
M A S T E R T H E S I S

Efficient Implementation and Evaluation of Methods
for the Estimation of Motion in Image Sequences

UiS Universitetet i Stavanger, Norway
HSR Hochschule für Technik Rapperswil, Switzerland

Robert Hegner robert.hegner@hsr.ch

Advisors:

Assoc. Prof. Dr. Ivar Austvoll ivar.austvoll@uis.no
Assoc. Prof. Dr. Tom Ryen tom.ryen@uis.no
Prof. Dr. Guido Schuster guido.schuster@hsr.ch Stavanger, June 13, 2010

This report was typeset using LATEX. The figures were created with Matlab or MS Visio.

Abstract

Introduction Optical flow estimation (the estimation of the apparent motion of objects in an
image sequence) is used in many applications like video compression, object
detection and tracking, robot navigation, and so on.

This project was focussed on one specific optical flow estimation algorithm,
which uses directional filters and an AM-FM demodulation algorithm for the
estimation of the velocities.

Goals The main goals of this project were

1. implementing the algorithm in CUDA (parallel computing architecture de-
veloped by NVIDIA) to make use of the huge parallel computing power of
modern GPUs (graphic processing units).

2. extending the algorithm to a multiresolution scheme to allow the estimation
of higher speeds (Pyramid Algorithm).

3. integrating the algorithms into an (existing) Matlab GUI which allows to
compare the new algorithm with other optical flow estimation algorithms.

Results The speedup of the CUDA implementation (running on a GeForce GTX 260 with
216 parallel cores) compared to an existing Matlab implementation (running on
an Intel Core 2 Quad 2.4GHz) is several thousand (depending on the dimensions
of the image sequence).

For most of the image sequences used for evaluation, the accuracy of the Pyra-
mid Algorithm is better than or comparable to the accuracy of the OpenCV
implementation of the famous Lucas-Kanade algorithm.

Due to the large spatial support of the directional filters, the algorithm has some
problems handling motion discontinuities, particularly in the border regions of
an image sequence.

The estimation of high speeds was achieved by computing a rough estimate
of the (high) speeds in a downsampled image sequence. The motion in the
full-resolution image sequence can then be compensated before estimating the
speeds on the full-resolution image. This new estimates of the compensated
speeds can finally be used to refine the first rough estimates. This procedure can
be applied recursively over several levels (Pyramid Algorithm).

One problem of the pyramid implementation of the algorithm is that unreliable
estimates from downsampled levels can have a negative impact on the estima-
tions on the full-resolution level.

Outlook For both the Basic Algorithm and the Pyramid Algorithm it could be worthwhile
to have a closer look at the boundary problem. For the Pyramid Algorithm, a
postprocessing step for the rough estimates should be considered. There is also
some potential to reduce the execution time of the CUDA Pyramid Algorithm.

3

Acknowledgments

First of all I want to thank my advisors from the University of Stavanger (UiS),
Assoc. Prof. Dr. Ivar Austvoll and Assoc. Prof. Dr. Tom Ryen for introducing
me to another interesting topic in signal processing and for supervising and
supporting me during this project. Thanks also to Tuan Williams for providing
all the hard- and software I needed and for the support with the IT infrastructure.

Many thanks also to the people who made this semester abroad possible. First
of all to Assoc. Prof. Dr. Tom Ryen (UiS) and Prof. Dr. Guido Schuster (HSR),
but also to Bente Dale (UiS) who handled the administrative issues.

Finally I want to thank all my friends from the White-Boxes for the great time
we spent together in Norway. I hope we will meet again sometime.

5

Contents

1 Original Project Description 13
1.1 Introduction . 13
1.2 Problem . 13
1.3 Implementation . 14
1.4 Advisors . 14

2 Introduction 15
2.1 Optical Flow Estimation . 15
2.2 Tasks of this Project . 16
2.3 CUDA Basics . 17

2.3.1 Thread Hierarchy . 17
2.3.2 Memory Organization . 19

3 Basic Algorithm 21
3.1 Description of the Algorithm . 21
3.2 Directional Filtering . 24

3.2.1 Rotating . 24
3.2.2 Filtering . 25

3.3 Computation of Instantaneous Frequencies . 26
3.4 Computation of Component Velocities . 27
3.5 Combining the Component Velocities . 29

4 Pyramid Algorithm 31
4.1 Introduction . 31
4.2 Multiresolution . 33
4.3 Integration of Pyramid Levels . 34

5 CUDA Implementation 37
5.1 Development Environment . 37

5.1.1 System Setup . 38
5.1.2 Troubleshooting . 42

5.2 Build Process . 42
5.2.1 Win64 Compatibility . 42
5.2.2 Makefile . 43

5.3 General Information about the Implementations . 45
5.4 Basic Algorithm . 46

5.4.1 Using the MEX File . 46

7

Contents

5.4.2 Unoptimized Implementation . 47
5.4.3 Texture Memory for Image Rotation . 50
5.4.4 Optimization of Directional Filtering . 51
5.4.5 Using Vector-Datatypes . 54
5.4.6 Optimized Program Flow . 56
5.4.7 Speedup . 59

5.5 Pyramid Algorithm . 60
5.5.1 Using the MEX File . 60
5.5.2 Implementation Notes . 60
5.5.3 Performance . 63

6 Results 67
6.1 Number of Pyramid Levels . 67
6.2 Smoothing Filter . 70
6.3 Other Parameters . 71
6.4 Comparison with other Algorithms . 71
6.5 Conclusion . 74

A Additional Plots and Tables 75
A.1 Number of Pyramid Levels . 75
A.2 Number of Directions . 79
A.3 Temporal Radius . 83
A.4 Spatial Radius . 87
A.5 Comparison with other Algorithms . 91

A.5.1 Diverging Tree Sequence . 94
A.5.2 Translating Tree Sequence . 96
A.5.3 Rubber Whale Sequence . 99
A.5.4 Yosemite Cloudless Sequence . 101
A.5.5 Grove 2 Sequence . 104
A.5.6 Hydrangea Sequence . 106
A.5.7 Urban 3 Sequence . 108
A.5.8 Grove 3 Sequence . 110
A.5.9 Urban 2 Sequence . 112

B Matlab GUI 115

C Test Image Sequences 119

D OpenCV 125
D.1 Building the Libraries . 125
D.2 Building and Using the MEX Wrappers . 126

E Content of the DVD 127

Bibliography 129
Books . 129
Theses . 129
Papers . 130
Manuals . 131
Web Pages . 131

8

List of Tables

4.1 Compensation of high speeds. 34

5.1 Software versions used during this project. 38
5.2 Development systems. 39
5.3 GPU comparison. The two first GPUs belong to the CUDA Workstation, the latter is the

Notebook’s GPU. 39
5.4 Required environment variables. 40
5.5 Size of data types (in bits) on Win32 and Win64 systems. 43
5.6 Timing: unoptimized (SW rev. 74). 50
5.7 Timing: texture memory for image rotation (SW rev. 76). 51
5.8 Timing: modified directional filter lengths (SW rev. 79). 52
5.9 Timing: directional filtering using shared memory (SW rev. 82). 52
5.10 Timing: directional filtering using texture memory (SW rev. 83). 53
5.11 Timing: directional filtering using texture memory (SW rev. 84). 53
5.12 Timing: optimized directional filtering (SW rev. 85). 54
5.13 Mapping between new float2 buffers and old float buffers. 54
5.14 Timing: Basic Algorithm with vector datatypes (SW rev. 90). 55
5.15 Timing: optimized program flow (SW rev. 96). 58
5.16 Maximum number of input frames for unoptimized and optimized implementation (Pads=15). 59
5.17 Basic Algorithm speedup (SW rev. 96). 59
5.18 Scale-space filtering kernels. 61
5.19 Timing: pyramid with MaxLevel=0 (SW rev. 138). 63
5.20 Execution times for separable and non-separable scale-space filters (SW rev. 139). 65

6.1 Maximum speeds and optimum number of levels. 68
6.2 Comparison of different smoothing filters (Fleets angular error after postprocessing). 70
6.3 Comparison of the algorithms (Fleets angular error in ∘). 72
6.4 Comparison of the computation times in s. 74

A.1 Parameters for the MaxLevel evaluation. 75
A.2 Parameter sets for the Basic Algorithm. 91
A.3 Parameter sets for the Lucas-Kanade Extended algorithm. 92
A.4 Parameter sets for the Lucas-Kanade algorithm. 92
A.5 Parameter sets for the Lucas-Kanade Pyramid algorithm. 93
A.6 Parameter sets for the Horn-Schunck algorithm. 93
A.7 Parameter sets for the Diverging Tree sequence. 94
A.8 Results for the Diverging Tree sequence. 95

9

List of Tables

A.9 Parameter sets for the Translating Tree sequence. 96
A.10 Results for the Translating Tree sequence. 97
A.11 Parameter sets for the Rubber Whale sequence. 99
A.12 Results for the Rubber Whale sequence. 100
A.13 Parameter sets for the Yosemite Cloudless sequence. 101
A.14 Results for the Yosemite Cloudless sequence. 102
A.15 Parameter sets for the Grove 2 sequence. 104
A.16 Results for the Grove 2 sequence. 105
A.17 Parameter sets for the Hydrangea sequence. 106
A.18 Results for the Hydrangea sequence. 107
A.19 Parameter sets for the Urban 3 sequence. 108
A.20 Results for the Urban 3 sequence. 109
A.21 Parameter sets for the Grove 3 sequence. 110
A.22 Results for the Grove 3 sequence. 111
A.23 Parameter sets for the Urban 2 sequence. 112
A.24 Results for the Urban 2 sequence. 113

D.1 Required environment variables. 126

10

List of Figures

2.1 Illustration of the aperture problem. 15
2.2 Grid of thread blocks [21]. 17
2.3 A device with more SMs will automatically execute a kernel grid in less time than a device

with fewer SMs [21]. 18

3.1 Overview of the Basic Algorithm. 21
3.2 Illustration of ST-slices. 22
3.3 Coordinate system for the output of the directional filters (ϕ = 0∘ and ϕ = −30∘). 25

4.1 Illustration of the aliasing problem in a ST-slice. The circles, squares and triangles represent
features of the image moving along the direction of the ST-slice. 32

4.2 Pyramid with 4 levels. 33
4.3 Scale-space filters and downsampling. 33
4.4 Compensation of high speeds. 34
4.5 Program flow. 36

5.1 Nexus user properties. 41
5.2 Structogram: Basic Algorithm - unoptimized. 48
5.3 GPU memory for padded (with p pixels) and extended (width and height with ew and eh

pixels, respectively) image sequence. 49
5.4 This image shows the current thread block (gray) and the memory area it loads into shared

memory for transversal (left) and longitudinal (right) filtering. 51
5.5 Structogram: Basic Algorithm - optimized. 56
5.6 FIFO to store the filter responses for 3 frames. 57
5.7 FIFO to store the instantaneous frequencies for RadTemp=2. 58
5.8 Structogram: Pyramid Algorithm, mexFunction. 62
5.9 Structogram: Pyramid Algorithm, getCompensation. 63
5.10 Execution time vs. MaxLevel (SW rev. 138). 64

6.1 Error plots for the Translating Tree sequence, MaxLevel=1 (top) and MaxLevel=2 (bottom). . 69
6.2 Error plots for the Grove 3 sequence, MaxLevel=2 (top) and MaxLevel=4 (bottom). 69

A.1 Accuracy vs. MaxLevel for the Diverging Tree sequence (frame 19). 76
A.2 Accuracy vs. MaxLevel for the Translating Tree sequence (fr. 19). 76
A.3 Accuracy vs. MaxLevel for the Rubber Whale sequence (frame 4). 76
A.4 Accuracy vs. MaxLevel for the Yosemite Cloudless sequence (fr. 7). 77
A.5 Accuracy vs. MaxLevel for the Grove 2 sequence (frame 4). 77

11

List of Figures

A.6 Accuracy vs. MaxLevel for the Hydrangea sequence (frame 4). 77
A.7 Accuracy vs. MaxLevel for the Urban 3 sequence (frame 4). 78
A.8 Accuracy vs. MaxLevel for the Grove 3 sequence (frame 4). 78
A.9 Accuracy vs. MaxLevel for the Urban 2 sequence (frame 4). 78
A.10 Accuracy vs. NumDir for the Diverging Tree sequence (frame 19). 80
A.11 Accuracy vs. NumDir for the Translating Tree sequence (fr. 19). 80
A.12 Accuracy vs. NumDir for the Rubber Whale sequence (frame 4). 80
A.13 Accuracy vs. NumDir for the Yosemite Cloudless sequence (fr. 7). 81
A.14 Accuracy vs. NumDir for the Grove 2 sequence (frame 4). 81
A.15 Accuracy vs. NumDir for the Hydrangea sequence (frame 4). 81
A.16 Accuracy vs. NumDir for the Urban 3 sequence (frame 4). 82
A.17 Accuracy vs. NumDir for the Grove 3 sequence (frame 4). 82
A.18 Accuracy vs. NumDir for the Urban 2 sequence (frame 4). 82
A.19 Accuracy vs. RadTemp for the Diverging Tree sequence (fr. 19). 84
A.20 Accuracy vs. RadTemp for the Translating Tree sequence (fr. 19). 84
A.21 Accuracy vs. RadTemp for the Rubber Whale sequence (frame 4). 84
A.22 Accuracy vs. RadTemp for the Yosemite Cloudless seq. (fr. 7). 85
A.23 Accuracy vs. RadTemp for the Grove 2 sequence (frame 4). 85
A.24 Accuracy vs. RadTemp for the Hydrangea sequence (frame 4). 85
A.25 Accuracy vs. RadTemp for the Urban 3 sequence (frame 4). 86
A.26 Accuracy vs. RadTemp for the Grove 3 sequence (frame 4). 86
A.27 Accuracy vs. RadTemp for the Urban 2 sequence (frame 4). 86
A.28 Accuracy vs. RadSpat for the Diverging Tree sequence (frame 19). 88
A.29 Accuracy vs. RadSpat for the Translating Tree sequence (fr. 19). 88
A.30 Accuracy vs. RadSpat for the Rubber Whale sequence (frame 4). 88
A.31 Accuracy vs. RadSpat for the Yosemite Cloudless sequence (fr. 7). 89
A.32 Accuracy vs. RadSpat for the Grove 2 sequence (frame 4). 89
A.33 Accuracy vs. RadSpat for the Hydrangea sequence (frame 4). 89
A.34 Accuracy vs. RadSpat for the Urban 3 sequence (frame 4). 90
A.35 Accuracy vs. RadSpat for the Grove 3 sequence (frame 4). 90
A.36 Accuracy vs. RadSpat for the Urban 2 sequence (frame 4). 90
A.37 Error plots for the Translating Tree sequence, Pyramid Algorithm 2 (top) and Lucas-Kanade

Pyramid 2 (bottom). 98
A.38 Error plots for the Yosemite Cloudless sequence, Pyramid Algorithm 2 (top) and Lucas-

Kanade Pyramid 1 (bottom). 103
A.39 Error plots for the Urban 3 sequence, Pyramid Algorithm 3 (top) and Lucas-Kanade Pyramid

2 (bottom). 108
A.40 Error plots for the Urban 3 sequence, Pyramid Algorithm 2 (top) and Lucas-Kanade Pyramid

3 (bottom). 114

B.1 GUI settings for the Basic Algorithm. 115
B.2 GUI settings for the Pyramid Algorithm. 116
B.3 Postprocessing page of the Matlab GUI. 117

12

1
Original Project Description

1. Project title: Efficient Implementation and Evaluation of methods for
estimation of motion (optical flow) in image sequences (video).

2. Subject: Computer Vision, Image and Video Analysis

3. Problem: See 1.2

4. Implementation: See 1.3

5. Advisors: See 1.4

1.1 Introduction

Motion is one of the basic phenomena in vision. Humans and animals use motion to avoid dangers, find food
etc. Motion is therefore important also in many artificial vision systems. Some applications are surveillance,
object tracking and reconstruction, robot navigation and video compression (coding), e.g. in MPEG 1-2 and
4. The apparent motion of objects in an image is called optical flow. There is usually a difference between
this apparent motion and the real motion which is the projection of the object’s 3D motion on the 2D image
plane. The optical flow (OF) is represented by a field of motion vectors, one for each pixel in the image.
The OF, as defined by the Brightness Constraint Equation, is an ill-posed problem. A simple model of the
imaging system is a pinhole camera. If we assume that the illumination is given by a point source at infinity
and a single moving object is considered, and that the reflectance of the object is Lambertian and that there
is no photometric distortion, then the difference between the real velocity in the image plane and the OF
can be shown to be small when the spatial gradient is large, i.e. when there is an edge or structure in the
image.

1.2 Problem

Given an image sequence (video), how can we describe the motion of objects and background? Many
methods have been suggested for estimation of the velocity field (optical flow) [13, 15, 14, 7, 9, 10, 8]. From
a practical point of view there are two main problems connected to the choice between methods, accuracy
of the flow vectors and computation time. The most accurate methods are in general more complex and
therefore more computational intensive. For real time applications this is a serious drawback. In this project
we want to evaluate a few chosen methods with respect to accuracy, density of flow vectors for a given
certainty measure and the efficiency of the implementation. We are particularly interested in a comparison
between differential methods and phase-based methods using directional filters. We also want to study the

13

1 Original Project Description

importance and necessity of a multiresolution scheme (image pyramid, scale space), and how the estimated
velocity vectors can be propagated from one level to the next in order to improve the final result.

1.3 Implementation

As a reference we want to use the Lucas & Kanade method. Implementation of this method is available in
the Open Computer Vision (OpenCV) library [25, 31, 32]. The OpenCV integrates into applications written
in C or C++. A real time implementation of this algorithm is discussed in [16]. The work will be done with
matlab as interface. In the bachelor work of Fabian Braun and Marc Länzlinger 2009 a GUI is developed
in Matlab and the optical flow algorithm runs on the graphic card using CUDA. In this master project we
want to use this framework and extend their work. Our algorithm based on phase and the use of directional
filters [7, 8] should be implemented. Different solutions for efficient computation should be considered.
An evaluation methodology for optical flow is presented in [11] where also a data base of test sequences is
presented. We want to evaluate our method compared with other methods with respect to accuracy and
computation time (complexity). Methods that are of interest to compare is a method based on warping of
Brox et al. [14], the PDE-based method [15] of Bruhn et al., and a method using point trajectories of Sand
and Teller [17].

1.4 Advisors

HSR: Prof. Guido Schuster

at UiS Assoc. prof. Ivar Austvoll

at UiS Assoc. prof. Tom Ryen

14

2
Introduction

2.1 Optical Flow Estimation

Introduction The estimation of motion in an image sequence (video) is needed in many ap-
plications like object detection and tracking, video compression, or robot navi-
gation.

Real Motion The projection of the motion of objects in a 3D scenery to the 2D image plane is
called real motion. It is usually not possible to estimate this real motion, since the
apparent motion differs from the real motion. This can have several reasons:

∙ Objects can be partially hidden by other objects or suddenly (dis)appear
(occlusion problem).

∙ The aperture problem is illustrated in figure 2.1. It shows an image sequence
containing a striped square, moving along direction v1, v2 or v3. The goal
is to estimate the motion for one specific point (�) of the image sequence.
When looking at the local neighbourhood (circle) of this point, the apparent
motion is always in the direction of v2 (orthogonal to the structure of the
square), no matter in which of the three directions the square is moving.

v1

v3

v2

Figure 2.1 Illustration of the aperture problem.

15

2 Introduction

∙ If the square object in figure 2.1 had no texture at all, no motion could be
detected (unless the border is inside the current neighbourhood).

∙ On the other hand, in a scenery with no motion of the objects, a moving
camera or moving light sources can suggest motion of the objects.

Optical Flow The optical flow of an image sequence is a vector field describing the velocity
(speed and direction) of the apparent motion of every point in the image (dense
motion field).

Algorithms In the past decades, many optical flow estimation algorithms have been devel-
oped. The ones proposed by Horn & Schunck and Lucas & Kanade are amog the
most famous ones. A good overview and comparison of different optical flow
estimation algorithms can be found in [11, 12, 18].

Implemented Algorithm This project is focussed on one specific optical flow estimation algorithm devel-
oped by Ivar Austvoll and Espen Kristoffersen [6].

2.2 Tasks of this Project

Main Tasks The practical part of this project consisted of the following tasks:

∙ An (existing) Matlab implementation of the algorithm described in this
report was integrated into the Matlab GUI, which was developed during
the previous project.

∙ The algorithm was efficiently implemented in C for running on the graphic
card (GPU) using CUDA (see section 2.3) and integrated into the Matlab
GUI.

∙ The algorithm was improved by applying a pyramid scheme. This allows
to estimate higher speeds in the image sequence.

∙ The speedup of the CUDA implementations comparing to the Matlab im-
plementation were determined.

∙ The accuracy of the implementated algorithms was compared for differ-
ent parameters and compared with well known optical flow estimation
algorithms.

Further Tasks Furthermore, the existing C and Matlab code from the previous project was
modified:

∙ The C code (CUDA implementations and OpenCV wrappers) had to be
modified in order to support also Win64 systems (besides Win32).

∙ The functionality of the Matlab GUI was extended by adding new filter
types and new post-processing options.

16

2 Introduction

2.3 CUDA Basics

Introduction CUDA is a parallel computing architecture developed by NVIDIA which allows
to utilize the computation power of modern NVIDIA GPUs (graphic processing
units). Modern GPUs with dozens or even hundreds of parallel processing units
are perfectly suited for many computational intensive applications.

CUDA basically provides some extensions to the standard C language which
allow kernel code (code that runs on a GPU) to be written in C. Additionally, an
API to manage devices, threads, memory, etc. is provided.

This section describes some basic CUDA concepts which are needed to under-
stand the description of the implementation in chapter 5. Further information
can be found in the CUDA documentation [21, 22, 23].

2.3.1 Thread Hierarchy

Threads CUDA kernels are executed in threads. A common scheme in image processing
applications is to implement a kernel in such a way that it processes just one pixel.
Therefore, M ·N threads are executed for an image with dimensions (M ×N).

Blocks and Grid Threads are grouped into thread blocks. Thread blocks can be one-, two- or
three-dimensional, depending on the application. In image processing, two-
dimensional blocks are the obvious choice. Choosing a block size of say (16×16),
leads to (⌈M/16⌉ × ⌈N/16⌉) blocks. These blocks constitue a grid (figure 2.2).

Figure 2.2 Grid of thread blocks [21].

17

2 Introduction

Note that the grid dimension is determined by the size of the data being processed
and is not limited by hardware ressources. This is due to the highly scalable
architecture of the CUDA GPUs (see below).

CUDA provides the two built-in variables threadIdx and blockIdx which con-
tain the thread index within a block and the block index within the grid. Two
additional built-in variables (blockDim and gridDim) can be used to find out the
block and grid dimensions of the current configuration.

In a two-dimensional setup, the coordinate of the pixel being computed by the
current thread can be computed as shown in listing 2.1.

Listing 2.1 Coordinates of the current thread in a two-dimensional setup.

1 unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x;
2 unsigned int idy = blockIdx.y*blockDim.y + threadIdx.y;

Multiprocessors Current GPUs have up to 30 streaming multiprocessors (SMs) which consist of
eight scalar processor (SP) cores, two special function units for transcendentals,
a multithreaded instruction unit, and on-chip shared memory [21]. A multipro-
cessor executes one or more thread blocks at a time. The GPU is free to allocate
thread blocks to multiprocessors in any order. Therefore, dependencies between
thread blocks must be avoided.

This architecture has the advantage that the execution can be scaled automatically
depending on the number of available multiprocessors (figure 2.3).

Figure 2.3 A device with more SMs will automatically execute a kernel grid in
less time than a device with fewer SMs [21].

18

2 Introduction

2.3.2 Memory Organization

Host Memory and
Device Memory

In CUDA terminology, the main memory of the computer (RAM) is called host
memory whereas memory on the GPU is called device memory. Transfers be-
tween host and device memory are very slow (compared to transfers on the GPU)
and should therefore be avoided. A good strategy is to copy the unprocessed
data to the device memory in one big transaction, keep all intermediate results
in the device memory, and copy the results back to host memory in the end.

There are different types of device memory:

Global Memory Most of the GPU memory is global memory which can be accessed by all threads
(and the host). Access to global GPU memory is generally slow (compared
to shared memory or registers). However, under certain conditions, several
memory accesses are performed in one transaction (coalescing), which makes it
much more efficient. The typical situation where accesses can be coalesced is
when all threads in a half-warp are accessing subsequent words (4, 8 or 16 bytes)
in global memory at the same time. In this situation, only one transaction is
needed [21].

For devices with CUDA compute capability 1.2 or higher, the conditions for
coalesced memory access are less strict than for devices with compute capability
1.0 and 1.1. Details can be found in [21, 22].

