

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study program/specialization:

Master in Computer Science

Spring semester, 2010

Open

Author: Jing Kou

…………………………………………
(Author‟s signature)

Instructor: Prof. Dr. Chunming Rong; Engº Tomasz Wlodarczyk, UiS

Supervisor: Prof. Dr. Chunming Rong, UiS

Title of Master‟s Thesis: Reasoning Techniques Used For Data Processing

Norwegian title:

ECTS: 30

Subject headings:

Reasoning Techniques; Data Processing;

Model; Jess; Petri Net; R; Rserve; Jade; Pig

 Pages: 57

 + attachments/other: 15

 Stavanger, June 15
th

 2010

Reasoning Techniques Used For Data Processing

Based On JESS, Petri Net and Rserve

Jing Kou

University of Stavanger

June 15
th

 2010

Acknowledgements

The author would like to express her special gratitude to:

Prof. Dr. Chunming Rong from University of Stavanger;

Engº Tomasz Wlodarczyk from University of Stavanger.

Abstract

In the oil industry, it is very important to know the current status of drilling processes which

can be obtained by analyzing the data from sensors on the drilling engines. The data which oil

companies get is complicated, so, in order to analyse the data, it has to be processed first.

There are several methods of intelligent data analysis such as JESS, Petri Nets, R functions,

Bayesian Networks and so on. Which of the reasoning techniques can be used to process the

data and how to use it in a system are left for users to research and develop. To resolve the

problem, upon the study of many other data-processing methods, this paper proposes several

novel models for data processing step by step.To validate the effectiveness and the feasibility

of the models, the author designs and implements several related systems to interface the

reasoning techniques into the systems. The functions of every module in the system and the

interrelations between them are achieved in the form of class and the core data structure is

described in detail as well.

In chapter 2, the author first analyses the characteristics of reasoning technologies for

identifying use. In chapter 3, the author chooses JESS as the reasoning technique to process

and monitor the data. Based on the monitoring results from chapter 3 and Petri Net technique,

chapter 4 developes another data processing system called ‟SUP system‟ and also analyses the

performance of the system. The first 2 models are only used for single server, but when there

is a lot of data need to be processed, multi servers are required. In order to solve this problem,

the author also does some research on Rserve in a distributed environment in chapter 5.

The results prove that some models and systems are well developed and the reasoning

techniques are well used in the systems, but some other reasoning techniques have limitations

in the related models due to the reason of researching time and the author‟s knowledge.

Table of Contents

1 INTRODUCTION ... 1

1.1 Background .. 1

1.2 Thesis Overview ... 1

1.2.1 What this Application can do .. 1

1.2.2 Why this Application is useful .. 2

1.3 Chapter Settings ... 2

2 Theory of the Reasoning Techniques .. 3

2.1 JESS ... 3

2.1.1 Introduction ... 3

2.1.2 Example ... 3

2.2 Petri Net .. 4

2.2.1 Introduction ... 4

2.2.2 Example ... 5

2.3 R and Rserve .. 6

2.3.1 R .. 6

2.3.2 Rserve .. 6

2.4 Bayesian Networks ... 8

2.4.1 Theory ... 8

2.4.2 Bayesian Network ... 9

2.5 Conclusion of the Chapter .. 9

3 Data Processing Model Based On JESS ... 10

3.1 Model ... 10

3.2 Developing Environment ... 11

3.2.1 Why use Multi-agent System, JADE and JESS .. 11

3.2.2 Multi-agent System ... 12

3.2.3 Developing Multi-agent System with JADE ... 12

3.3 Implementation of the Model ... 13

3.3.1 Step 1: Embed JADE into Eclipse ... 13

3.3.2 Step 2: Create Agents and Define Tasks ... 13

3.3.3 Step 3: Agents Communication ... 15

3.3.4 Step 4: Embed JESS into Eclipse .. 18

3.3.5 Step 5: Write JESS Files ... 19

3.3.6 Step 6: Integrate JADE Agents with JESS .. 19

3.3.7 Step 7: Test and Result .. 23

3.4 Conclusion of the Chapter .. 23

4 Data Processing Model Based On Petri Net .. 24

4.1 Model ... 24

4.2 Developing Environment ... 25

4.2.1 GPenSIM ... 25

4.2.2 PDF, TDF and MSF .. 26

4.2.3 Global Info .. 28

4.2.4 Colored GPenSIM ... 29

4.3 Implementation of the Model ... 30

4.3.1 Petri Net Gragh of the System ... 30

4.3.2 Module of the User Side .. 30

4.3.3 Module of Login Request .. 31

4.3.4 Module of SUP Request .. 31

4.3.5 Module of the Answer Side ... 32

4.3.6 Perfomance of the System ... 33

4.4 Conclusion of the Chapter .. 35

5 Data Processing Model Based On Rserve ... 36

5.1 Model ... 36

5.2 Developing Environment ... 37

5.2.1 Pig .. 37

5.2.2 Pig Latin .. 37

5.2.3 Pig Code Written In Java .. 38

5.2.4 Pig Installation ... 38

5.2.5 Pig UDF ... 39

5.3 Implementation of the Model ... 40

5.3.1 Step 1: install Rserve ... 40

5.3.2 Step 2: install Pig ... 42

5.3.3 Step 3: embed Rserve into Pig .. 43

5.3.4 Step 3: Pig UDF with Rserve .. 45

5.4 Conclusion of the Chapter .. 55

6 Conclusion and Future Work .. 56

6.1 Conclusion .. 56

6.2 Future Work ... 56

7 References ... 57

8 Appendix ... 59

8.1 Appendix A- Example of Farmer's Dilemma Problem .. 59

8.2 Appendix B- Example of Norwegian Traffic Lights.. 64

1

1 INTRODUCTION

This chapter presents a short overview of this work. It starts with the description of the

background. Then a general overview of the whole project is given. This chapter finishes with

the outlines of the report.

1.1 Background

In the oil industry, it is very important to know the current status of drilling processes which

can be obtained by analysing the data from sensors on the drilling engines. Drilling is usually

operated by the service companies such as Schlumberger, BHI and Halliburton. They collect

data from platforms and make them available on their servers. For operating companies such

as StatoilHydro, Shell and ConocoPhilips, they need to know whether everything is going ok

or not by analysing the data. The data that the oil companies get is complicated, so, in order to

analyse the data, it has to be processed first. The intelligence part of how to process the data

with reasoning techniques is left for user to develop.

There are several methods of intelligent data analysis such as JESS, Petri Net, R functions,

Bayesian Networks and so on. However, which of those methods can be used to process data

in oil industry and how to interface the available reasoning techniques in related systems are

left for users to research and develop.

1.2 Thesis Overview

1.2.1 What this Application can do

The main task of the thesis is to research on the reasoning techniques that can be used to

process data. Based on the research, the authour develpes 3 models to introduce how to use

these reasoning techniques in related systems.The paper is divided into the following steps

further more.

 The data processing system which integrates JADE and JESS seamlessly is developed

and implemented.

 The data processing system which is based on Petri Net technique and the JESS

monitoring results is developed. The performance of the system is also analysed.

2

 In order to process data with multi servers in a distributed environment, a research on the

interface between Rserve and Pig is made in the paper.

1.2.2 Why this Application is useful

For oil companies, it is very important to process and analyze the data, because on one hand

operators want to know whether everything is going ok or not; on the other hand it may direct

operators to find new resources. This project gives out several models to show how to process

data with reasoning techniques.

1.3 Chapter Settings

As showing above, chapter 1 introduces the background of this work, and gives an overview

of it. The rest of the thesis is organized as follows. Chapter 2 describes the main reasoning

techniques that we use in the thesis. Chapter 3 gives out how to interface JESS with JADE to

process and monitor data. Chapter 4 proposes a system based on Petri Net technique and the

monitoring results of chapter 3; it also analyzes the performance of the system. Chapter 5 uses

R as the reasoning technique in a distributed environment. Finally, chapter 6 presents our

conclusion and future work.

3

2 Theory of the Reasoning Techniques

In this chapter, it presents several basic methods of intelligent data analysis such as JESS,

Petri Net, R, and Bayesian networks.

2.1 JESS

2.1.1 Introduction

JESS
[1]

 is short for Java Expert System Shell. It was originally inspired by the CLIPS
[2]

 expert

system shell, but now, it has grown into a distinct Java-influenced and rule-based environment.

It is a rule-based programming environment, a rule engine and scripting environment. It

provides a tool to develop systems with intelligent reasoning abilities. It has a fast and

efficient algorithm which is called Rete algorithm. Rete algorithm can build a network of

pattern-matching nodes to solve problems with rules. First, it will do the pattern matches, then

use a set of memories to store the information about the results of the matches, and then give

out the available matches.

During all the available rule engines, JESS is very small, light, and is also one of the fastest

engines. JESS is written in Java language which is easily to intergrate with other Java based

techniques such as JADE etc. Using JESS, the user can design rules according to using

knowledge, then build Java software to reason the rules.

2.1.2 Example

Farmer's Dilemma Problem
[1]

A simple example is given as below. The point is to get the farmer, the fox, the cabbage and

the goat across a stream. But the boat only holds 2 items. If left alone with the goat, the fox

will eat it. If left alone with the cabbage, the goat will eat it.

