
Representing Resources in Petri Net Models: Hardwiring or Soft-coding?
Reggie Davidrajuh

Department of Electrical and Computer Engineering University of Stavanger, Stavanger, Norway
reggie.davidrajuh@uis.no

Abstract
This paper presents an interesting design problem in developing a new tool for discrete-event dynamic systems (DEDS). A new tool known as
GPenSIM was developed for modeling and simulation of DEDS; GPenSIM is based on Petri Nets. The design issue this paper talks about is whether
to represent resources in DEDS hardwired as a part of the Petri net structure (which is the widespread practice) or to soft code as common variables in
the program code. This paper shows that soft coding resources give benefits such as simpler and skinny models.

Key words : discrete event dynamic systems, Petri net, modeling and simulation, resources in DED, GPenSIM

I. INTRODUCTION

This paper presents an interesting design issue during
development of a new tool for modeling and simulation of discrete
event dynamic systems (DEDS). The new tool is known as GPenSIM ,
General Purpose Petri net Simulator; obviously, it is based on Petri
nets [3]. For the sake of completion, the next section (section II: Petri
nets) presents a very short introduction to Petri nets; Section III
presents the design goals of GPenSIM.

As a tool for modeling and simulation of DEDS, GPenSIM must
provide robust support for resource usage, as resources are one of the
primary elements of any DEDS. Since GPenSIM is based on Petri net,
it was obvious to represent resources as tokens, as it was the
widespread practice; however, it was found out the hardwiring of
resources as tokens in Petri nets produces bulky Petri net models.
Alternatively (and untraditionally), GPenSIM also supports
representing resources as variables in programming code (soft-coding
as opposed to hardwiring); soft-coding, as shown in section IV of this
paper, brings benefits such as simpler and much smaller models, ease
of programming, ease of extending or tailoring the models. etc.

II. PETRI NETS

A. Place/Transition Petri nets

Ever since its inception in 1960s, Petri nets have been used as a
primary tool for modeling and simulation; this is because of Petri nets
characteristics such as simple mathematical model, visual (graphical)
language, yet clear and simple semantics [1]. P/T Petri net (aka
Ordinary Petri net) is defined as follows [1]:

Definition 1.1: Petri net is defined by the quintuple:
PN = (P, T, A, W, Mo,)

 Where:

• P is the set of places; places are passive elements like
conveyor belts, input and output buffers, etc;

• T is the set of transitions; transitions are active elements like
machines, humans, robots, CPUs, etc;

• A is the set of directed arcs; an arc connects either a place
to transitions or a transition to places;

• W is the set of weights of the arcs, and

• Mo is the number of tokens initially in places.
P/T Petri nets have some limitations. One of the limitations is

'homogenous' tokens: let's say that the tokens inside a place represent
resources; then in P/T Petri nets, all these resources are of the same
type and cannot be differentiated. Another limitation of P/T Petri net
is that it is not possible impose additional logical functions ('firing
conditions') for a transition to fulfill. Colored Petri nets (CPN) [5], or
better - Petri net Interpreted for Control (PIC) [4] removes these
limitations.
B. Petri Net for Interpreted Control (PIC)

Petri net for interpreted Control (PIC) is defined as follows [4]:
Definition 1.2: A Petri net interpreted for the control is

given by the quintuple:
PIC = (PN, Ψ, LOG, ζ, COM)

Where,

• PN is the Petri net given by the definition 1.1, consisting of
a set of places, a set of transitions, a set of bipartite arcs with
arc weights, and a set of initial markings;

• Ψ: T - LOG is a function mapping the transition set T onto a
set of logical assertions containing logical variables,
predicates, events, and the empty symbol;

• ζ: P -COM is a function mapping the set of places onto a set
of value assignments to control variables including the
empty variable, aid of events, the value assignments and
events are realized when the place marking changes from 0
to a non-zero value.

