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Abstract
This paper presents an interesting design problem in developing a new tool for discrete-event dynamic systems (DEDS). A new tool known as 
GPenSIM was developed for modeling and simulation of DEDS; GPenSIM is based on Petri Nets. The design issue this paper talks about is whether 
to represent resources in DEDS hardwired as a part of the Petri net structure (which is the widespread practice) or to soft code as common variables in 
the program code. This paper shows that soft coding resources give benefits such as simpler and skinny models. 
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I. INTRODUCTION

This paper presents an interesting design issue during 
development of a new tool for modeling and simulation of discrete 
event dynamic systems (DEDS). The new tool is known as GPenSIM , 
General Purpose Petri net Simulator; obviously, it is based on Petri 
nets [3]. For the sake of completion, the next section (section II: Petri 
nets) presents a very short introduction to Petri nets; Section III 
presents the design goals of GPenSIM. 

As a tool for modeling and simulation of DEDS, GPenSIM must 
provide robust support for resource usage, as resources are one of the 
primary elements of any DEDS. Since GPenSIM is based on Petri net, 
it was obvious to represent resources as tokens, as it was the 
widespread practice; however, it was found out the hardwiring of 
resources as tokens in Petri nets produces bulky Petri net models. 
Alternatively (and untraditionally), GPenSIM also supports 
representing resources as variables in programming code (soft-coding  
as opposed to hardwiring); soft-coding, as shown in section IV of this 
paper, brings benefits such as simpler and much smaller models, ease 
of programming, ease of extending or tailoring the models. etc. 

II. PETRI NETS

A. Place/Transition Petri nets

Ever since its inception in 1960s, Petri nets have been used as a 
primary tool for modeling and simulation; this is because of Petri nets 
characteristics such as simple mathematical model, visual (graphical) 
language, yet clear and simple semantics [1]. P/T Petri net (aka 
Ordinary Petri net) is defined as follows [1]: 

Definition 1.1: Petri net is defined by the quintuple:  
PN = (P, T, A, W, Mo,) 

 Where: 

• P is the set of places; places are passive elements like
conveyor belts, input and output buffers, etc;

• T  is the set of transitions; transitions are active elements like
machines, humans, robots, CPUs, etc;

• A is the set of directed arcs; an arc connects either a place
to transitions or a transition to places;

• W is the set of     weights of   the arcs, and

• Mo  is the number of tokens  initially  in places.
P/T Petri nets have some limitations. One of the limitations is 

'homogenous' tokens: let's say that the tokens inside a place represent 
resources; then in P/T Petri nets, all these resources are of the same 
type and cannot be differentiated. Another limitation of P/T Petri net 
is that it is not possible impose additional logical functions ('firing 
conditions') for a transition to fulfill. Colored Petri nets (CPN) [5], or 
better - Petri net Interpreted for Control (PIC) [4] removes these 
limitations. 
B. Petri Net for Interpreted Control (PIC) 

Petri net for interpreted Control (PIC) is defined as follows [4]: 
Definition 1.2: A Petri net interpreted for the control is 

given by the quintuple: 
PIC = (PN, Ψ, LOG, ζ, COM) 

Where, 

• PN is the Petri net given by the definition 1.1, consisting of
a set of places, a set of transitions, a set of bipartite arcs with
arc weights, and a set of initial markings;

• Ψ: T - LOG is a function mapping the transition set T onto a
set of logical assertions containing logical variables,
predicates, events, and the empty symbol;

• ζ: P -COM is a function mapping the set of places onto a set
of value assignments to control variables including the
empty variable, aid of events, the value assignments and
events are realized when the place marking changes from 0
to a non-zero value.
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To put it simply, 
• Ψ: T→LOG is the set of logical conditions for firing (firing

conditions), and
• COM is a subset of places which serves as a set of control

commands; COM places (aka COM variables) are the most 
interesting places of a Petri net model; the other places play 
a secondary (supportive) role.

o Token in a COM place means the system is instructing
to send a command the outside world; or, it could also
means, the outside world has instructed a command to
the system via the COM variable.

III. GPENSIM

GPenSIM, developed by the author of this paper, is a new 
simulator for modeling and simulation of DEDS [3]. In the following 
subsections, a short introduction to GPenSIM is given. 

