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Summary

The object of this report is to present a solution on how to implement
color functionality in GPenSIM. Current version of GPenSIM is based on
Place/Transition nets (PT-nets). When creating systems with PT-nets there
are some issues when modeling large real life systems. First of all PT-nets
have no data concepts. This results in extremely large nets, because the
data manipulation has to be represented in the net as places and transitions.
The other issue concerns the hierarchical nets. PT-nets has no support for
such nets, and therefore it is impossible to divide a system into smaller sub
parts. Interestingly, GPenSIM has support for creating Petri-net modules
and connect them during net construction. This is however not as flexi-
ble as with hierarchical CP-nets. The goal when extending GPenSIM with
color is to solve the first problem. By extending GPenSIM with color, large
real life systems can easily be modeled with compact nets.

GPenSIM is built in the MATLAB and consists of a large collection
of functions. The latest version of MATLAB (2008a - 7.6.0) introduces a
new and improved object-orientation support. This thesis investigates the
difference in object-orientation in version 2008a and the versions prior to
2008a. The implementation of color in GPenSIM makes use of this new
addition and new classes will be created containing the existing code from
GPenSIM.

There already exists many simulators that can create and simulate CP-
nets. CPN Tools is one example, it is a powerful and extensive simulation
tool for CP-nets. The two main advantages over GPenSIM is that it fully
supports the CPN definitions and that it has a graphical net editor and sim-
ulator. Simulations run on GPenSIM is coded manually and is run on the
MATLAB platform. This provides GPenSIM with some great advantages
that is not available to other simulators. Simulations in GPenSIM are able
to utilize all the supplied tools in MATLAB such as Fuzzu Logic, statistics
and other toolboxes.
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Chapter 1

Introduction

GPenSIM[Dav07] is a tool for mathematical modeling and simulation of dis-
crete event systems. It uses the Place/Transition nets (PT-nets) as a mathematic
model for the simulated systems. The marking of a PT-net is represented by to-
kens which contain no information. PT-nets are therefore often called black and
white petri nets.

When simulating large real life systems there is often a need of carrying
information along with the tokens in order to make decisions based on previ-
ous events in the simulation. This is not possible with the current GPenSIM.
PT-nets have tokens that either exists or not, and information can not be at-
tached to tokens. One possible solution is to use the Colored Petri nets (CP-
nets), which allows tokens to carry data also known as colors. The aim for this
thesis is to implement colored functionality in GPenSIM. This will be done by
extending the existing code, and redesigning some of the basic concepts.

A portion of the report is dedicated to investigation of the new object ori-
entation support in MATLAB introduced in version 2008a. This is a valuable
asset to the implementation of CPN in GPenSIM due to the support for handle
classes and the ability to easily create user classes. Handles will help reduce
memory usage and speed up simulation on large Petri nets.

The report consists of four main chapters. It is assumed that the reader has
some knowledge of GPenSIM, PT-nets, CP-nets and MATLAB. Only a brief
introduction of the key concepts will be presented.

Chapter 2 begins with a introduction to the theory of CP-nets with a com-
parison between PT-nets and CP-nets. It also covers timing issues in Petri nets
and overview of existing simulation tools.

Chapter 3 gives an introduction to object orientation in MATLAB. There
will be given an overview of how object orientation is achieved in MATLAB.
There will also be given an introduction of the new improvements in the latest
MATLAB release.

Chapter 4 describes how CPN has been implemented in GPenSIM. The
original GPenSIM data structure has been redesigned into classs, and the tran-
sition definition files has received tools to retrieve token colors and to control
color generation.

Chapter 5 shows an extensive example of how simulation of a CP-net can
be coded in GPenSIM. The example shows mosts features of the new colored
version of GPenSIM.
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A complete set of code for the implementation of color in GPenSIM is in-
cluded on the CD on the back cover. Code for the example simulation pre-
sented in chapter 5 is also included.
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Chapter 2

Colored Petri Nets

2.1 Background

Place/Transition Nets (PT-nets) are a great tool to model and simulate discrete
events systems. It is easy to understand, has a simple but yet versatile graphic
representation and well-defined semantics. The main difference between PT-
nets and Colored Petri Nets (CP-nets) is how tokens are represented. In PT-
nets there exists only one kind of tokens and the state of a place is therefore
described by an integer. The integer corresponds to the amount of tokens in a
place. In CP-nets tokens are allowed to carry complex information or data. This
allows for more complex simulations which often are needed when modeling
large systems. PT-nets are often referred to as low-level nets and CP-nets as
high-level nets.

CP-nets were first defined by Jensen in [Jen81]. Later definitions was added
by Jensen in [Jen97a, Jen97b], which uses expressions to specify the incidence
function and markings. These expressions are based upon a meta language
(ML) that has been slightly modified to suit the needs of CP-nets. For this
reason the CP-net ML has been called CPN ML.

The implementation of CP-nets in GPenSIM will not make use of CPN ML,
and some of the specifications for CP-nets will not be implemented at all or
with reduced functionality. This will be discussed in sections 2.2, 2.4 and chap-
ter 4.

2.2 Introduction to Colored Petri nets

It is assumed that the reader is familiar with PT-nets, but there will be given a
short introduction to the formal definition of PT-nets, CP-nets and their behav-
ior. An introduction to PT-nets is given in [CL] and [Jen97a, section 1.1]. Jensen
makes an introduction to CP-nets in [Jen97a, section 1.2] with a formal defini-
tion in [Jen97a, chap. 2]. The formal definition of a PT-net is given in [Jen97a,
section 2.4].

First there will be given a repetition of the formal definition of PT-nets in
table 2.1 and the relationship to GPenSIM. Next there will be provided a simple
example Petri net that later is transformed into a Colored Petri net. The formal
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definition of CPN are given in table 2.2, and a presentation on the relationship
between PT-nets and CP-nets are given in section 2.3.

A Place/Transition Net is a tuple PTN = (P, T,A, E, I)
satisfying the requirements below:
(i) P is a set of places.
(ii) T is a set of transitions such that:

• P ∩ T = ∅
(iii) A ⊆ P × T ∪ T × P is a set of arcs.
(iv) E ∈ [A→ N+] is an arc expression function.
(v) I ∈ [P → N] is an initialization function.

Table 2.1: Definition of Place/Transition-nets ([Jen97a, p. 79])

(i) + (ii) The Places and Transitions are described by two disjoint sets P and
T. In GPenSIM this corresponds to the global_places and global_transitions
fields.

(iii) The Arcs are directed and goes either from a transition to a place or
from a place to a transition. Arcs are stored in the global_arcs field in GPen-
SIM.

(iv) The arc expression function maps each arc to a positive integer. This
is also known as the arc weight, and is defined in the net definition files when
creating PT-nets in GPenSIM.

(v) The initialization function maps each place to a non-negative integer.
This is also known as the initial marking of a PT-net, and are defined in the
main simulation file.

A simple example of a PT-net is shown in figure 2.1. It shows two processes
p and q that share a common resource. The two processes are very similar, but
not identical. There a one p process represented by the token in place Bp, and
there are two q processes represented by one token in both places Aq and Bq .

When a transition fires it consumes all tokens from the places that are con-
nected with an input arc and deposits new tokens in the output places. This
operation is called a step and each step brings the net from one marking Mn to
an other marking Mn+1. The initial state of a net is called the initial marking M0.
A Petri net marking Mn+1 is said to be reachable from the marking Mn if there
exists a step S that transforms the net from marking Mn to Mn+1.

It is obvious that the net in figure 2.1 has places and transitions that do al-
most the same task. Unfortunately it’s not possible to replace these places and
transitions with a common place and transition. This is due to the fact that
tokens in PT-nets can’t carry information. The only way for PT-nets to distin-
guish between different tasks and states is to have separate places and transi-
tions to represent them. This makes even small systems more complex than
necessary and larger systems can be too complex and unmanageable, resulting
in the inability to use PT-nets as a efficient simulation tool. This is often the case
when modeling large real-world systems, because real-world systems are often
composed by many similar parts. Work has been done to develop high-level
Petri nets in order to overcome this issue. CP-nets is one of these high-level
Petri nets. Other important high-level Petri nets are discussed in [Jen97a, p.
52-55] but are out of scope in this thesis.
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Figure 2.1: PT-net of two processes p and q in a resource allocation system

Figure 2.2: CP-net representation of the resource allocation system
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Figure 2.2 is a CP-net representation of the PT-net in 2.1. The net is now
represented in a much more compact form. Parts that are similar have been
combined into one node, but are still representing the same system as the PT-
net does. This transformation is referred to as folding.

By comparing the PT-net and the CP-net, it’s easy to understand how the
CP-net works. A few concepts needs further explanation though. The under-
lined text next to the places is the initial marking. The number to the left is the
number of tokens, and the text after the apostrophe describes the color of the
tokens.

