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Abstract 
 

Oil industry faces an underutilization problem of the captured data during the extracting 

process. This issue is a consequence of the lack of information regarding sensors’ 

accuracy. One effect can be a serious obstacle in the development of computer assisted 

decision systems.  

In a production well, it can be experienced the inexistence of sensor redundancy and 

enough information to assess credible probabilities. In this situation, we have to strongly 

depend of the experts’ ability to provide alternatives based on their understanding. These 

skills can be a critical limitation and turns particularly difficult the establishment of a 

prediction model.  

With this work we propose a Bayesian Network approach as a promissory data fusion 

technique for surveillance of sensors accuracy.  We proved the usefulness of this method 

when it seems there isn’t enough feasible data to construct a model. In presence of certain 

data constrains we suggest an inversion of the causal relationship. This approach can be a 

possible solution to help the expert in accessing conditional probabilities.  
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Chapter I - INTRODUCTION 

 
The chapter pretends to give a short overview of this work. It starts with the description 

of the background and the importance of the thesis. A general outline of the work is 

given. The chapter finishes with the aim’s definition.  
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Thesis Overview 
 

In oil & gas extraction process each reservoir can be divided into homogeneous zones.  

From an IT perspective an oil & gas zone can be seen as a closed uniform environment 

that contains some mixture of hydrocarbons under the same pressure and temperature 

conditions. Each well has a set of sensors to measure environmental conditions such as 

temperature and pressure. These conditions are distinct in the head of the well and in the 

reservoir (hole). A choke placed between these two places control this difference.  

Statoil Hydro stated that the pressure gauges become to loose performance with time. As 

wells lifetime goes on, the measures became more uncertainty. The estimated lifecycle of 

a well can be more than 10 years. On the other hand, working at high temperatures can 

reduce the sensor lifetime to 2-3 years.  

Until this point in time, Statoil does not have information about the accuracy of the 

measurements provided by the sensors. They suspect that one or more may be inaccurate 

but they cannot identify which one. Consequently, the usefulness of this data has been 

very limited. Statoil wants to have more information about the accuracy of the sensors’ 

measurements in order to increase their reliability.  

In a production well, the quality of sensors’ measurements is an issue which the relevant 

attention has not been given. According to domain’ specialists, studies in this field could 

benefit the oil sector by providing a better control of the extraction process. This 

understanding should be one basic stone in the developing of decision support systems. 

The usefulness of complex systems can be questioned when there is no information about 

the data accuracy they rely on. 

Since there is no sensor redundancy, we had to solve the problem using information from 

the different sensors’ types and data fusion techniques. We faced the challenge of 

inexistent consistent data to access probabilities and to determine correlations between 

variables.  

In the begging of this work we made a revision about data fusion methods. The aim was 

to find one that suits our special needs. The starting point was classifying them according 
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to data fusion levels.  We stated that our problem was in the feature level and Bayesian 

Networks could be a promise method. 

However, the examples found in the literature generally assume existence of data to 

assess probabilities or the ability of an expert to easily express them as believes. As this 

was not the case, we established then the following hypothesis: 

 

H: In absence of data we may use Bayesian Network for sensor accuracy surveillance.  

 

Latter we experimented different ways to construct the Bayesian Network. The aim was 

to test if the hypothesis was true or not.  

We tested without success the conventional approach to design the Bayesian Network 

structure. However, we found more plausible to construct the model by reversing the 

causal direction of the relationships.  In this way, one can easier express the knowledge 

of the expert when in presence of certain data constraints. 

To develop this work we had several meetings with experts in the domain.
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Aim of the thesis  

 
 
The present model attempts to solve the following oil extraction problem. 

In each production well we have three different sensors (S)1 that can be inaccurate:  

- bht (S1) – borehole temperature; 

- bhp (S2) – borehole pressure; 

- whp (S3) – well head pressure. 

 
The model’s aim is to access probabilities for the sensors’ accuracy on a production well. 

The challenge is doing it with no trustable data to construct the model.  

We want to investigate if this can be possible using data fusion techniques and expert’s 

knowledge. 

                                                 
1 We didn’t find a relation between well head temperature and the other variables, as so, the model can not 
predict the accuracy. 
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Chapter II - THEORY 
 

We start our theoretical revision by a classification of several data fusion methods into 

taxonomy. For those who are not familiar with them, we provided some examples as 

annexes. 

There is an explanation of the reasons why Bayesian was the chosen method. We then 

presented more carefully its subjacent theory. A review of similar studies is shown. The 

chapter ends with an overview of the Bayesian limitations. 



CHAP II - Theory  Data Fusion taxonomy   

Rui Máximo Esteves 6 

Data Fusion taxonomy 
 

Introduction 
 

There are some distinct data fusion’s taxonomies. One of the most well known was 

developed by the Joint Director of Laboratories (JDL) from the U.S. Department of 

Defense. The JDL model was developed for military proposes and consist of four levels 

of data fusion:  

1. identification and description of the objects; 

2. interactive process to fuse spatial and temporal entities relationships; 

3. combination of the activity and capacity of the enemy forces to infer their 

force; 

4. related with all other levels and is responsible for regulation of the fusion 

process. 

This model has been used also for other fields as image processing. However, given its 

specific nature is difficult to use in other domains. More generic model has been 

proposed by other authors with its base on JDL.  

[1] presented the Data Fusion Architecture (DFA) in which the division of levels is taking 

in consideration the difference between data and variable. According to these authors, 

data can be defined as a measurement of the environment that is generated by a sensor or 

other type of source and variable is determined by an analysis of the data (feature 

extraction). A single type of data can provide one or more variables2. 

 

 
                                                 
2 From an image (raw data) an application can determine whether the image contains a person (variable = 
person-present?), an animal (variable = animal-present?) or an object (variable = object-present?).  

Example extracted from 1. Carvalho, H.S., et al. A general data fusion architecture,. in Proceedings of the 
Sixth International Conference of Information Fusion. 2003. 
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DFA presents three levels of data fusion: 

1. data oriented;  

2. task oriented (variable); 

3. mixture of data and variable fusion.  

 

The levels differentiate whether the fusion process is made before any data analysis (at 

the data level), after the data has been analyzed (at the variable level), or is done on a 

combination of raw data and variables (at the mixture level).  

Others authors proposed variations of JDL model. In the next pages, a taxonomy based 

on [2] [3] will be presented. 
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JDL Based Taxonomy 
 

In table 1 we present 3 level taxonomy based on JDL model. However this methods’ 

classification should not be seen as rigid. Depending on the application, some of them 

can be used at several levels. 

 

JDL Based Taxonomy 

Level Methods 

Kalman Filtering  

Figure of Merit 

Raw Data 

Gating 

Bayesian Theory 

Dempster-Shafer 

Neural Networks 

Clustering Algorithms  

Feature data 

Template Methods 

Fuzzy Logic 

Genetics Algorithms 

Expert Systems 

Decision 

Blackboard Systems 

Table 1- JDL Based Taxonomy 
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Raw data level 
 

In this level the data fusion is processed directly from the sensor data. According to [3], 

when multisensor data is commensurate (i.e. data from the same nature which is 

measuring the same physical phenomena) then the raw sensor can be directly combined. 

The data association can be done by correlation of one set of sensor observations with 

another set of observations.  

 

Methods 
 

Kalman Filtering  

 

The Kalman Filter can be defined as: “a set of mathematical equations that provides an 

efficient computational (recursive) means to estimate the state of a process, in a way that 

minimizes the mean of the squared error” [4]. According to these authors “The filter can 

be very powerful in several aspects it supports estimations of past, present, and even 

future states, and it can do so even when the precise nature of the modeled system is 

unknown”. This feature can be used in target positioning by removing the noise from 

sensor signals in order to better determine the present and future positions [2]. It uses a 

recursive solution in that each updated estimate of the state is computed from the 

previous estimate and the new input data. This lead to an efficient computing solution as 

only the previous estimate requires storage. 

Kalman filters are based on linear dynamical systems discretised in time. It is assumed 

that the system and the measures are affected by White Gaussian noise. This means the 

noise is not correlated in time, and thus we can assume that at each discrete time, the 

noise affecting the system and measures are independent of past or future values [5]. 

However, we can extend the use of Kalman filtering to non linear systems through a 



CHAP II - Theory  Data Fusion taxonomy   

Rui Máximo Esteves 10 

linearization procedure. The resulting filter is referred to as the extended Kalman filter 

(EKF) [6]. 

This filter is used for vision tracking on robotics, real time traffic-control algorithm, and 

autonomous driving systems.  

The steps to use the Kalman filter for vision tracking are: 

1. Initialization (k=0). In this step it is looked for the object in the whole image due 

we do not know previously the object position. We obtain this way x0. Also we 

can considerer initially a big error tolerance. 

2. Prediction (k>0). In this stage using the Kalman filter we predict the relative 

position of the object, such position is considered as search center to find the 

object. 

3. Correction (k>0). In this part we locate the object (which is in the neighborhood 

point predicted in the previous stage) and we use its real position (measurement) 

to carry out the state correction using the Kalman filter finding this way. 

 The steps 2 and 3 are carried out while the object tracking runs. [6] 

 

In annex A is presented an example of a Kalman filter’s application to robotic football. 

 

Other methods 
 

[2] made reference to Figure of Merit and Gating as used with the aim to decide which 

observations should be considered and which are outliers. The basic principle relies in 

considering only the observations that are below a defined threshold. 
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Feature data level 
 

When multisensor data is not commensurate then can be fused on a feature/ state vector 

level. The aim of this level is the extraction of the representative features from the raw 

data3. On this level, one should extract the features from the various sensor observations 

and combine them into a single feature vector [3]. This feature vector should be a 

synthesis of more meaningful information for guiding human decision-making.  