Local Memory Every thread has its own local memory. It is as slow as global memory, because it
is not physically located on the chip. Local memory is not explicitly used by the
programmer. The compiler places automatic variables into local memory when
there are not enough registers available [22].

Registers Access to registers is very fast. However, the number of registers is limited and
the scope of a register is only one thread.

Shared Memory Shared memory is much faster than global memory (about 100× lower latency)
and can be as fast as accessing registers [21, 22]. All threads in a thread block
have access to the same shared memory.

Shared memory is divided into 16 banks. A bank conflict occurs when more
than one thread of a half-warp wants to access memory in the same bank at
the same time. In this case, the memory accesses are serialized. The Parallel
Nsight Analysis Tools can be used to detect bank conflicts (by monitoring the
Warp Serialization counter) and therefore help optimizing the memory access.

Constant Memory Constant memory can be read from all threads but can only be written by the
host. Since the constant memory is cached, access can be very fast.

Texture Memory Texture memory is also a read-only memory which can be accessed by all threads.
To use this kind of memory, a properly aligned global memory area is bound to
a texture. Data can then be read by texture fetches. Texture memory is cached
(optimized for spatial locality in two dimensions).

Textures also offer some interesting addressing features:

∙ A texture can be addressed by floating point values and return interpolated
values (nearest neighbour or linear interpolation).

∙ Boundary cases (out of range addessing) can be handled automatically
(clamping or wraping).

∙ A normalized addressing mode is available which allows to access a tex-
ture with addresses in the range [0, 1], independent of the actual texture
dimensions.

19

2 Introduction

∙ When a texture is bound to a memory area storing integer values, these
values can automatically be converted to floating point values in the range
[0, 1] or [−1, 1].

20

3
Basic Algorithm

Introduction This chapter describes the Basic Algorithm (no multiresolution scheme and no
scale-space filtering) proposed in [6] from an implementation point of view.
Section 3.1 explains the basic idea behind this algorithm by summarizing the
relevant information from [4, 6, 7].

The remaining sections contain supplementary implementation related informa-
tion that is not covered by [4, 6, 7].

3.1 Description of the Algorithm

Overview The basic idea of this algorithm is to decompose the image sequence using a set
of directional filters. The output of a directional filter reveals the structure of an
image for a given direction.

For each direction, the magnitude (and the sign) of the velocity is computed.
These directional velocities are called component velocities. With two or more
component velocities (of different directions), the x- and y-components of the
resulting optical flow vectors can be computed using a linear system of equations.

directional filter compute component velocities

directional filter compute component velocities

directional filter compute component velocities

directional filter compute component velocities

combine

component

velocities

image sequence flow vectors

Figure 3.1 Overview of the Basic Algorithm.

ST-Slices When looking at the image sequence as a three-dimensional volume, the com-
ponent velocity for a given direction can be determined by slicing the cuboid in
the time direction along the respective direction and examining the structure of
this so called ST-slice.

21

3 Basic Algorithm

time

0°

90°

ST-slice (0°) ST-slice (90°)

space

time

space

time

α=45°

Figure 3.2 Illustration of ST-slices.

Figure 3.2 shows two ST-slices for the directions 0∘ and 90∘. The image sequence
contains a simple translatory motion with 1 pixel/ f rame along the 0∘ direction.
The two slices were taken along the bold dashed lines in the image sequence.
The space coordinate of an ST-slice always corresponds to the direction of the
directional filter. It can easily be seen that the speed in a given direction is
directly related to the angle α at which features move along the time axis of the
ST-slice. In the first case (0∘ ST-slice), the angle is 45∘, which corresponds to a
speed of tan(45∘) = 1 pixel/ f rame. In the second case (90∘ ST-slice), the angle is
0∘ and therefore the speed in this direction is 0.

Figure 3.2 is somewhat simplyfied; the output of the directional filter and there-
fore the content of the ST-slices is complex valued and the phase information
is used for the component velocity computation. More specifically, the trans-
lation of the phase fronts along the time axis of the ST-slice corresponds to the
component velocity.

Directional Filters The directional filters used in this project are two-dimensional complex filters.
The filters are separable into a longitudinal (along the filter direction) and a
transversal (orthogonal to the filter direction) part.

The transversal part is a real lowpass filter with a narrow bandwidth to ensure
that most of the energy is in the direction of the filter.

The longitudinal part is a complex bandpass filter with a wide bandwidth to
capture as much energy for the given direction as possible. The longitudinal
part also acts as a Hilbert transform. This means, that the spectrum of the output
is zero for negative frequencies. This type of signal is called an analytic signal
[30].

Signal Model The fact that the output of the directional filter is approximately an analytic

22

3 Basic Algorithm

signal, lets us model a ST-slice in the form:

z(s) = a(s) · e jφ(s) (3.1)

where s is a vector consisting of the coordinate s along the filter direction and
the time coordinate t.

The signal representation in (3.1) consists of an AM-function a(s) and a phase
function φ(s).

As mentioned above, the velocities are obtained by examining the movement of
the phase fronts in the ST-slices. Therefore, the essential information is contained
in the phase gradient ∇φ(s), which is also called the instantaneous frequency (FM-
function).

A good explanation of the Hilbert transform and it’s relation to analytic signals
and the instantaneous frequency can be found in [5].

Demodulation The algorithm proposed in [6] uses a discrete 2D AM-FM demodulation al-
gorithm to estimate the instantaneous frequency directly from the real- and
imaginary-part of the directional filter output. The demodulation is not de-
scribed here. The formulas for the computation are reproduced in section 3.3.

In the following, the two components of the estimated instantaneous frequency,
∇sφ̂(s) (along the filter direction) and ∇tφ̂(s) (along the time coordinate), are
treated separately.

Structural Tensor To compute the direction of the movement of the structure in an ST-slice (angle
α in figure 3.2) from the instantaneous frequency, a tensor formulation is used.
The tensor is in this case simply a symmetric 2 × 2 matrix which represents the
structure within the ST-slice [1, 2].

The component velocity can then be found by looking at the eigenvalues and
eigenvectors of this matrix. The eigenvector e1 associated with the smallest
eigenvalue points in the direction of the movement. Therefore, the component
velocity is:

vc = tan(α) =
e1(1)
e1(2)

(3.2)

To get a more robust estimation of the component velocity, the matrix is averaged
over a local ST-slice (rectangular region around the current pixel). The equations
for building the tensor and for computing the component velocity are reproduced
in section 3.4.

Flow Vectors The equations to calculate a flow vector out of the component velocities using a
weighted least squares approach are reproduced in section 3.5.

23

3 Basic Algorithm

3.2 Directional Filtering

Introduction Instead of using a set of directional filters with different orientations, rotated
versions of the image sequence are filtered by the same directional filter with
orientation 0∘. [6]

3.2.1 Rotating

Introduction When rotating an image counterclockwise by an angle ϑ, the new coordinates
(x′, y′) of a point (x, y) can be computed using the following transformation [29]:[︃

x′

y′

]︃
=

[︃
cosϑ − sinϑ
sinϑ cosϑ

]︃ [︃
x
y

]︃
(3.3)

Coordinate System Note that equation (3.3) is a counterclockwise rotation in a Cartesian coordi-
nate system (positive x-axis to the right, positive y-axis to the top). In image
processing, where the y-axis usually points downwards, it corresponds to a
clockwise rotation. However, when passing data from Matlab to a .mex file, the
x- and y-axes are interchanged, which results in another change of the rotation
direction (see also section 5.3). The equations in this section, particularly the
sign of the rotation angle, are therefore in accordance with the actual CUDA
implementation.

New Image Size To determine the size of the rotated image, the new coordinates P′1 = (x′1, y
′

1),
P′2 = (x′2, y

′

2), P′3 = (x′3, y
′

3) and P′4 = (x′4, y
′

4) of the corners P1 = (0, 0), P2 = (w−1, 0),
P3 = (0, h − 1) and P4 = (w − 1, h − 1) are computed (where w and h are the
dimensions of the original image).

Then the new image dimensions w′ and h′ are:

minx = min{x′1, x
′

2, x
′

3, x
′

4} (3.4)
maxx = max{x′1, x

′

2, x
′

3, x
′

4} (3.5)
miny = min{y′1, y

′

2, y
′

3, y
′

4} (3.6)
maxy = max{y′1, y

′

2, y
′

3, y
′

4} (3.7)
w′ = ⌈maxx −minx + 1⌉ (3.8)
h′ = ⌈maxy −miny + 1⌉ (3.9)

Rotating The rotation process itself goes the other way round: for every destination pixel
(x′, y′), the corresponding pixel in the source image (x, y) is found. This implies
to use the inverse of the transformation in (3.3) which is easy to find since the
rotation matrix is orthogonal:[︃

x
y

]︃
=

[︃
cosϑ sinϑ
− sinϑ cosϑ

]︃ [︃
x′

y′

]︃
(3.10)

The transformation in (3.10) rotates around the point (0, 0) and leads therefore
to negative indexes for the destination image. To prevent this, an offset of minx
(3.4) and miny (3.6) is added to the destination coordinates:[︃

x
y

]︃
=

[︃
cosϑ sinϑ
− sinϑ cosϑ

]︃ [︃
x′ + minx
y′ + miny

]︃
(3.11)

24

3 Basic Algorithm

Padding When the padding of the image should be done implicitly during rotation (see
section 5.4.3), the transformation looks like this:[︃

x
y

]︃
=

[︃
cosϑ sinϑ
− sinϑ cosϑ

]︃ [︃
x′ + minx
y′ + miny

]︃
−

[︃
pads
pads

]︃
(3.12)

In this case the dimension of the source image is assumed to be extended by
2 · pads in both directions.

Inverse Rotation For the most general case (3.12), the inverse transformation (for rotating the
image back to its original position) can be found as:[︃

x′

y′

]︃
=

[︃
cosϑ − sinϑ
sinϑ cosϑ

]︃ [︃
x + pads
y + pads

]︃
−

[︃
minx
miny

]︃
(3.13)

Interpolation In general, the transformed coordinates in the rotating or back-rotating process
are not integers and therefore some interpolation is needed. The simplest case
is the nearest neighbour interpolation, where the transformed coordinates are
rounded to the nearest integer. Better results can be achieved when linear or
higher order interpolation is used.

When implementing the rotation on the GPU with texture memory, linear inter-
polation can be performed in hardware (see section 5.4.3).

3.2.2 Filtering

Introduction The complex 2D directional filters introduced in [6] are separable. This means
that the convolutions along the two dimensions (longitudinal and transversal
direction) can be computed consecutively, which is more efficient than applying
one single 2D convolution [20].

Filters The longitudinal filter is a complex filter of length 15 and the transversal filter
is a real filter of length 55. Therefore it is advisable to first apply the transversal
filter to the rotated image and then compute the real part of the filter response
using the real part of the longitudinal filter and the imaginary part of the filter
response using the imaginary part of the longitudinal filter.

Coordinate System Figure 3.3 shows the new coordinate system which is used for rotated values in
the following sections. The s-axis always points towards the filter direction.

r
s

t

r
s

t

filter direction

φ = 0°

filter direction

φ = -30°

rotation angle

ϑ=30°

Figure 3.3 Coordinate system for the output of the directional filters (ϕ = 0∘ and ϕ = −30∘).

25

3 Basic Algorithm

3.3 Computation of Instantaneous Frequencies

Introduction In [6], the following equations for estimating the instantaneous frequency com-
ponents ∇sφ̂(r, s, t) and ∇tφ̂(r, s, t) are derived:⃒⃒⃒

∇sφ̂(r, s, t)
⃒⃒⃒
= arccos Re

{︃
z(r, s + 1, t) + z(r, s − 1, t)

2 · z(r, s, t)

}︃
(3.14)

⃒⃒⃒
∇tφ̂(r, s, t)

⃒⃒⃒
= arccos Re

{︃
z(r, s, t + 1) + z(r, s, t − 1)

2 · z(r, s, t)

}︃
(3.15)

sgn∇sφ̂(r, s, t) = sgn arcsin Re
{︃

z(r, s + 1, t) − z(r, s − 1, t)
2 j · z(r, s, t)

}︃
(3.16)

sgn∇tφ̂(r, s, t) = sgn arcsin Re
{︃

z(r, s, t + 1) − z(r, s, t − 1)
2 j · z(r, s, t)

}︃
(3.17)

∇sφ̂(r, s, t) = sgn∇sφ̂(r, s, t) ·
⃒⃒⃒
∇sφ̂(r, s, t)

⃒⃒⃒
(3.18)

∇tφ̂(r, s, t) = sgn∇tφ̂(r, s, t) ·
⃒⃒⃒
∇tφ̂(r, s, t)

⃒⃒⃒
(3.19)

Where z(r, s, t) is the complex valued filter response of the directional filters.

Analytical Solution
for Re Operator

The equations (3.14) to (3.17) include expressions of the form

c1 + c2

c3
and

c1 − c2

jc3
(3.20)

where ci = ai + jbi are complex numbers. To get the real part of these expressions
in the CUDA implementation, they can be rewritten:

c1 + c2

c3
=

(a1 + jb1) + (a2 + jb2)
a3 + jb3

=
(a1 + a2) + j(b1 + b2)

a3 + jb3

=
(a1 + a2) + j(b1 + b2)

a3 + jb3
·

a3 − jb3

a3 − jb3

=
a3(a1 + a2) + b3(b1 + b2)

a2
3 + b2

3⏟ ⏞
Re{·}

+ j
a3(b1 + b2) − b3(a1 + a2)

a2
3 + b2

3⏟ ⏞
Im{·}

(3.21)

and

c1 − c2

jc3
= . . . =

a3(b1 − b2) − b3(a1 − a2)
a2

3 + b2
3⏟ ⏞

Re{·}

+ j
−a3(a1 − a2) − b3(b1 − b2)

a2
3 + b2

3⏟ ⏞
Im{·}

(3.22)

Applying (3.21) and (3.22) to equations (3.14) to (3.17):

⃒⃒⃒
∇sφ̂(r, s, t)

⃒⃒⃒
= arccos

Re {z(r, s, t)}
(︁

Re {z(r, s + 1, t)} + Re {z(r, s − 1, t)}
)︁

+ Im {z(r, s, t)}
(︁

Im {z(r, s + 1, t)} + Im {z(r, s − 1, t)}
)︁

2 ·
(︁
Re {z(r, s, t)}2 + Im {z(r, s, t)}2

)︁ (3.23)

⃒⃒⃒
∇tφ̂(r, s, t)

⃒⃒⃒
= arccos

Re {z(r, s, t)}
(︁

Re {z(r, s, t + 1)} + Re {z(r, s, t − 1)}
)︁

+ Im {z(r, s, t)}
(︁

Im {z(r, s, t + 1)} + Im {z(r, s, t − 1)}
)︁

2 ·
(︁
Re {z(r, s, t)}2 + Im {z(r, s, t)}2

)︁ (3.24)

sgn∇sφ̂(r, s, t) = sgn arcsin
Re {z(r, s, t)}

(︁
Im {z(r, s + 1, t)} − Im {z(r, s − 1, t)}

)︁
− Im {z(r, s, t)}

(︁
Re {z(r, s + 1, t)} − Re {z(r, s − 1, t)}

)︁
2 ·
(︁
Re {z(r, s, t)}2 + Im {z(r, s, t)}2

)︁ (3.25)

sgn∇tφ̂(r, s, t) = sgn arcsin
Re {z(r, s, t)}

(︁
Im {z(r, s, t + 1)} − Im {z(r, s, t − 1)}

)︁
− Im {z(r, s, t)}

(︁
Re {z(r, s, t + 1)} − Re {z(r, s, t − 1)}

)︁
2 ·
(︁
Re {z(r, s, t)}2 + Im {z(r, s, t)}2

)︁ (3.26)

26

3 Basic Algorithm

Sign Terms The expressions for the signs can be simplyfied, since sgn arcsin(x) = sgn(x) and
since the denominator of (3.25) and (3.26) is always positive:

sgn∇sφ̂(r, s, t) = sgn
(︁
Re {z(r, s, t)}

(︁
Im {z(r, s + 1, t)} − Im {z(r, s − 1, t)}

)︁
− Im {z(r, s, t)}

(︁
Re {z(r, s + 1, t)} − Re {z(r, s − 1, t)}

)︁)︁
(3.27)

sgn∇tφ̂(r, s, t) = sgn
(︁
Re {z(r, s, t)}

(︁
Im {z(r, s, t + 1)} − Im {z(r, s, t − 1)}

)︁
− Im {z(r, s, t)}

(︁
Re {z(r, s, t + 1)} − Re {z(r, s, t − 1)}

)︁)︁
(3.28)

Confidence Measure One assumption in the derivation of this algorithm is that the amplitude of the
AM-FM modelled signal is varying sufficiently slow. This assumption can be
checked by looking at the gradient of the amplitude part. From this, a confidence
measure ∇φ̂c(r, s, t) can be constructed which is close to one when the gradient is
small and close to zero when the amplitude part is varying heavily [7]:

∇sφ̂c(r, s, t) = arcsin Im
{︃

z(r, s + 1, t) + z(r, s − 1, t)
2 · z(r, s, t)

}︃
(3.29)

∇tφ̂c(r, s, t) = arcsin Im
{︃

z(r, s, t + 1) + z(r, s, t − 1)
2 · z(r, s, t)

}︃
(3.30)

∇φ̂c(r, s, t) =

√︂(︂
1 −

2
π
·

⃒⃒⃒
∇sφ̂c(r, s, t)

⃒⃒⃒)︂
·

(︂
1 −

2
π
·

⃒⃒⃒
∇tφ̂c(r, s, t)

⃒⃒⃒)︂
(3.31)

The first two expressions can again be rewritten using (3.21):

∇sφ̂c(r, s, t) = arcsin
Re {z(r, s, t)}

(︁
Im {z(r, s + 1, t)} + Im {z(r, s − 1, t)}

)︁
− Im {z(r, s, t)}

(︁
Re {z(r, s + 1, t)} + Re {z(r, s − 1, t)}

)︁
2 ·
(︁
Re {z(r, s, t)}2 + Re {z(r, s, t)}2

)︁ (3.32)

∇tφ̂c(r, s, t) = arcsin
Re {z(r, s, t)}

(︁
Im {z(r, s, t + 1)} + Im {z(r, s, t − 1)}

)︁
− Im {z(r, s, t)}

(︁
Re {z(r, s, t + 1)} + Re {z(r, s, t − 1)}

)︁
2 ·
(︁
Re {z(r, s, t)}2 + Re {z(r, s, t)}2

)︁ (3.33)

3.4 Computation of Component Velocities

Introduction To compute the component velocities vc(r, s, t) from the instantaneous frequencies
∇sφ̂(r, s, t) and ∇tφ̂(r, s, t), an eigenvector analysis of the following 2 × 2 matrix is
proposed in [6]:

T(r, s, t) =

[︃
Tss(r, s, t) Tst(r, s, t)
Tst(r, s, t) Ttt(r, s, t)

]︃
(3.34)

Tss(r, s, t) =
⟨
∇sφ̂i · ∇sφ̂i

⟩
i∈Ω

(3.35)

Tst(r, s, t) =
⟨
∇sφ̂i · ∇tφ̂i

⟩
i∈Ω

(3.36)

Ttt(r, s, t) =
⟨
∇tφ̂i · ∇tφ̂i

⟩
i∈Ω

(3.37)

Where ⟨·⟩ is the mean operator and ∇sφ̂i and ∇tφ̂i are instantaneous frequencies
in the spatial (along the filter direction s) and temporal neighbourhood. How-
ever, only neighbours whose confidence values ∇φ̂c(r, s′, t′) are above a certain
threshold, are considered.

27

3 Basic Algorithm

From (3.34), the component velocity vc(r, s, t) and a confidence measure cv(r, s, t)
can be computed as follows [6]:

vc(r, s, t) =
e1(1)
e1(2)

(3.38)

cv(r, s, t) =
λ2 − λ1

λ2 + λ1
(3.39)

λ1 and λ2 are the eigenvalues of T(r, s, t) (where 0 ≤ λ1 ≤ λ2) and e1 is the
eigenvector that corresponds to λ1.

Matlab Implementation In the existing Matlab implementation of the algorithm, the velocity and the
confidence measure are computed as follows:

Listing 3.1 Computation of the component velocity and the confidence measure using Matlab.

1 T = [t1’*t1 t1’*t2; t2’*t1 t2’*t2];
2 T = T/norm(T,’fro’);
3 [ev,lamb] = eig(T);
4 vel = ev(1,1)/ev(2,1);
5 conf = (lamb(2,2)-lamb(1,1))/(lamb(2,2)+lamb(1,1));

However, for the CUDA implementation a more explicit expression is needed.

CUDA Implementation For a 2 × 2 matrix

T =

[︃
Tss Tst
Tst Ttt

]︃
(3.40)

an analytic solution for the eigenvalues and eigenvectors can easily be found:

λ1,2 =
Tss + Ttt ∓

√︁
T2

ss + 4 · T2
st − 2 · Tss · Ttt + T2

tt

2
(3.41)

e1,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Tss − Ttt ∓

√︁
T2

ss + 4 · T2
st − 2 · Tss · Ttt + T2

tt

2 · Tst

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.42)

Equations (3.38) and (3.39) can now be rewritten:

vc(r, s, t) =
Tss(r, s, t) − Ttt(r, s, t) −

√︁
T2

ss(r, s, t) + 4 · T2
st(r, s, t) − 2 · Tss(r, s, t) · Ttt(r, s, t) + T2

tt(r, s, t)

2 · Tst(r, s, t)
(3.43)

cv(r, s, t) =

√︁
T2

ss(r, s, t) + 4 · T2
st(r, s, t) − 2 · Tss(r, s, t) · Ttt(r, s, t) + T2

tt(r, s, t)

Tss(r, s, t) + Ttt(r, s, t)
(3.44)

Normalization Multiplying the matrix T by a constant factor (see listing 3.1, line 2) has no
influence on the eigenvectors. The eigenvalues are scaled by the same factor,
but this factor would be cancelled in (3.39). Therefore, no normalization of the
matrix is done in the CUDA implementation.

28

3 Basic Algorithm

Confidence Measure From cv(r, s, t) and the confidence values ∇φ̂c(r, s, t) from section 3.3, a final con-
fidence measure c(r, s, t) for the component velocity vc(r, s, t) can be computed:

c(r, s, t) =

⎯⎸⎷
cv(r, s, t) · N

√︃∏︁
i∈Ω

∇φ̂c i(r, s′, t′) (3.45)

∇φ̂c i(r, s′, t′) are the confidence measures in the spatial (along the filter direction
s) and temporal neighbourhood which are above a certain threshold (the same
as for ∇sφ̂i and ∇tφ̂i). N is the number of valid ∇φ̂c i(r, s′, t′) values.

3.5 Combining the Component Velocities

Introduction The last step in computing the flow vector field is to combine the component
velocities vck(r, s, t) to the final velocity vector with the components vx(x, y, t) and
vy(x, y, t). The subscript k is the index of the direction (which was omitted in the
sections 3.2 to 3.4 for the sake of clarity).

The component velocities vck(r, s, t) and the confident values ck(r, s, t) must be
rotated to the 0∘direction first (see also section 3.2.1). These back-rotated values
are denoted with vck(x, y, t) and ck(x, y, t). The x, y und t indices are omitted in
the following.

The following (in general overdetermined) system of equations is used to com-
pute vx(x, y, t) and vy(x, y, t): [6]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(ϕ0) sin(ϕ0)
cos(ϕ1) sin(ϕ1)

...
...

cos(ϕN−1) sin(ϕN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[︃
vx
vy

]︃
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
vc0
vc1
...

vc(N−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − ε (3.46)

The rows of the matrix on the left-hand side are unit vectors pointing to the same
direction as the according directional filter (note that ϕi = −ϑi, see figure 3.3).
Only component velocities whose certiainty measure is above a certain threshold
are used. N is the number of valid component velocities for a certain pixel.

This overdetermined system of equations is solved using a weighted least
squares approach where the confidence measures ck are used as weights.

Solution The equations in (3.46) can be written as:

cos(ϕk) · vx + sin(ϕk) · vy = vck − εk (3.47)

The error measure Q is the sum of the weighted squared errors εk:

Q =
∑︁

k

ck · ε
2
k =
∑︁

k

ck ·
(︁
vck − cos(ϕk) · vx − sin(ϕk) · vy

)︁2
(3.48)

To minimize Q, the partial derivatives with respect to vx and vy are taken:

∂Q
∂vx

= −2
∑︁

k

ck ·
(︁
vck − cos(ϕk) · vx − sin(ϕk) · vy

)︁
· cos(ϕk) (3.49)

∂Q
∂vy

= −2
∑︁

k

ck ·
(︁
vck − cos(ϕk) · vx − sin(ϕk) · vy

)︁
· sin(ϕk) (3.50)

Setting the derivatives to zero and reordering gives the following system of
equation to compute vx and vy:

29

3 Basic Algorithm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑︁

k

ck · cos(ϕk)2
∑︁

k

ck · cos(ϕk) · sin(ϕk)∑︁
k

ck · cos(ϕk) · sin(ϕk)
∑︁

k

ck · sin(ϕk)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[︃
vx
vy

]︃
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑︁

k

ck · vck · cos(ϕk)∑︁
k

ck · vck · sin(ϕk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.51)

Confidence Measure The confidence value for the resulting velocity vector is the arithmetic mean of
the valid confidence values of the component velocities.