A. Why GPenSIM
The reason for developing GPenSIM is two-folded: 

• For basic users: to provide a tool that is easy to understand
and easy to use, even for users with minimal mathematical
and programming skills;

• For advanced users: allow seamless integration of models
made with GPenSIM with the other toolboxes that are readily
available on the MATLAB platform; allow easy extension of 
GPenSIM functions

Application Layer 
(Functions    for model building, 
simulation run, print results)

! 
Presentation Layer 
(Functions    for timing,

 coloring tokens, firing conditions)  

! 
Linear Algebraic Layer 

(Functions    for matrix 
computations) 

Figure 1. Layered Architecture 

B. Layerd Architecture
GPenSIM is built following a 3-layer architecture; see Figure 1. 

The bottom layer deals with Petri net run-time dynamics; this layer 
computes newer states with the help of linear algebraic equations and 
matrix manipulations. The middle layer adds more high-level 
functionality such as stochastic timing, coloring of tokens, firing 
conditions ('guard­conditions' in some literature), etc. The top layer 
offers applications such building a Petri net based model, running 
simulations, determining coverability tree, printing the simulation 
results, etc. 

C. Modular Componets 
A model of a discrete event system developed with GPenSIM 

consists of a number of files. The main simulation file (MSF) is the 
file that will be run directly by the MATLAB engine. In addition to 
the main simulation file, there will be one or more Petri net definition 
files (PDFs); definition of a Petri net graph (static details) is given in 
the Petri net Definition File. There may be a number of PDFs, if the 
Petri net model is divided into many modules, and each module is 
defined in a separate PDF. While the Petri net definition file has the 
static details, the main simulation file contains the dynamic 
information (such as initial tokens in places, firing times of 
transitions) of the Petri net [3]. In addition to these MSF and PDF 
fIles, there can be a number of transition definition files (TDFs) too. 

A transition definition file consists of additional conditions
 that determine whether an enabled transition can fire or not [2][4]. 

(Optional) 
MATLAB Toolboxes such as 

Fuzzy, Control Systems, Optimization, 

Statistics, etc 

MSF PDFs TDFs

GPenSIM 
Modules: Net Utilities, Timer, 
Simulator, Analysis, Display 

! 
MATLAB Engine 

Figure 2. The files for simulation 

The additional conditions are called 'firing condition' in GPenSIM 
terminology, whereas in some other literature (e.g. 
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Colored Petri Net (CPN)) it is referred to as 'guard­conditions'). 
There can be a separate transition definition file for each transition in 
a Petri net model, or a combined file. 

D. Natural Language Interface
Users need not know Petri net mathematics when creating a Petri 

net model of a discrete event system. GPenSIM offers a natural 
language interface with which model building mainly deals with 
identifying the basic elements of a system and establishing the 
connections between these elements. 

E. Representing Resource using GPenSIM 
DEDS possess active elements such as machines, passive elements 

such as buffers, as well as resources. Resources (e.g. machine 
operators, work stations) limit utilization of systems, hence are the 
reasons for bottle necks in systems. In addition to resources, we need 
mechanisms to change the priorities (of the transitions) in order to 
avoid e.g. starvation and aging of competing entities [9]. 

As mentioned in the introduction, the scope of this paper is 
GPenSIM's two approaches for representing resources in Petri net 
models: 1) as elements (e.g. as tokens) in the Petri net structure 
('hardwiring'), and, 2) as variables in program code ('soft-coding'). 
For the latter approach, GPenSIM provides the following 
functionality: 

i) Declaring resources,

ii) Utilizing resources (functions for requesting
(reserving), allocating, and releasing resources), 

iii) Declaring Priorities of different transitions,

iv) Changing priorities of transitions: functions for
increasing or decreasing priority of a transition, 
and comparing priorities of transitions, and 

v) Reporting resource usage: new print functions that
show total resource usage, idle time, etc. 

The following fundamental assumption was made in 
realizing the additional functions for resource modeling: 

A resource is a 'critical section' meaning a resource can be used 
by only one transition at a time; this means, resources posses 
'mutual exclusion' property. 

(Though a resource can be used by only one transition at a time, a 
transition can use as many resource as it wants, limited only by 
availability). 

F. Summary: Methodology for Modeling and Simulation 
with GPenSIM

Creating a Petri net model consists of three steps: 1) Defining the 
static Petri net graph (in PDFs), and 2) Defining  firing conditions, if 
any (in TDFs), and 3) Assigning initial dynamics (in MSF). 

IV. CASE STUDY: A RESOURCE SHARING PROBLEM 

 The case study presents a very simple problem of resource 
sharing.  This problem is adapted from Hruz and Zhou (2008) [4], 
whom adapted this problem further from Starke (1990) [10]. 

Figure 3 shows a multi-processor system in which there are 
three CPUs wanting to communicate between them as well as with 
the outside world, with the help of two communication channels.

