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Abstract

Oil industry faces an underutilization problem bé tcaptured data during the extracting
process. This issue is a consequence of the lackfofmation regarding sensors’
accuracy. One effect can be a serious obstacleeirdévelopment of computer assisted

decision systems.

In a production well, it can be experienced thexistence of sensor redundancy and
enough information to assess credible probabilitieshis situation, we have to strongly
depend of the experts’ ability to provide altermasi based on their understanding. These
skills can be a critical limitation and turns paularly difficult the establishment of a

prediction model.

With this work we propose a Bayesian Network apgioas a promissory data fusion
technique for surveillance of sensors accuracy. pvdeed the usefulness of this method
when it seems there isn’'t enough feasible dat@mnstcuct a model. In presence of certain
data constrains we suggest an inversion of theataeistionship. This approach can be a

possible solution to help the expert in accessorglitional probabilities.
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Chapter | - INTRODUCTION

The chapter pretends to give a short overview isfwork. It starts with the description
of the background and the importance of the thesigeneral outline of the work is

given. The chapter finishes with the aim’s defuoniti

Rui Maximo Esteves 1
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Thesis Overview

In oil & gas extraction process each reservoirlzadivided into homogeneous zones.

From an IT perspective an oil & gas zone can be ssea closed uniform environment
that contains some mixture of hydrocarbons undersidime pressure and temperature
conditions. Each well has a set of sensors to measwironmental conditions such as
temperature and pressure. These conditions aiaedist the head of the well and in the

reservoir (hole). A choke placed between theseplaoces control this difference.

Statoil Hydro stated that the pressure gauges bet¢oroose performance with time. As
wells lifetime goes on, the measures became marertainty. The estimated lifecycle of
a well can be more than 10 years. On the other,haarking at high temperatures can

reduce the sensor lifetime to 2-3 years.

Until this point in time, Statoil does not haveamhation about the accuracy of the
measurements provided by the sensors. They sug@tane or more may be inaccurate
but they cannot identify which one. Consequenthg tisefulness of this data has been
very limited. Statoil wants to have more informatiabout the accuracy of the sensors’

measurements in order to increase their reliability

In a production well, the quality of sensors’ meaaseents is an issue which the relevant
attention has not been given. According to domsp®&cialists, studies in this field could
benefit the oil sector by providing a better cohtod the extraction process. This
understanding should be one basic stone in thela@ug of decision support systems.
The usefulness of complex systems can be questighed there is no information about

the data accuracy they rely on.

Since there is no sensor redundancy, we had te slsévproblem using information from
the different sensors’ types and data fusion tephes. We faced the challenge of
inexistent consistent data to access probabildres$ to determine correlations between

variables.

In the begging of this work we made a revision almtata fusion methods. The aim was

to find one that suits our special needs. Theistppoint was classifying them according

Rui Maximo Esteves 2
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to data fusion levels. We stated that our probless in the feature level and Bayesian

Networks could be a promise method.

However, the examples found in the literature galherassume existence of data to
assess probabilities or the ability of an expertdsily express them as believes. As this

was not the case, we established then the followmppthesis:

H: In absence of data we may use Bayesian Networdensor accuracy surveillance.

Latter we experimented different ways to constthet Bayesian Network. The aim was

to test if the hypothesis was true or not.

We tested without success the conventional apprtaatesign the Bayesian Network
structure. However, we found more plausible to tmies the model by reversing the
causal direction of the relationships. In this yage can easier express the knowledge

of the expert when in presence of certain datatcainss.

To develop this work we had several meetings wittpeets in the domain.

Rui Maximo Esteves 3
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Aim of the thesis

The present model attempts to solve the followithgxraction problem.

In each production well we have three differentsses (S) that can be inaccurate:
- bht (S1) — borehole temperature;
- bhp (S2) — borehole pressure;

- whp (S3) — well head pressure.

The model’s aim is to access probabilities forgaasors’ accuracy on a production well.
The challenge is doing it with no trustable datadastruct the model.

We want to investigate if this can be possible giglata fusion techniques and expert’s

knowledge.

! We didn’t find a relation between well head tengpere and the other variables, as so, the modetaan
predict the accuracy.

Rui Maximo Esteves 4



Chapter Il - THEORY

We start our theoretical revision by a classifisatof several data fusion methods into
taxonomy. For those who are not familiar with themg provided some examples as

annexes.

There is an explanation of the reasons why Bayeses the chosen method. We then
presented more carefully its subjacent theory. VAexe of similar studies is shown. The
chapter ends with an overview of the Bayesian &tions.

Rui Maximo Esteves 5
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Data Fusion taxonomy

Introduction

There are some distinct data fusion’s taxonomiase Of the most well known was
developed by the Joint Director of Laboratories L)JBrom the U.S. Department of
Defense. The JDL model was developed for militangppses and consist of four levels
of data fusion:

=

identification and description of the objects;
2. interactive process to fuse spatial and tempotaienrelationships;

3. combination of the activity and capacity of the rageforces to infer their

force;

4. related with all other levels and is responsible rfegulation of the fusion

process.

This model has been used also for other fieldsregé processing. However, given its
specific nature is difficult to use in other donmirMore generic model has been
proposed by other authors with its base on JDL.

[1] presented the Data Fusion Architecture (DFAyvimch the division of levels is taking
in consideration the difference between data amthivi@. According to these authors,
data can be defined as a measurement of the emartrihat is generated by a sensor or
other type of source and variable is determinedabyanalysis of the data (feature

extraction). A single type of data can provide onenore variables

2 From an image (raw data) an application can detemihether the image contains a person (variable =
person-present?), an animal (variable = animalgmt®3 or an object (variable = object-present?).

Example extracted from 1. Carvalho, H.S., etAagjeneral data fusion architecturen Proceedings of the
Sixth International Conference of Information Fusig003.

Rui Maximo Esteves 6
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DFA presents three levels of data fusion:
1. data oriented;
2. task oriented (variable);

3. mixture of data and variable fusion.

The levels differentiate whether the fusion procdessiade before any data analysis (at
the data level), after the data has been analyaieth¢ variable level), or is done on a

combination of raw data and variables (at the mextavel).

Others authors proposed variations of JDL modethénnext pages, a taxonomy based
on [2] [3] will be presented.

Rui Maximo Esteves 7
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JDL Based Taxonomy

In table 1 we present 3 level taxonomy based on diadel. However this methods’
classification should not be seen as rigid. Depanain the application, some of them
can be used at several levels.

JDL Based Taxonomy

Level Methods

Raw Data Kalman Filtering

Figure of Merit

Gating

Feature data Bayesian Theory

Dempster-Shafer

Neural Networks

Clustering Algorithms

Template Methods

Decision Fuzzy Logic

Genetics Algorithms

Expert Systems

Blackboard Systems

Table 1- JDL Based Taxonomy

Rui Maximo Esteves 8
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Raw data level

In this level the data fusion is processed direfittyn the sensor data. According to [3],
when multisensor data is commensurate (i.e. daien fthe same nature which is
measuring the same physical phenomena) then theeasor can be directly combined.
The data association can be done by correlatioonefset of sensor observations with

another set of observations.

Methods

Kalman Filtering

The Kalman Filter can be defined as: “a set of maitical equations that provides an
efficient computational (recursive) means to est@ribe state of a process, in a way that
minimizes the mean of the squared error” [4]. Adaog to these authors “The filter can
be very powerful in several aspects it supportsmesions of past, present, and even
future states, and it can do so even when the ggatature of the modeled system is
unknown”. This feature can be used in target pmsitig by removing the noise from
sensor signals in order to better determine thegmteand future positions [2]. It uses a
recursive solution in that each updated estimatehef state is computed from the
previous estimate and the new input data. This teah efficient computing solution as

only the previous estimate requires storage.

Kalman filters are based on linear dynamical systeliscretised in time. It is assumed
that the system and the measures are affected ke WWhussian noise. This means the
noise is not correlated in time, and thus we caurag that at each discrete time, the
noise affecting the system and measures are indepemf past or future values [5].

However, we can extend the use of Kalman filterimghon linear systems through a

Rui Maximo Esteves 9
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linearization procedure. The resulting filter isereéd to as the extended Kalman filter
(EKF) [6].

This filter is used for vision tracking on robotieeal time traffic-control algorithm, and

autonomous driving systems.
The steps to use the Kalman filter for vision tragkare:

1. Initialization (k=0). In this step it is looked fdine object in the whole image due
we do not know previously the object position. Watain this way x0. Also we
can considerer initially a big error tolerance.

2. Prediction (k>0). In this stage using the Kalmadiefiwe predict the relative
position of the object, such position is consideasdsearch center to find the
object.

3. Correction (k>0). In this part we locate the obj@eghich is in the neighborhood
point predicted in the previous stage) and we tsseeal position (measurement)
to carry out the state correction using the Kalrigar finding this way.

The steps 2 and 3 are carried out while the olbjacking runs[6]

In annex A is presented an example of a Kalmaerftapplication to robotic football.

Other methods
[2] made reference to Figure of Merit and Gatinguasd with the aim to decide which

observations should be considered and which aflei@utThe basic principle relies in

considering only the observations that are belaegfaned threshold.

Rui Maximo Esteves 10
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Feature data level

When multisensor data is not commensurate therbeansed on a feature/ state vector
level. The aim of this level is the extraction betrepresentative features from the raw
dat&. On this level, one should extract the featuremfthe various sensor observations
and combine them into a single feature vector [3jis feature vector should be a

synthesis of more meaningful information for guglimuman decision-making.

Methods

Bayesian theory

According to [2] Bayesian theory is one of the mostmon techniques employed in
level two of data fusion. These authors encourdgeuse of Bayesian: "The use of
multiple sensors in data fusion projects can predtanflicting data which, in turn, can
cause decision problems. Application of the Bayes$ieeorem in such cases has proven
successful in overcoming this challenge. It modkés unknown system state by using
probabilistic functions to determine an approprsgeof actions”. Since a certain level of
uncertainty is generally associated with sensaats,dit can be improved by quantifying
the uncertainty behind each sensor decision and tbemparing with some
predetermined decision threshold level.

In Annex B is presented an example of Bayesianrthapplied to pattern recognition.

3 Kessler and White explain this concept compatiniipe cartoonist’s use of key facial characterssto
represent the human face. 3. Kessler, O. and Re\\ata Fusion Perspectives and Its Role in
Information Processingn Handbook of Multisensor Data Fusion - Theory andd®ice M.E. Liggins,
D.L. Hal., and J. Llinas, Editors. 2009, CRC Pré&sca Raton.

