
DYNAMIC REDUNDANCY SCALING

FOR CLIENT LOAD DYNAMICS

Master of Computer Science

Universitetet i Stavanger

The Department of Electrical and Computer Engineering

By

Yinjun Wu

June 2010

Abstract

This paper presents the mechanism and implementation of dynamically redun-

dancy scaling for client load dynamics. The scaling is about the control of max-

imum and minimum counter of replicas which provide identical service in a dis-

tributed computer networks. This mechanism is managed under a Distributed Au-

tonomous Replication Management (DARM) framework which is of autonomous

fault treatment supporting and builds upon Spread group communication system.

DARM, like the other existing fault tolerance frameworks, has good solution on

fault detecting and toleration aspects; apart from that, DARM is set to always keep

recovering a faulty service in a active manner and the recovery is done by generating

new replica of the same service in another machine which locates within the same

network. The objective of DARM, which is focus more on the improvement of

dependability of the system, makes DARM novel among all similar frameworks.

The objective of this dynamical redundancy scaling mechanism built on DARM

is to actively and efficiently control the maximum and minimum counter of the

replicas in an appropriate state. The maximum and minimum counter will di-

rectly effect on the identical-service-providing replicas within a distributed net-

work. When a host is observed with higher CPU load value than a preset thresh-

old, new replicas will be automatically created; similarly, when a host is viewed

with lower CPU load, it will be considered to kill if it has not achieved the least

replica number that required among the whole network.

This scheme allows system vary the replicas number according to the situation

of the service loading all over the network: A new replica can be added to share the

burden of whole; an existing replica can be removed to avoid unnecessary resource

consuming. The advantages of this schema are: (i) comparing with static control,

a dynamic one is more practice-oriented; it has better flexibility for the realistic

service loading in a network; (ii) possibility of host crashed due to high loading

on top of it is reduced, the principle behind this mechanism is to always balance

the existing loading over all active hosts. The approach has been evaluated as an

ii

efficient mechanism support to the current DARM framework.

A C implementation of this dynamic control mechanism has been accomplished

and introduced in this paper, as well as its testing evaluation. The performance is

positive and effective.

iii

Acknowledgments

First and foremost, I would like to thank my supervisor, Hein Meling, the associate

professor of the Department of Electrical Engineering and Computer Science at the

University of Stavanger who provided me with useful and valuable guidance along

with every stage of my thesis implementing period, as well as the paper work. His

idea and guidance broaden my understanding of distributed systems which means

a lot to me.

I shall extend my thanks to Joakim L.Gilje, the author of DARM, as well for

his kindness and help on my thesis. He made very clear explanation on the key

functions in DARM which is necessary for me to use in my thesis and he also

provided very useful error analyze during the work.

Last but not least, I’d like to thank Theodor Ivesdal, the administrator of

Unix Lab in the university, who offered a very good environment for me to write,

compile and test my thesis work; Also, I would like to thank my fellow students

who supported me a lot during the thesis working.

iv

Contents

Abstract ii

Acknowledgments iv

1 Introduction 1

1.1 DARM . 3

1.2 This paper . 3

2 Background 4

2.1 Term explanation . 4

2.2 DARM . 5

2.2.1 Spread Group Communication Toolkit 5

2.2.2 Architecture of DARM . 8

2.2.3 Replica creating in DARM 10

2.3 Redundancy Scaling . 11

2.3.1 Policy . 12

2.3.2 Static redundancy scaling 14

2.3.3 Dynamic redundancy scaling 14

3 Implementation 17

3.1 Overview . 17

3.2 Periodical collecting of CPU loading 18

3.3 Dynamic Controlling . 19

3.3.1 Message handling in libdarm 20

3.3.2 Design of dynamic control 23

3.4 Changes in Replica . 27

v

4 Test and Evaluation 29

4.1 Testing environment . 29

4.2 Experimental Result . 29

4.2.1 First testing . 29

4.2.2 Second testing . 32

4.3 Evaluation . 35

5 Conclusion 39

6 Future Work 40

6.0.1 A network load based dynamic redundancy scaling 40

6.0.2 Different type of service handling 40

Bibliography 42

vi

Chapter 1

Introduction

Distributed computer networks has been more and more involved in people’s daily

life, especially on the situation of providing distributed network services, such as

bank account management system, email delivery system, etc.. However, a sudden

disconnection between nodes in a distributed network is a latent defect, due to

the raising reliance on providing services upon distributed networks, developing

improved dependability of systems becomes a crucial goal.

A normal way to improve such dependability is to spread multiple replicas of

the same service within a geographical area. Those replicas repeat exactly the

same functions and are tightly connected to each other through a network while

each of them could present failure independently. The Distributed Autonomous

Replication Management (DARM) framework is such a self-governed fault treat-

ment framework of improved dependability characteristics. Unlike other existing

traditional fault tolerance frameworks, which a centralized system administra-

tor is present to allocate replicas to the failed ones, DARM is achieved to self-

managing localizing failures and reconfigurations as its mechanism. Apart from

that, a unique and fresh architecture is performed in DARM that not only replica

failures are detectable and tolerable, but a faulty service is always recoverable by

generating new replicas in some other hosts locate in the same distributed net-

work; And this could be always executed as long as there are available hosts to

set substitutable replicas onto which differs DARM from other normal and simple

solutions that certain amount of available replicas are needed and hopefully an

administrator can managed to replace substitution for those failed replicas before

all of them are failed.

DARM was initially inspirited by the idea and pre-work [8, 9, 7] of Hein Meling

1

CHAPTER 1. INTRODUCTION 2

and later carried on by Joakim in his master thesis [6]. The framework used in

this paper is the latest version which is implemented base on the Spread group

communication system (GCS) [5], and applies as distributed approach for service

replicas placement.

This paper will present a dynamic redundancy scaling for client load dynamics

in DARM aimed at providing a more efficient and flexible use of resources in a

distributed network through the DARM framework. Consequently, this mechanism

improves the dynamical-adjustment ability and self-adaptability of system, where

the flexibility of recourses usage and reuse perform better than a static redundancy

configuration, and it prevent a human adjustment along with the system running.

Dynamic redundancy scaling in DARM is achieved by setting up upper and lower

threshold and accumulating or reducing the maximum and minimum replicas in

the system. Thereby, the living service replicas can be regulated to the most

befitting situation to the actual state automatically and immediately.

What has been implemented in this paper is a mechanism which controls the

changing of the existing replicas for an identical service in a distributed network

under DARM framework. As it is known that a common way to keep network

service dependable is to add replicas of this service and distributed them geograph-

ically, and DARM is of such feature; however, when locating those replicas over

the network, it comes with other problems, like as how to choose the optimal host

machine to locate a new replica and how to control the existing replicas over this

network etc.. In order to achieve a better performance on controlling the identical

replicas over the network, a dynamic redundancy scaling mechanism is implement

under DARM and the principle behind this mechanism is to periodically checking

the current loading state over all host machines and make adjustment on repli-

cas when situation comes to different cases, where the gain in terms of improved

efficiency and flexibility of recourse utilization in the system.

