the distribution chain shown in figure 3 into a Petri net model: all the processing nodes are

replaced by transitions with an input and an output place. Interested readers are referred to the

standard textbooks on Petri nets, for example, Cassandras and LaFortune (1999).

4.3.2 Simulation Program

The Petri net model shown in figure 4 is graphical and is drawn on a piece of paper. The

information shown in the figure should be converted into a set of instructions using a Petri net

toolbox like GPenSIM. The simulation program written in GPenSIM is given in the appendix.

 18

4.3.3 Running Simulations

Table 1 shows the data used for simulations.

Event

Name of the transition in

figure 4.

Value (in

milliseconds)

Client to Server transmission time tCS Normal distribution

(2000,50)

Server to Client transmission time tSC Normal distribution

(2000,50)

Initialisation time tINIT

Uniform distribution

(280,320)

Time for packing the results tRES

Uniform distribution

(1, 10)

Time for making strategic

decisions

tSD

Uniform distribution

(80, 100)

Time for making tactical decisions tTD

Uniform distribution

(25, 35)

Time for making tactical

sub-decisions

tSUB1 Uniform distribution

(10, 15)

Time for making tactical

sub-decisions

tSUB2 Uniform distribution

(10, 15)

 19

Time for making tactical

sub-decisions

tSUB3 Uniform distribution

(10, 15)

Time for making tactical

sub-decisions

tSUB4 Uniform distribution

(10, 15)

Time for summing the results tSUM 0

Time for starting next iteration tIT 0

Table1: Time (in milliseconds) for different events

In addition, the number of iterations (NOI) was taken as 3.

Simulation result indicates that the client (distributor) gets the response in 4.6 seconds; this

means, the velocity of information flow is acceptable. This also means that the interface between

the distributor and the distribution chain could be realized either as a Web service.

5. CONCLUDING REMARKS

The distribution chain presented in this paper achieves all the three objectives of an adaptive

chain, namely variability, visibility, and velocity.

To achieve variability, the design approach uses iterations to make the individual modules

adaptive to the quickly changing market conditions. Diving a distribution chain into a number of

independent modules paves a distinctive advantage: Due to the geographically dispersed nature

 20

of the collaborators, the individual modules of the distribution chain can be executed

independently in different places. Since the modules are going to be executed independently by

different collaborators in different places, maintenance and further improvements of these

modules can also be done independently. Thus, there is no need to design all the modules with

the same type of mathematics. The most suitable algorithm and proper mathematics can be used

for realizing each module.

To achieve visibility, this paper proposes Web services based Service Component Architecture

(SCA) for implementation of the distribution chain. As given in section 3, this implementation

provides a number of advantages like conquering complexity, agility due to structured line of

business, and ease of integration. In addition, SCA offers many other benefits too, like

separation of business logic from infrastructure capabilities (infrastructure capabilities like

Security, Transactions, etc.), programming language independency by separation of service

interfaces from service implementation, diverse invocation mechanism (Web services,

Messaging, etc.), diverse programming styles (asynchronous message-oriented, synchronous

Remote Procedure Call), etc.; Beatty et al (2003) and Beisiegel et al (2005) give an overview of

SCA and its benefits.

To analyse the speed of information flow the distribution chain (velocity), this paper proposes

use of GPenSIM, a Petri net-based tool for modelling and simulation of discrete event systems.

The methodology used for performance analysis is elegant, powerful yet simple.

 21

Limitations of this work: This paper assumes that when the market conditions change, new

values for parameters such as demand, transportation costs, etc. can trigger a new round of

iterations to fine-tune the modules of the distribution chain. Firstly, this work did not find out the

most important parameters that can represent the change of market conditions. Secondly, this

work does not provide the necessary the mathematical equations for processing the parameters

that represent the changes in the market.

 22

APPENDIX: THE SOURCE FILES

There are three source files involved:

1. The main file for simulation: ‘adaptivechain.m’

2. Petri net definition file: ‘chain_impl.m’, and

3. Definition file for transition tRES: ‘tRES_impl.m’

A.1 Main file: adaptivechain.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% File: adaptivechain.m

%% The main simulation file.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PetriNet = build('chain_def');

NOI = round(unifrnd(2,4)) % number of iterations

sources = { 'pSR' ,1, 'pNOI' ,NOI, 'pB3' ,1};

SimulationRESULTS = gpensim(PetriNet, sources);

printsys(PetriNet, SimulationRESULTS);

A.2 Petri net definition file: chain_def.m

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...

 = chain_def()

%%

%% File: chain_def.m: Definition of the Petri Net m odel of the

%% adaptive distribution chain

%%

 23

PN_name='Petri Net Model of Adaptive Supply Chain' ;

set_of_places={ 'pSR' , 'pRR' , 'pRFC' , 'pRTC' , 'pNOI' , ...

 'pB1' , 'pB2' , 'pB3' , 'pB4' , 'pB5' , 'pB6' };

set_of_trans={ 'tCS' , 'normrnd(2000,50)' , 'tSC' , 'normrnd(2000,50)' , ...

 'tINIT' , 'unifrnd(280,320)' , 'tIT' ,0, ...

 'tRES' , 'unifrnd(1, 10)' , 'tSD' , 'unifrnd(80, 100)' , ...

 'tTD' , 'unifrnd(25, 35)' , 'tSUB1' , 'unifrnd(10, 15)' , ...

 'tSUB2' , 'unifrnd(10, 15)' , 'tSUB3' , 'unifrnd(10, 15)' , ...