Channel-2 

I I I I I I 
I I I I I I I I I 

a1: 91: r1 : a2: 92 :  r2: a3: 93: r3:
I I I I I I I I I 

t I t t I t t I 
t I I I 

I Bus master I 
Figure 3. A multi-processor system 

(adapted from [4][10]) 

 Obviously, communication channel is a bottle neck here, as there are 
three CPUs and each may compete for a channel when only two are 
available. In figure-3, 'a' is the signal from CPUs to bus master to 
'acquire (request)' a channel, 'g' is the signal from bus master to CPUs 
about grant of a channel, and 'r' is the signal from CPUs to bus master 
about release of a channel. 

Ps Po 

P,           P,                    P, 

Figure 4. P/T Petri Net Model (adapted from [4]) 

A. P/T Petri Net Model
In this simple system, CPUs are the active elements (transitions) 

and the number of available channels, which is two, can be 
represented by two tokens in the system.  The Petri net model is 
shown in figure 4. 
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Note that the Petri net structure has to satisfy two 
properties: 

1) Conservation of tokens: total number of tokens
representing resoteces has to be a constant at any time (equals to 2, in 
this example), and 

2) Semafor: Use of a channel (resource) has to be guarded
so that only one CPU can  use it at a time. 

To satisfy the first property, the place P7 is included with two 
tokens. To satisfy the second property, three additional 
loops ('semafor loops' containing places P4, P5, and P6) are included 
in the model. 

B  PIC Petri Net Model 
In the P/T Petri net model shown in figure-4, the most 

interesting places are P1, P2, and P3 as these places show whether a 
CPU is using a channel or not. Thus, these three places become part of 
the COM variables set. However, these three places are for monitoring 
only: the system dynamics cannot be influenced by manipulating 
these places (e.g. we cannot inject a token in P1 and claim that CPU is

occupying a channel). To control the dynamics of the system, we 
need   three pair of additional places :  Pa1, Pr1,..., Pa3, Pr3; see figure 5.       

p, 

Figure 5, PIC Petri Net Model (adapted from [4]) 

These places Pa1, Pr1, ..., Pa3, Pr3 also become part of the COM 
variable set; this because, by manipulating these places we can control 
the system - for example, placing a token into the place Pa1 commands 
the system to allocate a channel (if available) to CPU1; 
placing a token into place Pr1 commands the system to release the 
channel occupied by CPU1 and mark the channel as available. 
Thus, the P/T model shown in figure-4 explains the behavior of the 
system, whereas the PIC model shown in figure-5 can be used to control 
the system.
Note: some designers may opt to include the place P7 too in COM 
variables set, as P7 always shows how many free channels are available 
at any instant of time. 

C. Petri Net Model by GPenSIM Approach 
GPenSIM supports representing resources as tokens as shown in 

the PIT model (figure-4) and PIC model (figure-5). However, if the 
modeler wants to create a compact model, the GPenSIM allows 
keeping resources away from the structure of the Petri net model.

In this case, the functionality available in the software assures 1) the 
conservation of the number of resources throughout the simulation, 
and 2) 'mutual exclusion' in the resource use. 

1) GPenSIM assures conservation of resources 

Since the GPenSIM software assures conservation of the 
resources, there is no need to conserve the number of tokens in the 
model. Thus, all the structural elements that are added 
(place P7 with the tokens, and the connections between P7 with the 
rest if the system) just to ensure the conservation of tokens can now be 
deleted from the model; figure-6 shows that the 
place P7 and the arcs that are connection the place P7 to the rest of 
the system are now obsolete. 

2) GPenSIM assures mutual exclusion in resource usage
Since the GPenSIM software inherently assures mutual 

p, 

"-' -, -, -, �:... -::... -::... -::... -::... -::... -: �-' '1--::...-::...-::...-::...-::...-::...-:, -, - , - , - " 
: i \-. i 
, 

Ps P6 

Figure 6  Structural elements for conservation of tokens are obsolete 

exclusion in the usage of resources, there is no now need for semafor 
loops around resource usage. Hence, we can safely remove all the 
semafor loops in the model. Figure-7 shows that the places P4, P5
and P6, and the arcs connecting these places to the rest of the system 
now becomes obsolete. 

Ps P6 
.- -, 

f-! • �1 
i '

- i 
I 

Figure 7. Structural elements for mutual exclusion are obsolete 

D. Simulation Program for the Case Study
For brevity, the simulation program is not shown in this paper. 

Appendix shows some interesting code snippets. Interested reader is 
referred to the website [8] where complete code for the simulation 
program can be found. 
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v. DISCUSSION AND CONCLUSION 

This paper presents GPenSIM's two approach for representing 
resources in Petri net models, namely hardwiring and soft-coding. 