Rui Maximo Esteves 11
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Dempster-Shafer

Dempster-Shafer (or theory of belief functions) tenconsidered as a generalization of
the Bayesian theory of subjective probability. Hoem in opposition to the Bayesian
theory DS does not requires probabilities for eqabstion of interest, belief functions

allow us to base degrees of belief for one quesiioprobabilities for a related question

[7].

“Dempster-Shafer allows alternative scenariostiergystem, such as treating equally the
sets of alternatives that have a nonzero intemector example, we can combine all of
the alternatives to make a new state corresponirignknown”. But the weightings,
which in Bayes’ classical probability theory ar®lpabilities, are less well understood in
Dempster-Shafer theory. Dempster-Shafer's analogpuemntities are called masses,

underlining the fact that they are only more oslesbe understood as probabilities” [8].

Object recognition is one of the uses of this méftamd has been applied to detection of
ship wakesfrom synthetic aperture radar imagesr{@jotic, automated guided vehicles
[2], and other uses as: color image segmentati@j; [epresenting the uncertainty

inherent in the characterization of containerizzgdiological waste [11].

To better understand DST’s concept, it is preseatsinple example in ANNEX C and

in ANNEX D an example applied to aircraft detection

Rui Maximo Esteves 12
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Neural Networks

The simplest NN is known as a Perceptron whichsgséem with an input and an output
layer.

A Feed Forward Neural Network is a system with @pout, an output and at least one
hidden intermediate layer which is formed by simp@mputational units interlinked
called neurons.

Hidden layer Outputs

Figure 1- A simple feed Forward Neural Network

After a training process the neutrons establislapges (weights) between them and the
network should have the ability to respond to nesiterations [12].

TEACH fUBE

21

INFUTSE OUTPUT

W

TEACHING INPUT

Figure 2- A simple neuron

Rui Maximo Esteves 13
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This network has some advantages over either Bayesi DSER methods. The most
relevant is the ability to process data fusion withthe need of a priori information on a
parallel way [2]. Neural is been widely applied different nature forecasts: weather;
traffic; internet traffic, stock market among otheHowever, there are innumerous
different applications with this method: TraveliBgleman's Problem (only to a certain
degree of approximation); Medicine; Electronic NoSecurity; Loan Applications and

Character Recognition Image Compression [13].

In annex E there is an example illustrating theliappon to pattern recognition.

Other methods

Other techniques for feature data fusion less aseclustering algorithms and template
methods [14].

Rui Maximo Esteves 14
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Decision level

In this situation the fusion occurs at the decidmrel. According to [14], it can also be
called as postdecision or postdetection fusion.sThvel can be achieved applying
Boolean operators or using a heuristic score owenbinations of decisions from

independent sensors detection or classificationspat

Methods

Fuzzy Logic

Fuzzy Logic is a method appropriate to model sitnst where the boundaries are not
clearly identified. The fuzziness can be presemtastract and concrete situations and this
theory allows specifying their relevant attributasd relationships [15]. Related to the
drifting of the perfect calibration of sensors, [1éferred the usefulness of Fuzzy Logic
“in capturing the desired behavior of the clasaiilcn algorithm for diverse and
nonlinear sensor responses is that we can blemdmiation according to our human
expert knowledge”. According to this author theutgpto the fuzzy logic could be
outputs from other algorithms, such as neural neksyoor other inference logic

networks.

[17] described the following features about FL thetkes it a particularly good choice

for many control problems:

» It is inherently robust since it does not requiregse, noise-free inputs and can

be programmed to fail safely if a feedback sensdsar is destroyed.

* The output control is a smooth control function gitessa wide range of input

variations.

» Since the FL controller processes user-definedsrgtererning the target control

system, it can be modified and tweaked easily tprave or drastically alter

Rui Maximo Esteves 15
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system performance. New sensors can easily bepoied into the system

simply by generating appropriate governing rules.

FL is not limited to a few feedback inputs and onéwo control outputs, nor is it
necessary to measure or compute rate-of-changenptees in order for it to be
implemented. Any sensor data that provides someatidn of a system's actions
and reactions is sufficient. This allows the sessto be inexpensive and

imprecise thus keeping the overall system costcanaplexity low.

Because of the rule-based operation, any reasomabtder of inputs can be
processed (1-8 or more) and numerous outputs flrdoce) generated. However
it would be better to break the control system gnmaller chunks and use several
smaller FL controllers distributed on the systenache with more limited
responsibilities.

FL can control nonlinear systems that would beialiff or impossible to model
mathematically. This opens doors for control systedhmt would normally be

unfeasible for automation.

The Fuzzy Logic can be used on several fields as:

on selection of the most suitable material for artipalar application;
hydrodynamic lubrication; elastohydrodynamic lubtion, fatigue and creep;
cumulative fatigue damage analysis; reliabilityesssnent; process control; total
risk and reliability with human factors; system ddion auditing; reframing
standards using fuzzy sets for improved qualityt@dncorrelation of statistical

and automatic process control; road transport licgi$18];

on measuring automobile speeds and congestiors|ayatrating automatic trains
using predictive logic, and selecting paths in aatoous vehicle navigation
systems [2].

Rui Maximo Esteves 16
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[17] suggests the following steps to design an ydtesn:

1.

Definition of the control objectives and criterlhat am | trying to control?
What do | have to do to control the system? Whiadl kif response do | need?

What are the possible (probable) system failurees®@d

Determination of the input and output relationshi@me should choose a
minimum number of variables for input to the FL iveg(typically error and

rate-of-change-of-error).

Break the control problem down into FL rules. Thelglem should be split
into a series of IF X AND Y THEN Z rules that dedirthe desired system

output response for given system input conditions.

Creation of FL membership functions. The membesshgfines the meaning

(values) of Input/Output terms used in the rules.

Development of necessary pre- and post-processihg réutines if
implementing in S/W, otherwise program the rulde the FL H/W engine.

System test: evaluate the results, tune the ruldsrembership functions, and

retest until satisfactory results are obtained.

In annex F there is an example applied to a tenyoeraontrol device.

Genetics Algorithms

Genetics Algorithms are another method used asuecievel. It consists on stochastic

optimizations which simulates the process of natexelution. These algorithms are

suitable for very complex systems, including muétipbjectives optimization.

GA can be viewed as a family of computational medespired by Darwin’s evolution

theory. Potential solutions are encoded on a siraptemosome-like data structure and

follow a reproductive cycle represented on nexirig

Rui Maximo Esteves 17
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AN children 4 .
(reproductlon ) \I‘ﬂOdIfIC&’(IOﬂ)
k modified
parents children

z( population ) ( evaluation )

evaluated children
deleted
members
( discard )

Figure 3- The GA reproductive cycle

An implementation of a GA usually starts with a plgpion of chromosomes on which

we select a set of parents for reproduction. THectsd parents generate modified
children by genes’ recombination. A crossover ogaunen genes came from a fusion of
two different parents; however the recombination ba done by mutation of a single
chromosome. The resulting children are used to mew population that we hope to be
better. The selection process is done evaluatiag fitness (the more suitable they are
the more chances they have to reproduce). Thigpeated until some condition is

satisfied. [19], [20]

Parentl (01101000) (01001000) Child1

Parent2 (11011010) (11111010) Child2

As with any method, the GA has its advantage asdd¥iantages. On next table there is a
resume of the most important ones [21].

Rui Maximo Esteves 18
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Advantages Disadvantages

Only uses function evaluations Cannot use gradients

Easily modified for different problems Cannot epgilcorporate problem specific
information

Handle noisy functions very well Not good at idéyitig local optima

Handles large, poorly understood seardto effective terminator

spaces easily

Good for multi-modal problems Not effective for sotio uni-modal
functions

Return a suite of solutions Needs to be coupleth i local search
technique

Very robust to difficulties in the evaluation

of the objective function

Easily parallelized

Table 2 Advantages and disadvantages of Genetic Aigthms

Genetics can be used in a hierarchical fuzzy mamtepattern extraction and to neuro-
fusion models complexity reduction. They can beduge an optimization technique, to
extraction of knowledge, in combination with fuzayles, fuzzy membership, and with

neural networks and fuzzy-logic.

A neuro-fuzzy-genetic model was proposed for dataimg and fusion in the area of
geoscience and petroleum reservoirs. The use etiffuzzy DNA model was propose
for extraction of knowledge from seismic data arapping the wireline logs into seismic

data and reconstruction of porosity [12]. A listhvinore uses can be found on annex G.

In annex H one can find an example applied to tnage&alesman problem.
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Expert Systems

Expert System is another method that can be usddcaion level. A rule-based expert
system is a set of rules that can be applied wilaation of facts in a repeatedly way by
an engine. These rules represent heuristics tHateda set of actions to be taken in a
given situation and facts represent circumstanieasdescribe a certain situation in the

real world. [22]

The Expert Systems are present in oil industryiapibns such as: "Extra Pair of Eyes”
(autonomous intelligent controlling systems); Ripeland Production Supervision; Plant-
wide network supervision and optimization; Abnorm8ituations Management;
Environment: Supervision and Control; Online-Ana&yzerification and value inference;
Planning, simulating and control of biochemical gasses [23]. [24] have studied an
expert system where a crude oil distillation colummlesigned to predict the unknown
values of required product flow and temperatureequired input feed characteristics.
The system is also capable to optimize the distitaprocess with minimizing the model
output error and maximizing the required oil praglut rate with respect to control
parameter values. In combination with expert systeenmodel also use neural networks

and genetics algorithms.

In simple rule-based systems, there are two kirfdmference, forward chaining and
backward chaining. In annex | and J one can fin@aample of forward and backward

chaining systems.

More examples of expert systems applications a¥egnted in annex L.
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Blackboard Systems

A blackboard system is an architecture that caegmatte multiple problem solving

modules (referred to as knowledge databases). types of integrated problem solvers
can make use of more than one problem system attampt to overcome the inherent
limitations of a single heuristic expert system.eTproblems solvers may also use
different technologies. For example, a system migktgrate a heuristic rule based
reasoning system with a case-based reasoning sgsigmpossibly a model based system.
These architectures can be used for a wide ranggsk$ such as classification, design,

diagnosis, repair etc. [25]

Picture 15 represents a blackboard architectura gpeech understanding system. In this
picture, one can see a set knowledge sources rigainodules) sharing a blackboard that
is a common global database. The contents of thekbbard are often structured

hierarchically and called hypotheses. Knowledgersesi respond to changes on the
blackboard, and interrogate and subsequently tireobdify the blackboard. This

modification results form the creation, modificati@nd solution of hypotheses. The
knowledge sources have the possibility to commueiead cooperate with each other
through the blackboard. In blackboard architectaeeh knowledge source responds only
to a certain class or classes of hypotheses. Tingsetheses, that a knowledge source
responds to, often reflect the different levels tire blackboard’'s hierarchy. The

blackboard holds the state of the problem solutwnije the knowledge sources make

modifications to the blackboard when appropria28] [
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Blackboard
_-.I/
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Figure 4- The architecture of Hearsay IlI- a speeclunderstanding system
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Data Fusion taxonomy

Hard and Soft Decision Taxonomy

Apart from the JDL’s based taxonomy, some authoggsst a different classification of

methods regarding the decision process.

