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Abstract

A number of companies, research establishments and universities worldwide
are currently researching the use of Ultra Wideband radar technology to
conduct non-contact and non-invasive measurements of heartbeat.

Both cardiac and respiratory activity cause a visible and measurable
motion to the chest wall. When aiming a radar to a subject's chest, this
motion can be recorded and processed to obtain the rates of respiration and
heartbeat.

This thesis looks into the processing of chest wall displacement data to
improve heart rate measurements. At the �rst stage of the signal process-
ing, the low frequency, high amplitude respiration signal component must
be separated from the much smaller heartbeat component. Traditionally,
linear Finite Impulse Response (FIR) highpass �lters have been used to re-
move the respiration component. FIR �lters have a �xed corner frequency.
If the respiration rate is higher than this �xed frequency, FIR �ltering can
not work. In addition, FIR �lters must be quite long for su�cient stopband
attenuation, and thus they introduce a time delay to the system. Alter-
native signal processing techniques are based on cancellation of respiration
harmonics, which eliminates the system delay and works at any respiration
frequency. One such method from the literature was investigated, and this
thesis presents a modi�ed version that works better with actual radar data.

After separation, the heart rate must be determined. Traditionally, fre-
quency estimation of a sliding window has been used. A di�erent method
from the literature is based on adaptive �ltering. It transforms the heartbeat
signal into a train of unit pulses, each occurring at the start of a heartbeat.
Instant heartbeat information is thus gathered, as opposed to the traditional
method which yields the mean heart rate during the time window.

Some system results were obtained for both constructed test signals and
actual radar data. Generally FIR �ltering performed better than harmonic
cancellation, but the harmonic canceller outperformed FIR �ltering when the
respiration frequency tended towards the �lter's corner frequency. Feasibility
of a system that gives instant heart rate measurements in real-time was
proven. The improvements on traditional systems are elimination of time
delay, enabling separation at high respiration frequencies and giving the
instant heart rate rather than an avereraged one.
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NOTATION

The following describes the notations used in this thesis:
Scalars are written with upper- or lowercase characters in normal fonts

Matrices are written with bold uppercase letters, e.g. X

Vectors are written with bold lowercase letters, e.g. x

Transpose of a vector or a matrix is indicated by T , e.g. XT

Gradient of a multidimensional function with respect to x is ∇x.

Complex conjugates of matrices and scalars are indicated by ∗, e.g. x∗

Inverted complex conjugate matrices are indicated by −∗, e.g. A−∗

Absolute value of a scalar is written | · |
P-norm is denoted ‖ · ‖p, and p is always speci�ed although only the eu-

clidian norm, or 2-norm, has been used.

Argument minimizer/maximizer. The argument a that minimizes f(a)
is denoted arg mina f(a).

Cost functions, usually the sum of squared residuals, are always called
S(x) where x is a vector of parameters.

Big-O notation is used about algorithmic cost and approximation errors.
In the context of algorithmic cost, O(N3) means that the number of
calculations in the algorithm has the same order of magnitude as the
number of parameters N raised to the third power. When used in
the context of approximation errors, e.g. O(‖x‖2

2), it means that the
approximation error has the same order of magnitude as the two-norm
of x squared.
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ABBREVIATIONS

The following table lists a number of common abbreviations used in this
thesis alphabetically.

Abbreviation Meaning
AM Amplitude Modulation
Bpm. Context speci�c. Breaths pr. minute for respiration

or beats pr. minute for heart rates
FIR Finite Impulse Response
FM Frequency Modulation
H&J Hooke and Jeeves
IIR In�nite Impulse Response
MIR Micro Impulse Radar
SNR Signal-to-Noise Ratio
UWB Ultra Wideband
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CHAPTER 1
INTRODUCTION

1.1 Background
Since the 1970's researchers have been exploring the concept of using mi-
crowave radars to measure respiration and heartbeat in humans and animals.
As humans breathe the lungs will expand and contract, causing a periodi-
cally repeating movement in the chest wall. Similarly, heartbeats will cause
a periodic motion to the chest wall.

It is hypothesized that if this motion can be measured, a time series
containing successive measurements for a period of time can be processed to
gather information about the subject's cardiac and respiratory activity.

To explore the concept further, imagine aiming a radar at a patient's
chest. There will be a measurable distance x(t) between the patient's chest
and the radar antenna cf. Fig. 1.1.

x(t)

Radar antenna

Fig. 1.1: Concept sketch, patient in bed with radar based vital signs monitor.

The chest wall motion caused by cardiac and respiratory activity man-
ifests itself as miniscule variations in this distance x(t). By using high res-
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2 CHAPTER 1. INTRODUCTION

olution range detection, a sampled discrete time series x(n) containing the
waveform of the chest motion can be gathered. As an example, the subject
could be breathing at a (typical) rate of 18 cycles pr. minute, and his/her
heart beat at a rate of 50 beats pr minute. Further, assume that all chest
wall motion is sinusoidal (it is not, this is addressed later). If the radar
was capable of sampling x(t) each 0.1s, then that time series would look like
Fig. 1.2(a). From this data the frequency spectrum could be gathered by
applying the Discrete Fourier Transform, yielding Fig. 1.2(b).
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Fig. 1.2: Radar measurements and frequency estimates of x(t)

Modelling the motion as a sum of sinusoids is not very accurate. A more
realistic model is introduced in Section 4.2.

1.2 Today's system
Today's system uses a combination of signal processing techniques to obtain
the patient's heartrate. In the �rst stage, a linear highpass Finite Impulse
Response (FIR) �lter is applied to remove the low frequency respiration
signal component. After that, frequency estimation is conducted by using
the autocorrelation function of a sliding window of the remaining heartbeat
signal.

FIR �ltering has two key disadvantages. Firstly, a long �lter is required
for su�cient stopband attenuation. This introduces a signal delay, and thus
the patient's instantaneous heartrate cannot be obtained. In many situations
however, a few seconds delay is completely acceptable. Secondly, and worse,
is the fact that the FIR �lter has a constant corner frequency, somewhere
in between the high end of �normal� respiration frequencies and the low end
of �normal� heartbeat frequencies. Naturally these parameters are bound to
vary with the patient's age, physique and especially the monitoring situation.

The autocorrelation method for calculating the heartrate is also �awed
in some ways. For an accurate frequency estimate, we have by experiment
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1.3. PROBLEM FORMULATION 3

established that a window of at least 7 seconds is required (for 60 beats pr.
minute). Essentially that means that at any time, it is the patient's average
heart rate between two to nine seconds ago (taking into account a two second
delay from the �lter) that is measured. Because of the problems inherent
to the methods presently used, new signal processing strategies must be
devised.

1.3 Problem formulation
This thesis focuses on an alternative method for the separation of heart and
respiration. A primary goal is to overcome the problem of high respiration
frequencies not being cancelled. A secondary goal is to eliminate the time
delay of the �lter. As a supplement to the elimination of time delay, instant
measurement of the heart rate is also sought. This would allow measurement
of the heart rate variability, that is, the beat-for-beat variations in the heart
rate. All these issues are geared towards making the heart rate measurements
more robust and instantaneous.

1.4 Report contents
Chapter 2 provides the reader with some more background to the prob-
lem, including an overview of di�erent radar technologies that have been
applied in creating similar systems. Chapter 3 describes the alternative
signal processing methods that have been investigated in this thesis. Chap-
ter 4 moves on to describe how the data used in the thesis were obtained.
Chapter 5 presents the results that were obtained, and these are discussed
in Chapter 6. Finally a conclusion can be found in Chapter 7.

1.5 Recommended previous knowledge
To fully enjoy and endure reading this thesis, it is recommended that the
reader has a sound background within signal processing. An interest in linear
algebra and linear and nonlinear optimiziation techniques will also make the
thesis more readable.

3



CHAPTER 2
AN OVERVIEW OF

MICROWAVE SENSING OF
CARDIOPULMONARY

ACTIVITY

2.1 Introduction
Already in Lin [1975] the idea of using a microwave device to measure res-
piration was conceived. Since then the concept has been expanded to cover
heart rate measurements, and several methods and approaches have been
developed and tested. However, a major commercial breakthrough of such
a system is yet to be claimed. The system variations have primarily been
in the choices of range measurement device, thus some of the major radar
classes along with a brief description will be presented in the next sections.

While reading this chapter, it should be kept in mind that the problem
formulation worked on in this thesis is completely transparent to which type
of radar is used. To understand the work conducted, it is only necessary
to acknowledge that successive measurements of the chest wall displacement
are obtained, one way or the other. This chapter merely provides an insight
into which technologies are available and used today.

2.2 Introduction to radar systems
Radar is an acronym for RAdio Detection And Ranging. It can be used to
detect the range, size and velocity of nearby objects that re�ect microwaves

4



2.3. DOPPLER RADAR IMPLEMENTATIONS 5

or radio waves. Since the �rst devices made in the early 1900's the technology
has matured into precise detection and ranging tools, for a wide array of
applications.

Skolnik [2008] provides both a comprehensive introduction and detailed
information on a variety of radar technologies, and serves as a reference to
large parts of this chapter.

2.3 Doppler radar implementations
The term doppler radar refers to all radars applying the doppler e�ect to
determine the radial velocity of a detected object.

2.3.1 Description of the doppler e�ect

The doppler e�ect describes what happens when any type of wave is trans-
mitted or re�ected from a moving object. A common example is the audible
frequency shift occurring when an ambulance approaches quickly. Once the
ambulance drives by the pitch of the siren is clearly lower than it was when
it was approaching. The same e�ect occurs when sound or electromagentic
radiation is re�ected from a moving object cf. Fig. 2.1. This is due to sound
waves being "squeezed" during the approach and "dragged out" when the
ambulance drives away.

v(t)

Wave source

Moving reflection point

f f + fd

Fig. 2.1: Doppler e�ect in moving object.

The frequency shift fd can be described mathematically, in the case of
re�ection from a moving object this is de�ned as

fd =
2v(t)

λ
, λ =

c

f
(2.1)

where c denotes the speed of light and f is the frequency of the source
wave. The velocity v(t) is de�ned such that objects moving towards the
source have a positive velocity.

5
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CARDIOPULMONARY ACTIVITY

2.3.2 Radar application of the doppler e�ect
The doppler e�ect is applied in radars to determine the velocity of the de-
tected object. Continuous Wave (CW) systems transmit one frequency con-
tinuously. By continuously monitoring the di�erence between transmitted
and received frequencies, fd, equation (2.1) is used to obtain the velocity of
the re�ecting object.

2.3.3 Heart rate measurements using doppler radar
Most of the work conducted in the �eld of microwave cardiopulmonary sens-
ing has been based on various types of doppler radars. The doppler radar
only yields information about moving targets, but since periodic motion is
measured, displacement x(t) relates to velocity v(t) such that

x(t) =
d

dt
v(t) (2.2)

and in the case of sinusoidal motion

d

dt
sin(t) = cos(t) (2.3)

and the velocity measurement is essentially a phase shifted measure of the
displacement.

A complete description of such a system is described in Droitcour [2006].
Other recent work is found in Massagram et al. [2007] and Morgan and Zierdt
[2009].

2.4 Ultra Wideband radar implementations
2.4.1 Introduction
The term Ultra Wideband (UWB) refers to a frequency spectrum that has
been allocated by the U.S. Federal Communications Commission for unli-
cenced use. Contrary to conventional narrowband technologies such as FM
and AM, the point of Ultra Wideband technology is to spread the spectrum
such that the emission at each individual frequency is much weaker, allow-
ing the total transmitted power to be the same. One can imagine smearing
the Dirac's delta-like impulse of narrowband radio out over a much broader
spectrum. The interested reader will confer to Appendix D for a motivation
for using the Ultra Wideband concept, from an information theoretical view-
point. For a thorough introduction to Ultra Wideband radio technology, see
Siwiak and McKeown [2004].

6



2.4. ULTRA WIDEBAND RADAR IMPLEMENTATIONS 7

2.4.2 De�nitions and regulations
By de�nition, electromagnetic radiation covering a spectrum broader than
500 MHz or has a fractional bandwidth of more than 0.2, is considered to
be Ultra Wideband. The fractional bandwidth is de�ned as

BWf = 2
fh − fl

fh + fl
=

fh − fl

fc
(2.4)

where fh and fl are the upper and lower frequencies at the 10 dB point,
that is, the frequency at which the spectral emissions are 10 dB lower than
the highest frequency of the spectrum. fc is the center frequency de�ned as
1
2(fh + fl). Any such spectrum is allowed between 3.1 GHz and 10.6 GHz.

The reason that it has been possible to allocate such a broad band to
UWB radios is that the band actually overlaps bands allocated to other
users. Thus there is a restriction on the maximum allowable spectral density,
and this is de�ned such that transmitted power at any given frequency is so
low that other devices on that frequency will consider the transmission as
noise.

2.4.3 Micro Impulse Radar
There are many types of Ultra Wideband radar implementations. A common
implementation is the one presented in Staderini [2008], which is known as
Micro Impulse Radar (MIR). This type of UWB radar transmits ultra short
pulses in time, typically in the order of hundreds of picoseconds. As an
example, a pulse of 300 ps duration and its corresponding spectrum is found
in Fig. 2.2. The 10 dB point is here around 5 GHz and thus the pulse more
than sati�es the requirements for being called Ultra Wideband. Due to the
frequency response of the antenna, this pulse changes characteristics and is
typically shifted up in frequency so that it meets the 3.1-10.6 GHz bandlimit.