This dynamic redundancy scaling mechanism differs from its previous version,

static redundancy scaling, in that the maximum and minimum replica number

will no longer be a fixed value but a variable one which means it will actively and

periodically checking the CPU loading of each machines locates in the network

and adjust the allowed number for replicas base on observations. This completely

control the replica number setting according to the actual loading redundancy and

bring a more efficient and flexible utilization of resources in DARM.

CHAPTER 1. INTRODUCTION 3

1.1 DARM

An autonomous Replication Management (ARM), built by Hein Meling in his pre-

vious work [8, 9], is the early form of DARM. The new architecture in DARM

has a prototype which extends the Jgroup [11] object group system and imple-

mented base on the Spread group communication system (GCS) [5]. Compare

with other similar fault treatment frameworks, DARM reduced the need of a cen-

tralized replication manager which controls the global information for all groups

while the others required one. Furthermore, DARM’s utilization of policy-based

management that supports recovery focus on toleration network partitions differ

DARM from other frameworks, as well as providing the feature of self-healing and

self-configuration in DARM.

1.2 This paper

This paper will begin with an introduction and background to the framework

DARM and the dynamic redundancy scaling schema which explain an essential

knowledge. A detailed explanation of the implementation will be given and an ex-

periment result will be performed and evaluated after the detailed implementation

description. Finally, conclusion will be drawn base on the work and suggestion to

future work will be discussed after conclusion.

Chapter 2

Background

In this chapter, some essential knowledge will be presented. First, it will introduce

some terms that tightly relevant to the work in DARM; Then, an explanation of

DARM will tell something about the communication toolkit DARM relies on,

the mechanism inside of DARM and so on; finally, a background of the dynamic

redundancy scaling, together with the comparison of the static configuration, will

be discussed.

2.1 Term explanation

Some terms that relevant to the work are explained as follow:

1) Distributed network Distributed network is a distributed computing struc-

ture where its network resources, like as switching facilities, programmes, proces-

sors and data, etc., are spread out through a geographical area and locates on

more than one computer.

It prioritizes to the low-cost computer power on the desktop [3], applications

and date operations of distributed network are more efficient than local a lot of

servers such as area network servers, web servers, regional servers and so forth.

A client/server computing is a popular trend in the distributed network/net-

working which refers to a view that a user can get a certain capabilities from a

client computer while this client computer can request others from other computers

that provide services for the clients. [1]

2) Fault tolerant Fault tolerance, or graceful degradation as it sometimes called,

is the property that designed to enable a computer-based system or a component

to continue a proper operating by a sort of ’back-up’ component or programme

4

CHAPTER 2. BACKGROUND 5

when a failure happens to some of it so that it won’t be breakdown in these cases.

It is not only a property of individual machines but delineate the rules by which

they interact as well.

A fault tolerance could be achieved by software, embedded hardware or a com-

bination of those two and especially chased by high-availability or life-critical sys-

tems. The decrease is propotional to the severity of the failure if a fault-tolerance

operation quality decreases at all, as compared to naively-designed systems which

even a small failure will bring a total breakdown. [2]

Usually, there are some essential characteristics that fault tolerance requires

which are: a) no single point to repair; b) isolated faults from failed component;

c) restrain fault from propagated failure; d) availability of reversion. Besides,

fault tolerant systems are featured in either planned or unplanned service outages

aspects.

Two keywords, ’replication’ and ’redundancy’, are addressed as the fundamen-

tal characteristics of fault-tolerance by replication. Replication refers providing

several identical instance of the same system, leading requests to all of them in

parallel and picks the right result base on a quorum; and redundancy represents

providing several identical instances of the same system and exchanging to one of

the remaining instances when there is a failure. [2]

2.2 DARM

The Distributed Autonomous Replication Management (DARM) framework is a

self-governed fault treatment framework which is of the following features: 1) Self-

manage localizing failures and reconfiguration. 2) Able to detect and tolerate

replica failures. 3) As long as there are available hosts to set substituted replicas,

a faulty service will be recovered by generating new replicas in other host sets in

the same network.

It is an open source framework and supported on top of Spread group commu-

nication system. DARM focuses on deployment and operational aspects aimed at

an improved dependability of system through a fault treatment mechanism.

2.2.1 Spread Group Communication Toolkit

As mentioned above that DARM is built on the idea of group communication

which was realized on developing on top of Spread GCS which provide group

CHAPTER 2. BACKGROUND 6

Figure 2.1: Three host with Spread Daemon running in a single LAN

membership services to DARM. Spread is an open source toolkit that provides

high performance messaging service that is resilient to faults across local and wide

area networks. [4] It enables one or more clients that shared the common interests

join into a group aimed at communication and be responsible for certain reliability

properties to the services it provides for communication. In short, DARM needs

Spread for communication support.

Spread is developed by C and the latest version, Spread 4.1, is used in the work.

It contains two parts in Spread, daemon which is used to forward messages between

Spread clients and library, libspread, which is used to developing clients. The

library contains functions that are able to connect to the daemon and communicate

with other Spread clients.

In this paper, each host in the network must have one Spread daemon running

on top of it which is a typical phenomenon in a Spread network, however, it is

not required that there should be a Spread daemon running on each host in the

distributed system.

A Spread network are always contains several host as seen in Figure 2.1, each

of them has a Spread daemon running on it whileas the Spread Client, ”Client” in

the figure, get connection with it through functions provided by libspread. There

is usually one Spread daemon on each host but it can be several Spread Clients

connect to the same Spread daemon. Within the same network, a Spread daemon

communicates with its neighborhoods daemons by utilizing broadcast or multicast

CHAPTER 2. BACKGROUND 7

Figure 2.2: Spread Daemon’s communication between Sites

traffic. Like the Host A and Host B in Figure 2.1, to use broadcast or multicast

in Host A to communicate with Spread daemon in B depends on the capabilities

of the LAN environment that A and B situated in.

A real distributed Spread network may have the possibility to span several

networks. Each sub networks will have the daemons inside of it communicate

with each other as discussed above while the communication between two Spread

daemon which locate in two different network segment, like Host A and B in

Figure 2.2, will be able to made by unicast over a WAN connection. In this case,

a master daemon in each sub network, as Site 1, 2 in Figure 2.2, will use unicast

to send messages to other network segments/sites and this master will present on

behalf of all daemons locates within the same segments/sites as it is to transmit

all messages received from other segments/sites onto its local one. Like as Host B

in site 2 shown in Figure 2.2, it will manage messages sending out and receiving

on behalf of itself and Host C in Site 2 with another master daemon, Host A, in

Site 1. Unicast is also responsible for the communication between libspread and

daemon and the library, libspread, is responsible for connection to daemons locates

on machines/hosts.

If a master daemon, let’s assume Host B here in Figure 2.2, crashes or failed,

that each daemon in the same sub network with Host B will be able to take over

the responsibility that Host B used to have, which means that each sub network

should be access to the internet rather than only master daemon does.

