
An Architecture for Self-healing
Autonomous Object Groups

Hein Meling

Department of Electrical Engineering and Computer Science,
University of Stavanger, N-4036 Stavanger, Norway

Email: hein.meling@uis.no

Abstract. Jgroup/ARM is a middleware for developing and operat-
ing dependable distributed Java applications. Jgroup integrates the dis-
tributed object model of Java RMI with the object group paradigm, en-
abling construction of replicated servers that offer dependable services
to clients. ARM aims to improve the dependability characteristics of
systems through fault treatment, focusing on operational aspects where
the gain in terms of improved dependability is likely to be the greatest.
ARM offers two core mechanisms: recovery from node, object and net-
work failures and distribution of replicas. ARM identifies failures and
reconfigures the system according to its dependability requirements.
This paper proposes an enhancement of the ARM framework in which
replica placement is performed in a distributed manner, eliminating the
need for a centralized manager with global information about all object
groups. Instead each autonomous object group handles their own replica
placement based on information from nodes. Assuming that multiple ob-
jects groups are deployed in the system, this constitutes a distributed
replica placement scheme. This scheme enables the implementation of
self-healing object groups that can perform fault treatment on them-
selves. Advantages of the approach: (a) no need to maintain global infor-
mation about all object groups which is costly and limits scalability, (b)
reduced infrastructure complexity, and (c) less communication overhead.

1 Introduction

Networked computer systems are prevalent in most aspects of modern society,
and we have become dependent on such computer systems to perform many
critical tasks. Moreover, making such systems dependable is an important goal.
However, dependability issues are often neglected when developing systems due
to the complexities of the techniques involved. A common technique used to
improve the dependability characteristics of systems is to replicate critical sys-
tem components whereby the functions they perform are repeated by multiple
replicas. Replicas are often distributed geographically and connected through
a network as a means to render the failure of one replica independent of the
others. However, the network is also a potential source of failures, as nodes can
become temporarily disconnected from each other, introducing an array of new

problems. The majority of previous projects [1–5] have focused on the provi-
sion of middleware libraries aimed at simplifying the development of dependable
distributed systems, whereas the pivotal deployment and operational aspects of
such systems have received very little attention.

This paper presents an architecture for Distributed Autonomous Replication
Management (DARM), aimed at improving the dependability of systems through
a self-managed fault treatment mechanism that is adaptive to network dynamics
and changing requirements. Consequently, the architecture improves the deploy-
ment and operational aspect of systems, where the gain in terms of improved
dependability is likely to be the greatest, and also reduces the human interac-
tions needed. The architecture builds on our experience [6, 7] with developing
a prototype that extends Jgroup [2] with fault treatment capabilities. The new
architecture relies on a distributed approach for replica distribution (placement),
thereby eliminating the need for a centralized management infrastructure used
in our previous work [6, 7]. Distributed replica placement enables deployed appli-
cations (implemented as object groups) to implement autonomic features such as
self-healing by performing fault treatment on themselves. Fault treatment rep-
resents a non-functional aspect and is easily implemented as a separate protocol
module to separate it from application concerns.

Jgroup [2] is a group communication service that integrates the Java RMI
distributed object model with object groups. It supports partition-awareness:
replicas placed in disjoint network partitions are informed about the current
state of the system, and may take appropriate actions to ensure the availability
of the provided service in spite of the partitioning. By supporting partitioned
operation, Jgroup trades consistency for availability, whereas other systems takes
a primary partition approach [8], ensuring consistency by allowing only a single
partition to make progress. A state merging service is provided to simplify the
re-establishment of a consistent global state when partitions merge.