 

Methods 
 

Bayesian theory 

 

According to [2] Bayesian theory is one of the most common techniques employed in 

level two of data fusion. These authors encourage the use of Bayesian: "The use of 

multiple sensors in data fusion projects can produce conflicting data which, in turn, can 

cause decision problems. Application of the Bayesian theorem in such cases has proven 

successful in overcoming this challenge. It models the unknown system state by using 

probabilistic functions to determine an appropriate set of actions”. Since a certain level of 

uncertainty is generally associated with sensor’s data, it can be improved by quantifying 

the uncertainty behind each sensor decision and then comparing with some 

predetermined decision threshold level.  

 

In Annex B is presented an example of Bayesian theory applied to pattern recognition. 

                                                 
3 Kessler and White explain this concept comparing to the cartoonist’s use of key facial characteristics to 
represent the human face. 3. Kessler, O. and F. White, Data Fusion Perspectives and Its Role in 
Information Processing, in Handbook of Multisensor Data Fusion - Theory and Practice, M.E. Liggins, 
D.L. Hal., and J. Llinas, Editors. 2009, CRC Press: Boca Raton. 
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Dempster-Shafer 

 

Dempster-Shafer (or theory of belief functions) can be considered as a generalization of 

the Bayesian theory of subjective probability. However, in opposition to the Bayesian 

theory DS does not requires probabilities for each question of interest, belief functions 

allow us to base degrees of belief for one question on probabilities for a related question 

[7].  

 

“Dempster-Shafer allows alternative scenarios for the system, such as treating equally the 

sets of alternatives that have a nonzero intersection: for example, we can combine all of 

the alternatives to make a new state corresponding to “unknown”. But the weightings, 

which in Bayes’ classical probability theory are probabilities, are less well understood in 

Dempster-Shafer theory. Dempster-Shafer’s analogous quantities are called masses, 

underlining the fact that they are only more or less to be understood as probabilities” [8]. 

 

Object recognition is one of the uses of this method, and has been applied to detection of 

ship wakesfrom synthetic aperture radar images [9], robotic, automated guided vehicles 

[2], and other uses as: color image segmentation [10]; representing the uncertainty 

inherent in the characterization of containerized radiological waste [11]. 

  

To better understand DST’s concept, it is presented a simple example in ANNEX C and 

in ANNEX D an example applied to aircraft detection: 
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Neural Networks 

 

The simplest NN is known as a Perceptron which is a system with an input and an output 

layer.  

A Feed Forward Neural Network is a system with an input, an output and at least one 

hidden intermediate layer which is formed by simple computational units interlinked 

called neurons.  

 

 

Figure 1- A simple feed Forward Neural Network 
 

After a training process the neutrons establish synapses (weights) between them and the 

network should have the ability to respond to newer situations [12]. 

 

 

Figure 2- A simple neuron 
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This network has some advantages over either Bayesian or DSER methods. The most 

relevant is the ability to process data fusion without the need of a priori information on a 

parallel way [2]. Neural is been widely applied on different nature forecasts: weather; 

traffic; internet traffic, stock market among others. However, there are innumerous 

different applications with this method: Traveling Saleman's Problem (only to a certain 

degree of approximation); Medicine; Electronic Nose; Security; Loan Applications and 

Character Recognition Image Compression [13]. 

  

In annex E there is an example illustrating the application to pattern recognition. 

 

Other methods 

  

Other techniques for feature data fusion less used are clustering algorithms and template 

methods [14].  
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Decision level 
 

In this situation the fusion occurs at the decision level. According to [14], it can also be 

called as postdecision or postdetection fusion. This level can be achieved applying 

Boolean operators or using a heuristic score over combinations of decisions from 

independent sensors detection or classification paths. 

 

Methods 
 

Fuzzy Logic 

 

Fuzzy Logic is a method appropriate to model situations where the boundaries are not 

clearly identified. The fuzziness can be present in abstract and concrete situations and this 

theory allows specifying their relevant attributes and relationships [15]. Related to the 

drifting of the perfect calibration of sensors, [16] referred the usefulness of Fuzzy Logic 

“in capturing the desired behavior of the classification algorithm for diverse and 

nonlinear sensor responses is that we can blend information according to our human 

expert knowledge”. According to this author the inputs to the fuzzy logic could be 

outputs from other algorithms, such as neural networks, or other inference logic 

networks. 

[17] described the following features about FL that makes it a particularly good choice 

for many control problems: 

• It is inherently robust since it does not require precise, noise-free inputs and can 

be programmed to fail safely if a feedback sensor quits or is destroyed.  

• The output control is a smooth control function despite a wide range of input 

variations.  

• Since the FL controller processes user-defined rules governing the target control 

system, it can be modified and tweaked easily to improve or drastically alter 
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system performance. New sensors can easily be incorporated into the system 

simply by generating appropriate governing rules. 

• FL is not limited to a few feedback inputs and one or two control outputs, nor is it 

necessary to measure or compute rate-of-change parameters in order for it to be 

implemented. Any sensor data that provides some indication of a system's actions 

and reactions is sufficient. This allows the sensors to be inexpensive and 

imprecise thus keeping the overall system cost and complexity low. 

• Because of the rule-based operation, any reasonable number of inputs can be 

processed (1-8 or more) and numerous outputs (1-4 or more) generated. However 

it would be better to break the control system into smaller chunks and use several 

smaller FL controllers distributed on the system, each with more limited 

responsibilities. 

• FL can control nonlinear systems that would be difficult or impossible to model 

mathematically. This opens doors for control systems that would normally be 

unfeasible for automation. 

 

The Fuzzy Logic can be used on several fields as:  

• on selection of the most suitable material for a particular application; 

hydrodynamic lubrication; elastohydrodynamic lubrication, fatigue and creep; 

cumulative fatigue damage analysis; reliability assessment; process control; total 

risk and reliability with human factors; system condition auditing; reframing 

standards using fuzzy sets for improved quality control; correlation of statistical 

and automatic process control; road transport logistics [18];  

• on measuring automobile speeds and congestion levels, operating automatic trains 

using predictive logic, and selecting paths in autonomous vehicle navigation 

systems [2]. 
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[17] suggests the following steps to design an FL system:  

1. Definition of the control objectives and criteria: What am I trying to control? 

What do I have to do to control the system? What kind of response do I need? 

What are the possible (probable) system failure modes? 

2. Determination of the input and output relationships. One should choose a 

minimum number of variables for input to the FL engine (typically error and 

rate-of-change-of-error). 

3. Break the control problem down into FL rules. The problem should be split 

into a series of IF X AND Y THEN Z rules that define the desired system 

output response for given system input conditions.  

4. Creation of FL membership functions. The memberships defines the meaning 

(values) of Input/Output terms used in the rules. 

5. Development of necessary pre- and post-processing FL routines if 

implementing in S/W, otherwise program the rules into the FL H/W engine. 

6. System test: evaluate the results, tune the rules and membership functions, and 

retest until satisfactory results are obtained. 

 

In annex F there is an example applied to a temperature control device. 

 

Genetics Algorithms 

 

Genetics Algorithms are another method used at decision level. It consists on stochastic 

optimizations which simulates the process of natural evolution. These algorithms are 

suitable for very complex systems, including multiple objectives optimization.  

GA can be viewed as a family of computational models inspired by Darwin’s evolution 

theory. Potential solutions are encoded on a simple chromosome-like data structure and 

follow a reproductive cycle represented on next figure. 
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Figure 3- The GA reproductive cycle 
 

An implementation of a GA usually starts with a population of chromosomes on which 

we select a set of parents for reproduction. The selected parents generate modified 

children by genes’ recombination. A crossover occurs when genes came from a fusion of 

two different parents; however the recombination can be done by mutation of a single 

chromosome. The resulting children are used to form a new population that we hope to be 

better. The selection process is done evaluating their fitness (the more suitable they are 

the more chances they have to reproduce). This is repeated until some condition is 

satisfied. [19], [20] 

 

Parent 1   (0 1 1 0 1 0 0 0)             (0 1 0 0 1 0 0 0)   Child 1 

Parent 2   (1 1 0 1 1 0 1 0)             (1 1 1 1 1 0 1 0)   Child 2 

 

As with any method, the GA has its advantage and disadvantages. On next table there is a 

resume of the most important ones [21]. 
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Advantages Disadvantages 

Only uses function evaluations Cannot use gradients 

Easily modified for different problems Cannot easily incorporate problem specific 

information 

Handle noisy functions very well Not good at identifying local optima 

Handles large, poorly understood search 

spaces easily 

No effective terminator  

Good for multi-modal problems Not effective for smooth uni-modal 

functions 

Return a suite of solutions  Needs to be coupled with a local search 

technique 

Very robust to difficulties in the evaluation 

of the objective function 

 

Easily parallelized  

Table 2 Advantages and disadvantages of Genetic Algorithms 
 

Genetics can be used in a hierarchical fuzzy model for pattern extraction and to neuro-

fusion models complexity reduction. They can be used as an optimization technique, to 

extraction of knowledge, in combination with fuzzy rules, fuzzy membership, and with 

neural networks and fuzzy-logic. 

A neuro-fuzzy-genetic model was proposed for data mining and fusion in the area of 

geoscience and petroleum reservoirs. The use of a neuro-fuzzy DNA model was propose 

for extraction of knowledge from seismic data and mapping the wireline logs into seismic 

data and reconstruction of porosity [12]. A list with more uses can be found on annex G. 

In annex H one can find an example applied to traveling Salesman problem.  
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Expert Systems 

 

Expert System is another method that can be used at decision level. A rule-based expert 

system is a set of rules that can be applied to a collection of facts in a repeatedly way by 

an engine. These rules represent heuristics that define a set of actions to be taken in a 

given situation and facts represent circumstances that describe a certain situation in the 

real world. [22]  

The Expert Systems are present in oil industry applications such as: "Extra Pair of Eyes" 

(autonomous intelligent controlling systems); Pipeline and Production Supervision; Plant-

wide network supervision and optimization; Abnormal Situations Management; 

Environment: Supervision and Control; Online-Analyzer verification and value inference; 

Planning, simulating and control of biochemical processes [23]. [24] have studied an 

expert system where a crude oil distillation column is designed to predict the unknown 

values of required product flow and temperature in required input feed characteristics. 