Pulses that short in time cannot readily be sampled. It would simply
require too high a sample rate for a sensible implementation. This turns
the concept of range detection upside down. As will be explained, the radar
is actually forced to assume a range, and then check if there is an object
present there.

The amplitude of the re�ection is sampled at the time one expects an
echo. To understand the concept better, cf. to Fig. 2.3 (from Staderini
[2008]). A pulse is transmitted, and a copy of the pulse is delayed through a
high resolution delay line. This delay line controls the expected distance of
the re�ector.

If the radar controller has guessed the correct distance to a target, the
sampler is going to record a high amplitude sample. If there is no re�ecting
object at the guessed distance, the sampler is going to record a low amplitude
sample. The samples are accumulated in a low pass �lter to eliminate noise
from other units transmitting at interfering frequencies.

7
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Fig. 2.2: Time and frequency domain represenation of a typical Ultra Wide-
band pulse.

Fig. 2.3: Block diagram of Ultra Wideband radar Staderini [2008].

When using this type of radar, one actually needs to sweep over all possi-
ble distances to locate the target. After an initial sweep the radar has found
its operating range. Then it can start sweeping over the expected motion of
the chest wall to gain a time series containing successive measurements of
the distance between the antenna and the chest wall.

This type of radar was used in cardiopulmonary sensing in Michahelles
et al. [2004].
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2.5. SUMMARY 9

2.4.4 Ultra Wideband radar, NanoPulse type
The Ultra Wideband radar developed by NanoPulse has been used to gather
the data used in this thesis. In order to satisfy the spectrum requirements of
Ultra Wideband, a 2 ns long pulse has been mixed up in frequency with a si-
nusoid at 7.4 GHz. The mixer is an analog multiplicator, and thus the trans-
mitted pulse and corresponding spectrum will look something like Fig. 2.4.
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Fig. 2.4: Ultra Wideband pulse satisfying spectral constraints

At the receiving end the pulse is mixed down again, and a low-pass �lter
is used to regain the 2 ns long pulse. Another low-pass �lter with a very
low corner frequency (20 Hz) is used to accumulate pulses. Then �nding the
distance to the target is a matter of estimating the time delay of the received
pulse.

2.5 Summary
A brief introduction to several possible chest wall displacement measurement
techniques were presented. All microwave radar implementations have the
advantage that they can �see through� clothes and, depending on the fre-
quency, other obstacles like rocks and walls. Thus the technology can be
used in a number of scenarios like life detection under earthquake rubble or
through-wall sensing of persons and their movement, respiration and heart
rate.

9
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All technologies face challenges of getting su�cient resolution for detect-
ing the miniscule motion caused by the heartbeat. In that respect, laser
measurements of the chest wall displacement can be conducted with great
accuracy and resolution. However, a laser cannot see through any obstacles,
and thus many of the microwave radar advantages are forfeit.

10



CHAPTER 3
SIGNAL PROCESSING

TECHNIQUES FOR RADAR
SENSING OF THE HEARTBEAT

3.1 Introduction
This chapter describes some of the methods used subsequently. Most of the
practical work in this thesis deals with extracting the correct heart rate from
noise-laden radar range measurements from the chest wall.

At the �rst stage in the processing, the challenge is to separate the heart
signal from the respiration signal. The simplest way to do this is by linear
�ltering. A di�erent method based on cancellation of respiration harmonics
is also investigated. The latter is based on the work in Morgan and Zierdt
[2009], but a slightly di�erent approach was made.

For calculating the heart rate two methods will be investigated. One
is based on the short-time autocorrelation function (STAF), and the other
takes a di�erent approach by using adaptive �ltering.

3.2 Separating heartbeat from respiration using lin-
ear �ltering

3.2.1 Introduction
Linear �ltering is a commonly used signal processing technique to remove
unwanted signal components. The technique is described in most literature
on digital signal processing, e.g. Proakis and Manolakis [2006]. Two ma-
jor classes of �lters are �nite impulse response (FIR) and in�nite impulse

11
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response (IIR) �lters. All linear digital �lters can be described by the di�er-
ence equation

y(n) = a1y(n− 1) + a2y(n− 2) + · · ·+ yp(n− p)
+ b0x(n) + b1x(n− 1) + · · ·+ bqx(n− q) (3.1)

that desribes the output y(n) given the input x(n), for a �lter with p poles
and q zeros. The transfer function is described in the z plane as

H(z) =
b0 + b1z

−1 + · · · bqz
−q

1 + a1z−1 + · · · apz−p
(3.2)

The transfer function's zeros are determined by the b parameters and are
often referred to as the moving average parameters. The poles are deter-
mined by the a parameters and are often referred to as the autoregressive
parameters. An all-pole �lter contains only autoregressive components, and
is thus a pure IIR �lter. An all-zero �lter contains only moving average pa-
rameters, and is thus a FIR �lter. Filters containing both parameter types
are IIR �lters, due to the autoregressive part.

In the case of separating heartbeat signals from respiration signals, we
mainly want to look at the frequency response of the transfer function. This
indicates how frequency components are attenuated or ampli�ed through the
�lter. Cf. Fig. 3.1 for an example transfer function of a lowpass FIR �lter
with the normalized corner frequency 0.2 and 8 �lter coe�cients.
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Fig. 3.1: Example FIR low-pass �lter.
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3.2.2 Designing a �lter for removing respiration signal com-
ponents

When designing a suitable �lter for removing the respiration component, a
few key properties must be considered.

It was decided to use an FIR �lter, because linear phase is required.
Linear phase is hard to obtain when using IIR �lters. The �lter's phase θ(ω)
is related to the group delay D(ω) such that

D(ω) ≡ d

dω
θ(ω) (3.3)

and consequently linear phase results in a constant group delay.
A constant group delay ensures that all frequencies are delayed equally

in time, and if this is not the case we risk a distortion of the heart waveform.
Generally we want as much stopband attenuation as possible. One pos-

sibility is to let the acceptable time delay decide how much stopband atten-
uation we get. A higher order �lter will yield more stopband attenuation,
but consequently the group delay through the �lter increases.

The acceptable time delay will vary with the intended use of the system.
However, it was found that there is not much improvement on the �ltered
signal when going beyond 400 �lter coe�cients. This results in a group delay
of 200 samples, or 2 seconds at sample rate fs = 100 Hz.

With this background it was decided to use a 400 coe�cients long FIR
�lter where the impulse response has been windowed with the Kaiser window
using β = 3. The corner frequency fc was chosen to be 0.65 Hz, which is
somewhere in between the lower end of expected heart rates(50-90 bpm. =
0.83-1.5 Hz) and the upper end of expected respiration rates (13-24 bpm. =
0.22-0.4 Hz). This �lter's frequency response is found in Fig. 3.2.
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Fig. 3.2: Frequency response of �lter for separating heartbeat signal com-
ponents from respiration signal components. 400 tap FIR �lter with Kaiser
windowed impulse response, β = 3, corner frequency 0.65 Hz.
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3.2.3 Removing out-of-band noise
A 20 coe�cients long FIR �lter has also been applied for removing out-of-
band noise. Cutting o� at 10 Hz generally yields better heartbeat detection.
The �lter's frequency response is found in Fig. 3.3.
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Fig. 3.3: Frequency response of �lter for removing out-of-band noise. 20 tap
FIR �lter with Kaiser windowed impulse response, β = 3, corner frequency
10Hz

3.3 Separating heartbeat from respiration using sub-
traction of harmonic components

3.3.1 Introduction
One problem with separation of heart and respiration using linear �ltering is
that both respiration and heartbeat frequencies vary from subject to subject
and from situation to situation, and they are by no means stationary. For ex-
ample, during patient hyperventilation the respiration frequency could tend
towards the frequency of the heartbeat, rendering linear �ltering methods
useless.

A new signal processing method for separation is presented in Morgan
and Zierdt [2009]. The idea is to model the time series x(n) = s(n) + M(n)
where s(n) is the desired heart signal and M(n) is a periodic component
stemming from respiration that we wish to remove. Further, M(n) consists
of L harmonic components of the fundamental respiration frequency, and a
constant DC term that applies if the data are not zero-mean.

The algorithm will �rst try to estimate the fundamental respiration fre-
quency, hereafter called f0, by using an autocorrelation technique. Then an
optimal set of 2L+1 weigths xl consisting of the amplitudes and phases of the
L harmonic components and a DC term x2L+1 is found. Several approaches
were tested, but the Gauss-Newton method for nonlinear optimization was
best suited for the task. The resulting weights are used to reconstruct an

14



3.3. SEPARATING HEARTBEAT FROM RESPIRATION USING
SUBTRACTION OF HARMONIC COMPONENTS 15

estimate of M(n). The cost function is de�ned as the sum of the squared
residuals r(n) = y(n)−M(n), and this can be seen as a data�tting problem.

3.3.2 De�ning a suitable model
As stated in the literature, e.g. Morgan and Zierdt [2009], the chest wall
motion arising from respiration can be modelled as the sum of sinusoids
with the fundamental frequency ω0 and a number of harmonic components
with frequencies lω0. A model M could be formulated thus

M(x, n, ω0) =
L∑

l=1

x2l−1 cos(lω0n + x2l) + x2L+1 (3.4)

where x is the parameter vector containing
[
x1 x2 · · · x2L+1

]T and ω0 is
the normalized fundamental respiration frequency 2πf0

fs
. xi is an amplitude

component for odd i and a phase component for even i, and a constant DC
term for i = L + 1.

3.3.3 De�ning an optimization problem
With the i'th observed sample contained in yi, the residual is de�ned

ri = yi −M(x, i, ω0) (3.5)

At sample m, the optimal x that minimizes the sum of squared residuals
in N samples from the past is sought, and a cost function is de�ned thus

S(x) =
1
2
‖r(x)‖2

2 =
1
2

m∑

i=m−N+1

(ri(x))2 (3.6)

3.3.4 Choosing a solution
A number of methods exist in the literature for solving such least-squares
problems. The fact that the residual model is nonlinear in x 1 constrains us
to use a nonlinear least squares method.

The Gauss-Newton method described inAppendix C has proved to solve
the problem quickly and reliably. The Gauss-Newton method is an iterative
algorithm that solves the cost function in equation (3.6) thus

1. Solve

JTJhgn = −JT r (3.7)
1A linear model of the residuals can be written as the linear combination r = y−Ax,

which is not the case due to the phase component of the sinusoid, cf. equation (3.4).

15
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2. Update x

x = x + hgn (3.8)

J(x) is the Jacobian matrix de�ned as

J(x) = [N × n] =




∂r1
∂x1

∂r1
∂x2

· · · ∂r1
∂xn

∂r2
∂x1

∂r2
∂x2

· · · ∂r2
∂xn... ...

∂rN
∂x1

∂rN
∂x2

· · · ∂rN
∂xn




(3.9)

for N samples and n parameters in x.
It can be shown (e.g. in Appendix A of Madsen et al. [2004]) that if the

columns of J are linearly independent, and the system is critically determined
or overdetermined (N ≥ n), then A = JTJ is positive de�nite. Thus hgn

has a unique solution that is found by solving equation (3.7).

3.3.5 Comparison with standard solution
The solution found in Morgan and Zierdt [2009] theoretically has a few ad-
vantages over the Gauss-Newton method. These lie in the model and conse-
quently the cost function formulation used:

M(x, n, ω0) =
L∑

l=1

Al cos(lω0n + φl) (3.10)

= Re

{
L∑

l=1

Ale
jφlejω0n

}
(3.11)

= Re

{
L∑

l=1

xle
jωon

}
(3.12)

The DC term, call it xDC , is not included in the model and is thus not
optimized over. It is rather determined by

xDC =
1
N

m∑

i=m−N+1

y(i)−M(x, i, ω0) (3.13)

which is the mean value of the deviation between the measured time series
and the model. This is intuitively the DC term that minimizes the cost
function.

The cost function can now be formulated

S(x) =
N∑

i=m−N+1

[yi −M(x, i, ω0)− xDC ]2 (3.14)

16
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and a solution to this problem is

x = 2(R−CR−∗C∗)−1(r−CR−∗r∗) (3.15)

R and C are complex and hermitian [L×L] matrices, and r is an [L×1]
correlation vector. The details are given in Appendix E.

Indeed this is an elegant solution that requires the inversion of an [L ×
L] matrix rather that the inversion of a [(2L + 1)× (2L + 1)] matrix every
sample. In addition, since it is a solution by standard equation, convergence
is immediate. For harmonic cancellation of signals of more stationary nature
like the test signals produced in this thesis, this solution works very well.

Despite the theoretical advantages, the method failed to work well on
the actual data gathered in this thesis. The problem seems to be that the
solution is unstable when using short windows. This causes the optimal
parameters to vary so much from sample to sample, that the data�t is a
jigsaw-shaped signal. The jigsaw-shape is naturally also re�ected in the
residuals, jeopardizing good heart rate estimates. It is necessary to use
short data windows because people usually do not breathe in equal cycles
for prolonged periods of time. Another problem with long windows is the
need for an exact estimate of ω0. When optimizing the amplitudes and
phases of harmonics with a non-variable estimated fundamental frequency,
it is clear that, when using long windows, the estimated frequency must be
very exact to get a good data�t.