DARM offers automated mechanisms for performing management activi-
ties such as distributing replicas among sites and nodes, and recovering from
replica failures, thus reducing the need for human interactions. These mecha-
nisms are essential to operate a system with strict dependability requirements,
and are largely missing from existing group communication systems [3, 4, 2].
DARM achieves its goal through three core paradigms: policy-based manage-
ment [9], where application-specific distribution and fault treatment policies
are used to enforce dependability requirements; self-healing [10], where failure
scenarios are discovered and handled through recovery actions with the objec-
tive to minimize the period of reduced failure resilience; self-configuration [10],
where objects are relocated/removed to adapt to uncontrolled changes such as
failure/merge scenarios, or controlled changes such as scheduled maintenance
(e.g. OS upgrades), as well as software upgrade management [11]. DARM fol-
lows a non-intrusive system design, where the operation of deployed services is
decoupled from DARM during normal operation. Once a service is installed, it
becomes an “autonomous” entity, monitored by DARM until explicitly removed.
This design principle enables support for a large number of object groups. The

Jgroup/DARM framework shares many of its goals with other fault tolerance
frameworks, notably Delta-4 [12], AQuA [13], FT CORBA [14], and our previ-
ous implementation called ARM [6]. The novel features of Jgroup/DARM when
compared to other frameworks include: autonomous management facility based
on policies, distributed replica distribution and fault treatment, support for par-
tition awareness, and interactions based solely on RMI.

Organization: Section 2 presents the system model and Section 3 gives an
overview of Jgroup/DARM. In Section 4 the DARM framework is described.
Section 5 compares DARM with related work and Section 6 concludes.

2 System Model and Assumptions

The context of this work is a distributed system comprising a collection of nodes
connected through a network and hosting a set of client and server objects. The
set of nodes, N , that may host application services and infrastructure services,
in the form of server objects (or replicas), is called the target environment. The
set N is comprised of one or more subsets, Ni, representing the nodes in site
i. Sites are assumed to represent different geographic locations in the network,
while nodes within a site are in the same local area network. A node may host
several different replica types, but it may not host two replicas of the same type.

The system is asynchronous in the sense that neither the computational speed
of objects nor communication delays are assumed to be bounded. Furthermore,
the system is unreliable and failures may cause objects to crash, whereby they
simply stop functioning. Once failures are repaired, they may return to being
operational after an appropriate recovery action. Byzantine failures are not con-
sidered. Communication channels may omit to deliver messages; a communica-
tion substrate handles message retransmission, also using alternative routes [2].
Long-lasting partitionings may also occur, in which certain communication fail-
ure scenarios may disrupt communication between multiple sets of objects form-
ing partitions. Objects in the same partition can communicate among themselves,
but cannot communicate with objects in other partitions. When communication
between partitions is re-established, we say that they merge.

Developing dependable applications to be deployed in these systems is a com-
plex and error-prone task due to the uncertainty resulting from asynchrony and
failures. The desire to render services partition-aware to increase their availabil-
ity adds significantly to this difficulty. Jgroup/DARM is designed to simplify
the development and operation of partition-aware, dependable applications by
abstracting complex system events such as failures, recoveries, partitions, merges
and asynchrony into simpler, high-level abstractions with well-defined semantics.

3 Jgroup/DARM Overview

Jgroup [2] supports dependable application development by means of replica-
tion, based on the object group paradigm [8], where a set of server objects form
a group to coordinate their activities and appear to clients as a single server.

Management
Client

GUI
Protocol
Modules

Factory

NodeJVM

JVM

createReplica()
removeReplica()
queryReplicas()
getLoad()
isAvailable()

Supervision
Module

C
allb

ack S A2

notify(event)

Fig. 1. Overview of DARM components.

Jgroup provides a partition-aware group membership service (PGMS), a group
method invocation service (GMIS) and a state merging service (SMS). The PGMS
provides replicas with a consistent view of the group’s current membership, en-
abling coordination of their actions. Reliable communication between clients and
groups is handled by the GMIS and takes the form of group method invocations
(GMIs) [2], that result in methods being executed by replicas forming the group.
To clients, GMIs are indistinguishable from ordinary RMI: clients interact with
the object group through a client-side group proxy that acts as a representative
object for the group, hiding its composition. The proxy maintains information
about the group composition, and handles invocations on behalf of clients by
establishing communication with replicas and returning the result to the invok-
ing client. On the server side, the GMIS enforces reliable communication among
replicas. The SMS facilitate re-establishing a consistent shared state when par-
titions merge by handling state diffusion among partitions. Jgroup also includes
a dependable registry (DR) allowing clients to locate object groups.