The system is also capable to optimize the distillation process with minimizing the model 

output error and maximizing the required oil production rate with respect to control 

parameter values. In combination with expert system the model also use neural networks 

and genetics algorithms. 

In simple rule-based systems, there are two kinds of inference, forward chaining and 

backward chaining. In annex I and J one can find an example of forward and backward 

chaining systems. 

More examples of expert systems applications are presented in annex L. 
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Blackboard Systems 

 

A blackboard system is an architecture that can integrate multiple problem solving 

modules (referred to as knowledge databases). This type of integrated problem solvers 

can make use of more than one problem system in an attempt to overcome the inherent 

limitations of a single heuristic expert system. The problems solvers may also use 

different technologies. For example, a system might integrate a heuristic rule based 

reasoning system with a case-based reasoning system and possibly a model based system. 

These architectures can be used for a wide range of tasks such as classification, design, 

diagnosis, repair etc. [25] 

Picture 15 represents a blackboard architecture for a speech understanding system. In this 

picture, one can see a set knowledge sources (solving modules) sharing a blackboard that 

is a common global database. The contents of the blackboard are often structured 

hierarchically and called hypotheses. Knowledge sources respond to changes on the 

blackboard, and interrogate and subsequently directly modify the blackboard. This 

modification results form the creation, modification and solution of hypotheses. The 

knowledge sources have the possibility to communicate and cooperate with each other 

through the blackboard. In blackboard architecture, each knowledge source responds only 

to a certain class or classes of hypotheses. These hypotheses, that a knowledge source 

responds to, often reflect the different levels in the blackboard’s hierarchy. The 

blackboard holds the state of the problem solution, while the knowledge sources make 

modifications to the blackboard when appropriate. [25] 
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Figure 4- The architecture of Hearsay III- a speech understanding system 
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Hard and Soft Decision Taxonomy 
 

Apart from the JDL’s based taxonomy, some authors suggest a different classification of 

methods regarding the decision process. 

 

Hard and Soft Decision Taxonomy 

Decision Type Method Description 

Boolean Apply logical AND, OR to combine independent 

decisions [14]. 

Weighted sum 

score 

Weight sensors by inverse of covariance and sum 

to derive score function [14]. 

Hard decision 

M-of-N Confirm decision based on m-out-of-n sensors 

that agree [14]. 

Bayesian 

Dempster-Shafer 

Fuzzy variable 

Neural networks 

Genetics 

algorithms 

Expert Systems 

Soft decision 

Blackboard 

Systems 

See chapter Taxonomy 

Table 3- Hard and Soft Decision Taxonomy 
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This classification cluster methods inside two basic groups [14]:  

• hard decisions which consist on a single optimum choice 

• soft decisions, in which decision uncertainty in each sensor chain is maintained 

and combined with a composite measure of uncertainty.  

In opposition to hard computing, soft computing is tolerant to imprecision, uncertainty, 

and partial truth. According to [12] soft computing is tractable, robust, efficient and 

inexpensive. 
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Why Bayesian? 
 
 

According to the presented JDL based taxonomy, our data fusion problem belongs to 

feature level. 

The method chose was the Bayesian Networks.  

The main advantages of using Bayesian in data fusion summarized by [26, 27] are: 

1. Bayesian statistics is a coherent system for quantifying objective and subjective 

uncertainties. 

2. Bayesian provides principled methods for the model estimation and comparison 

and the classification of new observations. 

3. Bayesian statistics provides a natural way to combine different sensor 

observations. 

4. Bayesian statistics provides principle methods for dealing with missing 

information. 

5. Bayesian provides a definition of "personal probability" which satisfies the same 

set of fundamental axioms which classical statisticians insist must hold for 

relative frequencies. This fact allows to focuses as much attention on the decision-

maker as on the process or phenomenon under study.  

Analyzing the data from the sensors it is very difficult to assess the probabilities in a 

classical way. Since we do not have sensor redundancy on each well, there is no way to 

confirm if the measure is correct or not. As so, assessing frequencies from the data is a 

though task and frustrating in a certain point. 

The basic premise of Bayesian statistics is that all unknowns are treated as random 

variables and that the knowledge of these quantities is summarized via a probability 

distribution. [26] 

Specifically Bayesian Networks extends the advantage of being able to reason in the 

presence of uncertainty, prior assumptions, and incomplete data. According to [28], they 
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can intermix expert judgment, statistical distributions, and observations in a single model. 

Further, they are able to learn from evidence in order to update their prior beliefs.  

BN models have several advantages over regression-based models. BNs do not rely on 

point values of parameters that have been derived through some “best fit” procedure. 

Instead, the whole distribution of a variable is included. Similarly, BN models do not just 

predict a single value for a variable; they predict its probability distribution. By taking the 

marginal distributions of variables of interest, we get a ready-made means of providing 

quantitative risk assessment. 

We didn’t choose Neural Networks because we do not have data for the learning process. 

 



CHAP II - Theory  Bayesian theory   

Rui Máximo Esteves 27 

Bayesian theory 
 

To a better understanding of the Bayesian Networks let us start first with some notions 

about Bayesian theory. 

Bayesian dates from the eighteen century and gains its roots with the English Reverend 

Thomas Bayes work [29]  

This theory presents two important concepts: the Bayesian probabilities and the theorem 

(also known as rule). 

In opposition to the frequency concept, the Bayesian can be related with partial beliefs in 

a different form to face probabilities. A probability can be thought as a quantitative 

measure of the strength of one's knowledge or of one’s beliefs. This way, we can assess 

them using experts’ knowledge and without having historical data. With this concept it is 

possible to deal with subjective beliefs and use them into a mathematical model.  

Other idea subjacent to Bayesian is the conditionality. Instead of a classical approach, 

Bayes uses the notion of a probability of an event as a consequence of other events’ 

probabilities.   

An example of a conditional probability statement is that, given event B, the probability 

for event A to happen is x.  

P(A|B) = x 

This does means that P(A) = x when B is true and everything else is irrelevant to A. 

The Bayesian theorem is 

 

P (A|B) = 
)(

)()|(
)|(

BP

APABP
BAP =  
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Where [29]: 

P(A) is the prior probability or marginal probability of A. It is “prior” in the sense 

that it does not take into account any information about B; 

P(A|B) is the conditional probability of A, given B. It is also called the posterior 

probability because it is derived from or depends upon the specified value of B; 

P(B|A) is the conditional probability of B given A; 

P(B) is the prior or marginal probability of B, and acts as a normalizing constant; 

Intuitively, Bayes' theorem in this form describes the way in which one's beliefs 

about observing 'A' are updated by having observed 'B'; 
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Bayesian Network 
 
 

According to [30] a Bayesian network (BN) consists of: 

- a set of variables and a set of directed edges linking the variables; 

- each variable has a set of mutually exclusive finite states; 

- the edges express dependency relationships between the variables, forming a 

DAG (direct acyclic graph). 

- for each variable A with parents B1, …, Bn;  there is a conditional probability 

table (CPT) P (A|B1, …,Bn) to quantify the dependency. For variables 

without parents, the table is related to unconditional (also called marginal) 

distributions. 

In a BN, when we observe a variable, the observation can be entered into the model by 

reducing their marginal probability distribution to a probability of one for the observed 

state and zero to the remaining states4. The presence of this new evidence updates the 

curve probability distribution of its children and the distributions of its parents. Applying 

Bayes’s theorem, observations are propagated recursively through the model, updating 

their beliefs about probable causes and so learn from the evidence entered into the model. 

[28]  

The Bayesian Networks allows any node to serve as either a query or an evidence 

variable. This is a very powerful characteristic and allows the usage of the network in 

several directions. Let’s consider the BN presented on the next figure to better elucidate 

the different kinds of inference. 

                                                 
4 Some times the variable can be represented by a small interval containing the value in the continuous 
case. The discretization chosen must be a compromise between the accuracy of the evidence added and 
computational feasibility. 
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Figure 55- BN example to elucidate different types of queries.  
Example taken from the medical context where D1 and D2 are two different diseases; S1, S2, S3 
symptoms; TR1, TR2 tests results realized to the patient. 

 

There are four distinct kinds of inference that can be performed [31]: 

• diagnostic inference (from effects to causes). Ex: given a symptom S1 infer the 

probability of the pathology D1, P(D1|S1); 

• causal inference (from causes to effects). Ex: given disease D2 find the most 

likely symptoms, P(Si|D2); 

• inter-causal inference (between causes of a common effect). Ex: given S2 infer 

P(D1| S2), but adding evidence that D2 is true makes the probability of  D1 go 

down. Although D1 and D2 nodes are independent the presence of one makes the 

other less likely; 

• mixed inferences (combining two or more of the above). 

According to [32], the structure of the directed graph is a representation of a factorization 

of the joint probability distribution. As many factorizations are possible, there are many 

graphs that are capable of encoding the same joint probability distribution. Of these, 

those that minimize the number of arcs should be more ideal.  

[32] refer that from the point of view of knowledge engineering, graphs that reproduce 

the causal structure of the domain are particularly convenient, as they in general reflect 

                                                 
5 From: 31. Milho, I. and A. Fred, A User-Friendly Development Tool for Medical Diagnosis Based 
on Bayesian Networks. 2008, unknown. 
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the expert's understanding of the domain in a better way. These kinds of graphs also 

improve interaction with a human expert at the model building stage and are readily 

extendible with new information. Finally, these authors states that causal models 

facilitate user insight once a model is employed. 

However, this causal approach to structuring the problem may present a lesser intuitive 

conditional probabilities assessment. This may become a serious difficulty when there is 

no sufficient data to help assessing these probabilities and we have to rely solely on the 

expert’s believes. In this situation, we may have to choose the graph structure that match 

the available information in despite of the one who represents the relations in the most 

intuitive way. 