Special Cases When the confidence value of only one direction k is above the threshold, the x
and y components of this component velocity are returned:

vx = cos(ϕk) · vck (3.52)
vy = sin(ϕk) · vck (3.53)

When no valid component velocity is available, vx and vy as well as the confidence
value for this velocity vector is set to zero.

30

4
Pyramid Algorithm

4.1 Introduction

Maximum Speed The range of speeds that can be estimated using the method described in chapter
3 is limited due to aliasing. The maximum speed that can be detected reliably
depends on the spatial frequencies occuring in the image sequence. This relation
is illustrated in figure 4.1.

Figure 4.1 shows the ST-slice of an image sequence with a uniform and constant
translatory motion along the filter direction. In this case, the trajectories of the
features in the image sequence are straight lines. The angle α of these trajectories
(71.6∘) is directly related with the speed of the motion in the image sequence:

v = tan(71.6∘) = 3 pixels/ f rame (4.1)

The spatial frequency in this first example of figure 4.1 is relatively small (with
a "wavelength" of λ = 7 pixels), so no aliasing occurs in this case.

In the second example of figure 4.1, the image sequence has higher spatial
frequencies (λ = 2 pixels). Due to aliasing, the (wrong) speed belonging to
the dashed trajectories is estimated. Another case where the speed is too
high for a given spatial frequency is shown in the third example. Instead of
v = 5 pixels/ f rame (solid trajectories), a speed of v = −2 pixels/ f rame (dashed
trajectories) is estimated.

A more formal discussion of the relationship between the spatial frequency and
the maximum speed that can be estimated can be found in [4].

Smoothing Filter In order to avoid aliasing, the image sequence is pre-smoothed with a spatial
filter (see also section 4.2, scale-space filters) to suppress high spatial frequencies.
In this project, filters with a relative cutoff frequency of 0.5 are used, which allows
to estimate speeds of up to 2 pixels/ f rame.

High Speeds To estimate higher speeds, one could use a smoothing filter with a lower cutoff
frequency. But this would reduce the accuarcy of the estimates since more details
of the images get lost. The second problem with estimating high speeds is that
the accuracy gets worse for high speeds (when the angles of the trajectories in
figure 4.1 approach 90∘), because of the non-linear relation between the angle α
and the speed [4].

31

4 Pyramid Algorithm

space

time

space

time

space

time

v = 3 pixels/frame

λ = 7 pixels

no aliasing

v = 3 pixels/frame

λ = 2 pixels

aliasing!

v = 5 pixels/frame

λ = 7 pixels

aliasing!

α=71.6°

Figure 4.1 Illustration of the aliasing problem in a ST-slice. The circles, squares and triangles represent
features of the image moving along the direction of the ST-slice.

32

4 Pyramid Algorithm

4.2 Multiresolution

Introduction A better approach to estimate high speeds is to use a multiresolution scheme
where a downsampled image sequence is used to compute a coarse estimate of
the speeds and the full resolution image sequence is used to refine this estimation.
A speed of 1 pixel/ f rame in the downsampled image sequence corresponds to a
speed of K pixels/ f rame in the original image sequence, when the image sequence
was downsampled by factor K in both spatial dimensions.

This idea can be applied repeatedly, resulting in a pyramid scheme. The down-
sampling factor from one level to the next is always 2 in this project (see figure
4.2). Note that there is no downsampling in the temporal dimension (no change
in the number of frames).

When going up to level M in the pyramid (and assuming that speeds of up to
2 pixels/ f rame can be estimated on each frame), the maximum speed that can be
handled by the pyramid scheme is 2M+1 pixels/ f rame.

Level 3

Level 2

Level 1

Level 0

M/8 N/8

M/4

M/2

M

N/4

N/2

N
v = v0 = 2 v1

v1 = 2 v2

v2 = 2 v3

Down-

sampling

Figure 4.2 Pyramid with 4 levels.

Scale-Space Filter Figure 4.3 shows the recursive smoothing and downsampling of the original
image to get the higher level representations. The scale-space filter Hsc used for
smoothing is a filter out of the class found by Pauwels et al. [19]. In their paper
they show that the set of all possible linear and rotation-invariant filters can
be reduced considerably when two additional conditions (recursivity and scale
invariance) are demanded. With these conditions, a family of filters is found
which is characterized by only one parameter. The two-dimensional Gaussian
filter is one special case of this filter class.

Hsc ↓2
input sequence

Level 0

Hsc ↓2

Level 1

Hsc

Level 2

frequency range (relative): 0 - 0.5 0 - 0.25 0 - 0.125

Figure 4.3 Scale-space filters and downsampling.

Note that the images on the different scales are used after scale-space filter-
ing but before downsampling, leading to an oversampled representation. This
redundancy is necessary to avoid aliasing when estimating speeds of up to
2 pixels/ f rame per level (see section 4.1). This also means that even on the lowest
level (level 0), spatial frequencies higher than 0.5 are suppressed. However,
in practical image sequences, this frequency range is considered to contain no
useful information [4].

33

4 Pyramid Algorithm

4.3 Integration of Pyramid Levels

Basic Assumption When looking at the results of one specific level m in the pyramid, it is not
possible to determine if aliasing has occured or not. This can only be seen by
checking the speeds on the next higher level m + 1. However, one can only be
sure that the speeds of level m + 1 are reliable when also checking level m + 2, . . .

This makes it impossible to automatically find a good number of levels at run-
time. Therefore, the user has to choose the maximum level according to his a
priori knowledge of the image sequence at hand.

The basic assumption for this chapter is that the user always chooses a maximum
level M which is high enough to handle also the highest velocities in the image
sequence without aliasing.

Compensation The key concept to estimate high velocities with a pyramid algorithm is com-
pensation. Figure 4.4 shows a local ST-slice with a radius of 3 in the spatial
dimension and a radius of 2 in the temporal direction to compute the speed of
one output pixel (filled circle).

time

space

uncompensated (ve=1.5) compensated (ve=0.5)compensating (1 pixel/frame)

Figure 4.4 Compensation of high speeds.

In the uncompensated ST-slice (left), a speed of 1.5 pixels/ f rame is estimated. By
shearing the local ST-slice it is easily possible to compensate the estimated speed
by an integer value (figure 4.4, center): Instead of looking at a rectangular area
of the ST-slice (dots), a rhomboid-shaped area of the ST-slice is used to compute
the component velocity (circles). Then, the compensated estimation is always
in the range [−0.5, 0.5] pixels/ f rame, which makes the estimation more reliable
(figure 4.4, right).

Example The numerical example in table 4.1 shows how the rounded component velocity
of a level m can be used for compensation on the next lower level m − 1. The
goal is to estimate a velocity of 7.4 pixels/ f rame with a pyramid implementation
consisting of four levels.

m vu(m) ∆v(m) vc(m) r0.5{vc(m)}

0 7.400 8·r0.5{vc(3)}+4·r0.5{vc(2)}+2·r0.5{vc(1)} = 7 0.400

1 3.700 4 · r0.5{vc(3)} + 2 · r0.5{vc(2)} = 4 −0.300 −0.5

2 1.850 2 · r0.5{vc(3)} = 2 −0.150 0.0

3 0.925 0.925 1.0

Table 4.1 Compensation of high speeds.

34

4 Pyramid Algorithm

The vu(m) column shows the uncompensated velocity for each level. This is a
theoretical value which can not directly be computed (unless the velocity on a
particular level is less than 2 pixels/ f rame).

The next column, ∆v(m), is the compensation which is applied on level m. On
the highest level, no compensation is carried out (the basic assumption is that
the uncompensated velocity of the highest level is in a reasonable range).

The vc(m) column contains the velocities that are actually estimated (after com-
pensation) on level m. In the last column, the compensated velocity estimations
are rounded to multiples of 0.5 (the ry{x} function rounds the value x to the
nearest multiple of y).

First, vc(3) = 0.925 is estimated. This value is rounded to 1 which corresponds to
a compensation of 2 pixels/ f rame on level 2. With this compensation, a compen-
sated velocity of−0.15 pixels/ f rame is estimated on level 2. This value is rounded
to 0, which means that (on level 1) no additional compensation is contributed
from level 2. However, the rounded estimate from level 3 has to be multiplied
by 2 again, leading to a compensation of 4 pixels/ f rame on level 1. Finally, on
level 0, the compensation is twice the compensation used on level 1, plus twice
the rounded estimate from level 1.

The estimated velocity on level 0 (vc(0) = 0.4) plus the compensation used on
level 0 (∆v(0) = 7) results in the sought velocity of v = 7.4 pixels/ f rame.

Recursive Formulation This process can be formulated recursively (see also figure 4.5):

∆v(m) =

⎧⎪⎪⎨⎪⎪⎩0 m ≥M
2 ·
[︁
∆v(m + 1) + r0.5{vc(m + 1)}

]︁
m < M

(4.2)

v = ∆v(0) + vc(0) (4.3)

The r0.5{x} function can be rewritten using the truncating function Int{x}, which
allows a direct implementation in C (using float to int conversion):

r0.5{x} = 0.5 · r1.0{2 · x} =

⎧⎪⎪⎨⎪⎪⎩0.5 · Int{2 · x + 0.5} x ≥ 0
0.5 · Int{2 · x − 0.5} x < 0

(4.4)

The recursion equation (4.2) can then be rewritten:

∆v(m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 m ≥M
2 · ∆v(m + 1) + Int{2 · vc(m + 1) + 0.5} m < M , vc(m + 1) ≥ 0
2 · ∆v(m + 1) + Int{2 · vc(m + 1) − 0.5} m < M , vc(m + 1) < 0

(4.5)

In the case where the confidence c(m + 1) of the estimated velocity vc(m + 1) is
below a threshold T, the velocity is not used. This leads to the final recursion
formula:

∆v(m) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 m ≥M
2 · ∆v(m + 1) m < M , c(m + 1) ≤ T
2 · ∆v(m + 1) + Int{2 · vc(m + 1) + 0.5} m < M , c(m + 1) > T , vc(m + 1) ≥ 0
2 · ∆v(m + 1) + Int{2 · vc(m + 1) − 0.5} m < M , c(m + 1) > T , vc(m + 1) < 0

(4.6)

35

4 Pyramid Algorithm

Hsc

↓2

Hsc

calculate component velocities

calculate component velocities

combine component velocities

round to 0.5

·2 +

↓2

Hsc

calculate component velocities round to 0.5

·2 +

↓2

Hsc

calculate component velocities round to 0.5

·2

Level 1

Level N-1

Level N

Level 0

image sequence

flow vectors
+

Figure 4.5 Program flow.

36

5
CUDA Implementation

5.1 Development Environment

Introduction In the previous project, the CUDA C code was developed with the CUDA Toolkit
2.3 which did not allow to debug code that runs on a GPU, i.e. setting breakpoints
in kernel functions was not possible.

At the beginning of this project, first beta versions of NVIDIAs new GPU devel-
opment environment Parallel Nsight (codename Nexus) became available1.

Configurations Parallel Nsight is designed for remote debugging with a host system (where
Visual Studio is installed) and a target system (with a CUDA compatible GPU).
This setup did not work for debugging CUDA C code that is called from Matlab
(.mex files).

It is also possible to use one single system as a host and target. In this case, two
graphic cards are needed; a CUDA capable one for the debugging and another
one for the screen. This configuration is not (yet) officially supported by NVIDIA,
but it allows to debug CUDA C code in a .mex file with Parallel Nsight.

The next section describes the setup of this second configuration. Table 5.1 shows
the software versions used during this project for the CUDA development. The
CUDA Toolkit 2.3 was still used to compile the existing .mex files of the previous
project [3]. The new .mex files were built using the CUDA Toolkit 3.0, which
comes with Parallel Nsight.

C Code Debugging vs.
Kernel Debugging

It is not possible to debug kernel code and the surrounding C code at the same
time. When starting a project with the standard Visual Studio debugger, break-
points in kernel code are ignored. When using Parallel Nsight as a debugger
(use Start CUDA Debugging), breakpoints outside of the kernels are ignored.

Kernels Using Textures With CUDA-GDB (which is NVIDIA’s debugging environment for Linux sys-
tems), it is not possible to debug kernels which use texture memory [24]. It seems
that Parallel Nsight has the same limitation, as it was not possible to debug such
kernels during this project.

OpenCV Information about building and running the OpenCV [25] algorithms can be
found in appendix D.

1http://www.nvidia.com/object/cuda_home_new.html

37

http://www.nvidia.com/object/cuda_home_new.html

5 CUDA Implementation

Software Version Architecture

MathWorks Matlab R2009b Win64

Microsoft Visual Studio 2008 SP1 Win32

NVIDIA Display Driver 195.62 Win64

NVIDIA Parallel Nsight 1.0.10083.2 Win64

NVIDIA CUDA Toolkit 2.3 / 3.0 Win64

NVIDIA CUDA SDK 2.3 -

Table 5.1 Software versions used during this project.

5.1.1 System Setup

Requirements Parallel Nsight requires Windows Vista SP1 or Windows 7 (32-bit or 64-bit in
either case) on both the host and the target system.

For local debugging, two graphic cards are needed (and a motherboard that can
carry them as well as a strong enough power supply). At least one of them
must support hardware debugging, which is only available on devices with a
CUDA compute capability of 1.1 or higher. For a more detailed description of the
requirements, the readme of Parallel Nsight should be consulted before buying
a new graphic card.

The second graphic card in the system which is used to drive the display(s)
must not be CUDA capable and could in theory also be a non-NVIDIA model.
However, tests with an ATI graphic card were not successful because it didn’t
show up in the NVIDIA control panel and it was therefore not possible to setup
headless debugging.

Used Hardware The following hardware was successfully used for local debugging:

NVIDIA GeForce GTX 260 Graphic Card This GPU has CUDA compute capa-
bility 1.3 and was used for debugging.

NVIDIA GeForce 8800 GTX Graphic Card This GPU has CUDA compute ca-
pability 1.0 and can therefore not be used for hardware debugging of CUDA
kernels. This graphic card was used to drive the displays.

NVIDIA nForce 680i SLI Mainboard This mainboard has two PCI Express v1.0
x16 slots to hold two graphic cards. The GTX 260 GPU is built for PCI
Express v2.0 but is backwards compatible to a PCI Express v1.0 mainboard.

ANTEC EarthWatts 750W Power Supply This is a SLI-ready 750W power sup-
ply. SLI-ready means that it is capable (regarding power and connectors)
to drive two NVIDIA graphic cards at the same time. However, the two
graphic cards in this setup are not running in SLI mode.

Besides this CUDA Workstation, a notebook was also used for development.
Since the notebook has only one GPU, debugging of kernels was not possible
with this system. However, other features of Parallel Nsight (Analysis Tools)
were still available. Table 5.2 summarizes the hardware configuration of the two
systems. Table 5.3 compares the specifications of the GPUs used during this
project.

38

5 CUDA Implementation

CUDA Workstation Notebook

Processor Intel Core 2 Quad Q6600 Intel Mobile Core 2 Duo T9600

Number of Cores 4 2

Frequency 2400 MHz 2800 MHz

FSB Frequency 1066 MHz 1066 MHz

RAM 2 × 1024 MB 2 × 2048 MB

RAM Type DDR2-SDRAM PC2-6400 DDR3-SDRAM PC3-8500

Mainboard NVIDIA nForce 680i SLI ASUSTeK N61Vn

Chipset NVIDIA nForce 680i SLI SPP Intel PM45

PCIe Version 1.0 1.0

PCIe Link Speed 2.5 GB/s 2.5 GB/s

GPU 1 NVIDIA GeForce GTX 260 NVIDIA GeForce GT 240M

GPU 2 NVIDIA GeForce 8800 GTX -

Operating System Windows 7 Enterprise Windows 7 Ultimate

Architecture 64-bit 64-bit

Table 5.2 Development systems.

GeForce GTX 260 GeForce 8800 GTX GeForce GT 240M

CUDA Compute Capability 1.3 1.0 1.2

Number of Multiprocessors 27 16 6

Number of Cores 216 128 48

Global Memory 896 MB 768 MB 1024 MB

Constant Memory 64 kB 64 kB 64 kB

Shared Memory per Block 16 kB 16 kB 16 kB

Registers per Block 16384 8192 16384

Warp Size 32 32 32

Texture Alignment 256 bytes 256 bytes 256 bytes

Max. Threads per Block 512 512 512

Max. Block Dimension 512 × 512 × 64 512 × 512 × 64 512 × 512 × 64

Max. Grid Dimension 65535 × 65535 65535 × 65535 65535 × 65535

Clock Rate 1242 MHz 1350 MHz 1210 MHz

Memory Clock 1015 MHz 900 MHz 790 MHz

Memory Interface 448 bit 384 bit 128 bit

Table 5.3 GPU comparison. The two first GPUs belong to the CUDA Workstation, the latter is the Note-
book’s GPU.

39

5 CUDA Implementation

Software To compile, run and debug the code of this project, the following software has
to be installed on a single machine:

1. Matlab

2. Visual Studio
Refer to the Parallel Nsight readme for more information about the sup-
ported development environments. For Parallel Nsight 1.0, only Visual
Studio 2008 SP1 is supported.

3. NVIDIA Display Driver for the CUDA capable GPU
Refer to the Parallel Nsight readme for information about the supported
driver version. For the beta version of Parallel Nsight, the driver version
has to match exactly and can not be newer than the one stated in the readme
file.

4. NVIDIA CUDA Toolkit 2.3

5. NVIDIA CUDA SDK

6. NVIDIA Parallel Nsight Monitor

7. NVIDIA Parallel Nsight Host

Environment Variables To build the code of this project, some environment variables have to be set
(see table 5.4). They are used in the custom makefile of this project. A reboot
of the computer might be necessary before the new environment variables are
recognized by Visual Studio.

Variable Example

MATLAB_DIR C:\Program Files\MATLAB\R2009b

VC_BIN_DIR C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin

CUDA_ROOT C:\Program Files\NVIDIA Nexus 1.0\CUDA Toolkit\v3.0\Win64\CUDA

NVSDKCUDA_ROOT C:\ProgramData\NVIDIA Corporation\NVIDIA GPU Computing SDK\C

Table 5.4 Required environment variables.

Local Debugging Setup Some special setup steps are needed for local debugging. They are described
in the Parallel Nsight User Guide. For the version used during this project, the
following two steps were needed:

∙ Disable Direct3D acceleration for WPF using a .reg file that ships with
Parallel Nsight.

∙ Setup headless debugging for the Parallel Nsight capable GPU.

Parallel Nsight Setup Some of the Parallel Nsight settings are global and some are project specific.

The global settings for the Monitor can be modified by right-clicking on the
Parallel Nsight Monitor icon in the taskbar and selecting Options. Here, the
WDDM TDR and the Enable secure server options were disabled.

The global settings for the Host can be modified from Visual Studio by select-
ing the Nexus→Options... menu. Here, the Enable secure connection option was
disabled.

The project specific settings can be accessed by right-clicking on the project in
the Visual Studio Solution Explorer and selecting Nexus User Properties. Figure
5.1 shows the settings used for this project.

40

5 CUDA Implementation

Figure 5.1 Nexus user properties.

Launch external program: It is important to not enter ...\bin\matlab.exe here, be-
cause this is just a small starter application which returns immediately to
the calling process (and therefore stops the debugging immediately).

Connection name: Use localhost for local debugging.

Command line arguments: This value is passed to Matlab as a command line
argument. The -r option specifies an .m file to run after the startup of
Matlab. Note that no path information or file extension should be supplied
here.

Working directory: This setting defines the current folder of Matlab after startup.
It should be set to the directory where the .m file specified above is located.

Analysis Tools The settings for the Analysis Tools (menu Nexus→New Analysis Activity) are
similar to the ones described above.

Note that the Analysis Tools can also be used in a local setup when only one
CUDA capable GPU is available.

Debugging C Code To debug standard C code (without Parallel Nsight) in a .mex file, the project
properties Command, Command Arguments and Working Directory must be set
according to the explanations above.

41

5 CUDA Implementation

5.1.2 Troubleshooting

No CUDA-GPU found The Matlab GUI shows this message also when it was not able to successfully
call the cuGpuDeviceInfo .mex file. See next point for possible reasons.

Invalid MEX file The message Invalid MEX-file . . . : The specified module could not be found can have
two reasons (at least. . .):

∙ The .mex file can not be found in the search paths. Note that Matlab looks
for a .mexw32 or a .mexw64 file, depending on the Matlab version (32- or
64-bit).

∙ One or more dependencies of the .mex file can not be found. The miss-
ing dependency is most probably the CUDA runtime DLL. For the .mex
files compiled with CUDA Toolkit 2.3 (existing .mex files from the previous
project), this is cudart.dll. When the CUDA Toolkit 2.3 is properly installed,
this file should be found because its location is added to the Path envi-
ronment variable. For new .mex files built with the CUDA Toolkit 3.0, the
CUDA runtime is a file like cudart64_30_8.dll. This file should be in the same
directory as the .mex file. To identify missing dependencies, the freeware
Dependency Walker2 can be very useful.

5.2 Build Process

5.2.1 Win64 Compatibility

Introduction In order to be able to run the software on Win32 as well as on Win64 systems,
some modifications to the code and the build setup were necessary.

5.2.1.1 Data Types

Win32 vs. Win64 Table 5.5 shows the size of different data types on Win32 and Win64 [26].

Fortunately, the float datatypes (which are used to store the image data) remain
the same and are also compatible with Matlab (C and Matlab use the IEEE 754
standard).

Problem The MEX interface of Matlab uses the mwSize and mwIndex data types for dimen-
sions and indexes. While it is not a problem to cast between mwSize (or mwIndex)
and unsigned int on Win32, it can be dangerous on Win64; especially when a
casted value is passed to a function by reference.

Modification of the
Existing Code

The existing Lucas-Kanade implementation from the previous work [3] was
modified to avoid any casts from mwSize or mwIndex to unsigned int or int.
Therefore, the data types of many local variables and function parameters have
been changed to mwSize.

WIN64_CAST_WARNING The signatures of the CUDA kernels in the existing Lucas-Kanade implementa-
tion use the int data type for dimensions (of the image sequence, for example).
These signatures have not been changed. Therefore, when calling these ker-
nels, a cast from mwSize to int must be performed. This reduces the available
data range; even on Win32 (because the destination is a signed type). Here the
assumption is that all dimensions and filter lengths are in a reasonable range.
However, all these casts were marked with a WIN64_CAST_WARNING comment.

2http://dependencywalker.com/

42

http://dependencywalker.com/

5 CUDA Implementation

Data Type Win32 Win64

char 8 8

short 16 16

int, long 32 32

long long 64 64

Pointers (ptrdiff_t, . . .) 32 64

size_t 32 64

time_t 32 64

float 32 32

double 641) 64

Matlab single 32 32

Matlab double 64 64

MEX type mwSize 322) 64

MEX type mwIndex 322) 64

1) Depends on compiler and compiler settings. In our configuration it is 64 bits.
2) Might change to 64 bits in the future [27]. In our configuration it is 32 bits.

Table 5.5 Size of data types (in bits) on Win32 and Win64 systems.

MWSIZE_WARNING The functions of the CUDA API use the size_t type for dimensions. Casting
from mwSize is therefore not a problem. However, should in future Matlab
versions the mwSize data type be extended to 64 bits on Win32 systems [27], this
would lead to a cast from a 64-bit integer to a 32-bit integer. This is not a problem
because (again) we assume reasonable dimensions. However, the assignments of
a mwSize value to a size_t value were marked with a MWSIZE_WARNING comment.

New Code The implementation of the new algorithm uses unsigned int for dimensions.
Only at the very beginning, the dimensions of the Matlab data are casted from
mwSize to unsigned int. These casts are marked with a MWSIZE_WARNING com-
ment.

In calculations which can result in a negative index, a cast from unsigned int
to int is done. These casts are marked with a SIGNED_CAST_WARNING comment.

5.2.2 Makefile

Introduction To build a CUDA project, the .cu files (which contain the source code of the
CUDA kernels) must be compiled by invoking the CUDA Compiler Driver
(NVCC). In the previous work [3], a custom makefile was used to realize this.
The makefile of this project is based on the existing one, but it was modified to
support compilation on Win32 systems as well as on Win64 systems.

Input Parameters Depending on the desired build configuration and target system, a combination
of the following "input parameters" can be used. They affect several compiler
and linker command line parameters and select the appropriate versions of the
libraries to link.

