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Abstract. This paper presents an architecture enabling developers to easily and
flexibly assign replication protocols simply by annotating individual server meth-
ods. This avoids using costly replication protocols for all object methods, e.g.
read-only methods can use less costly protocols, reserving the costly replica-
tion protocols for update methods. The architecture has been implemented in the
Jgroup/ARM middleware, and enables addition of new replication protocols with-
out modifying the core toolkit. It also supports runtime selection of replication
protocol for individual methods. This can be used to support self-optimization of
protocol selection by optimizing for the most appropriate configuration under a
given system load.

1 Introduction

Middleware for building dependable distributed applications often provide a collection
of replication protocols supporting varying degrees of consistency. Typically, providing
strong consistency requires costly replication protocols, while weaker consistency often
can be achieved with less costly protocols. Hence, there is a tradeoff between cost and
consistency involved in the decision of which replication protocol to use for a particular
server. But, perhaps more important is the behavioral aspects of the server. For instance,
the server may be intrinsically non-deterministic in its behavior, which consequently
rules out several replication protocols from consideration, e.g. atomic multicast.

This paper presents an architecture for Jgroup/ARM [11] enabling software devel-
opers to easily and flexibly select their replication protocol of choice for each individual
server method. The principal motivation for the architecture is to improve the flexibility
in choice of replication protocols, so as to reduce the resource consumption of depend-
able applications as much as possible. In many fault-tolerant systems, different replica-
tion protocols are supported at the object level [14, 15], meaning that all the methods
of a particular object must use the same replication protocol. Jgroup [11] takes a dif-
ferent approach: when implementing a dependable service, the invocation semantics of
each individual method can be specified separately using Java annotations [2, Ch.15].
This allows for greater flexibility as various methods may need different semantics.
Hence, developers may select the appropriate invocation semantics at the method level,
and even provide different implementations with alternative semantics. The presented
architecture makes it very easy to add new replication protocols to the system, with
no changes to the core toolkit. Protocol implementations are picked up automatically.
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The current implementation supports four different replication protocols, or invoca-
tion semantics: anycast, reliable multicast, atomic multicast and leadercast. The latter
is a variant of passive replication and permits servers with non-deterministic behav-
ior, whereas atomic multicast can be viewed as a kind of active replication, and hence
does not tolerate servers being non-deterministic. The architecture can also accommo-
date adaptive or runtime protocol selection based on runtime changes in the environ-
ment. A common example in which application semantic knowledge can be exploited
is a replicated database with read and write methods. Often a simple Read-One, Write-
All (ROWA) replication protocol [17] can then be used and still preserve consistency.
A ROWA replication protocol can easily be implemented using anycast for read meth-
ods and either multicast, atomic, or leadercast for write methods. On the other hand,
replication protocols which operate at the object level require that also simple read-
only methods use the strongest replication protocol required by the object to preserve
consistency. However, assigning appropriate invocation semantics to the methods of a
server do require careful consideration to ensure preservation of consistency as well
as reducing the resource consumption needed. Hence, a guideline is provided in [11],
based on [8]. For example, if two methods of the same server modify intersecting parts
of the shared state, they should use the same replication protocol.

By exploiting knowledge about the semantics of distributed objects, the choice of
which replication protocols to use for the various methods can be used to obtain a per-
formance gain over the traditional object level approach. Similar ideas were proposed
by Garcia-Molina [9] to exploit semantic knowledge of the application to allow nonse-
rializable schedules that preserve consistency to be executed in parallel as a means to
improve the performance for distributed database systems. OGS [6, 7] also allows each
method of a server to be associated with different replication protocols, but this must be
explicitly encoded for each method through an intricate initialization step. The approach
presented herein is much easier to use as it exploits Java annotations to mark methods
with the desired replication protocol. The Spread [1] message-based group communi-
cation system can also be used to exploit semantic knowledge, since each message can
be assigned a different replication protocol. JavaGroups [3] on the other hand would
have required separate channels for each replication protocol. Unlike Jgroup however,
neither of these two systems are aimed at RMI based systems.