Current markings are represented in a similar way but without the under-
line. Current markings are also represented by the circle next to the place con-
taining the total number of tokens located within that place. In CP-nets the
color e refers to a token without color information. Place R holds the token
that controls resource allocation, and it does not need to contain any colors.

A powerful property of CPN is the ability to add information to the net
without adding more nodes or altering the net itself. This is demonstrated by
counting how many times the q and p processes has been completed. This is
done by adding a second color to the process tokens which are updated after
each completed processing.

The text next to the arcs is the color variables assigned during transition
firing. When transition T1 fires it removes a token from A and substitutes the
variables x and i with the appropriate colors obtained from the token in A.
If multiple arcs are connected to the transition, all the variables needs to be
assigned the same variable. This operation is called binding. The text within
the square brackets next to T1 is a guard function, which sets conditions for the
variables. In the example, variable x of T1 needs to be the color q in order for
it to be enabled.

Table 2.2 lists Jensens definition of a CP-net. CPN ML is used in CP-nets
defined by Jensen, but not in the colored version of GPenSIM presented in this
thesis. The definition presented in table 2.2 is based on CPN ML and it needs
some modifications in order to be usable in GPenSIM. A full explanation on the
CPN definition is given by Jensen in [Jen97a, ch. 2]. A brief explanation will
be given here together with definition changes required in order to implement
a Colored version of GPenSIM:

(i) The set of color sets determines the types, operations and functions that
can be used in the net inscriptions. There is no equivalent to color sets in the
implementation of Colored GPenSIM. Each color in GPenSIM will be repre-
sented by a string. A token can hold one or more colors.

(ii) + (iii) + (iv) The places, transitions and arcs are described by three sets
P, T and A which are required to be finite and pairwise disjoint. These will be
implemented in the same way as for PT-nets.

(v) The node function maps each arc into a pair where the first element
is the source node and the second the destination node. No node function is
defined in GPenSIM, but it is easy to extract the required information from
the arc object. Each arc object has two fields, from and to, that contains the
information provided by the node function.

(vi) The color function C maps each place, p, to a color set C(p). This means
that each place can only hold tokens with a color that belongs to the type C(p).
Implementation of Color in GPenSIM will not limit places to a predefined set
of color types. In fact, Colored GPenSIM will not support color types at all.
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A non-hierarchical CP-net is a tuple CPN =
(Σ, P, T, A, N, C,G, E, I) satisfying the requirements below:
(i) Σ is a finite set of non-empty types, called color sets
(ii) P is a set of places.
(iii) T is a set of transitions
(iv) A is a finite set of arcs such that:

• P ∩ T = P ∩A = T ∪A = ∅
(v) N is a node function. It is defined from A into P × T ∪ T × P .
(vi) C is a color function. It is defined from P into Σ.
(vii) G is a guard function. It is defined from T into expressions such

that:

• ∀t ∈ T : [Type(G(t)) = B ∧ Type(V ar(G(t))) ⊆ Σ]

(viii) E is an arc expression function. It is defined from A into expres-
sions such that:

• ∀p ∈ P : [Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ]

where p(a) is the place of N(a).
(ix) I is an initialization function. It is defined from P into closed

expressions such that:

• ∀p ∈ P : [Type(I(p)) = C(p)MS ]

Table 2.2: Definition of CP-nets

(vii) The guard function G maps each transition, t, to an expression of type
boolean, i.e.m a predicate. GPenSIM has already support for guard functions
in Transition Definition Files (TDF). TDFs can abort a firing if some specified
conditions are not met. However, TDFs need support for specifying conditions
dependent on token colors.

(viii) The arc expression function E maps each arc, a, into an expression
which must be of type C(p(a))MS . This is an expression, associated with an
arc, that controls the flow of tokens and colors in the net when a transition
fires. The analogue to PT-nets is arc weight. Arc expressions will be part of the
TDF, where users can define token colors to consume from input places and
token colors to deposit in output tokens.

(ix) The initialization function I maps each place, p, into a closed expres-
sion which must be of type C(p)MS , i.e. a multi-set over C(p). The initializa-
tion function specifies the initial marking of the CPN. In Colored GPenSIM this
will be a collection of strings that represents each tokens colors.

Implementation details will be examined more closely in chapter 4. A com-
plete simulation example will be given in chapter 5.

Jensen [Jen97a, chap. 3] also introduces the concepts of hierarchical CP-
nets. This enables CP-nets to be build from several CPN modules. This is
extremely useful when considering large systems and CP-nets that are reused.
GPenSIM has a limited support for modular nets. It is by definition not hi-
erarchical nets, but allows a collection of net definition files to be connected
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together during net construction.

2.3 Relationship between PT-nets and CP-nets

The transformation of any given PT-net into a behavior equivalent CP-net is
formally defined by Jensen [Jen97a, ch. 2.4]. The reverse transformation is
also defined. The main purpose of this relationship is to generalize the basic
concepts and analysis methods of PT-nets to CP-nets. It is therefore important
to know that this relationship exists, but the formal definitions are omitted in
this thesis. The operation to transform a PT-net into a CP-net is referred to as
folding, while the reverse is referred to as unfolding.

2.4 Timed Petri nets

Untimed CP-nets are used to simulate and analyse the logical correctness of a
system. This is very useful, but in many cases performance and quantitative
analysis has to be performed as well. This requires that time has to be a part of
the Petri net description. GPenSIM supports timed PT-nets and a color exten-
sion of GPenSIM has to support timed CP-nets as well. Jensen presents timed
CP-nets in [Jen97b, cp. 5] with the formal definition in [Jen97b, cp. 5.3]. Before
investigating the timed property of CP-nets, an introduction will be given to
the challenges of introducing time in Petri nets.

2.4.1 Timing issues in Petri nets

[BDJ+00, p. 219-229] gives a introduction to the possible scenarios and issues
regarding timed Petri nets. A summary of the possible approaches of temporal
specifications in PN models will be presented here.

1. Specifying sojourn time of tokens in places.

Time is associated with places. Tokens generated in an output place be-
comes unavailable until a delay has elapsed. The delay is an attribute of
the place. This timing specification is also known as Timed Places Petri
nets (TPPN)

2. Specifying token unavailability.

Time is associated with tokens. Tokens carry a time stamp that indicates
when they will be available to fire a transition. The time stamp can be
incremented at each transition firing.

3. Specifying a traveling time on arcs.

Time is associated with arcs. Tokens travels on an arc with a specified
delay, and are available for firing only when they reach a transition. The
delay is an attribute of the arc.

4. Specifying a firing delay of enabled transitions.

Transitions represent activities, and the time represents the length of the
activity.
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• The start of an activity corresponds to the transition enabling.

• The end of an activity corresponds to the transition firing.

This timing specification is also known as Timed Transitions Petri nets (TTPN)

The two main topic of interests are TTPN and time associated with tokens. Be-
fore going into details of this, one more attribute of timed Petri nets has to be
explained.

Different firing policies may be assumed when considering TTPN. Balbo
[BDJ+00, p. 221] presents two different firing policies:

• Three-phase firing

1. Tokens are consumed from input places when the transitions is en-
abled

2. The delay elapses

3. Tokens are generated in input places

• Atomic firing

Tokens remain in input places during the transition delay. they are con-
sumed from input places and immediately generated in output places
when the transition fires.

Atomic firing will not be considered in this thesis although it provides
many powerful simulation and analysis methods. Balbo [BDJ+00, p. 221]
points out that TTPN with atomic firing can preserve the basic behavior of
the underlying untimed model. It is thus possible to qualitatively study TTPN
with atomic firing exploiting the theory developed for untimed PN (reachabil-
ity set, invariants etc.). Unfortunately GPenSIM does not support atomic firing
policy; it uses the three-phase firing policy.

2.4.2 Timing implementation in GPenSIM and CP-nets

GPenSIM [Dav07] uses TTPN as the time specification of Petri nets. The dy-
namic firing information allows the user to input firing delay per transition.
It further uses the three-phase firing as its firing policy. This is accomplished
with an internal firing queue that consumes input tokens when the transition
is enabled. After a delay, specified by the transition firing, tokens are deposited
into the output places.

Jensen [Jen97b, chap. 5] implements the timed property as a special color
which is a part of each token in a timed CP-net. This color carries a time stamp
that specifies the time at which the token is available to a transition. This resem-
bles the timed Petri net specification of token unavailability described in 2.4.1.

The two different approaches to timed PN arises a problem regarding the
extension of GPenSIM with color. In order to keep changes in the simulator
at a minimum, it is chosen to implement the colored functionality in GPenSIM
with TTPN.
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2.4.3 Timed CP-nets

Jensen [Jen97b, cp. 5] has extended CP-nets with a time concept. This is done
by introducing a global clock and tokens that can carry a time value (time
stamp). The time stamp describes the earliest model time at which the token
can be used. For a transition to be enabled, all input tokens has to have a time
stamp equal or less to the global clock. When this is true it is said that the
transition is ready.