The JESS codes are presented in „Appendix A- Example of Farmer's Dilemma Problem‟. The

solutions are shown in Figure 1.

4

Figure 1: Result of Farmer's Dilemma Problem

2.2 Petri Net

2.2.1 Introduction

Petri net
[3]

 is one of the several mathematical modeling languages which is used for the

description of discrete distributed systems.

A Petri net is actually a directed graph, it includes transitions, places, and directed arcs.

Transitions which are signified by bars are discrete events that may occur; Places which are

signified by circles are conditions; Directed arcs which are signified by arrows describe the

relationship between the transitions - which places are pre- and/or post conditions for which

transitions.

Figure 2: Petri Net Model for Business Logic Computation

5

As can be seen from Figure 2
[4]

, this Petri net shows a model for a simple business logic

computation. This computation model has 2 inputs and 1output. The business rules and

database records are inputs; The business decisions are output. These 3 which are drawn as

circles are called places. The black spots inside a place are called tokens. A place usually

holds a number of parts. The number of parts inside a place is indicated by the tokens.The

computations which are drawn as vertical short bars are called transitions. The arc which

connect place and transition is a path for a discrete part to flow. A place can have several arcs.

In this Petri net graph, there are 3 places, 3 tokens, 1 transition and 4 arcs altogether.

2.2.2 Example

Norwegian Traffic Lights
[5]

An example of a Petri net model for Norwegian traffic lights is show as Figure 3. It shows

how the Petri networks. The codes can be seen in „Appendix B- Example of Norwegian

Traffic Lights Petri Net Model‟.

Figure 3: Petri Net Model for Norwegian Traffic Light

6

2.3 R and Rserve

2.3.1 R

R
[6]

 is a language and environment which is used for statistical computing and graphics. It

provides modeling, statistical tests, time-series analysis, classification, clustering and so on; R

also provides grphical techniques and is highly extensible.

2.3.2 Rserve

Rserve
[7]

 is a TCP/IP server. When the user wants to use the functions of R, he doesnt need to

initialize R or link against R library first. Once a Rserve connection is created, it will have a

separate working directory and name space. Client-side implementations are available for

most of the popular programing languages such as C, C++ and Java. Most of the data types of

R can be transformed into C or Java data types. Rserve supports encrypted user/password

authentication. Rserve also supports remote connection, authentication and file transfer.

Typical use is to integrate R backend for computation of statistical models, plots etc.

Rserve has the following features:

 Fast – if the user wants to use Rserve, he doesn‟t need to initialize R first.

 Client independence - the client is independent because the client is not linked to R.

 Persistent - Once a connection is created, it will have its own working directory and

namespace. If the user creates an object, it will be persistent until the connection is

finished.

 Security - Rserve supports encrypted user/password authentication, so it provides basic

security. The user can also configure Rserve to let it accept only local connections to

provide some security.

 Configurable - There is a file for configuration. In this file, the user can control settings,

the user can also enable/disable features, for example: authorization, remote access or file

transfer and so on.

 Binary transport - R objects are sent as binary data (not text) in the transport protocol.

 Automatic type conversion - Most of the data types of R can be transformed into C/Java

data types. R also has some new data types such as RBool, RList and so on, Java client

also provides classes for these new data types.

7

 File transfer - The user can transfer files between the client side and the server side. So, in

this way, the user can use Rserve as a remote server.

Rserve is actually a server. The clients send requests to the server, and Rserve listens to the

incoming connections, once the connection is installed, it will respond to the requests. For

some reasons, some users still use the old editions of Rserve. In order to use Rserve, the user

needs to install R-1.5.0 or a higher editon.

Rserve itself is a server.The server can only be useful when there are clients, therefore three

client frameworks are developed:

 REngine Java client - JRclient which is located in src/client/java-old is an older Java API

that was used in Rserve 0.4 and earlier. REngine Java client which is located in

src/client/java-new is a full client that allows any Java application (JDK 1.4 or higher) to

access an Rserve. Compared with previous Java clients, this new client API is more

flexible, with better design, has better exception handling and is aimed to support both

JRI and Rserve transparently. It is a full client suite entirely written in java. It allows any

Java application to access an Rserve. Most of the data types of R can be transformed into

Java data types, such as int, double, arrays, String or Vector. R also has some new data

types such as RBool, RList etc, and Java client also provides classes for these new data

types.

 C++ client - C++ client is located in src/client/cxx directory in the Rserve source package.

It also provides basic interface to Rserve from any C++ program.

 R client – R client is a small client directly in the Rserve package.

 Rcli.c - Rcli.c is a lightweight client that demonstrates how to connect to Rserve from C

language. It is available in early Rserve versions, now replaced by the C++ client.

Rserve is a TCP/IP server. It is basically possible for the user to write any language clients as

long as these languages support TCP/IP sockets. In Rserve, the client side and server side are

separated. When the user directly links against R library, it may result in multi-threading

problems, the separation of client/server side can prevent this problem from happening.

Rserve is actually provided as a regular R package and can be installed like this. The user can

start Rserve executable Windows or typing R CMD Rserve on the command line to start the

Rserve, however, the user cannot start it by the library command. Once the Rserve is started,

8

it runs in local mode by default and it doesn‟t have enforced authentication. The applications

can use their servives from the server after it starts. The applications can be written in Java.

When using other Rserve clients, the principles are identical, so, using Java as the starting

point poses no limitation. A simple example is shown as below:

RConnection c = new RConnection();

 REXP x = c.eval("R.version.string");

 System.out.println(x.asString());

JRI can be used to access R from Java in one application without the need for the client/server

concept. JRI uses JNI to link R directly into Java. The following Java code illustrates the easy

integration of Rserve:

RConnection c = new RConnection();

...

...

Once the Rconnection is installed, the user doesn‟t need to creat it more than once.

2.4 Bayesian Networks

2.4.1 Theory

The Bayesian theory
[8]

 presents two important concepts: the Bayesian probabilities and the

theorem which is also known as rule. A probability can be thought as a quantitative measure

of the strength of one's knowledge or of one‟s beliefs. This way, we can assess them using

experts‟ knowledge and without having historical data. With this concept it is possible to deal

with subjective beliefs and use them into a mathematical model. Other idea subjacent to

Bayesian is the conditionality. Instead of a classical approach, Bayesian uses the notion of a

probability of an event as a consequence of other events‟ probabilities.

The Bayesian theorem is:

P(A/B) =

 =

9

2.4.2 Bayesian Network

A Bayesian network is a probabilistic graphical model that represents a set of random

variables and their conditional independencies via a directed acyclic graph (DAG). For

example, a Bayesian network could represent the probabilistic relationships between diseases

and symptoms. Given symptoms, the network can be used to compute the probabilities of the

presence of various diseases.

Formally, Bayesian networks are directed acyclic graphs whose nodes represent random

variables in the Bayesian sense: they may be observable quantities, latent variables, unknown

parameters or hypotheses. Edges represent conditional dependencies; nodes which are not

connected represent variables which are conditionally independent of each other. Each node is

associated with a probability function that takes as input a particular set of values for the

node's parent variables and gives the probability of the variable represented by the node. For

example, if the parents are m Boolean variables then the probability function could be

represented by a table of 2m entries, one entry for each of the 2m possible combinations of its

parents being true or false.

Efficient algorithms exist that perform inference and learning in Bayesian networks. Bayesian

networks that model sequences of variables are called dynamic Bayesian networks.

Generalizations of Bayesian networks that can represent and solve decision problems under

uncertainty are called influence diagrams.

2.5 Conclusion of the Chapter

This chapter simply presents several basic methods of intelligent data analysis such as JESS,

Petri Net, R, and Bayesian Networks. However, how can we use these reasoning techniques to

process data? The following chapters will give out some models and show how to use the

reasoning techniques in the models.

10

3 Data Processing Model Based On JESS

In the oil industry, it is very important to know the current status of drilling processes which

can be obtained by analyzing the data from sensors on the drilling engines. People need to

know whether everything is going ok or not by analysing the data. However, the data need to

be processed first in order to be analyzed.

This chapter chooses JESS as the reasoning technique for data processing. The author first

gives out a model to show how to use JESS to process the data together with JADE
[9]

. Based

on the model, the author designs a system and implements it. The experimental results prove

that JESS can be used very well to process the data together with JADE.

3.1 Model

For operating companies such as StatoilHydro, Shell and ConocoPhilips, they need to know

whether everything is going ok or not by analysing the data. If the data is abnormal, an alarm

should be given out.

To resolve the problem of real-time processing requirements, this chapter proposes a novel

model for data processing based on JESS technology, named RTMD (Real-Time Monitoring

of Data) model. This model is a development of a former project called „Data Querying and

Transformation Application‟
 [10]

 developed by another master student Baodong Jia. He creates

a „Query Client‟ to fetch data from the servers of the service providers and then chooses

semantic technologies such as XML
 [11]

, RDF
 [12]

, and XSLT
 [13]

 to process the data. Based on

the „Query Client‟, the next step is to monitor the data and give out alarms when the data is

abnormal. The monitoring part is based on JADE and JESS technologies. As can be seen in

Figure 4
[14]

, JADE is used as the agent development environment here. Based on this

environment, three agents are created. They are Agent 1 (Feeder Agent), Agent 2 (Reasoner

Agent) and Agent 3 (Alarm Agent). Agent 1 (Feeder Agent) fetches data from the „Query

Client‟. Then Agent 1 (Feeder Agent) sends the data to Agent 2 (Reasoner Agent) with data

rate e.g. 1 data point per second. Agent 2 (Reasoner Agent) interfaces with JESS to see if

rule/rules are matched. If so, Agent 2 (Reasoner Agent) sends message to Agent 3 (Alarm

Agent) to give out the corresponding alarms.