3.3.6 Cost of solution
Solving for the Gauss-Newton step in equation (3.7) can be quite costly.
Matrix inversion typically costs in the order of O(N3) which means that
we want to keep A = JTJ small. This is however feasible, since using
for example L = 3 harmonic components gives 2L + 1 = 7 parameters to
solve for, and thus A = [7 × 7]. 73 = 343, and with sample rate fs = 100
Hz, the matrix inversions of the algorithm require 34 300 �ops (�oating point
operations pr. second). Although this is feasible for a standard computer, the
algorithm should be made more e�cient for e.g. embedded implementations.
A possible amendment is using the Cholesky factorization procedure

A = CTC || Cholesky factors
zgn = [CT ]−1(−Jr) || Intermediate step
hgn = [C]−1zgn || Final step

where C is upper triangular, the intermediate and �nal steps are solved by
backward and forward substitution (see e.g. C.H. Edwards and Penney [1988]
or Madsen et al. [2004] for details on solving systems of linear equation).
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Bacward and forward substitution are much cheaper than matrix inver-
sion (O(N2)), but Cholesky factorization is quite expensive. One algorithm
(Madsen et al. [2004], appendix A) costs O(1

3N3), so savings are marginal
especially for small N . Therefore it is advisable to develop updating formu-
las for [JTJ]−1 and −JT r, similar to what is done in recursive least squares
�ltering cf. Appendix B.

On a �nal note, Matlab R2008a processes 400 seconds of data in about 14
seconds on a standard AMD Turion64 X2 laptop computer when inverting
directly (using the slash operator2), and about 13 seconds using Cholesky
factorization. However, using the Cholesky factorization algorithm found
in Madsen et al. [2004], appendix A (O(1

3N3)), causes a dramatic increase
runtime to about 22 seconds. Apparently it is hard to beat Matlab's imple-
mentations of the latest and greatest algorithms. This should absolutely be
in mind when attempting to program the algorithm in a di�erent program-
ming language.

3.3.7 Applying the Gauss-Newton method in harmonic can-
cellation

The Jacobian matrix consists of rows Ji containing the elements of the gra-
dient of the residual vector. For three harmonic components, the i'th row is
thus

Ji =
[

∂ri
∂x1

∂ri
∂x2

· · · ∂ri
∂x7

]
(3.16)

(3.17)
Ji = [∇x[yi − (x1 cos(ω0n + x2) + x3 cos(2ω0n + x4)+

x5 cos(3ω0n + x6) + x7)]]T (3.18)

=




− cos(ω0i + x2)
x1 sin(ω0i + x2)
− cos(2ω0i + x4)
x3 sin(2ω0i + x4)
− cos(3ω0i + x6)
x5 sin(3ω0i + x6)

−1




T

(3.19)

Using a sliding window type algorithm, the Jacobian matrix is calculated
for the last N samples of the data. This is typically 3-5 seconds, correspond-
ing to 300-500 samples, which is by experiment the ideal window size (cf.
Section 5.4.2). The Gauss-Newton step is calculated at every new sample

2The Matlab slash operator computes the system of linear equations by Gaussian elim-
ination, instead of inverting the matrix directly.
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m, and the parameter vector is updated xm = xm−1 + hgn,m. The m'th
�tted sample is then M(xm,m, ω0).

3.3.8 Estimating the fundamental frequency
Since the harmonic components of respiration are of much higher magnitude
than the harmonic components of the heartbeat, it is reasonable to assume
that the respiration frequency can be found by calculating the highest abso-
lute value of the frequency spectrum of the input signal.

Several signal processing methods are available for doing this. Morgan
and Zierdt [2009] suggest to calculate the average power spectral density
using Welch's averaged, modi�ed periodogram method. This method has
not yielded satisfactory results on the signals used in this thesis. Thus the
fundamental frequency estimation has been implemented by �nding a peak
in the autocorrelation function, as explained in the next section.

3.3.9 Maximizing the autocorrelation function
In Appendix A it is shown that the �rst local peak in the autocorrelation
function rxx(n), to the right of the zero lag peak3 occurs at time lag T where
the fundamental frequency f0 = 1

T . To �nd the �rst peak in the autocorrela-
tion function a direct search algorithm was implemented. By using a Hooke
& Jeeves (H&J) minimization method from linear programming, on the ob-
jective function −rxx(n), the nearest maximum from any starting guess can
be found. Fig. 3.4 shows a typical autocorrelation function with a red cross
at the desired local functional maximizer.
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Fig. 3.4: Finding the local maximizer of the autocorrelation function.
3The autocorrelation function will always be largest at the zero lag, unless it is scaled.
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One-dimensional H&J minimization is done by beginning at a starting
guess, looking ∆ indexes to the left and right, to see if the function has a
lower value there. If it has, then move to that point and repeat. If it has
not, then halve ∆ and repeat. Repeat until ∆ ≤ ∆min. This way there is

Algorithm 3.1 One-dimensional Hooke & Jeeves functional minimizer
Require: Cost function f , n0, ∆, ∆min

n := n0

n̂ := arg min{f(n−∆), f(n), f(n + ∆)};
stop := 0
while !stop do
if f(n̂) < f(n) then

z := n̂
else

z := n
∆ := ∆

2
end if
n̂ := arg min{f(z −∆), f(z), f(z + ∆)};
if ∆ ≤ ∆min then
stop := 1

end if
end while

no need to evaluate the autocorrelation function at every possible time lag.
In devising a method for �nding the �rst peak to the right of the zero-lag

peak, the following algorithm has yielded robust results. The H&J mini-
mization function is used as a tool to locate the nearest local peak from
any starting point. First the nearest peak to an expected starting guesss is
found. Now there are two possible scenarios:

• Guess is too close to zero, H&J minimization �nds the zero lag peak.
Solution: Double the guess.

• Guess is too far away from desired peak. In this case H&J iterates to
the second peak in the autocorrelation function. Solution: Halve the
guess.

To �nd the desired peak, algorithm Algorithm 3.2 is used. It runs
through H&J minimizer starting in the given starting point.

Initially it runs through the H&J minimizer and check for a zero lag hit.
If it occurs it doubles the starting guess. If it occurs again it triples the
starting guess, and so on. Once it hits something that is not at the zero
lag, it can be assumed that this is the peak that was searched for. However,
in the case that the zero lag was never found, it is necessary to check that
there is no other minimizer between the current minimizer and the zero lag.
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Algorithm 3.2 Autocorrelation peak detection
stop := 0
k := 1
startlag := 300 // First starting guess
while !stop do
maxcorr, lag := hookejeeves( @r, k * startlag, 20, 1 )
if lag > 20 && (maxcorr < 1) then

stop := 1;
end if
k := k+1;

end while
stop := 0;
while !stop do
maxcorr, lagcheck := hookejeeves( @r, lag/2, 20, 1 );
if (lagcheck < 3) || ((lagcheck > 0.95*lag) && (lagcheck < 1.05*lag)) ||
(maxcorr > 1) then

stop := 1;
else

lag := lagcheck;
end if

end while

Therefore it checks what H&J outputs when starting at half the current
minimizer. If this returns either the current minimizer or the zero lag, the
correct peak has been found. If not, there is a minimizer inbetween. In this
case, start H&J minimizer at half the lag of the latest peak, and repeat.

This algorithm might seem elaborate, but it has given the best results
in the experiments. In this algorithm's defence, it eliminates the need for
calculating the autocorrelation function at all possible time lags. Using a
local peak detection algorithm would require this. An alternative implemen-
tation was local peak detection directly on the time series, but this strategy
resulted in higher variance in the frequency estimate and consequently worse
performance for the Gauss-Newton algorithm.

3.3.10 Handling the f0 update
Every time f0 is updated, the parameters change so much that the algo-
rithm needs some iterations to converge again. Since nonlinear optimization
is used, immediate convergence cannot be expected. Therefore the model
value is computed from old values of x and ω0 a few samples after the up-
date. Meanwhile the algorithm converges to values that are valid for the
updated f0. If this mechanism is not used, the residuals will have ripples at
f0 updating incidents making heartrate estimation more di�cult.
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3.3.11 Summary of algorithm

The �nal algorithm is of the sliding window type. With each new sample
the Gauss-Newton step hgn is solved for N samples from the past, and x
is updated. Then the model estimate M(x, i, ω0) and residual ri = yi −
M(x, i, ω0) are calculated. Then the residual is stored in an ouput vector
containing the heart signal. f0 is updated periodically. When updating
f0 the optimal x will change quite much, and therefore a mechanism that
uses the old x and ω0 for a given number of samples after an f0 update is
implemented. Cf. Algorithm 3.3 for an overview.

Algorithm 3.3 Harmonic cancelling
Require: input,x0,fs, ω0,initial, win
f0update := 10 // Update f0 each 10s
holdlength := 10 // Use old x 10 samples after f0 update
x := x0

ω0 := ω0,initial

f0update := round( f0update * fs )
for i = win to length( input ) do
if mod( i, f0update ) then

i := (i-f0update+1):i
y := input(i)
oldω0 := ω0

oldx := x
ω0 := updatef0( y, fs );
hold := holdlength

end if
i := (i-win+1):i
y := input(i)
J(x)ij := ∂ri

∂xj

r := y −M(x, i, ω0)
Solve JTJhgn = −JT r
x := x + hgn

if hold > 0 then
�t(i) := yi −M(oldx, i, oldω0)
hold := hold - 1

else
�t(i) := yi −M(x, i, ω0)

end if
end for
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3.4 Heart rate estimation using autocorrelation

3.4.1 Introduction

This method is based on calculating the autocorrelation function of a time
window of the estimated heart signal. The method is proven useful on a
digital signal processor for doppler radar sensing of vital signs in Lohman
et al. [2001], and it is also the method that is currently used by MicroImpulse.

3.4.2 Windowing

For heart rate measurements, frequency estimation of a time window of suit-
able length is conducted. A too long time window reduces the time resolution
of the estimated heart rate, because the average rate within that window is
found. A too short window decreases the frequency resolution of the heart
rate. This is the limitation that most time-frequency distribution face. In
fact, time-frequency distributions that have high resolution in both time and
frequency do not exist. The curious reader is encouraged to check Schniter
[2005] for an introduction of the time-frequency uncertainty principle, which
provides the theoretical background for the last statement.

A sliding window algorithm is implemented in this thesis. By experiment
it was found that at least 7 seconds long windows were required for accurate
rate calulations. This is the tradeo� that was hinted by the time-frequency
uncertainty principle. High resolution of the heart rate estimate comes at the
expense of time resolution. The window will slide one sample each iteration.

Further, Lohman et al. [2001] argues that applying a Hanning window (cf.
Fig. 3.5) will prevent spectral leakage, and indeed this has proven necessary
to obtain accurate results.
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Fig. 3.5: The Hanning window
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3.4.3 Spectral esimation
The spectral esimation on this autocorrelation function is the exact same
problem as the spectral estimation on the respiration signal, described in
Section 3.3.9. Therefore it is solved in the same way, except that the
starting guess is shifted down to a period of 1 second.

3.5 Heart rate estimation using adaptive model es-
timation

3.5.1 Introduction
Methods such as the autocorrelation method described in the previous sec-
tion su�er from low time resolution. The heart rate estimate at any time is
the average heart rate over the time period of the window function. Byrne
et al. [1986] therefore suggests that the heart measurements can be modeled
as an all-pole �lter excited by a train of unit pulses v(n) and white noise
w(n), where g(n) = v(n) + w(n);

x(n) = a1x(n− 1) + a2x(n− 2) + · · ·+ apx(n− p) + g(n) (3.20)
In the model each heartbeat in x(n) is initiated by the impulse. Vary-

ing amplitudes of the heartbeat corresponds to varying amplitudes of the
impulse. This implies that the impulse response of the an coe�cients corre-
sponds to one heartbeat.

If the a coe�cients were known, one could deconvolve the measured time
series x(n) with the all-pole �lter, and get a train of impulses. At the ar-
rival of each impulse, the start of a new heartbeat could be assumed. By
measuring the time between each impulse, an estimate of the instant pulse
frequency could be be obtained.