CHAPTER 2. BACKGROUND 8

2.2.2 Architecture of DARM

There are a lot of terms and definition defined or used in DARM. The machines

or computers that connected with each other in a distributed system through a

network are called nodes or hosts and different set of services like application

services will be hosted in the form of replicas on top of those nodes or hosts. A

collection of such nodes can be comprised of one or more subsets that each subsets,

also known as segments, sites or partitions, will contain one or more node. The

partitions present the different geographic area of the network and each partition

will have all the nodes/hosts inside of it within an identical local area network

(LAN). Different type of replicas, which on behalf different of services, may run

on the same node however two identical types of replicas should not be able to

running on the same node because it will increase the risk of this service if this

host suddenly failed which was something that DARM trying to avoid to. Also

it is important to notify that all the clients in the following paper refer to the

Spread/DARM client which is service replicas or replicas as well.

Figure 2.3 presents a brief deployment in DARM. As it is mentioned above,

a Spread network can span into several partitions, in DARM such as site 1 and

site 2 in Figure 2.3; and there might be several hosts inside of each site, such as

Host 1, 2, 3 in site 1 and Host 4, 5, 6, 7 in site 2. Each host may have different

types of replicas running on top of it, such as Host 3 has replica type A and type

B running on top of it.

A factory is required on each host in DARM because factory is the one who

make installation of service replicas available upon requests, as well as the checking

availability of hosts and tracking load on the local machine. All the individual

factory that locates on each host in the system get into a factory group and one

of the factory will become the factory leading of all the factories like the factory

on Host 2 is the factory leader in Figure 2.3.

Those replicas that provide the same service are point towards the same service

group, such as A1, A2 and A3 are the replicas for service A while as the B1, B2,

B3 and B4 are for service B. The same type of replicas getting into a group

which providing an identical service to the client called a service group, like as the

Service A group and Service B group in the figure. Each service group should have

a minimum service/replica number as the sites, which means the service/replica

number a service group holds will be equal or greater than the site number, such

as the situation in Figure 2.3: two service group and two sites. It is to be noted

CHAPTER 2. BACKGROUND 9

Figure 2.3: Brief deployments in DARM (adapted from [10])

that same type of replicas should not be locate to the same host, e.g. A1 and A2

should locate in two different host, Host 1 and Host 2 in this figure, other than

the same one.

As already mentioned in the previous content, DARM is running on top of

Spread, while Spread has a library, libspread, DARM also has its library, libdarm.

Intended to replace libspread from a client’s view as libdarm is, it links to the

clients on top of libspread to achieve goal of autonomous operation, as shown in

Figure 2.4.

It’s easy to see that the a DARM client-spread daemon relationship differs

from a Spread client-spread daemon one from adding a libdarm ’layer’, that is the

DARM library, between the client and the libspread and this library is present-

ing on half of DARM upon a lot of issues such as removing redundant replicas,

initializing required system reconfigurations, collocating replicas etc.

A factory is required to run on each host in DARM and it is an individual

separated programme that usually starts after running Spread but before replica

services due to its dependency to Spread Daemon. Factories are responsible for

the following tasks: creating new replicas; keep tracking the running/alive factories

CHAPTER 2. BACKGROUND 10

Figure 2.4: DARM Client-Spread Daemon relationship

and their geographical location of the network sites; keeping track of CPU load of

machines and the availability of them. The factory leader, also known as factory

master, is the one who is responsible for making decision on where (which site)

and whom (which host) a new replica should be located on and this decision is

made based on the information factories get.

The relationship between libdarm, the library of DARM, and factories in

DARM is that factories/factory group will receive requests of creating replica from

libdarm and libdarm attaches information such as hosts that running a replica and

the living replica numbers in each site to help factory making decision on locating

a new replica.

2.2.3 Replica creating in DARM

When a host crashes or something alike happens, a replica needs to be created in

order to compensate. libdarm is the one who raise a replica request to the factory

group, which is the whole number of factories locates in different hosts, on demand

and factory leader will make decision on which (which site) and whom (which

host) a new replica should be located on, together with the creating request, some

attached information which help factory make decision for the creating mentioned

above will be sent to all factory as well, as shown in the left dotted pane in

Figure 2.5. All the attached information, that is the currently running-replica host

and alive replica numbers in each site, will be considered as active configuration

CHAPTER 2. BACKGROUND 11

Figure 2.5: Replica Creation

and kept in each factory member in the factory group because every factory has

the chance to be selected as a new factory leader if the current one suddenly

crashes/fails.

After the factory leader decided the optimal host to locate the new replica

which is calculated according to a static priority list, it will send a private message

directly to the factory running on that host to realize the request. As the right

dotted pane in Figure 2.5 indicates.

A replica placement policy, which is implemented in the factory, is ruling the

selection of optimal host to set new replica onto. The main idea of this policy is

to find a site with the least number of replicas of a certain type while, at the same

time, select one host in this site with the least loading and has no such service

running on top of it already. Following this policy, the number of replicas in each

site will be balanced distributed so that the possibility of recovering will be lessen

when a network partition happens, also two replica of an identical service location

on the same host is avoid as it should be, as well as the ’least-burdened’ host will

be preferential selected when it meets the foregoing criteria.

2.3 Redundancy Scaling

In DARM or other similar framework/system, replicas are always spread over a

geographical area and connect with each other within this network as a method

to survive from a failure of one replica independent of the others. The number of

CHAPTER 2. BACKGROUND 12

replicas is varying from one to another due to the different scale of the network

and the whole service loading it sustains. Usually, new replicas created at the

time when existing replicas are not enough to hold the current loading which is

in order to balance the service loading distributed all over the network, however,

the service loading is always changing in practice which requires an adjustment

to modify the numbers, and that’s why a redundancy scaling is to be made to

DARM.

As explained above, the redundancy scaling in DARM is about the replica con-

trolling corresponding to different incoming cases. The purpose to do redundancy

scaling is to use the resources over the network in a more efficient way, and control

replica creation, placement, removing etc. as it is planned.

2.3.1 Policy

1) The fault treatment policy A fault treatment policy united with each service

in DARM aimed at scaling the expected service redundancy level. Its objective

is to sustain service availability in all sites/partitions, as it is described in Figure

2.3, the replica number in each service group, such as service A group, service B

group, should be at least equal to the sites number, just as how it is called, Keep

Minimal in Partition. This policy is implemented in the DARM library, libdarm,

by utilizing factories to create replacement replicas upon requests while a maximal

and minimal redundancy level for services is required as input of this policy.

2) The Replica Remove Policy It would become messy if replicas only be added

to a system, thus a proper removing of excessive replicas is quite necessary. The

excessive replica exists due to the addition of replica when a partition happens.

To be specifically, when a distributed network has become apart/disconnected

from each other due to some reason, a fault treatment mechanism will install

more replicas in some of the sub networks/partitions in order to keep every sub

network/partition a minimal replicas to meet the minimal redundancy level; Once

the disconnection has been solved, that is the parted partition merged back to the

network, it may occur the situation that the total amount of replicas of an identical

service has been far more than the maximal redundancy level which indicates a

removing action to be processed. This remove policy is achieved in the DARM

library, libdarm.