43

5 CUDA Implementation

dbg=1 Causes the compiler to generate debug information.

emu=1 Passes the --device-emulation option to the NVCC compiler. This al-
lows to run CUDA kernels on a system where no CUDA capable GPU is
available. This feature was not used during this project.

x64=1 This is used when building the code on a Win64 system.

Example To rebuild the debug configuration on a Win64 system, the build command line in
the project properties of Visual Studio looks like: nmake rebuild dbg=1 x64=1

NVCC vs. CL With the current makefile, all .cpp and .cu files are passed to the CUDA Compiler
Driver (NVCC). NVCC extracts and processes all GPU kernel code. NVCC then
calls the Microsoft C/C++ Compiler (CL) to process the rest of the code. The
--compiler-options argument of NVCC can be used to specify the arguments
that should be passed to CL.

Shortcomings The current version of the makefile has some shortcomings:

∙ The dependencies in the build rules are not complete. Preferably, the list of
dependencies would be generated automatically. With this current makefile
it is recommended to always use the rebuild command (instead of doing an
inceremental build).

∙ A separate build rule is needed for every source file. It would be nicer to
have a generic rule for all .cu and .cpp files.

∙ Cross-compiling is not supported. It is not possible to build the .mexw32
file on a Win64 machine and vice versa.

44

5 CUDA Implementation

5.3 General Information about the Implementations

Introduction The entrance point of the .mex file is the mexFunction function in the file
MainAmFmCUDA_MexInterface.cpp. It has a defined signature [28] which allows
Matlab to exchange parameters and return values with the .mex file.

mexFunction mexFunction is also the main function of the CUDA implementation. It performs
the following actions:

∙ Checking input parameters and throwing exceptions when parameters with
a wrong data type, dimension, or value are passed.

∙ Copying the original image sequence to the global GPU memory and copy-
ing the results back to the host memory.

∙ Allocating and releasing memory on the GPU.

∙ Handling the data flow and the program logic by instantiating the worker
objects and calling their functions.

Worker Objects All CUDA kernels are encapsulated in classes which have (at least) a function to
initialize itself for a given set of parameters and a function to actually perform
the work (calling the CUDA kernel).

Note that it was not possible to declare the CUDA texture references as private
class members. Therefore, all objects of a class share the same texture reference.

Block Dimensions and
Image Dimensions

The optimum number of threads per block depends on many factors [21, 22].
Small block sizes yield to many blocks per multiprocessor which is in general
good for the utilization of the hardware (reduced number of idle multiproces-
sors). Large block sizes on the other hand can for example reduce redundant
memory reads from global memory (when using shared memory; see section
5.4.4).

Since the number of threads per block should always be a multiple of the warp
size, the minimum block size is 32 (see table 5.3). The maximum block size is
limited by the number of registers and the amount of shared memory needed.

In this project, all kernels use a block size of 256 (16 × 16). To avoid diverging
branches within a block, all image dimensions are extended to a multiple of
16 in both directions. This also makes the kernel code more readable, since no
boundary checks are needed.

Extending the image dimensions to a multiple of 16 has also the advantage that
every image in a sequence is nicely aligned in memory, as long as the first image
is aligned (which is ensured by cudaMalloc) [23]. Textures, for example, can
only be bound to 256 byte aligned addresses in global memory with the GPUs
used during this project (see table 5.3).

Memory Organization C and Matlab use different schemes to store a 2D array in the (linear) memory.
Matlab uses column-major order, C uses row-major order. This means, that the
role of the x- and y- coordinates have to be exchanged when passing data from
Matlab to a .mex file [3].

45

5 CUDA Implementation

5.4 Basic Algorithm

Introduction This section describes the CUDA implementation of the algorithm explained in
chapter 3.

5.4.1 Using the MEX File

Introduction The .mex file can be called from Matlab like any other Matlab function (provided
that it is in the working directory or in a search path together with the CUDA
runtime DLL). It has the following signature. Note that the data types have to
match exactly.

[Flow Cert Time] = AmFmCUDA(ImgSeq, Pads, NumDir, AngleOffset , RadSpat,
RadTemp, CompVelThr , OptFlowThr)

ImgSeq A three-dimensional (h×w× l) array of single values (float in C) representing
the source image sequence. The length l of the sequence has to be at least
(2 · RadTemp + 3).

Pads Number of pixels (uint32) to add on each side of the original images (padding).
The default value used in the Matlab GUI is 15. Note that the effective padding
on the right and the bottom side can be extended by up to 15 pixels since the
(padded) image dimensions are extended to a multiple of 16 (see section 5.3).

NumDir and AngleOffset These arguments are used to determine the angles ϕk of the directional filters:

ϕk =
180∘

NumDir
· k + AngleOffset k = 0 . . .NumDir − 1 (5.1)

NumDir can also be 0. This special case is described below. The AngleOffset
argument is particularly useful when only one direction is computed (i.e. when
NumDir is 1 or 0).

NumDir has data type uint32 and is typically 4, AngleOffset has data type
double and is typically 0.

RadSpat and RadTemp These two arguments (uint32) define the dimensions of the neighbourhood in
which the instantaneous frequencies are averaged to compute the component
velocities (local ST-slice, see section 3.4). RadSpat is the radius along the di-
rectional filter direction and RadTemp is the temporal radius. Typical values for
RadSpat and RadTemp are 3 and 1, respectively.

Note that (2 · RadTemp + 1) frames of instantaneous frequencies are needed to
compute one frame of component velocities. The computation of one frame of
instantaneous frequencies also has a temporal radius of 1 (to build the forward
and backward differences). Therefore, (2 ·RadTemp+3) input frames are needed
for one output frame.

CompVelThr This is the threshold for computing the component velocities mentioned in sec-
tion 3.4. Its data type is single and a typical value is 0.8.

OptFlowThr This is the threshold for computing the optical flow vectors mentioned in section
3.5. Its data type is single and a typical value is 0.8.

This parameter is ignored when NumDir=0 (see below).

46

5 CUDA Implementation

Flow This output parameter returns the the flow vectors. It is a complex array of
single values with dimensions (h × w × (l − 2 · RadTemp − 2)). The real and
imaginary parts of the values are the horizontal and vertical components of the
flow vectors, respectively.

Cert This output parameter returns the confidence measure for the flow vectors. It is
an array of single values with dimensions (h × w × (l − 2 · RadTemp − 2)). The
values are in the range between 0 (‘not reliable’ or ‘error during computation’)
and 1 (‘highly reliable’).

Time This is an optional output parameter of type single (float in C). It returns
the total execution time of the mex (without calling overhead of Matlab) in
milliseconds. The time is measured with CUDA events and has therefore a good
resolution.

Special Case Calling the .mex file with NumDir=0 calculates the component velocities for one
direction (which can be specified by the AngleOffset parameter). However, the
last step of the algorithm (section 3.5) is not applied. Instead, Flow (which is not
a complex array in this case) returns the component velocities and Cert returns
the certainties of the component velocities for that particular direction.

5.4.2 Unoptimized Implementation

Introduction Figure 5.2 shows the program flow of the first unoptimized implementation of
the Basic Algorithm. Basically there is one kernel for each step described in
chapter 3, as well as a kernel for padding the image sequence at the beginning.

Padding The image sequence received from Matlab is copied to a block of memory on
the GPU which is big enough to hold the padded and extended image sequence.
With cudaMemcpy3D, the (linear) GPU memory is viewed as a three-dimensional
cuboid and it is possible to copy the data with an offset within this cuboid [23].
Figure 5.3 illustrates the three-dimensional memory block after copying the
original data with an offset of (pads, pads, 0). The gray area depicts uninitialized
memory.

The padding kernel then fills the uninitialized memory with the corresponding
border values of the images.

Rotating The rotating and back-rotating kernels basically implement equations (3.12) and
(3.13) without taking advantage of the texture memory. Padding is not done
implicitly during rotation, therefore pads = 0 in equations (3.12) and (3.13).

Directional Filtering The directional filtering is split into two kernels, one for the longitudinal and
one for the transversal dimension. This unoptimized implementation follows
a straightforward approach without using shared memory or texture memory.
Because the filters are quite long, this leads to a huge amount of (slow) global
memory accesses. The filter coefficients are stored in fast constant memory
before the first kernel call.

Instantaneous
Frequencies

This kernel implements the algorithm described in section 3.3. This kernel
also reads filter response values from the previous and the next frame. This is
easily possible since the filter responses of all frames are computed before the
instantaneous frequency kernel is executed for the first time.

Component Velocities The component velocity kernel computes the component velocities and its cer-
tainties as described in section 3.4. This kernel also reads instantaneous fre-
quency values from previous and successive frames.

47

5 CUDA Implementation

copy image sequence from host memory to global memory

call padding kernel

iterate over frames

iterate over angles

iterate over frames

call rotating kernel

iterate over frames

call transversal filtering kernel

call longitudinal filtering kernel

iterate over frames

call instantaneous frequencies kernel

iterate over frames

call component velocities kernel

iterate over frames

call back-rotating kernel

call optical flow kernel

iterate over frames

copy results from global memory to host memory

use component velocities

as result

NumDir > 0
yesno

Figure 5.2 Structogram: Basic Algorithm - unoptimized.

Optical Flow This kernel combines the component velocities of all directions to the resulting
optical flow vectors. The cos(ϕk), sin(ϕk), cos2(ϕk), sin2(ϕk) and cos(ϕk) sin(ϕk)
terms are precomputed and stored in the fast constant memory of the GPU.

The component values and its certainties are stored in a separate buffer for every
direction. But passing an array of pointers (float**) to a kernel does not work
since the first dereferenciation would try to access host memory which is not
possible out of a CUDA kernel. Therefore, the start addresses of all buffers are
stored in the constant memory of the GPU before the kernel is called. This is done
only once. To access a specific frame within these buffers, an offset argument is
passed to the kernel on every call.

Program Flow This unoptimized implementation stores all intermediate results in the GPU
memory and the memory is allocated for every direction separately. This re-
sults in a huge memory consumption and a large number of memory allocation
operations, which is time consuming.

Optimizations In the next sections, the kernels itself as well as the program structure are opti-
mized step by step.

48

5 CUDA Implementation

original image data

p

p

p+eh

p+ew

Figure 5.3 GPU memory for padded (with p pixels) and extended (width and
height with ew and eh pixels, respectively) image sequence.

Performance Measures To measure the improvements of the optimization steps, the execution times of
the kernels and the total execution time of the .mex file were recorded.

The execution times for the kernels were taken from the Parallel Nsight Analysis
Report. The numbers in the following tables are the mean values of five runs.

The total execution time of the .mex file was measured using the CUDA event
framework. Two events were captured at the beginnig and at the end of the
mexFunction (see section 5.4.1, third output argument). The numbers in the
following tables are the mean values of ten runs.

The Analysis Tools seem to add some overhead when executing the .mex file.
The total execution time returned from the CUDA event framework is 10 to 20
milliseconds longer when the execution is started by the Analysis Tools. The
total execution times in the following tables were therefore measured without
the Analysis Tools.

Setup The .mex files were compiled and benchmarked with the January 2010 Beta of
Parallel Nsight (version 1.0.10013) in Release configuration and executed on the
CUDA Workstation (see table 5.2). The algorithm was applied to the Rubik Cube
sequence (see appendix C).

The algorithm was called with the default parameters (15 pixels padding, 4
directions, no angle offset, spatial radius 3, temporal radius 1, thresholds 0.8).

Unoptimized Timing Table 5.6 shows the execution times for the unoptimized algorithm.

49

5 CUDA Implementation

Kernel % Time [ms] Calls

Total 100.0 212.25 1

Total Kernels 41.5 88.04 570

Transversal Filtering 16.2 34.42 84

Component Velocities 10.7 22.78 68

Longitudinal Filtering 6.6 13.91 84

Instantaneous Frequencies 3.8 8.13 76

Back-Rotating 2.2 4.60 136

Rotating 1.4 2.95 84

Optical Flow 0.4 0.89 17

Padding 0.2 0.36 21

Table 5.6 Timing: unoptimized (SW rev. 74).

5.4.3 Texture Memory for Image Rotation

Introduction The unoptimized implementation is not very elegant:

∙ Reading the source image from global memory is not coalesced (whereas
the writing of the rotated image is perfectly fine since the algorithm iterates
linearly over the output pixels).

∙ In general, the transformed destination coordinates do not result in integer
source coordinates. The unoptimized version rounds the coordinates to the
nearest neighbours.

∙ In general, the rotated image is bigger than the source image. Therefore,
access violations must be prevented using boundary checks when iterat-
ing over the destination image. The boundary checks lead to diverging
branches.

Texture Memory All these drawbacks can be avoided using texture memory (see section 2.3.2).
This new implementation avoids uncoalesced global memory reads and uses
the texture cache instead (since there is good 2D spatial locality when reading
the source image). Furthermore, the sophisticated addressing modes allow an
implicit bi-linear interpolation as well as implicit padding of the source image.

Performance As can be seen from table 5.7, the rotating and back-rotating kernels perform
much better and the padding kernel could be omitted. However, the over all
speedup is not very impressive, since these three kernels only needed a small
fraction of the total execution time. It also must be mentioned that binding the
texture to a new global memory area for every frame adds some overhead on
the host side.

50

5 CUDA Implementation

Kernel % Time [ms] Calls

Total 100.0 210.98 1

Total Kernels 40.2 84.88 549

Transversal Filtering 16.3 34.42 84

Component Velocities 11.0 23.28 68

Longitudinal Filtering 6.6 13.90 84

Instantaneous Frequencies 3.9 8.15 76

Back-Rotating 1.1 2.41 136

Rotating 0.9 1.97 84

Optical Flow 0.3 0.73 17

Table 5.7 Timing: texture memory for image rotation (SW rev. 76).

5.4.4 Optimization of Directional Filtering

Introduction The goal for optimizing the directional filtering is to reduce the numer of (redun-
dant) read accesses to global memory. Two approaches have been tested: one
using shared memory and one using texture memory.

Shared Memory The idea of the shared memory approach is to first load an area from global
memory to shared memory and then in a second step to compute the convolution
with the values stored in shared memory.

A little modification of the filter lenghts (49 instead of 55 for the transversal
filter and 17 instead of 15 for the longitudinal filter) allows a scheme where
every thread of the transversal kernel loads exactly 4 values into shared memory
and every thread of the longitudinal kernel loads exactly 2 values into shared
memory. After loading the values into shared memory, every thread computes
one output value. The additional amount of memory that must be loaded into
shared memory on both sides of a block corresponds to the filter radius (24 for
the transversal filter and 8 for the longitudinal filter).

block
size

16x16

r=24 r=2416

64
r=8

16 32

r=8

blockIdx = (3,1) blockIdx = (1,1)

Figure 5.4 This image shows the current thread block (gray) and the memory
area it loads into shared memory for transversal (left) and longitu-
dinal (right) filtering.

It is possible to copy the data in such a way that it is read from global memory
in a coalesced manner and written to shared memory without bank confilcts.

51

5 CUDA Implementation

To ensure that all data is copied to shared memory before the first thread starts
using the data, the __syncthreads() intrinsic function must be inserted as a
barrier between memory copy and the actual convolution. It synchronizes all
threads in a thread block.

Performance of Shared
Memory Approach

To allow a fair comparison between the unoptimized kernels and the ones using
shared memory, the timing of the unoptimized version was measured with the
new filter lengths, too (see table 5.8). Table 5.9 shows the timing for the optimized
version. The speedup for the transversal kernel is 2 and also the speedup for
the longitudinal kernel is remarkable. Note that this optimization technique
produces no additional overhead on the host side (in contrast to using texture
memory).

Kernel % Time [ms] Calls

Total 100.0 205.10 1

Total Kernels 40.4 82.88 549

Transversal Filtering 15.0 30.84 84

Component Velocities 11.4 23.30 68

Longitudinal Filtering 7.5 15.46 84

Instantaneous Frequencies 4.0 8.16 76

Back-Rotating 1.2 2.41 136

Rotating 1.0 1.97 84

Optical Flow 0.4 0.73 17

Table 5.8 Timing: modified directional filter lengths (SW rev. 79).

Kernel % Time [ms] Calls

Total 100.0 183.97 1

Total Kernels 34.0 62.55 549

Component Velocities 12.7 23.31 68

Transversal Filtering 8.1 14.91 84

Longitudinal Filtering 6.0 11.05 84

Instantaneous Frequencies 4.4 8.16 76

Back-Rotating 1.3 2.41 136

Rotating 1.1 1.97 84

Optical Flow 0.4 0.73 17

Table 5.9 Timing: directional filtering using shared memory (SW rev. 82).

The speedup can be explained with the reduced number of redundant reads of
source values. In the unoptimized version, every pixel of the source image is
read 49 times from global memory (transversal filtering). Using shared memory,
this number is reduced to four reads. For the longitudinal filtering it is 17 vs. 2
reads of the same source value.

52

5 CUDA Implementation

Texture Memory Using texture memory instead of shared memory to optimize the directional
filtering leads to a very compact implementation of the kernels since no copying
and no boundary checking has to be performed. However, binding the texture
to the global memory introduces some overhead on the host side.

Tables 5.10 and 5.11 show the timing measurements for this optimized version.
Table 5.10 is with the original filter lengths and table 5.11 is with the filter lenghts
used for the shared memory approach.

Kernel % Time [ms] Calls

Total 100.0 181.35 1

Total Kernels 32.7 59.34 549

Component Velocities 12.8 23.22 68

Transversal Filtering 8.8 16.03 84

Instantaneous Frequencies 4.5 8.16 76

Longitudinal Filtering 3.8 6.82 84

Back-Rotating 1.3 2.42 136

Rotating 1.1 1.97 84

Optical Flow 0.4 0.73 17

Table 5.10 Timing: directional filtering using texture memory (SW rev. 83).

Kernel % Time [ms] Calls

Total 100.0 180.17 1

Total Kernels 32.2 58.00 549

Component Velocities 12.9 23.23 68

Transversal Filtering 7.8 14.10 84

Instantaneous Frequencies 4.5 8.17 76

Longitudinal Filtering 4.1 7.38 84

Back-Rotating 1.3 2.41 136

Rotating 1.1 1.97 84

Optical Flow 0.4 0.73 17

Table 5.11 Timing: directional filtering using texture memory (SW rev. 84).

Optimized Version The two optimization approaches led to almost the same execution time for
the transversal kernel (tables 5.9 and 5.11). Since the shared memory approach
does not introduce overhead on the host side, this version was finally used for
transversal filtering.

For the longitudinal filtering, the texture memory approach is more efficient
(tables 5.9 and 5.10). Table 5.12 shows the timing for the fully optimized direc-
tional filtering which uses shared memory for longitudinal filtering and texture
memory for transversal filtering.

53

5 CUDA Implementation

Kernel % Time [ms] Calls

Total 100.0 179.04 1

Total Kernels 32.56 58.30 549

Component Velocities 13.0 23.29 68

Transversal Filtering 8.3 14.91 84

Instantaneous Frequencies 4.6 8.16 76

Longitudinal Filtering 3.8 6.83 84

Back-Rotating 1.3 2.41 136

Rotating 1.1 1.97 84

Optical Flow 0.4 0.73 17

Table 5.12 Timing: optimized directional filtering (SW rev. 85).

5.4.5 Using Vector-Datatypes

Vector-Datatypes In this optimization step, some of the float buffers were pairwise combined to
float2 buffers (see table 5.13). float2 is a vector data type provided by CUDA
with the fields x and y.

New float2 Buffer Content of the x Field Content of the y Field

gFilterResp gFilterRespRe gFilterRespIm

gInstFreq gInstFreqSpat gInstFreqTemp

gCompVel gCompVel gCompVelConf

dCompVelRotPtrs dCompVelRotPtrs dCompVelConfRotPtrs

Table 5.13 Mapping between new float2 buffers and old float buffers.

Other candidates to pair together would be the resulting flow vector compo-
nents gVelX and gVelY. However, these values are returned to Matlab as real
and imaginary parts in a complex valued array. Matlab expects the real and
imaginary part to be in separate buffers wheras the use of float2would tumble
them.

Special Case For the special case where the component velocities of one direction should be
returned instead of the flow vectors (NumDir=0, see section 5.4.1), a new kernel
to copy the component velocities to the output buffer was introduced (see also
figure 5.5). It reads the float2 values from the gCompVel buffer and stores their
component velocity values and their confidence values into separate buffers so
that they can be returned to Matlab.

Texture Memory Vector data types can not only be used with global and shared memory, but
also with texture memory. Listing 5.1 shows the declaration of the texture and
the complete back-rotating kernel. Line 18 reads the component velocity and
its confidence value for the current output pixel at the same time and writes
these values to the global memory. Both values (x and y fields) are bi-linear
interpolated when read from texture memory.

54

5 CUDA Implementation

Listing 5.1 Back-rotating of component velocities and their confidence values using texture memory.

1 texture<float2, 2, cudaReadModeElementType > texBackRot;
2
3 __global__ void texbackrotating_Kernel(float2* dstImg,
4 unsigned int pitchedOutputWidth , float cosTheta, float sinTheta,
5 float minX, float minY, unsigned int pads)
6 {
7 // calculate normalized texture coordinates
8 unsigned int idx = blockIdx.x*blockDim.x + threadIdx.x;
9 unsigned int idy = blockIdx.y*blockDim.y + threadIdx.y;

10
11 // transform coordinates
12 float tu = (float)(idx+pads)*cosTheta - (float)(idy+pads)*sinTheta
13 - (float)minX;
14 float tv = (float)(idy+pads)*cosTheta + (float)(idx+pads)*sinTheta
15 - (float)minY;
16
17 // read from texture and write to global memory
18 dstImg[idy*pitchedOutputWidth + idx] = tex2D(texBackRot , tu, tv);
19 }

Performance As can be seen from table 5.14, the two kernels using texture memory for reading
(back-rotation and longitudinal filtering) benefit from this new data type. There
is also an improvement for the instantaneous frequencies kernel, which reads
float2 values from global memory.

But there was no improvment for the component velocities kernel, and the optical
flow kernel needs even more time than before.

However, there was still some over all improvement which is assumed to be
because of the reduced number of memory allocation operations needed.

Kernel % Time [ms] Calls

Total 100.0 169.66 1

Total Kernels 34.0 57.67 481

Component Velocities 13.7 23.30 68

Transversal Filtering 8.8 14.91 84

Instantaneous Frequencies 4.6 7.74 76

Longitudinal Filtering 4.0 6.74 84

Rotating 1.2 1.97 84

Back-Rotating 0.9 1.58 68

Optical Flow 0.8 1.42 17

Table 5.14 Timing: Basic Algorithm with vector datatypes (SW rev. 90).

55

5 CUDA Implementation

5.4.6 Optimized Program Flow

Goals The last and most important optimization step was to revise the structure of the
mexFunction. The goals were:

∙ Reduce the number of texture binding operations.

∙ Reduce the number of memory allocation operations.

∙ Reduce the memory consumption.

∙ Simplify the structure to have a good basis for the implementation of the
multiresolution algorithm.

New Structure The new structure is shown in figure 5.5. Basically it processes frame by frame
(compare with figure 5.2). Therefore, a source image can be loaded into texture
memory once and then be rotated several times. This reduces the overhead on
the host side.

copy image sequence from host memory to global memory

load frame into texture memory

iterate over frames (i)

iterate over angles

call rotating kernel

call transversal filtering kernel

call longitudinal filtering kernel

call instantaneous frequencies kernel

call component velocities kernel

call back-rotating kernel

call optical flow kernel

copy results from global memory to host memory

i > 1
yesno

i > 2*RadTemp+1
yesno

yesno

NumDir > 0
yesno

call copy compvel kernel

i > 2*RadTemp+1

Figure 5.5 Structogram: Basic Algorithm - optimized.

Memory Allocations Since the rotated images have different dimensions, in the unoptimized version,
memory was allocated according to the actual image dimensions when iterating
over the angles. This led to many memory allocation and release operations
which increased the execution time on the host side.

56

5 CUDA Implementation

With this new structure it is now possible to allocate memory (which has to be
big enough to hold any rotated image dimension) once outside of the main loop.

FIFOs When processing the image sequence frame by frame, less intermediade results
must be stored in memory. However, the instantaneous frequencies kernel and
the component velocities kernel need input data of more than one frame to
process one output frame. For these two kernels, FIFO-like buffers for the input
data are introduced.

Figure 5.6 shows how the filter responses of three frames are stored in a FIFO
(there is one such FIFO per direction). The output of the directional filter always
overwrites the oldest frame in the FIFO. Therefore, the frames in the FIFO are
generally not in the correct order. But since the lenght of the FIFO is only 3
(fixed), the frames can be rearranged easily by passing three different pointers
(one for the current frame, one for the previous frame and one for the next frame)
to the instantaneous frequencies kernel.

The filter response of frame i is written to the position (i mod 3) in the FIFO. As
soon as there is enough data in the FIFO (i = 2), the current frame can be accessed
at position ((i − 1) mod 3), the previous frame at position ((i − 2) mod 3), and the
next frame at position (i mod 3).