3.5.2 Adaptive �ltering
Usually there is no a priori knowledge of the coe�cients of the all-pole
�lter. By using least squares estimation, the coe�cients can be estimated
by comparing the estimate the predicted x̂(n) to the measured x(n), where

x̂(n) = a1x(n− 1) + a2x(n− 2) + · · ·+ apx(n− p) + g(n) (3.21)
and the prediction error ε(n) = x̂(n) − x(n) = g(n). Adaptive �ltering

techniques can be used to �nd the parameters an that minimize the predic-
tion error. Three online parameter estimation methods were used in Byrne
et al. [1986]; a �rst order predictor, recursive least squares (RLS) and nor-
malized least squares lattice. In this thesis the system is implemented with
the RLS �lter.
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3.5.3 Recursive least squares �ltering
A well known class of adaptive �lters is the recursive least squares (RLS)
�lter. For a p'th order �lter, consider the regressor vector

xn =
[
x(n− 1) x(n− 2) · · · x(n− p)

]T (3.22)

and the parameter vector

an =
[
a1 a2 · · · ap

]T (3.23)

Now the model can be written

x(n) = xT
na + g(n) (3.24)

At time n, the â that minimizes the sum of squared prediction errors is
estimated

â = arg min
a

Sn(a) (3.25)

where

Sn(a) =
n∑

k=p+1

(x(k)− xT
k a)2 (3.26)

In Appendix B it is shown that the optimal â is found recursively by
updating a gain matrix K and the inverse of the autocorrelation matrix P
such that

Pn = Pn−1 − Pn−1xnxT
nPn−1

1 + xT
nPn−1xn

(3.27)

Kn =
Pn−1xn

1 + xT
nPn−1xn

(3.28)

and using the error

εn(ân−1) = x(n)− xT
n ân−1 (3.29)

we get the updating formula for â

ân = ân−1 + Knεn (ân−1) (3.30)

A complete description is found in Appendix B, confer also to any lit-
erature on time series analysis or adaptive �ltering, e.g. Madsen [2007] or
Haykin [2002].
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3.5.4 De�ning a heartbeat detection variable
Once the optimal coe�cients â are found, the prediction error is used to
determine if the model was excited by a random variable or by a unit pulse.
This is true because the error is equal to the model excitation (cf. equa-
tion (3.21)).

As long as there is no impulse on the input, the error ε(n) is expected
to have the same magnitude as the (assumed) white noise on the input.
Therefore the error signal itself can serve as a detection variable.

However, the detection variable can be improved by introducing a vari-
able f that checks if the present regressor x behaves according to its expec-
tation

f(n) = xT
nPn−1xn (3.31)

This variable is already calculated as a byproduct of the RLS algorithm,
cf. equation (3.27). Generally f(n) is zero if the regressor vector behaves
according to its expectation, and gives a positive �uctuation when it does
not.

A log-likelihood variable De(n) and a variable D(n) of proportional mag-
nitude can be de�ned such that

De(n) = log
(

f(n)
f(n− 1)

)
(3.32)

= log(f(n))− log(f(n− 1)) (3.33)

which has a magnitude proportional to

D(n) = f(n)− f(n− 1) (3.34)

Finally the heartbeat detector variable d(n) is de�ned

d(n) = D(n)ε(n) (3.35)

This variable is then expected to be close to zero at all times, except for a
few samples around the start of a heartbeat. In this manner the beat-for-beat
variations can be observed online and in real-time.

3.5.5 Calculating the heart rate
For calculating the heart rate, the interdistance between the pulses needs to
be estimated. By continuously comparing the detector variable squared by
the expected detector variable squared (that is, the variance of the detector
variable), a decision is made whether the detector variable is large enough
for a heartbeat to have occured. The variance of the heartbeat detector
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is tracked by using a forgetting factor λ ∈ [0, 1] such that a variable u
proportional to the variance is updated thus

un = y2
n + λun−1 (3.36)

= y2
n + λ(y2

n−1 + λun−2) (3.37)

=
n∑

k=0

λky2
n−k (3.38)

Since variance is de�ned as
Pn−1

k=0 y2
k

n , u must be divided by the sum of its
weights to �nd the variance s. The sum of the weights is

∞∑

k=0

λk =
1

1− λ
(3.39)

which is valid for |λ| < 1 (Weisstein [2009]). Therefore the variance s is
updated by dividing each y by the sum of the weights, that is, multiplying
by 1− λ.

sn = (1− λ)y2
n + λsn−1 (3.40)

Now that the updating formula for the variance is established, one can
simply de�ne detection by querying if the heartbeat detector squared is sig-
ni�cantly larger than the variance. If it is, then the start of a heartbeat is
assumed. Since the detector variable is expected to �uctuate more after such
a detection, a few samples are simply skipped before starting the search for
a new large �uctuation of the detector variable. The interdistance between
detected impulses is then used to calculate the heart rate.

3.5.6 Summary of RLS heartbeat detector
Given the time series x(n) containing the heartbeat signal extracted from
the radar range data, a method to transform this time series into a heartbeat
detector variable was explained. The detector variable can be used to detect
each heartbeat, and contrary to the autocorrelation method this yields an
instant estimate of the heartrate.

The method models the time series as an all-pole �lter whose coe�cients
are estimated by the RLS algorithm for adaptive �ltering. The all-pole �lter
is assumed to be excited by white noise and a train of impulses. The impulses
are detected by using statistics describing how likely it is that the last model
excitation was from white noise, compared to how likely it is that the last
model excitation was an impulse of greater magnitude than the variance of
the input.
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CHAPTER 4
ACQUISITION OF RADAR DATA

AND CONSTRUCTED TEST
SIGNALS

4.1 Introduction
Two sources of signals have been tested in this thesis. On one hand a test
signal was constructed, so that the theoretical qualities of signal processing
methods can be assessed. On the other hand, some actual radar data pro-
vided by MicroImpulse AS were used. This chapter describes how the data
were produced.

4.2 Test signal
The test signal used is equal to that used in Morgan and Zierdt [2009]. The
respiration and heartbeat components of this signal are described in the
following sections.

4.2.1 Heartbeat component
As mentioned earlier in this thesis, a pure sinusoid does not really resemble
the shape of the heartbeat. Morgan and Zierdt [2009] used a test signal that
looks more like the heartbeats observed in real radar data. The heartbeat
component is modeled as a train of decaying exponentials �ltered through
a second order Butterworth �lter with corner frequency ω0 and decay time
constant τ . It is shown in Appendix C of Morgan and Zierdt [2009] that a
formula for this pulse shape is

28



4.2. TEST SIGNAL 29

xH(t) = e
−t
τ +

[(√
2

ω0τ
− 1

)
sin

(
ω0t√

2

)
− cos

(
ω0t√

2

)]
e
−ω0t√

2 (4.1)

An example of this waveform sampled at fs = 100 Hz is depicted in
Fig. 4.1.
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Fig. 4.1: Heart component of test signal.

4.2.2 Respiration component
A sine wave raised to the third power was used to mimic a respiration signal
component. The formula is thus

xR(t) = sin3(πfRt) (4.2)

Such a waveform is depicted in Fig. 4.2.
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Fig. 4.2: Respiration component of test signal.

The di�erence in amplitude of the heart and respiration components
vary signi�cantly from subject to subject and from situation to situation.
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Around 10 times di�erence is a reasonable �gure, hence the test signal x(t) =
xH(t) + 5xR(t) was used (since the peak heartbeat value is xH,peak ' 0.43).
The combined waveform is depicted in Fig. 4.3, and both are sampled at
fs = 100 Hz.
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Fig. 4.3: Combined test signal

4.3 Radar signals
The MicroImpulse AS proprietary software UltraScope provides a text�le
with consecutive radar range data. The data in this thesis were produced
by NanoPulse, and were gathered from a 27 year old male.
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CHAPTER 5
RESULTS AND OBSERVATIONS
OF HEART RATE DETECTION

ALGORITHMS

5.1 Introduction
In this chapter the results from the experiments are presented. First the
theoretical capabilities of the methods will be analyzed by looking at the
test signal, and then results from real radar data is presented.

5.2 Separation of heart and respiration
5.2.1 FIR �ltering method
First we present the base case using FIR �ltering. This will give an impres-
sion of the separation capability of the system as it is implemented today.

Fig. 5.1 shows the separation of the heartbeat signal using a 400 tap
FIR �lter whose impulse response was windowed with the Kaiser window,
β = 3. As will be shown later, this �lter con�guration was found to be a
good compromise between stopband attenuation and group delay.

The number of coe�cients was determined on the background of �ltering
the test signal and comparing the output to a time delayed version of the
heart component of the test signal. The error was measured as the signal-
to-noise ratio (SNR)

10 log10

‖y‖2
2

‖y − ŷ‖2
2

(5.1)
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Fig. 5.1: Separation of the test signal using a 400 tap FIR �lter, Kaiser
windowed with β = 3. The two second group delay is visible at the start of
the signal.

where y is the heart component of the test signal and ŷ is the �lter output.
The heart component is delayed with the group delay, which for this type of
�lter is half the number of �lter coe�cients. The SNR is plotted versus the
number of �lter coe�cients in Fig. 5.2.

As expected the signal gets better and better with higher �lter orders.
After around 300 �lter coe�cients however, the payo� for increasing the
number is much lower, and considering the increase in group delay this seems
to be a reasonable area to stop.

At a respiration frequency of 35 breaths pr. minute, the �lter is not
working and cannot even reach a positive SNR (i.e. error power less than
signal power). The corner frequency was 0.65 Hz corresponding to 39 breaths
pr. minute. Generally this frequency should not be increased because it may
a�ect the lower end of the heartbeat frequency. However, a person breathing
at such a frequency is likely to have a faster heartbeat as well, so it could
be advisable to adapt the �lter's corner frequency to the situation or to the
measured respiration frequency.
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Fig. 5.2: Mean squared error vs. the number of �lter coe�cients, for dif-
ferent values of the fundamental respiration frequency f0. After around 300
coe�cients the payo� for increasing the number decreases. 400 coe�cients
were chosen based on this curve.

5.2.2 Harmonic cancelling
The same exercise was done with the harmonic canceller. Fig. 5.3 presents
the signal-to-noise ratio for di�erent lengths of the sliding window that was
described in Section 3.3.11.

Fig. 5.3 has a few interesting points:
1. f0 = 20 Hz yields a �at SNR around 0 for any window length.

2. The lower the respiration frequency is, the longer window is needed for
good results.

The reason for point 1 is that the heartbeat frequency in this test was 60
bpm. That is exactly the third harmonic of the respiration frequency of 20
breaths pr. minute. Hence the harmonic canceller cancels almost everything,
so the residual has very low power. Calculating the SNR yields thus

‖y‖2
2

‖y − ŷ‖2
2

' ‖y‖2
2

‖y‖2
2

= 1 (5.2)

since ŷ has been almost completely cancelled.
The reason for point 2 is that a lower respiration frequency yields a

respiration cycle that lasts longer in time. To explain this, imagine �tting
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Fig. 5.3: SNR vs. the length of the sliding window in the harmonic canceller,
for di�erent values of the fundamental respiration frequency f0.

some data to a pure sinusoid. If those data do not cover a whole cycle,
it is intuitive that this data�tting problem becomes less determined as the
data cover less of a whole cycle. Indeed if we only had a small fraction of
a cycle, then the columns of the Jacobian matrix would become near linear
combinations of one another, yielding a badly conditioned system of linear
equations. The problem is not to be confused with having too few samples of
data, it is the fraction of the sinusiodal cycle that dictates how determined
the system is.

The reason for dwelling so much with this issue is because when dealing
with real signals, the respiration component does not have a stationary be-
havior. A shorter window allows for a quicker reaction to a change in the
system, and generally results in a more robust separation.

At f0 = 35 Hz it is seen that the SNR is decreasing slightly with a longer
window size. The reason for this is that the f0 estimate is not accurate
enough. When optimizing over a window of many sinusoidal cycles, a very
exact frequency estimate is needed to �nd parameters that are valid at the
end of the window (which is where they are inserted into the model and
the residual is calculated). There are many ways to re�ne the frequency
estimate, but real respiration signals are not stationary enough for this to
yield any pro�t.
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5.2.3 Filtering versus harmonic cancelling
FIR �ltering under the right condtitions tends to give a better signal-to-
noise ratio on the heart signal. At up to 20 breaths pr. minute, FIR �ltering
yields an SNR about 9 dB at a reasonable number of �lter coe�cients. Using
harmonic cancelling, the SNR generally jumps between 5 and 10 dB. As
expected, the harmonic canceller works better at higher frequencies than FIR
�ltering. Filtering has the following advantages over the harmonic canceller:

• Stable and predictable

• Does not cancel the heartbeat signal if the heart beats at a multiple of
the respiration frequency

• Easy/cheap to implement

Similarly, the harmonic canceller has the following advantages over FIR
�ltering:

• No signal delay, allows for a more online system

• Works at any respiration frequency, except when the heart beats at a
multiple of the respiration frequency

5.3 Heart rate detection
In this section the autocorrelation method for calculating the heartrate is
compared to the RLS heartbeat detector. Both methods are presented sepa-
rately, then the advantages and disadvantages of each method are presented.

5.3.1 Autocorrelation method
Fig. 5.4 shows the mean squared error of the heartrate estimate. A vector
containing all heartrate estimates is compared to a vector containing the real
heart rates from a generated testsignal. In this case the heartrate was 60
bpm. throughout a vector of 50 seconds. The error (estimated minus real
heartrate) is squared and divided by the total number of compared samples.

When using the biased autocorrelation function there is evidence of errors
in the spectral estimate. It generally performs worse at all window lengths,
and never reaches zero errors. For an accurate spectral estimate, a window
of at least 7 seconds is needed when using the unbiased autocorrelation
function.
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Fig. 5.4: Comparison of heartrate estimates using the biased and unbiased
autocorrelation function, for di�erent window lengths.

5.3.2 RLS heartbeat detector
When running the RLS heartbeat detector on the constructed heartbeat
signal, the output produced is found in Fig. 5.5.

As expected there is a large deviation when the system changes at the
transition between two heartbeats. Tracking of the interdistance between
pulses yields the heartrate versus time plot in Fig. 5.6.