Jensen has also defined a graphical representation of timed CP-nets. An
example of this representation is given in figure 2.3.

Figure 2.3: Timed CP-net

The timed property of the tokens is represented with the @ sign and the
value following it represents the time stamp for that token. The marking of
place A is one token with color q and time stamp 5, indicating that it is ready.
Because T1 also needs a token from place I, which currently contains no token,
T1 is not enabled. The marking of B is one token with color (q,1) with time
stamp 10. The time stamp is greater than the global clock, thus transition T1
is not ready and therefore not enabled. When the clock reaches the time 10,
transition T1 is ready and also enabled.

Transitions has the ability to increase time stamps. Each token traveling on
an output arc will get its time stamp equal to the global clock plus a time delay,
which corresponds to the integer following the @+ operator. If no @+ operator
is specified the value of the global clock will be the new time stamp.

2.5 Graphical representation of Petri nets

One of the main advantages of Petri nets is its simple, yet descriptive graphical
representation. A human is not familiar with reading large amounts of code in
order to understand a Petri net. It is much easier to have a schematic drawing
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of the net. This is especially true when considering large nets, as the one given
in chapter 5. The code for this net is given on page 35 and onwards. When
looking at this example, it’s clear that a schematic drawing is preferable.

GPenSIM does not have the ability to create a graphic representation of
Petri nets. This means that when creating CP-nets, or PT-nets for that matter,
other tools need to be used in order to visualize the net. Petri nets in this thesis
has been created by using Microsoft Office Visio 2007. It provides excellent
drawing tools for creating elegant graphical representations of any Petri net.
Jensen [Jen97a, chap. 1.6] dedicates a small portion of his book to provide
some guiding rules for how to best draw Petri nets.

2.6 Simulation tools

Computer tools for CPN simulation are a vital part for a successful use of CPN.
Even small models can be difficult to handle without adequate automated com-
puter tools. Such computer tools help the user handling all the detail of large
net descriptions. Computer tools are also able to simulate CP-nets, provide
syntax checks, support during net construction and includes tools for different
analysis of the net. A list over several different Petri net simulators and editors
can be found at Petri Nets World [PNW]. A great computer tool for CP-nets
is the CPN Tools [CPN] maintained by the CPN Group, University of Aarhus,
Denmark. CPN Tools has a graphic net editor and has a powerful simulator
and tools to analyse the net.

2.7 Summary

CP-nets extends PT-nets with more versatility and the ability to represent more
complex nets in a compact form. The ability to fold similar nodes into a single
node and to assign tokens a color or value and fire transitions based upon these
colors are the key differences between CP-nets and PT-nets. Timed petri nets
can be realized in many different ways. CPN and GPenSIM uses two different
specifications for time. In order to minimize changes in GPenSIM it is chosen to
use the TTPN approach when implementing color functionality to GPenSIM.

Because of the added net inscriptions and the many different ways for a
transition to fire it’s difficult for a human to do simulations without proper
tools. A computer simulation tool is therefore required to do reliable simu-
lation and analysis of CP-nets. CPN Tools is a well known and comprehen-
sive simulation tool for CP-nets, and supports the user with graphic net design
and simulation animation. GPenSIM currently only supports PT-nets, and an
implementation of CP-nets will provide users with a basic simulation tool to
investigate properties of PT-nets as well as CP-nets.
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Chapter 3

MATLAB

GPenSIM is implemented in MATLAB, and it’s therefore necessary to investi-
gate possibilities in MATLAB that can be utilized in the extension of GPenSIM
with color. This chapter will give an introduction to object-orientation in MAT-
LAB. Object-orientation can provide GPenSIM with a more robust code which
also is much easier to extend in the future.

3.1 Object-orientation

Figure 3.1 shows the 15 fundamental data types in MATLAB. As shown in
figure 3.1, user classes inherits from structures. The current implementation

Figure 3.1: MATLAB fundamental data types and their relationship

of GPenSIM makes heavily use of structures in the data types and arguments
passed between functions. Structures are very easy create, but they have some
disadvantages. First of all structures can’t contain methods or logic to control
property access and modification. Structures lives on the mercy of the user
and the code that accesses it. Object-orientation provides solutions for this. In
addition, all relevant code for a particular class can be collected in a common
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place, making the code much more readable and understandable. Currently
there are two possible approaches to object-orientation in MATLAB.

3.1.1 Support for object-orientation in MATLAB

MATLAB versions prior to version 2.6 (R2008a) has a somewhat cumbersome
object-orientation support. The designer of a class has to manually program
most of the infrastructure and behavior logic for the class itself for it to func-
tion properly. For example, one have to manually program accessors and mu-
tator logic, logic to take care of appearance, inheritance and hierarchy. This is
all done by overloading built-in operators with a tailored version that together
makes the basic building blocks of a class in MATLAB. This is a very time con-
suming task and has other disadvantages to it like less robust classes because
of error prone code. Listing 3.1 shows the necessary overloading of display.m
to support the desired display of an object in MATLAB. It clearly shows the
amount of work needed to support even a small portion of the functionality of
a class.

Luckily there exists tools to ease the generation of these basic building
blocks of a class. A. Register [Reg07] provides an in-depth introduction to the
possibilities and pitfalls of object-orientation in MATLAB. This book is highly
recommended to designers developing classes in MATLAB. Besides giving a
full introduction to object-orientation in MATLAB, Register also provides the
reader with an introduction to object-orientation for those unfamiliar with the
subject. Register also provides a tool called “Class Wizard” that acts like a

Figure 3.2: Class Wizard provided by A. Register

template for building your own classes. This tool is run within the MATLAB
environment and provides the user with an easy interface to build a user class.
Figure 3.2 shows the main page for the Class Wizard tool. At first sight the
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1 function display(this, display_name)
2
3 if nargin < 2
4 % assign 'ans' if inputname(1) empty
5 display_name = inputname(1);
6 if isempty(display_name)
7 display_name = 'ans';
8 end
9 end

10
11 % check whether mDisplayFunc has a value
12 % if it has a value feval the value to get the display
13 DisplayFunc = cell(builtin('size', this));
14 try
15 [DisplayFunc{:}] = get(this, 'mDisplayFunc');
16 use_standard_view = cellfun('isempty', DisplayFunc(:));
17 catch
18 % any error will result in the use of standard view
19 use_standard_view = repmat(true, size(this));
20 end
21
22 if isempty(use_standard_view) || all(use_standard_view(:))
23 standard_view(this, display_name);
24 else
25 for k = 1:builtin('length', this(:))
26 if use_standard_view(k)
27 standard_view(this(k), display_name);
28 else
29 if builtin('length', this(:)) == 1
30 indexed_display_name = sprintf('%s',

display_name);
31 else
32 indexed_display_name = sprintf('%s(%d)',

display_name, k);
33 end
34 feval(get(this(k), 'mDisplayFunc'), this(k),

indexed_display_name);
35 end
36 end
37 end

Code Listing 3.1: Custom display method for a class
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Class Wizard tool looks very overwhelming, but it really makes the life much
easier for the class designer. Although not shown here, the tool also supports
generation of static member variables and private and public member func-
tions.

3.1.2 Object-orientation in MATLAB R2008a

MATLAB version 7.6 (R2008a) provides a major advancement in object-orientated
programming and how user classes behave. A complete walk through of MAT-
LAB object-orientation support is out of scope of this thesis. A short introduc-
tion to the key improvements will be provided, but the reader is encouraged to
study the MATLAB documentation for a full explanation of MATLAB classes
and object-oriented programming.

The task of building user classes in R2008a is much less cumbersome than
in earlier versions of MATLAB. There is also no longer any need of building
supporting framework for each class. MATLAB also provides the user with a
much easier way of creating classes. A template class file can be created from
the context menu of the “Current Directory” explorer as shown in figure 3.3.

Figure 3.3: New Class M-file

The class definition file contains the declaration of all properties and meth-
ods while method bodies resides in separate standard MATLAB function files.
The user also has the choice of coding the method bodies inside the class defi-
nition file itself instead of using separate function files. MATLAB will take care
of all the necessary details for the class to work, compared to previous versions
where the class designer had to program the class framework manually. This
newly added object-orientation support in MATLAB makes class building a
much more straight forward task.

Another welcome addition is the support for handle classes. Standard ob-
ject behavior in MATLAB is that an assignment copies the object rather than
referencing it. Considering the basic mathematic use and history of MATLAB,
this is the preferable behavior. Classes has now the opportunity to inherit from
the built-in handle class, which gives objects the ability to be referenced with
a handle rather than a copy of an object. This was something that could not
be done earlier, and it really adds some powerful abilities to MATLAB classes.
Classes are therefore now divided in two, corresponding to if it inherits the
handle class or not. Theses types of classes are value classes and handle classes.
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Objects of value classes are the standard behavior and a copy of such an object
will be completely independent of the original. Objects of handle classes uses
a handle to reference objects of the class. A copy of a handle object will al-
ways reference to the original object and does not contain a copy of the object
data. When handle classes are referenced to, less memory is used and there is
a performance increase compared to ordinary classes.