Hard and Soft Decision Taxonomy

Decision Type

Method

Description

Hard decision

Boolean

Apply logical AND, OR to combine independent

decisions [14].

Weighted sum

Weight sensors by inverse of covariance and

sum

score to derive score function [14].
M-of-N Confirm decision based on m-out-of-n sengors
that agree [14].
Soft decision | Bayesian See chapteFaxonomy

Dempster-Shafer

Fuzzy variable

Neural networks

Genetics

algorithms

Expert Systems

Blackboard

Systems

Table 3- Hard and Soft Decision Taxonomy

Rui Maximo Esteves
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This classification cluster methods inside two bagoups [14]:
» hard decisions which consist on a single optimuoicgh

» soft decisions, in which decision uncertainty irtledensor chain is maintained

and combined with a composite measure of unceytaint

In opposition to hard computing, soft computingakerant to imprecision, uncertainty,
and partial truth. According to [12] soft computig tractable, robust, efficient and

inexpensive.
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Why Bayesian?

According to the presented JDL based taxonomy,dasa fusion problem belongs to
feature level.

The method chose was the Bayesian Networks.
The main advantages of using Bayesian in datariugionmarized by [26, 27] are:

1. Bayesian statistics is a coherent system for glyamgi objective and subjective

uncertainties.

2. Bayesian provides principled methods for the madgimation and comparison

and the classification of new observations.

3. Bayesian statistics provides a natural way to combdiferent sensor

observations.

4. Bayesian statistics provides principle methods fiwaling with missing

information.

5. Bayesian provides a definition of "personal probgBiwhich satisfies the same
set of fundamental axioms which classical statestie insist must hold for
relative frequencies. This fact allows to focusesnaich attention on the decision-

maker as on the process or phenomenon under study.

Analyzing the data from the sensors it is veryidift to assess the probabilities in a
classical way. Since we do not have sensor reduydam each well, there is no way to
confirm if the measure is correct or not. As sgeasing frequencies from the data is a

though task and frustrating in a certain point.

The basic premise of Bayesian statistics is thhtumknowns are treated as random
variables and that the knowledge of these quastisesummarized via a probability
distribution. [26]

Specifically Bayesian Networks extends the advantafjbeing able to reason in the

presence of uncertainty, prior assumptions, andnipdete data. According to [28], they
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can intermix expert judgment, statistical distribns, and observations in a single model.

Further, they are able to learn from evidence deoto update their prior beliefs.

BN models have several advantages over regresssedbmodels. BNs do not rely on
point values of parameters that have been derikezgh some “best fit” procedure.
Instead, the whole distribution of a variable islugded. Similarly, BN models do not just
predict a single value for a variable; they pred&probability distribution. By taking the
marginal distributions of variables of interest, get a ready-made means of providing

guantitative risk assessment.

We didn’t choose Neural Networks because we ddae¢ data for the learning process.

Rui Maximo Esteves 26



CHAP Il - Theory Bayesian theory

Bayesian theory

To a better understanding of the Bayesian Netwteksis start first with some notions

about Bayesian theory.

Bayesian dates from the eighteen century and ginsots with the English Reverend
Thomas Bayes work [29]

This theory presents two important concepts: thgeBian probabilities and the theorem

(also known as rule).

In opposition to the frequency concept, the Bayesan be related with partial beliefs in
a different form to face probabilities. A probatylican be thought as a quantitative
measure of the strength of one's knowledge or efsobeliefs. This way, we can assess
them using experts’ knowledge and without havirgidrical data. With this concept it is
possible to deal with subjective beliefs and useninto a mathematical model.

Other idea subjacent to Bayesian is the conditigndhstead of a classical approach,
Bayes uses the notion of a probability of an ewata consequence of other events’
probabilities.

An example of a conditional probability statementhat, given event B, the probability

for event A to happen is x.
P(A|B) = x
This does means that P(A) = x when B is true amuyking else is irrelevant to A.

The Bayesian theorem is

P(B|A)P(A)

P (A|B) = P(A|B)= P(E)
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Where [29]:

P(A) is the prior probability or marginal probabjliof A. It is “prior” in the sense

that it does not take into account any informaabout B;

P(A|B) is the conditional probability of A, given B is also called the posterior

probability because it is derived from or depenpisruthe specified value of B;
P(B|A) is the conditional probability of B given A,
P(B) is the prior or marginal probability of B, aadts as a normalizing constant;

Intuitively, Bayes' theorem in this form descriibe way in which one's beliefs
about observing 'A'" are updated by having obse®ed

Rui Maximo Esteves 28



CHAP Il - Theory Bayesian Network

Bayesian Network

According to [30] a Bayesian network (BN) consisits

a set of variables and a set of directed edgemtirtke variables;

each variable has a set of mutually exclusivedistates;

- the edges express dependency relationships betiveerariables, forming a

DAG (direct acyclic graph).

- for each variable A with parents B1, ..., Bn; thera conditional probability
table (CPT) P (A|B1, ...,.Bn) to quantify the deperdenFor variables
without parents, the table is related to uncondé#io(also called marginal)

distributions.

In a BN, when we observe a variable, the obsematan be entered into the model by
reducing their marginal probability distribution goprobability of one for the observed
state and zero to the remaining stat@he presence of this new evidence updates the
curve probability distribution of its children atite distributions of its parents. Applying
Bayes’s theorem, observations are propagated meelyrshrough the model, updating
their beliefs about probable causes and so leam fhe evidence entered into the model.
[28]

The Bayesian Networks allows any node to serveith&rea query or an evidence
variable. This is a very powerful characteristid allows the usage of the network in
several directions. Let's consider the BN presemedhe next figure to better elucidate

the different kinds of inference.

* Some times the variable can be represented byal iserval containing the value in the continuous
case. The discretization chosen must be a compedmeisveen the accuracy of the evidence added and
computational feasibility.
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Figure 5°- BN example to elucidate different types of querie
Example taken from the medical context where D1 an®2 are two different diseases; S1, S2, S3
symptoms; TR1, TR2 tests results realized to the piant.

There are four distinct kinds of inference that barmperformed [31]:

» diagnostic inference (from effects to causes). dxen a symptom S1 infer the
probability of the pathology D1, P(D1|S1);

» causal inference (from causes to effects). Ex: rgidsease D2 find the most
likely symptoms, P(Si|D2);

* inter-causal inference (between causes of a coneffent). Ex: given S2 infer
P(D1] S2), but adding evidence that D2 is true madke probability of D1 go
down. Although D1 and D2 nodes are independenptesence of one makes the
other less likely;

* mixed inferences (combining two or more of the a)ov

According to [32], the structure of the directedn is a representation of a factorization
of the joint probability distribution. As many facizations are possible, there are many
graphs that are capable of encoding the same poottability distribution. Of these,
those that minimize the number of arcs should beenueal.

[32] refer thatfrom the point of view of knowledge engineeringagins that reproduce

the causal structure of the domain are particuleoiyvenient, as they in general reflect

® From: 31. Milho, I. and A. Fred User-Friendly Development Tool for Medical DiagimBased
on Bayesian Network2008, unknown.
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the expert's understanding of the domain in a beteey. These kinds of graphs also
improve interaction with a human expert at the nduelding stage and are readily
extendible with new information. Finally, these lauts states that causal models

facilitate user insight once a model is employed.

However, this causal approach to structuring theblem may present a lesser intuitive
conditional probabilities assessment. This may bera serious difficulty when there is
no sufficient data to help assessing these prababiand we have to rely solely on the
expert’'s believes. In this situation, we may havehoose the graph structure that match
the available information in despite of the one whpresents the relations in the most

intuitive way.

We can find in the literature both approaches foe same kind of problem. [33]
presented an example of a BN to diagnose Pneumdotarding to their idea the arrows

indicate all of the conditional relationships beséndindings and diagnosis.

Pneumonia

Figure 6°- BN example of an inverse graph approach.
In this approach arrows goes now from the symptoma the disease.

Serial connection is an import concept related td ®hich help to introduce d-

separation. To explain serial connection let usm®er the example in next figure. In the
present network, A has influence in B and B hakiarfce in C. Consequently, evidence
on A will influence B and B will transmit it to fprming a communication channel.
However, if the state of B is known, and the eviteis inserted in the network, A and C

will became independent and communication charsnetaken.

633, Berner, E.S., H. K. J., and M.J. Béllinical Decision Systems. Theory and Practit@96, New
York: Springer-Verlag
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As a conclusion, evidence may be transmitted tHraugerial connection unless the state

of the variable in the connection is known. [30]

Figure 7. Example of serial connection.
When B is instantiated with evidence, the communid¢®n channel between A and B became blocked.

According to [34], a group of nodes Z is said tegparate the disjoint groups of nodes X
and Y when either the nodes Z are ascendants ¢f gpatups X and Y, or Z is an
intermediate group of nodes. In the next two figumee can see an example of both types

of d-separation.

Nodes Z

Modes X

Modes Y

Figure 8’. Example of d-separation- Z nodes are ascendari$ X and Y

" From: 34. Carlos, A., T. Lorenzo, and R.-A. Juaraphical models for problem solvinGomput.
Sci. Eng., 20002(4): p. 46-57.
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MNodes Y

Modes X

Figure 9. Example of d-separation.
Z is an intermediate group of nodes [34].
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Bayesian Network — a simple example

To better understand the Bayesian Network conegpttbnsider the simple exantble
- we have a tree loosing its leaves and we want ¢avkmhy;
- we know that if the tree is dry, this is can bejtisification;

- however the losing of leaves can be an indicaticndisease.

The problem can be represented with the Bayesi&anwdike presented on next figure.

=D (o

Figure 10- The tree problem

Let’s consider the following CPTs assessed by aeixn the domain.