Organization: In Section 2 the architecture is presented, while in Section 3 the pro-
tocol selection mechanism is covered. The leadercast replication protocol is covered in
Section 4, and Section 5 covers the atomic replication protocol. Finally, Section 6 dis-
cusses potential enhancements to the architecture that would enable support for adaptive
runtime selection of protocols.

2 The EGMI Architecture

The external group method invocation (EGMI) architecture of Jgroup/ARM [11] aims
to provide: (a) flexibility and efficiency using to a customized RMI layer; (b) flexibility
to add new replication protocols; (c) runtime adaptive selection of replication protocol
(Section 6); (d) improved client-side view updating (covered in [12]).
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Fig. 1. The external GMI architecture.

Fig. 1 illustrates the high-level interactions of the EGMI architecture. The figure il-
lustrates interactions involved in a multicast invocation. Clients communicate with an
object group through a two-step approach, except for the anycast semantic. Two com-
munication steps are required for multicast interactions. The ExternalGMIModule acts as
the server-side proxy (representative) for clients communicating with the object group,
and is also responsible for protocol selection. The server representing the group is called
the contact server. The choice of contact server is made (on a per invocation basis) by
the client-side proxy, and different strategies can be implemented depending on the re-
quirements of the replication protocol being used. The general strategy used by both
anycast and multicast is to choose the contact server arbitrarily, while leadercast always
selects the group leader. However, in the presence of failures an arbitrary server in the
group is selected.

As shown in Fig. 1, before a client can invoke the object group, each member of
the group must bind() its reference (client-side proxy) in the dependable registry. The
client can then perform a lookup() to obtain the client-side proxy encompassing all
group members. The client-side proxy provides the same EGMI interface as the server,
enabling the client to invoke local methods on it (Ê). The proxy encodes invocations
into remote communications (Ë), and ultimately complete the invocation by returning
a result to the client. The ExternalGMIModule exploits the MulticastModule to send mul-
ticast messages (Ì,Í,Î) to all group members. This is followed by the invocation of
the encoded method (Ï) on all members, and returning the results back to the contact
server (Æ,Ç). The contact server is responsible for returning a selected result back to
the client.
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2.1 The Client-side and Server-side Proxies

The client-side and server-side proxies are implemented as a customized version of
the Jini Extensible Remote Invocation (JERI) protocol stack [16]. All layers in JERI
protocol stack have been retrofitted with group support, except for the transport layer,
as shown in Fig. 2. Currently, a TCP transport is used between clients and the contact
server, whereas multicast is used internally in the group.
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Fig. 2. The EGMI protocol stack.

The GroupInvocationHandler shown in Fig. 2 is responsible for marshalling and unmar-
shalling invocations. When invoked by the client-side proxy, internal tables are queried
to determine the semantics of the method being invoked. Knowing the semantics on the
client-side improves efficiency, as the contact server can forward the invocation to the
group without unmarshalling it until received by the GroupInvocationDispatcher at the
destination server.

The GroupEndpoint maintains the current group membership lazily synchronized
with the server-side membership [12]; it stores a single Endpoint for each member of
the group. Each Endpoint object represents the transport between the client and the
corresponding ServerEndpoint. GroupEndpoint also selects the endpoint to use for a
particular invocation, based on the semantics of the method.

When the GroupRequestHandler (GRH) receives an invocation, the invocation se-
mantic is extracted from the data stream. Depending on the invocation semantic, the in-
vocation is passed on to a protocol-specific invocation dispatcher (see Section 3). Here
the protocol dispatcher is assumed to be multicast (as in Fig. 2). Hence, the stream is
passed on to the MulticastModule, and finally to the GroupInvocationDispatcher (GID)
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Listing 1.1. Skeleton of the RegistryImpl.

public final class RegistryImpl {
@Multicast IID bind(String name, Entry e)
throws RemoteException

@Anycast Remote lookup(String serviceName)
throws RemoteException, NotBoundException

}

which takes care of the unmarshalling and invocation of the method on the remote
server objects. As Fig. 2 shows, the results are returned to the contact server, which
finally returns the result(s) to the client.