0

0 1

0 1 2

3 1 2

3 4 2

3 4 5

6 4 5

i=0

i=1

i=2

i=3

i=4

i=5

i=6

g
F

il
te

rR
es

p
(0

)

g
F

il
te

rR
es

p
(1

)

g
F

il
te

rR
es

p
(2

)

not enough input data to call calculateInstFreq

not enough input data to call calculateInstFreq

calculateInstFreq(gFilterResp(0), gFilterResp(1), gFilterResp(2), ...)

calculateInstFreq(gFilterResp(1), gFilterResp(2), gFilterResp(0), ...)

calculateInstFreq(gFilterResp(2), gFilterResp(0), gFilterResp(1), ...)

calculateInstFreq(gFilterResp(0), gFilterResp(1), gFilterResp(2), ...)

calculateInstFreq(gFilterResp(1), gFilterResp(2), gFilterResp(0), ...)

previous frame current frame next framestored frame numbers

Figure 5.6 FIFO to store the filter responses for 3 frames.

The number of input frames for the component velocities kernel depends on
the RadTemp parameter, so the lenght of the FIFO to store the instantaneous
frequencies is not fixed. The result of frame i is stored at position ((i− 2) mod (2 ·
RadTemp + 1)) in the FIFO. However, since the component velocity kernel is
insensitive to the order of the input frames, rearranging of the frames is not
necessary. Instead, just the pointer to the center frame can be passed to the
kernel (see figure 5.7). The kernel then accesses the RadTemp previous and the
RadTemp next frames in the FIFO to build the matrix (3.34).

Optical Flow Kernel In the unoptimized implementation, the component velocities of all directions
and for all frames were stored in buffers before they were combined to the
resulting flow vectors. With the new frame-by-frame approach, the component

57

5 CUDA Implementation

0

0 1

0 1 2

0 1 2

0 1 2

5 1 2

5 6 2

i=2

i=3

i=4

i=5

i=6

i=7

i=8

g
In

st
F

re
q

(0
)

g
In

st
F

re
q

(1
)

g
In

st
F

re
q

(2
)

not enough input data to call calculateCompVels

calculateCompVels(gInstFreq(2), ...)

center framestored frame numbers

3

3

3

3
g

In
st

F
re

q
(3

)

4

4

4

g
In

st
F

re
q

(4
)

not enough input data to call calculateCompVels

not enough input data to call calculateCompVels

not enough input data to call calculateCompVels

calculateCompVels(gInstFreq(2), ...)

calculateCompVels(gInstFreq(2), ...)

Figure 5.7 FIFO to store the instantaneous frequencies for RadTemp=2.

velocities (for all directions) of only one frame must be stored. This reduces the
memory consumption and it also makes passing the data to the kernel easier (the
array of pointers in constant GPU memory is no longer needed).

Performance Table 5.15 shows a speed up of factor 2 for the optical flow kernel and a huge
absolute speedup for the non-kernel code. Table 5.16 illustrates the improve-
ments in the memory consumption. It shows the number of input frames that
can be computed without an out of memory error for various image dimensions
and parameters.

Kernel % Time [ms] Calls

Total 100.0 96.65 1

Total Kernels 59.0 57.06 481

Component Velocities 24.3 23.50 68

Transversal Filtering 15.3 14.83 84

Instantaneous Frequencies 7.8 7.56 76

Longitudinal Filtering 7.3 7.02 84

Rotating 2.0 1.90 84

Back-Rotating 1.6 1.51 68

Optical Flow 0.8 0.74 17

Table 5.15 Timing: optimized program flow (SW rev. 96).

58

5 CUDA Implementation

Image Dimensions NumDir RadTemp Unoptimized (SW rev. 74) Optimized (SW rev. 96)

100 × 200 4 1 388 2344

100 × 200 8 1 262 2299

100 × 200 4 3 388 2314

500 × 1000 4 1 23 70

500 × 1000 8 1 18 32

500 × 1000 4 3 25 45

Table 5.16 Maximum number of input frames for unoptimized and optimized implementation (Pads=15).

5.4.7 Speedup

Introduction Table 5.17 shows the speedup of the optimized implementation compared to a
Matlab implementation for some test sequences (see appendix C).

Test Sequence Matlab [min] CUDA [s] Speedup

Taxi 10.3 0.124 (0.087) 4977

Rubik Cube 12.8 0.141 (0.097) 5434

Ettlinger Tor 343.2 1.372 (0.785) 15009

Table 5.17 Basic Algorithm speedup (SW rev. 96).

When processing the Ettlinger Tor sequence (512 × 512 pixels), Matlab seems to
need so much memory, that Windows has to use the swap file extensively, which
makes the computation very slow.

Measurement The speedup was computed with the execution times reported by the Matlab
GUI. For the CUDA implementation, these values also include the time Matlab
needs to set up the algorithm and calling the .mex file. The times in brackets are
the total execution times returned by the .mex file. They correspond to the total
time in the tables above.

59

5 CUDA Implementation

5.5 Pyramid Algorithm

Introduction This section describes the CUDA implementation of the Pyramid Algorithm
explained in chapter 4.

5.5.1 Using the MEX File

Introduction The output parameters and most of the input parameters are the same as for
the Basic Algorithm (see section 5.4.1). In this section, only the usage of the
additional input parameters is described.

[Flow Cert Time] = AmFmPyrCUDA(ImgSeq, Pads, NumDir, AngleOffset ,
RadSpat, RadTemp, CompVelThr , OptFlowThr , SmoothCoefs ,
MaxLevel , TransCoefs , LongCoefs)

SmoothCoefs This parameter is used to pass the coefficients of the scaling-filter (smoothing
filter) to the .mex file. The .mex file supports separable and non-separable two-
dimensional filters. When passing a row vector of length N, the separable case is
assumed and the coefficients are used for both the row filter and the column filter.
The non-separable case is applied when passing an array of N × N coefficients.
In both cases, N must be odd and not smaller than 3. The expected data type for
the coefficients is single and the maximum number of coefficients is 172 = 289.

MaxLevel This parameter defines the maximum level for the pyramid decomposition. The
velocities are estimated on (MaxLevel + 1) levels. When MaxLevel is 0, no
downsampling and no compensation is performed (but, in contrast to the Basic
Algorithm, the scale-space filter is applied before estimating the velocities).

For test purposes, a negative MaxLevel argument can be passed to the .mex file. In
this case, only the velocities on the level (−MaxLevel) are estimated. The results
are then upsampled to the original image size and returned (no integration of the
pyramid levels is performed). Note that the confidence values of the component
velocities are not passed to lower levels and therefore the computation of the
final flow vectors does not work unless NumDir is 0 or OptFlowThr is less than
zero. For the same reason, this test mode can not be used from the Matlab GUI.

TransCoefs, LongCoefs These parameters can be used to pass custom filter coefficients for the directional
filter to the .mex file.

For the transversal part (TransCoefs), up to 55 real-valued (single) coefficients
can be passed as a row vector.

For the longitudinal part (LongCoefs), up to 15 complex-valued (single) coeffi-
cients can be passed as a row vector.

Passing 0 to one of these parameters causes the mex function to use the standard
coefficients for the respective filter part.

5.5.2 Implementation Notes

Introduction This section basically describes the differences between this pyramid implemen-
tation and the implementation of the Basic Algorithm.

Scale-Space Kernels Several new kernels for the scale-space filtering and the downsampling were
implemented (see table 5.18). These five kernels are optimized using texture
memory (see also section 5.4.4).

60

5 CUDA Implementation

Downsampling + Scale-Space Filtering Scale-Space Filtering Only (for Level 0)

Separable separableRowFilterDS_Kernel
separableColFilter_Kernel

separableRowFilter_Kernel
separableColFilter_Kernel

Non-Separable nonseparableFilterDS_Kernel nonseparableFilter_Kernel

Table 5.18 Scale-space filtering kernels.

Another kernel was implemented for the upsampling of the compensation val-
ues. These values are signed integers, and no interpolation is performed. The
upsampling is done directly on the rotated data (not back-rotating, upsampling,
rotating).

Compensation To implement the compensation described in section 4.3, a rhomboid-shaped re-
gion of the directional filter response is used. This applies to the computation of
the instantaneous frequencies as well as to the computation of the component ve-
locities. The compensation can be different for every single component velocity
value. Therefore, the instantaneous frequencies can no longer be precomputed
for a whole frame, as it was done in the Basic Algorithm (figure 5.5).

The new implementation computes the instantaneous frequencies for the local
ST-slice of the current component velocity directly in the component velocity
kernel. Therefore, a separate instantaneous frequency kernel is no longer used.

Program Structure Figure 5.8 shows the structure of the main function of the Pyramid Algorithm.
There are three differences compared to the structure of the Basic Algorithm
(figure 5.5):

∙ Each frame is first filtered and downsampled to get its representations for
all the pyramid levels.

∙ Before computing the component velocities, the getCompensation function
is called to get the compensation values from the higher level(s).

∙ The instantaneous frequencies are no longer computed separately.

The computation of the compensation values is recursive: the getCompensation
function calls itself to get the compensation from the next higher level.

Component Velocity
Kernel

The component velocity kernel also computes the compensation values (the
rounding and scaling shown in figure 4.5 is done inside the kernel). The kernel
takes the compensation values from the next higher level as inputs and provides
the component velocities and the new compensation values as outputs. Depend-
ing on which of these pointers are provided, the kernel behaves differently:

∙ On the highest level, a null-pointer is passed for the compensation input.
In this case, the kernel uses zero compensation for every pixel.

∙ When a valid pointer is provided for the compensation output (and a null-
pointer for the component velocity output), the compensation values are
computed according to (4.6). This applies to all levels except for level 0.

∙ On level 0, a valid component velocity pointer and a null-pointer for the
compensation output is passed to the kernel. In this case, the compensa-
tion values from the higher levels are added to the estimated component
velocities, which result in the final component velocities (see equation 4.3).

61

5 CUDA Implementation

copy image sequence from host memory to global memory

iterate over frames (i)

iterate over angles

call rotating kernel

call transversal filtering kernel

call longitudinal filtering kernel

call component velocities kernel

call back-rotating kernel

call optical flow kernel

copy results from global memory to host memory

i > 2*RadTemp+1
yesno

yesno

NumDir > 0
yesno

call copy compvel kernel

i > 2*RadTemp+1

call scale-space filtering kernel

call getCompensation function

iterate over number of levels

call downsampling and scale-space filtering kernel

MaxLevel > 0
yesno

Figure 5.8 Structogram: Pyramid Algorithm, mexFunction.

Directional Filter There are some small differences and enhancements compared to the Basic Algo-
rithm which are not caused by the multiresolution scheme. One difference is that
the transversal part of the directional filter is optimized using texture memory
instead of shared memory (see also section 5.4.4). This is because the texture
memory approach is more flexible with respect to the filter lenght, and therefore
more suitable to handle custom directional filters.

62

5 CUDA Implementation

call rotating kernel

call transversal filtering kernel

call longitudinal filtering kernel

call component velocities kernel

i > 2*RadTemp+1
yesno

call getCompensation function

call umpsampling kernel

current Level < MaxLevel
yesno

Figure 5.9 Structogram: Pyramid Algorithm, getCompensation.

5.5.3 Performance

One Level Due to the modifications described in section 5.5.2, the Pyramid Algorithm is
more computational complex than the Basic Algorithm, even when only one
pyramid level is computed (MaxLevel=0). Table 5.19 shows the timing for the
Rubik Cube sequence. The results can be compared with table 5.15 in section
5.4.6. The same parameters were used as for the tests in section 5.4. Additionally,
a 13 × 13 non-separable Pauwels filter and no custom directional filter is passed
to the .mex file.

Note that the results in section 5.5 for the pyramid implementation were com-
puted using a newer version of Parallel Nsight than the results in section 5.4.

Kernel % Time [ms] Calls

Total 100.0 256.93 1

Total Kernels 84.0 215.93 426

Component Velocities 70.3 180.55 68

Transversal Filtering 6.4 16.46 84

Longitudinal Filtering 2.9 7.49 84

Scale-Space Non-Separable 2.8 7.28 21

Rotating 0.7 1.88 84

Back-Rotating 0.6 1.52 68

Optical Flow 0.3 0.74 17

Table 5.19 Timing: pyramid with MaxLevel=0 (SW rev. 138).

The most noticeable slow-down occured in the new component velocity kernel
(180.55 ms), which replaces the old component velocity kernel (23.5 ms) and the
instantaneous frequency kernel (7.56 ms) of the Basic Algorithm.

63

5 CUDA Implementation

This can be explained by the fact that now the instantaneous frequencies have
to be computed again for each local ST-slice and can no longer be pre-computed
for the whole image (see section 5.5.2). With the parameters used for table 5.19
(RadTemp=1, RadSpat=3), 21 instantaneous frequencies have to be computed
for every component velocity. For the Basic Algorithm, only one instantaneous
frequency is computed for every component velocity. A rough calculation with
the timings of the Basic Algorithm from table 5.15 shows, that the new execution
time of the component velocity kernel is reasonable:

21 · 7.56 ms + 23.5 ms = 182.26 ms ≈ 180.55 ms (5.2)

Another considerable amount of additional computation effort comes from the
new scale-space filtering kernel. The use uf texture memory instead of shared
memory for the transversal filter kernel has no big influence, and the time spent in
non-kernel code is almost the same as in the Basic Algorithm (41 ms vs. 39.59 ms).

Optimization Potential The speed of the pyramid implementation could be improved by handling the
highest level separately. In this case, the number of instantaneous frequency
computations in the component velocity kernel could be reduced since there
is no compensation on the highest level. Furthermore, the new component
velocity kernel performs a large number of global memory accesses to read the
directional filter response. By reducing the number of reads from global memory
(using shared memory or texture memory), it should be possible to reduce the
computation time also in the case where compensation is necessary.

Number of Levels Figure 5.10 shows how the execution time of the mex function increases with
the number of levels for two different image sequences. As expected (due to the
downsampling), the execution time grows asymptotically. The values shown
are the total execution times returend by the .mex file (average of five values)
computed using the default parameters and with a 13 × 13 Pauwels scale-space
filter.

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

MaxLevel

T
im

e
[s

]

Ettlinger Tor
Rubik Cube

Figure 5.10 Execution time vs. MaxLevel (SW rev. 138).

64

5 CUDA Implementation

Scale-Space Filter Table 5.20 compares the execution times for different scale-space filters when
implemented as a separable or as a non-separable filter. A Gaussian kernel was
used in both cases.

The non-separable implementation (of the same filter) needs more time than
the separable implementation. Since the order of complexity is O(r2) for the
non-separable implementation but only O(r) for the separable implementation
(where r is the filter radius, assuming a fixed image size), the difference becomes
more considerable for large filters.

The table shows the mean value of three measurements with the default param-
eters and with MaxLevel=0.

Gaussian Separable Non-Separable Difference

Filter Size Kernel [ms] Total [ms] Kernel [ms] Total [ms] Kernel [ms] Total [ms]

9 × 9 1.37 249.4 3.82 253.6 2.45 4.2

13 × 13 1.69 251.7 7.28 259.0 5.59 7.3

17 × 17 1.93 252.3 11.71 266.7 9.78 14.4

Table 5.20 Execution times for separable and non-separable scale-space filters (SW rev. 139).

65

6
Results

Introduction In this chapter, some selected results are presented. For the sake of clarity, only
the Fleets angular error (average of one frame) is stated here. More details can
be found in appendix A. Furthermore, a .mat file with all the information (pa-
rameters, standard deviations, densities, and other measuremets) can be found
on the DVD for every data point in these two chapters.

Image Sequences Nine image sequences were used for the evaluation of the algorithms: The Di-
verging and Translating Tree sequences, the famous Yosemite sequence (without
clouds), and six sequences with higher speeds from Middlebury College (see
appendix C).

6.1 Number of Pyramid Levels

Introduction This section analyzes the performance of the multiresolution implementation
of the algorithm by looking at the influence of the number of pyramid levels.
The number of pyramid levels is determined by the MaxLevel parameter. A
MaxLevel setting of N means that the original image sequence is downsampled
N times, or that the component velocities are estimated on N + 1 levels.

Results The optimum MaxLevel parameter for the nine test sequences can be found in
the rightmost column of table 6.1 (see section A.1 for more details). The table
also shows the maximum speed (of the ground truth) in the evaluated frame.
Some of the sequences have their maximum speed in the border regions, which
was skipped for the accuracy measurement. The third column of table 6.1 shows
the maximum speed within the evaluated region.

Postprocessing The parameter for the outlier removal in the postprocessing (maximum speed)
was set according to the MaxLevel parameter: 1.5 · 2MaxLevel+1

The fourth column in table 6.1 shows the expected optimum MaxLevel parameter
according to the a priori knowledge of the maximum speed.

67

6 Results

Image Sequence Maximum Speed
(Full Image)

Maximum Speed
(Skipped Border)

MaxLevel
(Theoretical)

MaxLevel
(Best)

Diverging Tree 1.97 1.53 0 1

Translating Tree 2.25 2.20 0 0

Rubber Whale 4.62 4.62 1 0

Yosemite Cloudless 5.35 4.81 1 1

Grove 2 5.03 5.03 1 1

Hydrangea 11.12 11.12 2 1

Urban 3 17.61 17.49 3 3

Grove 3 18.61 18.38 3 2

Urban 2 22.19 22.19 3 4

Table 6.1 Maximum speeds and optimum number of levels.

Conclusion This evaluation shows that the pyramid scheme described in chapter 4 works
fine for image sequences with high speeds. However, using too many pyramid
levels impairs the accuracy of the motion estimation (see plots in section A.1).

Degrading Performance Figure 6.1 shows the error plots for the Translating Tree sequence for the optimum
number of levels (top) and for the case with too many levels (bottom). The
smoothing of the images when going from one level to the next makes it more
and more difficult to estimate the component velocities reliably on higher levels,
since there is less and less structure in the images (depending on the spatial
frequency content of the images). The errors of higher levels are then propagated
to level 0, leading to a decreased performance.

Figure 6.2 suggests a further reason for the decreasing performance: The spatial
support of the directional filters grows rapidly (in relation to the original image
resolution) when going to higher levels. For complex image sequences with
non-uniform motion (e.g. Grove 3 sequence where small objects are moving
with a different velocity than their surrounding), the estimation on high levels
might be too bulky.

Improvement Potential In situations like the one in figure 6.1, it could be helpful to apply additional
postprocessing steps on the estimates of higher levels, before they are upsampled
and used on the next lower level. The goal of these steps would be to remove
outliers due to missing structure in the downsampled image. One could think
about using median filters combined with a clever thresholding based on the
certainties of the estimates.

68

6 Results

Figure 6.1 Error plots for the Translating Tree sequence, MaxLevel=1 (top) and MaxLevel=2 (bottom).

Figure 6.2 Error plots for the Grove 3 sequence, MaxLevel=2 (top) and MaxLevel=4 (bottom).

69

6 Results

6.2 Smoothing Filter

Introduction This section compares the performance of different smoothing filters. Particu-
larly, we want to check if it is worthwile to use a special Pauwels filter (non-
separable) instead of a separable Gaussian filter.

Parameters The MaxLevel parameter was set according to the optimum values found in the
previous section.

Conclusion As can be seen from table 6.2, there is no optimum smoothing filter for all
sequences. For some low-speed sequences it is even advantageous to use no
smoothing filter at all (select Dummy-Filter in the Matlab GUI). In these cases,
the loss of texture due to the smoothing is worse than possible aliasing.

The influence of the σ parameter for the Gaussian filter was not examined.

Test Sequence None Gaussian (σ = 1.5) Pauwels

Name MaxLevel − 9 × 9 13 × 13 17 × 17 13 × 13 17 × 17

Diverging Tree 1 2.394 2.742 2.744 2.745 2.509 2.513

Translating Tree 0 1.561 1.970 1.967 1.967 1.798 1.788

Rubber Whale 0 9.957 9.996 10.010 10.010 10.192 10.220

Yosemite Cloudless 1 9.318 8.079 8.263 8.456 8.115 8.239

Grove 2 1 15.138 7.705 7.702 7.701 7.391 7.451

Hydrangea 1 11.758 9.348 9.347 9.348 10.023 10.072

Urban 3 3 26.501 19.805 19.868 19.869 19.669 19.658

Grove 3 2 20.987 15.110 15.197 15.196 15.763 15.788

Urban 2 4 50.759 35.890 35.891 35.885 36.128 36.410

Table 6.2 Comparison of different smoothing filters (Fleets angular error after postprocessing).

70

6 Results

6.3 Other Parameters

Number of Directions Basically, the accuracy increases with the number of directions. At least 3 or 4
directions are needed for good results. Using 7 directions seems to be a good
choice for most of the sequences, so this setting was used for the following
evaluations. The plots showing the accuracy vs. NumDir can be found in
section A.2.

Temporal Radius
and Spatial Radius

The temporal and spatial radius parameters define the size of the local ST-slice
from which the structural tensor is built. First, the optimum spatial radius for
every sequence was identified using the parameters values found above. Then,
using the optimum spatial radius, the influence of the temporal radius was
examined. Note that the Middlebury sequences consist of only 8 frames, which
does not allow a temporal radius of more than 2.

The results in sections A.4 and A.3 show that for sequences with a uniform
motion field (e.g. Translating Tree), larger radii are advantageous. In all other
cases, the accuracy degrades from a certain size of the local ST-slice, depending
on the size of the structures in the image.

Note that the computational complexity increases considerably with the area of
the local ST-slice. Not only because the structural tensor has to be built from
more values, but mainly because with the Pyramid Algorithm, (2·RadTemp+1)(2·
RadSpat+1) instantaneous frequencies have to be computed for every component
velocity (see section 5.5.3).

6.4 Comparison with other Algorithms

Introduction In this section, the Basic Algorithm and the Pyramid Algorithm are compared
with the following algorithms:

∙ Lucas-Kanade Extended (CUDA implementation of Marc Länzlinger and
Fabian Braun [3], non-pyramid)

∙ Lucas-Kanade (OpenCV, non-pyramid)

∙ Lucas-Kanade Pyramid (OpenCV)

∙ Horn-Schunck (OpenCV, non-pyramid)

Other Algorithms Lucas-Kanade and Horn-Schunck are two well known optical flow estimation
algorithms, but in the last 20 years, many other (more powerful) algorithms have
been proposed.

Middlebury Sequences
and Online Evaluation

Baker et al. [12] developed a system for evaluating optical flow algorithms based
on eight test sequences. The results of many algorithms for these sequences can
be compared online1. However, the ground truth for these sequences is not
publicly available, which makes it impossible to compare our results with the
published ones.

On their webpage, they provide a second set of test sequences, for which the
ground truth is available (the Rubber Whale, Hydrangea, Grove, and Urban
sequences used in this chapter). However, no results are published for these
sequences.

1http://vision.middlebury.edu/flow/

71

http://vision.middlebury.edu/flow/

6 Results

It would be possible to add the results of our algorithm to the online evaluation by
submitting the estimated flow vectors. But one known problem of our algorithm
is the poor behaviour in the border regions, due to the large spatial support of the
directional filters. This problem was ignored during this project by skipping the
border regions for the accuracy computations. When submitting flow vectors to
the online evaluation tool, there is no possibility to mask out certain regions or
to provide certainty indications for the flow vectors. Therefore it was decided to
not use this evaluation tool to compare our algorithm.

Results The results of the comparison are summarized in table 6.3. It shows the Fleets
angular error for the best parameter set of every algorithm. In case of the Lucas-
Kanade Extended algorithm, the table always shows the result of parameter set
4. The other parameter sets of this algorithm result in better accuracy measures
but with a very poor density. Detailed results and the parameters used for
comparison can be found in section A.5.

Pyramid
Algorithm

Basic
Algorithm

Lucas-
Kanade

Extended

Lucas-
Kanade

Lucas-
Kanade
Pyramid

Horn-
Schunck

Sequence CUDA CUDA CUDA OpenCV OpenCV OpenCV

Diverging Tree 1.322 1.750 2.147 4.631 3.634 7.011

Translating Tree 0.581 0.874 0.823 11.310 0.307 14.508

Rubber Whale 8.453 9.173 13.022 17.339 13.249 18.051

Yosemite Cloudless 6.163 9.625 4.136 7.852 3.996 8.225

Grove 2 5.224 31.437 10.907 17.862 5.689 20.151

Hydrangea 7.562 84.220 23.635 24.473 8.336 25.317

Urban 3 16.105 73.862 35.990 44.164 11.369 44.969

Grove 3 12.556 46.217 26.547 29.798 12.483 30.994

Urban 2 28.559 52.872 54.494 49.804 18.692 48.815

Table 6.3 Comparison of the algorithms (Fleets angular error in ∘).