Sick="sick" ' Sick="not"

0.1 0.9
Table 4- P(Sick)

Dry="dry" Dry="not"

0.1 0.9
Table 5- P(Dry)

8 Based on example extracted from: 35. Manual, R9261UGIN 7.0
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Dry="dry" Dry="not"
Sick="sick" Sick="not" Sick="sick" ' Sick="not"
Loses"yes" 0.95 0.85 0.90 0.02

Loses="no" 0.05 0.15 0.10 0.98
Table 6- P(Loses | Sick, Dry)

We can now determine some useful information:
- probability of Loses in a specific state.
e.g.. P(Loses = “yes”) = 0.1832
- marginal probability of Loses given evidences alfiak and/ or Dry states;
e.g.. P(Loses = "yes” | Sick = “sick”, Dry = “dry3 0.95;

- inferences about the probability of each parentemievidence about the

child’s state;.
e.g.. P(Sick = “sick” | Losses = “yes”) = 0.49

- inferences about the probability of one parentegievidence about the child

and other parent;

e.g.. P(Sick = “sick” | Losses = “yes”, Dry = “djy= 0.11
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Applications

There are innumerous applications of the Bayegiaory which covers distinct fields of

science.

However, Bayesian Networks approach’ is still atigely new research area. The main
reason is because it requires significant comprtatipower. Only in lasts few decades

we started observing practical applications.

Bayesian Networks contributed with useful improvetseon fields such as fault

diagnosis and sensor accuracy.
In 1999, [36] presented a model to diagnose famlgsrplane turbines with BN.

[37], in 2002, used Bayesian Networks coupled withltivariate state estimation to
provide both fault detection and fault diagnostipabilities for the Space Shuttle Main
Engines. In this study, the sensors informatiorvasidated with residual estimation
techniques. Then, if a fault occurs, a probabisitgssigned to the component that had the

failure; finally, Bayesian networks are applied ébagnosis.

[38], developed a model to diagnose faults in netwaf electric power distribution in

the same year.

In 2003, [39] proposed a distributed solution udBayesian Networks for the detection

of environmental features in wireless sensor ndtgor

In the same year, [40] presented a model to préakctinal quality of a software product.
With BN they constructed a prediction model thatiges on the structure of the software
development process explicitly representing compéationships between metrics, and

handling uncertain metrics, such as residual fanltee software products.

[41] in 2006 proposes the construction of a Bayesiatwork for vales failure diagnosis
in industrial systems. The authors used some stedildata to train a network to learn
the structure and parameters. Then, they desigmediiagnosis probabilistic inference
through the poly-trees algorithm. The network pnésehe valves failure probabilities

according to the evidences that show up in entraansors.
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[42] in the same year, developed a fault diagnmsi&utonomous Underwater Vehicles

based on Bayesian Networks.

Other field that benefited with Bayesian Networkswaedicine. [43] stated in 1998 a
large number of health care applications use DAGs.

In fact, we can find sophisticated BN approachlimaal dating from 1993. For example,
[44] used a Bayesian network with continuously edlinodes to propose an optimal
schedule of a certain drug delivery. To achieves,tHCPT's were replaced with
conditional density functions. This author used ®Nnfer the model parameters from a
population and to probabilistically adapt it to @esific patient (taking into account the
person’s history). This information is then usech&dp in defining an optimal policy of

drug delivery.

[32] presented in 1999 a Bayesian Network modeldiagnosis of liver disorders and

[45] in the year of 2000 a system to managementfettious disease.
[31] developed a user-friendly web based developrweh for medical diagnosis based.

[45] stressed in 2004 the importance of Bayesiatwarks and other probabilistic
graphical models as methods for discovering pattémbiomedical data and also as a

basis for the representation of the uncertaintretetlying clinical decision-making.

All this applications follow the “classical causdfect” approach. In fact it seems that the

“inverted” approach has not been sufficiently statdi
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Limitations

Bayesian Networks have some limitations in whatceons the difficulties to obtain the
necessary parameters. [37] experience some of theing their work related to fault

diagnostic capabilities for the Space Shuttle Mangines:

1. prior probabilities of failure for each of the coomgnts are obtained from
engineers and reliability test data;

2. conditional probabilities for some of the nodes @btained from past reports and
engineering estimates;

3. BN require tremendous numbers of parameters. Fdr Bade that has parents, a
conditional probability is required for each stat¢h regard to each combination
of parent states. A single node may require hursdoédalues.

4. conditional probabilities for multiple failure moslevere not available, so Liu and
Zhang calculated by averaging the values for edcth® participating single

failure cases.

Other crucial aspect that can turn into a limitatie the quality of the prior beliefs. [46]
wrote that a Bayesian Network is only as usefulh#s prior knowledge is reliable. The
author expresses that either an excessively opitmos pessimistic expectation of the
quality of these prior beliefs will distort the aetnetwork and invalidates the results. He
also emphasizes that selecting the proper distoibunodel to describe the data has a

notable effect on the quality of the resulting nextkv

[47] experience certain limitations on Bayesianiieks for modeling genetic regulatory
networks. The most important limitation they feglthe caution with which we must
interpret the model. Observing the graph is easyntslead between physical and

statistical influences between variables.

[48] stated that mixed joint influences are mor#ialilt to model, especially when one

parent contributes with a positive and other witkegative influence.
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Bayesian Networks may be difficult to model probéewhen causal relationships
between variables are complex and there isn’'t ablglenough data to the network learn.
It is the case of forward loops. However, theseasibns can be solved using more
complex approach as Dynamic Bayesian Networks[49].
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The chapter starts with the formulation of the fafrhypothesis on which relies the
model. An outline of the methodology followed igpented. The necessary assumptions
and considerations about the data’s quality are éxposed. There is also a description

of the necessary experiments realized. The chaptis with the test and its results.
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Hypothesis

With this work we intended to create a model taneste sensor accuracy using data
fusion. We believe that this could be done usingd3&an Networks.

The examples found in the literature generally mssane of the following:
* the existence of data to assess probabilities;
» the ability of an expert to easily express therbelgeves.

Unfortunately these conditions were not present.sAswe faced an extra challenge
besides the regular problem modeling. We wantetkdbif the application of BN was

possible with such constraints.
From a formal point of view our aim could be foragd through the hypothesis:
H: In absence of data we may use Bayesian Networehsor accuracy surveillance.

Following a certain methodology we tried to invgate its veracity.
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Methodology

To test our hypothesis, the present methodologyfalesved:
- identification of the variables and their dependemdationships;
- delineation of the Bayesian Network structure;

- estimation of all the conditional probability tabléCPT) necessaries to our
BN;

- determination of the model inputs. The inputs arielences we can observe

through analysis of the well logs. In the presentiet we call it conditions.

- query the BN using information about conditions dbtain the sensors’

accuracy probabilities;

If the results were according to our expectatidres iypothesis would be considered as

true.
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Assumptions

The model is based on a set of conditions estaddishith the help of experts in the

domain.
If the sensors are correct they should obey toraggenditions (C):

- bht/bhp = kte (C1). The coefficient between the gemature and pressure
should be constant. As a consequence of the idesdbgy, this should be valid

for a certain time period;

- bhp > min (C2). The borehole pressure should be avainimum reference

value;

- bhp —whp > diffP (C3). If the well is in produatiothere should be a pressure
difference between the bhp and bht;

- db (bhp/whp) = kte (C4). Relation between pressorethe choke should be
constant for a stable choke aperture value.

We assume that the well is in production.

° The aim of these conditions is to be generic @y éo understand despite of their accuracy. These
definitions were not consensual between the expémterder to implement the model to a specific
reservoir, we suggest studying more specific arndiléel conditions.
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Data considerations

Statoil Hydro provided a log from 2 platforms, eache with 4 production wells

connected to the same reservoir.

The measurements were from the borehole presshp), (borehole temperature (bht),
choke aperture, well head pressure (whp) and vegltihemperature (wht). These values

were collected in 5 mins intervals over a month.

After analyzing the data applying some statistifigires of merit we observed the

following problematic situations:
Cl:

- A-4 presents clearly an irregular value; A-2, AB31 and A-1 are not so bad.

We do not have information about the B-2 value.
Cc2:

- 2 wells presented an abnormal low bhp (one bell®abars and the other

negative (1));

- 1 well does not present bh values, as so, it hatetexcluded from the

analysis;
C3:

- A-2 and A-3 presents a higher pressure value atwhbk head than at

borehole.
C4:

- A1l A-2, A-3, A-4 presents a big variance betwd&enehole and well head

pressure at a stable choke.

The results are summarized in the next table.
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WELL

Conditions Al A2 A-3 A4 Bl B2 B3 B4
Cl bht/bhp s *mean 6% 0% 0% 26% 9% 2?2 3% 0%
C2 Bhp mean (bar) 279 14 -100 187 180 N/A 220 230
C3  Bhp-whp (bar) 198  -132 205 126 127 ?? 166 152

C4  Bhp/whp s/mean 24%  23% 24% 24%  12% ?? 6% 32%

Table 7- Analysis of data
Irregular situations represented by italic bold.

In this study we face a feasible data absence @mubAs there is no acceptable dati

limits the model developing in these important asge
- determination of correlations between sensor values
- determination of any probabilities;

- using the BN learning abilities to help establighinelations between

variables.
Therefore, we have to solve the problem using mefeiain expert's knowledge.

Consequently, we face the challenge of adaptingribéel in an easy way to incorporate

this information.

10 Standard deviation.
1 Details will be presented in the “Data considenrzsi’ section.
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Experiments

In presence of the data constraints we experimeatdifferent approaches in order to
test our hypothesis. These approaches were basddferent conditional probabilities

concepts presented by [50]:

- A: where causal probabilities are those of the fdRfTestResult=fail |
Sensor=bad), indicating the likelihood that a galttr test condition outcome

is caused by the state of a certain sensor.

- B: where diagnostic probabilities are those of tbem P(Sensor=bad |
TestResult=fail), indicating the likelihood that particular sensor is bad

based on the fact that a certain condition tesfdube.

In both approaches we used for C2 (bhp > min) aBddbp — whp > diffP) boolean

variables which represents the probability of thedition been satisfied or not. The same
logic was followed for the sensors variabfesWe used 3 states variables for both
approaches C1 (bhp/bhp = kte) and C4 (db (bhp/whyg) pretending to model a bad; a
good and an intermediate result of the conditidms.and Zhang, (2002) also used 3

states variables.
To model our network we used the Hugin Lite 7.1wsafe which can be found in:

http://www.hugin.com

2 The sensor variable has a probability associatéktand Not_Ok states. One should interpret ose ha
the complement of the other.
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Approach A

It considers the sensors as parents and the comsléis children.

The logic behind is to reflect the sensors as #uses of the conditions’ state.

The network provides the sensors’ probabilitiesg®ayesian inference.

