
A MESSAGE QUEUE BASED EVENT

NOTIFICATION SYSTEM

FOOTBALL LOTTERY SYSTEM

Master of Science Thesis

University of Stavanger

The Department of Electrical and Computer Engineering

By

Xu Yunpeng

June 2010

Abstract

The event notification service enables user of getting informed about the occur-

rence of their events of interest. Message queue technology provides asynchronous

message exchange functions between computer processes. This thesis presents a

solution of building event notification system using the message queue approach.

The events in the experiment are generated during the football match and used

for both stateless and stateful processing.

The system includes three main applications: the football event publication

system will provide sequence of events to the message broker; the football lottery

client application will provide a user interface for the clients to make prediction

about future matches; the football lottery server will accept user betting coupons

from clients and subscribe match events from the message broker, base on the

received events the server will make evaluation for each coupon and give out the

result.

ii

Acknowledgments

My supervisor, Mr Hein Meling, associate professor in Department of Electrical

Engineering and Computer Science at the University of Stavanger gave me a lot of

intensive guidance during the work. Mr P̊al Evenson, PHD student of Department

of Electrical Engineering and Computer Science at the University of Stavanger also

provided many validate suggestion during the coding process. I would like to thank

for their patiently assistance and kindly encourage.

iii

Contents

Abstract ii

Acknowledgments iii

1 Introduction 1

1.1 The Idea . 2

1.2 This Thesis . 3

2 Background 4

2.1 Java Message Service . 4

2.1.1 Some important terms in JMS 5

2.1.2 Programming with JMS . 6

2.2 ActiveMQ . 8

2.2.1 The TCP transport mechanism of ActiveMQ 9

2.2.2 Openwire protocol . 10

2.2.3 ActiveMQ cluster . 12

2.2.4 C library for Openwire and APR 13

2.3 Other Technologies Used . 13

2.3.1 XML . 13

2.3.2 JDOM . 14

2.3.3 JSON . 14

3 Detailed Structure 16

3.1 Football Event Publication (FEP) 16

3.2 Football Lottery Server (FLS) . 19

3.2.1 Coupon logic . 19

3.2.2 Process element . 20

3.3 Football Lottery Client (FLC) . 21

iv

3.4 C Event Subscriber (CES) . 23

4 Experiments and Evaluation 24

4.1 Experiment Setup . 24

4.2 Experiment Results . 25

4.3 Comments . 33

5 Future Work 34

5.1 Distributed Football Lottery Server 34

5.2 Memory pool management on C Event Subscriber 35

5.3 Automatical Result Notification . 36

5.4 High Performance Server Thread 37

A Listed Java Classes 38

Bibliography 39

v

Chapter 1

Introduction

Distribute system is widely used today to meet the web service application de-

mands such as fault tolerance, load balance and sharing. A distribute system is

generally a set of computers connected by internet and coordinate their actions by

exchanging messages[20].

However, the computers in a distribute system may have different kinds of hard-

ware and software. The communication protocol and internet hierarchy between

the hardwire platform may also be distinct from each other. This heterogene-

ity brings great challenge for the design of distributed system. Message Oriented

Middleware (MOM) provides a reasonable solution for this heterogeneity challenge.

As it shows in Figure 1.1. This middleware lies between the platforms (computer

hardware and operating system) and the applications. MOM communicates with

different kind of platforms through corresponding platform interfaces to shied soft-

ware developer from low lever platform details, it also provides a standard interface

for all applications of upper lever to locate the applications transparency across

the network[8]. the communication between the upper lever applications can be

asynchronous, the applications no longer needs to keep the constant communica-

tion channel with other applications, instead messages are exchanged between the

applications and middleware.

Message queue is the mechanism for MOM to store and transfer the messages

exchanged between clients, it’s asynchronous which make the message sender and

receiver don’t need to connect with the broker at the same time. The implemen-

tation of Message queue may include the enhanced resilience functionality in case

of message loss due to system failure.