We can find in the literature both approaches for the same kind of problem. [33] 

presented an example of a BN to diagnose Pneumonia. According to their idea the arrows 

indicate all of the conditional relationships between findings and diagnosis. 

 

Figure 66- BN example of an inverse graph approach.   
In this approach arrows goes now from the symptom to the disease. 
 

Serial connection is an import concept related to BN which help to introduce d-

separation. To explain serial connection let us consider the example in next figure. In the 

present network, A has influence in B and B has influence in C. Consequently, evidence 

on A will influence B and B will transmit it to C, forming a communication channel. 

However, if the state of B is known, and the evidence is inserted in the network, A and C 

will became independent and communication channel is broken. 

                                                 
6 33. Berner, E.S., H. K. J., and M.J. Ball, Clinical Decision Systems. Theory and Practice. 1996, New 
York: Springer-Verlag  
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As a conclusion, evidence may be transmitted through a serial connection unless the state 

of the variable in the connection is known. [30] 

 

Figure 7. Example of serial connection.  
When B is instantiated with evidence, the communication channel between A and B became blocked. 
 

According to [34], a group of nodes Z is said to d-separate the disjoint groups of nodes X 

and Y when either the nodes Z are ascendants of both groups X and Y, or Z is an 

intermediate group of nodes. In the next two figures, we can see an example of both types 

of d-separation. 

 

Figure 87.  Example of d-separation- Z nodes are ascendants of X and Y 
 

                                                 
7 From:  34. Carlos, A., T. Lorenzo, and R.-A. Juan, Graphical models for problem solving. Comput. 
Sci. Eng., 2000. 2(4): p. 46-57. 
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Figure 9.  Example of d-separation.  
Z is an intermediate group of nodes [34]. 
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Bayesian Network – a simple example 

 

To better understand the Bayesian Network concept lets consider the simple example8:  

- we have a tree loosing its leaves and we want to know why;  

- we know that if the tree is dry, this is can be the justification; 

- however the losing of leaves can be an indication of a disease. 

 

The problem can be represented with the Bayesian Network presented on next figure. 

 

 

Figure 10- The tree problem  
 

Let’s consider the following CPTs assessed by an expert in the domain. 
 

Sick="sick" Sick="not" 

0.1 0.9 

Table 4- P(Sick) 
 

Dry="dry" Dry="not" 

0.1 0.9 

Table 5- P(Dry) 

                                                 
8 Based on example extracted from: 35. Manual, R. 2009, HUGIN 7.0  



CHAP II - Theory  Bayesian Network   

Rui Máximo Esteves 35 

 
 

Dry="dry" Dry="not" 
  

Sick="sick" Sick="not" Sick="sick" Sick="not" 

Loses="yes" 0.95 0.85 0.90 0.02 

Loses="no" 0.05 0.15 0.10 0.98 

Table 6- P(Loses | Sick, Dry) 
 

We can now determine some useful information: 

- probability of Loses in a specific state. 

e.g.: P(Loses = “yes”) = 0.1832 

- marginal probability of Loses given evidences about Sick and/ or Dry states; 

e.g.: P(Loses = “yes” | Sick = “sick”, Dry = “dry”) = 0.95; 

- inferences about the probability of each parent, given evidence about the 

child’s state;. 

e.g.: P(Sick = “sick” | Losses = “yes”) = 0.49 

- inferences about the probability of one parent, given evidence about the child 

and other parent; 

e.g.: P(Sick = “sick” | Losses = “yes”, Dry = “dry”) = 0.11  
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Applications 
 

There are innumerous applications of the Bayesian theory which covers distinct fields of 

science. 

However, Bayesian Networks approach’ is still a relatively new research area. The main 

reason is because it requires significant computational power. Only in lasts few decades 

we started observing practical applications.  

Bayesian Networks contributed with useful improvements on fields such as fault 

diagnosis and sensor accuracy.  

In 1999, [36] presented a model to diagnose faults in airplane turbines with BN. 

[37], in 2002, used Bayesian Networks coupled with multivariate state estimation to 

provide both fault detection and fault diagnostic capabilities for the Space Shuttle Main 

Engines. In this study, the sensors information is validated with residual estimation 

techniques. Then, if a fault occurs, a probability is assigned to the component that had the 

failure; finally, Bayesian networks are applied for diagnosis. 

[38], developed a model to diagnose faults in networks of electric power distribution in 

the same year.   

In 2003, [39] proposed a distributed solution using Bayesian Networks for the detection 

of environmental features in wireless sensor networks. 

In the same year, [40] presented a model to predict the final quality of a software product. 

With BN they constructed a prediction model that focuses on the structure of the software 

development process explicitly representing complex relationships between metrics, and 

handling uncertain metrics, such as residual faults in the software products. 

[41] in 2006 proposes the construction of a Bayesian network for vales failure diagnosis 

in industrial systems. The authors used some simulated data to train a network to learn 

the structure and parameters. Then, they designed the diagnosis probabilistic inference 

through the poly-trees algorithm. The network presents the valves failure probabilities 

according to the evidences that show up in entrance sensors.  
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[42] in the same year, developed a fault diagnosis in Autonomous Underwater Vehicles 

based on Bayesian Networks. 

Other field that benefited with Bayesian Network was medicine. [43] stated in 1998 a 

large number of health care applications use DAGs. 

In fact, we can find sophisticated BN approach to clinical dating from 1993. For example, 

[44] used a Bayesian network with continuously valued nodes to propose an optimal 

schedule of a certain drug delivery. To achieve this, CPT’s were replaced with 

conditional density functions. This author used BN to infer the model parameters from a 

population and to probabilistically adapt it to a specific patient (taking into account the 

person’s history). This information is then used to help in defining an optimal policy of 

drug delivery. 

[32] presented in 1999 a Bayesian Network model for diagnosis of liver disorders and 

[45] in the year of 2000 a system to management of infectious disease. 

[31] developed a user-friendly web based development tool for medical diagnosis based. 

[45] stressed in 2004 the importance of Bayesian networks and other probabilistic 

graphical models as methods for discovering patterns in biomedical data and also as a 

basis for the representation of the uncertainties underlying clinical decision-making. 

All this applications follow the “classical causal effect” approach. In fact it seems that the 

“inverted” approach has not been sufficiently studied. 

 



CHAP II - Theory  Bayesian Network   

Rui Máximo Esteves 38 

 

Limitations 
 

Bayesian Networks have some limitations in what concerns the difficulties to obtain the 

necessary parameters. [37] experience some of them during their work related to fault 

diagnostic capabilities for the Space Shuttle Main Engines: 

1. prior probabilities of failure for each of the components are obtained from 

engineers and reliability test data; 

2. conditional probabilities for some of the nodes are obtained from past reports and 

engineering estimates;  

3. BN require tremendous numbers of parameters. For each node that has parents, a 

conditional probability is required for each state with regard to each combination 

of parent states. A single node may require hundreds of values.  

4. conditional probabilities for multiple failure modes were not available, so Liu and 

Zhang calculated by averaging the values for each of the participating single 

failure cases. 

Other crucial aspect that can turn into a limitation is the quality of the prior beliefs. [46] 

wrote that a Bayesian Network is only as useful as this prior knowledge is reliable. The 

author expresses that either an excessively optimistic or pessimistic expectation of the 

quality of these prior beliefs will distort the entire network and invalidates the results. He 

also emphasizes that selecting the proper distribution model to describe the data has a 

notable effect on the quality of the resulting network. 

[47] experience certain limitations on Bayesian Networks for modeling genetic regulatory 

networks. The most important limitation they feel is the caution with which we must 

interpret the model. Observing the graph is easy to mislead between physical and 

statistical influences between variables. 

[48] stated that mixed joint influences are more difficult to model, especially when one 

parent contributes with a positive and other with a negative influence.  



CHAP II - Theory  Bayesian Network   

Rui Máximo Esteves 39 

Bayesian Networks may be difficult to model problems when causal relationships 

between variables are complex and there isn’t available enough data to the network learn. 

It is the case of forward loops. However, these situations can be solved using more 

complex approach as Dynamic Bayesian Networks[49]. 
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Chapter III - THE MODEL 

 
The chapter starts with the formulation of the formal hypothesis on which relies the 

model. An outline of the methodology followed is presented. The necessary assumptions 

and considerations about the data’s quality are then exposed. There is also a description 

of the necessary experiments realized. The chapter ends with the test and its results. 
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Hypothesis 
 
 

With this work we intended to create a model to estimate sensor accuracy using data 

fusion. We believe that this could be done using Bayesian Networks. 

The examples found in the literature generally assume one of the following:  

• the existence of data to assess probabilities;  

• the ability of an expert to easily express them as believes.  

Unfortunately these conditions were not present. As so, we faced an extra challenge 

besides the regular problem modeling. We wanted to test if the application of BN was 

possible with such constraints. 

From a formal point of view our aim could be formulated through the hypothesis: 

H: In absence of data we may use Bayesian Network for sensor accuracy surveillance.  

Following a certain methodology we tried to investigate its veracity.
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Methodology 
 
 
To test our hypothesis, the present methodology was followed: 

- identification of the variables and their dependency relationships;  

- delineation of the Bayesian Network structure; 

- estimation of all the conditional probability tables (CPT) necessaries to our 

BN;  

- determination of the model inputs. The inputs are evidences we can observe 

through analysis of the well logs. In the present model we call it conditions. 

- query the BN using information about conditions to obtain the sensors’ 

accuracy probabilities; 

If the results were according to our expectations the hypothesis would be considered as 

true.  
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Assumptions 
 
 
The model is based on a set of conditions established with the help of experts in the 

domain. 

If the sensors are correct they should obey to several conditions9 (C): 

- bht/bhp = kte (C1). The coefficient between the temperature and pressure 

should be constant. As a consequence of the ideal gas law, this should be valid 

for a certain time period;   

- bhp > min (C2). The borehole pressure should be over a minimum reference 

value;  

- bhp – whp > diffP (C3). If the well is in production, there should be a pressure 

difference between the bhp and bht; 

- db (bhp/whp) = kte (C4). Relation between pressures on the choke should be 

constant for a stable choke aperture value. 