Using this method generates very accurate results, and it is a lot faster
to execute than the autocorrelation method.

5.4 System results
5.4.1 FIR �ltering
Fig. 5.7 shows system results for FIR �ltering. The results are generally
pleasing, where both the autocorrelation method and the RLS detector work
well. The autocorrelation method produces some ripples and is not as correct
as it was when applied to the clean heartbeat component. The errors are
however negligibly small.

The RLS heartbeat detector however has some rather large unwanted
errors to it. Fixing these errors comes down to �nding a better way of
deciding if the present sample is the start of a heartbeat. When looking at
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(a) Heartrate signal.
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(b) RLS heartrate detector.

Fig. 5.5: RLS heartrate detector compared to input signal, 3 �lter coe�-
cients and forgetting factor 0.95.
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Fig. 5.6: Detected heart rates as a function of time.

the detector output, it should not be too di�cult to eliminate these errors,
as the heartbeats are easily detected by the eye. As stated earlier this thesis
does not concern itself much with this problem, but indeed there is a lot of
work that could be done in that �eld.
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Fig. 5.7: System results using FIR �ltering. The �lter's group delay of 2
seconds is visible. The heart rate detector does not work during this period.
Both heart rate detectors �nd the correct heart rate of 60 bpm. throughout
the time series. The RLS detector struggles with the heartbeat detection
logic at times, resulting in large deviations.

5.4.2 Harmonic cancelling
Fig. 5.8 shows system results for the harmonic canceller. In the autocor-
relation based heartrate detector, the results are similar to those obtained
when using FIR �ltering. During the �rst few seconds however, it yields
some large deviations due to the fact that the harmonic canceller waits for a
whole window to be obtained before it starts cancelling the harmonics. After
the initial convergence period, results are satisfactory.

For the RLS heartrate detector, the results are very good. Indeed it esti-
mates the rate correctly thoughout the whole time series, except for during
the convergence period.
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Fig. 5.8: System results using harmonic cancelling. No cancellation is done
before the �rst 6 seconds of data have arrived. Both heartbeat detectors
�nd the correct heart rate. The RLS detector even works before separation
is started.

5.5 System results on real signals
This section describes some system results obtained from 50 seconds of test
data from Male_27y.usvs. An excerpt of these data is found in Fig. 5.9.
First the base case using FIR �ltering is presented, then the performance of
the harmonic canceller is investigated.

5.5.1 FIR �ltering
Fig. 5.10 shows the total system performance for separation and heartbeat
detection. Both the autocorrelation method and the RLS method are capable
of reliably detecting the heart rate. The RLS heart rate detector seems
to struggle at times, this is because the algorithm is not robust enough
to deal with real signals (in fact, it was barely robust enough to deal with
contstructed signals). Those results are included to show that when it works,
the rates detected are close to the rates detected using the autocorrelation
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Fig. 5.9: Real radar test data.

method. Since there is no reference ECG signal, this is the only indication
that the detected rates are correct. The fact that both methods yield similar
results increases the credibility of both methods.

5.5.2 Harmonic cancelling
Fig. 5.11(a) shows the results of the data�t. After about 26 seconds an
artifact in the data can be seen. Artifacts of this kind can occur frequently,
and thus the system must be able to deal with this. A 6 seconds long
sliding window was used in this example. Given that this kind of artifact is
not concerned with in the model, the canceller copes quite well. It quickly
returns to normal operation after the artifact, and even tries to cancel some
of it (although lagging slightly behind).

When looking at the residual after around 26 seconds, there is a distinct
and periodic shape that does not stem from the heartbeat. The periodicity is
unfortunate, because when using the autocorrelation function the periodicity
of the larger component is found, cf. Fig. 5.12. In this case the heartbeat
detector actually detects the frequency that was introduced by the artifacts
in the data, which is about 30 bpm. Naturally, this is not acceptable.

The RLS heartbeat detector is much less sensitive to these data artifacts.
The detector variable at the time of the artifact is found in Fig. 5.13. Cer-
tainly the detector variable is a bit �muddled� at some points, but for the
most part heartbeat impulses are clearly indicated and should be possible to
detect. However, the rate detection algorithm suggested in this thesis is not
sophisticated enough, and this is an area where much more research should
be done.
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Fig. 5.10: System results using FIR �ltering on a real test signal. The
autocorrelation method for detecting the heart rates is much more robust
than the RLS heart rate detector. However, the RLS heartbeat detector
yields sharply de�ned peaks at the start of each heartbeat.
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Fig. 5.11: Data�t and residuals of 50 seconds of data from Male_27y.usvs.
The residuals around the artifact at about 26 seconds are shown. Until
that point the heartbeats are clearly visible in the time series. After around
26 seconds however, a new higher amplitude and lower frequency periodic
component manifests itself in the residuals. Sliding window was 6 seconds.
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Fig. 5.12: Estimated heartbeat frequency by the autocorrelation method.
The autocorrelation function has detected the larger amplitude periodic com-
ponent as introduced by the harmonic canceller during an artifact in the
measurement data, cf Fig. 5.11. Sliding window was 7 seconds.
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Fig. 5.13: RLS heartbeat detector during the period when the autocorrela-
tion heartbeat detector failed. Here the heartbeats are clearly visible to the
eye, and they should be detectable by a robust heartbeat detector.
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CHAPTER 6
DISCUSSION

6.1 Heart rate detection results
When drawing conclusions on the results, it is essential to remember that the
lack of empirical data prohibits drawing a proper conclusion of what works
and what does not. However, the results obtained yield some indications of
how a new heartbeat detection strategy could work.

6.1.1 FIR �ltering vs harmonic cancelling
The observations obtained indicate a better and more stable heart rate/-
heartbeat detection for both the autocorrelation method and the RLS method
when using FIR �ltering. However, the real test signal was gathered from
a calm person breathing at about 9 breaths pr. minute. As proven using
the constructed test signal, separation deteriorates dramatically when the
respiration rate increases to more than 30 breaths pr. minute.

It is this kind of problems the new separation method is trying to over-
come. The harmonic canceller will theoretically be able to handle any respi-
ration frequency, except when the heartbeat frequency is an exact multiple
of the respiration frequency. Thanks to heart rate variability and the fact
that people seldom respire at the exact same frequency for prolonged time
periods, this scenario is unlikely to cause a big problem.

In situations optimal for FIR �ltering, harmonic cancelling may not per-
form as good as FIR �ltering, but maybe good enough. To �nd out, a large
set of empirical data with a reference ECG signal is needed. If it is not
good enough, perhaps a hybrid method could be devised. That is, when the
respiration frequency is too high, switch to harmonic cancelling.

If the �ltering delay is not acceptable, harmonic cancelling is as far as
the author knows the only alternative.
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6.1.2 Combination of methods

It should be noted that harmonic cancelling introduced some periodic ar-
tifacts of higher amplitude than the heart signal, when the radar signal
deviated from the model. This caused the autocorrelation method to fail,
but the RLS method performed better.

This indicates that it is better to use RLS heartbeat detection in com-
bination with harmonic cancelling. This �ts neatly with the fact that both
methods are geared towards an online and instant record of the heart rate.
On the other hand, a combination of FIR �ltering and autocorrelation heart
rate detection should be used in situations where instant heart rate infor-
mation is not crucial. If a robust RLS heart rate detector was devised (not
achieved in this thesis), this could be used with FIR �ltering to get the
instantaneous heart rate with a 2 second time delay.

6.2 Some thoughts on the optimization solution

This section is devoted to some unsubstantiated, but interesting observations
and thoughts from the author. The fact that nonlinear optimization works
better for a problem that can be posed as a linear optimization problem is
indeed strange, and should be discussed.

A possible reason for this may be that immediate convergence for every
sample is not desired. The Newton-type standard equation solves the opti-
mization too fast and too correctly. Because of measurement noise and pos-
sibly the heartbeat signal, the system solution from sample to sample di�ers
too much (for short windows). Hence the model calculation for each sample
also di�ers enough to make the �t jigsawing. This possible explanation �ts
well with the fact that long windows were needed to make the Morgan and
Zierdt [2009] method work well. Using longer windows lets the optimization
procedure pay less heed to the heartbeat signal and measurement noise.

Perhaps more likely, it could be a result of the conditioning of the system.
The parameter vector is not updated on the basis of the current parameter
vector, but calculated �from scratch� from the current data window at every
sample. When using short windows, the system could tend towards bad
conditioning, and this would cause a numeric solution to be less accurate.
Thus the sample-by-sample variations of the parameter vector could be high
enough to cause jigsawing on the data�t.

On the contrary, the Gauss-Newton method updates the current param-
eter vector by a step, hence no recalculation is ever done. This allows for
softer steps of the parameter vector, and slower convergence. Thanks to
that, there are no sudden jumps in the parameter vector, and the data�t is
a smooth curve.
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6.3 Directions for further research
6.3.1 RLS heart rate detector
The most pressing issue is to improve the algorithm for deciding whether
the current sample is the start of a heartbeat. Given the impulses on the
heartbeat detector that are observed by the eye, such an algorithm should
not be too hard to devise.

6.3.2 Optimization problem in harmonic canceller
Once the heart rate detector is in place, di�erent optimization strategies
should be investigated to see which gives the best results compared to a
reference ECG signal.

Among nonlinear optimization strategies, methods such as the Levenberg-
Marquardt method and Powell's Dog Leg (Madsen et al. [2004]) methods
should be implemented and compared.

6.3.3 Window length in harmonic canceller
An algorithm for adaptively changing the window length should be imple-
mented. For instance, when the patient stops breathing for a second or
suddenly changes respiration frequency, the window should be as short as
possible to allow for a quick reaction to the system change. During longer
periods of constant breathing, the window should be longer to get a �more
determined� system of linear equations to solve for.

6.3.4 f0 update interval
As it was discussed earlier, the f0 update creates some convergence issues.
Therefore, one should really only update f0 when necessary. As an example,
an algorithm could track the residual power, and a sudden increase could
trigger an f0 update. As long as the algorithm works �ne with the current
f0, there is really no need to change it.
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CHAPTER 7
CONCLUSION

A method to make heart rate measurements as robust and instantaneous as
possible was sought. In terms of robustness, the harmonic canceller proved
to work well regardless of the respiration frequency, whereas the FIR �lter-
ing method would stop working at a respiration frequency of more than 30
breaths per minute. The problem of the heartbeat occurring at a frequency
multiple of the respiration frequency should be investigated more thoroughly.

The harmonic cancelling algorithm found in the literature was not suited
for online implementation. It required too long time windows to work prop-
erly, and thus did not have the ability to react to frequently occurring unsta-
tionary parts of the respiration signal component. Therefore an alternative
method which could handle shorter windows was devised.

In terms of measuring the instantaneous heart rate, the RLS heartbeat
detector was able to instantly recognize the start of a heartbeat. Most im-
portantly, the combination of harmonic cancelling and the RLS heartbeat
detector was able to yield an online measurement of the heart rate with no
time delay and little constraints on the subject's respiration rate.

However, FIR �ltering performed better than harmonic cancelling at
lower frequencies. It yielded stronger RLS heartbeat detector output, and is
preferred over harmonic cancelling if the 2 second time delay is acceptable
and the respiration frequency is su�ciently low.

Finally, further research must be conducted on the RLS heart rate de-
tection algorithm, as the one used in this thesis was not very robust.
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APPENDIX A

AUTOCORRELATION
FUNCTION IN FREQUENCY

ESTIMATION

A.1 Introduction
The autocorrelation function is often useful in frequency estimation, and it
was used both to estimate the respiration and heartbeat frequencies. The
following sections explain the concept, and outline how it has been imple-
mented in this thesis. A more detailed explanation on the topic can be found
in most books on digital signal processing, time series analysis or statistics,
e.g. Proakis and Manolakis [2006] or Madsen [2007].

The autocorrelation function is the �self-correlation� function that esti-
mates how a signal correlates with a timeshifted version of itself. Mathemat-
ically this is estimated by

rxx(k) =
∑N

n=1 xnxn−k

N
(A.1)

where N is the number of samples.
When applying this to a signal contained in a vector x, de�ne a [1 × k]

vector k that contains k zeros. Then a pointwise multiplication of [x k]
and [k x] is conducted to obtain the autocorrelation function. This essen-
tially means that the larger values of k, the fewer samples are multiplied with
nonzero values. This is the inherent bias when estimating the autocorrela-
tion function. An amendment to this is to use the unbiased autocorrelation
function, that scales the correlation coe�cient by the absolute value of k:
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A.2. FREQUENCY ESTIMATION 49

rxx(k) =
∑N

n=1 xnxn−k

N − |k| (A.2)

A.2 Frequency estimation
It is well known that the autocorrelation function of a periodic signal also is
a periodic signal with the same frequency. This is because a periodic signal
contains repeating patterns. Thus, the the correlation between a signal and a
timeshifted version of itself is highest at the timeshift corresponding to one
period. Fig. A.1(b) shows the autocorrelation function for a few seconds of
an ECG signal, which has a distinct and repeating shape that is ideal for
detecting the correlation.
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Fig. A.1: Example ECG signal with estimated autocorrelation function

For actually estimating the frequency, one can �nd the �rst maximizer
to the right of the zero-lag peak. That time lag corresponds to one period
of the signal. The frequency f = 1

T where T is the period can be found in a
discrete system samled at fs by

f =
1

arg maxn rxx(n) · fs
(A.3)

where arg maxn rxx(n) is the local maximizer around the �rst peak of the
autocorrelation function.
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APPENDIX B
RECURSIVE LEAST SQUARES

FILTER

The Recursive Least Squares (RLS) �lter is described in most literature on
time series analysis or adaptive �ltering, e.g. Haykin [2002] or Madsen [2007].