11

To validate the effectiveness and the feasibility of this novel model, a system is designed and

implemented, which is called RTMD system. Experimental results show that RTMD system

can effectively deal with data from sensors and give out alarms when the data is abnormal.

Figure 4: The Model of Alarm System

3.2 Developing Environment

3.2.1 Why use Multi-agent System, JADE and JESS

We use multi-agent system
[15]

 in this project because it is easy to use agents to fetch data from

„Query Client‟.

We use JADE on agent technology because:

 It has all the agent features that we need.

 Communication between agents is easy to complement.

 It is efficient and tolerant of faulty programming.

Although JADE provides all the mandatory components for the development of autonomous

agents, currently JADE alone does not endow agents with specific capabilities beyond those

needed for communication and interaction. On the negative side, JADE may be disappointing

to AI people because it lacks mechanisms for 'intelligence', planning or reasoning.

12

However, if the system wants to give out alarms, it has to have the reasoning ability to decide

when to give out alarms and what kind of alarm should be given out. So, a reasoning tool is

needed. We choose JESS as the reasoning technique here.

3.2.2 Multi-agent System

An agent is a proactive, dynamic, autonomous and goal-oriented software entity. The user

needs to create an agent in order to achieve a goal. Since the agent has artificial intelligence

techniques, it knows how to choose the best actions to achieve the goal. But a single agent can

not solve complicated problems individually, so, a multi-agent system is needed.

A multi-agent system is a group of agents. These agents communicate with each other to

coordinate their activities to slove complicated problems that cannot be solved by single agent.

3.2.3 Developing Multi-agent System with JADE

JADE Overview

JADE is short for Java Agent Development Environment. It is a middleware that facilitates

the development of multi-agent systems
[16]

. It is a robust and efficient environment for

distributed agent systems.

JADE includes the following:

 A runtime environment where JADE agents can „live‟ and that must be active on a given

host before one or more agents can be executed on that host.

 A library of classes that programmers can use to develop their agents.

 A suite of graphical tools that allows administrating and monitoring the activity of

running agents.

Creating Agents

In order to create an agent, the user need to define a class that extends the JADE.core.Agent

class and overriding the default implementation of some methods. The methods which include

SetUp and TakeDown() are automatically invoked by the platform during the agent lifecycle.

13

Each agent instance is identified by an „agent identifier‟ in order to be consistent with the

FIPA specifications. The agent identifier is represented as an instance of the JADE.core.AID

class. The getAID() method of the Agent class allows retrieval of the local agent identifier.

Defining Agent Tasks

What an agent has to do is typically written in „behaviours‟. A behavior includes an actual job

that an agent will carry out. A behavior is implemented as an object of a class that extends

JADE.core.behaviours.Behaviour.

Each such behavior class has to implement two abstract methods. First, it is the action()

method which defines the operations to be performed when the behaviours is in execution;

Second, it is the done() method which returns a Boolean value to indicate whether or not a

behavior has completed and removed from the pool of behaviours. To make an agent execute

the tasks represented by a behavior object, the behavior must be added to the agent.

Agents Communication

The JADE communication paradigm is based on asynchronous message passing. A message

in JADE is implemented as an object of the JADE.lang.acl.ACLMessage object and then

calling the send() method of the Agent class.

3.3 Implementation of the Model

3.3.1 Step 1: Embed JADE into Eclipse

We use the Eclipse platform as our programming environment, which is an open source

Integrated Development Environment that provides support for language Java. The Eclipse

environment comes with a plugin
[17]

 to integrate JADE within Eclipse.

3.3.2 Step 2: Create Agents and Define Tasks

Agents can be created according to the thread path
[18]

 as shown in Figure 5.

14

Figure 5: Agent Thread Path of Execution

The core code of creating an agent is as following:

public class FeederAgent extends Agent{

 public void setup(){

 SendTestdataBehavior t = new SendTestdataBehavior();

 addBehaviour(t);

 …

 …

 }

 public class SendTestdataBehavior extends Behaviour{

 boolean finished = false;

 public void action()

 {

 …

 …

 finished=true;

15

 }

 public boolean done(){

 return finished;

 }

 }

 …

 …

}

Three kinds of agents which execute different tasks are created in this project, as can be seen

in Figure 6. They are Agent 1 (Feeder Agent), Agent 2 (Reasoner Agent) and Agent 3 (Alarm

Agent).

Figure 6: JADE Agents

3.3.3 Step 3: Agents Communication

Agent 1 (Feeder Agent) fetches data from the „Query Client‟. Then, Agent 1 (Feeder Agent)

sends data to Agent 2 (Reasoner Agent). Agent 2 (Reasoner Agent) process the data and

decide whether an alarm should be given out or not. If so, Agent 2 (Reasoner Agent) sends

message to Agent 3 (Alarm Agent) to give out corresponding alarms.

The core code to send a message to an agent is as following:

public class SendTestdataBehavior extends Behaviour{

 boolean finished = false;

 public void action()

16

 {

 AID receiverID = new AID("reasoner", AID.ISLOCALNAME);

 ACLMessage msg = new ACLMessage(ACLMessage.INFORM);

 msg.setSender(getAID());

 msg.addReceiver(receiverID);

 String datastream;

 for (int i=1;i<=500;i++)

 {

 datastream = ""+i;

 msg.setContent(datastream);

 send(msg);

 System.out.println("sendAgent sent the message:"+i);

 }

 finished=true;

 }

 public boolean done(){

 return finished;

 }

The core code that an agent receives a message is as following:

public class RangeBehavior extends Behaviour

 {

 boolean finished = false;

 public void action()

 {

 ACLMessage msgReceive = receive();

 if(msgReceive != null)

 {

 int j=Integer.parseInt(msgReceive.getContent());

 System.out.println("reasonerAgent received message: "+ j);

 if(j > 20)

 {

 System.out.println("reasonerAgent received the message: "+ j);

 //send message to the alarm agent if the data > 20

 AID receiverID = new AID("alarm", AID.ISLOCALNAME);

 ACLMessage msgSend = new

ACLMessage(ACLMessage.INFORM);

 msgSend.addReceiver(receiverID);

17

 msgSend.setContent("illegal data: "+ j);

 send(msgSend);

 }

 else

 {

 System.out.println("reasonerAgent received the message:"+ j);

 }

 }

 else

 {

 block();

 }

 }

 public boolean done()

 {

 return finished;

 }

 }

The result of agents communication is shown as Figure 7. sendAgent sends data to

reasonerAgent, then reasonerAgent processes the data, if the data is more than 20,

reasonerAgent sends a message to alarmAgent, then alarmAgent gives out alarms.

Figure 7: Agents Communication

In order to show how agents can communicate with each other clearly, we only use a simple

rule (when the data is more than 20, an alarm will be given out) here. However, there are

actually many complicated rules in oil industry, and it is impossible to use reasonerAgent to

process the data when the rules are very complicated, so a reasoning tool is needed here. The

18

following steps will show how to use JESS as the reasoning tool and how to integrate it with

JADE.

3.3.4 Step 4: Embed JESS into Eclipse

JADE has already been embedded into Eclipse as shown in step 1. In order to use JESS as the

reasoning tool, we have to embed JESS into Eclipse as well. The steps of embedding JESS

into Eclipse are as following:

Installation:

1. Exit Eclipse.

2. Open the „Eclipse‟ file which includes five zip files: gov.sandia.jess.debug_7.1.0.zip,

gov.sandia.jess.editor_7.1.0.zip, gov.sandia.jess.feature_7.1.0.zip,

gov.sandia.jess_7.1.0.zip, gov.sandia.jess.reteview_7.1.0.zip.

3. Extract all these zip files to the current folder, and then you can get two files: plugins

which includes gov.sandia.jess.debug_7.1.0, gov.sandia.jess.editor_7.1.0,

gov.sandia.jess_7.1.0, gov.sandia.jess.reteview_7.1.0 and features which includes

gov.sandia.jess.feature_7.1.0.

4. There are also two files called plugins and features in the Eclipse installation folder.

Copy the content of them from JESS files to Eclipse files.

Identification of the Installation

1. Open Eclipse, then click „help‟, then choose „about Eclipse SDK‟, a JESS button is

supposed to be found here.

2. Click „Plug-in Details‟, 3/4 JESS plugins are supposed to be found here.

3. JESS is installed in Eclipse successfully, as can be shown in Figure 8.

19

Figure 8: Embed JESS into Eclipse

3.3.5 Step 5: Write JESS Files

Write the related JESS files. It includes rules, facts and databases. A simple example is shown

as Figure 9. It shows that if the temperature is more than 20, then an alarm is given out. In the

oil industry, there are actually many complicated rules to show when to give out alarms and

what kind of alarms should be given out. For example, if the temperature changes, different

temperature alarms should be given out. Those kinds of rules can be developed to JESS files

in the way that is shown in the Example of Farmer's Dilemma Problem

.