This modeling style seems to be the classical ambrto fault diagnosis in engineering.

One possible network representation is shown in figuxre.

Sensnr@ Sensor bhp

bhp - whp > diffP bhpiwhp = ke

bhtibhp = Kie

Figure 11- Bayesian Network according to approach A

This approach has as advantage CPTs with few \esiafmaximum 3 variables).

However the children CPTs are not intuitive as theyin the form P(Condition|Sensor).

There is another problem related with the d-separaif the conditions. This states that

the conditions are independent from each otherngite sensors probabilities.

Despite the fact this approach seems to be sinagplarfirst glance, it became harder to

access the CPTs in order to express the expertledge/in a coherent way.

[50] stated this problem as “domain experts oftepeeience difficulty arriving at the
conditional probabilities in the causal directisrhich are needed for the network design,
as opposed to the probabilities in the diagnostecton, which reflect their natural way

of thinking.”

However, if we have considerable amount of feastlat it is possible to bypass this

problem using the learning abilities of Bayesianvideks.
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Sensor bht Sensor bhp Sensor whp
50.94 OK 4,63 OK 48.72 Ok
49,06 MNOT_OK G537 NOT_OK 51.28 NOT_OK

Sensor bhp

Ny

hhp - whp = difff

bhttbhp = Kie

hhpiwhp = kie

— bhp=Min bhp - whp = diff bhp/whp = kte
bht/bhp = Kte 0.00 Yes 0.00 Yes 0.00 Good
E—— | |P— o | | NSNS o | EE— g
000 By 0.00 Bad

Figure 12- Example of one simulatiof?

In the last figure we can see a simulation of tiNewing rough CPTs. Since bhp > Min
is false, the model can assume that Sensor bhpt iska So, bhp by itself justifies why

the others conditions are not good. With this $egvidences, the model cannot clearly
decide if others sensors are ok or not. This wasrding our expectations. Now, what if
we realize that bht/bhp = Kte is good? Since bhmisworking ok, we are not expecting

good unless bht is also not ok.

131n dark grey the evidences insert&tlight grey the probabilities provided by the nead
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Experiments

Sensor bht Sensor bhp Sensor whp
¥8.97 OK 16.75 0K 44.76 Ok
21,03 NOT_CK BEl25 NOT_OK 55.24 NOT_OK

bhttbhp = Kie

Sensor bhp

Ny

hhp - whp = difff

hhpiwhp = kie

— bhp=Min bhp - whp = diff bhp/whp = kte
ﬂ“te 0.00 Yes 0.00 Yes 0,00 Good
Good Mo Mo Medium
0,00 Medium 0.00 Bad
0.00 Bad

Figure 13- Example of an incoherent simulation.

As we can observe the model does not behave astedpdhe justification is related
with the conditions’ d-separation. We could add endependencies’ relationships to
improve the behavior. However, in that way we'drsto get complexes and non intuitive
CPT.

One could easily think that given only the priomgmnent probabilities (P(C), P(C")),
and the diagnostic conditional probabilities (H)CP(C'IT) ), it is possible to uniquely
determine the causal probabilities (P(TIC’), RCT) or (P(TIC), P(T'IC)). However, as
[50] proved this is not possible.
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Approach B

This approach considers the conditions as parewtshe sensors as children.

The model follows the logic of the “symptom -> dmgtic”, whereas the conditions are

symptoms to diagnose the sensors’ accuracy.

This kind of approach is also found in the meddiagnostic context [33].

bhtlbhp = Kte bhp=Min bhp - whp = diffP

Sensorbhp Sensorwhp

Figure 14- Bayesian Network according to approach B

The network has now links between the sensorspcesg the interrelation between them
and the conditions. At a first glance, these cotioes may suggest an erroneous
physical relationship between the sensors. In thdaincontext, one should interpret this
variable as the diagnostic about the sensor andheophysical state. Even if these two
concepts may seem similar, they differ in practaspects because the knowledge of one
diagnostic may influence the other sensor diagoopti’] alerts for some precaution in
Bayesian models interpretations. They state thaneBN are highly interpretable
structures for representing statistical dependsndieey can be easily misleading if
interpreted incorrectly. These authors stresseditattee importance of the distinction

between statistical interaction and physical irteoa.

The mixed joint influence in Sensor bht from C1 &ehsor bhp was difficult to model
as they have negative synergies. In a similar wayewperienced the same problem in

Sensor whp.
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bBhpfwhp = kte
BRt/BRp = kte bhp=>Min bhp - whp > diffP ol tfun Good
N Cood 0.00 YES 0.00 Yes| |DESEESESGEG—G— Mediim
0.00 Mo || G | | I o 0.00 Bud
0.00 Bad

bhttbhp = kie bhp - whp = diffP bhpiwhp = kte

Sensorbhp

Sensor bht Sensol bhp Sensor whp
0,00 OF 0.00 Ok BO.00 OFK
18EEE NOT_ oK 18EMEE NOT oK 20,00 NOT_OK

Figure 15- Example of BN under the same conditionas approach A.

We can now realize that BN assumes both sensorsoaiek. As bhp is not ok, the model
expects bhp/whp to be bad. Since this conditignagsmedium, whp can not be working

perfectly.

As this approach seems more suitable to solve imengroblem we tried to improve it

adding an extra condition to expresses the agenswss.
The age condition has two states which are:
- Old- when selected decrease the sensor accuracy;,
- Neutral- when selected the sensor accuracy isffeatted by this condition.

We also experimented adding more intermediate $aye@ tentative to get CPTs with
less variables and more easy to define. As sughdstg30] this was done by adding

mediating variables.
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bhtibhp = Kie bhp - whp = diffP hhphwhp = kte

@ Sensor bhp

Figure 16- Experiment to reduce the CPT’s tables coplexity.
This was done by adding mediating variables Z1, Y22, Z3, X3.

Even each CPT became easier to define, the oveaalel behavior was more difficult to

delineate. These results are confirmed by [50] wistate that multilayer networks are
often very sensitive to conditional probabilitieBhese authors alert to the fact that
probabilities have to be defined with greater aacybecause small perturbations in their

values may result in radically different diagnostimclusions.

They also refer: “In the choice between simple By networks or two-level Bayesian
networks and a multilevel network one needs to fallye consider the expected
diagnostic benefits versus the increased costeoktiowledge engineering, testing, and

real-time execution.”

In consequence of the unsatisfactory results ofnauitilevel approaches the final model

has only two levels as presented in the next figure

The required CPTs can be found in annex M.
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bhhpiwhp = kie

bhtibhp = Kie hhp - whp = difff

Sensorbhp

Figure 17- The final model including the sensor ageondition
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CHAP Ill — The Model Test and results

Test and results

We tested the final model to the problematic da&scdbed in the topic “data
considerations”.

We classified the data into the conditions’ statbgch are the model’s inputs.

The criterion for the first and last condition 8ood <5%; 5% <= Medium < 20%; Bad
>= 20%. The diffP is 120 bars and Min is 20 bars.

As we do not have information about the sensorvageset that condition on Neutral

state.
WELL
Condition A-1 A-2 A3 A4 B-1 B-3 B-4
Cl bht/bhp = kte Med Good Good Bad Med Good Good
C2 Bhp>Min Yes No No Yes Yes Yes Yes
C3  Bhp —whp > diffP Yes No No Yes Yes Yes Yes
C4  Bhp/whp = kte Bad Bad Bad Bad Med Med Bad

Table 8- Classification into conditions’ state¥

The results are presented in the next table. Adiorexd before, the variable sensor gives
the probabilities of the state OK and their commatary NOT_OK. If sensor is
measuring data correctly the state OK is more prgbdhan NOT_OK. An equal
probability distribution occurs when the model doed have enough information to
decide about the sensor accuracy.

14 Due to lacking information we excluded B-2.
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A-1 A-2 / A-3 A-4

Sensol whp Sensal whp Sensor whp
e ss.22 ok T ok 411 ok
e 41,78 NOT_OK 0,00 NOT_CK ] 35.89 MOT_OK

Sensor bht Sensor bht Sensor bht
s ss.00 oK 0.00 OK Emno ok
e 44,00 NOT_OK o MoT_okK [ | 10,00 NOT_OK

Sensar bhp Sensor bhp Sensar bhp
|| 20.00 OK 0.00 K || 10.00 OK
[NED . 00 NOT_OkK oo MoT_okK PEEn0 NOT_OK

B-1 B-3 B-4

Sensor whp Sensar whp Sensor whp
[ 48.00 OK Bms 4500 OK P 4056 OK
E 52.00 NOT_OK IS 55.00 NOT_CK I 59,44 NOT_OK

Sensor bht Sensor bht Sensor bht
s s2.00 ok . so.00 oK s 50.00 O
PN 48,00 NOT_OK BN 50.00 NOT_OK P 50.00 NOT_OK

Sensor bhp Sensor bhp Sensor bhp
B 40.00 OK = 5000 OK S 50.00 O
[ 650,00 NOT_OK 50,00 MOT_OK [ 50.00 NOT_OF

Table 9- Results presented by the model

The results confirm our initial expectations regagdvhich sensor is most probable to be

the cause of the data problem on each well.

These outcomes reinforce the possibility to com$tBN even in absence of data. The
initial hypothesis was proven to be true. As soydd#an is a technique suitable for

surveillance of sensors’ accuracy in a productief.w

Rui Maximo Esteves 55



Chapter IV - CONCLUSIONS

In this chapter we present the final conclusionem& considerations about practical

usages are given. It ends with some suggestiorfarthier developments.
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Conclusions

With this work we could conclude that our initigigothesis is true. Therefore Bayesian

Network is a suitable method for surveillance afss#s’ accuracy in a production well.

We found that when facing situations of missingsiiele data to construct the model and
limited expert knowledge it may became easier eiinthe causal structure. This can be
achieved by slightly modifying the variables ane trelations meanings in order to
express expert’ believes. However, this should dmylydone if the model is still easily

understandable.

The “inverted” approach has been rarely used, thaugan be a better alternative under
special constrains. It can be especially usefupinglthe expert in the critical task of
assessing his believes of probabilities.

Despite our satisfactory results, one should take ¢onsideration the following aspects

were simplifications:

» the conditions that variables should obey;

the probabilities assessment;

+ the number of states on each condition;

the classification criterions of this states.

As so, before applying this model in practice wespnt the following suggestions:
- revise the conditions;
- include more conditions;
- increase the conditions states and improvetiterions;

- revise the CPTs.
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Further developments

It would be interesting to extend this model in aywo use the measurements from the

others wells.