B.1 Developing the recursive least squares �lter
The RLS �lter is a recursive (on-line) parameter estimation technique. Con-
sider the regressor vector

xn =
[
x(n− 1) x(n− 2) · · · x(n− p)

]T (B.1)

and the parameter vector

an =
[
a1 a2 · · · ap

]T (B.2)

Now the model can be written as

x(n) = xT
na + g(n) (B.3)

where g(n) is gaussian noise.
At time n, an optimal â that minimizes the sum of squared prediction

errors is sought, formally

â = arg min
a

Sn(a) (B.4)

where
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Sn(a) =
n∑

k=p+1

(x(k)− xT
k a)2 (B.5)

The solution of equation (B.4) is found by writing the model (B.3) for
all samples in the range [p + 1, n], where n is the present sample of the time
series. Introduce the variables

y =
[
x(p + 1) x(p + 2) · · · x(n)

]T

X =
[
xp+1 xp+2 · · · xn

]T

g =
[
g(p + 1) g(p + 2) · · · g(n)

]T

The compact form of the model (B.3) for all observations can now be written
as

y = Xa + g (B.6)
The sum of squared errors at the last sample in the time series (cf. equa-
tion (B.5)):

Sn(a) = (y −Xa)T (y −Xa) (B.7)
To �nd the â that minimizes Sn(a), the point where its derivative equals 0
can be found:

Sn(â) = (y −Xâ)T (y −Xâ) (B.8)
∇aSn(â) = −2XT (y −Xâ) = 0 (B.9)

⇒ (XTX)â = XTy (B.10)

and consequently

â = (XTX)−1XTy (B.11)
Let us call Rn = XTX and hn = XTy. Then

Rn = XTX

=
[
xp+1 xp+2 · · · xn

]



xT
p+1

xT
p+2
...

xT
n




=
n∑

s=p+1

xsxT
s
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Recursive updating of Rn is thus

Rn = Rn−1 + xnxT
n (B.12)

In the same manner,

hn = XTy

=
[
xp+1 xp+2 · · · xn

]



x(p + 1)
x(p + 2)

...
x(n)




=
n∑

s=p+1

xsx(s)

and hn can be updated recursively;

hn = hn−1 + xnx(n) (B.13)
With these de�nitions, equation (B.11) can be written as

â = R−1
n hn = R−1

n [hn−1 + xnx(n)]

According to equation (B.10)

hn−1 = Rn−1ân−1 (B.14)
and

ân = R−1
n [Rn−1ân−1 + xnx(n)]

= R−1
n

[
Rnân−1 − xnxT

n ân−1 + xnx(n)
]

= ân−1 + R−1
n xn

[
x(n)− xT

n ân−1

]

The RLS algorithm for recursive estimation of �lter coe�ents is thus devel-
oped:

ân = ân−1 + R−1
n xn

[
x(n)− xT

n ân−1

]
(B.15)

Rn = Rn−1 + xnxT
n (B.16)

The matrix inversion in this formulation of the algorithm prevents it from
being implemented e�ciently. The next section will discuss some improve-
ments that will allow a faster execution.

52
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B.2 E�cient implementation of the RLS algorithm
To avoid inversion of Rn in each step, introduce

Pn = R−1
n (B.17)

A special case of thematrix inversion lemma known as the Sherman-Morrison
formula Bartlett [1951] states that

[
A + uvT

]−1
= A−1 −A−1u

[
1 + vTA−1uT

]−1
vTA−1 (B.18)

and using A = Rt−1 and u = v = xn, obtain

Pn = Pn−1 − Pn−1xnxT
nPn−1

1 + xT
nPn−1xn

(B.19)

Further, introduce

Kn = Pnxn = Pn−1xn − Pn−1xnxT
nPn−1xn

1 + xT
nPn−1xn

=
Pn−1xn

[
1 + xT

nPn−1xn

]− [
Pn−1xnxT

nPn−1xn

]

1 + xT
nPn−1xn

=
Pn−1xn

1 + xT
nPn−1xn

and then equation (B.15) can be written as

ân = ân−1 + Kn

[
x(n)− xT

n ân−1

]
(B.20)

Finally, introduc the prediction error

εn(ân−1) = x(n)− nT ân−1 (B.21)
and equation (B.15) is written compactly

ân = ân−1 + Knεn (ân−1) (B.22)
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APPENDIX C
GAUSS-NEWTON METHOD

The Gauss-Newton method seeks a parameter vector xmin that minimizes
the sum of squared residuals

ri(x) = yi −M(x, ti, params) (C.1)
where each yi is gathered from some dataset and M is an approximate model
of the behaviour of yi at time ti with the variable parameters contained in
x and a constant set of parameters contained in params.

The cost function S(x) is the sum of squared residuals

S(x) =
1
2
‖r(x)‖2

2 =
1
2

N∑

i=1

(ri(x))2 (C.2)

scaled by 0.5 for convenience.
The Gauss-Newton method is the basis for a class of methods for solving

nonlinear systems. For example it forms the basis for Levenberg-Marquardt
method and the Powell's Dog Leg methods. The Gauss-Newton method is
the simplest of these methods and it has provided promising results on the
data in this study.

C.1 Developing the Gauss-Newton method
The following theorem provides approximations to the value of ri in the
neighborhood of x, de�ned by x + h.

Theorem C.1.1 (1st order Taylor expansion). If f(x) has continuous partial
derivatives of second order, then,

f(x + h) = f(x) + hT∇f(x) + O(‖h‖2
2) (C.3)
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The Taylor series expansion will contain an in�nite number of terms, but
to develop the Gauss-Newton method one needs to stop at the �rst term and
accept that there will be an approximation error of magnitude dictated by
h. The Big-O notation means that the approximation error has the same
order of magnitude as ‖h‖2

2.
This theorem can be used on all values of r, and consequently

r(x + h) = r(x) + J(x)h + O(‖h‖2
2) (C.4)

where J(x) is the Jacobian matrix (for x ∈ Rn) for N samples

J(x) =




∂r1
∂x1

∂r1
∂x2

· · · ∂r1
∂xn

∂r2
∂x1

∂r2
∂x2

· · · ∂r2
∂xn... ...

∂rN
∂x1

∂rN
∂x2

· · · ∂rN
∂xn




(C.5)

De�ne an approximate `(h) and let equation (C.4) show that

r(x + h) ' `(h) ≡ r(x) + J(x)h (C.6)

Further, inserting into the cost function from equation (C.2), and de�ning
another approximation L(h) yields

S(x + h) ' L(h) ≡ 1
2
`(h)T `(h) (C.7)

=
1
2
rT r + hTJT r +

1
2
hTJTJh (C.8)

= S(x) + hTJT r +
1
2
hTJTJh (C.9)

where r = r(x) and J = J(x).
If standing at an arbitrary starting guess x, wanting to perturb the ar-

gument by h towards xmin, then the perturbation step h can be found by
minimizing L(h) (cf. equation (C.7)). Indeed this is the Gauss-Newton step

hgn = arg min
h

L(h) (C.10)

Again, this can be solved by di�erentiating and equating to zero. Using
vector di�erentiation rules found in e.g. Appendix B of Haykin [2002], the
gradient of L(h) is

∇hL(h) = JT r + JTJh (C.11)

Equating to zero yields
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JTJhgn = −JT r (C.12)

and updating x

x = x + hgn (C.13)

Remember, the cost function is only an approximation to the desired
cost function, and cf. equation (C.4), the larger the step is the larger the ap-
proximation error. That means if the starting guess is far from the solution,
some iterations are needed for convergence, or in the worst case there will
be no convergence at all. In the case of convergence problems, a line search
algorithm should be implemented. When using the line search algorithm,
updating x is

x = x + αhgn (C.14)
The α parameter is determined by the line search algorithm. Basically,

it will investigate the cost function for di�erent values of α to determine how
far in the descent direction to perturb x. Since hgn is a guaranteed descent
direction, convergence is guaranteed when using line search given that J(x)
has full rank. It has not been necessary to implement line search in our
algorithm.
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APPENDIX D
ULTRA WIDEBAND

EVOLUTION

D.1 Ultra Wideband from an information theoret-
ical viewpoint

After the era of communicating with morse code and the telegraph, the �rst
widespread use of electromagnetic waves for communication was the Ampli-
tude Modulation (AM) radio. In AM the signal is modulated by changing
the amplitude, always transmitting at the same frequency. Hence AM is the
most narrow band technology. Later Frequency Modulation (FM) was in-
vented, introducing "wideband" radio. By modulating the carrier frequency
corresponding to the signal's amplitude, a wider band is used. This modula-
tion was immune to noise caused by natural amplitude variations. Together
with the possibility of using a wider spectrum, this allowed FM to yield much
better signal-to-noise ratios.

The introduction of information theory in the late 1940's rede�ned the
relationship between power density, noise and information capacity. In this
new paradigm, it was known that the more an information signal is spread in
bandwidth in a way that resembles background noise, the more information
it is capable of holding. To another coexisting signal that is similarly spread,
this information is regarded as background noise. Since, under some speci�c
conditions, signal energy can be detected more e�ciently than noise energy,
both signals can coexist. As a result, higher bandwidth allows more signals
to coexist and more total information can be conveyed. Until that point radio
transmission had mostly been based on transmitting a signal with high power
and low bandwidth, whereas now one could alternatively transmit a signal
with low power density and high bandwidth.
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This discovery led to a technique called "spread-spectrum" modulation.
Spread-spectrum occupies a wide frequency band allowing many nodes to
communicate in the same band. Before transmitting, the output is modu-
lated by a certain code. Only one of the nodes on the network will receive
the message, while the signal appears to other nodes as noise. This greatly
improved the capacity of for instance cellular systems. In 1995 we saw com-
mercial deployment of Code Division Multiple Access (CDMA) multiplexing
in cellular networks. CDMA is the main competitor against GSM, the latter
which uses more a more traditional combination of Time Division Multiple
Access and Frequency Division Multiple Access. In 1999 the 3G standard
emerged, which is based on CDMA technology. Today we see a signi�cant
growth in devices applying spread-spectrum techniques in personal commu-
nications. Most of these coexist well with other devices utilizing the same
frequency band, thanks to the coding scheme.

The next step in developing wideband techniques was to go even wider.
Research was concentrated towards developing short-impulse signaling be-
tween antennas. It is known from fourier theory that as a time-domain pulse
grows shorter and shorter in time, approaching the diracs delta, the spec-
trum grows wider and wider, approaching the �at spectrum of white noise.
From this research emerged the technology called �impulse radio", which we
refer to today as Ultra Wideband radar. In 2002 the Federal Communica-
tions Commission (FCC) made available a band spanning from 3.1GHz to
10.6GHz for commercial communications development in the United States.
It is this technology that the radar in this project is based on.
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APPENDIX E
HARMONIC CANCELLER,

MORGAN AND ZIERDT TYPE

This chapter describes the type of harmonic canceller described in Morgan
and Zierdt [2009]. The notation is mostly kept from the original artice, so
the variables may not be named as expected.

Most importantly, the residuals are called y(n), the range data are called
x(n), the model is called v̂(n) and the parameter vector is called w.