Conclusion The Pyramid Algorithm performs better than the other algorithms on the Di-
verging Tree, Rubber Whale, Grove 2 and Hydrangea sequences. For the Grove
3 sequence, it comes very close to the Lucas-Kanade Pyramid algorithm. For
all other sequences, the Lucas-Kanade Pyramid algorithm performs best. As ex-
pected, the non-pyramid algorithms show very poor results for sequences with
high speeds.

Error Plots For the sequences, where the Pyramid Algorithm gives worse results than the
Lucas-Kanade Pyramid algorithm, the error plots can be found in section A.5.

Yosemite Cloudless Lucas-Kanade Pyramid performs better on the Yosemite Cloudless sequence
than the Pyramid Algorithm. The error plots show that both of these algorithms
have problems handling the transition to the sky region, which has no texture.
Due to the large directional filters, our Pyramid Algorithm has more difficulties
to handle such motion discontinuities than the Lucas-Kanade algorithm.

By increasing the certainty threshold for the accuracy measurement from 51% to
a value close to 100%, the erroneous flow vectors can be excluded. With a setting

72

6 Results

of 94%, the Fleets angular error can be reduced to 3.46∘, but at the cost of a poor
density of 40.1%.

One could also argue that the velocity in the sky region is undefined (instead of
zero) and therefore mask this region out for the accuracy measurement. In this
case, the two algorithms would probably give quite similar results.

Timing Table 6.4 compares the execution times for the results in table 6.3. It shows the
times reported by the Matlab GUI, which include the times Matlab needs to
initialize the algorithms and call the .mex files. The postprocessing is handled
separately by the Matlab GUI and is not included in these times. However, the
execution time of the postprocessing should be approximately the same for all
the algorithms, since they all use the same settings. The table shows the average
of five timing measurements (for the entire sequences) taken on the Notebook
(see table 5.2) with software revision 146.

The Lucas-Kanade Extended algorithm is less computational expensive than the
algorithms presented in this report. However, Lucas-Kanade Extended is not
a pyramid algorithm and therefore unable to handle the sequences with high
speeds properly. But also for the sequences without high speeds, the results
of the Lucas-Kanade Extended algorithm are worse (except for the Yosemite
Cloudless sequence).

Note that the execution time of the Pyramid Algorithm is much higher than the
one of the Basic Algorithm; especially for those sequences where a large local
ST-slice is used (large RadTemp and RadSpat values). The speed of the Pyramid
Algorithm could be improved considerably when the instantaneous frequencies
were pre-computed for the whole frame before computing the component veloc-
ities (see section 5.5.3). This would especially improve the execution time for the
Diverging and Translating Tree sequences, since they use a large local ST-slice
and only one or two pyramid levels. For these sequences, it should be possible
to achieve execution times which are comparable to the execution times of the
Basic Algorithm.

As expected, the OpenCV implementation of Lucas-Kanade is slower than the
CUDA implementation (Lucas-Kanade Extended). Comparing the execution
times of the two most accurate algorithms, the Pyramid Alorithm and the Lucas-
Kanade Pyramid algorithm, is quite pointless since they are implemented on
different architectures. However, the comparison shows that the new efficient
CUDA implementation makes the Pyramid Algorithm suitable for practical ap-
plications.

73

6 Results

Pyramid
Algorithm

Basic
Algorithm

Lucas-
Kanade

Extended

Lucas-
Kanade

Lucas-
Kanade
Pyramid

Horn-
Schunck

Sequence CUDA CUDA CUDA OpenCV OpenCV OpenCV

Diverging Tree 12.27 0.90 0.11 1.26 13.84 1.99

Translating Tree 15.65 0.90 0.10 1.16 32.06 1.97

Rubber Whale 3.51 0.73 0.14 2.26 25.80 3.83

Yosemite Cloudless 4.52 0.76 0.11 1.54 15.68 2.58

Grove 2 7.15 0.91 0.18 3.08 87.89 5.26

Hydrangea 4.15 0.72 0.14 2.29 122.00 3.89

Urban 3 4.12 0.90 0.17 3.07 88.45 5.28

Grove 3 5.32 0.91 0.18 3.05 88.11 5.29

Urban 2 3.14 0.91 0.18 3.11 166.84 5.28

Table 6.4 Comparison of the computation times in s.

6.5 Conclusion

Accuracy For most of the nine test sequences, the Pyramid Algorithm performs quite well
compared to the OpenCV implementation of the Lucas-Kanade Pyramid algo-
rithm. However, the problems of the Pyramid Algorithm in the border regions
due to the large spatial support of the directional filters (and the size of the local
ST-slice) were ignored by skipping the border region for the evaluation. How-
ever, this fundamental problem can also be seen at other motion discontinuities,
particularly in the Yosemite Cloudless sequence, where the motion is undefined
on one side of the motion discontinuity.

Timing The computational complexity of the Pyramid Algorithm is much higher than for
the Lucas-Kanade algorithm. However, the huge speedup by using the parallel
computing power of a GPU makes the Pyramid Algorithm usable for practical
applications.

Outlook To further improve the performance of the Pyramid Algorithm, the two following
issues should be studied in more detail:

∙ The poor results in the border regions. With this problem solved, the
computed flow vectors could be submitted to Middlebury online evaluation
tool to compare the results with many other algorithms.

∙ Unreliable estimates from higher levels. These estimates should be postpro-
cessed with the goal that increasing the number of levels does not negatively
affect the accuracy.

Furthermore, the computation time could be reduced considerably by imple-
menting the improvements suggested in section 5.5.3.

74

A
Additional Plots and Tables

A.1 Number of Pyramid Levels

Introduction The plots in this section show the Fleets angular error before and after postpro-
cessing (see table A.1 for the settings used) and the density of the flow vectors
after postprocessing.

Parameter Setting

Smoothing Filter Type Pauwels (2D)

Smoothing Filter Size 13 × 13

Algorithm Pyramid Algorithm (CUDA)

Padding 15

Number of Directions 4

Angle Offset 0

Spatial Radius 3

Temporal Radius 1

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Maximum Pyramid Level 0:4 or 0:6

Postprocessing Maximum Magnitude 1.5 · 2MaxLevel+1 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.1 Parameters for the MaxLevel evaluation.

75

A Additional Plots and Tables

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

MaxLevel

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

0 1 2 3 4
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Diverging Tree
Diverging Tree + PP
Density (after PP)

Figure A.1 Accuracy vs. MaxLevel for the Diverging Tree sequence (frame 19).

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

MaxLevel

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

0 1 2 3 4
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Translating Tree
Translating Tree + PP
Density (after PP)

Figure A.2 Accuracy vs. MaxLevel for the Translating Tree sequence (fr. 19).

0 1 2 3 4
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

16.0

18.0

20.0

MaxLevel

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

0 1 2 3 4
40

 50

 60

 70

 80

 90

100
D

en
si

ty
 [%

]

Rubber Whale
Rubber Whale + PP
Density (after PP)

Figure A.3 Accuracy vs. MaxLevel for the Rubber Whale sequence (frame 4).

76

A Additional Plots and Tables

0 1 2 3 4
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

MaxLevel

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

0 1 2 3 4
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Yosemite Cloudless
Yosemite Cloudless + PP
Density (after PP)

Figure A.4 Accuracy vs. MaxLevel for the Yosemite Cloudless sequence (fr. 7).

0 1 2 3 4
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

16.0

18.0

20.0

MaxLevel

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

0 1 2 3 4
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Grove 2
Grove 2 + PP
Density (after PP)

Figure A.5 Accuracy vs. MaxLevel for the Grove 2 sequence (frame 4).

0 1 2 3 4
0.0

 4.0

 8.0

12.0

16.0

20.0

24.0

28.0

MaxLevel

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

0 1 2 3 4
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Hydrangea
Hydrangea + PP
Density (after PP)

Figure A.6 Accuracy vs. MaxLevel for the Hydrangea sequence (frame 4).

77

A Additional Plots and Tables

0 1 2 3 4 5 6
0.0

 5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

MaxLevel

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

0 1 2 3 4 5 6
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Urban 3
Urban 3 + PP
Density (after PP)

Figure A.7 Accuracy vs. MaxLevel for the Urban 3 sequence (frame 4).

0 1 2 3 4
0.0

 4.0

 8.0

12.0

16.0

20.0

24.0

28.0

32.0

36.0

40.0

MaxLevel

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

0 1 2 3 4
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Grove 3
Grove 3 + PP
Density (after PP)

Figure A.8 Accuracy vs. MaxLevel for the Grove 3 sequence (frame 4).

0 1 2 3 4 5 6
0.0

 5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

MaxLevel

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

0 1 2 3 4 5 6
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Urban 2
Urban 2 + PP
Density (after PP)

Figure A.9 Accuracy vs. MaxLevel for the Urban 2 sequence (frame 4).

78

A Additional Plots and Tables

A.2 Number of Directions

Description The plots on the following pages show the influence of the NumDir argument
for every sequence. The parameters are the same as in table A.1, but with the
optimum MaxLevel and smoothing filter parameters from table 6.2.

79

A Additional Plots and Tables

2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

NumDir

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

2 3 4 5 6 7 8 9 10
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Diverging Tree
Diverging Tree + PP
Density (after PP)

Figure A.10 Accuracy vs. NumDir for the Diverging Tree sequence (frame 19).

2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

NumDir

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

2 3 4 5 6 7 8 9 10
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Translating Tree
Translating Tree + PP
Density (after PP)

Figure A.11 Accuracy vs. NumDir for the Translating Tree sequence (fr. 19).

2 3 4 5 6 7 8 9 10
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

16.0

NumDir

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

2 3 4 5 6 7 8 9 10
40

 50

 60

 70

 80

 90

100
D

en
si

ty
 [%

]

Rubber Whale
Rubber Whale + PP
Density (after PP)

Figure A.12 Accuracy vs. NumDir for the Rubber Whale sequence (frame 4).

80

A Additional Plots and Tables

2 3 4 5 6 7 8 9 10
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

NumDir

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

2 3 4 5 6 7 8 9 10
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Yosemite Cloudless
Yosemite Cloudless + PP
Density (after PP)

Figure A.13 Accuracy vs. NumDir for the Yosemite Cloudless sequence (fr. 7).

2 3 4 5 6 7 8 9 10
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

16.0

18.0

20.0

NumDir

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

2 3 4 5 6 7 8 9 10
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Grove 2
Grove 2 + PP
Density (after PP)

Figure A.14 Accuracy vs. NumDir for the Grove 2 sequence (frame 4).

2 3 4 5 6 7 8 9 10
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

NumDir

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

2 3 4 5 6 7 8 9 10
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Hydrangea
Hydrangea + PP
Density (after PP)

Figure A.15 Accuracy vs. NumDir for the Hydrangea sequence (frame 4).

81

A Additional Plots and Tables

2 3 4 5 6 7 8 9 10
0.0

 4.0

 8.0

12.0

16.0

20.0

24.0

28.0

NumDir

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

2 3 4 5 6 7 8 9 10
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Urban 3
Urban 3 + PP
Density (after PP)

Figure A.16 Accuracy vs. NumDir for the Urban 3 sequence (frame 4).

2 3 4 5 6 7 8 9 10
0.0

 4.0

 8.0

12.0

16.0

20.0

24.0

28.0

NumDir

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

2 3 4 5 6 7 8 9 10
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Grove 3
Grove 3 + PP
Density (after PP)

Figure A.17 Accuracy vs. NumDir for the Grove 3 sequence (frame 4).

2 3 4 5 6 7 8 9 10
0.0

 5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

NumDir

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

2 3 4 5 6 7 8 9 10
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Urban 2
Urban 2 + PP
Density (after PP)

Figure A.18 Accuracy vs. NumDir for the Urban 2 sequence (frame 4).

82

A Additional Plots and Tables

A.3 Temporal Radius

Description The plots on the following pages show the influence of the RadTemp argument
for every sequence. The parameters are the same as in table A.1, but with
the optimum MaxLevel and smoothing filter parameters from table 6.2 and
NumDir=7.

83

A Additional Plots and Tables

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

RadTemp

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Diverging Tree
Diverging Tree + PP
Density (after PP)

Figure A.19 Accuracy vs. RadTemp for the Diverging Tree sequence (fr. 19).

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

RadTemp

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Translating Tree
Translating Tree + PP
Density (after PP)

Figure A.20 Accuracy vs. RadTemp for the Translating Tree sequence (fr. 19).

1 2
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

RadTemp

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2
40

 50

 60

 70

 80

 90

100
D

en
si

ty
 [%

]

Rubber Whale
Rubber Whale + PP
Density (after PP)

Figure A.21 Accuracy vs. RadTemp for the Rubber Whale sequence (frame 4).

84

A Additional Plots and Tables

1 2 3 4 5
0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

 9.0

10.0

RadTemp

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Yosemite Cloudless
Yosemite Cloudless + PP
Density (after PP)

Figure A.22 Accuracy vs. RadTemp for the Yosemite Cloudless seq. (fr. 7).

1 2
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

RadTemp

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Grove 2
Grove 2 + PP
Density (after PP)

Figure A.23 Accuracy vs. RadTemp for the Grove 2 sequence (frame 4).

1 2
0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

 9.0

10.0

11.0

12.0

RadTemp

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Hydrangea
Hydrangea + PP
Density (after PP)

Figure A.24 Accuracy vs. RadTemp for the Hydrangea sequence (frame 4).

85

A Additional Plots and Tables

1 2
0.0

 4.0

 8.0

12.0

16.0

20.0

24.0

RadTemp

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Urban 3
Urban 3 + PP
Density (after PP)

Figure A.25 Accuracy vs. RadTemp for the Urban 3 sequence (frame 4).

1 2
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

16.0

18.0

20.0

RadTemp

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Grove 3
Grove 3 + PP
Density (after PP)

Figure A.26 Accuracy vs. RadTemp for the Grove 3 sequence (frame 4).

1 2
0.0

 4.0

 8.0

12.0

16.0

20.0

24.0

28.0

32.0

36.0

40.0

44.0

RadTemp

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Urban 2
Urban 2 + PP
Density (after PP)

Figure A.27 Accuracy vs. RadTemp for the Urban 2 sequence (frame 4).

86

A Additional Plots and Tables

A.4 Spatial Radius

Description The plots on the following pages show the influence of the RadSpat argument
for every sequence. The parameters are the same as in table A.1, but with the
optimum MaxLevel and smoothing filter parameters from table 6.2, NumDir=7,
and the optimum RadTemp argument from the previous section.

87

A Additional Plots and Tables

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

RadSpat

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Diverging Tree
Diverging Tree + PP
Density (after PP)

Figure A.28 Accuracy vs. RadSpat for the Diverging Tree sequence (frame 19).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

RadSpat

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Translating Tree
Translating Tree + PP
Density (after PP)

Figure A.29 Accuracy vs. RadSpat for the Translating Tree sequence (fr. 19).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

RadSpat

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

 50

 60

 70

 80

 90

100
D

en
si

ty
 [%

]

Rubber Whale
Rubber Whale + PP
Density (after PP)

Figure A.30 Accuracy vs. RadSpat for the Rubber Whale sequence (frame 4).

88

A Additional Plots and Tables

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

 9.0

10.0

RadSpat

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Yosemite Cloudless
Yosemite Cloudless + PP
Density (after PP)

Figure A.31 Accuracy vs. RadSpat for the Yosemite Cloudless sequence (fr. 7).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

RadSpat

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Grove 2
Grove 2 + PP
Density (after PP)

Figure A.32 Accuracy vs. RadSpat for the Grove 2 sequence (frame 4).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

 9.0

10.0

11.0

RadSpat

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Hydrangea
Hydrangea + PP
Density (after PP)

Figure A.33 Accuracy vs. RadSpat for the Hydrangea sequence (frame 4).

89

A Additional Plots and Tables

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

 4.0

 8.0

12.0

16.0

20.0

24.0

RadSpat

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Urban 3
Urban 3 + PP
Density (after PP)

Figure A.34 Accuracy vs. RadSpat for the Urban 3 sequence (frame 4).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

16.0

18.0

20.0

RadSpat

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Grove 3
Grove 3 + PP
Density (after PP)

Figure A.35 Accuracy vs. RadSpat for the Grove 3 sequence (frame 4).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

 4.0

 8.0

12.0

16.0

20.0

24.0

28.0

32.0

36.0

40.0

44.0

RadSpat

F
le

et
s

A
ng

ul
ar

 E
rr

or
 [°

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

 50

 60

 70

 80

 90

100

D
en

si
ty

 [%
]

Urban 2
Urban 2 + PP
Density (after PP)

Figure A.36 Accuracy vs. RadSpat for the Urban 2 sequence (frame 4).

90

A Additional Plots and Tables

A.5 Comparison with other Algorithms

Introduction This section contains the details for the comparison of the algorithms in section
6.4. Tables A.2 to A.6 show the parameter sets which are common for all test
sequences.

Pyramid Algorithm The parameter sets for the Pyramid Algorithm differ between the sequences and
are given in the respective subsections.

For every sequence, three parameter sets for the Pyramid Algorithm were used:

Pyramid Algorithm 1 This parameter set basically uses the default parameters
from the Matlab GUI, which were also used as starting point for the op-
timizations in chapter 6. However, the MaxLevel parameter was set ac-
cording to the a priori knowledge of the maximum speeds in the sequences
(table 6.1) and the threshold for the maximum speed (postprocessing) was
set to 1.5 · 2MaxLevel+1.

Pyramid Algorithm 2 This parameter set uses the optimized parameters found
in the previous sections.

Pyramid Algorithm 3 This parameter set is the same for all the sequences and
is intended to give good (but not optimal) results for all the sequences.

Conditions All results in this appendix and in chapter 6 were generated on the Notebook
(see table 5.2) with software revision 146 and OpenCV 2.1.

Parameter Basic Algorithm

Smoothing Filter Type None

Padding 15

Number of Directions 7

Angle Offset 0

Spatial Radius 6

Temporal Radius 2

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Postprocessing Maximum Magnitude 5 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.2 Parameter sets for the Basic Algorithm.

91

A Additional Plots and Tables

Parameter Lucas-
Kanade

Extended 1

Lucas-
Kanade

Extended 2

Lucas-
Kanade

Extended 3

Lucas-
Kanade

Extended 4

Smoothing Filter Type Gaussian (3D)

Smoothing Filter Size Spatial 7 × 7

Smoothing Filter Sigma Spatial 1.5

Smoothing Filter Size Temporal 7

Smoothing Filter Sigma Temporal 1.5

Window Size 5

Downsampling Level 0

Weighting Window None Gaussian

Window Sigma/Radius - 1.1

Tau 1 7 0

Postprocessing Maximum Magnitude 5 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.3 Parameter sets for the Lucas-Kanade Extended algorithm.

Parameter Lucas-Kanade 1 Lucas-Kanade 2 Lucas-Kanade 3

Smoothing Filter Type Gaussian (3D)

Smoothing Filter Size Spatial 7 × 7

Smoothing Filter Sigma Spatial 1.5

Smoothing Filter Size Temporal 7

Smoothing Filter Sigma Temporal 1.5

Window Size 5 9 13

Postprocessing Maximum Magnitude 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.4 Parameter sets for the Lucas-Kanade algorithm.

92

A Additional Plots and Tables

Parameter Lucas-Kanade
Pyramid 1

Lucas-Kanade
Pyramid 2

Lucas-Kanade
Pyramid 3

Smoothing Filter Type Gaussian (3D)

Smoothing Filter Size Spatial 7 × 7

Smoothing Filter Sigma Spatial 1.5

Smoothing Filter Size Temporal 7

Smoothing Filter Sigma Temporal 1.5

Window Size 5 9 13

Pyramid Levels 3

Iterations 3

Postprocessing Maximum Magnitude 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.5 Parameter sets for the Lucas-Kanade Pyramid algorithm.

Parameter Horn-Schunck

Smoothing Filter Type Gaussian (3D)

Smoothing Filter Size Spatial 7 × 7

Smoothing Filter Sigma Spatial 1.5

Smoothing Filter Size Temporal 7

Smoothing Filter Sigma Temporal 1.5

Alpha 1

Iterations 100

Postprocessing Maximum Magnitude 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.6 Parameter sets for the Horn-Schunck algorithm.

93

A Additional Plots and Tables

A.5.1 Diverging Tree Sequence

Parameter Pyramid
Algorithm 1

Pyramid
Algorithm 2

Pyramid
Algorithm 3

Smoothing Filter Type Pauwels (2D) None Pauwels (2D)

Smoothing Filter Size 13 × 13 - 13 × 13

Padding 15

Number of Directions 4 7

Angle Offset 0

Spatial Radius 3 8 6

Temporal Radius 1 5 2

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Maximum Pyramid Level 0 1 3

Postprocessing Maximum Magnitude 3 (absolute) 6 (absolute) 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.7 Parameter sets for the Diverging Tree sequence.

94

A Additional Plots and Tables

Algorithm Density Fleets Angular Magnitude Absolute Angular

[%] µ [∘] σ [∘] µ σ µ [∘] σ [∘]

Pyramid Algorithm 1 100.0 2.709 1.882 0.039 0.032 4.372 6.833

+Postprocessing 100.0 2.603 1.650 0.038 0.030 4.147 6.197

Pyramid Algorithm 2 100.0 1.327 0.825 0.021 0.019 2.048 3.164

+Postprocessing 100.0 1.322 0.814 0.021 0.019 2.037 3.132

Pyramid Algorithm 3 100.0 1.773 1.166 0.026 0.023 2.970 5.581

+Postprocessing 100.0 1.755 1.129 0.026 0.022 2.938 5.535

Basic Algorithm 100.0 1.765 1.079 0.026 0.020 2.950 5.308

+Postprocessing 100.0 1.750 1.040 0.026 0.020 2.930 5.248

Lucas-Kanade Extended 1 64.3 2.089 1.970 0.030 0.032 3.743 8.267

+Postprocessing 59.1 1.881 1.629 0.027 0.028 3.324 7.414

Lucas-Kanade Extended 2 56.7 1.988 1.969 0.028 0.031 3.690 8.997

+Postprocessing 50.4 1.750 1.567 0.025 0.026 3.169 7.554

Lucas-Kanade Extended 3 27.4 1.647 1.386 0.025 0.025 2.705 5.603

+Postprocessing 19.9 1.438 1.012 0.022 0.020 2.084 2.984

Lucas-Kanade Extended 4 100.0 2.507 2.464 0.035 0.040 4.664 9.225

+Postprocessing 100.0 2.147 1.779 0.030 0.029 4.051 7.865

Lucas-Kanade 1 100.0 10.083 10.150 0.158 0.229 15.409 20.252

+Postprocessing 100.0 7.785 7.443 0.117 0.145 12.061 16.238

Lucas-Kanade 2 100.0 6.537 6.502 0.098 0.121 10.496 14.909

+Postprocessing 100.0 5.722 5.463 0.085 0.096 9.263 13.261

Lucas-Kanade 3 100.0 5.020 4.866 0.074 0.089 8.337 12.548

+Postprocessing 100.0 4.631 4.340 0.068 0.078 7.755 11.856

Lucas-Kanade Pyramid 1 100.0 3.784 2.983 0.054 0.052 6.593 10.934

+Postprocessing 100.0 3.634 2.691 0.052 0.049 6.325 10.436

Lucas-Kanade Pyramid 2 100.0 3.767 2.868 0.058 0.050 6.219 11.072

+Postprocessing 100.0 3.735 2.761 0.058 0.049 6.162 10.965

Lucas-Kanade Pyramid 3 100.0 4.240 2.573 0.069 0.054 6.323 11.986

+Postprocessing 100.0 4.232 2.559 0.069 0.054 6.308 11.979

Horn-Schunck 100.0 8.823 7.253 0.142 0.140 12.743 15.792

+Postprocessing 100.0 7.011 5.900 0.113 0.110 10.149 13.278

Table A.8 Results for the Diverging Tree sequence.

95

A Additional Plots and Tables

A.5.2 Translating Tree Sequence

Parameter Pyramid
Algorithm 1

Pyramid
Algorithm 2

Pyramid
Algorithm 3

Smoothing Filter Type Pauwels (2D) None Pauwels (2D)

Smoothing Filter Size 13 × 13 - 13 × 13

Padding 15

Number of Directions 4 7

Angle Offset 0

Spatial Radius 3 15 6

Temporal Radius 1 5 2

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Maximum Pyramid Level 0 3

Postprocessing Maximum Magnitude 3 (absolute) 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.9 Parameter sets for the Translating Tree sequence.