We assume that the well is in production. 

                                                 
9 The aim of these conditions is to be generic and easy to understand despite of their accuracy. These 
definitions were not consensual between the experts.  In order to implement the model to a specific 
reservoir, we suggest studying more specific and detailed conditions. 
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Data considerations 
 

Statoil Hydro provided a log from 2 platforms, each one with 4 production wells 

connected to the same reservoir.  

The measurements were from the borehole pressure (bhp), borehole temperature (bht), 

choke aperture, well head pressure (whp) and well head temperature (wht). These values 

were collected in 5 mins intervals over a month. 

After analyzing the data applying some statistical figures of merit we observed the 

following problematic situations: 

 C1: 

- A-4 presents clearly an irregular value; A-2, A-3; B-1 and A-1 are not so bad. 

We do not have information about the B-2 value.    

C2: 

- 2 wells presented an abnormal low bhp (one bellow 15 bars and the other 

negative (!)); 

- 1 well does not present bh values, as so, it had to be excluded from the 

analysis; 

C3: 

- A-2 and A-3 presents a higher pressure value at the well head than at 

borehole.  

C4:  

- A-1, A-2, A-3, A-4 presents a big variance between borehole and well head 

pressure at a stable choke.  

The results are summarized in the next table. 
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Table 7- Analysis of data 
Irregular situations represented by italic bold. 

In this study we face a feasible data absence problem. As there is no acceptable data11, it 

limits the model developing in these important aspects: 

- determination of correlations between sensor values; 

- determination of any probabilities; 

- using the BN learning abilities to help establishing relations between 

variables. 

Therefore, we have to solve the problem using merely domain expert’s knowledge. 

Consequently, we face the challenge of adapting the model in an easy way to incorporate 

this information. 

 

 

                                                 
10 Standard deviation. 
11 Details will be presented in the “Data considerations” section. 

    WELL      

Conditions A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 

C1 bht/bhp s 10/mean  6% 0% 0% 26% 9% ?? 3% 0% 

C2 Bhp mean (bar) 279 14 -100 187 180 N/A 220 230 

C3 Bhp –whp (bar) 198 -132 -205 126 127 ?? 166 152 

C4 Bhp/whp s/mean 24% 23% -24% 24% 12% ?? 6% 32% 
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Experiments 
 

In presence of the data constraints we experiment two different approaches in order to 

test our hypothesis. These approaches were based on different conditional probabilities 

concepts presented by [50]: 

- A: where causal probabilities are those of the form P(TestResult=fail | 

Sensor=bad), indicating the likelihood that a particular test condition outcome 

is caused  by  the state  of  a  certain  sensor.   

- B: where diagnostic probabilities are those of the form P(Sensor=bad l 

TestResult=fail),  indicating  the likelihood that a particular sensor is bad 

based on the fact that a certain condition test has failed. 

In both approaches we used for C2 (bhp > min) and C3 (bhp – whp > diffP) boolean 

variables which represents the probability of the condition been satisfied or not. The same 

logic was followed for the sensors variables12. We used 3 states variables for both 

approaches C1 (bhp/bhp = kte) and C4 (db (bhp/whp) = kte) pretending to model a bad; a 

good and an intermediate result of the conditions. Liu and Zhang, (2002) also used 3 

states variables. 

To model our network we used the Hugin Lite 7.1 software which can be found in: 

http://www.hugin.com 

 

 

                                                 
12 The sensor variable has a probability associated to Ok and Not_Ok states. One should interpret one has 
the complement of the other. 
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Approach A 
 

It considers the sensors as parents and the conditions as children. 

The logic behind is to reflect the sensors as the causes of the conditions’ state.  

The network provides the sensors’ probabilities using Bayesian inference. 

This modeling style seems to be the classical approach to fault diagnosis in engineering. 

One possible network representation is shown in next figure. 

 

 
Figure 11- Bayesian Network according to approach A. 
 
 
This approach has as advantage CPTs with few variables (maximum 3 variables). 

However the children CPTs are not intuitive as they are in the form P(Condition|Sensor). 

There is another problem related with the d-separation of the conditions. This states that 

the conditions are independent from each others given the sensors probabilities.  

Despite the fact this approach seems to be simpler at a first glance, it became harder to 

access the CPTs in order to express the expert knowledge in a coherent way. 

[50] stated this problem as “domain experts often experience difficulty arriving at the 

conditional probabilities in the causal direction, which are needed for the network design, 

as opposed to the probabilities in the diagnostic direction, which reflect their natural way 

of thinking.” 

However, if we have considerable amount of feasible data it is possible to bypass this 

problem using the learning abilities of Bayesian Networks.  



CHAP III – The Model  Experiments   

Rui Máximo Esteves 48 

 

 
Figure 12- Example of one simulation13 
 
 

In the last figure we can see a simulation of the BN using rough CPTs. Since bhp > Min 

is false, the model can assume that Sensor bhp is not ok. So, bhp by itself justifies why 

the others conditions are not good. With this set of evidences, the model cannot clearly 

decide if others sensors are ok or not. This was according our expectations. Now, what if 

we realize that bht/bhp = Kte is good? Since bhp is not working ok, we are not expecting 

good unless bht is also not ok.  

 

                                                 
13 In dark grey the evidences inserted. In light grey the probabilities provided by the model.  
  



CHAP III – The Model  Experiments   

Rui Máximo Esteves 49 

 
Figure 13- Example of an incoherent simulation.  
 
As we can observe the model does not behave as expected. The justification is related 

with the conditions’ d-separation. We could add more dependencies’ relationships to 

improve the behavior. However, in that way we’ll start to get complexes and non intuitive 

CPT. 

One could easily think that given only the prior component probabilities (P(C), P(C’)),  

and  the diagnostic conditional probabilities  (P(CIT), P(C’IT) ), it is possible to uniquely  

determine  the  causal  probabilities (P(TIC’), P(T’IC’) or (P(TIC), P(T’IC)). However, as 

[50] proved this is not possible. 
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Approach B 
 

This approach considers the conditions as parents and the sensors as children. 

The model follows the logic of the “symptom -> diagnostic”, whereas the conditions are 

symptoms to diagnose the sensors’ accuracy. 

This kind of approach is also found in the medical diagnostic context [33]. 

 
Figure 14- Bayesian Network according to approach B. 
 

The network has now links between the sensors to express the interrelation between them 

and the conditions. At a first glance, these connections may suggest an erroneous 

physical relationship between the sensors. In the model context, one should interpret this 

variable as the diagnostic about the sensor and not the physical state. Even if these two 

concepts may seem similar, they differ in practical aspects because the knowledge of one 

diagnostic may influence the other sensor diagnostic. [47] alerts for some precaution in 

Bayesian models interpretations. They state that even BN are highly interpretable 

structures for representing statistical dependencies, they can be easily misleading if 

interpreted incorrectly. These authors stressed about the importance of the distinction 

between statistical interaction and physical interaction. 

The mixed joint influence in Sensor bht from C1 and Sensor bhp was difficult to model 

as they have negative synergies. In a similar way we experienced the same problem in 

Sensor whp. 
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Figure 15- Example of BN under the same conditions as approach A.  
 
We can now realize that BN assumes both sensors are not ok. As bhp is not ok, the model 

expects bhp/whp to be bad. Since this condition is just medium, whp can not be working 

perfectly. 

As this approach seems more suitable to solve our given problem we tried to improve it 

adding an extra condition to expresses the age of sensors.  

The age condition has two states which are:  

- Old- when selected decrease the sensor accuracy; 

- Neutral- when selected the sensor accuracy is not affected by this condition. 

We also experimented adding more intermediate layers in a tentative to get CPTs with 

less variables and more easy to define. As suggested by [30] this was done by adding 

mediating variables. 
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Figure 16- Experiment to reduce the CPT’s tables complexity. 
This was done by adding mediating variables Z1, Y2, X2, Z3, X3.  
 

Even each CPT became easier to define, the overall model behavior was more difficult to 

delineate. These results are confirmed by [50] which state that multilayer networks are 

often very sensitive to conditional probabilities. These authors alert to the fact that 

probabilities have to be defined with greater accuracy because small perturbations in their 

values may result in radically different diagnostic conclusions. 

They also refer: “In the choice between simple Bayesian networks or two-level Bayesian 

networks and a multilevel network one needs to carefully consider the expected 

diagnostic benefits versus the increased cost of the knowledge engineering, testing, and 

real-time execution.” 

In consequence of the unsatisfactory results of our multilevel approaches the final model 

has only two levels as presented in the next figure.  

The required CPTs can be found in annex M. 
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Figure 17- The final model including the sensor age condition  
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Test and results 
 

We tested the final model to the problematic data described in the topic “data 

considerations”. 

We classified the data into the conditions’ states which are the model’s inputs. 

The criterion for the first and last condition is: Good <5%; 5% <= Medium < 20%; Bad 

>= 20%. The diffP is 120 bars and Min is 20 bars. 

As we do not have information about the sensor age we set that condition on Neutral 

state. 

    WELL     

Condition A-1  A-2 A-3 A-4 B-1 B-3 B-4 

C1 bht/bhp = kte Med Good Good Bad Med Good Good 

C2 Bhp > Min Yes No No Yes Yes Yes Yes 

C3 Bhp –whp > diffP Yes No No Yes Yes Yes Yes 

C4 Bhp/whp = kte Bad Bad Bad Bad Med Med Bad 

Table 8- Classification into conditions’ states14 
 
The results are presented in the next table. As mentioned before, the variable sensor gives 

the probabilities of the state OK and their complementary NOT_OK. If sensor is 

measuring data correctly the state OK is more probable than NOT_OK. An equal 

probability distribution occurs when the model does not have enough information to 

decide about the sensor accuracy. 