The ARM framework presented in [7, 6] supports seamless deployment and
operation of dependable services. Within the target environment, issues related
to service deployment, replica distribution and recovery from failures are auto-
nomically managed by ARM, following the rules of user-specified distribution
and fault treatment policies. Maintaining a fixed redundancy level is a typical
requirement specified in the fault treatment policy.

In this paper, DARM is proposed in which fault treatment and replica distri-
bution is performed in a distributed manner, rather than relying on a centralized
(but replicated) replication manager (RM) component to handle these impor-
tant mechanisms. The RM implemented in ARM [6] maintains global informa-
tion about all object groups, which is costly as complex protocols are needed
to maintain consistency across RM replicas, and each object group must report
view changes to the RM replicas. This imposes an additional delay before fault
treatment is activated, but more importantly it also limits the scalability (no. of
groups) that can be supported by ARM. The proposed algorithm for distributed
replica placement enables the implementation of a distributed fault treatment
mechanism. However, it also introduces additional challenges with respect to
appropriate load balancing of replicas on the nodes in the target environment.

Fig. 1 illustrates the core components and interfaces supported by the DARM
framework: a supervision module associated with each application replica (SA),
an object factory deployed at each node in the target environment, and a man-
agement client used to interact with object factories to install/remove replicas.

Client

Management
Client DR1

lookup()

DR2

createReplica()
removeReplica()
getLoad()

createReplica()
removeReplica()

bind()

S A1 S A 2 S A3

SA

SA

SA

SA

SA

Detect failure
DARM agent

SA

.invocation()SA

Fig. 2. The Jgroup/DARM architecture.

The supervision module is the DARM agent co-located with each replica
which is responsible for collecting and analyzing failure information obtained
from view change events generated by the PGMS, and reconfigure the system on-
demand according to the configured policies. It is also responsible for decentral-
ized removal of excessive replicas. The object factories enable the management
client to install/remove replicas, as well as to respond to queries about replicas
on the local node, and its current load. The management client provide adminis-
trators with an interface through which to install and remove applications in the
system and to specify and update the distribution and fault treatment policies
to be used. It can also be used to obtain monitoring information about running
services. Overall, the interactions among these components enable the DARM
agent to make proper recovery decisions, and allocate replicas to suitable nodes
in the target environment.

Next, a brief description of a minimal Jgroup/DARM deployment is given,
as shown in Fig. 2. Only two different groups are shown. The DR service represent
the naming service infrastructure component and is required in all Jgroup/DARM
deployments. In addition, each application service must contain the DARM
agent, the supervision module, as discussed above. The figure also illustrates
a service labeled SA that is implemented as a simple object group managed
through Jgroup/DARM. Finally, two clients are shown: one client interacts with
the SA object group, while the other is the management client used to create and
remove object groups by interacting with object factories. Object factories are
not shown, but are present at each node in the target environment. The main
communication patterns are shown as graph edges. For example, the DARM
agent associated with an object group detect failures by monitoring the cur-
rent membership of the group, and activate fault treatment actions as needed to
recover from various failure scenarios. When joining the system, replicas must
bind themselves to the same name (e.g. SA) in the dependable registry, to be
looked up later by clients. After obtaining references to object groups, clients
may perform remote invocations on them. The object group reference hides the
group composition from the client.

4 The DARM Framework

This section describes the main elements of the DARM architecture and provide
an informal discussion of the algorithms related to failure analysis and recovery.
Algorithms are provided in [15]. The DARM architecture borrows parts of its
infrastructure from ARM [6], and where appropriate the differences between the
two are explained.

4.1 The Management Client

The management client enables a system administrator to install or remove
services on demand. The initial deployment of replicas is handled by the man-
agement client using the distribution policy discussed below. The management
client may also perform runtime updates of the configuration of a service. In
the Jgroup/ARM implementation [6], updates are restricted to changing the re-
dundancy level attributes. Additionally, the management client may subscribe
to events associated with one or more object groups. These events are passed
to the management client through the Callback interface, permitting appropriate
feedback to the system administrator. Currently, two management client imple-
mentations exist, one providing a graphical front-end to ease human interaction,
and one that supports defining scripts to perform automated installations. The
latter was used to perform experimental evaluations using the original central-
ized ARM implementation as reported in [16, 7].