Figure 2.6 describe the whole procedure alone with replica removing after par-

titioning, assume a network contains six hosts as Host 1-6 in the figure and three of

CHAPTER 2. BACKGROUND 13

Figure 2.6: Replica creating after partition and removing after re-join

them have a certain type of service replica running on top of it, for this network,

the minimal replica redundancy level is 3 while as the maximal is 5. For some

reason, a network disconnected and become two smaller networks, which is Host

1, 3, 5 and Host 2, 4, 6, together with the replicas running on top of those Hosts as

before disconnection. Then, it is discovered that the minimal replica redundancy

level hasn’t been reached at both partitions, which is not allowed in the system, so

that each of them will create more replicas in order to fulfill the minimal replica

redundancy level which is three replicas in each partition; Later on, the discon-

nection has been solved so that two partition can merged back together as it was

and it can be easily seen that the difference between origin state and re-join state

is that after re-join, there are more replicas in the network and it is more than the

maximal redundancy level, here is 5 in Figure 2.6, which is not allowed neither, at

this time, libdarm will detect excessive replica and remove it. libdarm will only

remove one replica each time, which means if there are more than one excessive

replicas exists in the system, libdarm will remove it one by one.

CHAPTER 2. BACKGROUND 14

2.3.2 Static redundancy scaling

As it is mentioned in different policy above, libdarm has the maximal and minimal

redundancy level to control the number of replica within an expected range. The

maximal and minimal redundancy level are required input in the static redundancy

scaling in DARM and the value of these maximal and minimal redundancy level

are fixed in the system.

When a client service initials in DARM, libdarm will gradually add replicas

to the system to achieve the minimal redundancy level, once this is achieved,

the replica number will be back and forth between the minimal and maximal

redundancy value. The purpose for setting a lower and higher redundancy level

to the system is that if a partition happens to the network, some replicas will be

created in order to maintain the client services in each partition, however, those

new added replicas will not be removed if a redundancy level is not performed, so

that when a partition comes next time, some more replicas will be created again

as a cycle begins, thus more and more replicas will be created but never removed

in this system which will bring a big chaos to the system or lead it to a messy

situation. Similarly, if a partition happens to a network, client services will not be

maintained so as to provide to users if it doesn’t meet the qualification that there

are replicas in each partition, thereby, a minimal redundancy level is required to

force a least number of replicas exists in the system.

DARM uses replicas to cope with the risk of error/failure that happens to

the system so that the administration to replicas is crucial, redundancy scaling in

DARM plays an important rule to help controlling replicas as it is expected to be

accordingly.

2.3.3 Dynamic redundancy scaling

What is implemented in this paper is the dynamic redundancy scaling, compared

to the static one discussed above, it is aimed at adjusting the living replicas spread

over the distributed system accordingly. The reason that the dynamic redundancy

scaling presents is the system loading of the client services are varying from time

to time, a pre-set or a static redundancy level could hardly fulfill the requests

of various changes happens upon a real situation, a better way to always arrange

expected and proper replicas over the distributed system is to make the adjustment

alone with the system running which is the utilization of dynamic redundancy

control.

CHAPTER 2. BACKGROUND 15

The principle for a dynamic redundancy scaling is to arrange a right number of

replicas according to different situations: when the loading of an identical service

on a host become increased, it raises the risks and damages if a sudden failover

happens to the host, which creating more replica on some other host will help

relieve the ’burden’ that carry on the foregoing host; when the loading of a type of

service is observed low, it occupies spare resources more than it necessarily need,

which removing some low-loaded replica among the existing ones will save and

prevent recourse being used indiscriminately.

The element or the factor that effects the dynamic redundancy scaling may be

various choices, like as the CPU loading of each host in the distributed network,

the network loading or combination of both. Those elements/factors are the reason

replica’s number changes.

Although a redundancy scaling can be dynamic, it doesn’t mean that it will lose

control, since the maximal and minimal redundancy level is adjusting accordingly

as well in order to range the number of replicas within a reasonable area. Also,

to decide details like where a new replica should be created, which replica should

be removed, and is one being created/removed will help the whole system etc. are

very important in a dynamic redundancy scaling mechanism as it needs to perform

properly along with the changes happens to the system.

Compared to a static redundancy scaling, dynamic scaling is more flexible and

has more efficient use of the network resources. The drawback of static redundancy

scaling is that the lower and higher threshold is static pre-set, it will not easy to

estimate a proper value for both of it before actually running such service in the

system, even if it has been tested and adjusted already, the situation in a real time

performance varies from time to time, it may have a plenty of service requests at

the a time while it could be evenly distributed along the system running period,

and it is not always the same; In this way, a dynamic redundancy scaling stands

out its strengths, it adjust the number of replicas according to the current situation

which means no matter how the pre-defined minimal and maximal level is, it could

always make modification base on the current demands. This adjustment will not

be performed in a sudden way but will be done gradually which means no matter

creating or removing replica, it always processes one after another so that the

trend of the loading will be balanced follow a smooth curve.

However, what the static and dynamic redundancy scaling in DARM has in

common is that they both have a very good schema on removing replicas. Remov-

ing replicas is not as adding replicas, once a request is arrived will a new replica

CHAPTER 2. BACKGROUND 16

be added, it needs more analyze on whether a replica should be removed or not,

e.g. if a replica is the only one replica exist, then it shall not be removed.

Chapter 3

Implementation

3.1 Overview

This dynamical redundancy scaling is implementedin standard C, the apparent

reason is that the previous work of DARM and its communication toolkit Spread

toolkit were implemented in C while the underlying cause is that C is a language

which deals with memory directly, it has better performance and effect on modi-

fying, editing other programmes.

The dynamic redundancy is measured on the loading situation of hosts all over

the distributed network. In another word, it is aimed at maintaining a proper

and befitting number of replicas of a client service by adjusting the maximum and

minimum redundancy level base on observing the CPU load of current host-group

members.

The main principle behind this redundancy scaling is to add more replicas

when high loading of CPU is observed while remove excessive replicas when the

CPU load is low. The purpose of introducing this redundancy scaling to DARM is

that it will always keep a balanced working environment of loading over all group

members in DARM which certainly prevent host from a heavy-load failover and,

at the mean time, take full advantage of resource in the system.

Compare with a static redundancy scaling, there are more flexibilities added

to the DARM in a dynamic one. Not only will the alteration of replicas upon

partition be covered, but the situation under a relevant higher/lower loading of

host has been taken care as well.

17

CHAPTER 3. IMPLEMENTATION 18

3.2 Periodical collecting of CPU loading

In DARM framework, it is able for factory to updating and storing the CPU load

of the host that the factory running on top with. As mentioned above, this CPU

load value is concerned as one of the ’attached’ information which will help factory

leader make a decision on where and which host will be set a newly created replica.

A unix system command, loadavg, is used here in order to read an average load

of the last 5, 10 and 15 minutes of the CPU. These three CPU load value are

stored in an array named double load in a structure called darm client defined in

common groupManagement.h.