Figure-8 summarizes the advantages and disadvantages of the 
two approaches. The soft-coding approach definitely reduces the size 
of the Petri net: considering the application example, if there are n 
numbers of CPUs, then the model by soft-coding needs only 3n places 
and 4n arcs; whereas, the hardwiring approach needs 4n places and 8n 

arcs, in addition to the common place P7. Though reduction in the

connection between the elements in the physical system); this is a 
distinct advantage of using hardwiring approach. The model by soft-
coding approach looks completely different from the actual physical 
system. 

Soft-coding is not an entirely a new approach as various Petri nets 
based tools for DEDS simulations allow option to soft-code rather than 
hardwire; for example, CPN tool allow programming using a special 
language known as the ML language [5]. However, the alternative 
between hardwiring and soft-coding is very decisive in GPenSIM as 
programming in GPenSIM involves industry MATLAB 
programming, which is compact, easy, and efficient as it has a 
massive collection of in-number of elements in a model itself is an

�I 
Pr3 Pa3 

Figure 8a. Petri net model by soft-coding resources 

r--------1� .. )------..., 

Pa1 Pr1 Pa2 

Ps 

Pr2 Pa3 Pr3 

Figure 8b. Petri net model by hardwiring resources 

Figure 8. Summarizing GPenSIM's two approach for representing resources in 
 Petri net models 

advantage, there will be additional benefits due to the size reduction 
such as ease of programming, ease of extending the model, debugging 
the model, etc. 

However, the model by hardwiring approach explicitly 
resembles the physical system (or rather the topology of built

functions for nearly all the functionalities needed in DEDS simulations, 
in addition to the core functions offered by GPenSIM. 

This paper does not discuss the advantages and 
disadvantages of the two approaches on other aspects such as real-
time applications; this is because the current version of
GPenSIM (version 6) is not suitable for real-time applications. 
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VI. APPENDIX A: PROGRAMMING WITH GPENSIM

A. Using Resources
The resources are to be declared first in MSF. For example, if 

there three (human) resources named AI, Bob, and Chuck, then they 

are declared in MSF as follows: 
dynamic.resources = { 'AI', 'Bob', 'Chuck'}; 

Reserving a resource can be done through the function  'resource 
request'. For example: 
% T1 seeks specific resources, both 'AI' 
% and 'Bob' 
[acquired, PN] resource_request (PN, 'T1', 
{ 'AI', ' Bob' } )  ; 

% T1 seeks any one resource 
[acquired,PN]=resource reuqest(PN, 'T1'); 

Releasing the resources: after firing, a transition has to release all the 
resources it is holding:
% release all resources (if any) held by 'T1' 

[released, PN] = resource release (PN, 'T1'); 

Function 'print_schedule' prints the resource usage; it printouts 
which transitions were using a specific resource and for how long, 
etc. 

B. Manipulating Priorities 
In discrete systems, we need to increase or decrease priority of an 

event or events, in order to give fair chance to the competing events. 
There are some basic facilities in GPenSIM to change priorities of 
transitions. 

Declaration of initial priorities can be done in the main 
simulation file; initial priorities can be coded in the initial 
dynamic part: 
% setting initial priority 
% t3 has top priority (5), followed by t1 (3) 

dyn.initial priority = { 't1',3, 't3',5} ; 

Increasing priority of a specific transition can be done 
using the function 'priority_increment', which will increase 
the value just by 1. 
% increase priority of 't1' by 1 

PN = priority_increment(PN, 't1'); 

Decreasing priority of a specific transition can be done using the 
function 'priority_decrement', which will reduce the value by 1.

% decrease priority of 't3' by 1 
PN = priority_decrement(PN, 't3'); 

We can assign any priority to a transition using the function 
'priority assign': 
% set priority of 't1' to 10 
PN = priority_assign(PN, 't1', 10); 

We can also get current priority of a transition using the 
function 'get priority': 
% get the priority of 't1' 
prio val = get priority(PN, 't1'); 

Finally, we can also compare priority of two transitions 
using the function 'priority compare': 
% compare priorities of 't1' and 't3' 

HEL = priority_compare(PN, 't3', 't1'); 

If t3 has higher priority than t1, then the returned value will be 1; 
if both have equal priority then a value of zero will be returned; 
otherwise, -1 will be returned. 
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