The latest version of MATLAB has also received support for events and lis-
teners. This is also an important tool in object-oriented design, which previous
versions of MATLAB have lacked support for. The extension of GPenSIM pre-
sented in this thesis does not utilize events and listeners, so a further discussion
on this topic is omitted. Again, interested readers are referred to the manual of
MATLAB R2008a for a more in-depth introduction.

Code listing 3.2 shows an example class definition of one of the classes in
the extension of GPenSIM. In line 1 the class is declared as inherited from the
handle class (indicated by the less than sign). The properties section defines the
properties of the class, while the next section declares public member function
and the constructor with the same name as the class. The built in sort function
is also overloaded to support sorting of token objects. The last methods section
defines a static newTokenID method that provides new instances of the class
with a unique token identification number.

After all these new improvements of object-orientation in MATLAB one
would think that Registers book on object-orientation in MATLAB is obsolete.
This may very well be true, but the basic understanding of object-orientation in
MATLAB provided by Register can still be useful to provide a final fine tuning
of the user classes. The reason for this is that behind the scene MATLAB still
calls the functions discussed in the book. Therefore it is possible to overload
these functions to provide a further customization, if needed.
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1 classdef Token < handle
2
3 properties
4 TokenID
5 TimeStamp = 0;
6 Colors = {};
7 end
8
9 methods

10 [ colorMap ] = ColorMap( this, time, place )
11 [ TF, location ] = HasColor ( this, color )
12
13 function [ tokens index ] = sort (tokens, varargin)
14 timeStamps = [tokens.TimeStamp];
15 [ sortetTimestamps index ] = sort( timeStamps,

varargin{1:end} );
16 tokens = tokens(index);
17 end
18
19 function this = Token (timeStamp, colors)
20 this.TokenID = Token.newTokenID;
21
22 if nargin == 1
23 %Create one token without color
24 this.TimeStamp = timeStamp;
25 end
26 %...rest of the constructor code omitted
27 end
28 end
29
30 methods (Static, Access = private)
31 function tokenID = newTokenID ()
32 persistent currentTokenID;
33 if isempty(currentTokenID)
34 currentTokenID = 0;
35 end
36 currentTokenID = currentTokenID + 1;
37 tokenID = currentTokenID;
38 end
39 end
40 end

Code Listing 3.2: Example class definition file for the Token class
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Chapter 4

Implementation of Colored
Petri nets in GPenSIM

4.1 Datastructure

The first step of implementing CP-nets in GPenSIM is to decide how to rep-
resent the extra data required for storing color information. The current data
structure is shown in figure 4.1. The fields global_places, global_transitions, and

Figure 4.1: GPenSIM current data structure

global_arcs are arrays of places, transitions, and arcs respectively.
In a CP-net each token can carry a set of information called color set. This

information can be altered by transitions during the net simulation, and there-
fore has to be available to transition definition files. The color set also has to be
definable at creation time of the CP-net in the net definition file.

In the current PN data structure each place represents its current tokens
with an integer. One possible solution is to create a separate token color data
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structure which holds information about colors for all tokens. Minimal changes
has to be done to the existing code to implement this scheme. However, there
are some drawbacks with this approach.

Each place would have to maintain its current tokens in two locations; the
integer already in the PT-net data structure and the new color information for
each token. This could lead to inconsistent results if not carefully tested and
protected.

Users and transition definition files would not have direct access to color
information through the data structure. Instead they would have to extract
the necessary information from the color data structure through an auxiliary
function. One possible solution is to add a new structure property in the exist-
ing data structure. This would eliminate the problem of having two separate
data structures, but the problem with having to store token information in two
locations would still exists. Of course one could extract the current number
of tokens in a place directly from the color data structure through an auxiliary
function, but that would break the backwards compatibility because older code
relies on the presence of the integer value. This possible solution still suffers
from the need of having an auxiliary function to extract necessary data.

An elegant solution would be to embed the necessary code into the data
structure for retrieval of the current token number in a given place. Unfortu-
nately MATLAB structure types does not support methods in the fields, and it
is therefore impossible to use the current data structure with this approach. As
showed in figure 3.1, user classes inherits from structures. User classes behaves
very much like structures, and this can be exploited in a new data structure de-
sign. User classes in MATLAB supports most of the object oriented concepts,
and are much more versatile then structures.

By introducing user classes as the new data structure for Petri nets both
problems discussed above will be solved. In addition several other benefits
will be achieved by converting to user classes.

Figure 4.2 shows the proposed class structure to be used in the CPN imple-
mentation of GPenSIM. It can bee seen that all the fields from the original data

Figure 4.2: UML representation of proposed class structure

structure has been preserved in the new class structure. New attributes and
methods has also been added to support the colored property. Several func-
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1 classdef Token < handle
2 properties
3 TokenID
4 end
5
6 methods
7 function this = Token ()
8 this.TokenID = Token.newTokenID;
9 end

10 end
11
12 methods (Static, Access = private)
13 function tokenID = newTokenID ()
14 persistent currentTokenID;
15 if isempty(currentTokenID)
16 currentTokenID = 0;
17 end
18 currentTokenID = currentTokenID + 1;
19 tokenID = currentTokenID;
20 end
21 end
22 end

Code Listing 4.1: Unique TokenID generation

tions that operate on the information stored in the different objects has been
included as methods of the classes but are not shown in the class diagram. Full
code for the classes can be found on the CD.

The TokenID attribute of the Token class needs some explanation. This at-
tribute is not really necessary for the simulator because the token is a handle
class. Instead of storing a reference to a given token by it’s ID, a more elegant
approach is to store the handle to the token object itself. One possible use for
the ID value is for display purposes to visually identify tokens, and to gener-
ate names. For this to be successful a unique ID has to be generated for each
Token instance. MATLAB has support for static methods but not for static at-
tributes. A solution for this is to use the persistent keyword in order to mimic a
static attribute. The persistent keyword defines a variable local to the function
in which it is declared, and retains the value between calls. The neccessary
code for generating a unique TokenID is shown in listing 4.1

One remaining issue is how the Petri net graph structure is best represented.
Two options are immediately clear. The first is to reuse the original GPenSIM
structure representation. This is adequate in the sense of the color extension
of GPenSIM. The global_places field could easily hold an array of place objects,
and likewise with the other global fields. However, by converting the Petri net
graph structure to a user class several advantages can be achieved. In the cur-
rent version of GPenSIM a lot of auxiliary functions exists to extract and create
necessary information. By including these functions in the class as methods a
much more compact and robust framework is achieved. Users will also have
a better basis for navigating through the data structure and extract necessary
information.
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The field incidence_matrix does not conform to the standard definition of a
PN incidence matrix. [CL, p. 234 def. 4.4] defines the incidence matrix A as an
m× n matrix whose (j, i) entry is of the form

aji = w(tj , pi)− w(pi, tj)

j is the transition number, and i is the place number.
This is not the case with the current GPenSIM implementation. The inci-

dence_matrix field is defined as the concatenation of the input tokens matrix
(E+) and output tokens matrix (E−) instead of the subtraction of those.

e+
ij = w(tj , pi)

e−ij = w(pi, tj)

This is required for the simulator as it needs both input and output matrices to
carry out the simulation. But in the user perspective and by definition this is a
misleading implementation. Because backwards compatibility is an issue, the
incidence_matrix field still needs to exist, but additional fields will be added to
contain the properly defined matrices.

One final note on why user classes is a better choice is the ability of han-
dle classes to let the PNG object be passed as a reference rather than a copy.
This is not possible with structures, and therefore each simulation step makes
copies of the structure each time it is needed in the simulation functions and
transition definition files. By using handle classes, only the reference is passed
resulting in a speed increase and less memory usage. The PN class is shown in

Figure 4.3: Petri net graph class

figure 4.3. Some additional properties and methods has been added to support
some standard PN definitions and color properties.

The complete class diagram of the data structure is shown in figure 4.4.