Java Message Service (JMS) is a standard interface for this kind of message

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Middleware architecture

service. Many message brokers are developed base on JMS, such as Sun MQ, BEA

MQ, Apache ActiveMQ, IBM MQ and so on[24]. ActiveMQ is used as the message

broker in this solution.

1.1 The Idea

With the maturity of third generation wireless network, personal digital assistant

and smart mobile phones are widely used. Many exciting smart phone applications

are developed and provided to users. This thesis will focus on an implementation

of such applications. Java is an Object Oriented Language which is widely used

in programming. It’s platform agnostic and easy to use in network programming.

Java also supports multithread and has a standard API (JMS) for Message Ori-

ented Middleware. These advantages make Java the most suitable language for

the solution. Most smart phones on the market uses one of these operating sys-

tems: Symbian, Windows Mobile, Android and Mac OS. All of them support Java

application except the Iphone, which uses Mac OS. Thus, it will be meaningful to

develop both Java and C clients for different platforms.

CHAPTER 1. INTRODUCTION 3

There are a lot of football fans in Norway. They don’t want to miss their

favorite matches even when they are away from television, they also prefer a con-

venient way to make prediction about the future matches. The idea is developing

a football event notification system for the clients using message queue approach.

The contribution of the system should include two aspects:

(1) A live messages notification system capable of supporting a multitude of

client platforms, including mobile phones like iPhone.

(2)A football lottery application that can be used to notify clients (customers)

of events such as the number of correct on the lottery coupon of the user and the

price need to be paid for the coupon.

1.2 This Thesis

This thesis will start with an introduction of the background which are essential for

the design, including 3rd party software and technologies. Followed by a primary

explanation of the application structure and implementation details. After that,

the evaluation and the conclusion will be presented. At last, some plan for the

future work will be suggested.

Chapter 2

Background

2.1 Java Message Service

A distribute server system is composed of a collection of heterogeneous networked

computers. The internal communication which is between the inside computers

and the external communication which is between the system and clients, are both

based exchanging message. The message exchange can follow a lot of different

paradigms such as message passing, remote procedure call (RPC), notification,

shared space, message queueing and publish/subscribe. These paradigms are based

on different lever of abstraction and have different performance on space, time

and Synchronization decoupling. Space decoupling means communicating parties

don’t need to know each other, time decoupling means they don’t need to ”speak”

or ”listen” at the same time, synchronization decoupling means each side don’t

need to wait for other’s reply [10].

RPC is a typical space, time and synchronization coupled communication

paradigm which allows one computer process to cause a subroutine in another ad-

dress space (commonly another computer in the shared network) to invoke services

like performing native invocations, this results higher maintenance cost. Message

queueing, which also referred to point to poing (PTP), is both space and time de-

coupled but synchronization coupled. Message producers put messages into a fixed

destination and consumers pull messages from the destination, consumers need to

wait if no message is available in the destination. Publish/subscribe mode is to-

tally space, time and synchronization decoupled, the message sender puts message

into a fixed topic and any subscriber of the topic and get a copy of the message.

The maintenance cost of decoupled communication is much lower, this make PTP

4

CHAPTER 2. BACKGROUND 5

Figure 2.1: RPC and message passing

and Publish/Subscribe more suitable communication mode for event notification

system. Figure 2.1 shows the compare of RPC, PTP and Publish/Subscribe.

Messaging oriented middleware (MOM) provides event based communication

between programs which avoid the maintaining of direct channel between message

producers and message consumers. Java Message Service (JMS) provides a stan-

dard java API for creating, sending, receiving and reading of messages[24]. JMS

provides:

1, two kinds of communication model: PTP and Pubish/Subscribe

2, reliable message transport

3, transaction

4, message filtering mechanism

The structure of JMS is shown in Figure 2.2:

2.1.1 Some important terms in JMS

Below are some terms in JMS[21]:

JMS Provider : Message broker that implements JMS.