Figure 9: A Simple Jess File

3.3.6 Step 6: Integrate JADE Agents with JESS

Now, the agents can communicate with each other in the environment JADE, and different

rules can be written into JESS files, so the next step is to integrate JADE agents with JESS

20

seamlessly. Before integrating both tools, it is essential to keep in mind some of the main

issues concerning the functioning of both JADE agents and Jess engines.

Introduction

JADE offers the environment and facilitates message sending/receiving; JESS enables a

declarative implementation of the decision module. Their relationship is shown as Figure

10
[19]

:

Figure 10: JADE and JESS

Implementation

When an agent reasons and makes decisions, it will interact with other agents, so, it is very

important to remember that a JADE agent is single-threaded. When the user programs with

agents, he should always take this into account.

JESS is a rule-based programming environment, a rule engine and scripting environment. It

has a fast and efficient algorithm called Rete algorithm. In order to embed JESS into a JADE

agent, frist, the user needs to create a jess.Rete object and manipulate it appropriately; Second,

the user needs to run the inference engine Rete.run() which is included in Rete class, after this,

the engine will fire all the applicable rules and return when there are no more rules to fire;

Third, the engine will stop when there are no more rules to fire and the block the calling

thread. It is important to know that we will block the entire single-threaded agent if we block

the calling thread. It also depends on how much time the reasoning will take. However, in

Rete class, we have another run method which will allow us to specify the maximum number

of cycles the engine should run. The integration of JADE and JESS is shown as Figure 11
[20]

.

21

Figure 11: the Integration of JADE and JESS

Integrating JADE Agents with JESS ---Approach A
[19]

In order to integrate JESS with JADE agents, the user needs to embed an instance of the Jess

engine inside a behaviour. When the agent is reasoning, we want it to be able to continuously

reason until there are no more rules to fire, so, we need a CyclicBehaviour whose action will

consist of running the Jess engine continuously.

When one agent is reasoning, please remember that don‟t block other agent‟s behaviours for a

long time. The following code snippet shows the implementation:

class JessBehaviour extends CyclicBehaviour {

 // the JESS engine

 private jess.Rete jess;

 JessBehaviour(Agent agent, String jessFile) {

 super(agent);

 // create a JESS engine

 jess = new jess.Rete();

 // load the JESS file

 try {

 // open the JESS file

 FileReader fr = new FileReader(jessFile);

 // create a parser for the file

 jess.Jesp j = new jess.Jesp(fr, jess);

 // parse the input file into the engine

 try {

 j.parse(false);

 } catch (jess.JessException je) {

 je.printStackTrace();

22

 }

 fr.close();

 } catch (IOException ioe) {

 System.err.println(„Error loading Jess file - engine is empty‟);

 }

 }

...

...

}

Integrating JADE Agents with JESS---Approach B

The following code shows how to integrate JADE and JESS in another way. Assume that r is

an object of class RETE. In JESS, Rete.store(String, Object) Rete.store(String, Value),

Rete.fetch(String) can be used to store and fetch data. r.store(„DATA‟,j) is used to pass j to

DATA from JADE to JESS, where j belongs to JADE and DATA belongs to JESS

respectively. jessFile can get the data with the function of (fetch DATA). JESS can use r. get

GlobalContext () to pass data back to JADE.

class JessBehaviour extends CyclicBehaviour {

 private jess.Rete jess;

 JessBehaviour(Agent agent, String jessFile) {

 Rete engine = new jess.Rete();

 try {

 engine.store(„DATA‟,j);

 engine.batch(„jessFile‟);

 engine.executeCommand(„(run)‟);

 Context result = engine.getGlobalContext();

 System.out.println(result);

 } catch (jess.JessException je)

 {

 je.printStackTrace();

 }

 }

...

...

}

23

3.3.7 Step 7: Test and Result

The result of a simple test is shown in Figure 12. When the temperature is more than 20

degree, it gives out an alarm: ‟illegal data‟. More complicated tests can be done with

corresponding JESS rules, then, different kinds of alarm results will be given out.

Figure 12: Tests and Results

3.4 Conclusion of the Chapter

As discussed above, JESS and JADE can be used for real time monitoring of data, but besides

the real time monitoring usage, what if the users want to save the monitoring results for future

use and analysis. The following chapter will discuss a model like this.

24

4 Data Processing Model Based On Petri Net

As mentioned in the former chapter, JESS and JADE can be used for real time monitoring of

data. Besides the real time usage, the monitoring results can also be stored into a database in

case the user may want to check it or use it afterwards. This chapter developed a system based

on Petri Net
[21]

 technique and the monitoring results database. The user can log into the

system and check the data that he is interested. If the data exists, the user may want to check it

or update it to the latest edition; if the data doesnt exist, the user may want to publish new

data. The performance of the system is analysed as well.

4.1 Model

Based on the database mentioned above, a SUP (searching, updating or publishing) model is

developed and shown as Figure 13.

Figure 13: the Structure of SUP System

The user web browser collects the message input by the user, such as register message, user

name, password etc. The data server responses user‟s requests. There is a pool for collecting

all the requests. If it is a login request, the server will first encrypt the password and then

return the result to show whether the password is valid or not. If it is a searching, updating or

publishing request, the server will construct the path of the database file which has data inside,

and return the result after finishing the corresponding operations. The database manages all

the data information, as mentioned above.

25

According to the model, a SUP (searching, updating or publishing) system is developed as

well. The user can log into the system and check the data that he is interested. If the data

exists, the user may want to check it or update it to the latest edition; if the data doesnt exist,

the user may want to publish new data. Figure 14 shows the relationship between the modules.

Figure 14: Connection Between Modules

The purpose is to test if the system can be implemented or not. If so, we want to test the

performance of the sytem, such as the average response time for each login request, ajax

request, searching request, updating request or publishing request.

4.2 Developing Environment

4.2.1 GPenSIM

Because of Petri Net‟s
[22]

 good modeling and simulation of discrete event-driven systems, it

is becoming more and more widely used by the research communities. For free academic use,

there are a number of Petri Net tools available, however, these tools sometimes are very slow

and different when programming via graphical user interfaces. GPenSIM
[23]

 is one of the Petri

Net tools for modeling and simulation of discrete-event systems. Compared to other tools, it

has three distinct advantages:

1) First, it is very simple and easy for the user to use because there are not many rules to

remember.

26

2) Second, it allows the user to program with a very simple language because it is a non-

graphic program.

3) Third, it allows the user to make use of matlab toolboxes like fuzzy logic, control systems,

etc because it is well integrated with MATLAB
[24][25]

 platform.

In order to install GPenSIM, we need to unzip the GPenSIM toolbox functions under a

directory first, and then start matlab and go to the file menu to select “set path” command,

then select “add with subfolders” to add GPenSIM directory.

4.2.2 PDF, TDF and MSF

In order to define a Petri Net, it involves two steps:

1) First, the user needs to define the Petri Net graph which is also called Petri Net structure.

This is the static part. In order to define the Petri Net graph, the user has to identify the

basic elements (places and transitions) and connect these elements with arcs.

2) Second, the user needs to define the Petri Net markings. This is the dynamic part.

Petri net Definition File (PDF)

In GPenSIM, PDF
[23]

 is short for Petri Net Definition File. PDF offers the definition of a Petri

net graph. The Petri Net model can be divided into many modules, and each module can be

defined in a separate PDF, so there may be a number of PDFs.

The codes of defining the Petri Net graph are shown as below:

Function [PN name, set of places, set of trans, set of arcs] …

= SUP_pn_def(global info)

PN_name = '……';

set of places = {……};

set of trans = {……};

set of arcs = {……};

Transition Definition File (TDF)

In GPenSIM, TDF
[23]

 is short for Transition Definition File. If there are enough tokens in the

input places, the transition can fire. The transition which can fire is called enabled transition.

The conditions for firing a transition are kept in a TDF.

27

A simple example can be seen as below:

 function [fire, new_color, override, selected_tokens, global_info] = ...

tUL_def (PNname, new color, override, selected tokens, global info)

new color= '…';

if global_info.Gl >= 1

 global_info.Gl = global_info.Gl − 1;

 fire = 1;

else

fire = 0;

end;

The Names of the TDF files must follow a strict naming policy. For example, the TDF for the

transition „trans1‟ must be named „trans1_def.m‟.

Main Simulation File(MSF)

In GPenSIM, MSF
 [23]

 is short for Main Simulation File. After the Petri net graph is defined,

the MSF can be written as below:

clear, clc;

pn = petrinetgraph('…');

global info.MAX LOG SIZE =;

global info.Gl =;

……

dynamic.initial markings={......};

dynamic.firing times={…}

[Results, global info, colormap] = gpensim(PNname, dynamic info, global info);

printsys(PN_name, Results);

print colormap(PN_name, colormap, '…');

plotp(PN_name, Results, {...…});

The roles of PDF, TDF and MSF

The processing steps of a Petri Net graph simulation are as follows:

1) Right before the simulation starts, a PDF will be loaded into memory by MSF. The only

use of a PDF is to represent a static Petri net graph.

2) MSF loads PDF (or PDFs) into memory and then starts the simulation.