3 Replication Protocol Selection

Each method is usually assigned a distinct invocation semantic by the server developer
at design time, by prefixing each method with an annotation marker for the replication
protocol to use, as shown in Listing 1.1. It is also possible to declare protocol anno-
tations in the interface. However, markers declared in the server implementation takes
precedence over those declared in the interface. This makes it easy to provide alterna-
tive implementations of the same interface with different invocation semantics for the
various methods declared in the interface, e.g. if an implementation wants to provide
stronger consistency for some methods.
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Fig. 3. EGMI replication protocol selection.
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Listing 1.2. The @Atomic annotation marker.

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
@interface Atomic { }

Listing 1.3. The ProtocolDispatcher interface.

public interface ProtocolDispatcher {
InvocationResult dispatch(InputStream in)
throws IOException;

void addListener(Object listener);
}

Fig. 3 depicts the protocol selection mechanism of the ExternalGMIModule. Each pro-
tocol must implement the ProtocolDispatcher interface through which invocations are
passed before they are unmarshalled. This allows the protocol to multicast the invo-
cation to the other group members before unmarshalling is done in the GroupInvoca-
tionDispatcher. However, the stream received by the GroupRequestHandler is partially
unmarshalled to obtain information necessary to route the message to the appropriate
protocol dispatcher instance. The protocol repository holds a mapping between the an-
notation marker (a method’s invocation semantic) and the actual protocol instance. The
repository is queried for each invocation of a method.

3.1 Supporting a New Protocol

To support new replication protocols, two additions are required: (i) a new annotation
marker must be added, allowing servers to specify the new protocol and (ii) the actual
protocol implementation. Listing 1.2 shows the annotation marker for the @Atomic
replication protocol. To support runtime protocol selection, the retention policy of the
marker must be set to RUNTIME to allow reflective access to the marker. Furthermore,
the target element type is set so that the marker only applies to METHOD element types.
For details about the Java annotation mechanism see [2, Ch.15].

A new protocol implementation must implement the ProtocolDispatcher interface
(see Listing 1.3), and placed in the protocol package location. The latter is configured
using a Java system property. Replication protocols are constructed on-demand based
on reflective [2, Ch.16] analysis of the server implementation (or its EGMI interfaces) to
determine the invocation semantics of its methods. Methods whose invocation seman-
tic is unspecified defaults to @Anycast. Only required protocols are constructed. This
analysis is done in the bootstrap phase, and the information is kept in internal tables for
fast access during invocations.



Annotation Markers for Runtime Replication Protocol Selection 7

3.2 Concurrency Issues

Note that a protocol instance may be invoked concurrently by multiple clients, and care
should be taken when developing a replication protocol to ensure that access to protocol
state is synchronized. Furthermore, the EGMI architecture is designed for multithread-
ing, and hence it does not block concurrent invocations using the same or different
protocols. It is the responsibility of the server developer to ensure that access to server
state is synchronized. However, invocations received while a new view is pending are
blocked temporarily and delivered in the next view. This is necessary to avoid that in-
vocations modify the server state while the state merge service [13] is active.