©2011 IEEE. Reprinted, with permission, from : Reggie Davidrajuh; Representing Resources in Petri Net Models :
Hardwiring or Soft-coding?, 2011 IEEE International Conference on Service Operations, Logistics, and Informatics
(SOLI), 2011; Beijing, China.
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply
IEEE endorsement of any of the University of Stavanger's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs‐permissions@ieee.org.
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

To put it simply,
• Ψ: T→LOG is the set of logical conditions for firing (firing

conditions), and
• COM is a subset of places which serves as a set of control

commands; COM places (aka COM variables) are the most
interesting places of a Petri net model; the other places play
a secondary (supportive) role.

o Token in a COM place means the system is instructing
to send a command the outside world; or, it could also
means, the outside world has instructed a command to
the system via the COM variable.

III. GPENSIM

GPenSIM, developed by the author of this paper, is a new
simulator for modeling and simulation of DEDS [3]. In the following
subsections, a short introduction to GPenSIM is given.

A. Why GPenSIM
The reason for developing GPenSIM is two-folded:

• For basic users: to provide a tool that is easy to understand
and easy to use, even for users with minimal mathematical
and programming skills;

• For advanced users: allow seamless integration of models
made with GPenSIM with the other toolboxes that are readily
available on the MATLAB platform; allow easy extension of
GPenSIM functions

Application Layer
(Functions for model building,
simulation run, print results)

!
Presentation Layer
(Functions for timing,

 coloring tokens, firing conditions)

!
Linear Algebraic Layer

(Functions for matrix
computations)

Figure 1. Layered Architecture

B. Layerd Architecture
GPenSIM is built following a 3-layer architecture; see Figure 1.

The bottom layer deals with Petri net run-time dynamics; this layer
computes newer states with the help of linear algebraic equations and
matrix manipulations. The middle layer adds more high-level
functionality such as stochastic timing, coloring of tokens, firing
conditions ('guard­conditions' in some literature), etc. The top layer
offers applications such building a Petri net based model, running
simulations, determining coverability tree, printing the simulation
results, etc.

C. Modular Componets
A model of a discrete event system developed with GPenSIM

consists of a number of files. The main simulation file (MSF) is the
file that will be run directly by the MATLAB engine. In addition to
the main simulation file, there will be one or more Petri net definition
files (PDFs); definition of a Petri net graph (static details) is given in
the Petri net Definition File. There may be a number of PDFs, if the
Petri net model is divided into many modules, and each module is
defined in a separate PDF. While the Petri net definition file has the
static details, the main simulation file contains the dynamic
information (such as initial tokens in places, firing times of
transitions) of the Petri net [3]. In addition to these MSF and PDF
fIles, there can be a number of transition definition files (TDFs) too.

A transition definition file consists of additional conditions
 that determine whether an enabled transition can fire or not [2][4].

(Optional)
MATLAB Toolboxes such as

Fuzzy, Control Systems, Optimization,

Statistics, etc

MSF PDFs TDFs

GPenSIM
Modules: Net Utilities, Timer,
Simulator, Analysis, Display

!
MATLAB Engine

Figure 2. The files for simulation

The additional conditions are called 'firing condition' in GPenSIM
terminology, whereas in some other literature (e.g.

63

Colored Petri Net (CPN)) it is referred to as 'guard­conditions').
There can be a separate transition definition file for each transition in
a Petri net model, or a combined file.

D. Natural Language Interface
Users need not know Petri net mathematics when creating a Petri

net model of a discrete event system. GPenSIM offers a natural
language interface with which model building mainly deals with
identifying the basic elements of a system and establishing the
connections between these elements.

E. Representing Resource using GPenSIM
DEDS possess active elements such as machines, passive elements

such as buffers, as well as resources. Resources (e.g. machine
operators, work stations) limit utilization of systems, hence are the
reasons for bottle necks in systems. In addition to resources, we need
mechanisms to change the priorities (of the transitions) in order to
avoid e.g. starvation and aging of competing entities [9].