4.2 Replication Management Policies

Policy-based management [9] is aimed at enabling administrators to specify how
a system should autonomically react to changes in the environment — with no
human intervention. These specifications are called policies, and are typically de-
fined through high-level declarative directives describing how to manage various
system conditions. Policy-based management architectures are often organized
using two key abstractions [17]: a manager component and a set of managed
resources controlled by the manager. Typically the manager is a centralized en-
tity and is called the policy decision point (PDP), and the managed resources
are called policy enforcement point (PEP). In the DARM architecture, the deci-
sion and enforcement points can easily be co-located on the managed resources
enabling implementation of decentralized policies.

In DARM two separate policy types are defined to support the autonomy
properties: (1) the distribution policy and (2) the fault treatment policy, both of
which are specific to each deployed service. Alternative policies can be added to
the system. The policies used here is just the minimum set.

The purpose of a distribution policy is to describe how service replicas should
be allocated onto the set of available sites and nodes. Two types of input are
needed to compute the replica allocations of a service: (1) the target environment,
and (2) the number of replicas to be allocated. The latter is obtained at runtime
from the fault treatment policy. The distribution policy in DARM is similar to

Node
JVM

Group Manager

Server Replica

SupervisionModule

MembershipModule
MembershipService

SupervisionListener

MembershipListener

SupervisionService

viewChange(view)

shutdown()

LegendLegend
Remote method invoc.
Local invocation

MembershipListener
viewChange(view)

leave()

JVM

Factory

Optional interfacesOptional interfaces

createReplica()
removeReplica()
getLoad()

Node
JVM

Factory

createReplica()
removeReplica()
getLoad()

Node
JVM

Factory

Node
JVM

Factory

Node
JVM

Factory

Fig. 3. The Distributed ARM architecture.

the one used in ARM [7]: DisperseOnSites will avoid co-locating two replicas of
the same service on the same node, while at the same time trying to disperse
the replicas evenly on the available sites. In addition, the least loaded nodes in
each site is selected. The same node may host multiple distinct service types. The
primary objective of this policy is to ensure available replicas in all likely network
partition that may arise. Secondly, it will load balance the replica placements
evenly over each site. A distribution policy algorithm is given in [15].

Each service is associated with a fault treatment policy, whose primary pur-
pose is to describe how the redundancy level of the service should be maintained.
Two inputs are needed: (1) the target environment, and (2) the initial (Rinit)
and minimal (Rmin) redundancy level of the service. The current fault treatment
policy called KeepMinimalInPartition has the objective to maintain service avail-
ability in all partitions, i.e. to maintain Rmin in each partition that may arise
(see [15] for details). Alternative policies can easily be defined, e.g. to maintain
Rmin in a primary partition only.

Policy specifications are part of a sophisticated configuration mechanism,
based on XML, enabling administrators to specify (1) the target environment,
(2) deployment-specific parameters, and (3) service-specific descriptors.

4.3 The Object Factory

The purpose of object factories is to facilitate installation and removal of service
replicas on demand. To accomplish this, each node in the target environment
must run a JVM hosting an object factory, as shown in Fig. 1. In addition, the
object factory is also able to respond to queries about which replicas are hosted
on the node. The availability status of a node (factory) can also be checked
by invoking the isAvailable() method on the factory. This method is used by the
distribution policy to determine if a node is available before selecting it to host a
replica, whereas the getLoad() method obtains load information about the node.

The factory maintains a table of local replicas; this state need not be pre-
served between node failures since all replicas would have crashed as well. Thus,

N4
Join

Leader

createReplica()

Legend:Legend:

Fault treatment
pending

N3

N1

N2

View no. i:

V 0 V 1

V 2 V 3V i

Fig. 4. An example crash failure-recovery sequence where Rmin := 3.

the factory can simply be restarted after a node repair and support new repli-
cas. Furthermore, object factories are not replicated and thus do not depend on
any Jgroup or DARM services. Replicas run in separate JVMs, to avoid that a
misbehaving replica causes the failure of other replicas within a common JVM.