4.2 Creation of CP-net structure

Creation of the static part of CP-nets is identical to the creation of a PT-net.
The basic building blocks are still the same and no change is therefore needed.
However, some changes in the dynamic part needs to be done. The dynamic
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Figure 4.4: Class diagram of data structure

1 %Initial markings with a scalar token value
2 dynamicpart.initial_markings = {'PlaceName', 1};
3
4 %Initial markings with a single token and a single color
5 dynamicpart.initial_markings = {'PlaceName', 'A single color'};
6
7 %Initial markings with a single token with multiple colors
8 dynamicpart.initial_markings = {'PlaceName', {'First color',

'Second color'}};
9

10 %Initial markings with multiple tokens
11 dynamicpart.initial_markings = {'PlaceName', {{'Color of token

1'} {'Color of token 2' '2nd color of token 2'}}};

Code Listing 4.2: Different usage of initial markings to specify initial tokens
with colors

firing times does not require any change in order to implement CPN. Initial
markings, on the other hand, currently only take positive integers in order to
specify the amount of tokens in the initial state. In CPN tokens can carry a
color, and initial markings should also be able to assign initial colors to tokens.
A solution to this problem is to allow users to specify either an integer or a set
of colors. This will ensure backwards compatibility, and the change in syntax
is minimal. The set of colors is specified as a cell array, which contains a set of
cell arrays with colors represented by strings for each token (line number 11 of
listing 4.2). As a shorthand, it is allowed to specify a cell array with colors if
there are only one single token (line number 8 of listing 4.2). If there are only
one token with one color it is also allowed to only specify the string itself (line
number 5 of listing 4.2).
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4.3 Transition definition files

Transition definition files (TDF) are the workhorse of GPenSIM. Each transi-
tion can have one TDF that will execute right before an enabled transition fires.
TDF’s are a function M-file containing a user defined function that has the
ability to control if the transition is going to fire or not. The TDF is the only
mechanism the user can utilize in order to control the PN simulation while the
simulator is running.

4.3.1 Color information argument

The current implementation only allows for the TDF to return a value indi-
cating if the transition should fire or not, and a global_info structure that holds
user defined fields. When considering CPN there are many possible ways for
a transition to fire, depending upon the available colored tokens. Because the
PNG is passed as one of the arguments to the TDF it is possible for the TDF
to examine for available tokens, and decide if the transition can fire. However,
the TDF is unable to communicate back to the simulator to identify the tokens
that is needed in order to fire. If this information is not provided, the simula-
tor will have to take a number of random tokens from each input place when
firing the transition. This behavior is not the expected one when dealing with
CPN’s.

To solve this issue, a new argument is added to the TDF’s function call.
This argument will hold several necessary values for the CPN implementation
in GPenSIM to work properly. A separate handle class, as shown in figure 4.5,
will be used to hold this information. Because the class is a handle class it is
not necessary to add an output argument to pass the data back to the simu-
lator. Note that the attribute newColors is private, and accessible through the

Figure 4.5: ColorInfo class

public NewColors property get and set methods. Only the set property method
is customized. The reason for this is to ensure that the value in newColors is a
cell array. This will enable the user to specify new colors in two different ways,
either by a string (char array) or a cell array of strings. The internal use of this
class will be discussed in section 4.4.

The introduction of a new input argument in TDFs will break backwards
compatibility because TDFs from previous versions are not aware of this extra
argument. A call to such a TDF will throw an error. To remedy this an input
argument number check (nargin) is done before calling the TDF as shown in
listing 4.3. This adds some performance overhead to the simulation, but en-
sures backwards compatibility.
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1 functionName = [transitionName '_def'];
2 if nargin(functionName) == 2
3 %old version of TDF.
4 %Call TDF without color argument.
5 else
6 %colored version of TDF.
7 %Call TDF with color argument.
8 end

Code Listing 4.3: Code to check for old versions of TDF’s

4.3.2 Token selection

Now that TDFs are able to select specific tokens and control the generation of
new colors, only the issue of token selection remains. TDFs already has the
necessary information through the Petri net argument, but it requires some
coding that makes the creation of TDFs more tedious. To make this task easier
a GetTokens method is exposed by the PetriNetGraph class. This method can
be used in several different ways depending on the type of tokens required by
the TDF.

1 tokens = GetTokens (this, placeName)
2
3 tokens = GetTokens (this, placeName, tokensLimit)
4
5 tokens = GetTokens (this, placeName, tokensLimit, priority)
6
7 tokens = GetTokens (this, placeName, colors)
8
9 tokens = GetTokens (this, placeName, colors, tokensLimit)

10
11 tokens = GetTokens (this, placeName, colors, tokensLimit,

priority)

Code Listing 4.4: Different calls to GetTokens method

GetTokens returns a set of tokens depending on the input parameters. List-
ing 4.4 shows the different possible calls. The parameters are defined in ta-
ble 4.1.

4.3.3 Generation of colors for tokens in output places

Once the TDF has decided which tokens to consume when firing, it has to gen-
erate colors for tokens that are to be deposited in the output places. The user
has several options to choose from when coding the TDFs. The default behav-
ior is for colors of the consumed tokens to be inherited by all tokens generated
in output places. This is done by setting the InheritColors attribute of the Color-
Info 4.5 class to true. By default only unique colors will be generated in the new
tokens. To override this behavior the UniqueColors attribute of ColorInfo 4.5 has
to be set to false.
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tokens returns an array of the selected tokens .
this handle to the PetriNetGraph object .

placeName string that specifies the specific place tokens are to be ex-
tracted from.

tokensLimit integer that limits the number of tokens returned. Note
that this is only an upper limit and a smaller number of
tokens could be returned if not enough tokens are avail-
able. This is useful when there are more tokens in a place
than the transition needs to fire.

priority string indicating the order of which the tokens should be
selected. Value can be either ’FIFO’ (First in First Out) or
’LIFO’ (Last in First out). ’FIFO’ will return tokens with
the lowest time stamp, while ’LIFO’ will return tokens
with the highest time stamp.

colors a cell array of colors that tokens need to contain in order
to be selected.

Table 4.1: Arguments of GetTokens

By definition [Jen97a, chp. 2], transitions can also generate new colors not
present in the consumed colors. This can be done by specifying colors in the
NewColors attribute of ColorInfo 4.5. All generated tokens will contain the colors
specified in NewColors. The user can also choose to include inherited colors or
not.

Often there may be several output arcs from a transition, each with a differ-
ent color specification for the generated tokens. The example-net in figure 4.6

Figure 4.6: Generation of separate colors in generated tokens

shows the unwrapping of a data packet containing a header and a data portion.
Transition Unwrap consumes the data packet from A and deposits the header in
place B and the data in place C. This is done in the TDF by assigning different
colors to each token by using the NewIndependentColors attribute of ColorInfo
class. The syntax is the same as for the color generation of initial_markings (sec-
tion 4.3.3) with a few exceptions. An example of the code needed is shown in
listing 4.5

• It is not allowed to specify a scalar value to indicate the number of to-
kens. It is however allowed to specify that no tokens should be generated
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(empty output).

• It is not allowed to specify different colors for multiple tokens deposited
to the same output place. This means that if the arc weight is greater
than 1, then all tokens deposited to the connected output place will get
the same color.

These exceptions are not a part of the CPN definition, but are results of limita-
tions in the simulation model of GPenSIM. CP-nets, by its original definition,
does not have arc weights but specifies the number of tokens in the arc expres-
sions.

1 function [fire, global_info] = Unwrap_def (pn, global_info,
color)

2 %extract available token from Place 'A'
3 packetToken = pn.GetTokens('A', 1);
4 %extract colors from token
5 packet = packetToken.Colors;
6 %extract header and data
7 h = packet{1};
8 d = packet{2};
9

10 %generate new colors
11 color.NewIndependentColors = {'B', h, 'C', d};
12 %ensure that 'packetToken' is consumed from place 'A'
13 color.SelectedTokens = packetToken;
14 %fire the transition
15 fire = true;

Code Listing 4.5: Code in the transition Unwrapping for generating separate
colors in tokens

In GPenSIM, arc weight is defined as a static variable when creating the
net structure. It would require a complete change in the simulator to allow for
dynamic change of input arc weight. The reason for this lies in the fact that
it is the TDFs that does the work while simulating. Each TDF would have to
be run in order to be able to decide if a particular transition is enabled. This
would differ from the basic understanding of TDF’s in the sense that TDF’s
are currently always called when the transition is ready to fire and enabled.
It would also introduce a major overhead when simulating because the TDF’s
would have to be called more often. Currently GPenSIM decides if a transition
is enabled by examining the number of available tokens in each place and the
input tokens matrix (E−). Although output arc weight could easily be changed
dynamically, it is not implemented to avoid ambiguous net simulations and net
definitions.

This concludes the changes for the users part. Changes done internally to
the simulator will be discussed next. There will be given a extensive example
of a CPN simulation using GPenSIM in chapter 5.
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4.4 Simulator changes

The simulator is the core of GPenSIM. It holds an internal data structure with
the number of tokens in all places. It controls the firing of transitions and is
responsible of moving tokens from input places to output places. Three main
steps are executed in turn. This is done as long as the net is live.

• The simulator calls TDF’s whenever a transition is ready to fire.

A transition is drawn at random from the transitions that are ready to
fire. The TDF for that transition is then called.

• The firing event is added to a queue.

After the TDF has been called, and the transition is allowed to fire, the
firing event is added to a queue. The queue is sorted on transition firing
time. Tokens are also removed from the input places.