3) After the simulation starts, the TDF will be called if the transition for this TDF is enabled.

Meanwhile, MSF will be blocked during the simulation runs; therefore, MSF does not

28

have any control of what is going on during the simulation.

4) When the simulation completes, the control will be passed back to MSF again, and also

the simulation results.

The relationship among PDF, TDF and MSF can be seen in Figure 15
[23]

.

Figure 15: the Relationship among PDF, MSF and TDF

4.2.3 Global Info

Different files such as main simulation file MSF, Petri net definition files PDFs, and transition

definition files TDFs are defined by the user. These different files need to exchange

parameters and values with each other.

Figure 16: Global_info

29

A packet called „global_info‟ is used here to access and exchange global parameters and

values, as can be seen from Figure 16
[23]

. The parameters and values will be packed together

as a global_info packet if they need to be passed to different files. Global_info packet is

visible in all the files, so the values in the packet can be read and changed.

4.2.4 Colored GPenSIM

There are 2 different kinds of tokens. The tokens which will be consumed when the transition

fires are called input tokens; The tokens which will be deposited when the transition fires are

called output tokens.

If the tokens inside a place are distinguishable, it matters which token arrives into the place

first or last, it also matters whether a token is deposited into a place by one transition or

another. In this case, every token is unique, it is identifiable with a unique token ID.

A token like this has a structure consisting of 3 elements:

 tokID (integer value): a unique token ID.

 creation_time (integer value): the time the token was created by a transition.

 t_color (set of strings): a set of colors.

In GPenSIM
[23]

, only transitions can manipulate the colors. The colors are inherited by default,

which means when a transition fires, it collects all the colors from the input tokens and then

passes these colors to the output tokens. However, colors inheritance can be prevented by

overriding. An enabled transition can select specific input tokens based on preferred colors; it

can also select specific input tokens based on the time when tokens are created.

In GPenSIM, colored tokens can only utilized by transitions; the transition definition files can

be coded with controlling colored tokens
[23]

since the transitions are active:

 When a transition fires, the colors are inherited by default. This means when a transition

fires, it inherits colors of all input tokens and deposits new tokens into output places. The

new tokens have all the colors inherited from the input tokens. The inheritance of the

colors can be prohibited by overriding.

 When a transition fires, it can consume input tokens both with or without specific colors.

 When new tokens are deposited into the output place, new colors can be added by the

30

transition in addition to the inherited colors. However, if the inheritance is overridden, the

output tokens will only have the new color added by the transition.

4.3 Implementation of the Model

4.3.1 Petri Net Gragh of the System

The Petri Net graph of the whole system
[26]

 can be seen in Figure 17.

Figure 17: Petri Net Graph of the Whole System

4.3.2 Module of the User Side

There are five kinds of requests are available in the user side, as can be seen from Figure 18,

they are „Login Request‟, „Ajax Request
[27]

‟, „Searching Request‟, „Updating Request‟,

„Publishing Request‟.

Sometimes, it may be hard for a user to memorize the full name, so, if the user just input the

first several letters, an Ajax request will be sent to the server to get all available names starts

with the inputed words.

In order to produce these requests, five transitions which give out requests are used here. A

request buffer is used to collect all the requests.

31

Figure 18: Petri Net of User Side

4.3.3 Module of Login Request

Transition ‟tLR‟ is used to select login requests from the request buffer. The login information

consists of username and password. The password is encrypted because it is not safe to store

password using clear text. Username obtained from the original request is used to find the

corresponding encrypted password stored in password file. The result of verifying the

password which can be either successful or failed is passed to the answer buffer. The Pertri

Net of this module can be seen in Figure 19.

Figure 19: Module of the Login Request

4.3.4 Module of SUP Request

Transition ‟tSUPR‟ is used to select searching requests, updating requests and publishing

requests. When doing the searching, updating and publishing operations, the path of the

database file need to be known first. In order to find database files faster, a special method is

used here to construct the path of database file directly. Transitions ‟tFO‟ and ‟tFI‟ are used to

find folder name and file name of the database file, and then transition ‟tDP‟ gives full path of

32

database file. As ‟tFO‟ and ‟tFI‟ cannot fire at the same time, so an additional place is used

here to let them fire alternatively, which will make sure the number of tokens in searching,

updating and publishing requests never increase or decrease abnormally. The Pertri Net of this

module can be seen in Figure 20.

Figure 20: Module of the SUP Request

4.3.5 Module of the Answer Side

All the answers to the different requests are put in the answer buffer. Five transitions(tAL,

tAS, tAU, tAP and tAA) are used to select different answers from the buffer. The answer for

login request is a little special as it has two possible states which indicate successful and

failed. The Pertri Net of this module can be seen in Figure 21.

Figure 21: Module of the Response Side

33

4.3.6 Perfomance of the System

In this chapter, we will simulate the system and test the performance of it, such as the average

time for each login request, ajax request, searching request, updating request or publishing

request. The firing time for each transition varies slightly. The firing times for the transitions

are defined in the MSF file.

Step 1: Response Time of a Login Request.

In order to get the time, global info.Gl is set to 1, and the other three variables are set to 0.

After running the simulation, we get the time showed in Figure 22. As can be seen, it is very

fast as well with a time about 0.2 second.

Figure 22: Response Time of a Login Request

Step 2: Response Time of an Ajax Request.

In order to get the time, global info.Ga is set to 1, while other three variables are set to 0.

After running the simulation, we get the time showed in Figure 23. As can be seen, it is very

fast with a time about 0.2 second.

34

Figure 23: Response Time of an Ajax Request

Step 3: Response Time of a Searching Request.

In order to get the time, global info.Gs is set to 1, and the other three variables are set to 0.

After running the simulation, we get the time showed in Figure 24. As can be seen, it is also

very fast with a time about 0.2 second.

Figure 24: Response Time of a Searching Request

Step 4: Response Time of a Updating Request.

In order to get the time, global info.Gl and global info.Gu are set to 1, and the other two

variables are set to 0. After running the simulation, we get the time showed in Figure 25. As

can be seen, it‟s still very fast with a time about 0.4 second.

35

Figure 25: Response Time of a Updating Request

Step 5: Response Time of a Publishing Request.

In order to get the time, global info.Gl and global info.Gp are set to 1, and the other two

variables are set to 0. After running the simulation, we get the time showed in Figure 26. As

can be seen, it‟s still very fast with a time about 0.4 second.

Figure 26: Response Time of a Publishing Request

4.4 Conclusion of the Chapter

As can be seen from the simulation results, we can see that the SUP system is robust because

it only takes about 0.2 second to finish a request. It is still very fast to get a response even if

there may be hundreds of requests per second. But what if there are thousands of requests per

second, or even more? In this situation, one server is not enough, multi servers are required.

A new model which will use multi servers in a distributed environment will be discussed in

next chapter.

36

5 Data Processing Model Based On Rserve

As mentioned in the former chapter, only a single server is used in that system, but when there

is much data need to be processed, multi servers are required. In order to solve this problem,

the author does some research on R
[28][29][30][31]

 and Rserve with multi servers in a distributed

environment. This chapter chooses R as the reasoning technique for data processing. The

author first gives out a model to show how she wants to process data with R. Based on this

model, the author also does a research on the interface between Rserve and Pig
[32]

.

5.1 Model

This chapter is based on a model which is used to process data with multi servers in a

distributed environment. The model can be seen in Figure 27.

Figure 27: The Model

As can been seen from the model, R is used as a reasoning technique here. R provides a wide

variety of statistical and graphical techniques, and is highly extensible. Rserve is a TCP/IP

server which allows other programs to use the functions of R from various languages without

the need to initialize R or link against R library.

37

5.2 Developing Environment

5.2.1 Pig

When there are large data sets, the user needs a high-level language to express the data

analysis and the complicated programing infrastructures. Pig
[32]

 is a platform for this. The

reason why pig programs can handle very large data sets is because they have an important

property: their structure is amenable to substantial parallelization.

5.2.2 Pig Latin

At the present time, Pig has several layers, such as infrastructure layer and anguage layer. The

infrastructure layer consists of a compiler and it produces sequences of Map-Reduce

programs. The language layer consists of a textual language called Pig Latin
[33]

. Pig Latin has

some very important properties such as ease of programming, optimization opportunities and

extensibility etc.

There are different kinds of Pig Latin statements. Normally, a Pig Latin statement is an

operator that takes a relation as input and produces another relation as output. However,

LOAD and STORE statements are different, they are used to read data from and write data to

the file system. The user can write Pig Latin statements for multiple lines but must end them

with a semi-colon „;‟. Pig Latin statements are generally organized in the following manner:

1) A LOAD statement - used to read data from the file system.

2) A series of "transformation" statements - used to process data.

3) A DUMP statement - used to display outputs to the screen, or

4) A STORE statement - used to write outputs to the file system.

A simple example can be shown as below. The example is used to load the file „'jing/passwd‟

first, then generate id and display it.