Since the several wells are all connected to tmeeseeservoir, one could try to find

correlations between the several sensors.

If we can find these correlations we could incogtera sensor redundancy approach into

this model.

It would also be interesting trying a Dynamic BagasNetwork approach to include the

evolution of the several sensor measurements ower t
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ANNEXES

ANNEX A- Exemple of Kalman'’s filter applied to robo  tic football

Object tracking is used in robotic football for elehination of ball's position in the field.
The robot’s trepidation and environmental factorsvigles noise to the measures. The
CAMBADA *° robotic football team uses Kalman to filter thisise and the results can be

seen on the picture 1 [51].

06 | | I ' . |
- unfiltered ball position : :
* filtered ball position (constant noise Kalman) . /
filtered ball position (dynamic noise Kalman) - o
* robot position : o
*
0.2_ LT —
o
E o P T RS TIRRTRTNE i
1;'; ‘ball hits the robot
c . - ‘and is deviated :
E . . . .
O -02- K L o i
3 ok :
o * "
2 *
u—_04_ * **'_ . A
§ : [ ball deviated due
* to field crests
06+ S i
*
$
4
R
—08F T i
Iﬁ.
¥
-
-1 | 1 | | | | | (N |
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

YY field coordinate (m)

Figure 18. Kalman filter application

The read measures of the position are representadolack dots. Positions filtered by

the Kalman filter with constant noise representath \stars. Positions filtered by the

15 CAMBADA- The 2008's robotic soccer world champibipswinner from University of Aveiro; Portugal
- uses Kalman filter to help tracking the positand velocity of the ball.
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Kalman filter with dynamic noidé represented with hexagrams. The robot position is

represented by the star in the circumference cejler

16 Dynamic noise increases with ball’s distance
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ANNEX B- Example applied to pattern recognition %

Let’s consider a three dimensional binary featueetor X=(x,X2,xs) = (0,1,1) that we

will attempt to classify with one of the followirdasses:

\ 4 J y
| 1 / . s
< .-‘_\— Y i x_'-. f
/ —_ Y
¥
Obsensed Class 1 Closs2

and lets say that the prior probability for class B(w;)= 0.6 while for class 2 iB(w2)=

0.4. Hence, it is already evident that there isaa tbwards class 1.

Additionally, we know that likelihoods of each inmndent feature is given lpyandq

where:

pi = P(%=1jw1) and q= P(%=1fv2)

meaning that we know the probability (or likelihgaaf each independent feature given

each class - these values are known and given:

p=1{0.8,0.2, 0.5} and q = {0.2, 0.5, 0.9}

therefore, the discriminant function g§x) = gi(x) - g2(x) or by taking the log of both
sides:

" Extracted from 52. Riggi, F. and R. Harmoucheayeb project on Bayes Decision Rule - Discrete
Features 2006.
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plx|ws2) +log plowr )

pX|ws) plws)

glx) = log

however, since the problem definition assumes ¥h& independent, the discriminant

function can be calculated by:

d
gla) = Z g o g
i=1
with
il — oy .
wile) = 2L %) g g
r!'J'{l — 1”1'}'
1. 08(1=0.2) _ o e o 1a D201-05) _ .
iy, = ln m = 2.TT; e = ln 1—L~"H:1—”.'3i - 1.39;
wy = ln f= — 219

0.9(1=0.5) —

0.6 1-0.8 1-0.2 1-05
w=In{=—) +1 1 1 — 1.0986
o = ({}.4) + "(1 —{}.2) + "(1 —{}.5) + “(1 —{}.9) :

gla) = 2.7Ta; — L.3%x — 2.10x, 4+ 1.0086

After inputting thex values into the discriminant function, the ansgeésr) = -2.4849.

Therefore this belongs to class 2. Below is a pfdhe decision boundary surface.
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1 X'—'
-{0,1'_,“

g(X)=0

0.5 0

X0 ’ P - X1

Figure 19- Decision Boundaries

All points above the plane belong to clagssince ifX = (0,1,1),g(x) = -2.4849 < 0.
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ANNEX C- Simple example of Dempster Shafer *®

Say we park our car in our usual spot but we dokmotv whether a friend might be
picking it up during the day. Say Sue comes intodffice and says your car is not there.
But we know that Sue is absent minded and so ddfg 6f the time is she looked in the
right spot. Thus, 90% of the time we have good @wvig that the car is gone, whereas the
other 10% we have no information one way or thewotfihus, we might believe that the
probability that the car is missing is at leasta@d might be up to 1.0. This we capture
with what Brachman and Levesque call a possilititgrval of [.9, 1.0] - where the lower
bound is called the belief in the proposition, &nel second is the plausibility of it being
true, say if all the uncertainty were resolvedawadr of our hypothesis. We write the first

term as Bel(p), and the second as PI(p), and weatate them with the formula

Bel(p) = 1 - PI(-p)’

i.e., the first indicates how certain we are almuivhere the second indicates how high
the probability could go given how certain we dratt-P. In this example, we have no

evidence that the car is still there, so the irgkiv[.9, 1.0].

Say we have another friend Bill, who also says thatcar in missing. But we know that
Bill only looks in the right spot 80% of the tim€&hus, looking at just his evidence, we
would have the possibility interval [.8, 1.0]. Nawnsider if both Sue and Bill tell me

that the car is missing

- how might I combine this evidence?

18 Extracted fromsa3. Ardis, Motes on Dempster Shafer Belief Functionfited; Available from:

http://www.cs.rochester.edu/~ardis/DempsterShadér.p
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It is true that the probability that both are rbleis .8 * .9 = .72, but this isn't the number
we are interested in, since only one of them hdsetceliable for us to know that the car
is missing. The probability that both Bill and Sare unreliable is .1*.2 = .02, so 98% of
the time one of them is reliable and my car will hessing. Thus, my new degree of
belief is .98, and the possibility interval is [,9B0]. In this case, all my evidence was
consistent, and as long as we believe the two pieteevidence are independent, our

conclusion seems justified.

What happens when evidence is inconsistent? Says&ysethe car is missing, and Bill
says the car is there (but might have misrecogritzetien he looked in the wrong spot).
Thus, for Sue we have the possibility interval .8f [L.0] as before, and for Bill we have

[0, .2]. We have to consider four cases:
» Sue is reliable, Bill is reliable - impossible snihey both can't be right!

» Sue is reliable, Bill is not, with probability .9.2 = .18 In this case, the car is

gone.

» Bill is reliable, Sue is not, with probability .1.8 = .08. In this case the car is
there.

» Both are unreliable, with probability .2 * .1 = .08 this case, we do not know.

How do we convert this into a possibility interv&2sentially we normalize. Since we
know at least one is unreliable, the sum of thedhron-zero probabilities above should
be 1, but the above calculations only give us Q8+.02 = .28. We fix this by
normalizing, and thus we belief that the car issmnig with .18/.28 = .643 and that the car
is not missing as .08/.28 = .286. Thus the possibiiterval for the car being missing is
[.643, 1-.286], which equals [.643, .714].
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ANNEX D- Example of D. S. applied to aircraft detec  tion *

Let’s consider the following example from aircrdétection. The system has two sensors
observing a target and the possible states are:

* detection of an F-111,

» detection of an F/A-18,

» detection of an P-3C Orion,

« “fast”, if we cannot distinguish between an F-1ihtlan F/A-18.

* “unknown”, where a decision as to what the airciafioes not appear to
be possible at all.

The sensors notice an aircraft and allocate thes@sa®m1l and m2 as set in Table 2.

Sensor 1 Sensor 2 Fused masses

Target type (mass m1l) (mass m2) (mass m1,2)
F-111 30% 40% 55%

F/IA-18 15% 10% 16%

P-3C 3% 2% 0.4%

Fast 42% 45% 29%

Unknown 10% 3% 0.3%

Total mass 100% 100% 100%

Table 10- Mass assignments for the various aircraft

The third column holds the final masses fused uBlagpster’s rule of combination.

19 Extracted from: 3. Kessler, O. and F. Whilata Fusion Perspectives and Its Role in Informatio
Processingin Handbook of Multisensor Data Fusion - Theory andd®ice M.E. Liggins, D.L. Hal., and
J. Llinas, Editors. 2009, CRC Press: Boca Raton.

20 Dempster requires the totals equal to 100%.
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Exemplifying to the F-111:
m1,2(F-111 m1(F-111) m2(F-111) + m1(F-111) m2(Fast) + m1(f)11
m2(Unknown)+ m1(Fast) m2(F-111) + m1(Unknown) m2()
= 0.30% 0.40 + 0.30x 0.45 + 0.30< 0.03 + 0.42 0.40 + 0.10¢< 0.40

=0.47

The other masses were calculated on a similarly. Whg third column was normalized

by dividing each by their sum yields the final maakies.

The fusion reinforces the idea that the targetnid=él11 and, together with our initial
confidence in its being a fast aircraft, means Watare more sure than ever that it is not
a P-3C. Even most of the mass is assigned to tbddst aircrafts, the amount of mass

assigned to the “fast” type is not as high as wghtnexpect.
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ANNEX E- Example of Neural Networks applied to patt ern

recognition #

Pattern recognition can be implemented by usinged-forward neural network that has
been trained accordingly. During training, the ratwis trained to associate outputs with
input patterns. When the network is used, it idesgtithe input pattern and tries to output
the associated output pattern. The power of newgborks comes to life when a pattern
that has no output associated with it, is giveamsput. In this case, the network gives
the output that corresponds to a taught input pattet is least different from the given

pattern.

[ ]

Figure 20- The Neural Network

For example:

The network of above figure is trained to recogniee patterns T and H. The associated

patterns are all black and all white respectivalglaown below.

2 Extracted from: 54. Stergiou, C. and D. SigatMSURAL NETWORKSURPRISE 1996 [cited;
Available from: http://www.doc.ic.ac.uk/~nd/surgi96/journal/vol4/cs11/report.html.
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— | —

IHPOT OUTPUT INFOT QuUuTeUT

If we represent black squares with 0 and white seguvith 1 then the truth tables for the

3 neurons after generalization are;

X11: 0 0 0 0 1 1 1 1
X12: 0 0 1 1 0 0 1 1
X13: 0 1 0 1 0 1 0 1
OUT: 0 0 1 1 0 0 1 1
Top neuron

X21: 0 0 0 0 1 1

X22: 0 0 1 1 0 0

X23: 0 1 0 1 0 1 0 1
OUT: 1 01| 1 01 01 O o1 O

Middle neuron
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X21: 0 0 0 0 1 1 1 1
X22: 0 0 1 1 0 0 1 1
X23: 0 1 0 1 0 1 0 1
OUT: 1 0 1 1 0 0 1 0

Bottom neuron

From the tables the following associations canxteaeted:

IMFUT oUTPUT

In this case, it is obvious that the output shdwddall blacks since the input pattern is

almost the same as the 'T' pattern.