                                                 
14 Due to lacking information we excluded B-2. 
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A-1 A-2 / A-3 A-4 

   
B-1 B-3 B-4 

   
 
Table 9- Results presented by the model 
 
The results confirm our initial expectations regarding which sensor is most probable to be 

the cause of the data problem on each well.  

These outcomes reinforce the possibility to construct BN even in absence of data. The 

initial hypothesis was proven to be true. As so, Bayesian is a technique suitable for 

surveillance of sensors’ accuracy in a production well.  
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Chapter IV - CONCLUSIONS  

 
In this chapter we present the final conclusions. Some considerations about practical 

usages are given. It ends with some suggestions for further developments. 
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Conclusions 
 

With this work we could conclude that our initial hypothesis is true. Therefore Bayesian 

Network is a suitable method for surveillance of sensors’ accuracy in a production well. 

We found that when facing situations of missing feasible data to construct the model and 

limited expert knowledge it may became easier to invert the causal structure. This can be 

achieved by slightly modifying the variables and the relations meanings in order to 

express expert’ believes. However, this should only by done if the model is still easily 

understandable. 

The “inverted” approach has been rarely used, though it can be a better alternative under 

special constrains. It can be especially useful helping the expert in the critical task of 

assessing his believes of probabilities.  

Despite our satisfactory results, one should take into consideration the following aspects 

were simplifications: 

• the conditions that variables should obey;  

• the probabilities assessment;  

• the number of states on each condition; 

• the classification criterions of this states.  

As so, before applying this model in practice we present the following suggestions: 

 - revise the conditions; 

 - include more conditions; 

 - increase the conditions states and improve the criterions; 

 - revise the CPTs. 
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Further developments 
 

It would be interesting to extend this model in a way to use the measurements from the 

others wells. 

Since the several wells are all connected to the same reservoir, one could try to find 

correlations between the several sensors. 

If we can find these correlations we could incorporate a sensor redundancy approach into 

this model.  

It would also be interesting trying a Dynamic Bayesian Network approach to include the 

evolution of the several sensor measurements over time. 
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ANNEX A- Exemple of Kalman’s filter applied to robo tic football  

 

Object tracking is used in robotic football for determination of ball’s position in the field. 

The robot’s trepidation and environmental factors provides noise to the measures. The 

CAMBADA 15 robotic football team uses Kalman to filter this noise and the results can be 

seen on the picture 1 [51]. 

 

 

 

Figure 18. Kalman filter application 
 
The read measures of the position are represented with black dots. Positions filtered by 

the Kalman filter with constant noise represented with stars. Positions filtered by the 

                                                 
15 CAMBADA- The 2008’s robotic soccer world championship winner from University of Aveiro; Portugal 
- uses Kalman filter to help tracking the position and velocity of the ball. 
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Kalman filter with dynamic noise16 represented with hexagrams. The robot position is 

represented by the star in the circumference center. [5] 

                                                 
16 Dynamic noise increases with ball’s distance 
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ANNEX B- Example applied to pattern recognition 17 

 

Let’s consider a three dimensional binary feature vector X=(x1,x2,x3) = (0,1,1) that we 

will attempt to classify with one of the following classes: 

 

 

 

and lets say that the prior probability for class 1 is P(ω1)= 0.6 while for class 2 is P(ω2)= 

0.4. Hence, it is already evident that there is a bias towards class 1. 

 

Additionally, we know that likelihoods of each independent feature is given by p and q 

where: 

 

pi = P(xi=1|ω1) and qi = P(xi=1|ω2) 

 

meaning that we know the probability (or likelihood) of each independent feature given 

each class - these values are known and given: 

 

p = {0.8, 0.2, 0.5} and q = {0.2, 0.5, 0.9} 

 

therefore, the discriminant function is g(x) = g1(x) - g2(x) or by taking the log of both 

sides: 

                                                 
17 Extracted from 52. Riggi, F. and R. Harmouche, A web project on Bayes Decision Rule - Discrete 
Features. 2006.  
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however, since the problem definition assumes that X is independent, the discriminant 

function can be calculated by: 

 

with  

 

 

   

 

 

 

 

 

 

 

After inputting the xi values into the discriminant function, the answer g(x) = -2.4849. 

Therefore this belongs to class 2. Below is a plot of the decision boundary surface. 
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Figure 19- Decision Boundaries 
 

All points above the plane belong to class ω2 since if X = (0,1,1), g(x) = -2.4849 < 0. 
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ANNEX C- Simple example of Dempster Shafer 18 

 

Say we park our car in our usual spot but we do not know whether a friend might be 

picking it up during the day. Say Sue comes into the office and says your car is not there. 

But we know that Sue is absent minded and so only 90% of the time is she looked in the 

right spot. Thus, 90% of the time we have good evidence that the car is gone, whereas the 

other 10% we have no information one way or the other. Thus, we might believe that the 

probability that the car is missing is at least .9, and might be up to 1.0. This we capture 

with what Brachman and Levesque call a possibility interval of [.9, 1.0] - where the lower 

bound is called the belief in the proposition, and the second is the plausibility of it being 

true, say if all the uncertainty were resolved in favor of our hypothesis. We write the first 

term as Bel(p), and the second as Pl(p), and we can relate them with the formula 

 

  Bel(p) = 1 - Pl(¬p)` 

i.e., the first indicates how certain we are about p, where the second indicates how high 

the probability could go given how certain we are that ¬P. In this example, we have no 

evidence that the car is still there, so the interval is [.9, 1.0]. 

Say we have another friend Bill, who also says that the car in missing. But we know that 

Bill only looks in the right spot 80% of the time. Thus, looking at just his evidence, we 

would have the possibility interval [.8, 1.0]. Now consider if both Sue and Bill tell me 

that the car is missing  

 

- how might I combine this evidence? 

 

                                                 
18 Extracted from53. Ardis, P. Notes on Dempster Shafer Belief Functions.   [cited; Available from: 

http://www.cs.rochester.edu/~ardis/DempsterShafer.pdf. 

 



ANNEXES     

Rui Máximo Esteves 70 

It is true that the probability that both are reliable is .8 * .9 = .72, but this isn't the number 

we are interested in, since only one of them has to be reliable for us to know that the car 

is missing. The probability that both Bill and Sue are unreliable is .1*.2 = .02, so 98% of 

the time one of them is reliable and my car will be missing. Thus, my new degree of 

belief is .98, and the possibility interval is [.98, 1.0]. In this case, all my evidence was 

consistent, and as long as we believe the two pieces of evidence are independent, our 

conclusion seems justified. 

What happens when evidence is inconsistent? Say Sue says the car is missing, and Bill 

says the car is there (but might have misrecognized it when he looked in the wrong spot). 

Thus, for Sue we have the possibility interval of [.9, 1.0] as before, and for Bill we have 

[0, .2]. We have to consider four cases: 

• Sue is reliable, Bill is reliable - impossible since they both can't be right! 

• Sue is reliable, Bill is not, with probability .9 * .2 = .18 In this case, the car is 

gone. 

• Bill is reliable, Sue is not, with probability .1 * .8 = .08. In this case the car is 

there. 

• Both are unreliable, with probability .2 * .1 = .02. In this case, we do not know. 

How do we convert this into a possibility interval? Essentially we normalize. Since we 

know at least one is unreliable, the sum of the three non-zero probabilities above should 

be 1, but the above calculations only give us .18+.08+.02 = .28. We fix this by 

normalizing, and thus we belief that the car is missing with .18/.28 = .643 and that the car 

is not missing as .08/.28 = .286. Thus the possibility interval for the car being missing is 

[.643, 1-.286], which equals [.643, .714]. 
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ANNEX D- Example of D. S. applied to aircraft detec tion 19 

 

Let’s consider the following example from aircraft detection. The system has two sensors 

observing a target and the possible states are: 

• detection of an F-111,  

• detection of an F/A-18,  

• detection of an P-3C Orion, 

• “fast”, if we cannot distinguish between an F-111 and an F/A-18. 

• “unknown”, where a decision as to what the aircraft is does not appear to 

be possible at all. 

The sensors notice an aircraft and allocate the masses m1 and m2 as set in Table 2.  

  

Sensor 1  Sensor 2  Fused masses 

Target type  (mass m1)  (mass m2)  (mass m1,2) 

F-111  30% 40% 55% 

F/A-18  15% 10% 16% 

P-3C  3% 2% 0.4% 

Fast  42% 45% 29% 

Unknown  10% 3% 0.3% 

Total mass  100% 100% 100% 

Table 10- Mass assignments for the various aircraft20 
 

The third column holds the final masses fused using Dempster’s rule of combination. 

                                                 
19 Extracted from: 3. Kessler, O. and F. White, Data Fusion Perspectives and Its Role in Information 
Processing, in Handbook of Multisensor Data Fusion - Theory and Practice, M.E. Liggins, D.L. Hal., and 
J. Llinas, Editors. 2009, CRC Press: Boca Raton. 
20 Dempster requires the totals equal to 100%. 
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Exemplifying to the F-111: 

m1,2(F-111) ∝ m1(F-111) m2(F-111) + m1(F-111) m2(Fast) + m1(F-111) 

m2(Unknown)+ m1(Fast) m2(F-111) + m1(Unknown) m2(F-111) 

= 0.30 × 0.40 + 0.30 × 0.45 + 0.30 × 0.03 + 0.42 × 0.40 + 0.10 × 0.40 

= 0.47 

The other masses were calculated on a similarly way. The third column was normalized 

by dividing each by their sum yields the final mass values.  

The fusion reinforces the idea that the target is an F-111 and, together with our initial 

confidence in its being a fast aircraft, means that we are more sure than ever that it is not 

a P-3C. Even most of the mass is assigned to the two fast aircrafts, the amount of mass 

assigned to the “fast” type is not as high as we might expect.  



ANNEXES     

Rui Máximo Esteves 73 

ANNEX E- Example of Neural Networks applied to patt ern 

recognition 21 

 

Pattern recognition can be implemented by using a feed-forward neural network that has 

been trained accordingly. During training, the network is trained to associate outputs with 

input patterns. When the network is used, it identifies the input pattern and tries to output 

the associated output pattern. The power of neural networks comes to life when a pattern 

that has no output associated with it, is given as an input. In this case, the network gives 

the output that corresponds to a taught input pattern that is least different from the given 

pattern.  