96

A Additional Plots and Tables

Algorithm Density Fleets Angular Magnitude Absolute Angular

[%] µ [∘] σ [∘] µ σ µ [∘] σ [∘]

Pyramid Algorithm 1 100.0 1.891 1.831 0.047 0.048 1.916 2.087

+Postprocessing 100.0 1.798 1.630 0.042 0.036 1.833 1.877

Pyramid Algorithm 2 100.0 0.589 0.336 0.025 0.023 0.509 0.373

+Postprocessing 100.0 0.581 0.329 0.025 0.023 0.504 0.368

Pyramid Algorithm 3 100.0 1.068 0.778 0.030 0.023 1.064 0.911

+Postprocessing 100.0 1.047 0.755 0.029 0.022 1.041 0.886

Basic Algorithm 100.0 0.910 0.627 0.036 0.040 0.793 0.690

+Postprocessing 100.0 0.874 0.585 0.034 0.035 0.772 0.664

Lucas-Kanade Extended 1 58.3 0.604 0.614 0.025 0.024 0.527 0.652

+Postprocessing 52.8 0.531 0.524 0.022 0.021 0.462 0.555

Lucas-Kanade Extended 2 49.0 0.649 0.661 0.027 0.027 0.564 0.693

+Postprocessing 42.4 0.567 0.565 0.023 0.023 0.490 0.594

Lucas-Kanade Extended 3 15.6 0.523 0.532 0.021 0.019 0.460 0.591

+Postprocessing 9.0 0.472 0.520 0.018 0.015 0.422 0.593

Lucas-Kanade Extended 4 100.0 1.027 1.230 0.047 0.058 0.824 1.236

+Postprocessing 100.0 0.823 0.872 0.038 0.041 0.658 0.895

Lucas-Kanade 1 100.0 18.400 18.231 0.621 0.624 17.566 22.395

+Postprocessing 100.0 16.051 15.617 0.542 0.509 15.073 18.859

Lucas-Kanade 2 100.0 14.123 14.161 0.490 0.466 13.187 16.865

+Postprocessing 100.0 13.109 13.004 0.454 0.419 12.169 15.328

Lucas-Kanade 3 100.0 11.887 11.982 0.416 0.389 10.981 14.085

+Postprocessing 100.0 11.310 11.294 0.395 0.362 10.437 13.248

Lucas-Kanade Pyramid 1 100.0 0.454 0.399 0.023 0.021 0.342 0.420

+Postprocessing 100.0 0.417 0.341 0.021 0.018 0.312 0.367

Lucas-Kanade Pyramid 2 100.0 0.311 0.211 0.018 0.013 0.212 0.223

+Postprocessing 100.0 0.307 0.206 0.018 0.012 0.208 0.218

Lucas-Kanade Pyramid 3 100.0 0.391 1.442 0.022 0.049 0.262 1.448

+Postprocessing 100.0 0.389 1.440 0.022 0.048 0.260 1.448

Horn-Schunck 100.0 16.189 13.820 0.550 0.477 14.810 16.523

+Postprocessing 100.0 14.508 11.978 0.502 0.391 12.877 14.019

Table A.10 Results for the Translating Tree sequence.

97

A Additional Plots and Tables

Figure A.37 Error plots for the Translating Tree sequence, Pyramid Algorithm 2 (top) and Lucas-Kanade
Pyramid 2 (bottom).

98

A Additional Plots and Tables

A.5.3 Rubber Whale Sequence

Parameter Pyramid
Algorithm 1

Pyramid
Algorithm 2

Pyramid
Algorithm 3

Smoothing Filter Type Pauwels (2D) None Pauwels (2D)

Smoothing Filter Size 13 × 13 - 13 × 13

Padding 15

Number of Directions 4 7

Angle Offset 0

Spatial Radius 3 11 6

Temporal Radius 1 2

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Maximum Pyramid Level 1 0 3

Postprocessing Maximum Magnitude 6 (absolute) 3 (absolute) 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.11 Parameter sets for the Rubber Whale sequence.

99

A Additional Plots and Tables

Algorithm Density Fleets Angular Magnitude Absolute Angular

[%] µ [∘] σ [∘] µ σ µ [∘] σ [∘]

Pyramid Algorithm 1 99.1 12.233 22.095 0.197 0.403 16.232 34.259

+Postprocessing 98.7 11.619 21.212 0.185 0.369 15.523 33.516

Pyramid Algorithm 2 98.9 8.775 19.864 0.146 0.356 11.561 30.339

+Postprocessing 97.8 8.453 19.338 0.137 0.335 11.189 29.841

Pyramid Algorithm 3 99.1 9.466 18.164 0.153 0.301 12.737 29.885

+Postprocessing 99.0 9.226 17.747 0.148 0.285 12.452 29.502

Basic Algorithm 99.0 9.362 20.644 0.153 0.376 12.312 31.290

+Postprocessing 98.9 9.173 20.399 0.150 0.371 12.095 31.094

Lucas-Kanade Extended 1 20.3 12.315 19.521 0.231 0.363 15.339 32.195

+Postprocessing 14.4 11.475 18.981 0.205 0.309 14.556 31.612

Lucas-Kanade Extended 2 13.1 12.819 20.191 0.234 0.396 16.374 33.392

+Postprocessing 7.5 12.492 20.462 0.203 0.329 16.675 34.149

Lucas-Kanade Extended 3 1.3 15.556 22.460 0.216 0.328 22.633 40.243

+Postprocessing 0.6 14.629 20.853 0.210 0.321 21.336 37.918

Lucas-Kanade Extended 4 99.1 14.840 21.642 0.363 0.736 17.475 32.887

+Postprocessing 97.7 13.022 19.518 0.280 0.401 15.460 30.979

Lucas-Kanade 1 99.1 23.914 23.938 0.514 0.699 28.184 36.688

+Postprocessing 99.1 20.855 22.439 0.434 0.573 24.416 34.512

Lucas-Kanade 2 99.1 19.811 22.383 0.411 0.556 23.444 34.341

+Postprocessing 99.1 18.550 21.808 0.380 0.513 21.962 33.651

Lucas-Kanade 3 99.1 18.024 21.841 0.366 0.501 21.453 33.723

+Postprocessing 99.1 17.339 21.533 0.349 0.479 20.669 33.400

Lucas-Kanade Pyramid 1 99.1 13.463 22.276 0.281 0.610 16.622 34.303

+Postprocessing 99.1 13.249 22.131 0.271 0.567 16.405 34.203

Lucas-Kanade Pyramid 2 99.1 13.831 23.137 0.245 0.446 17.671 36.179

+Postprocessing 99.1 13.772 23.095 0.243 0.438 17.603 36.141

Lucas-Kanade Pyramid 3 99.1 14.757 24.233 0.252 0.446 19.129 38.099

+Postprocessing 99.1 14.729 24.213 0.251 0.444 19.093 38.076

Horn-Schunck 99.1 19.752 20.667 0.412 0.520 23.231 33.503

+Postprocessing 99.1 18.051 20.453 0.379 0.489 21.227 33.251

Table A.12 Results for the Rubber Whale sequence.

100

A Additional Plots and Tables

A.5.4 Yosemite Cloudless Sequence

Parameter Pyramid
Algorithm 1

Pyramid
Algorithm 2

Pyramid
Algorithm 3

Smoothing Filter Type Pauwels (2D) Gaussian (2D) Pauwels (2D)

Smoothing Filter Size 13 × 13 9 × 9 13 × 13

Smoothing Filter Sigma - 1.5 -

Padding 15

Number of Directions 4 7

Angle Offset 0

Spatial Radius 3 9 6

Temporal Radius 1 5 2

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Maximum Pyramid Level 1 3

Postprocessing Maximum Magnitude 6 (absolute) 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.13 Parameter sets for the Yosemite Cloudless sequence.

101

A Additional Plots and Tables

Algorithm Density Fleets Angular Magnitude Absolute Angular

[%] µ [∘] σ [∘] µ σ µ [∘] σ [∘]

Pyramid Algorithm 1 92.6 8.758 11.943 0.213 0.315 13.151 22.900

+Postprocessing 91.5 8.115 11.183 0.194 0.281 12.119 21.118

Pyramid Algorithm 2 94.0 6.334 10.222 0.146 0.217 11.679 21.792

+Postprocessing 92.9 6.163 9.988 0.141 0.204 10.790 19.696

Pyramid Algorithm 3 94.1 6.763 9.973 0.154 0.212 11.854 20.972

+Postprocessing 93.2 6.570 9.739 0.149 0.203 10.995 18.988

Basic Algorithm 89.7 9.877 19.323 0.276 0.524 13.272 26.991

+Postprocessing 88.7 9.625 18.976 0.272 0.525 12.468 25.631

Lucas-Kanade Extended 1 48.9 3.496 5.429 0.076 0.126 5.072 10.583

+Postprocessing 46.2 3.125 4.877 0.065 0.110 4.648 9.883

Lucas-Kanade Extended 2 42.3 3.492 5.282 0.073 0.120 5.210 10.825

+Postprocessing 38.7 3.069 4.667 0.062 0.104 4.739 10.104

Lucas-Kanade Extended 3 10.0 2.968 4.344 0.050 0.085 5.677 13.130

+Postprocessing 5.6 2.446 3.333 0.037 0.064 5.537 14.726

Lucas-Kanade Extended 4 80.2 4.893 7.365 0.172 0.268 6.052 11.595

+Postprocessing 79.4 4.136 6.192 0.150 0.233 5.048 9.835

Lucas-Kanade 1 100.0 11.677 16.475 0.366 0.573 16.497 21.982

+Postprocessing 100.0 10.055 14.103 0.332 0.523 13.882 18.179

Lucas-Kanade 2 100.0 9.312 13.163 0.310 0.488 13.173 18.331

+Postprocessing 100.0 8.633 12.138 0.294 0.464 12.068 16.469

Lucas-Kanade 3 100.0 8.225 11.554 0.282 0.442 11.797 17.042

+Postprocessing 100.0 7.852 10.988 0.272 0.428 11.146 15.788

Lucas-Kanade Pyramid 1 81.9 4.337 7.647 0.122 0.199 5.996 13.553

+Postprocessing 81.1 3.996 6.942 0.113 0.169 5.451 12.332

Lucas-Kanade Pyramid 2 84.0 4.897 8.562 0.130 0.200 6.986 15.695

+Postprocessing 83.2 4.624 8.009 0.124 0.180 6.539 14.782

Lucas-Kanade Pyramid 3 86.0 6.048 9.435 0.157 0.211 8.577 16.335

+Postprocessing 85.2 5.795 9.011 0.152 0.199 8.149 15.472

Horn-Schunck 100.0 9.670 10.764 0.319 0.470 20.495 24.054

+Postprocessing 100.0 8.225 9.521 0.291 0.447 18.546 23.582

Table A.14 Results for the Yosemite Cloudless sequence.

102

A Additional Plots and Tables

Figure A.38 Error plots for the Yosemite Cloudless sequence, Pyramid Algorithm 2 (top) and Lucas-
Kanade Pyramid 1 (bottom).

103

A Additional Plots and Tables

A.5.5 Grove 2 Sequence

Parameter Pyramid
Algorithm 1

Pyramid
Algorithm 2

Pyramid
Algorithm 3

Smoothing Filter Type Pauwels (2D)

Smoothing Filter Size 13 × 13

Padding 15

Number of Directions 4 7

Angle Offset 0

Spatial Radius 3 14 6

Temporal Radius 1 2

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Maximum Pyramid Level 1 3

Postprocessing Maximum Magnitude 6 (absolute) 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.15 Parameter sets for the Grove 2 sequence.

104

A Additional Plots and Tables

Algorithm Density Fleets Angular Magnitude Absolute Angular

[%] µ [∘] σ [∘] µ σ µ [∘] σ [∘]

Pyramid Algorithm 1 99.6 8.970 16.453 0.301 0.609 9.216 17.983

+Postprocessing 96.9 7.391 13.804 0.241 0.456 7.536 14.940

Pyramid Algorithm 2 98.7 6.115 14.080 0.183 0.444 6.309 15.145

+Postprocessing 96.6 5.224 12.059 0.153 0.362 5.372 12.900

Pyramid Algorithm 3 99.7 6.318 13.493 0.197 0.456 6.455 14.240

+Postprocessing 98.9 5.774 12.330 0.177 0.394 5.889 12.933

Basic Algorithm 99.6 33.132 42.911 1.037 1.125 37.625 56.401

+Postprocessing 96.6 31.437 41.965 1.007 1.111 35.843 55.865

Lucas-Kanade Extended 1 25.9 10.812 19.226 0.495 0.706 10.630 22.073

+Postprocessing 20.2 10.303 18.477 0.463 0.655 10.094 21.359

Lucas-Kanade Extended 2 18.6 11.612 20.511 0.528 0.746 11.469 23.688

+Postprocessing 12.3 11.235 19.713 0.501 0.695 11.062 23.003

Lucas-Kanade Extended 3 1.5 14.595 23.569 0.612 0.786 14.860 28.761

+Postprocessing 0.4 15.989 23.396 0.620 0.748 16.299 28.635

Lucas-Kanade Extended 4 100.0 13.123 20.041 0.651 0.803 12.284 23.017

+Postprocessing 96.3 10.907 16.529 0.572 0.653 9.761 18.494

Lucas-Kanade 1 100.0 26.160 27.032 1.153 1.018 25.232 33.250

+Postprocessing 100.0 23.489 23.702 1.107 0.891 21.752 28.566

Lucas-Kanade 2 100.0 21.076 22.087 1.044 0.872 19.535 26.498

+Postprocessing 100.0 19.921 20.606 1.018 0.825 18.079 24.265

Lucas-Kanade 3 100.0 18.512 19.566 0.976 0.805 16.605 22.724

+Postprocessing 100.0 17.862 18.727 0.958 0.780 15.824 21.486

Lucas-Kanade Pyramid 1 100.0 6.479 12.996 0.350 0.614 6.035 14.334

+Postprocessing 100.0 6.254 12.629 0.334 0.530 5.819 13.884

Lucas-Kanade Pyramid 2 100.0 5.729 11.771 0.288 0.469 5.348 12.553

+Postprocessing 100.0 5.689 11.726 0.285 0.467 5.312 12.500

Lucas-Kanade Pyramid 3 100.0 5.822 11.690 0.286 0.457 5.468 12.289

+Postprocessing 100.0 5.808 11.676 0.285 0.456 5.457 12.274

Horn-Schunck 100.0 21.359 18.145 1.114 0.838 18.146 20.105

+Postprocessing 100.0 20.151 17.350 1.081 0.786 16.766 18.899

Table A.16 Results for the Grove 2 sequence.

105

A Additional Plots and Tables

A.5.6 Hydrangea Sequence

Parameter Pyramid
Algorithm 1

Pyramid
Algorithm 2

Pyramid
Algorithm 3

Smoothing Filter Type Pauwels (2D) Gaussian (2D) Pauwels (2D)

Smoothing Filter Size 13 × 13

Smoothing Filter Sigma - 1.5 -

Padding 15

Number of Directions 4 7

Angle Offset 0

Spatial Radius 3 8 6

Temporal Radius 1 2

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Maximum Pyramid Level 2 1 3

Postprocessing Maximum Magnitude 12 (absolute) 6 (absolute) 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.17 Parameter sets for the Hydrangea sequence.

106

A Additional Plots and Tables

Algorithm Density Fleets Angular Magnitude Absolute Angular

[%] µ [∘] σ [∘] µ σ µ [∘] σ [∘]

Pyramid Algorithm 1 93.8 13.830 25.257 0.776 1.487 15.036 30.906

+Postprocessing 91.2 11.771 22.504 0.624 1.087 12.806 28.052

Pyramid Algorithm 2 93.9 9.184 17.090 0.561 1.017 9.369 20.780

+Postprocessing 85.7 7.562 14.300 0.388 0.668 7.780 18.278

Pyramid Algorithm 3 93.6 12.264 23.324 0.677 1.275 13.103 28.350

+Postprocessing 91.7 10.823 21.313 0.596 1.098 11.557 26.360

Basic Algorithm 94.2 81.895 44.389 2.400 1.243 102.312 63.628

+Postprocessing 86.8 84.220 42.359 2.433 1.185 106.774 62.226

Lucas-Kanade Extended 1 22.4 37.070 28.302 1.652 1.521 39.993 40.157

+Postprocessing 17.9 36.855 26.374 1.618 1.522 39.608 38.973

Lucas-Kanade Extended 2 16.7 39.117 29.804 1.636 1.500 42.891 42.353

+Postprocessing 11.6 38.711 27.303 1.572 1.478 42.501 40.923

Lucas-Kanade Extended 3 1.5 34.984 25.219 1.213 1.077 40.537 41.977

+Postprocessing 0.4 33.899 22.893 1.139 1.024 40.047 41.723

Lucas-Kanade Extended 4 94.4 24.941 30.926 1.463 1.522 25.251 39.049

+Postprocessing 74.9 23.635 28.121 1.284 1.293 23.578 36.644

Lucas-Kanade 1 94.4 34.415 31.742 1.733 1.484 34.823 41.584

+Postprocessing 94.4 31.269 28.414 1.711 1.386 30.459 37.664

Lucas-Kanade 2 94.4 28.488 27.620 1.645 1.371 27.716 36.561

+Postprocessing 94.4 27.014 25.897 1.636 1.349 25.658 34.347

Lucas-Kanade 3 94.4 25.328 25.049 1.595 1.341 23.778 33.054

+Postprocessing 94.4 24.473 23.973 1.588 1.333 22.558 31.548

Lucas-Kanade Pyramid 1 94.4 11.550 16.280 1.411 11.845 10.550 21.563

+Postprocessing 94.2 11.236 15.746 1.017 1.060 10.210 20.963

Lucas-Kanade Pyramid 2 94.4 9.125 12.684 0.939 1.738 8.198 17.732

+Postprocessing 94.3 9.072 12.630 0.900 1.014 8.152 17.685

Lucas-Kanade Pyramid 3 94.4 8.354 11.595 0.865 1.106 7.427 16.143

+Postprocessing 94.4 8.336 11.582 0.857 1.018 7.412 16.128

Horn-Schunck 94.4 26.641 23.747 1.697 1.364 23.977 30.410

+Postprocessing 94.4 25.317 22.461 1.673 1.321 22.196 28.919

Table A.18 Results for the Hydrangea sequence.

107

A Additional Plots and Tables

A.5.7 Urban 3 Sequence

Parameter Pyramid
Algorithm 1

Pyramid
Algorithm 2

Pyramid
Algorithm 3

Smoothing Filter Type Pauwels (2D)

Smoothing Filter Size 13 × 13 17 × 17 13 × 13

Padding 15

Number of Directions 4 7

Angle Offset 0

Spatial Radius 3 4 6

Temporal Radius 1 2

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Maximum Pyramid Level 3

Postprocessing Maximum Magnitude 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.19 Parameter sets for the Urban 3 sequence.

Figure A.39 Error plots for the Urban 3 sequence, Pyramid Algorithm 3 (top) and Lucas-Kanade Pyramid
2 (bottom).

108

A Additional Plots and Tables

Algorithm Density Fleets Angular Magnitude Absolute Angular

[%] µ [∘] σ [∘] µ σ µ [∘] σ [∘]

Pyramid Algorithm 1 95.7 23.723 36.804 2.095 3.549 24.625 40.432

+Postprocessing 89.4 19.669 33.582 1.758 2.984 20.336 36.959

Pyramid Algorithm 2 96.7 19.802 34.423 1.737 2.987 20.735 38.493

+Postprocessing 91.2 16.188 31.245 1.462 2.554 16.925 35.181

Pyramid Algorithm 3 95.8 19.632 34.075 1.744 3.018 20.507 37.876

+Postprocessing 89.6 16.105 31.017 1.459 2.572 16.788 34.637

Basic Algorithm 92.3 76.308 50.771 5.022 4.041 84.342 63.286

+Postprocessing 72.2 73.862 50.171 4.745 3.924 82.902 64.336

Lucas-Kanade Extended 1 7.0 32.918 39.641 3.233 3.716 32.563 46.894

+Postprocessing 4.2 31.941 38.427 2.884 3.372 31.339 46.739

Lucas-Kanade Extended 2 4.6 34.586 41.715 3.080 3.409 34.603 49.750

+Postprocessing 2.4 36.141 41.030 3.011 3.269 35.983 51.168

Lucas-Kanade Extended 3 0.3 55.000 51.403 2.099 2.717 59.649 61.793

+Postprocessing 0.1 55.270 46.053 1.437 1.735 60.575 55.620

Lucas-Kanade Extended 4 100.0 44.253 43.210 5.092 8.224 44.255 48.972

+Postprocessing 62.3 35.990 38.760 3.795 4.227 35.324 46.475

Lucas-Kanade 1 100.0 52.722 40.751 4.976 5.144 52.712 48.646

+Postprocessing 97.3 49.635 38.729 4.635 3.895 48.792 46.707

Lucas-Kanade 2 100.0 48.167 38.732 4.835 4.521 47.445 46.188

+Postprocessing 98.2 46.432 37.746 4.609 3.933 45.305 45.225

Lucas-Kanade 3 100.0 45.377 37.392 4.785 4.398 44.136 44.530

+Postprocessing 98.6 44.164 36.757 4.606 3.978 42.650 43.846

Lucas-Kanade Pyramid 1 100.0 12.459 30.796 1.219 2.836 12.460 33.594

+Postprocessing 99.8 12.067 30.419 1.158 2.596 12.044 33.175

Lucas-Kanade Pyramid 2 100.0 11.483 30.117 1.102 2.449 11.362 32.963

+Postprocessing 100.0 11.369 30.024 1.086 2.419 11.248 32.865

Lucas-Kanade Pyramid 3 100.0 11.928 30.602 1.214 2.581 11.709 33.568

+Postprocessing 100.0 11.898 30.580 1.212 2.580 11.679 33.545

Horn-Schunck 100.0 46.053 35.057 4.911 4.236 42.784 41.190

+Postprocessing 98.6 44.969 34.451 4.783 3.962 41.310 40.538

Table A.20 Results for the Urban 3 sequence.

109

A Additional Plots and Tables

A.5.8 Grove 3 Sequence

Parameter Pyramid
Algorithm 1

Pyramid
Algorithm 2

Pyramid
Algorithm 3

Smoothing Filter Type Pauwels (2D) Gaussian (2D) Pauwels (2D)

Smoothing Filter Size 13 × 13 9 × 9 13 × 13

Smoothing Filter Sigma - 1.5 -

Padding 15

Number of Directions 4 7

Angle Offset 0

Spatial Radius 3 9 6

Temporal Radius 1 2

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Maximum Pyramid Level 3 2 3

Postprocessing Maximum Magnitude 24 (absolute) 12 (absolute) 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.21 Parameter sets for the Grove 3 sequence.

110

A Additional Plots and Tables

Algorithm Density Fleets Angular Magnitude Absolute Angular

[%] µ [∘] σ [∘] µ σ µ [∘] σ [∘]

Pyramid Algorithm 1 98.2 19.814 29.336 1.506 2.763 20.375 32.667

+Postprocessing 92.9 16.708 26.283 1.191 1.916 17.068 29.367

Pyramid Algorithm 2 97.5 15.698 25.263 1.233 2.133 15.764 27.546

+Postprocessing 88.5 12.556 21.954 0.918 1.498 12.447 23.716

Pyramid Algorithm 3 98.7 16.321 26.370 1.248 2.139 16.333 28.703

+Postprocessing 95.4 14.411 24.168 1.089 1.721 14.294 26.190

Basic Algorithm 98.4 50.803 52.958 1.888 2.035 57.658 64.990

+Postprocessing 86.1 46.217 51.479 1.723 1.943 53.348 64.724

Lucas-Kanade Extended 1 48.4 30.833 35.810 1.793 2.230 31.697 43.214

+Postprocessing 39.7 28.809 34.661 1.744 2.289 29.544 42.590

Lucas-Kanade Extended 2 38.7 31.718 37.059 1.757 2.213 32.798 44.595

+Postprocessing 29.1 28.337 35.114 1.642 2.245 29.288 43.216

Lucas-Kanade Extended 3 5.7 21.313 31.699 1.048 1.683 21.860 38.929

+Postprocessing 2.7 17.255 28.316 0.832 1.480 17.428 35.220

Lucas-Kanade Extended 4 100.0 30.738 36.251 1.703 2.142 31.563 42.651

+Postprocessing 85.5 26.547 33.069 1.607 2.070 26.967 40.006

Lucas-Kanade 1 100.0 37.329 36.316 1.878 2.111 38.698 43.550

+Postprocessing 99.9 34.946 34.395 1.849 2.000 35.727 41.374

Lucas-Kanade 2 100.0 33.028 33.680 1.818 2.020 33.636 40.390

+Postprocessing 100.0 31.871 32.629 1.813 2.005 32.177 39.118

Lucas-Kanade 3 100.0 30.489 31.930 1.793 2.014 30.619 38.251

+Postprocessing 100.0 29.798 31.275 1.792 2.014 29.747 37.444

Lucas-Kanade Pyramid 1 100.0 13.501 23.011 1.036 1.718 13.308 26.686

+Postprocessing 100.0 13.227 22.639 1.018 1.637 12.997 26.213

Lucas-Kanade Pyramid 2 100.0 12.551 20.856 0.999 1.549 12.081 23.962

+Postprocessing 100.0 12.483 20.767 0.997 1.545 11.999 23.832

Lucas-Kanade Pyramid 3 100.0 12.570 20.022 1.021 1.536 11.831 22.805

+Postprocessing 100.0 12.546 19.991 1.020 1.536 11.802 22.751

Horn-Schunck 100.0 32.690 31.576 1.844 2.024 32.406 37.049

+Postprocessing 100.0 30.994 30.652 1.813 1.972 30.403 36.061

Table A.22 Results for the Grove 3 sequence.