— H

INPUT OUTPOT

Here also, it is obvious that the output shouldabewhites since the input pattern is

almost the same as the 'H' pattern.
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IMFUT DUTFUT

Here, the top row is 2 errors away from a T ando&fan H. So the top output is black.
The middle row is 1 error away from both T and Htls® output is random. The bottom
row is 1 error away from T and 2 away from H. Tlere the output is black. The total

output of the network is still in favour of the Tape.
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ANNEX F- Example of Fuzzy Logic applied to a temper ature

control device *
On the following example we will try to exemplifizeé application of the four firsts steps.

1) Definition of the control objectives and critera

We want to design a simple proportional temperatar@roller with an electric heating
element and a variable-speed cooling fan. A pastignal output calls for 0-100 percent
heat while a negative signal output calls for 0-p@@cent cooling. Control is achieved

through proper balance and control of these twivadevices.

Heater | g
—chj FL Engne Cutput Controlled
Emironment
——f—

T Cookr

Terrp
Environment Termp
Zmd: Targettemperature
Temp: Feedback Sensor in contmlled environment
Errar: Cmd-Temp (+=toocold, - =too hot)
Errar-daot:  Time derivative ar Errar (+ = getting hotter, - = getting coaler
Qutput: HEAT ar MO CHAMGE or COOL

Figure 21 A simple block diagram of the control syem

2) Determination of the input and output relationstips

It is necessary to establish a meaningful systemefaresenting the linguistic variables in

the matrix. For this example, the following will bsed:

"N" = "negative" error or error-dot input level

2 Extracted from 17. Kaehler, S.Buzzy Logic Tutorial - An Introduction1998 [cited; Available
from: http://www.seattlerobotics.org/encoder/Maf@a/flindex.html.
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"Z" ="zero" error or error-dot input level
"P" = "positive" error or error-dot input level
"H" = "Heat" output response

"-"="No Change" to current output

"C" = "Cool" output response

Define the minimum number of possible input prodcmmbinations and corresponding
output response conclusions using these termsa Foree-by-three matrix with heating
and cooling output responses, all nine rules vakdto be defined. The conclusions to
the rules with the linguistic variables associatgith the output response for each rule are

transferred to a matrix.

ERROR IN SIMPLE CONTROL 5¥ STEM

Termp

Errar

+ [ T B T
I R L P S |

3 Cm:i/
+3
+4
+5

Time ———m

Figure 22- Typical control system response

Figure above shows what command and error look ilike& typical control system
relative to the command setpoint as the systemshiamtstability. Definitions are also

shown for this example.
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Definitions:
INPUT#1: ("Error", positive (P), zero (Z), negati(d))
INPUT#2: ("Error-dot", positive (P), zero (Z), neiya (N))
CONCLUSION: ("Output", Heat (H), No Change (-), C¢0))
INPUT#1 System Status
Error = Command-Feedback
P=Too cold, Z=Just right, N=Too hot
INPUT#2 System Status
Error-dot = d(Error)/dt
P=Getting hotter Z=Not changing N=Getting colder
OUTPUT Conclusion & System Response

Output H = Call for heating NC = Do not change aimg C = Call for cooling

3) Break the control problem down into FL rules

Linguistic rules describing the control system dsinef two parts; an antecedent block
(between the IF and THEN) and a consequent blaglo{fing THEN). By making this

type of evaluation, usually done by an experiencgérator, fewer rules can be
evaluated, thus simplifying the processing logid grerhaps even improving the FL

system performance.
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Corsequert
I Antecedent Block I |I Block _I
AF emd-Temp=H ANMD diCmd-Tempidt=N THEMN Output=_C
R Cmd-Temp=Z AMND d{Cmd-Tempiidi=M THER COutput=H
F Cmd-Temp=F ARD diCmd-Tempidi=M THEM Cutput=H
IF Cmd-Termp=h AND diCmd-Tempifdi=Z THEM Qutput=C
R Cd-Temp=Z AND diCmd-Tempifdt=L THER Output=rC
IF Cmd-Temp=F AND d{Crmd-Tempidi=Z THEM Qutput=H
R Cmd-Temp=n ARD diCmd-Tempifdi=F THEM Output=C
R Cmd-Temp=Z AMD diCmd-Tempiidi=P THEM Qutput=C
AF Cmd-Temp=P AND dCmd-Tempiidi=F THEMN Output=H

g N B R

Errar -(Cmd-Temm

= N z p
=

E 1 2 3

o N C H H
£ 3 5 E
Tz C NC H
= 7 5 g

5 p C C H
L

Figure 23- The rule structure & rule matrix

Additional degrees of error and error-dot may keuded if the desired system response
calls for this. This will increase the rule baseesand complexity but may also increase
the quality of the control. Figure above showsrile matrix derived from the previous

rules.

4) Creation of FL membership functions

The membership function is a graphical represemtati the magnitude of participation
of each input. It associates a weighting with eafcthe inputs that are processed, define
functional overlap between inputs, and ultimategtedmines an output response. The
rules use the input membership values as weigliicrs to determine their influence
on the fuzzy output sets of the final output cosmn. Once the functions are inferred,

scaled, and combined, they are defuzzified inteigp output which drives the system.
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There are different memberships functions assatiatéh each input and output
response.

MEMBERSHIP FUNCTIONS

Shoddered
/ Cenkers

R - S
o -
b v S
[ — !
2z / * N \
E -
l:l.'lé 'E] . | | L
E E % 4 | k
(= ! |
2 £ /Negatwe Positive \
._':- i | 1 n
z ’ | :
] [ \

_r 1

|4———Width———>-|

EngineeringLUnits
Mypically lbs, deg F, or degim, fi'sec, efc)

Figure 24- The features of a membership function

Figure above illustrates the features of the tudamgmembership function which is used
in this example because of its mathematical sirtpli©ther shapes can be used but the
triangular shape lends itself to this illustration.

The degree of membership (DOM) is determined byggihg the selected input
parameter (error or error-dot) into the horizordals and projecting vertically to the
upper boundary of the membership function(s).

Rui Maximo Esteves 81



ANNEXES

EXAMPLE ERROR MEMBERSHIP FUNCTION

Degree of Mermbership

-4 -2 1] +2 +4
Errarindegrees F
(Could belbs, deq C, inches, etc)

EXAMPLE ERROR-DOT MEMBERSHIP FUNCTION

Degreeof Membership

-10 -5 1] +5 +10
Error-dot in degrees Fimin
(Could be fisec, lbhsfmin, etc.)

Figure 25- Example errors

In figure above, consider an "error" of -1.0 and"amor-dot" of +2.5. These particular
input conditions indicate that the feedback haseeded the command and is still

increasing.

The degree of membership for an "error" of -1.0jgmts up to the middle of the
overlapping part of the "negative" and "zero" fuoet so the result is "negative”
membership = 0.5 and "zero" membership = 0.5. @Quis associated with "negative" &
"zero" error will actually apply to the output resyse. This selects only the left and
middle columns of the rule matrix.

For an "error-dot" of +2.5, a "zero" and "positiv@embership of 0.5 is indicated. This

selects the middle and bottom rows of the rule imaBy overlaying the two regions of
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the rule matrix, it can be seen that only the rutethe 2-by-2 square in the lower left
corner (rules 4,5,7,8) of the rules matrix will geste non-zero output conclusions. The
others have a zero weighting due to the logical ANhe rules.
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ANNEX G- Genetic Algorithms Uses #

Genetic Algorithms in Parametric Design of Aircraft, by Mark F. Bramlette

and Eugene E. Bouchard. The authors discuss optignarcraft designs when
the task is posed as that of optimizing a list afgmeters. They have approached
the problem with a number of optimization algorigymincluding a genetic
algorithm using real number representation. Theg discuss the performance of
each algorithm and describe some innovative tecsigused in their quite
successful genetic algorithm, including the techaigof generating a large

number of initial population members and then wagkonly with the best ones.

Dynamic Anticipatory Routing in Circuit-Switched Telecommunications

Networks, by Louis Anthony Cox, Jr., Lawrence Davis, andpig Qiu. The
objective of the study is to optimize the routirfgelephone networks in order to
minimize costs to US West. It compares the perfoiceaof an order-based
genetic algorithm with several other optimizatienttniques on this problem. The
authors conclude that the genetic algorithm isgallygisuccessful technique when
the problem is complex, but hybridization of thedgorithms can lead to better
performance than using any of them in isolation.

A Genetic_Algorithm Applied to Robot Trajectory Generation, by Yuval

Davidor. He shows how to apply genetic algorithrohteques to the task of
planning the path which a robot arm is to take iavimg from one point to
another. Davidor uses variable-length chromosomdss solution, and devises

some novel and interesting crossover operators.

Genetic Algorithms, Nonlinear Dynamical Systems, ah Models of

International Security, by Stephanie Forrest and Gottfried Mayer-Kress,

concerns a problem posed by current research itichaodels of real processes.

23 Source: 55.  Alba, E. and C. Cotta. 1998 [citedAvailable from:
http://www.lcc.uma.es/~ccottap/semEeC/.
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Chaotic models of international arms races and @oan competition seem to
model some features of the real-world processeterb#tan some other more
traditional models have done. The authors use etgealgorithm to find good
settings of the parameters of Mayer-Kress's mouelsrder to enhance their

performance on the models.

» Strategy Acquisition with _Genetic_Algorithms, by John J. Grefenstette. He

experiments with SAMUEL, a genetic algorithm thaarns techniques for
maneuvering a simulated airplane in order to evad@mulated missile. The
genetic algorithm he describes employs severaintqabs of interest, including
variable-length chromosomes composed of rulesftinat a production system. A
chromosome is evaluated by using those rules toemaan the airplane in
simulated interactions between airplanes and mssiGrefenstette has built

knowledge of the production rule domain into higigtors in clever ways.

» Genetic Synthesis of Neural Network Architecture by Steven A. Harp and

Tarig Samad, that describes techniques for encatigal network architectures
on binary chromosomes. The authors use variablgtHenhromosomes and a
variety of other novel techniques. This is a gotatt@ to begin in learning how to

combine neural networks and genetic algorithms.