A = load 'jing/passwd' using PigStorage(':');

B = foreach A generate $0 as id;

dump B;

http://hadoop.apache.org/pig/docs/r0.7.0/piglatin_ref2.html#Relations%2C+Bags%2C+Tuples%2C+Fields

38

5.2.3 Pig Code Written In Java

Pig codes can be written in Java, a simple example is shown as below. This example

implements the same functionality with the example in the former chapter.

public static void runIdQuery(PigServer pigServer, String inputFile) throws IOException

 {

 pigServer.registerQuery("A = load 'jing/passwd' using PigStorage(':');");

 pigServer.registerQuery("A = load '" + inputFile + "' using PigStorage(':');");

 pigServer.registerQuery("B = foreach A generate $0 as id;");

 pigServer.store("B", "jing/idoutb");

 }

5.2.4 Pig Installation

The following steps
[34]

 show how to install pig:

1) Install Java. Java 1.6 or higher is installed; JAVA_HOME environment variable is set to

the root of the Java installation.

2) Install Pig. To install Pig, do the following:

 Download the Pig tutorial file to your local directory.

 Unzip the Pig tutorial file and store them in a newly created directory named pigtmp.

 Move to the pigtmp directory.

 Review the contents of the Pig tutorial file.

 Copy the pig.jar file to the appropriate directory on your system. For example:

/home/me/pig.

 Create an environment variable, PIGDIR, and point it to your directory. For example,

export PIGDIR=/home/me/pig (bash, sh) or setenv PIGDIR /home/me/pig (tcsh, csh).

3) Run the Pig scripts - in Local or Hadoop mode.

The user can run pig cripts in both local mode and mapreduce mode. If the user wants to

run pig cripts in local mode, he doesn‟t need to install Hadoop or HDFS. However, if the

user wants to run pig cripts in mapreduce mode, he has to install Hadoop or HDFS first.

To run the Pig scripts in local mode
[34]

, do the following:

 Set the maximum memory for Java.

java -Xmx256m -cp pig.jar org.apache.pig.Main -x local script-local.pig

 Move to the pigtmp directory.

39

 Review Pig Script.

 Execute the following command.

$ java -cp $PIGDIR/pig.jar org.apache.pig.Main -x local script-local.pig

 Review the result files, located in the part-r-00000 directory.

The output may contain a few Hadoop warnings which can be ignored:

2010-04-08 12:55:33,642 [main] INFO org.apache.hadoop.metrics.jvm.JvmMetrics

Cannot initialize JVM Metrics with processName=JobTracker, sessionId= - already initialized

To run the Pig Scripts in Mapreduce Mode
[34]

, do the following:

 Move to the pigtmp directory.

 Review Pig Script.

 Copy the excite.log.bz2 file from the pigtmp directory to the HDFS directory.

$ hadoop fs –copyFromLocal excite.log.bz2

 Set the HADOOP_CONF_DIR environment variable to the location of your core-site.xml,

hdfs-site.xml and mapred-site.xml files.

 Execute the following command:

$ java -cp $PIGDIR/pig.jar:$HADOOP_CONF_DIR org.apache.pig.Main script-hadoop.pig

 Review the result files, located in the script-hadoop-results:

$ hadoop fs -ls script-hadoop-results

$ hadoop fs -cat 'script-hadoop-results/*' | less

5.2.5 Pig UDF

When using pig, the user may need to specify custom processing. Pig provides extensive

support for user-defined functions (UDFs)
[35]

. We can use existing functions as UDFs, and we

can also write our own functions. These functions can be used as a part of almost every

operator in Pig.

The following steps show how to create and use a UDF in pig:

1) Write our own functions or use the existing functions.

2) Build pig.jar which is used to compile the UDF.

3) Compile the UDF and then create a jar file that contains it.

4) Register the jar file which contains the UDF in order to provide the location of the jar file.

Note that there are no quotes around the jar file because having quotes would result in a

syntax error.

5) Run the script that uses the UDF.

40

5.3 Implementation of the Model

5.3.1 Step 1: install Rserve

We need to have R-1.5.0 or higher installed on our system in order to be able to use Rserve.

The easiest way to install Rserve is to install it from CRAN, simply use

install.packages("Rserve")

in R. Unix users, please note that R must have been configured with --enable-R-shlib in order

to use Rserve. Rserve comes now as an R package, so one way to start Rserve is from within

R, just type

library(Rserve)

Rserve()

If the Rserve is successfully installed, we can see the following result shown in Figure 28:

Figure 28: Rserve Installation

The server is nothing without clients, we will use java REngine Java client in the following

chapters. This client API is more flexible, with better design, has better exception handling

and is aimed to support both JRI and Rserve transparently. Java client is located in

src/client/java-new. It is a full client suite that allows any Java application (JDK 1.4 or higher)

to access an Rserve. The suite is written entirely in Java. It provides automatic type translation

for most objects such as int, double, arrays, string or vector and classes for special R objects

such as RBool, RList etc.

41

One can use the following code to test if the Rserve is successfully installed or not:

import org.rosuda.REngine.*;

import org.rosuda.REngine.Rserve.*;

import org.rosuda.REngine.Rserve.protocol.*;

public class Rtest {

 public static void main(String [] args)

 {

 Rtest myt = new Rtest();

 System.out.println("hello world");

 }

 public Rtest()

 {

 try{

 RConnection c = new RConnection("127.0.0.1");

 REXP x = c.eval("R.version.string");

 System.out.println(x.asString());

 }catch(Exception e)

 {

 e.printStackTrace();

 }

 }

}

If the java client is successfully installed, we can see the following result shown in Figure 29:

Figure 29: Rserve Test Result

42

5.3.2 Step 2: install Pig

Pig can be installed according to the steps described in chapter 4.2.3. The following code can

be use to check if the pig is installed successfully or not.

 import java.io.IOException;

 import org.apache.pig.PigServer;

 public class pigTest{

 public static void main(String[] args) {

 try {

 PigServer pigServer = new PigServer("mapreduce");

 runIdQuery(pigServer, "jing/passwd");

 }

 catch(Exception e) {

 }

 }

 public static void runIdQuery(PigServer pigServer, String inputFile) throws IOException {

 pigServer.registerQuery("A = load '" + inputFile + "' using PigStorage(':');");

 pigServer.registerQuery("B = foreach A generate $0 as id;");

 pigServer.store("B", "jing/idout");

 }

 }

If the pig is installed successfully, we can see the following result shown in Figure 30:

Figure 30: Pig Installation

43

5.3.3 Step 3: embed Rserve into Pig

The following codes show how to embed R functions into Pig codes.

import java.io.IOException;

import org.apache.pig.PigServer;

import org.rosuda.REngine.*;

import org.rosuda.REngine.Rserve.*;

import org.rosuda.REngine.Rserve.protocol.*;

public class pigRserver{

……

 public static void main(String[] args) {

 try {

 RTest myt = new RTest();

PigServer pigServer = new PigServer("mapreduce");

 runIdQuery(pigServer, "…");

 ……

 }

 catch(Exception e) {

……

 }

}

public static void runIdQuery(PigServer pigServer, String inputFile) throws IOException {

 pigServer.registerQuery("…");

 pigServer.registerQuery("…");

 pigServer.store("…", "…");

……

 }

public void RTest()

{

 try{

 RConnection c = new RConnection("152.94.1.68");

 ……

 }catch(Exception e)

 {

 e.printStackTrace();

 }

44

}

}

The Pig server and Rserve can share the same parameters. First, Rserve processes the data

with R functions, then,pig codes can invoke the processing results in pig server. A simple

example can be shown as below.

import java.io.IOException;

import org.apache.pig.PigServer;

import org.rosuda.REngine.*;

import org.rosuda.REngine.Rserve.*;

import org.rosuda.REngine.Rserve.protocol.*;

public class pigRserver{

 static String a="";

 public static void main(String[] args) {

 try {

 RTest myt = new RTest();

 PigServer pigServer = new PigServer("mapreduce");

 runIdQuery(pigServer, "jing/passwd");

 }

 catch(Exception e) {

 }

}

public static void runIdQuery(PigServer pigServer, String inputFile) throws IOException {

 pigServer.registerQuery("A = load '" + inputFile + "' using PigStorage(':');");

 pigServer.registerQuery("B = foreach A generate $0 as id;");

 pigServer.store("B", "jing/idout");

 System.out.println(a);

 }

public void RTest()

{

 try{

 RConnection c = new RConnection("152.94.1.68");

 REXP x = c.eval("R.version.string");

 a=x.asString();

 }catch(Exception e)

 {

 e.printStackTrace();

45

 }

}

}

The result can be seen in Figure 31.

Figure 31: Embed Rserve into Pig

So, R functions can be embedded in Pig codes in this way, but it's very limiting. The users

would be forced to use some custom java code every time they need R functions in Pig.

5.3.4 Step 3: Pig UDF with Rserve

Step 1: Why develop UDF with Rserve?

R functions can be embedded into pig but it's very limiting. The users would be forced to use

some custom java code every time they need R in Pig. R function has to be visible like any

other function in Pig for the users. Pig provides extensive support for UDFs as a way to

specify custom processing. Functions can be a part of almost every operator in Pig.

Step 2: Write our own functions or use the existing functions.

An example
[35]

 can be shown as below. The example is from „Pig UDF Manual‟, but there are

some mistakes in this manual and the codes from it don‟t work, so, some changes are made to

the codes and shown as below.