4.4 Monitoring and Controlling Services

Keeping track of service replicas is essential to enable discovery of failures and
to rectify any deviation from the dependability requirements. The purpose of
DARM is (1) to distribute service replicas in the target environment, to (best)
meet the operational policies for all services (see Section 4.2); (2) to collect and
analyze information about failures, and (3) to recover from them.

Fig. 3 shows the Distributed ARM architecture. The architecture follows an
event-driven design in that events are reported to the supervision protocol mod-
ule rather than having to continuously probe individual components. Hence, the
supervision module exploit synergies with existing Jgroup modules, the mem-
bership module in particular. Applications that wish to support fault treatment
must include the supervision module in its protocol composition.

The supervision module operates on group-level events, also called view
change events received from the membership module. A group leader (associated
with each application service) is responsible for detecting failures and activating
fault treatment actions (see Section 4.6). In this way, the failure detection costs
incurred by the PGMS are shared with other modules that need membership
information. The group leader is elected implicitly by the total ordering of the
group members, hence there is no additional cost of leader election. If the group
leader fails, a new group leader is implicitly elected by the total ordering of group
members in the new view installed by the group. Note that membership events
cannot discriminate between crash failure and network partition failures.

Unfortunately, group-level events are not sufficient to cover group failure sce-
narios in which all remaining replicas fail before fault treatment can be activated.
This can occur if multiple nodes fail in rapid succession, or if the network parti-
tions, e.g., leaving only one replica in a partition whom fails shortly thereafter.
A solution to this could be to have the various groups monitor each other using a
lease renew mechanism similar to the approach taken in the centralized ARM [6]
architecture, where the centralized manager tracks all groups.

N4

Leader

createReplica()

Legend:Legend:

FT pending
N3

N1

N2

View no. i:

V 0

V 1

V 2

V 4
V i

V 3

Partitioning Merging

V 5

Leaving

Fig. 5. A sample network partition failure-recovery scenario where Rinit := 3 and
Rmin := 2. The partition separates nodes {N1,N2} from {N3,N4}.

Both tracking mechanisms can be managed by supervision modules. View
changes are received by the supervision module of all replicas in the group, but
only the group leader activates the fault treatment action, e.g. to replace a failed
replica or remove an excessive replica, as discussed in Section 4.6 and 4.5.

An example of a common failure-recovery sequence is shown in Fig. 4, in
which node N1 fails, followed by a recovery action causing the supervision mod-
ule to install a replacement replica at node N4. In the centralized ARM imple-
mentation [6], the recovery action was performed by a centralized RM, which
would have a complete view of all installed applications within the target envi-
ronment. Recomputing the replica allocations in a distributed manner offers a
considerable challenge.

4.5 The Remove Policy

The supervision module may optionally be configured with a remove policy to
account for any excessive replicas that may be installed. The reason for the
presence of excessive replicas is that during a partitioning, a fault treatment
action may have installed additional replicas in one or more partitions to restore
a minimal redundancy level. Once partitions merge, these replicas are in excess
and no longer needed to satisfy the fault treatment policy.

Let V denote a view and |V| its size. If |V| exceeds the initial redundancy
level Rinit for a duration longer than a configurable time threshold (remove
policy delay), the supervision module requires one excessive replica to leave the
group. If more than one replica needs to be removed, each remove is separated
by the remove policy delay. The choice of which replicas should leave is made
deterministically based on the view composition, enabling decentralized removal.
This mechanism is shown in Fig. 5, where the dashed timelines indicate the
duration of the network partition. After merging, the supervision module detects
one excessive replica, and elects N4 to leave the group.

4.6 Failure Recovery

The supervision module handles failure recovery for its associated application,
as follows: (i) determine the need for recovery, (ii) determine the nature of the
failures, and (iii) the actual recovery action. The first is accomplished through a

reactive mechanism based on service-specific timers, while the last two use the
abstractions of the fault treatment and distribution policies, respectively.