E.1 The optimization problem
The model for the unwanted harmonic components is

v(n) =
L∑

l=1

Al cos(lω0n + φl) (E.1)

= Re

{
L∑

l=1

Ale
jφlejω0n

}
(E.2)

= Re

{
L∑

l=1

hle
jωon

}
(E.3)

where hl = Ale
jφl and ω0 = 2πf0. De�ne an estimate v̂(n) of v(n);

v̂(n) = Re

{
L∑

l=1

wle
jω̂0n

}
(E.4)

where wl is an approximation of hl and ω̂0 is an approximation of ω0. The
system output is thus
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TYPE

y(n) = x(n)− v̂(n)− w0 (E.5)

where w0 here is the DC term.
Using w =

[
w0 w1 · · · wL

]T 1 we can de�ne a cost function as the
mean of the squared residual errors,

S(w) =
1
N

N∑

n=1

y2(n) (E.6)

Finally, the optimization problem is formally de�ned as

wmin = arg min
w

S(w) (E.7)

E.2 Rewriting the cost function

Equation (E.6) cannot readily be minimized, so we need to do some adjust-
ments to it. Inserting equation (E.5) into equation (E.6) yields

S(w) =
1
N

N∑

n=1

[x(n)− v̂(n)− w0]2 (E.8)

From equation (E.8) it is seen that the w0 that minimizes the cost func-
tion is the mean of the di�erences x(n)− v̂(n) for all n

w0,min =
1
N

N∑

n=1

(x(n)− v̂(n))

The cost function can now be expanded to

1For convenience of notation, the vector w contains w0 now, but later w0 will be
replaced by the mean of the input signal, and thus determininistic with respect to the
optimization procedure

60



E.2. REWRITING THE COST FUNCTION 61

S(w) =
1
N

N∑

n=1

[
x(n)− v̂(n)− 1

N

N∑

m=1

[x(m)− v̂(m)]

]2

(E.9)

=
1
N

N∑

n=1




x(n)− 1
N

N∑

m=1

[x(m)]

︸ ︷︷ ︸
x̃(n)

+
1
N

N∑

m=1

[v̂(m)]− v̂(n)




2

(E.10)

=
1
N

N∑

n=1

[
x̃(n)−Re

{
L∑

l=1

[
wle

jlω̂0n − 1
N

N∑

m=1

wle
jlω̂0m

]}]2

(E.11)

=
1
N

N∑

n=1




x̃(n)−Re





L∑

l=1

wl




ejlω̂0n − 1
N

N∑

m=1

ejlω̂0m

︸ ︷︷ ︸
ẽl(n)











2

(E.12)

With these de�nitions, the cost function can be written as

S(w) =
1
N

N∑

n=1

[
x̃(n)−Re

{
L∑

l=1

wlẽl(n)

}]2

(E.13)

x̃(n) = x(n)− 1
N

N∑

m=1

[x(m)] (E.14)

ẽl(n) = ejlω̂0n − 1
N

N∑

m=1

ejlω̂0m (E.15)

where x̃(n) and ẽl(n) are zero-mean over the data block.
Expanding equation (E.13) yields;

S(w) =
1
N

N∑

n=1

[
x̃(n)−Re

{
L∑

l=1

wlẽl(n)

}]2

(E.16)

=
1
N

N∑

n=1


x̃2(n)− 2Re

{
L∑

l=1

wlx̃(n)ẽl(n)

}
+ Re

{
L∑

l=1

wlẽl(n)

}2



(E.17)

De�ne the input power Px̃ = 1
N

∑N
n=1 x̃2(n) and a correlation vector r with

elements rl = 1
N

∑N
n=1 x̃(n)ẽ∗l (n), and we can write
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TYPE

S(w) = Px̃ − 2Re
{
rHw

}
+

1
N

N∑

n=1

Re

{
L∑

l=1

wlẽl(n)

}2

(E.18)

The last term can be written as the triple sum;

1
N

N∑

n=1

Re

{
L∑

l=1

wlẽl(n)

}2

=
1
N

N∑

n=1

Re

{
L∑

l=1

L∑

k=1

[wlẽl(n)ẽk(n)wk]

}
(E.19)

= Re

{
L∑

l=1

L∑

k=1

[wl
1
N

N∑

n=1

[ẽl(n)ẽk(n)]wk]

}

(E.20)

By splitting wl and ẽl into their real and complex parts wR,l + jwI,l and
ẽR,l + jẽI,l and expanding, it can be shown that

Re

{
L∑

l=1

L∑

k=1

[wl
1
N

N∑

n=1

[ẽl(n)ẽk(n)]wk]

}
=

1
2

[
L∑

l=1

L∑

k=1

[w∗l
1
N

N∑

n=1

[ẽl(n)ẽ∗k(n)]wk

]
+

1
2
Re

{
L∑

l=1

L∑

k=1

[wl
1
N

N∑

n=1

[ẽ∗l (n)ẽ∗k(n)]wk

}
(E.21)

and by introducing the complex and hermitian correlation matrixes R and
C de�ned by their components

Rlk =
1
N

N∑

n=1

ẽl(n)ẽ∗k(n) (E.22)

Clk =
1
N

N∑

n=1

ẽ∗l (n)ẽ∗k(n) (E.23)

equation (E.18) can be written as

S(w) = Px̃ − 2Re
{
rHw

}
+

1
2
wHRw +

1
2
Re

{
wTC∗w

}
(E.24)

The optimal w can be found by di�erentiating S with respect to w∗ and
equating to zero. Rules for conjugate vector di�erentiation can be found in
Appendix B of Haykin [2002].
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∇w∗S(w) = −r +
1
2
Rw +

1
2
Cw∗ = 0 (E.25)

To remove w∗ we can premultiply the conjugate of equation (E.25) with
CR−∗:

CR−∗ (∇w∗S(w))∗ = −CR−∗r∗ +
1
2
Cw∗ +

1
2
CR−∗Cw∗ = 0 (E.26)

Subtracting equation (E.26) from equation (E.25) yields

− r +
1
2
Rw +

1
2
Cw∗ −

(
−CR−∗r∗ +

1
2
Cw∗ +

1
2
CR−∗C∗w

)
= 0

1
2
w(R−CR−∗C∗) = r−CR−∗r∗

w = 2(R−CR−∗C∗)−1(r−CR−∗r∗) (E.27)
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APPENDIX F
MATLAB CODE

This appendix lists the code used to produce the results in this thesis, in the
order that they are used.

F.1 Functions for separating heart and respiration
signal components

The two functions used for extracting the heart signal components are listed.
Listing F.1 lists the FIR �ltering method and Listing F.2 lists the harmonic
canceller.

Listing F.1: FIR �ltering extraction of the heartbeat signal
function [ heart , snr ] = f i r s e p a r a t e ( input s i gna l , f s , N, beta , p lotvar , . . .

va ra rg in )
%FIRSEPARATE Cancel the r e s p i r a t i on component o f radar data us ing FIR
% f i l t e r i n g .
%
% Input v a r i a b l e s :
% inpu t s i g na l : Input s i g n a l
% f s : Sampling frequency
% N: Desired number o f f i l t e r c o e f f i c i e n t s
% beta : Beta f a c t o r f o r the Kaiser window
% p l o t v a r : ' p lo t ' f o r p l o t t i n g r e s u l t s
% vararg in : For t e s t i n g purposes , input r e a l hear t component here ,
% and ge t the s i gna l−to−noise r a t i o in the snr output
% va r i a b l e

hpfreq = 0 . 6 5 ;

% Create f i l t e r
normhpfreq = 2∗ hpfreq / f s ;
h = f i r 1 ( N, normhpfreq , ' high ' , k a i s e r ( N+1, beta ) ) ;

% F i l t e r i n pu t s i g na l
heart = f i l t e r ( h , 1 , i npu t s i gna l ) ;

64



F.1. FUNCTIONS FOR SEPARATING HEART AND RESPIRATION
SIGNAL COMPONENTS 65

% Plot r e s u l t s
i f nargin > 5
r e a l h e a r t = vararg in {1} ;
r e a l h e a r t = r e a l h e a r t − mean( r e a l h e a r t ) ;
r e a l h e a r t = c i r c s h i f t ( r ea lh ea r t , [ 0 round( N/2 ) ] ) ;
t = ( 0 : ( length ( i npu t s i gna l ) −1)) . / f s ;
i f strcmp ( p lotvar , ' p l o t ' )

subplot ( 2 , 1 , 1 ) ; set ( gca , ' Fonts i z e ' , 12 ) ;
plot ( t , i npu t s i gna l ) ;
t i t l e ( ' Input  s i g n a l ' ) ;
xlabel ( 'Time [ s ] ' ) ;
ylabel ( ' Amplitude ' ) ;
subplot ( 2 , 1 , 2 ) ; set ( gca , ' Fonts i z e ' , 12 ) ;
plot ( t , heart ) ; hold on ;
plot ( t , r e a lh ea r t , ' r ' ) ;
t i t l e ( ' Esimtated and r e a l  h e a r t s i g n a l ' ) ;
xlabel ( 'Time [ s ] ' ) ;
ylabel ( ' Amplitude ' ) ;
legend ( ' Estimated heart ' , ' Real  heart ' ) ;

end
snr = norm( r e a l h e a r t )^2 / norm( heart − r e a l h e a r t )^2 ;
disp ( [ 'SNR = ' num2str( snr ) ] ) ;
end

end

Listing F.2: Harmonic cancelling of the respiration signal component
function [ r e s i dua l s , f i t v e c t , snr ] = gn f i t ( input , f s , x0 , w, winlength , . . .

va ra rg in )
%GNFIT Fi t radar range data to a model o f harmonic components .
% [ r e s i dua l s , f i t v e c t , snr ] = g n f i t ( input , f s , x0 , w, winlength , vararg in )
% outputs the r e s i dua l s , f i t t e d r e s p i r a t i on s i g n a l and the s i gna l−to−noise
% ra t i o g iven tha t the vararg in {1} i s the r e a l hear t s i g n a l .
% Use input s i g n a l ' input ' , sample ra t e ' f s ' , an i n i t i a l parameter vec to r
% s t a r t i n g guess ' x0 ' ( nonzero ! ) , i n i t i a l r e s p i r a t i on frequency guess 'w'
% and the window l eng t h ' win length ' . Use vararg in {2} to con t ro l the l eng t h
% of the window used to es t imate the fundamental r e s p i r a t i on frequency .

i f nargin > 6
f0win = vararg in {2} ;

else
f0win = 20 ;

end
convsamps = 15 ;
f0update = 10 ;

win int = round( winlength ∗ f s ) ;
f 0w in in t = round( f0win ∗ f s ) ;

input = input ( : ) ;
f i t v e c t = zeros ( length ( input ) , 1 ) ;

x = x0 ;

holdvar = 0 ;

for i = win int : length ( input )
i f (~mod( i , f 0w in in t ) )

oldx = x ;
oldw = w;
t = ( ( i−f 0w in in t +1): i ) ' ;
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f 0 s i g = ( input ( t)−mean( input ( t ) ) ) ;
w = findw0 ( f 0 s i g , f s ) ;
disp ( [ 'New w0 = ' num2str(w) ] ) ;
holdvar = convsamps ;

end
t = ( ( i−winint +1): i ) ' ;
y = input ( t ) ;
J = [−cos (w∗ t+x ( 2 ) ) x (1)∗ sin (w∗ t+x ( 2 ) ) −cos (2∗w∗ t+x ( 4 ) ) . . .

x (3)∗ sin (2∗w∗ t+x ( 4 ) ) −cos (3∗w∗ t+x ( 6 ) ) x (5)∗ sin (3∗w∗ t+x ( 6 ) ) . . .
−1 ∗ ones ( winint , 1 ) ] ;

f i t = x (1)∗ cos (w∗ t+x(2))+x (3)∗ cos (2∗w∗ t+x(4))+x (5)∗ cos (3∗w∗ t+x(6))+x ( 7 ) ;
r = y − f i t ;
i f holdvar > 0

holdvar = holdvar − 1 ;
t h i s f i t = oldx (1)∗ cos ( oldw∗ i+oldx (2))+ oldx ( 3 ) ∗ . . .

cos (2∗ oldw∗ i+oldx (4))+ oldx (5)∗ cos (3∗ oldw∗ i+oldx (6))+ oldx ( 7 ) ;
f i t v e c t ( i ) = t h i s f i t ;

else
f i t v e c t ( i ) = f i t (end ) ;

end
i f 0 % Solve hgn with d i r e c t s l a s h operator or cho l e s ky

hgn = (J '∗ J)\((−J ' ) ∗ r ) ;
else

L = chol ( J '∗ J ) ;
zgn = L ' \ ((−J ' ) ∗ r ) ;
hgn = L \ zgn ;

end
x = x + hgn ;

end
r e s i d u a l s = input − f i t v e c t ;
t = ( 0 : ( length ( input ) − 1 ) ) . / f s ;
figure ; set ( gca , ' FontSize ' , 20 ) ;
plot ( t , input ) ;
hold on ;
plot ( t , f i t v e c t , ' r ' ) ;
legend ( 'Measured data ' , ' F i t t ed  data ' ) ;
t i t l e ( ' Resp i ra t i on  d a t a f i t ' ) ;
xlabel ( 'Time [ s ] ' ) ;
ylabel ( ' Amplitude ' ) ;
figure ; set ( gca , ' FontSize ' , 20 ) ;
plot ( t , r e s i d u a l s ) ;
t i t l e ( ' Res idua l s  ( heartbeat  s i g n a l ) ' ) ;
xlabel ( 'Time [ s ] ' ) ;
ylabel ( ' Amplitude ' ) ;

i f nargin > 5
r e a l h e a r t = vararg in {1} ;
r e a l h e a r t = r e a l h e a r t − mean( r e a l h e a r t ) ;
e r r o r s = r e s i d u a l s ( win int :end) − r e a l h e a r t ( win int :end ) ;
snr = norm( r e a l h e a r t ( win int :end) )^2 / norm( e r r o r s )^2 ;
disp ( [ 'SNR = ' num2str( snr ) ] ) ;
figure ;
plot ( t , r e s i d u a l s ) ; hold on ;
plot ( t , r e a lh ea r t , ' r ' ) ;
t i t l e ( ' Esimtated and r e a l  h e a r t s i g n a l ' ) ;
xlabel ( 'Time [ s ] ' ) ;
ylabel ( ' Amplitude ' ) ;
legend ( ' Estimated heart ' , ' Real  heart ' ) ;

end
end
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function [ w0 ] = findw0 ( argin , f s )
s t a r t l a g = 300 ;
stop = 0 ;
k = 1 ;
while ~stop