46

 package myudfs;

 import java.io.IOException;

 import java.util.List; ;

 import java.util.ArrayList;

 import org.apache.pig.EvalFunc;

 import org.apache.pig.PigWarning;

 import org.apache.pig.data.Tuple;

 import org.apache.pig.data.DataType;

 import org.apache.pig.impl.logicalLayer.schema.Schema;

 import org.apache.pig.impl.logicalLayer.FrontendException;

 import org.apache.pig.FuncSpec;

 public class UPPER extends EvalFunc <String> {

 public String exec(Tuple input) throws IOException {

 if (input == null || input.size() == 0)

 return null;

 String str = null;

 try {

 str = (String)input.get(0);

 return str.toUpperCase();

 }

 catch (ClassCastException e) {

 warn("unable to cast input "+input.get(0)+" of class "+

 input.get(0).getClass()+" to String", PigWarning.UDF_WARNING_1);

 return null;

 }

 catch(Exception e){

 warn("Error processing input "+input.get(0), PigWarning.UDF_WARNING_1);

 return null;

 }

 }

 @Override

 public Schema outputSchema(Schema input) {

 return new Schema(new

Schema.FieldSchema(getSchemaName(this.getClass().getName().toLowerCase(), input),

DataType.CHARARRAY));

 }

 @Override

 public List<FuncSpec> getArgToFuncMapping() throws FrontendException {

47

 List<FuncSpec> funcList = new ArrayList<FuncSpec>();

 funcList.add(new FuncSpec(this.getClass().getName(), new Schema(new Schema.FieldSchema(null,

DataType.CHARARRAY))));

 return funcList;

 }

 }

The first line indicates that the function is part of the myudfs package. The UDF class extends

the EvalFunc class which is the base class for all eval functions. It is parameterized with the

return type of the UDF which is a Java String in this case. The next step is to implement the

exec function. This function is invoked on every input tuple. The input into the function is a

tuple with input parameters in the order they are passed to the function in the Pig script. In our

example, it will contain a single string field corresponding to the user ID.

The first thing to decide is to check if the input data is null or empty; If so, it returns null. If

not, the first letter of the user ID will be turn into capital letter.

Step 3: Build pig.jar which is used to compile the UDF.

Now the functions are implemented, it needs to be compiled and included in a jar. We need to

build pig.jar to compile the UDF. The following sets of commands are used to check out the

code from SVN repository and create pig.jar
[35]

:

 svn co http://svn.apache.org/repos/asf/hadoop/pig/trunk

 cd trunk

 ant

Step 4: Use pig.jar to compile the UDF and then create a jar file that contains it.

Now, pig.jar should be seen in the current working directory. The set of commands below

first compiles the function
[35]

 and then creates a jar file that contains it.

 cd packagename

 javac -cp pig.jar javafilename.java

 cd ..

 jar -cf jarname.jar packagename

48

When we try to compile UDF with pig.jar, several errors are shown in Figure 32.

Figure 32: Syntax Error

As can be seen from Figure 32, almost all the errors are resulted by „Syntax error,

parameterized types are only available if source level is 5.0‟. If the user is using an IDE, in

Eclipse for example, there are 2 ways to fix it: First, install Java 5.0 (Window > Preferences >

Java > Installed JREs); Second, The compiler compliance level has to be elected to 5.0

(Window > Preferences > Java > Compiler). After it is fixed, we can see that the Java edition

we are using is a newer one. So, we can compile the UDF with pig.jar again, but the same

errors happen again. Now we already use the higher edition of Java, why the errors happen

again? This is because even if JVM or the user‟s IDE's environment might run on a different

version after Java 5.0 is installed, we are programming in a hadoop cluster and we are using

cmd window to compile the UDF, it has its own java. So, even if the edition of the Java is a

higher edition in Eclipse, but the Java which cmd window is using is still a older edition.

The Java edition which cmd window is using can be checked with the code‟ java –edition‟,

now we can see that the cmd window is still using the older edition. The way to fix it is go to

49

the file which has a higher edition, and use the java there. A simple example can be seen as

below:

bin/javac -cp /home/prosjekt/hadoop/jing_eclipse/JingRserver/src/myudfs/pig.jar

/home/prosjekt/hadoop/jing_eclipse/JingRserver/src/myudfs/RTest2.java

Now myudfs.jar should be seen in the current working directory. This jar can be used in the

script now.

Step 5: Register the jar file which contains the UDF in order to provide the location of

the jar file.

Users often run their scripts in different environments, so jar locations or versions may change.

Note that there are no quotes around the jar file because having quotes would result in a

syntax error.

register myudfs.jar;

Step 6: Run Pig codes(written in java) that uses the UDF.

At the beginning, we try to develop both the UDF and the pig codes which invokes the UDF

in Java. An example is shown as below:

import java.io.IOException;

import org.apache.pig.PigServer;

public class pigTest2{

 public static void main(String[] args) {

 System.out.println("...1...");

 try {

 PigServer pigServer = new PigServer("mapreduce");

 runIdQuery(pigServer, "jing/passwd");

 }

 catch(Exception e) {

 }

}

public static void runIdQuery(PigServer pigServer, String inputFile) throws IOException {

 System.out.println("...2...");

 pigServer.registerQuery("A = load 'jing/passwd' using PigStorage(':');");

50

 pigServer.registerQuery("A = load '" + inputFile + "' using PigStorage(':');");

 pigServer.registerQuery("B = foreach A generate $0 as id;");

 pigServer.store("B", "jing/idoutb");

 System.out.println("...3...");

 pigServer.registerQuery("REGISTER myudfs.jar;");

 System.out.println("…4…");

 pigServer.registerQuery("C = foreach B generate myudfs.UPPER(id);");

 pigServer.store("C", "jing/idoutc");

 }

}

The result can be seen in Figure 33.

Figure 33: Result of ‟registerQuery‟

As can be seen from the result, the command „pigServer.registerQuery("REGISTER

myudfs.jar;");‟ was just skipped when the codes were running. That is because jars can only

be registered on the command line. It means that currently 'register' can only be done inside a

Pig Latin script
[38]

. So, the pig UDF can be written in Java, but if the user wants to invoke the

PDF, he can only write Pig Latin script to invoke it.

Step 7: Run the Pig script which invokes the UDF.

An example is shown as below:

 -- myscript.pig

 hadoop fs -rm myudfs.jar

 hadoop fs -copyFromLocal myudfs.jar jing

51

 register myudfs.jar;

 A = load 'jing/passwd' using PigStorage(':');

 B = foreach A generate $0 as id;

 C = foreach B generate myudfs.UPPER(id);

 dump C;

The command below can be used to run the script.

java -cp pig.jar org.apache.pig.Main -x local myscript.pig

The original document we used can be seen in Figure 34.

Figure 34: Original Document

52

The id results are shown in Figure 35.

Figure 35: ID Result

The results after invoking the UDF are shown in Figure 36.

Figure 36: Final Result

53

Step 8: Pig UDF with Rserve

The relationship among Pig codes, UDF, Rserve and R is shown in Figure 37.

Figure 37: Relationship among Pig, UDF, Rserve and R

As can be seen from Figure 37, Pig codes can be written in Java and script, UDF can be

written in JAVA, R functions can be put into UDF. If Pig codes want to invoke UDF, 3

important steps must be implemented (according to Pig UDF Manual):

1) javac -cp pig.jar javafilename.java; This command is used to compile UDF with

pig.jar.

2) jar -cf jarname.jar packagename; This command is used to create a jar file that

contains the UDF.

3) register packagename.jar; This command is used to register the jar file which include

the UDF, so the pig codes who invoke this UDF will know where the UDF is.

If Pig codes want to invoke UDF, there are 2 ways, use Java or script.

Step 1, consider using java.

As shown from the former chapters, 'register packagename.jar;' can only be done inside a Pig

Latin script. So, it means that the pig UDF can be written in Java, but if the user wants to

invoke this PDF, he can only write Pig Latin script to invoke it. The result of step 1 can be

seen in Figure 38.

54

Figure 38: Result of Step 1

Step 2, consider using script.

R functions can be put into UDF (written in java), then the UDF is a function including R

functions. If pig wants to use the UDF, the 3 requitements must be satisfied, now the problem

comes up, when pig.jar try to compile the UDF, pig.jar cannot find Rserve engine, as can be

seen from Figure 39.

Figure 39: Compile Error

55

The user has to use pig.jar to compile UDF, but if Rserve is included in the UDF, pig.jar

doesn‟t know what Rserve is and cannot compile it. So, the next step is to figure out a way to

compile the UDF.

In order to compile the UDF, 3 jars are needed: pig.jar, REngine.jar and RserveEngine.jar.

First, we can change the classpath to show JVM how to find the jar files, but unfortunatly it

doesn‟t work. Second, instead of changing the classpath, we can move REngine.jar and

RserveEngine.jar to the same folder which includes pig.jar, and use these 3 jars together to

compile the java file, but the similar error happens, it still cannot find the jars. So, the result of

step 2 can be seen as Figure 40.

Figure 40: Result of Step 2

5.4 Conclusion of the Chapter

Due to the reason of researching time and the author‟s knowledge, this reasoning technique

has limitations in the model, R functions can be embedded into pig but it's very limiting, so

future work needs to be done on it.

56

6 Conclusion and Future Work

6.1 Conclusion

For oil companies, on one hand, operators want to know whether everything is going ok or

not; on the other hand, it may direct operators to find new resources. So, it is very important

to process the data before analysis.