• The firing event is removed from the queue when firing is complete.

After the specified firing delay of a transition has passed, the event is
removed from the queue and executed. A variable holds the change in
number of tokens on output places. It is applied to the internal data struc-
ture and the Petri net graph structure.

These steps are executed over and over again until the net reaches a dead state
(no enabled transitions) or the maximum simulation steps are reached.

In order for the simulator to handle CP-nets some changes has to be done.
The ColorInfo class holds all the information generated in the TDF’s. TDF’s
are the work horse of GPenSIM and all color properties affecting the transition
that is firing has been stored in an instance of the ColorInfo class. The simulator
therefore needs to be aware of that class and have necessary means to control
the simulation based on the class instance content.

In the first step the simulator calls the TDF of a transition, it needs to create
a new instance of the ColorInfo class. This is trivial, and is not shown here.

In the next step the simulator is calculating removed tokens and storing the
event in the queue. The code for this step is shown in listing 4.6.

1 % calculating tokens removal and computing deposits
2 [X1,delta_X,output_place]=token_game(transition1,A,X);
3 % remove the tokens from places
4
5 % calculate the tokens that has been removed
6 RemovedTokens = X-X1;
7 RemovedColors = {};
8 for i=1:Ps,
9 if RemovedTokens(i) == 0

10 continue;
11 end
12 [pn.global_places(i) RemovedTokens] =

pn.global_places(i).RemoveTokens(RemovedTokens(i),
color.SelectedTokens);

13 RemovedColors = [RemovedColors RemovedTokens.Colors];
14 end
15 % update internal data structure
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16 X = X1;
17
18 if color.InheritColors
19 color.NewColors = [color.NewColors RemovedColors];
20 end
21
22 if color.UniqueColors
23 %Gets the unique colors. All but the first occurence of
24 %duplicate items are discarded.
25
26 %Variable 'uniqueColors' is not used.
27 [uniqueColors location] = unique(color.NewColors, 'first');
28
29 %The 'unique'-function sorts the result in ascending order.
30 %A sort operation has to be done to maintain the original
31 %order.
32 color.NewColors = color.NewColors(sort(location));
33 end

Code Listing 4.6: Calculate removed tokens and colors in input places.

Line 2 is the same as for GPenSIM version 2.1, and shows the function call
that GPenSIM uses to calculate the token removal. The next lines are those
needed for handling colors. Line 8 through 14 calls the method RemoveTokens
on all places that have tokens to remove. This method removes the number of
tokens calculated by line 2 and 6 by first removing the specific tokens specified
by the SelectedTokens property of the color object. The color object is the in-
stance of ColorInfo that was created when calling the TDF. Line 16 updates the
internal data structure with the new number of tokens for each place. Line 18
through 20 controls the generation of inherited colors in output places. If col-
ors are inherited, then RemovedColors are concatenated with NewColors. Line 22
through 33 ensures that only unique colors are present in the NewColors prop-
erty by utilizing the built in unique function. A call to unique sorts the result in
ascending order. In order to prevent this, the returned location of the unique
colors are sorted in ascending order. The colors are then extracted from the
NewColors property by using the sorted values in location. Finally, though not
shown in the code listing, color is added to the firing queue.

When a firing event is completed it is removed from the event queue and
new tokens are generated in output places. Now the simulator needs to recre-
ate all tokens with the new colors specified. The color information was stored
in the queue in the previous step and is therefore available to the simulator
when the firing event is retrieved from the queue. Code listing 4.7 shows the
necessary steps.

1 %Generate a set that matches global places for the independent
colors

2 independentColors =
event_in_Q.ColorInformation.NewIndependentColors;

3 independentColorSet = cell(size(pn.global_places));
4 for i = 1:2:length(independentColors)
5 independentColorSet{pn.search_names(independentColors{i},

pn.global_places)} = independentColors{i + 1};
6 end
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7
8 for i=1:length(pn.global_places)
9 if event_in_Q.delta_X(i) == 0

10 continue;
11 end
12 independentColor = independentColorSet{i};
13 if isnumeric(independentColor) &&

isscalar(independentColor) && independentColor == 0
14 %support for empty output to output places

(independentColor == 0)
15 pn.global_places(i) =

pn.global_places(i).AddTokens(independentColor,
current_time);

16 event_in_Q.delta_X(i) = independentColor;
17 else
18 pn.global_places(i) =

pn.global_places(i).AddTokens(event_in_Q.delta_X(i),
current_time, ...

19 [independentColor
event_in_Q.ColorInformation.NewColors]);

20 end
21 %pn.global_places(i).tokens=X(i);
22 end
23
24 X=X+event_in_Q.delta_X; %new marking

Code Listing 4.7: Calculate added tokens and colors in output places.

Line 2 through 6 retrieves the NewIndependentColors and stores them in a vector
that matches the global_places vector. Lines 8 through 22 handles the color gen-
eration. Line 9 speeds up the simulation by skipping to the next place when
there are no tokens deposited to that specific place. Line 15 and 16 handles the
special case where the token color has the scalar value 0. This indicates that the
simulator should suppress any outputs to that place. This is done by overrid-
ing the delta_X value for that place and setting it to 0. Line 18 and 19 deals with
the color generation of new tokens. The AddTokens method is called for han-
dling this. The number of added tokens, the current time and the new colors
are passed as arguments. AddTokens handles the actual token generation. This
is straight forward and omitted in the report. Finally the simulators internal
data structure is updated on line 24.

The simulation also holds a log for the color generation. This Color Map
is maintained within the Petri net graph object and a call to the UpdateCol-
orMapRecord method generates a new color map log entry. This log can be
printed at the end of a simulation.

4.5 Summary

This concludes the implementation of CPN in GPenSIM. The basic implemen-
tation of the simulator is untouched. The benefit of this is less time spent with
testing simulator correctness, which in turn has helped reducing development
time and the risk of errors. Some logic needed for the color specifications has
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also been located inside the classes for Place, Transition, Token and Petri net
Graph. This is done in order to comply with the high cohesion and informa-
tion expert design principles. Several of the functions that existed in GPenSIM
version 2.1 as separate function files has also been moved into the classes as
methods. This collects all relevant code for a specific object in one common
place.

A key design criteria has been to keep the definition files syntax as similar
to previous versions as possible. It can easily be adopted by existing users,
because this new implementation is backwards compatible with earlier simu-
lation definition files.

The new implementation also utilizes recent improvements in MATLAB.
Classes and handles minimizes memory usage and speeds up simulation by
passing handles instead of copies of objects. This is especially true for large
systems.
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Chapter 5

Example of Colored Petri net
simulation using GPenSIM

This chapter will present a CP-net and how it is coded in the colored version of
GPenSIM. It can be used as a reference as to how CP-nets should be designed
in GPenSIM, and most importantly as an inspiration to the possibilities that
lies in the color extended version of GPenSIM.

A very simple model of a communication protocol, as shown in figure 5.1,
will be used as an example. The reason for choosing this as the example net
is that it is commonly used to demonstrate CPN fundamentals, and also exists
as a demonstration net for CPN-tools [CPN]. The net is therefore well known
by the CPN community, and serves well as a comparison between different
simulation tools. Jensen makes use of the same net in [Jen97b, chp. 5 p.160] to
demonstrate the timed concept of CP-nets.

Figure 5.1: Simulation of simple communication protocol in GPenSIM

The protocol transmits a sequence of packets from a sender to a receiver
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via a network. Received packets are acknowledged back to the sender. Pack-
ets can be lost or delayed when transmitted, and the protocol automatically
retransmits if no acknowledgments are received within a specified delay. The
protocol system is divided into three main parts; Sender, Network and Receiver.
The Sender consists of two transitions which can Send Packets and Receive Ac-
knowledgements. The Network consists of two transitions that Transmits Packets
and Transmits Acknowledgments. The Receiver has only one transitions that Re-
ceive Packets. Places A and D connects the Sender to the Network while the places
B and C connects the Network to the Receiver.

Initially, the packets to be sent are located at the place Send. Each packet is a
separate token which contains two colors. The first color is the packet number
that identifies the packet sequence. The second color is the data that is to be
transmitted.

Place NextSend contains a token with the next sequence number of the packet
to be transmitted. Initially this is a token with color ’1’. This color is updated
when acknowledgments are received.

Transmit Packet and Transmit Acknowledgment are assigned a random time
delay at each transmission designated by the function trans(). This will mimic
transmission delay and will vary between 5 and 75 time units. The output arc
of each transition in the Network part has a function that randomly drops gen-
erated tokens. This function will emulate packet loss, which has a probability
of 1/4 to drop a packet.