As mentioned in the introduction, the scope of this paper is
GPenSIM's two approaches for representing resources in Petri net
models: 1) as elements (e.g. as tokens) in the Petri net structure
('hardwiring'), and, 2) as variables in program code ('soft-coding').
For the latter approach, GPenSIM provides the following
functionality:

i) Declaring resources,

ii) Utilizing resources (functions for requesting
(reserving), allocating, and releasing resources),

iii) Declaring Priorities of different transitions,

iv) Changing priorities of transitions: functions for
increasing or decreasing priority of a transition,
and comparing priorities of transitions, and

v) Reporting resource usage: new print functions that
show total resource usage, idle time, etc.

The following fundamental assumption was made in
realizing the additional functions for resource modeling:

A resource is a 'critical section' meaning a resource can be used
by only one transition at a time; this means, resources posses
'mutual exclusion' property.

(Though a resource can be used by only one transition at a time, a
transition can use as many resource as it wants, limited only by
availability).

F. Summary: Methodology for Modeling and Simulation
with GPenSIM

Creating a Petri net model consists of three steps: 1) Defining the
static Petri net graph (in PDFs), and 2) Defining firing conditions, if
any (in TDFs), and 3) Assigning initial dynamics (in MSF).

IV. CASE STUDY: A RESOURCE SHARING PROBLEM

 The case study presents a very simple problem of resource
sharing. This problem is adapted from Hruz and Zhou (2008) [4],
whom adapted this problem further from Starke (1990) [10].

Figure 3 shows a multi-processor system in which there are
three CPUs wanting to communicate between them as well as with
the outside world, with the help of two communication channels.

Channel-2

I I I I I I
I I I I I I I I I

a1: 91: r1 : a2: 92 : r2: a3: 93: r3:
I I I I I I I I I

t I t t I t t I
t I I I

I Bus master I
Figure 3. A multi-processor system

(adapted from [4][10])

 Obviously, communication channel is a bottle neck here, as there are
three CPUs and each may compete for a channel when only two are
available. In figure-3, 'a' is the signal from CPUs to bus master to
'acquire (request)' a channel, 'g' is the signal from bus master to CPUs
about grant of a channel, and 'r' is the signal from CPUs to bus master
about release of a channel.

Ps Po

P, P, P,

Figure 4. P/T Petri Net Model (adapted from [4])

A. P/T Petri Net Model
In this simple system, CPUs are the active elements (transitions)

and the number of available channels, which is two, can be
represented by two tokens in the system. The Petri net model is
shown in figure 4.

64

Channel-1

Note that the Petri net structure has to satisfy two
properties:

1) Conservation of tokens: total number of tokens
representing resoteces has to be a constant at any time (equals to 2, in
this example), and

2) Semafor: Use of a channel (resource) has to be guarded
so that only one CPU can use it at a time.

To satisfy the first property, the place P7 is included with two
tokens. To satisfy the second property, three additional
loops ('semafor loops' containing places P4, P5, and P6) are included
in the model.

B PIC Petri Net Model
In the P/T Petri net model shown in figure-4, the most

interesting places are P1, P2, and P3 as these places show whether a
CPU is using a channel or not. Thus, these three places become part of
the COM variables set. However, these three places are for monitoring
only: the system dynamics cannot be influenced by manipulating
these places (e.g. we cannot inject a token in P1 and claim that CPU is

occupying a channel). To control the dynamics of the system, we
need three pair of additional places : Pa1, Pr1,..., Pa3, Pr3; see figure 5.

p,

Figure 5, PIC Petri Net Model (adapted from [4])

These places Pa1, Pr1, ..., Pa3, Pr3 also become part of the COM
variable set; this because, by manipulating these places we can control
the system - for example, placing a token into the place Pa1 commands
the system to allocate a channel (if available) to CPU1;
placing a token into place Pr1 commands the system to release the
channel occupied by CPU1 and mark the channel as available.
Thus, the P/T model shown in figure-4 explains the behavior of the
system, whereas the PIC model shown in figure-5 can be used to control
the system.
Note: some designers may opt to include the place P7 too in COM
variables set, as P7 always shows how many free channels are available
at any instant of time.