This paper gives out several models to show how to process data with reasoning techniques.

The alarm system which integrates JADE and JESS can process the data and give out alarms

when the data is abnormal; The SUP data processing system which based on Petri Net

technique and the JESS monitoring results is developed as well and the performance of the

system is also analysed; The first 2 models are only used for a single server, however, in order

to process data with multi servers in a distributed environment, the author also does a research

on the interface between Rserve and Pig.

6.2 Future Work

There are some more reasoing techniques available to process data, Bayesian Network, for

example. More research on other reasoning techniques can be done in the future.

Due to the reason of the researching time and the author‟s knowledge, the Pig UDF with

Rserve is not completely finished, more work can be done in the future.

57

7 References

[1] Ernest Friedman-Hill. Jess in Action---Rule-Based Systems in Java [M]. 2009

[2] http://clipsrules.sourceforge.net/

[3] Carl Adam Petri and Wolfgang Reisig (2008) Petri net

[4] GPenSIM, version 3 - General Purpose Petri Net Simulator, Reggie Davidrajuh, 2008

[5] Discrete Simulation and Performance Analysis, Reggie Davidrajuh, 2009

[6] http://www.r-project.org/ R

[7] http://www.rforge.net/Rserve/index.html

[8] Bayesian Networks, Ben-Gal, Irad (2007)

[9] http://JADE.tilab.com

[10] Data Querying and Transformation Application Based on Witsml Connector, Baodong

Jia, June 22th, 2009

[11] Grigoris Antoniou, Frank van Harmelen. A Semantic Web Primer[M]. 2008

[12] G. Klyne, J. Carroll. Resource Description Framework (RDF): Concepts and Abstract

Syntax[M], 2004

[13] A. Berglund. Extensible Stylesheet Language (XSL) [M]. 2006

[14] Alarm System, Jing Kou, 2009

[15] http://www.cse.sys.t.u-tokyo.ac.jp/furuta/teaching/csd/CSD04.pdf

[16]http://www.dia.fi.upm.es/~phernan/AgentesInteligentes/referencias/bellifemine01.pdf

[17] http://ajava.org/course/open/13966.html

[18] http://www.cs.mu.oz.au/682/Week6b.ppt

[19] http://jade.tilab.com/doc/tutorials/jade-jess/jade_jess.html

[20] Developing Intelligent Agent Applications with JADE and JESS, Bala M. Balachandran,

University of Canberra

[21] http://www.petrinets.info/

[22] http://petri.net/

[23] GPenSIM - General Purpose Petri Net Simulator, Reggie Davidrajuh, 2009

[24] http://www.mathworks.com/products/matlab/

[25] http://www.math.utah.edu/lab/ms/matlab/matlab.html

[26] Notes Publishing System and Its Extension, Baodong Jia and Jing Kou, 2009

[27] http://tech.163.com/special/00091SVT/ajax.html

[28] http://cran.r-project.org/manuals.html

[29] http://cran.r-project.org/doc/Rnews/

http://www.r-project.org/
http://www.cse.sys.t.u-tokyo.ac.jp/furuta/teaching/csd/CSD04.pdf
http://jade.tilab.com/doc/tutorials/jade-jess/jade_jess.html
http://cran.r-project.org/manuals.html

58

[30]Using R for Data Analysis and Graphics - Introduction, Examples and Commentary

[31] http://rbbs.biosino.org/Rbbs/forums/list.page

[32] http://hadoop.apache.org/pig/

[33] http://hadoop.apache.org/pig/docs/r0.5.0/piglatin_users.html

[34] http://hadoop.apache.org/pig/docs/r0.5.0/setup.html

[35] Pig UDF Manual

[36] http://rosuda.org/Rserve/

[37]

http://www.unibielefeld.de/biologie/Oekosystembiologie/bio7app/documents/javadoc/com/ec

o/bio7/rbridge/RServe.html

[38] https://issues.apache.org/jira/browse/PIG-1226

59

8 Appendix

8.1 Appendix A- Example of Farmer's Dilemma Problem

;;;==

;;; Farmer's Dilemma Problem

;;;==

;;;*************

;;;* TEMPLATES *

;;;*************

;;; The status facts hold the state

;;; information of the search tree.

(deftemplate MAIN::status

 (slot search-depth)

 (slot parent)

 (slot farmer-location)

 (slot fox-location)

 (slot goat-location)

 (slot cabbage-location)

 (slot last-move))

;;;*****************

;;;* INITIAL STATE *

;;;*****************

(deffacts MAIN::initial-positions

 (status (search-depth 1)

 (parent no-parent)

 (farmer-location shore-1)

 (fox-location shore-1)

 (goat-location shore-1)

60

 (cabbage-location shore-1)

 (last-move no-move)))

(deffacts MAIN::opposites

 (opposite-of shore-1 shore-2)

 (opposite-of shore-2 shore-1))

;;;***********************

;;;* GENERATE PATH RULES *

;;;***********************

(defrule MAIN::move-alone

 ?node <- (status (search-depth ?num)

 (farmer-location ?fs))

 (opposite-of ?fs ?ns)

 =>

 (duplicate ?node (search-depth (+ 1 ?num))

 (parent ?node)

 (farmer-location ?ns)

 (last-move alone)))

(defrule MAIN::move-with-fox

 ?node <- (status (search-depth ?num)

 (farmer-location ?fs)

 (fox-location ?fs))

 (opposite-of ?fs ?ns)

 =>

 (duplicate ?node (search-depth (+ 1 ?num))

 (parent ?node)

 (farmer-location ?ns)

 (fox-location ?ns)

 (last-move fox)))

(defrule MAIN::move-with-goat

61

 ?node <- (status (search-depth ?num)

 (farmer-location ?fs)

 (goat-location ?fs))

 (opposite-of ?fs ?ns)

 =>

 (duplicate ?node (search-depth (+ 1 ?num))

 (parent ?node)

 (farmer-location ?ns)

 (goat-location ?ns)

 (last-move goat)))

(defrule MAIN::move-with-cabbage

 ?node <- (status (search-depth ?num)

 (farmer-location ?fs)

 (cabbage-location ?fs))

 (opposite-of ?fs ?ns)

 =>

 (duplicate ?node (search-depth (+ 1 ?num))

 (parent ?node)

 (farmer-location ?ns)

 (cabbage-location ?ns)

 (last-move cabbage)))

;;;******************************

;;;* CONSTRAINT VIOLATION RULES *

;;;******************************

(defmodule CONSTRAINTS)

(defrule CONSTRAINTS::fox-eats-goat

 (declare (auto-focus TRUE))

 ?node <- (status (farmer-location ?s1)

 (fox-location ?s2&~?s1)

 (goat-location ?s2))

62

 =>

 (retract ?node))

(defrule CONSTRAINTS::goat-eats-cabbage

 (declare (auto-focus TRUE))

 ?node <- (status (farmer-location ?s1)

 (goat-location ?s2&~?s1)

 (cabbage-location ?s2))

 =>

 (retract ?node))

(defrule CONSTRAINTS::circular-path

 (declare (auto-focus TRUE))

 (status (search-depth ?sd1)

 (farmer-location ?fs)

 (fox-location ?xs)

 (goat-location ?gs)

 (cabbage-location ?cs))

 ?node <- (status (search-depth ?sd2&:(< ?sd1 ?sd2))

 (farmer-location ?fs)

 (fox-location ?xs)

 (goat-location ?gs)

 (cabbage-location ?cs))

 =>

 (retract ?node))

;;;*********************************

;;;* FIND AND PRINT SOLUTION RULES *

;;;*********************************

(defmodule SOLUTION)

(deftemplate SOLUTION::moves

 (slot id)

63

 (multislot moves-list))

(defrule SOLUTION::recognize-solution

 (declare (auto-focus TRUE))

 ?node <- (status (parent ?parent)

 (farmer-location shore-2)

 (fox-location shore-2)

 (goat-location shore-2)

 (cabbage-location shore-2)

 (last-move ?move))

 =>

 (retract ?node)

 (assert (moves (id ?parent) (moves-list ?move))))

(defrule SOLUTION::further-solution

 ?node <- (status (parent ?parent)

 (last-move ?move))

 ?mv <- (moves (id ?node) (moves-list $?rest))

 =>

 (modify ?mv (id ?parent) (moves-list ?move ?rest)))

(defrule SOLUTION::print-solution

 ?mv <- (moves (id no-parent) (moves-list no-move $?m))

 =>

 (retract ?mv)

 (printout t crlf „Solution found: „ crlf crlf)

 (bind ?length (length$?m))

 (bind ?i 1)

 (bind ?shore shore-2)

 (while (<= ?i ?length)

 (bind ?thing (nth$?i ?m))

 (if (eq ?thing alone)

 then (printout t „Farmer moves alone to „ ?shore „.‟ crlf)

 else (printout t „Farmer moves with „ ?thing „ to „ ?shore „.‟ crlf))

64

 (if (eq ?shore shore-1)

 then (bind ?shore shore-2)

 else (bind ?shore shore-1))

 (bind ?i (+ 1 ?i))))

(reset)

(run)

8.2 Appendix B- Example of Norwegian Traffic Lights

65