The transition Receive Packet on the Receiver side ensures that received pack-
ets are stored in the place Receive and acknowledged back to the sender. The
Receiver expects packets orderede by ascending sequence numbers. This is con-
trolled by the token held in place NextRec. Initially there is one token in the
NextRec place with color ’1’. This color will be updated when correct packets
are received by the Receiver. An acknowledgment message will also be sent
back to the sender when a packet in the correct order are received. Simultane-
ously a copy of the data packet will be stored in the place Receive.

A constant time delay is associated with the three transitions Send Packet,
Receive Packet, and Receive Acknowledgment. However, there are a small differ-
ence in the time delay specified for Send Packet compared to the net presented
by Jensen [Jen97b, chp. 5 p.160]. This relates to the different timing concepts of
GPenSIM and CPN as explained in 2.4 and 2.4.2. In CPN tokens can be made
unavailable for a certain number of time units. Originally the Send Packet tran-
sition has a firing delay (Tsp) of 8 time units. To simulate retransmission delay,
Jensen implements a token unavailability time on tokens traveling from tran-
sition Send Packet to place Send. This effectively prevents the Sender to send the
same packet until that time delay has elapsed. The time delay for retransmis-
sion (Twait) is specified to 50 time units. In GPenSIM it is not possible to specify
token unavailability. In order to keep a basic solution for retransmission delay,
the time delay of Send Packet has been chosen to be the sum of the firing delay
and retransmission delay.

TSendPacket = Tsp + Twait = 8 + 50 = 58

This is not an ideal solution and could have easily been implemented better by
introducing more places and transitions. This has not been done in order to
keep the CP-net as similar as possible to the original. The simulation will only
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differ in that the GPenSIM version will always retransmit a packet at least one
more time than the original CP-net, and the inability to immediately transmit
the next packet when an acknowledgment is received.

The goal for the communication protocol is for the Receiver to receive all
packets from the Sender. Receive will then contain the same markings as Send.
This means that the communication protocol has transmitted all packets to the
Receiver, without duplications. Each token should also have a time stamp that
increase with the packet number. This means that packets are received in the
same order as they were sent.

5.1 Creation of net definition files

The first step is to create the definition files for the CP-net. GPenSIM supports
modular net definition files, and it’s therefore logical to split the communica-
tion protocol into the three parts Sender, Network, and Receiver. The Network
part will contain the network connection places A, B, C, and D. Arcs to con-
nect Sender with Network and Network with Receiver will be contained within a
separate definition file.

Generation of the definition files are straight forward as it is identical with
the syntax of GPenSIM version 2.1. All arcs are defined with weight equal to
1. This will be overridden for the output arcs from transitions in the network
part to simulate packet loss. A prefix has been added to the node names in
order to to easily distinguish transitions from places as shown in table 5.1 The

Places: p[place name]
Transitions: t[transition name]

Table 5.1: Node prefix

following definition files are created by inspecting the CP-net in figure 5.1:

1 function [PN_name, set_of_places, set_of_trans, set_of_arcs]...
2 = sender_def(global_info)
3 % PDF: sender_def.m:
4
5 PN_name='Color example: Protocol system';
6 set_of_places={'pSend', 'pNextSend'};
7 set_of_trans={'tSendPacket','tReceiveAck'};
8 set_of_arcs={'pSend','tSendPacket',1,...
9 'tSendPacket','pSend',1,...

10 'pNextSend','tSendPacket',1,...
11 'tSendPacket','pNextSend',1,...
12 'pNextSend','tReceiveAck',1,...
13 'tReceiveAck','pNextSend',1};

Code Listing 5.1: Definition file for Sender

1 function [PN_name, set_of_places, set_of_trans, set_of_arcs]...
2 = network_def(global_info)
3 % PDF: network_def.m:
4
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5 PN_name='Color example: Protocol system';
6 set_of_places={'pA', 'pB', 'pC', 'pD'};
7 set_of_trans={'tTransmitPacket','tTransmitAck'};
8 set_of_arcs={'pA','tTransmitPacket',1,...
9 'tTransmitPacket','pB',1,...

10 'pC','tTransmitAck',1,...
11 'tTransmitAck','pD',1};

Code Listing 5.2: Definition file for Network

1 function [PN_name, set_of_places, set_of_trans, set_of_arcs]...
2 = receiver_def(global_info)
3 % PDF: receiver_def.m:
4
5 PN_name='Color example: Protocol system';
6 set_of_places={'pReceive', 'pNextRec'};
7 set_of_trans={'tReceivePacket'};
8 set_of_arcs={'tReceivePacket','pReceive',1,...
9 'pNextRec','tReceivePacket',1,...

10 'tReceivePacket','pNextRec',1};

Code Listing 5.3: Definition file for Receiver

1 function [PN_name, set_of_places, set_of_trans, set_of_arcs]...
2 = connections_def(global_info)
3 % PDF: connections_def.m:
4
5 PN_name='Color example: Protocol system';
6 set_of_places={};
7 set_of_trans={};
8 set_of_arcs={'tSendPacket','pA',1,...
9 'pB','tReceivePacket',1,...

10 'tReceivePacket','pC',1,...
11 'pD','tReceiveAck',1};

Code Listing 5.4: Definition file for connections

5.2 Main simulation file

The main simulation file is responsible of combining the definition modules
into a Petri net graph, creating initial markings, defining transition firing times,
running simulation and presenting the results. The complete code is shown in
code listing 5.5.

1 clear, clc;
2
3 %load definition modules
4 pn = petrinetgraph({'sender_def', 'receiver_def',...
5 'network_def', 'connections_def'});
6
7 %create initial markings with colors
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8 dynamicpart.initial_markings = {...
9 'pNextSend','1', 'pNextRec',{'1'},...

10 'pSend', {{'1', 'Example of s'} ...
11 {'2', 'imulation in'} {'3', 'Colored GPe'} ...
12 {'4', 'nSIM.'}}};
13
14 %create transition firing times
15 dynamicpart.firing_times = {...
16 'tTransmitPacket', 'round((rand*70)+5)',...
17 'tTransmitAck', 'round((rand*70)+5)',...
18 'tSendPacket', 58,...
19 'tReceiveAck', 4,...
20 'tReceivePacket', 8};
21
22 %run simulation
23 [results] = gpensim(pn, dynamicpart);
24
25 %show results
26 printsys(pn,results);
27 print_colormap(pn, results, {'pSend', 'pNextSend', 'pReceive',

'pNextRec'});
28 plotp(pn, results, {'pReceive'});

Code Listing 5.5: Main simulation file

Line number 4 loads all definition files and builds the data structure as de-
scribed in section 4.1 and 4.2. Line 7 creates the dynamicpart structure with
the initial_markings field. This field defines the initial markings of the protocol
system. pNextSend and pNextRec is given an initial token with color ’1’. Note
that the color syntax is slightly different for these places. Both syntaxes will
yield the same result, but it demonstrates the different options for creating col-
ors. The different syntaxes is explained in section 4.2. Finally the data to be
sent are defined as tokens in the place Send. Line 15 adds the firing_times field
to the dynamicpart structure which contains the firing times of the transitions.
Nothing new has been introduced in this field, and it has therefore the same
syntax as GPenSIM version 2.1. Transmit Packet and Transmit Acknowledgement
are assigned a function that generates a random transmission delay. The other
transitions are assigned a static delay. Finally the simulation is run at line 23
and results are returned and displayed.

5.3 Transition definition files

Now that the static net structure has been defined, it’s time to focus on the
colored properties. Each firing of a transition in the Protocol system is depen-
dent on the colors available. The logic that is needed to control this behavior
is located in transition definition files (TDF). The majority of the simulation
work lies in the TDFs, and some time is therefore needed to explain each TDF
thoroughly.
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5.3.1 Send Packet transition

Send Packet is responsible for sending packets to the receiver in the correct order
and sending retransmissions if no acknowledgments are received. The next
packet number to be sent is held by the color of the only token in NextSend.
Send Packet needs to retrieve the correct packet from Send depending upon the
next packet number to send. The packet number is described with the variable
n in the net inscription of figure 5.1 This operation is done at lines 5 and 6
in code listing 5.6. Line 6 extracts the color from the token and assigns it to
a variable n. The correct packet is then retrieved from Send in line 7. Line 9
checks if any packets has been located, and if not it terminates the firing at line
10. This will happen when all packets are sent and the transition tries to locate
the nonexistent packet number 5. Next, the packet colors are extracted and
new colors are prepared for the output places according to the net inscription.
Line 13 is needed to instruct the simulator of which tokens it needs to remove.
Line 14 overrides the default color inheritance behavior of the simulator. This
is needed in order to define custom colors in output places. Finally colors are
assigned and the transition is allowed to fire.