[ maxcorr , l ag ] = hooke j eeves ( @corr , k∗ s t a r t l a g , 20 , 1 , 50 , a rg in )
i f l ag > 20 && (maxcorr < 1)

stop = 1 ;
end
k = k+1;

end
stop = 0 ;
while ~stop

[ maxcorr , l agcheck ] = hooke j eeves ( @corr , l ag /2 , . . .
20 , 1 , 50 , a rg in ) ;

i f ( lagcheck < 3) | | ( ( lagcheck > 0.95∗ l ag ) && . . .
( lagcheck < 1.05∗ l ag ) ) | | ( maxcorr > 1)

stop = 1 ;
else

l ag = lagcheck ;
end

end
f 0 = f s / l ag ;
w0 = f0 / f s ∗2∗pi ;

end

F.2 Functions for estimating the heart rate
Three methods are listed. Heart rate estimation by the autocorrelation function is
listed in Listing F.3, heartbeat detector by RLS �ltering in Listing F.4 and the
RLS heartrate estimator in Listing F.5

Listing F.3: Heart rate detection by the autocorrelation function
function [ h ea r t r a t e ] = f i ndh e a r t r a t e ( input , f s , va ra rg in )
% FINDHEARTRATE Ca lcu la t e hear t r a t e s by us ing the au t o co r r e l a t i on method
% [ hea r t ra t e ] = f i n dh ea r t r a t e ( input , f s , vararg in ) re turns a vec tor
% conta in ing hear t ra tes , on the ba s i s o f input and the sample ra t e f s .
% Variab le arguments :
% 1: Choice o f window type , e . g . @rectwin or @hamming . De fau l t i s hanning .
% 2: ' unbiased ' f o r unbiased au t o co r r e l a t i on func t i on ( d e f a u l t ) , and
% ' biased ' f o r the b ia sed au t o co r r e l a t i on func t i on .
% 3: The l eng t h o f the s l i d i n g window in seconds .

i f nargin > 2
winfunc = vararg in {1} ;

else
winfunc = @hanning ;

end
i f nargin > 3

cor r type = vararg in {2} ;
else

cor r type = ' unbiased ' ;
end

i f nargin > 4
windowsize = vararg in {3} ;

else
windowsize = 8 ;
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end

% I n i t i a l i z e v a r i a b l e s
N = round( windowsize∗ f s ) ;
windowvec = window( winfunc , N ) ;
input = input ( : ) ;

%Enter windowing loop

for i = N: length ( input )

win = input ( ( i−N+1):( i ) ) ;
win = win .∗ windowvec ;

%Find peaks in au t o co r r e l a t i on

s t a r t l a g = 100 ;
stop = 0 ;
k = 1 ;
while ~stop

[ maxcorr , lag , output ] = hooke j eeves ( @corr , k∗ s t a r t l a g , 10 , . . .
1 , 20 , win , co r r type ) ;

i f l ag > 20 && (maxcorr < 1)
stop = 1 ;

end
k = k+1;

end
stop = 0 ;
while ~stop

[ maxcorr , lagcheck , output ] = hooke jeeves ( @corr , l ag /2 , . . .
20 , 1 , 50 , win ) ;

i f ( lagcheck < 3) | | ( ( lagcheck > 0.95∗ l ag ) && . . .
( lagcheck < 1.05∗ l ag ) ) | | ( maxcorr > 1)

stop = 1 ;
else

l ag = lagcheck ;
end

end
hea r t r a t e ( i ) = f s /( l ag )∗ 60 ;

end

end

Listing F.4: Heartbeat detector by RLS model estimation
function de t e c t o r = r l s h e a r t r a t e ( input , p , b , f s ) ;
%RLSHEARTRATE Ca l cu l a t e s the hear t b ea t s i g n a l in to a t r a in o f impulses .
% de t e c t o r = r l s h e a r t r a t e ( input , p , b , f s ) re turns the t r a in o f impulses ,
% each occurr ing at the s t a r t o f a hear t b ea t . Use p c o e f f i c i e n t s in the RLS
% f i l t e r , f o r g e t t i n g f a c t o r b and sample ra t e f s .

heartcurve = input ( : ) ;
t = ( 0 : ( length ( input ) − 1 ) ) . / f s ;

A = zeros ( p , 1 ) ;
P = 10∗eye ( p ) ;
Pinv = inv ( P ) ;
d e t e c t o r = zeros ( length ( hear tcurve ) , 1 ) ;
e s = zeros ( length ( hear tcurve ) , 1 ) ;
Ds = zeros ( length ( hear tcurve ) , 1 ) ;
t e s t = Ds ;
ou tput s i gna l = heartcurve ;
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f = 0 ;
D=0;
for i = (p ) : ( length ( heartcurve ) − 1)

X = output s i gna l ( ( i−p+1): i ) ;
e s t = A' ∗ X;
e = heartcurve ( i +1) − e s t ;
oldP = P;
o l d f = f ;
f = X'∗ oldP∗X;
K = oldP∗X/(b+f ) ;
P = ( oldP/b − K∗X'∗ oldP/b ) ;
A = A + K ∗ e ;
e s ( i ) = e ;
Ds( i ) = f − o l d f ;
t e s t ( i ) = f ;
d e t e c t o r ( i ) = Ds( i )∗ e ;

end
%subp l o t ( 2 ,1 ,1 ) ;
plot ( t , input ) ; set ( gca , ' FontSize ' , 16 ) ;
t i t l e ( ' Heart  s i g n a l ' ) ;
xlabel ( 'Time [ s ] ' ) ;
ylabel ( ' Amplitude ' ) ;
figure ; set ( gca , ' FontSize ' , 16 ) ;
plot ( t , d e t e c t o r ) ;
t i t l e ( ' Heartbeat  de t e c t o r ' ) ;
xlabel ( 'Time [ s ] ' ) ;
ylabel ( ' Detector  output ' ) ;

end

Listing F.5: Heart rate detection from RLS heartbeat detector
function [ h ea r t r a t e ] = f i n d h e a r t r a t e r l s ( input , f s )
%FINDHEARTRATERLS Find the h ea r t r a t e s based on the RLS hear t b ea t d e t e c t o r
% [ hea r t r a t e ] = f i n d h e a r t r a t e r l s ( input , f s ) re turns the h ea r t r a t e s on the
% ba s i s o f the input ( output o f r l s h e a r t r a t e .m) and the sample ra t e .

f f = 0 . 9 5 ;
s = 0 . 0 0 1 ;
i = 1 ;
stop = 0 ;
t h i s h i t = 1 ;
h ea r t r a t e = zeros ( 1 , length ( input ) ) ;
while i < length ( input )

i f ( input ( i )^2) > (5 ∗ 1/(1− f f ) ∗ s )
l a s t h i t = t h i s h i t ;
t h i s h i t = i ;
hr = f s /( t h i s h i t − l a s t h i t ) ∗ 60 ;
h ea r t r a t e ( l a s t h i t : t h i s h i t ) = hr ;
i = i + 30 ;

else
s = f f ∗ s + (1− f f ) ∗ input ( i )^2 ;
i = i + 1 ;

end
end
t = ( 0 : ( length ( input ) − 1) ) . / f s ;
plot ( t , h ea r t r a t e ) ; set ( gca , ' FontSize ' , 16 ) ;
t i t l e ( ' Hear t ra te s  vs  time ' ) ;
xlabel ( 'Time [ s ] ' ) ;
ylabel ( ' Heartrate ' ) ;
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F.3 Auxiliary functions
The functions corr.m (Listing F.6) and hookejeeves.m (Listing F.7) were used
to calculate the correlation function and �nding the Hooke & Jeeves functional
minimizer. The Hooke & Jeeves functional minimizer was readily available at the
start of this thesis, as it had been written as an assignment in a previous course in
the author's studies.

Listing F.6: Autocorrelation function at given time lag
function [ c o r r v a l ] = co r r ( lag , input , va ra rg in )
%CORR Ca l cu l a t e s the au t o co r r e l a t i on c o e f f i c i e n t
% [ co r r va l ] = corr ( lag , input , vararg in ) re turns the c o r r e l a t i on
% c o e f f i c i e n t at time l a g ' lag ' , o f the input window ' input ' .
% Use vararg in f o r ' unbiased ' or ' b iased ' c o r r e l a t i on . De fau l t i s
% unbiased .

i f nargin > 2
opt ion = vararg in {1} ;

else
opt ion = ' unbiased ' ;

end
l ag = round( l ag ) ;
i f l ag < 0

lag = −l ag ;
end
i nputvec to r = [ input ; zeros ( lag , 1 ) ] ;
c o r r v e c t o r = [ zeros ( lag , 1 ) ; input ] ;
switch ( opt ion )

case ' b ia sed '
c o r r v a l = −sum( inputvec to r .∗ c o r r v e c t o r ) ;

case ' unbiased '
c o r r v a l = −sum( inputvec to r .∗ c o r r v e c t o r ) / . . .

( length ( input ) − abs ( l ag ) ) ;
end
end

Listing F.7: Hooke & Jeeves functional minimizer
function [ F , x_hat , output ] = hooke j eeves ( fun , x , de l ta , deltamin , maxiter , va ra rg in )
%HOOKEJEEVES Pattern−search method based mul t id imens iona l minimizer f u c t i on
% [ F, X_HAT, OUTPUT ] = HOOKEJEVES ( FUN, X, DELTA, DELTAMIN, MAXITER, VARARGIN )
% s t a r t s at X in func t i on handle FUN and exp l o r e s in the d i r e c t i on DELTA
% and −DELTA, to f i nd a b e t t e r po in t X_HAT with lower func t i on va lue
% than X. I t w i l l r epea t the procedure u n t i l i t no longer f i n d s a b e t t e r
% poin t . Then i t w i l l t r y to decrease the s t ep l eng t h DELTA. The func t i on
% s tops on DELTA < DELTAMIN or number o f i t e r a t i o n s > MAXITER. VARARGIN
% can be used to pass ex t ra arguments to the funct ion , i f needed . X and
% DELTA must be s p e c i f i e d as a vec to r or sca lar , and have i d e n t i c a l
% dimensions . Del ta can a l s o be s p e c i f i e d as a vec to r or sca lar , but t h i s
% does not need to be the same dimension as X and DELTA, as i t i s the
% 2−norm of DELTA and DELTAMIN tha t are compared .
%
% F i s the returned func t i on va lue in the minimized po in t . X_HAT i s the
% be s t coord ina te s found at the time of the func t i on ending . OUTPUT g i v e s
% the f o l l ow i n g output :
%
% OUTPUT.DELTA i s the s t ep l eng t h at the end o f the func t i on
% OUTPUT.EVAL i s the number o f func t i on eva l ua t i on s during the run
% OUTPUT.ITER i s the number o f i t e r a t i o n s the func t i on used .
%
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% Example :
% [ F, x_hat , output ] = hooke jeeves ( @sin , 0 , 0 .1 , 1e−6, 200 )
% Returns the c l o s e s t minimizer o f s in ( x ) s t a r t i n g in x=1.5 and i n i t i a l l y
% s t epp ing 0 . 1 . The l owes t a l l owab l e DELTA i s 1e−6 and the maximum number
% of i t e r a t i o n s i s 200.

eval=0; % Keeps t rack o f the number o f func t i on eva l ua t i on s
[ x_hat f_xhat exp l o r e eva l ]= exp lo r e ( fun , x , de l ta , vara rg in { : } ) ;
eval=eval+exp l o r e eva l ;
stop=0; % Stop=1 i s s topp ing c r i t e r i a
i t e r =0; % Keeps t rack o f the number o f i t e r a t i o n s
while stop==0

i t e r=i t e r +1;
eval=eval+1;
f_x=feval ( fun , round( x ) , va ra rg in { : } ) ;
i f f_xhat<f_x ;

z=x_hat+(x_hat−x ) ;
x=x_hat ;

else
z=x ;
de l t a=de l t a . / 2 ;

end
i f ( i t e r >maxiter | | norm( d e l t a ) < norm( deltamin ) )

stop=1; % Stop on maximum number o f i t e r a t i o n s or
% maximum number o f func t i on eva l ua t i on s

end
[ x_hat f_xhat exp l o r e eva l ]= exp lo r e ( fun , z , de l ta , vara rg in { : } ) ;
eval=eval+exp l o r e eva l ;

end
% Set the output v a r i a b l e s
F=feval ( fun , x_hat , vara rg in { : } ) ;
output . i t e r a t i o n s=i t e r ;
output . eval=eval ;
output . d e l t a=de l t a ;
end

function [ x_h , f_xhat , e xp l o r e eva l ] = exp lo r e ( fun , x , de l ta , vara rg in )
x_h=x ;
I=eye ( numel (x_h ) ) ;
e xp l o r e eva l =1; % Keeps t rack o f the number o f func t ion eva l ua t i on s

% in the exp l o r e func t i on
f_xhat=feval ( fun , round(x_h) , vara rg in { : } ) ;
for j =1:numel (x_h)

De l ta j=de l t a ( j )∗ I ( j , : ) ;
f_xhatm=feval ( fun , round(x_h−Del ta j ) , va ra rg in { : } ) ;
e xp l o r e eva l=exp l o r e eva l +1;
i f ( f_xhatm<f_xhat )

x_h=x_h−Del ta j ;
f_xhat=f_xhatm ;

else
f_xhatp=feval ( fun , round(x_h+De l ta j ) , va ra rg in { : } ) ;
e xp l o r e eva l=exp l o r e eva l +1;
i f ( f_xhatp<f_xhat )

x_h=x_h+De l ta j ;
f_xhat=f_xhatp ;

end
end

end

end
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