In DARM, any change of the current group membership, also described as the

change of the view/group view, will lead an updating of the CPU loadings of all

the factories in the network, like as, exchange of a new factory leader, a newly

created/existing replica join-in/leaving, a failed host, etc. It is also happened

when initializing factories on hosts, each factory will update its CPU load value,

store it into an array and multicast it as a message to the factory leader. This

broadcasting updating load function is factory send update loadavg which is de-

fined in the factory messageSenders.c and triggered in factory.c. When factory.c

being executed at the initialization of starting a factory on host, this function will

be triggered to carry out its duty.

When the updating-load message has been received by the factory leader, a

loadAvgMessage function will process the content of received message, pick up

the CPU loading value and store it in another array called load.

In order to make this message multicasting and processing after receiving such

message, an always true loop is used here to invoke factory send update loadavg

periodically. However, it could not just execute this loop in the original thread,

since this periodical CPU load reading requires a separate thread to be in charge of

it. This thread is defined as ’thread’ in factory.c and can be started by start cpu up-

date fork. This start cpu update fork function will give a feedback after starting

this thread. Listing 3.1 shows the periodical call of the CPU load value in factory.c.

Listing 3.1: Periodical Reading of CPU loading

void thread (mailbox mbox) // de f i n e thread

{
while (1)

{
f a c to ry s end update l oadavg (mbox) ;

s l e e p (3) ;

CHAPTER 3. IMPLEMENTATION 19

}
}
int s t a r t cpu upda t e f o r k () // execu te thread

{
pthread t id ;

int r e t =0;

r e t=pthr ead c r ea t e (&id ,NULL, (void ∗) thread ,NULL) ;

i f (r e t !=0)

{
DEBUG(”Create pthread e r r o r !\n”) ;

e x i t (1) ;

}
return id ;

}

p r i n t f (” s t a r t i n g cpu update f o rk \ n”) ;
i f (s t a r t cpu upda t e f o r k (mbox)==0)

p r i n t f (” cant s t a r t cpu update f o rk \n”) ;
else

{
p r i n t f (”cpu update thread s t a r t !\n”) ;

}

3.3 Dynamic Controlling

As it is mentioned, the dynamic redundancy is aimed at a more flexible controlling

of the replicas numbers in DARM, which has a very tight connection with the usage

of native method to the system, that’s why a standard C language programme can

implement it better than other languages.

In factory, the group members are all factories in the network and they use

broadcasting message to contact with each other; similarly, in libdarm, the group

members are replicas and there are messages broadcasting in libdarm as well. In

this dynamic redundancy scaling, a message aimed at reading the CPU load value

from the host where replica locates sent out is required, and it is very similar with

how factory read the CPU load from the host.

Besides, a mechanism on how it is actually raise up or draw down the redun-

dancy level is also necessary and the relationship between redundancy levels and

CHAPTER 3. IMPLEMENTATION 20

the CPU load is also required in the dynamic redundancy scaling implementation.

3.3.1 Message handling in libdarm

libdarm is the library of DARM, it is not only providing the functionality that

available from Spread, but configuration handling in DARM as well. Functional-

ities are distinguished by public and private; public functionalities refers to those

functions that available for the application-developing usage while the private ones

refers to the functions that for the internal or native method usage. The former

one was from the libDarm.c and the later one was from the libDarm private.c.

In libDarm private.c, private function such as replica creating, group initial-

izing, message handling, etc. are provided. However, it doesn’t handle anything

from the memory reading which is important in the dynamic redundancy scaling.

To achieve CPU reading in libdarm, it needs two threads to control two different

tasks: one thread is responsible for a periodical reading of the CPU load from

the machines that replicas locate on while the other one is in charge of making

adjustment for the redundancy level base on the change of CPU load responding

from those machines. The second thread will be mentioned in 3.3.2 while the first

one is similar to what was implemented in factory. In listing 3.2, the threads were

presented, and the start cpu update fork function starts a thread called cpu thread

which will broadcast a message send update loadavg periodically.

Listing 3.2: Thread for reading CPU loading in libdarm

void cpu thread () // de f i n e cpu thread

{
while (1)

{
send update loadavg () ;

s l e e p (3) ;

}
}
int s t a r t cpu upda t e f o r k ()

{
pthread t id ;

int r e t =0;

r e t=pthr ead c r ea t e (&id ,NULL, (void ∗) cpu thread ,NULL) ;

i f (r e t !=0)

{
DEBUG(”Create pthread e r r o r !\n”) ;

CHAPTER 3. IMPLEMENTATION 21

e x i t (1) ;

}
return r e t ;

}

The send update loadavg function plays the same role as factory send update -

loadavg does in factory which is multicast a message to all group members aimed

at reading the expected CPU loading, shown in Listing 3.3. Noted that, this

requirement message will not be sent to factory leader but libdarm group members,

here refers to the whole replicas. The reason for changing the receivers in the

message is that factory and libdarm are not synchronized with each other, they

both can read the CPU load however they will not effects on each other if one of

them has updated their CPU load value ’list’. The only way to make sure that

the CPU load value read by factory and libdarm are the same is that they both

do the load reading from the memory.

Listing 3.3: Multicasting messages to libdarm members to get CPU loading value

void send update loadavg () {
double loadavg [3] ;

char msg [1 2 8] ;

int msg length ;

i f (get loadavg (loadavg , 3) != 3) {
ERROR(”Fa i l ed to r e t r i e v e loadavg ”) ;

}

msg length = snp r i n t f (msg , 128 , ”%.2 f %.2 f %.2 f ” , loadavg [0] ,

loadavg [1] , loadavg [2]) ;

i f (msg length > s i z e o f (msg)) {
ERROR(”Straaaange loadavg s i z e s ”) ;

}

SP mult icast (∗ libdarm mbox , RELIABLE MESS, l ibdarm group ,

DARMLOADAVG, msg length , msg) ;

}

Since each type of replica could only be locate one at most on each host, so

that the CPU load feedbacks from all the replicas represent the CPU load from

different host in the network, which means there won’t be two CPU value coming

CHAPTER 3. IMPLEMENTATION 22

from the same one.

When the initialization of the DARM group starts, two threads discussed above,

will be started along with the initializing, see listing 3.4. In this way, the sending

out message on demand of CPU load has been completed.

Listing 3.4: Starting thread in libdarm

int r e s= Darm dynamic contro l thread () ;

i f (! r e s)

p r i n t f (”dynamic c on t r o l thread s t a r t s up !\n”) ;
r e s=s t a r t cpu upda t e f o r k () ;

i f (! r e s)

p r i n t f (”cpu update s t a r t up !\n”) ;

f r e e (message) ;

Once the replicas, that is the libdarm group members, receive such request

message, it will response it by invoking function loadMessage, and it is defined as

a ’case’ named as DARM LOADAVG in the function DARM Handle Message in

libDarm private.c. This DARM Handle Message function verifies a series ’cases’

and gives specific action command to each case.

Function loadMessage, shown in listing 3.5, presents the operation upon a

CPU loading value required message which will write the CPU load into another

array called load, just as how it does in factory that discussed in 3.2.