4 The Leadercast Protocol

The leadercast protocol presented in this section is a variant of the passive replica-
tion protocol [10]. The principal motivation to provide this protocol is the need for a
strong consistency protocol that is able to tolerate non-deterministic operations. The
main difference between leadercast and the passive replication protocols described in
the literature [10] is optimizations in scenarios where the leader has crashed. That is
how to convey information about the new leader to clients, and how to handle failover.
These optimizations are possible due to the client-side view updating technique de-
scribed in [12]. Fig. 4(a) illustrates the leadercast protocol, when the client knows which
of the group members is the leader. In this case, the protocol is as follows:

1. The client sends its request to the group leader.
2. The leader process the request, updating its state.
3. The leader then multicasts an update message containing 〈Result, StateUpdate〉 to

the followers (backups).
4. The followers modify their state upon receiving an update message, and replies

with an Ack to the leader.
5. Only when the leader has received an Ack from all live follower replicas, will it

return the Result to the client.

Result is the result of the processing performed by the leader, while StateUpdate is the
state (or a partial state) of the leader replica after the processing. A partial state may for
instance be the portions of the state that have been modified by the leadercast methods.
Notice the compare() method performed at the end of the processing. This is used to
compare the server state before and after the invocation of method(), and if the state did
not change, there is no need to send the update message, as shown in Fig. 4(b).

The Result part of the update message is necessary in case a follower is promoted
to leader, and needs to emit the Result to the client in response to a reinvocation of the
same method. This can only happen if the leader fails, causing the client to perform
a failover by reinvoking the method on another group member, as shown in Fig. 4(c).
Hence, the followers needs to keep track of the result of the previous invocation made
by clients. A result value can be discarded when a new invocation from the same client
is made, or after some reasonable time longer than the period needed by the client to
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Fig. 4. The Leadercast protocol.

reinvoke the method. As depicted in Fig. 4(c), the failure of the leader causes the mem-
bership service to install a new view. Client invocations may be received before the new
view is installed, however, they will be delayed until after the view has been installed,
as discussed in Section 3.2. The follower receiving the reinvocation of a previously in-
voked method will simply return the result to the client along with information about
the new leader.

If the follower receiving a reinvocation of a previously invoked method is not the
new leader, the invocation is forwarded to the current leader, as shown in Fig. 4(d). This
can happen if the leader failed before the followers could be informed about the original
invocation. This forwarding to the current leader will only occur once per client, since
the result message contains information about the new leader, and hence the client-side
proxy can update its contact server.

As discussed above, the client-side proxy is responsible for selecting the contact
server. For the leadercast protocol, the group leader (primary) is selected unless it has
failed. The server selection strategy is embedded in the invocation semantic represen-
tation associated with each method. When the client detects that the leader has failed,
the choice of contact server is random for the first invocation; the new leader is then
obtained from the invocation reply and future invocations are directed to the current
leader.

5 The Atomic Multicast Protocol

The atomic multicast protocol implemented in the context of this thesis is based on the
ISIS total ordering protocol [4], hence only a brief description is provided herein. The
protocol is useful to ensure that methods that modify the shared server state do so in a
consistent manner. Methods using the atomic protocol must behave deterministically to
ensure consistent behavior. The protocol is a distributed agreement protocol in which
the group members collectively agree on the sequence in which to perform the invo-
cations that are to be ordered. Fig. 5(a) shows the protocol. In the first step, the client
sends the request to a contact server, who forwards the request to the group members,
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each of which respond with a proposed sequence number. The contact server selects
the agreed sequence number from those proposed and notifies the group members; the
highest proposed sequence number is selected. Finally, when receiving the agreed se-
quence number each member can perform the invocation and return the result(s) to the
contact server, which will relay it to the client.
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Fig. 5. The Atomic multicast protocol.

The contact server selection strategy is random for load balancing and fault toler-
ance purposes. The contact server acts as the entity that defines the ordering of mes-
sages, and serves this function for all invocations originated by clients using it as the
contact server. Since the choice of contact server is random, the same client may choose
a different one for each invocation that it performs. It follows that also different clients
will use different contact servers. An alternative contact server selection strategy is to
always select the same server (the leader) to do the message ordering. By doing so, a
fixed sequencer protocol requiring less communication steps can be implemented. The
fixed sequencer and other total ordering protocols are discussed in [5].