111

A Additional Plots and Tables

A.5.9 Urban 2 Sequence

Parameter Pyramid
Algorithm 1

Pyramid
Algorithm 2

Pyramid
Algorithm 3

Smoothing Filter Type Pauwels (2D) Gaussian (2D) Pauwels (2D)

Smoothing Filter Size 13 × 13 17 × 17 13 × 13

Smoothing Filter Sigma - 1.5 -

Padding 15

Number of Directions 4 7

Angle Offset 0

Spatial Radius 3 6

Temporal Radius 1 2

Component Velocity Threshold 0.8

Optical Flow Threshold 0.8

Maximum Pyramid Level 3 4 3

Postprocessing Maximum Magnitude 24 (absolute) 48 (absolute) 24 (absolute)

WVM Filter Window Size 3

WVM Filter Minimum Certainty 75%

WVM Filter Number of Passes 2

Accuracy Minimum Threshold 51%

Accuracy Border Skip 15

Table A.23 Parameter sets for the Urban 2 sequence.

112

A Additional Plots and Tables

Algorithm Density Fleets Angular Magnitude Absolute Angular

[%] µ [∘] σ [∘] µ σ µ [∘] σ [∘]

Pyramid Algorithm 1 93.6 40.857 35.940 4.164 5.424 43.439 43.469

+Postprocessing 75.9 36.391 33.265 3.218 4.120 38.844 41.460

Pyramid Algorithm 2 96.9 34.097 36.121 4.943 8.266 34.267 43.214

+Postprocessing 86.8 28.559 32.083 3.765 4.879 28.208 39.359

Pyramid Algorithm 3 88.1 43.629 36.900 4.664 5.846 45.111 44.720

+Postprocessing 65.6 38.485 34.329 3.621 4.296 39.476 42.647

Basic Algorithm 88.4 57.431 42.224 6.498 7.145 60.077 50.186

+Postprocessing 62.9 52.872 39.887 5.601 6.845 55.344 48.234

Lucas-Kanade Extended 1 7.8 46.209 32.833 7.790 7.879 55.060 47.640

+Postprocessing 3.4 44.821 28.951 6.723 8.131 58.573 48.275

Lucas-Kanade Extended 2 4.5 44.826 32.750 7.343 7.714 54.980 48.966

+Postprocessing 1.5 41.492 26.050 5.498 7.467 58.068 49.387

Lucas-Kanade Extended 3 0.1 35.666 18.801 1.486 2.876 62.170 49.908

+Postprocessing 0.0 41.431 20.984 1.092 0.788 56.476 37.582

Lucas-Kanade Extended 4 100.0 60.788 38.229 6.406 7.198 67.420 48.528

+Postprocessing 60.7 54.494 31.839 4.927 6.749 64.058 47.656

Lucas-Kanade 1 100.0 56.799 39.423 5.965 6.775 62.783 48.908

+Postprocessing 98.2 54.301 37.702 5.974 6.723 59.874 47.652

Lucas-Kanade 2 100.0 53.114 37.656 6.006 6.799 58.248 47.141

+Postprocessing 99.2 51.823 36.666 6.032 6.786 56.633 46.336

Lucas-Kanade 3 100.0 50.642 36.257 6.079 6.872 55.045 45.815

+Postprocessing 99.6 49.804 35.568 6.092 6.855 53.950 45.210

Lucas-Kanade Pyramid 1 99.8 29.017 30.649 3.649 7.532 31.915 39.613

+Postprocessing 96.7 27.218 29.241 3.074 5.010 30.046 38.606

Lucas-Kanade Pyramid 2 100.0 21.689 23.374 2.916 4.982 23.267 32.385

+Postprocessing 99.3 21.071 22.798 2.777 4.696 22.612 31.911

Lucas-Kanade Pyramid 3 100.0 18.926 20.727 2.661 4.461 19.911 29.550

+Postprocessing 99.9 18.692 20.476 2.613 4.363 19.676 29.343

Horn-Schunck 100.0 49.851 35.042 5.988 6.752 53.929 45.004

+Postprocessing 99.5 48.815 34.329 6.052 6.833 52.449 44.284

Table A.24 Results for the Urban 2 sequence.

113

A Additional Plots and Tables

Figure A.40 Error plots for the Urban 3 sequence, Pyramid Algorithm 2 (top) and Lucas-Kanade Pyramid
3 (bottom).

114

B
Matlab GUI

Introduction The implementation and usage of the Matlab GUI is explained in [3]. This
appendix describes some of the extensions made during this project.

New Algorithms Figures B.1 and B.2 show the input masks for the Basic Algorithm and the
Pyramid Algorithm. The parameters are described in section 5.4.1 and 5.5.1,
respectively.

Figure B.1 GUI settings for the Basic Algorithm.

115

B Matlab GUI

Figure B.2 GUI settings for the Pyramid Algorithm.

Smoothing Filter Three new smooting filter types were implemented:

None This setting is for algorithms which don’t support a smoothing filter (e.g.
Basic Algorithm).

Pauwels (2D) A non-separable 2D filter type for using with the Pyramid Algo-
rithm. Two sizes are available, 13 × 13 and 17 × 17.

Dummy-Filter (2D) This setting can be used with any algorithm that supports
separable 2D filters. It behaves like no filter.

Postprocessing A new option for the postprocessing to skip the border regions from the accuracy
measurement was added (see figure B.3).

Output to Workspace Each time the accuracy of a frame-pair is computed, all parameters and results
are collected in a structure and added to the QualitySummaries vector in the Base
Workspace. This makes it easier to collect data for tables and figures.

116

B Matlab GUI

Figure B.3 Postprocessing page of the Matlab GUI.

117

C
Test Image Sequences

Introduction This appendix introduces the image sequences that were used to test and com-
pare the algorithms developed during this project. It basically reproduces the
appendix A of [3]. Further information on some of the sequences can be found
in [18].

The sequences made available by the Middlebury College were not used in the
previous project. More information about these sequences can be found in [12].
These sequences contain higher velocities than the other ones and were therefore
used to test the multiresolution scheme.

Name: Ettlinger Tor

Type: Real

Filename: UKAettlingerTorImageData.mat

Source: http://i21www.ira.uka.de/image_sequences/

Dimensions: 512 × 512 × 50

Description: Traffic intersection sequence recorded at the
Ettlinger-Tor in Karlsruhe by a stationary camera. [3]

Name: Marbled Block

Type: Synthetic

Filename: UKAUKAmarbleBlockImageData.mat

Source: http://i21www.ira.uka.de/image_sequences/

Dimensions: 384 × 512 × 201

Description: Polyhedral scene with two moving marbled blocks
and stationary camera. [3]

119

http://i21www.ira.uka.de/image_sequences/
http://i21www.ira.uka.de/image_sequences/

C Test Image Sequences

Name: NASA

Type: Real

Filename: UWOnasaImageData.mat

Source: ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/

Dimensions: 300 × 300 × 37

Description: The NASA sequence is primarily dilational; the
camera moves along its line of sight toward the Coke can
near the centre of the image. Image velocities are typically
less than 1 pixel/ f rame. [18]

Name: Rubik Cube

Type: Real

Filename: UWOrubicImageData.mat

Source: ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/

Dimensions: 240 × 256 × 21

Description: Rotating Rubik cube on a microwave turntable. [3]

Name: SRI Trees

Type: Real

Filename: UWOsriTreesImageData.mat

Source: ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/

Dimensions: 233 × 256 × 21

Description: The camera translates parallel to the ground plane,
perpendicular to its line of sight, in front of clusters of trees.
Velocities are as large as 2 pixels/ f rame. [18]

Name: Taxi

Type: Real

Filename: UWOtaxiImageData.mat

Source: ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/

Dimensions: 190 × 256 × 21

Description: Traffic sequence showing a taxi in Hamburg. [3]

120

ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/
ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/
ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/
ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/

C Test Image Sequences

Name: Diverging Tree

Type: Synthetic

Filename: UWOtreeDivImageData.mat

Source: ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/

Dimensions: 150 × 150 × 40

Description: The camera moves along its line of sight; the focus
of expansion is at the centre of the image, and image speeds
vary from 1.29 pixels/ f rame on left side to 1.86 pixels/ f rame
on the right. [18]

Name: Translating Tree

Type: Synthetic

Filename: UWOtreeTransImageData.mat

Source: ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/

Dimensions: 150 × 150 × 40

Description: The camera moves normal to its line of sight
along its x-axis, with velocities all parallel with the im-
age x-axis, with speeds between 1.73 pixels/ f rame and
2.26 pixels/ f rame. [18]

Name: Yosemite

Type: Synthetic

Filename: BrownYosemiteCloudyImageData.mat

Source: http://www.cs.brown.edu/~black/images.html

Dimensions: 252 × 316 × 15

Description: The motion in the upper right is mainly diver-
gent, the clouds translate to the right with a speed of
1 pixel/ f rame, while velocities in the lower left are about
4 pixels/ f rame. [18]

Name: Yosemite Cloudless

Type: Synthetic

Filename: BrownYosemiteCloudlessImageData.mat

Source: http://www.cs.brown.edu/~black/images.html

Dimensions: 252 × 316 × 15

Description: Yosemite sequence without clouds.

121

ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/
ftp://ftp.csd.uwo.ca/pub/vision/TESTDATA/
http://www.cs.brown.edu/~black/images.html
http://www.cs.brown.edu/~black/images.html

C Test Image Sequences

Name: Beanbags

Type: Real

Filename: MiddleburyBeanbagsImageData.mat

Source: http://vision.middlebury.edu/flow/

Dimensions: 480 × 640 × 8

Name: Dog Dance

Type: Real

Filename: MiddleburyDogDanceImageData.mat

Source: http://vision.middlebury.edu/flow/

Dimensions: 480 × 640 × 8

Name: Grove 2

Type: Synthetic

Filename: MiddleburyGrove2ImageData.mat

Source: http://vision.middlebury.edu/flow/

Dimensions: 480 × 640 × 8

Name: Grove 3

Type: Synthetic

Filename: MiddleburyGrove3ImageData.mat

Source: http://vision.middlebury.edu/flow/

Dimensions: 480 × 640 × 8

122

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/

C Test Image Sequences

Name: Hydrangea

Type: Real

Filename: MiddleburyHydrangeaImageData.mat

Source: http://vision.middlebury.edu/flow/

Dimensions: 388 × 584 × 8

Name: Mini Cooper

Type: Real

Filename: MiddleburyMiniCooperImageData.mat

Source: http://vision.middlebury.edu/flow/

Dimensions: 480 × 640 × 8

Name: Rubber Whale

Type: Real

Filename: MiddleburyRubberWhaleImageData.mat

Source: http://vision.middlebury.edu/flow/

Dimensions: 388 × 584 × 8

Name: Urban 2

Type: Synthetic

Filename: MiddleburyUrban2ImageData.mat

Source: http://vision.middlebury.edu/flow/

Dimensions: 480 × 640 × 8

123

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/

C Test Image Sequences

Name: Urban 3

Type: Synthetic

Filename: MiddleburyUrban3ImageData.mat

Source: http://vision.middlebury.edu/flow/

Dimensions: 480 × 640 × 8

Name: Walking

Type: Real

Filename: MiddleburyWalkingImageData.mat

Source: http://vision.middlebury.edu/flow/

Dimensions: 480 × 640 × 8

124

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/

D
OpenCV

Introduction The Matlab GUI developed during the previous project [3] lets the user select
three algorithms from the OpenCV library [25]. For this project, these libraries
(which are not provided as Win64 binaries by the developers) as well as the
Matlab wrappers (.mex files) had to be ported to run on a Win64 system.

D.1 Building the Libraries

Introduction This section describes how to build the OpenCV library from its sources for
Win32 and Win64 targets (see also [33]).

Prerequisites The following software was used to build OpenCV:

∙ OpenCV 2.1 sources1

∙ CMake 2.8.12

∙ Microsoft Visual Studio 2008 SP1

Build Process The following steps were used to build OpenCV. Steps 3 to 9 were done twice,
once for the Win32 binaries and once for the Win64 binaries.

1. Unpack the sources to C:\OpenCV-2.1.0

2. Start CMake and enter C:\OpenCV-2.1.0 as source path

3. Enter C:\OpenCV-2.1.0\Win32 or C:\OpenCV-2.1.0\Win64 as build path
for the binaries

4. Press Configure

5. Select Visual Studio 9 2008 or Visual Studio 9 2008 Win64 as generator

6. Use the default settings, but set BUILD_NEW_PYTHON_SUPPORT to false

7. Press Configure again

8. Press Generate

9. Open the solution C:\OpenCV-2.1.0\Win32\OpenCV.sln or C:\OpenCV-
2.1.0\Win64\OpenCV.sln with Visual Studio and compile it (Release)

1http://sourceforge.net/projects/opencvlibrary/files/
2http://www.cmake.org/cmake/resources/software.html

125

http://sourceforge.net/projects/opencvlibrary/files/
http://www.cmake.org/cmake/resources/software.html

D OpenCV

D.2 Building and Using the MEX Wrappers

Win64 Port To build the .mex files for a Win64 system (.mexw64), the original makefiles and
the project configurations had to be modified in a similar way as described in
section 5.2. Also some datatypes had to be changed to allow a safe passing of
pointers on Win32 and Win64 systems.

Prerequisites For compiling, the OpenCV header files and the .lib files are needed. These files
can be generated as described in section D.1. But the relevant subdirectories for
Win32 and Win64 can also be found packed in a .zip file on the disc of this project,
so that there is no need to build OpenCV from sources again.

For the build process, the environmental variables listed in table D.1 must be
created (restart computer afterwards, if necessary).

Variable Value

MATLAB_DIR C:\Program Files\MATLAB\R2009b

OPENCV_ROOT C:\OpenCV-2.1.0

OPENCV_WIN32 C:\OpenCV-2.1.0\Win32

OPENCV_WIN64 C:\OpenCV-2.1.0\Win64

Table D.1 Required environment variables.

Runtime At runtime, the OpenCV .dll files are needed. Therefore, one of the following
directories must be added to the Path environmental variable (depending on the
current system):
C:\OpenCV-2.1.0\Win32\bin\Release or C:\OpenCV-2.1.0\Win64\bin\Release

Cross Compiling Building a .mexw32 on a Win64 system and vice versa is not directly possible
since Matlab installs only the libraries for the current platform. In this project,
the .mexw32 files were built by first copying the libraries for a 32-bit Matlab
installation to the following directory:
C:\Program Files\MATLAB\R2009b\extern\lib\win32\microsoft

C++ Runtime To run the OpenCV implementations of the algorithm on a system with no Visual
Studio installed, it might be necessary to install the Microsoft Visual C++ 2008
Redistributable Package.

126

E
Content of the DVD

Root In the root of the DVD, the PDFs of this report, the poster, and of the original
project description can be found. Furthermore, it contains the project planning
as an Excel file.

Literature The Literature directory contains the PDFs of almost all the references in the
bibliography.

Source Code The Source Code directory contains all the Matlab and C sources. There are three
important entry points:

∙ .\GUI\MainOpticalFlow.m
is the main file for the Matlab GUI.

∙ .\MTcode\Algorithms\CUDA\AmFmCUDA\AmFmCUDA.sln
is the solution file for the CUDA implementation of the Basic Algorithm.

∙ .\MTcode\Algorithms\CUDA\AmFmPyrCUDA\AmFmPyrCUDA.sln
is the solution file for the CUDA implementation of the Pyramid Algorithm.

Test Sequences The Test Sequences directory contains the test image sequences described in ap-
pendix C and their ground truths (if available). All the sequences and ground
truths are available in their original file format and as .mat files which can be
loaded from the Matlab GUI.

Misc Code,
Mathematica

The Misc Code and Mathematica directories contain some .m files and Mathematica
notebooks which were used to verify certain steps of the development of the
algorithms.

Software The Software directory contains the installers for CUDA and Parallel Nsight. It
also contains a .zip file with the Win32 and Win64 binaries of OpenCV 2.1 (see
appendix D).

Results The Results directory contains .mat files with all the information (complete statis-
tics; parameters used) for every data point in chapter 6 and appendix A. The
directory also contains some Matlab scripts to extract the values shown in this
report from the .mat files.

127

Bibliography

Books

[1] Gösta H. Granlund, Hans Knutsson
Signal Processing for Computer Vision
Kluwer Academic Publishers, 1995

[2] Bernd Jähne, Horst Haußecker, Peter Geißler
Handbook of Computer Vision and Applications
Volume 2 - Signal Processing and Pattern Recognition
Academic Press, 1999

Theses

[3] Fabian Braun, Marc Länzlinger
Efficient Implementation and Evaluation of Methods for Estimating Optical Flow in Video
Bachelor Thesis, 2009
University of Applied Sciences Rapperswil, Switzerland and University of Stavanger, Norway

[4] Ivar Austvoll
Motion Estimation using Directional Filters
PhD Thesis, 1999
Stavanger College, Norway

[5] Mathias Johansson
The Hilbert Transform
Master Thesis, 1999
Växjö University, Sweden

129

Bibliography

Papers

[6] Espen Kristoffersen
AM-FM Signal Modelling in Motion Estimation
Dept. of Electrical and Computer Engineering, Stavanger University College, Norway

[7] Espen Kristoffersen, Ivar Austvoll, Kjersti Engan
Dense Motion Field Estimation Using Spatial Filtering and Quasi Eigenfunction Approximations
IEEE International Conference on Image Processing ICIP, 2005

[8] Ivar Austvoll
Directional Filters and a New Structure for Estimation of Optical Flow
IEEE International Conference on Image Processing ICIP, 2000

[9] Ivar Austvoll
A Study of the Yosemite Sequence Used as a Test Sequence for Estimation of Optical Flow
Lecture Notes in Computer Science, Springer, 2005

[10] Ivar Austvoll
Motion Analysis and Estimation Using Directional Filters and Orientation Tensors
Pattern Recognition and Image Analysis, Vol. 15, 2005

[11] Simon Baker, Daniel Scharstein, J.P. Lewis, Stefan Roth, Michael J. Black, Richard Szeliski
A Database and Evaluation Methodology for Optical Flow
IEEE International Conference on Computer Vision ICCV, 2007

[12] Simon Baker, Daniel Scharstein, J.P. Lewis, Stefan Roth, Michael J. Black, Richard Szeliski
A Database and Evaluation Methodology for Optical Flow
Technical Report, Microsoft Corporation, 2009

[13] Pierre Bayerl, Heiko Neumann
A Fast Biologically Inspired Algorithm for Recurrent Motion Estimation
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 2, 2007

[14] Thomas Brox, Andrés Bruhn, Nils Papenberg, Joachim Weickert
High Accuracy Optical Flow Estimation Based on a Theory for Warping
European Conference on Computer Vision, Springer LNCS, 2004

[15] Andrés Bruhn, Joachim Weickert, Christoph Schnörr
Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods
International Journal of Computer Vision, Vol. 61, No. 3, Springer, 2005

[16] Javier Díaz, Eduardo Ros, Francisco Pelayo, Eva M. Ortigosa, Sonia Mota
FPGA-Based Real-Time Optical-Flow System
IEEE Transactions on Circuits and Systems for Video Technology, Vol. 16, No. 2, 2006

[17] Peter Sand, Seth Teller
Particle Video: Long-Range Motion Estimation using Point Trajectories
IEEE Computer Vision and Pattern Recognition CVPR, 2006

[18] J.L. Barron, D.J. Fleet, S.S. Beauchemin
Performance of Optical Flow Techniques
International Journal of Computer Vision, Vol. 12, No. 1, Springer, 1994

[19] Eric J. Pauwels, Luc J. Van Gool, Peter Fiddelaers, Theo Moons
An Extended Class of Scale-Invariant and Recursive Scale Space Filters
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 7, 1995

[20] Victor Podlozhnyuk
Image Convolution with CUDA
NVIDIA, 2007

130

Bibliography

Manuals

[21] NVIDIA CUDA Programming Guide
NVIDIA, Version 2.3.1, 2009

[22] NVIDIA CUDA C Programming Best Practices Guide
NVIDIA, Version 2.3, 2009

[23] NVIDIA CUDA Reference Manual
NVIDIA, Version 3.0 Beta, 2009

[24] NVIDIA CUDA-GDB User Guide
NVIDIA, Version 3.0, 2010

[25] Open Source Computer Vision Library - Reference Manual
Intel Corporation, 2001

Web Pages

[26] Primitive Datentypen in C
19.01.2010
http://www.tnotes.de/CPrimitiveDatentypen

[27] How do I update MEX-files to use the large array handling API (-largeArrayDims)?
19.01.2010
http://www.mathworks.com/support/solutions/en/data/1-5C27B9/?solution=1-5C27B9

[28] C/C++ Source MEX-Files
10.03.2010
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/f43721.html

[29] Rotation (mathematics)
Wikipedia, 07.03.2010
http://en.wikipedia.org/wiki/Rotation_(mathematics)

[30] Analytic Signal
Wikipedia, 18.04.2010
http://en.wikipedia.org/wiki/Analytic_signal

[31] Gady Agam
Introduction to programming with OpenCV
Department of Computer Science, Illinois Institute of Technology, 2006
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/index.html

[32] Robert Laganière
Programming Computer Vision Applications
VIVA Lab, University of Ottawa, 2008
http://www.site.uottawa.ca/~laganier/tutorial/opencv+directshow/cvision.htm

[33] OpenCV Installation Guide
OpenCV Wiki, 05.05.2010
http://opencv.willowgarage.com/wiki/InstallGuide

131

http://www.tnotes.de/CPrimitiveDatentypen
http://www.mathworks.com/support/solutions/en/data/1-5C27B9/?solution=1-5C27B9
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/f43721.html
http://en.wikipedia.org/wiki/Rotation_(mathematics)
http://en.wikipedia.org/wiki/Analytic_signal
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/index.html
http://www.site.uottawa.ca/~laganier/tutorial/opencv+directshow/cvision.htm
http://opencv.willowgarage.com/wiki/InstallGuide

	1 Original Project Description
	1.1 Introduction
	1.2 Problem
	1.3 Implementation
	1.4 Advisors

	2 Introduction
	2.1 Optical Flow Estimation
	2.2 Tasks of this Project
	2.3 CUDA Basics
	2.3.1 Thread Hierarchy
	2.3.2 Memory Organization

	3 Basic Algorithm
	3.1 Description of the Algorithm
	3.2 Directional Filtering
	3.2.1 Rotating
	3.2.2 Filtering

	3.3 Computation of Instantaneous Frequencies
	3.4 Computation of Component Velocities
	3.5 Combining the Component Velocities

	4 Pyramid Algorithm
	4.1 Introduction
	4.2 Multiresolution
	4.3 Integration of Pyramid Levels

	5 CUDA Implementation
	5.1 Development Environment
	5.1.1 System Setup
	5.1.2 Troubleshooting

	5.2 Build Process
	5.2.1 Win64 Compatibility
	5.2.2 Makefile

	5.3 General Information about the Implementations
	5.4 Basic Algorithm
	5.4.1 Using the MEX File
	5.4.2 Unoptimized Implementation
	5.4.3 Texture Memory for Image Rotation
	5.4.4 Optimization of Directional Filtering
	5.4.5 Using Vector-Datatypes
	5.4.6 Optimized Program Flow
	5.4.7 Speedup

	5.5 Pyramid Algorithm
	5.5.1 Using the MEX File
	5.5.2 Implementation Notes
	5.5.3 Performance

	6 Results
	6.1 Number of Pyramid Levels
	6.2 Smoothing Filter
	6.3 Other Parameters
	6.4 Comparison with other Algorithms
	6.5 Conclusion

	A Additional Plots and Tables
	A.1 Number of Pyramid Levels
	A.2 Number of Directions
	A.3 Temporal Radius
	A.4 Spatial Radius
	A.5 Comparison with other Algorithms
	A.5.1 Diverging Tree Sequence
	A.5.2 Translating Tree Sequence
	A.5.3 Rubber Whale Sequence
	A.5.4 Yosemite Cloudless Sequence
	A.5.5 Grove 2 Sequence
	A.5.6 Hydrangea Sequence
	A.5.7 Urban 3 Sequence
	A.5.8 Grove 3 Sequence
	A.5.9 Urban 2 Sequence

	B Matlab GUI
	C Test Image Sequences
	D OpenCV
	D.1 Building the Libraries
	D.2 Building and Using the MEX Wrappers

	E Content of the DVD
	Bibliography
	 Books
	 Theses
	 Papers
	 Manuals
	 Web Pages