Listing 3.5: Operation upon requests of CPU loading value

void loadMessage (char ∗ sender , char∗mess) {
darm c l i en t ∗ rm = (darm c l i en t ∗) group get member (sender) ;

i f (rm == NULL) {
WARNING(”Got LoadAvg from unknown member”) ;

}

s s c an f (mess , ”%l f %l f %l f ” , &rm−>load [0] , &rm−>load [1] , &rm−>load

[2]) ;

p r i n t f (”On message to modify s e r v e r : %s \n” ,rm−>name) ;

p r i n t f (” s e t load [0] i s %f \n” ,rm−>load [0]) ;

}

CHAPTER 3. IMPLEMENTATION 23

3.3.2 Design of dynamic control

When the message, which contains CPU loading value request, sent out and pro-

cessed after receiving, it means that the CPU load from different hosts in the

network is now available for adjusting the redundancy level.

Tow extern variables are defined in the libdarm private.h, which is libdarm min -

replicas and libdarm max replicas; libdarm min replicas presents the minimal repli-

cas should be exists in a partition while the libdarm max replicas presents the

maximal ones that one partition could have. That is to say the living replicas ex-

ist in a network should be more than or equal to the libdarm min replicas and less

or equal to the libdarm max replicas. The reason to have the libdarm min replicas

is that each partition will have the opportunity to continue providing client service

in case a partitioning happens while the reason for libdarm max replicas is that

the excessive replicas should be removed after disconnected partition re-joining

back together, otherwise the total replica number will be grown rapidly without

control.

The architecture of this dynamic controlling effect on the replicas is about the

changing of libdarm min replicas and libdarm max replicas according to an actual

CPU loading value, as it is shown in Figure 3.1. It could be seen from figure 3.1

that a pre-set upper threshold and lower threshold is defined in the system in

order to keep CPU loading value in a proper and secure range; Once the CPU

load value has been retrieved from the host through replicas, it will be put into

a comparison with the pre-set threshold mentioned above; For different result of

the comparison will lead to a different adjustment on the previous maximal and

minimal value. The start sign, ’*’ refers to the least minimal number of replicas

should be maintained in a system, no more replicas should be removed if it reaches

this number.

The pre-set upper threshold and lower threshold is chosen as 100 and 0 in this

implementation which simulated from a real CPU consuming range. Some rules

has been setting in order to make the setting of the upper and lower thresholds:

i) the upper threshold should not be above 100 or below 0; ii) the lower threshold

should not be more than 100 or less than 0; iii) the lower threshold should not

be greater than the upper one, or vice versa. These rules were set according to a

common knowledge in logic.

A function called need modify, presented in the listing 3.6, is utilized to provide

a modification value to the original maximal and minimal value. The function

CHAPTER 3. IMPLEMENTATION 24

Figure 3.1: Architecture of dynamic control in redundancy scaling

compares the CPU load value which stored in array ’load’ with the upper and lower

threshold, note that this threshold could be manually defined in the programme.

If the load is greater than the upper threshold, a modification value ’1’ will be

returned; if the it is less than the lower threshold, a modification value ’-1’ will

be returned; if it is in the interval between the lower and upper threshold, a

modification value ’0’ will be returned. Note that the CPU load is not a single

value but an array which contains three CPU average load of the last 5, 10 and

15 minutes, in this implementation, the latest one, that is the one of the last 5

minutes, will be taken into all forms of calculation.

Listing 3.6: Modification value calculation

int need modify (int load) {
int r e t v a l =0;

s e t upper (2) ;

s e t l owe r (1) ;

i f (load>upper thresh)

r e t v a l =1;

else i f (load<l owe r th r e sh)

r e t v a l=−1;
return r e t v a l ;

}

After a modification value calculated from the need modify function, it will

be added to the exsiting libdarm min replicas and libdarm max replicas in order

CHAPTER 3. IMPLEMENTATION 25

to modify the replica number to a proper one, and another function, on modify,

is responsible for this task, see listing 3.7. A notice will be printed out on the

screen according to different modification value it gains from the need modify

function while at the same time, this modification value will be added to the

current max and min replica value, so that a new defined maximal and minimal

replica redundancy level will be created since then.

Listing 3.7: Modification on the min/max replica level

void on modify (int modi fy va l)

{
i f (modi fy va l==0)

p r i n t f (”no need to modify max and minum r e p l i c a

number\n”) ;
else i f (modi fy va l==1)

p r i n t f (”need to add 1 r e p l i c a \n ”) ;

else

p r i n t f (”need to minus 1 r e p l i c a \n”) ;
i f ((l i bdarm min rep l i c a s <=2) | | (l ibdarm max rep l i cas <=4))

{
p r i n t f (”max and min value cant be modi f i ed f o r s a f e t y

reason \n”) ;
e x i t (0) ;

}
l i bda rm min r ep l i c a s=l i bda rm min r ep l i c a s+modi fy va l ;

l i bdarm max rep l i ca s=l ibdarm max rep l i ca s+modi fy va l ;

p r i n t f (”max value i s %d , min value i s %d\n” ,

l ibdarm max rep l i cas , l i bda rm min r ep l i c a s) ;

}

As it is mentioned in 3.3.1, a separate thread shall be taken responsibility of a

dynamic control. This dynamic control thread is implemented as Darm dynamic -

control thread in dynamic control.c, presented in listing 3.8, as well as another

control thread which send messages to every replica in the libdarm and check

their CPU loading by utilizing functions introduced above.

In control thread, the total number of the group member is required, so that

a loop will start from the first one to the last; the loop will exam each group

member’s CPU loading, once it finds a one bearing a CPU load higher than the

upper threshold or lower than a lower threshold, it will jump out of the loop and

go to the modification procedure upon the current libdarm max replicas value and

libdarm min replicas value while it will do nothing if every one of them has a CPU

CHAPTER 3. IMPLEMENTATION 26

load in the interval between the upper and lower threshold. Note that this loop

will not wait the entire member, who has a higher or lower CPU loading according

to the two thresholds, finds out but will quite to modify the redundancy level as

soon as it finds one, this is because that the number of group member, which has

a higher or lower CPU load than the threshold, is not concerned as an important

matter, but the existence of such group member is the matter that needs to be

taken care of.