» Air-Injected Hydrocyclone Optimization Via Genetic Algorithm , by Charles

L. Karr, that describes the solution of a desigobfgm by a genetic algorithm
using the bit string representation technique. Kepresents the design of an air-
injected hydro cyclone as a list of parameters. iAteresting feature of his
approach is the use of a new operator called "gmmproduction”. Karr shows
that a genetic algorithm using this operator igegaffective as a search technique

for finding design parameter combinations.

* A Genetic_Algorithm Approach to Multiple Fault Diagnosis by Gunar E.

Liepens and W. D. Potter, which discusses the tdis2 genetic algorithm for
finding the most plausible combination of causes dtarms in a microwave
communication system. The authors use binary chsomes to represent

solutions to a problem that they show is a typesetf covering problem. They
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show how to incorporate knowledge about set cogedptimization into their
genetic algorithm in novel ways, yielding a highfpemance hybrid solution to
the problem.

* A Genetic Algorithm for Conformational Analysis of DNA, by C. B. Lucasius,

M. J. J. Blommers, L. M. C. Buydens, and G. Katenars a development of a
genetic algorithm for determining the structureaoSample of DNA based on
spectrometric data about the sample. An interestic@scaded” evaluation
technique that greatly enhances the efficiencyeirtevaluation function is used.
The authors use bit strings to encode molecularctsires. Their evaluation
function measures the degree to which each decsuledture conforms to the
data that have been collected about the sampleg@&hetic algorithm evolves a
description of molecular structure that is in agneat with the data collected. The
problem of determining bimolecular structure ocespa central position in the
worlds of fundamental and applied chemistry today.

» Automated Parameter Tuning for Sonar Information Processing by David J.

Montana. An application of genetic algorithms tatproblems associated with
interpreting passive sonar data. The first is ap@terization problem. To solve
it, Montana uses a floating-point version of OOGA find good parameter

settings for the algorithms employed in the proa#ssterpreting sonar data. The
second problem is a classification problem. Fas thibblem, a genetic algorithm
is used to train neural networks classifying saignals in various ways. In this
second system, Montana and Davis experiment withiraber of domain-based
operators, including the use of back propagatiometaal network technique- as a
genetic algorithm operator. This application is fuké you are interested in

hybrid genetic algorithms, real number represematifor parameterization, or

neural networks.

« Interdigitation: A Hybrid Technique for Engineering Design Optimization

by Gilbert Syswerda. An application of a genetigoaithm to the problem of
scheduling activities in a laboratory in which eadftivity may affect the others

in a variety of ways. Syswerda has been implemgritis system under contract
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to the U. S. Navy. The genetic algorithm uses atembased chromosome to
represent its schedule. The chromosome is decodéd av decoder that

incorporates a good deal of knowledge about thedsding domain.

« The Traveling Salesman and Sequence Scheduling: ditga Solutions Using

Genetic Edge Recombinationby Darrell Whitley, Timothy Starkweather, and

Daniel Shaner. The authors describe a techniqueséiving the traveling
salesman problem, a well-known combinatorial optation problem. Their
solution includes novel and ingenious represematiorossover, and repair
mechanisms. They also show how similar techniquas loe applied to the

problem of scheduling a Hewlett-Packard producliio.
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ANNEX H- GA example applied to the Traveling Salesm an

problem #

Traveling Salesman is a classical non determinmtoblem where the aim is to find a

tour of a given set of cities so that:
» each city is visited only once

* the total distance traveled is minimized

The chromosome representation is an ordered listyphumbers:
1) London 3) Dunedin 5) Beijing TQkyo
2) Venice  4) Singapore  6) Phoenix 8)tdliia
CityListl (3 5 7 2 1 6 4 8)

Citylist2 (2 5 7 6 8 1 3 4)

Example of a mutation involving the reorder of @igyList2:
Before: (5 87 2 16 3 4

After: 5 86 2 17 3 4

On next two figures one can see the results of aa@#lied to an example with 30 cities.
These pictures evidence the algorithm’s convergéooe a solution with a total distance
of 941 to an optimal one with just 420. The aldorits performance is showed on the

third figure.

2 Extracted from 20. Williams, WGenetics Algorithms: A Tutorial [cited; Available from:
http://www.dbai.tuwien.ac.at/staff/musliu/Problenh®agAl/Class9GATutorial.ppt.
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Figure 26- Early stage solution example
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Figure 27- Optimal solution
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Figure 28- Overview of the GA Perfomance
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ANNEX |- Forward chaining expert system example %

In this inference type, rules are evaluated as data enter the system. In case a rule
evaluation becomes true, actions may add new dataeimory, thus triggering more

rules. And so on.

Consider a system with three rules:
If someone is a third year, then they need a job.
If someone is a third year, then they live in.

If someone needs a job, they will become an acemint

And we put the following fact into database:

John is a third year.

Being a forward chain, the system is constantlyvaiich for new data. As soon as this
data arrives, the system searches all the rulesrigr whose conditions weren't true
before but are now. It then adds their conclustorsystem.

In this case, rules 1 and 2 have conditions whietcithis new fact. So the system will
immediately create and add the two facts below.

* John needs a job.

* John lives in.

% Extracted from 56. Paine, Bxpert Systems1996 [cited; Available from: http://www.j-
paine.org/students/lectures/lect3/nodel.html
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These facts in turn can trigger rules. As eaclvestithe system would look for yet more

rules that are made true. In this case, the Jabin needs a jolvould trigger rule 3,
resulting in the addition of another fact to system

John will become an accountant.

The factJohn lives inwould not trigger anything else though.
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ANNEX J- Backward chaining expert system example %

In a backward chaining the system needs to knowdhee of a piece of data. It searches
for rules whose conclusions mention this data. Befocan use the rules, it must test
their conditions. This may entail discovering ttedue of more pieces of data, and so on.
This is also called goal-directed inference, ordtlipsis driven, because inferences are

not performed until the system is made to provaréqular goal (i.e. a question).

This is a lazy kind of inference. It does no workiuabsolutely necessary, in distinction
to forward chaining, where the system eagerly avagw facts and tries applying

conditions as soon as they arrive.

So, if we had this knowledge base again

If someone is a third year, then they need a job.

If someone is a third year, then they live in.

If someone needs a job, they will apply to be asoantant.
and we were to add

John is a third year

the system would do nothing at all.

But if we were then to ask the question
Is there anyone who is going to become an accotitan

the system would try to answer. It would begin bgrshing either for a fact that gives
the answer directly, or for a rule by which thevaascould be inferred. To find such a
rule, it searches the entire knowledge base fasrulhose conclusions, if made true, will

answer the question.

26 Extracted from 56. Ibid. [cited.
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In this example, there are no facts giving the amsthere's one rule whose conclusion, if
true, would supply an answer, and that's rule 3.

The system next checks the rule's conditions. dsetlanyone who needs a job? As with
the original question, we look either for a facttlanswers directly, or for a rule. There
are no facts, but rule 1 is relevant.

So we now checlts conditions. Is there a third year? This time, ¢hex a fact that
answers thisJohn is a third yearSo we've proved rule 1, and that's proved rulang,

that's answered the question.
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ANNEX L- Expert Systems uses

The seven main fields of applications:

Diagnosis and Troubleshooting of Devices and Systsrof Al Kinds

This class comprises systems that deduce faultssaggest corrective actions for a
malfunctioning device or process. Medical diagne&s one of the first knowledge areas
to which ES technology was applied (for example, Shortliffe 1976), but diagnosis of
engineered systems quickly surpassed medical dsagndhere are probably more
diagnostic applications of ES than any other tyjjee diagnostic problem can be stated
in the abstract as: given the evidence presentisglf,i what is the underlying

problem/reason/cause?

Planning and Scheduling

Systems that fall into this class analyze a sebref or more potentially complex and
interacting goals in order to determine a set d@foas to achieve those goals, and/or
provide a detailed temporal ordering of those astjadaking into account personnel,
materiel, and other constraints. This class haat g@mmercial potential, which has been
recognized. Examples involve airline scheduling fbfhts, personnel, and gates;

manufacturing job-shop scheduling; and manufacgupiocess planning.

Configuration of Manufactured Objects from Subasserblies

Configuration, whereby a solution to a problem ystkesized from a given set of
elements related by a set of constraints, is hestlly one of the most important of expert

system applications. Configuration applications evpioneered by computer companies

#'Source: 57. THE APPLICATIONS OF EXPERT SYSTEM@ited 2009 May]; Available from:
http://www.wtec.org/loyola/kb/c1_s2.htm.
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as a means of facilitating the manufacture of seustom minicomputers (McDermott
1981). The technique has found its way into usemany different industries, for
example, modular home building, manufacturing, atier problems involving complex

engineering design and manufacturing.

Financial Decision Making

The financial services industry has been a vigonaser of expert system techniques.
Advisory programs have been created to assist bamkeletermining whether to make
loans to businesses and individuals. Insurance anrmap have used expert systems to
assess the risk presented by the customer andedordee a price for the insurance. A

typical application in the financial markets isfaneign exchange trading.

Knowledge Publishing

This is a relatively new, but also potentially eogive area. The primary function of the
expert system is to deliver knowledge that is ra#\vo the user's problem, in the context
of the user's problem. The two most widely disti#olexpert systems in the world are in
this category. The first is an advisor which colsmseuser on appropriate grammatical
usage in a text. The second is a tax advisor t@imnpanies a tax preparation program

and advises the user on tax strategy, tacticsirainddual tax policy.

Process Monitoring and Control

Systems falling in this class analyze real-timeadeam physical devices with the goal of
noticing anomalies, predicting trends, and contrglifor both optimality and failure
correction. Examples of real-time systems thatvabtimonitor processes can be found in

the steel making and oil refining industries.
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Design and Manufacturing

These systems assist in the design of physicatdeand processes, ranging from high-
level conceptual design of abstract entities a. whay to factory floor configuration of

manufacturing processes.
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ANNEX M- Conditional Probabilities Tables

bht/bhp = Kte(C1)

1.0

1.0

1.0

bhp=Min(C2)

1.0

1.0

bhp - whp = diffP(C3)

0.4

0.2

bhpfwhp =

by

e(C4)

age bht{al)

age whplaz)

age bhp(A2)

Sensor bht(51)

Rui Maximo Esteves

I e -
[ e [ wotok [ ok
[Good [Mediom [ Bad [ Good [Medum [ Bad [ Good [ Medum [ Bad
1.0 0.4 0.0 0.0 06 1.0 950 350 0.0

] 0.6 1.0 1.0 0.4 0.0 5.0 650 1.0

[ od

[ wotok

[“Good [Mediom [ Bad

0.0 550 950

1.0 45.0 5.0

97



ANNEXES

Sensol bhp(S2)
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