 

 

Figure 20- The Neural Network 
 

 

For example:  

The network of above figure is trained to recognize the patterns T and H. The associated 

patterns are all black and all white respectively as shown below.  

 

                                                 
21 Extracted from: 54. Stergiou, C. and D. Siganos. NEURAL NETWORKS. SURPRISE 1996  [cited; 
Available from: http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html. 
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If we represent black squares with 0 and white squares with 1 then the truth tables for the 

3 neurons after generalization are;  

 

X11:   0  0  0  0  1  1  1  1  

X12:   0  0  1  1  0  0  1  1  

X13:   0  1  0  1  0  1  0  1  

          

OUT:  0  0  1  1  0  0  1  1  

Top neuron  

X21:   0  0  0  0  1  1  1  1  

X22:   0  0  1  1  0  0  1  1  

X23:   0  1  0  1  0  1  0  1  

          

OUT:  1  0/1  1  0/1  0/1  0  0/1  0  

Middle neuron  
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X21:   0  0  0  0  1  1  1  1  

X22:   0  0  1  1  0  0  1  1  

X23:   0  1  0  1  0  1  0  1  

          

OUT:  1  0  1  1  0  0  1  0  

Bottom neuron  

 

From the tables the following associations can be extracted: 

 

 

In this case, it is obvious that the output should be all blacks since the input pattern is 

almost the same as the 'T' pattern. 

 

 

Here also, it is obvious that the output should be all whites since the input pattern is 

almost the same as the 'H' pattern. 
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Here, the top row is 2 errors away from a T and 3 from an H. So the top output is black. 

The middle row is 1 error away from both T and H so the output is random. The bottom 

row is 1 error away from T and 2 away from H. Therefore the output is black. The total 

output of the network is still in favour of the T shape. 
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ANNEX F- Example of Fuzzy Logic applied to a temper ature 

control device 22 

 

On the following example we will try to exemplify the application of the four firsts steps.  

 

1) Definition of the control objectives and criteria 

We want to design a simple proportional temperature controller with an electric heating 

element and a variable-speed cooling fan. A positive signal output calls for 0-100 percent 

heat while a negative signal output calls for 0-100 percent cooling. Control is achieved 

through proper balance and control of these two active devices.  

 

Figure 21 A simple block diagram of the control system 
 

2) Determination of the input and output relationships   

It is necessary to establish a meaningful system for representing the linguistic variables in 

the matrix. For this example, the following will be used:  

"N" = "negative" error or error-dot input level  

                                                 
22 Extracted from 17. Kaehler, S.D. Fuzzy Logic Tutorial - An Introduction.  1998  [cited; Available 
from: http://www.seattlerobotics.org/encoder/Mar98/fuz/flindex.html. 
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"Z" = "zero" error or error-dot input level  

"P" = "positive" error or error-dot input level 

"H" = "Heat" output response  

"-" = "No Change" to current output  

"C" = "Cool" output response 

Define the minimum number of possible input product combinations and corresponding 

output response conclusions using these terms. For a three-by-three matrix with heating 

and cooling output responses, all nine rules will need to be defined. The conclusions to 

the rules with the linguistic variables associated with the output response for each rule are 

transferred to a matrix.  

 

 

Figure 22- Typical control system response 
 

Figure above shows what command and error look like in a typical control system 

relative to the command setpoint as the system hunts for stability. Definitions are also 

shown for this example. 
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Definitions: 

INPUT#1: ("Error", positive (P), zero (Z), negative (N))  

INPUT#2: ("Error-dot", positive (P), zero (Z), negative (N)) 

CONCLUSION: ("Output", Heat (H), No Change (-), Cool (C)) 

INPUT#1 System Status  

Error = Command-Feedback  

P=Too cold, Z=Just right, N=Too hot 

INPUT#2 System Status 

Error-dot = d(Error)/dt  

P=Getting hotter Z=Not changing N=Getting colder  

OUTPUT Conclusion & System Response  

Output H = Call for heating NC = Do not change anything C = Call for cooling  

 

3) Break the control problem down into FL rules 

Linguistic rules describing the control system consist of two parts; an antecedent block 

(between the IF and THEN) and a consequent block (following THEN). By making this 

type of evaluation, usually done by an experienced operator, fewer rules can be 

evaluated, thus simplifying the processing logic and perhaps even improving the FL 

system performance. 
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Figure 23- The rule structure & rule matrix 
 

Additional degrees of error and error-dot may be included if the desired system response 

calls for this. This will increase the rule base size and complexity but may also increase 

the quality of the control. Figure above shows the rule matrix derived from the previous 

rules. 

 

4) Creation of FL membership functions 

The membership function is a graphical representation of the magnitude of participation 

of each input. It associates a weighting with each of the inputs that are processed, define 

functional overlap between inputs, and ultimately determines an output response. The 

rules use the input membership values as weighting factors to determine their influence 

on the fuzzy output sets of the final output conclusion. Once the functions are inferred, 

scaled, and combined, they are defuzzified into a crisp output which drives the system. 
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There are different memberships functions associated with each input and output 

response.  

 

 

Figure 24- The features of a membership function 
 

Figure above illustrates the features of the triangular membership function which is used 

in this example because of its mathematical simplicity. Other shapes can be used but the 

triangular shape lends itself to this illustration. 

The degree of membership (DOM) is determined by plugging the selected input 

parameter (error or error-dot) into the horizontal axis and projecting vertically to the 

upper boundary of the membership function(s).  
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Figure 25- Example errors 
 

In figure above, consider an "error" of -1.0 and an "error-dot" of +2.5. These particular 

input conditions indicate that the feedback has exceeded the command and is still 

increasing.  

The degree of membership for an "error" of -1.0 projects up to the middle of the 

overlapping part of the "negative" and "zero" function so the result is "negative" 

membership = 0.5 and "zero" membership = 0.5. Only rules associated with "negative" & 

"zero" error will actually apply to the output response. This selects only the left and 

middle columns of the rule matrix. 

For an "error-dot" of +2.5, a "zero" and "positive" membership of 0.5 is indicated. This 

selects the middle and bottom rows of the rule matrix. By overlaying the two regions of 
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the rule matrix, it can be seen that only the rules in the 2-by-2 square in the lower left 

corner (rules 4,5,7,8) of the rules matrix will generate non-zero output conclusions. The 

others have a zero weighting due to the logical AND in the rules. 
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ANNEX G- Genetic Algorithms Uses 23 

 

• Genetic Algorithms in Parametric Design of Aircraft, by Mark F. Bramlette 

and Eugene E. Bouchard. The authors discuss optimizing aircraft designs when 

the task is posed as that of optimizing a list of parameters. They have approached 

the problem with a number of optimization algorithms, including a genetic 

algorithm using real number representation. They also discuss the performance of 

each algorithm and describe some innovative techniques used in their quite 

successful genetic algorithm, including the technique of generating a large 

number of initial population members and then working only with the best ones. 

• Dynamic Anticipatory Routing in Circuit-Switched Telecommunications 

Networks, by Louis Anthony Cox, Jr., Lawrence Davis, and Yuping Qiu. The 

objective of the study is to optimize the routing of telephone networks in order to 

minimize costs to US West. It compares the performance of an order-based 

genetic algorithm with several other optimization techniques on this problem. The 

authors conclude that the genetic algorithm is a highly successful technique when 

the problem is complex, but hybridization of these algorithms can lead to better 

performance than using any of them in isolation. 

• A Genetic Algorithm Applied to Robot Trajectory Generation, by Yuval 

Davidor. He shows how to apply genetic algorithm techniques to the task of 

planning the path which a robot arm is to take in moving from one point to 

another. Davidor uses variable-length chromosomes in his solution, and devises 

some novel and interesting crossover operators. 

• Genetic Algorithms, Nonlinear Dynamical Systems, and Models of 

International Security, by Stephanie Forrest and Gottfried Mayer-Kress, 

concerns a problem posed by current research in chaotic models of real processes. 

                                                 

23 Source: 55. Alba, E. and C. Cotta.  1998  [cited; Available from: 
http://www.lcc.uma.es/~ccottap/semEC/. 
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Chaotic models of international arms races and economic competition seem to 

model some features of the real-world processes better than some other more 

traditional models have done. The authors use a genetic algorithm to find good 

settings of the parameters of Mayer-Kress's models in order to enhance their 

performance on the models. 

• Strategy Acquisition with Genetic Algorithms, by John J. Grefenstette. He 

experiments with SAMUEL, a genetic algorithm that learns techniques for 

maneuvering a simulated airplane in order to evade a simulated missile. The 

genetic algorithm he describes employs several techniques of interest, including 

variable-length chromosomes composed of rules that form a production system. A 

chromosome is evaluated by using those rules to maneuver the airplane in 

simulated interactions between airplanes and missiles. Grefenstette has built 

knowledge of the production rule domain into his operators in clever ways. 

• Genetic Synthesis of Neural Network Architecture, by Steven A. Harp and 

Tariq Samad, that describes techniques for encoding neural network architectures 

on binary chromosomes. The authors use variable-length chromosomes and a 

variety of other novel techniques. This is a good place to begin in learning how to 

combine neural networks and genetic algorithms. 

• Air-Injected Hydrocyclone Optimization Via Genetic Algorithm , by Charles 

L. Karr, that describes the solution of a design problem by a genetic algorithm 

using the bit string representation technique. Karr represents the design of an air-

injected hydro cyclone as a list of parameters. An interesting feature of his 

approach is the use of a new operator called "simplex reproduction". Karr shows 

that a genetic algorithm using this operator is quite effective as a search technique 

for finding design parameter combinations. 

• A Genetic Algorithm Approach to Multiple Fault Diagnosis, by Gunar E. 