C. Petri Net Model by GPenSIM Approach
GPenSIM supports representing resources as tokens as shown in

the PIT model (figure-4) and PIC model (figure-5). However, if the
modeler wants to create a compact model, the GPenSIM allows
keeping resources away from the structure of the Petri net model.

In this case, the functionality available in the software assures 1) the
conservation of the number of resources throughout the simulation,
and 2) 'mutual exclusion' in the resource use.

1) GPenSIM assures conservation of resources

Since the GPenSIM software assures conservation of the
resources, there is no need to conserve the number of tokens in the
model. Thus, all the structural elements that are added
(place P7 with the tokens, and the connections between P7 with the
rest if the system) just to ensure the conservation of tokens can now be
deleted from the model; figure-6 shows that the
place P7 and the arcs that are connection the place P7 to the rest of
the system are now obsolete.

2) GPenSIM assures mutual exclusion in resource usage
Since the GPenSIM software inherently assures mutual

p,

"-' -, -, -, �:... -::... -::... -::... -::... -::... -: �-' '1--::...-::...-::...-::...-::...-::...-:, -, - , - , - "
: i \-. i
,

Ps P6

Figure 6 Structural elements for conservation of tokens are obsolete

exclusion in the usage of resources, there is no now need for semafor
loops around resource usage. Hence, we can safely remove all the
semafor loops in the model. Figure-7 shows that the places P4, P5
and P6, and the arcs connecting these places to the rest of the system
now becomes obsolete.

Ps P6
.- -,

f-! • �1
i '

- i
I

Figure 7. Structural elements for mutual exclusion are obsolete

D. Simulation Program for the Case Study
For brevity, the simulation program is not shown in this paper.

Appendix shows some interesting code snippets. Interested reader is
referred to the website [8] where complete code for the simulation
program can be found.

65

v. DISCUSSION AND CONCLUSION

This paper presents GPenSIM's two approach for representing
resources in Petri net models, namely hardwiring and soft-coding.

Figure-8 summarizes the advantages and disadvantages of the
two approaches. The soft-coding approach definitely reduces the size
of the Petri net: considering the application example, if there are n
numbers of CPUs, then the model by soft-coding needs only 3n places
and 4n arcs; whereas, the hardwiring approach needs 4n places and 8n

arcs, in addition to the common place P7. Though reduction in the

connection between the elements in the physical system); this is a
distinct advantage of using hardwiring approach. The model by soft-
coding approach looks completely different from the actual physical
system.

Soft-coding is not an entirely a new approach as various Petri nets
based tools for DEDS simulations allow option to soft-code rather than
hardwire; for example, CPN tool allow programming using a special
language known as the ML language [5]. However, the alternative
between hardwiring and soft-coding is very decisive in GPenSIM as
programming in GPenSIM involves industry MATLAB
programming, which is compact, easy, and efficient as it has a
massive collection of in-number of elements in a model itself is an

�I
Pr3 Pa3

Figure 8a. Petri net model by soft-coding resources

r--------1� ..)------...,

Pa1 Pr1 Pa2

Ps

Pr2 Pa3 Pr3

Figure 8b. Petri net model by hardwiring resources

Figure 8. Summarizing GPenSIM's two approach for representing resources in
 Petri net models

advantage, there will be additional benefits due to the size reduction
such as ease of programming, ease of extending the model, debugging
the model, etc.

However, the model by hardwiring approach explicitly
resembles the physical system (or rather the topology of built

functions for nearly all the functionalities needed in DEDS simulations,
in addition to the core functions offered by GPenSIM.