The supervision module receive events and maintains the state necessary to
determine the need for recovery, according to the fault treatment policy of the
associated service. Each instance of the supervision module maintains a Service
Monitor (SM) timer for its associated application service. The purpose of the
SM timer is to delay the activation of a fault treatment action until the current
membership has stabilized. Moreover, the recovery algorithm is invoked if the
SM timer expires. To prevent activating unnecessary recovery actions, the SM
timer must either be rescheduled or canceled before it expires. The SM status
is updated by means of ViewChange events associated with the service: If the
received view V is such that |V| ≥ Rmin, the SM timer is canceled, otherwise
the SM is rescheduled, pending additional view changes. Upon expiration of the
SM timer and detecting that the service needs recovery, the recovery algorithm
is executed with the purpose of determining the nature of the current failure
scenario. Recovery is performed through two primitive abstractions: restart and
relocation. Restart is used when the node’s factory remains available, while re-
location is used if the node is considered unavailable. The actual installation of
replacement replicas is done using the distribution policy.

5 Related Work

Fault treatment techniques similar to those provided by DARM were first in-
troduced in the Delta-4 project [12]. Delta-4 was developed in the context of a
fail-silent network adapter and does not support network partition failures. Due
to its need for specific hardware and OS environments, Delta-4 has not been
widely adopted. None of the most prominent Java-based fault tolerance frame-
works [4, 1] offers mechanisms similar to those of DARM, to deploy and manage
dependable applications with only minimal human interaction. These manage-
ment operations are left to the application developer. However, the FT CORBA
standard [14] specify certain mechanisms such as a generic factory, a central-
ized RM and a fault monitoring architecture, that can be used to implement a
centralized management facilities similar to ARM [7, 6]. DARM as presented in
this paper enable distributed fault treatment. Furthermore, the standard makes
explicit assumptions that the system is not partitionable, a unique feature of
Jgroup/DARM. Eternal [5] is probably the most complete implementation of
the FT CORBA standard, and uses a centralized RM. It supports distributing
replicas across the system, however, the exact workings of their replica place-
ment approach has not been documented. DOORS [18] is a framework that
provides a partial FT CORBA implementation, focusing on passive replication.
It uses a centralized RM to handle replica placement and migration in response
to failures. The RM component is not replicated, and instead performs periodic
checkpointing of its state tables, limiting its usefulness since it cannot handle
recovery of other applications when the RM is unavailable. Also the MEAD [19]
framework implements parts of the FT CORBA standard, and supports recovery

from node and process failures. However, recovery from a node failure requires
manual intervention to either reboot or replace the node, since there is no sup-
port for relocating the replicas to other nodes as in DARM. AQuA [13] is also
based on CORBA and was developed independently of the FT CORBA stan-
dard. AQuA is special in its support for recovery from value faults, while DARM
is special in supporting recovery from partition failures. AQuA adopts a closed
group model, in which the group leader must join the dependability manager
group in order to perform notification of membership changes (e.g. due to fail-
ures). Although failures are rare events, the cost of dynamic joins and leaves
(run of the view agreement protocol), can impact the performance of the system
if a large number of groups are being managed by the centralized dependability
manager. The ARM [20, 7, 6] framework uses a centralized RM to handle distri-
bution of replicas (replica placement), as well as fault treatment of both network
partition failures and crash failures. The ARM framework uses the open group
model, enabling object groups to report failure events to the centralized manager
without becoming a member of the RM group.

DARM essentially supports the same features as ARM, but instead uses a
distributed algorithm to perform replica placement according to a distribution
policy. This enables each group to handle their own allocation of replicas to the
sites and nodes in the target environment. Thereby, eliminating the need for a
centralized RM that maintains global information about all object groups in the
system, which is required in all frameworks discussed above. Furthermore, none
of the other frameworks that support recovery focus on tolerating network parti-
tions. Nor do they explicitly make use of policy-based management, which allows
DARM to perform recovery actions based on predefined and configurable poli-
cies enabling self-healing and self-configuration properties, ultimately providing
autonomous fault treatment.

6 Conclusions and Future Work

This paper has presented an architecture for distributed autonomous replication
management based on our previous experiences with building a centralized ARM
architecture [6]. The new architecture enables seamless self-healing of dependable
applications through a distributed fault treatment policy implemented in the
protocol modules associated with applications. There are still a few open issues in
our system; e.g. how to cope with multiple applications recovering simultaneous,
which may result in several new replicas being allocated to the same least loaded
node, causing the node to become highly overloaded. This is an artifact of our
distributed approach. Once the implementation has been completed, we intend
to perform elaborate experimental evaluations similar to our previous work on
failure recovery measurements [7, 16, 6]. That is, the injection of multiple nearly-
coincident node and network failures to test the failure-recovery success rate of
our system and to iron out any design and implementation flaws.