 'tSUB4' , 'unifrnd(10, 15)' , 'tSUM' ,0};

set_of_arcs={ 'pSR' , 'tCS' ,1, 'tCS' , 'pRFC' ,1, 'pRTC' , 'tSC' ,1, ...

 'tSC' , 'pRR' ,1, 'pRFC' , 'tINIT' ,1, 'tINIT' , 'pB1' ,1, ...

 'pB1' , 'tIT' ,1, 'pNOI' , 'tIT' ,1, 'pB3' , 'tIT' ,1, ...

 'tIT' , 'pB1' ,1, 'tIT' , 'pB2' ,1, 'pB3' , 'tRES' ,1, ...

 'tRES' , 'pRTC' ,1, 'pB2' , 'tSD' ,1, 'tSD' , 'pB6' ,1, ...

 'pB6' , 'tTD' ,1, 'tTD' , 'pB4' ,4, 'pB4' , 'tSUB1' ,1, ...

 'pB4' , 'tSUB2' ,1, 'pB4' , 'tSUB3' ,1, 'pB4' , 'tSUB4' ,1, ...

 'tSUB1' , 'pB5' ,1, 'tSUB2' , 'pB5' ,1, 'tSUB3' , 'pB5' ,1, ...

 'tSUB4' , 'pB5' ,1, 'pB5' , 'tSUM' ,4, 'tSUM' , 'pB3' ,1};

A.3 Definition file for transition tRES: tRES_def.m

function fire = tRES_def (PN)

%%%

%% File: tRES.m

%% This file defines the transitions tRES

%%%

 24

p1 = get_place(PN, 'pNOI');

fire = (p1.tokens == 0);

 25

REFERENCES

Beisiegel, M., Blohm, H., Booz, D., Dubray, J.-J., Edwards, M., Flood, B., Ge, B., Hurley, O.,

Kearns, D., Lehmann, M., Marino, J., Nally, M., Pavlik, G., Rowley, M., Sakala, A., Sharp, C.,

and Tam, K. (2005). SCA Service Component Architecture: Assembly Model Specification.

SCA Version 0.9, November 2005.

Beatty, J., Brodsky, S., Nally, M., and Patel, R. (2003). Next-Generation Data Programming:

Service Data Objects: A Joint Whitepaper with IBM and BEA. BEA Systems, Inc. and

International Business Machines Corp, November 2003.

Caputo, A., Cucchiella, F., Fratocchi, L., Pelagagge, P., and Scacchia, F. (2004). Analysis and

evaluation of e-supply chain performances. Industrial Management & Data Systems, 104 (7),

546-557

Cassandras, G. and LaFortune, S. (1999). Introduction to Discrete Event Systems. Hague:

Kluwer Academic Publications

Childerhouse, P., Hermiz, R., Mason-Jones, R., Popp, A., and Towill, D. (2003). Information

flow in automotive supply chains – identifying and learning to overcome barriers to change.

Industrial Management & Data Systems, 103 (7), 491-502

 26

Davidrajuh, R. (2000). Automating Supplier Selection Procedures. PhD thesis, Norwegian

Univ. Science and Technology (NTNU), ISBN-82-7984-159-8

Davidrajuh, R. and Ma, H. (2006). Developing a Modern Distribution Chain: A Three-Pronged

Approach. Proceedings of the IEEE International Conference on Service Operations and

Logistics, and Informatics, 21-23, June 2006, Shanghai, China

Davidrajuh, R. and Molnar, I. (2006). A Tool for Teaching Mathematical Modeling to

Information Systems Students, Scheduled for publication in Issues in Information Systems

GPenSIM (2006). (Accessed July 01, 2006) http://ilab16.ilab.ux.his.no/GPenSIM/

i2 (2004) i2: The Foundation for Supply Chain Optimization. i2 inc.

Kozaczynski, W. (1999) “Composite nature of components”, 1999 International Workshop on

Component-Based Software Engineering, http://www.sei.cmu.edu/cbs/icse99/papers, 1999

Ma, H. Z. and Davidrajuh, R. (2005). An iterative approach for distribution chain design in agile

virtual environment. Industrial Management & Data Systems, 105 (6), 815-834

MATLAB (2006). (Accessed February 21, 2006) http://www.mathworks.com

 27

Petri net world (2005). (Accessed July 10, 2005) http://www.daimi.au.dk/CPnets/

Rahman, Z. (2004). Use of internet in supply chain management: a study of Indian companies.

Industrial Management & Data Systems, 104 (1), 31-41

SAP (2002). Adaptive Supply Chain Networks. SAP White Paper

Smith, A. (2006) Supply chain management using electronic reverse auctions: a multi-firm case

study. International Journal of Services and Standards 2006 - Vol. 2, No.2 pp. 176 - 189

Shih, D., Huang, S. and Lin, B. (2006) Linking secure reverse auction with web service.

International Journal of Services and Standards 2006 - Vol. 2, No.1 pp. 15 – 31

Tijms, H. (1994). Stochastic Models: An Algorithmic Approach. New York: John Wiley & Sons

Wu, W., Chiag, C., Wu, Y., and Tu, H. (2004). The influencing factors of commitment and

business integration on supply chain management. Industrial Management & Data Systems, 104

(4), 322-333

Wang, A. and Qian, K. (2005). Component-Oriented Programming. Wiley-Interscience: John

Wiley & Sons, 2005

 28

Wei, J., Platt, R., White, B. and Jasquith, A. (2006). Development of standardised e-business

solutions via e-chain analysis in the digital utility. International Journal of Services and

Standards 2006 - Vol. 2, No.2 pp. 117 – 136

World Trade (2004) “Adadptive Supply Chain” Mar 2004, 17 (3), 41-41