1 function [fire, global_info] = ...
2 tSendPacket_def (pn, global_info, color)
3 % TDF: tSendPacket_def.m
4
5 nextPacketToSend = pn.GetTokens('pNextSend', 1);
6 n = nextPacketToSend.Colors;
7 packetToSend = pn.GetTokens('pSend', n, 1);
8
9 if isempty(packetToSend)

10 fire = false;
11 else
12 nd = packetToSend.Colors;
13 color.SelectedTokens = [packetToSend nextPacketToSend];
14 color.InheritColors = false;
15 color.NewIndependentColors = {...
16 'pNextSend', n...
17 'pSend', nd,...
18 'pA', nd};
19 fire = true;
20 end

Code Listing 5.6: TDF forSend Packet

5.3.2 Transmit Packet transition

Transmit Packet simulates the transmission of a packet over a network. It simu-
lates both transmission delay and packet loss. The transmission delay is intro-
duced with the random firing time of the transition, while the packet drop is
implemented in the TDF itself. Line 5 tests if the packet is to be dropped. If not
dropped the transition fires normally and takes advantage of the default be-
havior of color inheritance. Therefore no custom code is needed to control the
normal firing of Send Packet. On the other hand, when the packet is dropped
no token must be deposited to the output place. This is achieved by the code at
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lines 7-10. Take special note of the code at line 8 where a new color is generated
at B. It is assigned the value 0 which informs the simulator to not generate any
tokens in that place. This allows the transition to fire and simulate the packet
loss. Line 7 adds the ’FIFO’ argument to GetTokens in order to retrieve the first
token deposited in that place. This will let the place act like a buffer.

1 function [fire, global_info] = ...
2 tTransmitPacket_def (pn, global_info, color)
3 % TDF: tTransmitPacket_def.m
4
5 if rand > 0.75
6 %packet is dropped
7 tokens = pn.GetTokens('pA', 1, 'FIFO');
8 color.NewIndependentColors = {'pB', 0};
9 color.InheritColors = false;

10 color.SelectedTokens = tokens;
11 end
12 fire = true;

Code Listing 5.7: TDF for Transmit Packet

5.3.3 Receive Packet transition

Receive Packet is responsible for dropping duplicated packets, sending acknowl-
edgment for received packets and forwarding packets in its correct order to Re-
ceive. NextRec holds the packet number of the next expected packet as a color in
its only token. Initially this token has the color ’1’. Lines 5-6 and 8-9 retrieves
a token from B and NextRec. The packet number is compared at line 14. If the
packet is the next packet in the sequence, the receiver sends an acknowledg-
ment back to the sender. It also updates the color in NextRec and sends the
packet to Receive. This is all done on lines 15-19. On the other hand, if the
packet is not corresponding to the correct packet number, the receiver drops
the packet and sends an acknowledgment for the last correctly received packet
back to the sender. The code for this action is on lines 21-24. Once again the
ability to suppress the generation of tokens on output places are taken advan-
tage of when assigning new colors to Receive on line 22.

1 function [fire, global_info] = ...
2 tGET_NUM2_def (pn, global_info, color)
3 % TDF: tReceivePacket_def.m
4
5 nextPacketToReceiveToken = pn.GetTokens('pNextRec', 1, 'FIFO');
6 k = nextPacketToReceiveToken.Colors{1};
7
8 receivedPacketToken = pn.GetTokens('pB', 1);
9 n = receivedPacketToken.Colors{1};

10
11 color.InheritColors = false;
12 color.SelectedTokens = [receivedPacketToken

nextPacketToReceiveToken];
13
14 if str2double(n) == str2double(k)
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15 nextPacketToReceive = num2str(str2double(n) + 1);
16 color.NewIndependentColors = {...
17 'pReceive', receivedPacketToken.Colors...
18 'pNextRec', nextPacketToReceive,...
19 'pC', nextPacketToReceive};
20 else
21 color.NewIndependentColors = {...
22 'pReceive', 0,...
23 'pNextRec', k,...
24 'pC', k};
25 end
26 fire = true;

Code Listing 5.8: TDF for Receive Packet

5.3.4 Transmit Acknowledge transition

This transition is nearly identical to the Transmit Packet transition described in
section 5.3.2. It only differs in the input and output places. Further explanation
of the TDF is therefore not needed.

1 function [fire, global_info] = ...
2 tTransmitAck_def (pn, global_info, color)
3 % TDF: tTransmitAck_def.m
4
5 if rand > 0.75
6 %acknowledgement is dropped
7 tokens = pn.GetTokens('pC', 1, 'FIFO');
8 color.NewIndependentColors = {'pD', 0};
9 color.InheritColors = false;

10 color.SelectedTokens = tokens;
11 end
12 fire = true;

Code Listing 5.9: TDF for Transmit Acknowledge

5.3.5 Receive Acknowledgment transition

The last transition has the responsibility of receiving acknowledgments. Re-
ceive Acknowledgment will update the color of the token in NextSend with the
acknowledgment received from D. The implementation is simple and straight
forward. When firing, Receive Acknowledgment will take the token from NextSend
and replace it with the token received from D. The GetTokens operation is not
needed on NextSend since it always only contains a single token, and we don’t
need to know the color of it.

1 function [fire, global_info] = ...
2 tReceiveAck_def (pn, global_info, color)
3 % TDF: tReceiveAck_def.m
4
5 tokens = pn.GetTokens('pD', 1, 'FIFO');
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6 color.NewColors = {tokens.Colors{1}};
7 color.InheritColors = false;
8 color.SelectedTokens = tokens;
9

10 fire=true;

Code Listing 5.10: TDF for Receive Acknowledgment

5.4 Simulation results

Figure 5.2 shows how the protocol system could look like at the end of a sim-
ulation. The tokens in Receive and Send have the same colors, and in the same
order. This shows that the communication protocol indeed transmitted all the
data in the correct order without duplications as expected. The time values
associated with the packets at Receive is the time at which the packet was re-
ceived by the Receiver. Likewise the time values associated with the packets
at Send is the time at which the Sender received the acknowledgment from the
Receiver. Various information can be extracted from the results in order to anal-

Figure 5.2: The final marking of the communication protocol after a simulation

yse the performance or other properties of the communication protocol. As an
example, figure 5.3 shows when the data packets are received.

5.5 Summary

The protocol system effectively shows how powerful the colored version of
GPenSIM has become. Even though the example net is much more complex
than a PT-net, GPenSIM still retains its simple approach to building and simu-
lating Petri nets. It has been shown that the colored version of GPenSIM does
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Figure 5.3: Simulation results of packets received in place Receive

not fully comply with the CPN definition, but that small changes to the net
can be added to overcome some of these shortcomings. The protocol system is
often used as an introduction to CPN and as an example in other simulation
tools. It’s therefore very useful to use the protocol system to show how the
Colored GPenSIM implementation works.
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Chapter 6

Conclusion

The implementation of color functionality in GPenSIM has been very success-
ful. GPenSIM is now able to simulate systems with colors or data attached to
tokens. In addition to providing this new functionality, GPenSIM is still able to
simulate PT-net systems and is backwards compatible with the earlier versions
of GPenSIM.

Chapter 2 gave an introduction to CP-nets and the difference and relation-
ship to PT-nets. It has been shown how CP-nets add valuable properties to
a Petri net and an introduction to timed Petri nets and different firing poli-
cies was given. The different timing issues and firing policies in GPenSIM and
CP-nets resulted in that a slightly different approach to add CP-net support in
GPenSIM had to be made.

Chapter 3 gave an introduction to the object orientation support in MAT-
LAB, and introduced the new additions introduced in the 2008a version of
MATLAB. The latest object orientation support has done it possible to cre-
ate classes of the types in GPenSIM without suffering heavily on the added
performance overhead introduced when using classes. Object orientation has
provided an elegant solution to color implementation by locating most of the
added logic inside the classes. This allowed the colored version of GPenSIM to
reuse most of the code from version 2.1 and collect relevant code in the classes.
The introduction of handle classes also reduces memory usage and speeds up
simulation, by passing objects by reference rather than a copy.

A key design criteria for the color extension of GPenSIM was to preserve
compatibility with older versions. This allows a smooth transition to the new
colored version of GPenSIM. Simulation files created for GPenSIM version 2.1
can be run without any modifications on the new colored GPenSIM version.
The syntax for CPN creation and simulation does not differ much from the ba-
sic idea and syntax of previous versions, making it easy to start taking advan-
tage of the CPN capabilities in GPenSIM. Chapter 4 gave a detailed explanation
on the implementation details and how to create and simulate CP-nets

An example simulation of a CPN representing a simple communication
protocol has been shown in 5. This example is also used as an example in other
simulation tools and CPN documentations and is therefore very well suited for
demonstrating the colored version of GPenSIM.
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6.1 Future work

Object-orientation has been introduced in GPenSIM, but there still are many
object-orientation concepts that might be implemented. Events are one of these
concepts that GPenSIM might benefit from. The current objects created in
GPenSIM can also be optimized and made more compact.

Further investigation could be done to enable atomic firing of transitions so
that basic analysis concepts can be used on the timed versions of Petri nets in
GPenSIM.
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