Listing 3.8: Dynamic control thread in DARM

int Darm dynamic contro l thread () // execu te

Darm dynamic contro l thread

{
int r e t v a l =1;

pthread t id ;

r e t v a l=pthr ead c r ea t e (&id ,NULL, (void ∗) cont ro l th r ead ,NULL) ;

return r e t v a l ;

}
void c on t r o l t h r e ad () // de f i n e c on t r o l t h r e a d

{
while (1)

{
s l e e p (3) ;

// send message to every r e p l i c a

int number group=group get n members () ;

int load ;

int modi fy va l =0;

int i ;

for (i =0; i <number group ; i++)

{
darm c l i en t ∗rm=group get i th member (i) ;

{
p r i n t f (”name : %s , load value

i s %d\n” ,rm−>name , (int)rm

−>load [0]) ;

modi fy va l=need modify ((int)rm−>load

[0]) ;

i f (modi fy va l !=0)

break ;

}
}
on modify (modi fy va l) ;

}

CHAPTER 3. IMPLEMENTATION 27

}

The way to name all those functions in this implementation is followed by the

rules of how the existing function naming themselves: i) usually an underline ’ ’

was used as a link between words in the same name so as to give more readable

information to a function name, such as cpu thread, start cpu update fork; ii) the

prefix ’ DARM ’ is used to notify a private function in libDarm private.c, such

as Darm dynamic control thread; iii) if two words are not separatable with an

underline in the middle, then capitalize the first letter of the second word, such as

loadMessage. Following the existing rules will not only make newly added code

a better integration with the existing one but will also be more convenient for

further modification.

3.4 Changes in Replica

The maximal and minimal replica number has been set as a dynamic one in the

above implementation which will lead an actual increasing or decreasing of the

current living replicas in the network, or it won’t change anything of the current

situation.

A function called DARM Master Evaluate Redundancy is in charge of doing

creating or killing replicas in libDarm private.c. A DARM Evaluate Redundancy -

Thread thread is defined so that DARM Master Evaluate Redundancy could be

executed. Different situations were discussed in function DARM Master Evaluate -

Redundancy: i) if the group member, that is the living replicas in the group, is

greater than the libdarm max replicas, a libdarm redundancy kill client value will

be set to ’1’ and ’0’ if the group member is less or equals to the libdarm max replicas;

similarly, ii) if the group member is less than the libdarm min replicas, a lib-

darm redundancy create client value will be set to ’1’ and ’0’ if it is greater than

or equal to the libdarm min replicas.

This libdarm redundancy kill client and libdarm redundancy create client value

will be analyzed according to different cases in the DARM Evaluate Redundancy -

Thread. When it is ’1’ for the libdarm redundancy kill client, function DARM Kill-

Client will be invoked to remove one replica; when it is ’1’ for libdarm redundancy-

create client, function DARM Create Client will be invoked to create a replica.

When it is ’0’ for libdarm redundancy kill client or libdarm redundancy create client

, nothing will be done to the replicas. DARM Kill Client and DARM Create Client

CHAPTER 3. IMPLEMENTATION 28

are both implemented in libDarm private.c in the previous work of DARM.

Because the value of libdarm min replicas and libdarm max replicas are vary-

ing time from time, the result of libdarm redundancy kill client and libdarm redun-

dancy create client will be changing along with them which will lead to a replica

creating or removing or nothing happened in DARM, as described in figure 3.1.

Since the reading of CPU loading is periodically invoked, this creating, removing,

or keep current value of replica will be triggered time by time which exactly achieve

the goal that a dynamic redundancy scaling scheme presented in DARM.

Noted that it is safer to add a replica then remove one, sometimes it is not

applicable to do so. If the target replica has reached its ’least’ number of replicas

that should be maintained in the group, then it is not allowed to removed them in

this case; otherwise, some partition will lose the capability to provide such client

service, which is something that DARM tries to avoid.

Chapter 4

Test and Evaluation

4.1 Testing environment

To test the availability of this dynamic redundancy scaling functionality, twelve

machines were used in total, illustrated in figure 4.1. All of them are running

together as a cluster in the same local area network. The Spread and factory will

be started on each of them in the beginning of any tests. This is implemented

by a shell document which executes start-spread.sh and start-factories.sh instead

of manually starting both of them on each machine. Noted that, before starting

Spread and factory, the port number should be an unique one and be identical

in the following places: Spread configuration file, factory.c and start-factory-with-

logging.sh. This starting operation will be done on one of the machines among

those twelve. If the Spread and factory are successfully started in all of those

twelve machines, it will present a notice as it is illustrated in figure 4.2.

All the standard C code implemented to achieve the dynamic redundancy scal-

ing in DARM will be compiled under linux by cmake in order to gain a libDarm.so

file and it will be used as a library. A test application used here is the test service.c

which is a simple test method to check the availability of this redundancy scaling.

4.2 Experimental Result

4.2.1 First testing

By running the test service.c, the result is illustrated as figure 4.3. Two notices

given at the very beginning of the output shows that the dynamic control thread

29

CHAPTER 4. TEST AND EVALUATION 30

Figure 4.1: Setting up of the test

Figure 4.2: Starting Spread and factory successfully

CHAPTER 4. TEST AND EVALUATION 31

Figure 4.3: First testing

and cpu updating has been started. ’set load[0]’ represent the average CPU loading

value from the last 5 minutes, as in this experiment, the value is 3.68. This 3.68

is the actual data of the CPU load, not counted as percentage form.

Some initialization values are set as follow: maximal replica number is 11 while

the minimal is 6; the upper threshold of the CPU load is 2 while the lower threshold

is 1. It could be easily observed that, a new replica is asked to be created since

the CPU load is always above then the upper threshold; as a consequence, both

maximal and minimal replica number are increasing as well.

Alone with the maximal and minimal replica number increasing, a subtle de-

crease of the CPU load has been achieve although the decreasing is rather small.

In this case, a second testing was draw in order to magnify the consequence in the

first testing.

CHAPTER 4. TEST AND EVALUATION 32

Figure 4.4: Second test with upper threshold 30

4.2.2 Second testing

In order to gain a clearer result, a simple way could be act as to magnify the CPU

loading, as well as the upper and lower threshold. To do that, it is just multiply the

origin CPU load with 100 and then re-set the two thresholds in a proper way, here

the upper and lower threshold are 30 and 20 respectively. The result of running

the test service.c after magnification is presented in Figure 4.4.

Figure 4.4 shows that an original CPU load value is magnifies from 0.37 into

37 which is certainly above the upper threshold 30, so that a new replica needs

to be created. Once new replicas gradually created one after another, the CPU

loading is slowly dropping down as a result.

In another case, if the CPU load falls in the interval between upper and lower

CHAPTER 4. TEST AND EVALUATION 33

Figure 4.5: CPU loading lay in the middle of upper and lower threshold

threshold, then it will be outline as a ’peace’ period since no replica needs to be

add or remove from the system, shown in figure 4.5. Besides, due to a large amount

of replicas existing in the system, the CPU loading value will continuously drop

down smoothly.

If the CPU load keeps going down, it will be equal or less than the lower

threshold 20 in the test, so that excessive replicas will be removed of one each

time, see figure 4.6.

Since the minimal replica number is decreasing due to the excessive replicas

removing, it will reach the ’least’ number of replicas that must be kept in the

system, in this test, 2 replicas should be kept at least. Figure 4.7 shows the result

when minimal replicas reached to 2, it could be seen that the removing is stopped

once the minimal replica number reaches two, at the mean time, the CPU loading

tends to stay in a certain range.

CHAPTER 4. TEST AND EVALUATION 34

Figure 4.6: CPU loading becoming less than the lower threshold

Figure 4.7: Minimal replicas reaches bottom

CHAPTER 4. TEST AND EVALUATION 35

4.3 Evaluation

To evaluate this redundancy scaling mechanism, a 10-time testing is deployed.