Fig. 5(b) illustrates one scenario in which the contact server fails before completing
the current ordering. The client detects the failure of the contact server, and sends the
request to an alternative server. In this particular scenario, the remaining servers needs
to rerun the agreement protocol. However, had the contact server failed after completing
the agreement protocol, but before emitting the result to the client, the new server must
emit the previous result in response to a reinvocation.

The two-step communication approach used for EGMI between the client and the
group members precludes the provision of a true active replication scheme. In particu-
lar, the client-side proxy will not receive replies directly from all the servers, and thus
cannot mask the failure of the contact server towards the client-side proxy. Hence, if
the contact server fails during an invocation, the client-side proxy is required to ran-
domly pick another server and perform a reinvocation. The failure of the contact server,
however, is still masked from the client object. But the disadvantage is that the failover
delay of the atomic approach is equivalent to that of the leadercast approach when the
contact server fails. However, one way to provide true active replication is to let clients
become (transient) members of the object group prior to invoking methods on it, al-
lowing clients to receive replies from all members and not just the contact server. It is
foreseen that the client-side proxy can hide the fact that it has joined the object group,
from the client object before performing an invocation, e.g. by annotating the method
with @Atomic(join=true). An optional leaveAfter attribute could also be provided indi-
cating the number of invocations to be perform before the client-side proxy requests to
leave the group. This way true active replication can be provided also to clients.
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6 Runtime Adaptive Protocol Selection

Another useful mechanism that can easily be implemented in this architecture is support
for dynamic runtime protocol selection. Dynamically changing the replication protocol
of methods at runtime is useful for systems that wish to dynamically adapt to changes
in the environment. For instance, a server may decide to change its replication protocol
for certain methods to improve its response time, if the system load increases. One
might also imagine a special module that can configure the replication protocols of
a server group remotely from some management facility (e.g. ARM [11]) to adapt to
changing requirements. For example, if moving to more powerful hardware, one can
simply migrate replicas to the new hardware, followed by a change of the replication
protocol to use for certain methods. This section briefly outlines how this feature can
be implemented.

First, a @Dynamic marker is needed, which must be added to methods that should
support dynamic reconfiguration. Next, the Dynamic replication protocol must be im-
plemented, which is simply a wrapper for the other supported protocols. The Dynamic
protocol must maintain a mapping for each @Dynamic method and its currently con-
figured invocation semantic. By default, methods that declare @Dynamic should be
configured with the @Anycast semantic, unless the marker is parametrized with the de-
sired default protocol, e.g. @Dynamic(protocol=@Leadercast). A DynamicReplication-
Service interface can be provided that enables the server (or other protocol modules)
to dynamically change the invocation semantics of the server’s methods at runtime. A
protocol module may then implement update algorithms that can seamlessly reconfig-
ure the replication protocol of individual methods at runtime. One scheme could be to
change the replication protocol of certain methods based on the size of the group. For
example, if the group only has three members or less then @Atomic is used; if it has
more than three members then @Leadercast is used.

Another, more subtle use of this feature relates to a client designed for testing the
performance of various replication protocols. The server can then simply implement a
set of test methods, each declaring the @Dynamic marker, whereas the client can invoke
a special method to set the appropriate replication protocol to be tested, before invoking
the actual test methods on the server. To allow clients to reconfigure the replication
protocol of methods, the server (or a module) must provide a remote interface (e.g. by
exporting the DynamicReplicationService interface) through which clients can update
the invocation semantics of the server-side methods.

7 Conclusions

This paper presented an architecture and accompanying implementation of a dynamic
protocol selection mechanism that makes it flexible and easy to improve the resource
utilization of replicated services, by taking advantage of application semantics. The
features of this architecture may also be used to support self-optimization by runtime
reconfiguration of replication protocols for each individual server method.
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