Liepens and W. D. Potter, which discusses the use of a genetic algorithm for 

finding the most plausible combination of causes for alarms in a microwave 

communication system. The authors use binary chromosomes to represent 

solutions to a problem that they show is a type of set covering problem. They 
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show how to incorporate knowledge about set covering optimization into their 

genetic algorithm in novel ways, yielding a high-performance hybrid solution to 

the problem. 

• A Genetic Algorithm for Conformational Analysis of DNA, by C. B. Lucasius, 

M. J. J. Blommers, L. M. C. Buydens, and G. Kateman. It is a development of a 

genetic algorithm for determining the structure of a sample of DNA based on 

spectrometric data about the sample. An interesting "cascaded" evaluation 

technique that greatly enhances the efficiency of their evaluation function is used. 

The authors use bit strings to encode molecular structures. Their evaluation 

function measures the degree to which each decoded structure conforms to the 

data that have been collected about the sample. The genetic algorithm evolves a 

description of molecular structure that is in agreement with the data collected. The 

problem of determining bimolecular structure occupies a central position in the 

worlds of fundamental and applied chemistry today. 

• Automated Parameter Tuning for Sonar Information Processing, by David J. 

Montana. An application of genetic algorithms to two problems associated with 

interpreting passive sonar data. The first is a parameterization problem. To solve 

it, Montana uses a floating-point version of OOGA to find good parameter 

settings for the algorithms employed in the process of interpreting sonar data. The 

second problem is a classification problem. For this problem, a genetic algorithm 

is used to train neural networks classifying sonar signals in various ways. In this 

second system, Montana and Davis experiment with a number of domain-based 

operators, including the use of back propagation -a neural network technique- as a 

genetic algorithm operator. This application is useful if you are interested in 

hybrid genetic algorithms, real number representations for parameterization, or 

neural networks. 

• Interdigitation: A Hybrid Technique for Engineering  Design Optimization, 

by Gilbert Syswerda. An application of a genetic algorithm to the problem of 

scheduling activities in a laboratory in which each activity may affect the others 

in a variety of ways. Syswerda has been implementing this system under contract 



ANNEXES     

Rui Máximo Esteves 87 

to the U. S. Navy. The genetic algorithm uses an order-based chromosome to 

represent its schedule. The chromosome is decoded with a decoder that 

incorporates a good deal of knowledge about the scheduling domain. 

• The Traveling Salesman and Sequence Scheduling: Quality Solutions Using 

Genetic Edge Recombination, by Darrell Whitley, Timothy Starkweather, and 

Daniel Shaner. The authors describe a technique for solving the traveling 

salesman problem, a well-known combinatorial optimization problem. Their 

solution includes novel and ingenious representation, crossover, and repair 

mechanisms. They also show how similar techniques can be applied to the 

problem of scheduling a Hewlett-Packard production line. 
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ANNEX H- GA example applied to the Traveling Salesm an 

problem 24 

 

Traveling Salesman is a classical non deterministic problem where the aim is to find a 

tour of a given set of cities so that: 

• each city is visited only once 

• the total distance traveled is minimized 

 

The chromosome representation is an ordered list of city numbers: 

 1) London     3) Dunedin        5) Beijing     7) Tokyo 

 2) Venice      4) Singapore     6) Phoenix   8) Victoria 

 CityList1     (3   5   7   2   1   6   4   8) 

 CityList2     (2   5   7   6   8   1   3   4) 

 

Example of a mutation involving the reorder of the CityList2: 

 Before:       (5   8   7   2   1   6   3   4) 

 After:          (5   8   6   2   1   7   3   4) 

 

On next two figures one can see the results of a GA applied to an example with 30 cities. 

These pictures evidence the algorithm’s convergence from a solution with a total distance 

of 941 to an optimal one with just 420. The algorithm’s performance is showed on the 

third figure. 

 

                                                 
24 Extracted from 20. Williams, W. Genetics Algorithms: A Tutorial.   [cited; Available from: 
http://www.dbai.tuwien.ac.at/staff/musliu/ProblemSolvingAI/Class9GATutorial.ppt. 
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Figure 26- Early stage solution example 
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Figure 27- Optimal solution 
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Figure 28- Overview of the GA Perfomance 
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ANNEX I- Forward chaining expert system example 25 

 

In this inference type, rules are evaluated as new data enter the system. In case a rule 

evaluation becomes true, actions may add new data to memory, thus triggering more 

rules. And so on.  

 

Consider a system with three rules:  

If someone is a third year, then they need a job. 

If someone is a third year, then they live in. 

If someone needs a job, they will become an accountant. 

 

And we put the following fact into database:  

John is a third year. 

 

Being a forward chain, the system is constantly on watch for new data. As soon as this 

data arrives, the system searches all the rules for any whose conditions weren't true 

before but are now. It then adds their conclusions to system.  

In this case, rules 1 and 2 have conditions which match this new fact. So the system will 

immediately create and add the two facts below.  

• John needs a job. 

• John lives in. 

 

                                                 
25 Extracted from 56. Paine, J. Expert Systems.  1996  [cited; Available from: http://www.j-
paine.org/students/lectures/lect3/node1.html  
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These facts in turn can trigger rules. As each arrives, the system would look for yet more 

rules that are made true. In this case, the fact John needs a job would trigger rule 3, 

resulting in the addition of another fact to system:  

John will become an accountant. 

 

The fact John lives in would not trigger anything else though. 
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ANNEX J- Backward chaining expert system example 26 

 

In a backward chaining the system needs to know the value of a piece of data. It searches 

for rules whose conclusions mention this data. Before it can use the rules, it must test 

their conditions. This may entail discovering the value of more pieces of data, and so on. 

This is also called goal-directed inference, or hypothesis driven, because inferences are 

not performed until the system is made to prove a particular goal (i.e. a question).  

This is a lazy kind of inference. It does no work until absolutely necessary, in distinction 

to forward chaining, where the system eagerly awaits new facts and tries applying 

conditions as soon as they arrive.  

 

So, if we had this knowledge base again  

If someone is a third year, then they need a job. 

If someone is a third year, then they live in. 

If someone needs a job, they will apply to be an accountant. 

and we were to add  

John is a third year 

the system would do nothing at all.  

 

But if we were then to ask the question  

Is there anyone who is going to become an accountant? 

the system would try to answer. It would begin by searching either for a fact that gives 

the answer directly, or for a rule by which the answer could be inferred. To find such a 

rule, it searches the entire knowledge base for rules whose conclusions, if made true, will 

answer the question.  

                                                 
26 Extracted from 56. Ibid.  [cited.  
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In this example, there are no facts giving the answer; there's one rule whose conclusion, if 

true, would supply an answer, and that's rule 3.  

The system next checks the rule's conditions. Is there anyone who needs a job? As with 

the original question, we look either for a fact that answers directly, or for a rule. There 

are no facts, but rule 1 is relevant.  

So we now check its conditions. Is there a third year? This time, there is a fact that 

answers this: John is a third year. So we've proved rule 1, and that's proved rule 3, and 

that's answered the question.  
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ANNEX L- Expert Systems uses 27 

 

The seven main fields of applications: 

 

Diagnosis and Troubleshooting of Devices and Systems of Al Kinds 

This class comprises systems that deduce faults and suggest corrective actions for a 

malfunctioning device or process. Medical diagnosis was one of the first knowledge areas 

to which ES technology was applied (for example, see Shortliffe 1976), but diagnosis of 

engineered systems quickly surpassed medical diagnosis. There are probably more 

diagnostic applications of ES than any other type. The diagnostic problem can be stated 

in the abstract as: given the evidence presenting itself, what is the underlying 

problem/reason/cause? 

 

Planning and Scheduling 

Systems that fall into this class analyze a set of one or more potentially complex and 

interacting goals in order to determine a set of actions to achieve those goals, and/or 

provide a detailed temporal ordering of those actions, taking into account personnel, 

materiel, and other constraints. This class has great commercial potential, which has been 

recognized. Examples involve airline scheduling of flights, personnel, and gates; 

manufacturing job-shop scheduling; and manufacturing process planning. 

 

Configuration of Manufactured Objects from Subassemblies 

Configuration, whereby a solution to a problem is synthesized from a given set of 

elements related by a set of constraints, is historically one of the most important of expert 

system applications. Configuration applications were pioneered by computer companies 

                                                 
27Source: 57. THE APPLICATIONS OF EXPERT SYSTEMS.   [cited 2009 May]; Available from: 
http://www.wtec.org/loyola/kb/c1_s2.htm. 
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as a means of facilitating the manufacture of semi-custom minicomputers (McDermott 

1981). The technique has found its way into use in many different industries, for 

example, modular home building, manufacturing, and other problems involving complex 

engineering design and manufacturing. 

 

Financial Decision Making 

The financial services industry has been a vigorous user of expert system techniques. 

Advisory programs have been created to assist bankers in determining whether to make 

loans to businesses and individuals. Insurance companies have used expert systems to 

assess the risk presented by the customer and to determine a price for the insurance. A 

typical application in the financial markets is in foreign exchange trading. 

 

Knowledge Publishing 

This is a relatively new, but also potentially explosive area. The primary function of the 

expert system is to deliver knowledge that is relevant to the user's problem, in the context 

of the user's problem. The two most widely distributed expert systems in the world are in 

this category. The first is an advisor which counsels a user on appropriate grammatical 

usage in a text. The second is a tax advisor that accompanies a tax preparation program 

and advises the user on tax strategy, tactics, and individual tax policy. 

 

Process Monitoring and Control 

Systems falling in this class analyze real-time data from physical devices with the goal of 

noticing anomalies, predicting trends, and controlling for both optimality and failure 

correction. Examples of real-time systems that actively monitor processes can be found in 

the steel making and oil refining industries. 
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Design and Manufacturing 

These systems assist in the design of physical devices and processes, ranging from high-

level conceptual design of abstract entities al. the way to factory floor configuration of 

manufacturing processes. 
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ANNEX M- Conditional Probabilities Tables 
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