A twelve machine cluster is used here as it used in the previous testing. After

Spread and factory running on each of those machines, the CPU load value of each

machine, as well as corresponding the minimal and maximal number of replica,

will be recorded and this will be done 10 times with a random CPU consuming

service taking alone with each time; this is in order to have an average view of the

functionality of this dynamic redundancy scaling. Figure 4.8-4.9 shows the average

CPU value over 10-time testing on the 12 machines respectively. The horizontal

coordinate represents the time while the vertical represents the CPU value. The

time coordinate is presented by single units while each unit is 3 second in this case.

If the maximal and minimal replica number is taking into consideration along

with the CPU loading value, it would be presented as figure 4.10 with horizontal

coordinate representing the time elapsing and the vertical one representing the

CPU value, as well as the maximal and minimal replica number. It could tell

from the figure that: 1) When the CPU value is comparatively high, the maximal

and minimal number has an increasing trend while a decreasing trend on a lower

CPU value. 2) Although the CPU consuming of each service may vary from each

other, the CPU value itself has a trend to fall in a lower range after a dynamic

adjusting by the maximal and minimal value of replicas for a certain period. 3)

CPU value has more obvious changes during the same period that maximal and

minimal replica numbers changes little, which means that the replica redundancy

level could lower and smoother the CPU value without lose control of itself. 4)

The protuberance in the CPU value, which is extra service suddenly adding to

the existing one that make CPU value increased, doesn’t influence the adjusting

effect on the replica numbers since this dynamic redundancy scaling focus more

on a general trend which prevent system failover due to a high CPU loading by

adjusting replica numbers.

On the whole, the performance of this dynamical redundancy scaling shows

that it has effect on controlling the replica numbers in order to prevent a failover

of the system because of high loading, at the same time, the replica number itself

won’t lose control. By introducing this redundancy scaling to the existing DARM

framework will help system deploy service replica in a better and proper way while

at the same time utilize the network resources in a more efficient and flexible way.

CHAPTER 4. TEST AND EVALUATION 36

Figure 4.8: Average CPU value on machine 1-6

CHAPTER 4. TEST AND EVALUATION 37

Figure 4.9: Average CPU value on machine 7-12

CHAPTER 4. TEST AND EVALUATION 38

Figure 4.10: Relationship between CPU value and max/min value

Chapter 5

Conclusion

This paper presents the scheme and conceives of a dynamic redundancy scaling in

the Distributed Autonomous Replication Management (DARM) framework, which

primary goal is to bring out a more flexible and optimal redundancy control mech-

anism in DARM. This dynamic redundancy scaling is implemented base on the

previous work of a static redundancy scaling in DARM which only contains a

pre-set and static redundancy level for the system. The consequence of this re-

dundancy scaling is that it will always keep a balanced loading to all members in

partition which certainly prevent host from failing because of a heavy loading and,

at the mean time, take full advantage of resources in the system. A simple way to

reveal the mechanism of this redundancy scaling is to add more replicas when a

high CPU loading is observed while remove some replicas when the CPU loading

is low.

The testing result of this dynamic redundancy scaling indicates that DARM is

able to control the replica spread over the whole network on analyze of the host

CPU loading. DARM will perform an adjusting on the current redundancy level

when the host suffering from higher loading or taking too little loading, which will

of course lead the number of relevant replicas existing in the system increasing or

decreasing from time to time. In a way, this dynamic redundancy scaling helps

DARM have a more efficiency utilization of the network resource, as well as a

better performance.

39

Chapter 6

Future Work

6.0.1 A network load based dynamic redundancy scaling

The current dynamic redundancy scaling is implement base on the CPU loading

of each host; it would be very useful to considering a whole network’s loading

instead of individual host, or a combination of a network loading and individual

CPU loading. A network loading may reflect the request of adding or removing

replicas on a group view rather, because in some cases, a loading of the partition

can weight more than individual hosts.

To implement it, a policy on how to evaluate a network’s loading should be

designed and implemented in libDarm private.c; The network loading value itself

could be defined as a part of a particular structure which stores the loading value

through a set of system calls on all network members or it could be the result

from an algorithm which calculate the network loading base on the individual

CPU loading in a group. A rule for handling network value, such as setting an

upper threshold or a lower threshold for a comparison to the network loading is

also required in the implementation. After all, replicas’ creating and removing

operation should be connected with the result of certain comparisons.

6.0.2 Different type of service handling

This dynamic redundancy scaling is single identical service oriented, which means

all the replicas are of the same type. In the real situation, it always possible that

one host has different type of services running on top of it. Because of this, a

mechanism aimed providing a dynamic redundancy control while different type of

services running in the partition is highly interested.

40

CHAPTER 6. FUTURE WORK 41

To implement this, replica needs a name tag or label as part of its structure in

order to distinguish from each other; also, to track the CPU loading of each type of

replica requires an individual thread so that it could control the starting tracking,

making periodical call to retrieve the loading value, etc. Because simpler and

smaller client services replicas are usually occupy less CPU loading than complicate

and bigger ones, so that when a host has a very high CPU loading in total it need

to find out which replica is the one occupies the most of the loading, and then

adding new replicas of this type of service in other machines which will make actual

contributes on dropping down the CPU loading of this host.

Bibliography

[1] Distributed networking definition. website.

http://en.wikipedia.org/wiki/Distributed Networking.

[2] Fault-tolerant system definition. website.

http://www.bing.com/reference/semhtml/Fault-tolerant system?mkt)=zh-

CN.

[3] Federal Standard 1037C. website. http://www.its.bldrdoc.gov/fs-1037/dir-

012 1752.htm.

[4] Spread. website. http://spread.org/.

[5] Y.A. Claudiu, Y. Amir, C. Danilov, and J. Stanton. A Low Latency, Loss

Tolerant Architecture and Protocol for Wide Area Group Communication.

2000.

[6] J.L. Gilje. Autonomous Fault Treatment in the Spread Group Communication

System. 2007.

[7] H. Meling. Adaptive middleware support and autonomous fault treatment:

Architectural design, prototyping and experimental evaluation. PhD thesis,

Norwegian University of Science and Technology, 2006.

[8] H. Meling and B.E. Helvik. ARM: Autonomous replication management in

Jgroup. In Proc. of the 4th European Research Seminar on Advances in Dis-

tributed Systems. Citeseer, 2001.

[9] H. Meling, A. Montresor, B.E. Helvik, and O. Babaoglu. Jgroup/ARM: a

distributed object group platform with autonomous replication management .

Software-Practice and Experience, 38(9):885–924, 2008.

42

BIBLIOGRAPHY 43

[10] Hein Meling and Joakim L. Gilje. A Distributed Approach to Autonomous

Fault Treatment in Spread. In 2008 Seventh European Dependable Computing

Conference, 2008.

[11] A. Montresor. System Support for Programming Object-Oriented Dependable

Applications in Partitionable Systems. PhD thesis, University of Bologna,

2000.