This paper does not discuss the advantages and
disadvantages of the two approaches on other aspects such as real-
time applications; this is because the current version of
GPenSIM (version 6) is not suitable for real-time applications.

66

VI. APPENDIX A: PROGRAMMING WITH GPENSIM

A. Using Resources
The resources are to be declared first in MSF. For example, if

there three (human) resources named AI, Bob, and Chuck, then they

are declared in MSF as follows:
dynamic.resources = { 'AI', 'Bob', 'Chuck'};

Reserving a resource can be done through the function 'resource
request'. For example:
% T1 seeks specific resources, both 'AI'
% and 'Bob'
[acquired, PN] resource_request (PN, 'T1',
{ 'AI', ' Bob' }) ;

% T1 seeks any one resource
[acquired,PN]=resource reuqest(PN, 'T1');

Releasing the resources: after firing, a transition has to release all the
resources it is holding:
% release all resources (if any) held by 'T1'

[released, PN] = resource release (PN, 'T1');

Function 'print_schedule' prints the resource usage; it printouts
which transitions were using a specific resource and for how long,
etc.

B. Manipulating Priorities
In discrete systems, we need to increase or decrease priority of an

event or events, in order to give fair chance to the competing events.
There are some basic facilities in GPenSIM to change priorities of
transitions.

Declaration of initial priorities can be done in the main
simulation file; initial priorities can be coded in the initial
dynamic part:
% setting initial priority
% t3 has top priority (5), followed by t1 (3)

dyn.initial priority = { 't1',3, 't3',5} ;

Increasing priority of a specific transition can be done
using the function 'priority_increment', which will increase
the value just by 1.
% increase priority of 't1' by 1

PN = priority_increment(PN, 't1');

Decreasing priority of a specific transition can be done using the
function 'priority_decrement', which will reduce the value by 1.

% decrease priority of 't3' by 1
PN = priority_decrement(PN, 't3');

We can assign any priority to a transition using the function
'priority assign':
% set priority of 't1' to 10
PN = priority_assign(PN, 't1', 10);

We can also get current priority of a transition using the
function 'get priority':
% get the priority of 't1'
prio val = get priority(PN, 't1');

Finally, we can also compare priority of two transitions
using the function 'priority compare':
% compare priorities of 't1' and 't3'

HEL = priority_compare(PN, 't3', 't1');

If t3 has higher priority than t1, then the returned value will be 1;
if both have equal priority then a value of zero will be returned;
otherwise, -1 will be returned.

67

REFERENCES

[1] Cassandras, G. and LaFortune, S. (1999) Introduction to Discrete Event Systems. Hague, Kluwer Academic Publications

[2] Davidrajuh, R. (2009) Modeling and Simulation of Discrete Event Systems: A Hands-On Approach with GPenSIM. Pub1isher: VDMVer1ag;

ISBN: 978-3-639-19566-8

[3] GPenSIM (2010). Availab1e: http://www.davidrajuh.net/gpensim/
[4] Hruz, B. and Zhou. M. (2007) Modening and Control of Discrete-event Dynamic Systems: with Petri Nets and other Tool. Springer-Ver1ag, London
[5] Jensen, K. (1997) Colored Petri nets. Vol. I., II., III. Second edition. Springer, Berlin
[6] MATLAB (2009). Available: http://www.mathworks.com

[7] Petri net world (2009). Available: http://www.informatik.uni-hamburg.de/TGI PetriNets
[8] Resource Sharing Example (2011): Available: http://www.davidrajuh.netlgpensim/resource-sharing-SO LI20 11
[9] Silberschatz, A., Galvin, B., and Gagne, G. (2009) Operating System Concepts, 7th Edition, John Wiley & Sons, Inc, NY.
[10] Starke, P. (1990) Analyse von Petri-netz-modellen. B. G. Teubner, Stuttgart
[11] Wikipedia (2009) Available: http://www.wikipedia.org