Acknowledgments. The author wish to thank Alberto Montresor and Bjarne
Helvik for valuable comments on this work.

References

1. Amir, Y., Danilov, C., Stanton, J.: A Low Latency, Loss Tolerant Architecture and
Protocol for Wide Area Group Communication. In: Proc. Int. Conf. on Dependable
Systems and Networks, New York (2000)

2. Montresor, A.: System Support for Programming Object-Oriented Dependable
Applications in Partitionable Systems. PhD thesis, Dept. of Computer Science,
University of Bologna (2000)

3. Felber, P., Guerraoui, R., Schiper, A.: The Implementation of a CORBA Object
Group Service. Theory and Practice of Object Systems 4 (1998) 93–105

4. Ban, B.: JavaGroups – Group Communication Patterns in Java. Technical report,
Dept. of Computer Science, Cornell University (1998)

5. Narasimhan, P., et al.: Eternal - a Component-Based Framework for Transparent
Fault-Tolerant CORBA. Softw., Pract. Exper. 32 (2002) 771–788

6. Meling, H.: Adaptive Middleware Support and Autonomous Fault Treatment: Ar-
chitectural Design, Prototyping and Experimental Evaluation. PhD thesis, Nor-
wegian University of Science and Technology, Dept. of Telematics (2006)

7. Meling, H., Montresor, A., Helvik, B.E., Babaoğlu, Ö.: Jgroup/ARM: A Dis-
tributed Object Group Platform with Autonomous Replication Management.
Technical Report No. 11, University of Stavanger (2006)

8. Chockler, G.V., Keidar, I., Vitenberg, R.: Group Communication Specifications:
A Comprehensive Study. ACM Computing Surveys 33 (2001) 1–43

9. Sloman, M.: Policy driven management for distributed systems. Journal of Network
and Systems Management 2 (1994)

10. Murch, R.: Autonomic Computing. On Demand Series. IBM Press (2004)
11. Solarski, M., Meling, H.: Towards Upgrading Actively Replicated Servers on-the-

fly. In: Proc. Workshop on Dependable On-line Upgrading of Distributed Systems
in conjunction with COMPSAC 2002, Oxford, England (2002)

12. Powell, D.: Distributed Fault Tolerance: Lessons from Delta-4. IEEE Micro (1994)
36–47

13. Ren, Y., et al.: AQuA: An Adaptive Architecture that Provides Dependable Dis-
tributed Objects. IEEE Trans. Comput. 52 (2003) 31–50

14. Object Management Group: Fault Tolerant CORBA Specification. OMG Docu-
ment ptc/00-04-04 (2000)

15. Meling, H.: An Architecture for Self-healing Autonomous Object Groups. Technical
Report No. 21, University of Stavanger (2007)

16. Helvik, B.E., Meling, H., Montresor, A.: An Approach to Experimentally Obtain
Service Dependability Characteristics of the Jgroup/ARM System. In: Proc. Fifth
European Dependable Computing Conference. (2005)

17. Agrawal, D., Lee, K.W., Lobo, J.: Policy-Based Management of Networked Com-
puting Systems. IEEE Commun. Mag. 43 (2005) 69–75

18. Natarajan, B., et al.: DOORS: Towards High-performance Fault Tolerant CORBA.
In: Proc. 2nd Int. Symp. Distributed Objects and Applications. (2000)

19. Reverte, C.F., Narasimhan, P.: Decentralized Resource Management and Fault-
Tolerance for Distributed CORBA Applications. In: Proc. 9th Int. Workshop on
Object-Oriented Real-Time Dependable Systems. (2003)

20. Meling, H., Helvik, B.E.: ARM: Autonomous Replication Management in Jgroup.
In: Proc. 4th European Research Seminar on Advances in Distributed Systems,
Bertinoro, Italy (2001)