PTP : Point to Point messaging model provides durable buffering of message

CHAPTER 2. BACKGROUND 6

Figure 2.2: JMS structure

in queue.

Publish/Subscribe: Publish and subscribe messaging model, provides message

multicast.

Queue: A message domain, contains message which can be consumed by only

one consumer each time.

Topic: A message domain, contains message which can be consumed by mul-

tiple active subscribers at same time.

ConnetionFactory : Factory object used to establish connection.

Connection: The connection between client and message broker.

Destination: The message domain managed by JMS provider, which stores the

message produced by clients.

Session: A thread that receives and sends messages.

Message producer : Object created by session to send message.

Message consumer : Object created by session to receive message.

2.1.2 Programming with JMS

In JMS, ConnectionFactory and Destination are administrated objects of JMS

provider, which means JMS itself only provides the standard interface of these two

classes, The JMS provider will implement these interfaces.

CHAPTER 2. BACKGROUND 7

The first step of programming with JMS is to get the ConnectionFactory and

Destination Object. Two methods are available for this purpose:

1 , Use Java Naming and Directory Interface (JNDI) to discover the Connec-

tionFactory and Destination objects, JNDI is a java API for a directory service

that allows java software clients to discover and look up data and objects via a

name.

2, Since we use ActiveMQ as the JMS provider, we can get ConnectionFactory

and Destination by invoking the relevant constructers provided by ActiveMQ, this

method is easy and adapt in the application.

The second step is to use ConnectionFactory to establish Connection. This

Connection is the active communication channel between the JMS client and the

JMS broker, The JMS broker will allocate relevant resource for handling the con-

nection and verify the client.

Then single or multiple Sessions can be built by connection. Session is a thread

context to create and process message. Session use the acknowledgement options

and transactions to guarantee reliability.

After that Session and Destination can be used to construct MessagePro-

ducer and MessageConsumer. Client use MessageProducer to send message to

certain physical target (Destination), the modes (durable or undurable), priority

and expires of the messages, can also be set by the producer. Client use Message-

Consumer to receive message from certain physical target (Destination), Message

selector can be use to filter the messages received. MessageConsumer can use

synchronous mode by invoke receive() method, or use asynchronous method by

register a MessageListener. Finally, start the Connection to process messages. An

example to subscribe the message.

import javax . jms . ∗ ;
import org . apache . activemq . ∗ ;
public class EventPubl isher {
try{

ConnectionFactory connec t i on f a c t o ry=new

ActiveMQConnectionFactory () ;

Connection connect ion=connec t i on f a c t o ry . createConnect ion () ;

connect ion . s t a r t () ;

f ina l Ses s i on s e s s i o n=connect ion . c r e a t eS e s s i o n (Boolean .TRUE,

Se s s i on .AUTOACKNOWLEDGE) ;

Des t ina t i on d e s t i n a t i on=s e s s i o n . c reateTopic (”Viking ”) ;

MessageConsumer consumer=s e s s i o n . createConsumer (d e s t i n a t i on) ;

System . out . p r i n t l n (d e s t i n a t i on . t oS t r i ng ()) ;

CHAPTER 2. BACKGROUND 8

consumer . s e tMessageL i s t ene r (new MessageListener () {
public void onMessage (Message msg)

{
TextMessage message=(TextMessage)msg ;

try {
St r ing d e t a i l=message . getText () ;

System . out . p r i n t l n (”Hear Message : ”+

d e t a i l) ;

s e s s i o n . commit () ;

} catch (JMSException e) {
e . pr intStackTrace () ;

}
}
}) ;

s e s s i o n . c l o s e () ;

connect ion . c l o s e () ;

}
catch (Exception e)

{
e . pr intStackTrace () ;

}
}

2.2 ActiveMQ

Apache ActiveMQ is a very popular and powerful open source messaging and

integrating patterns provider. It fully supports JMS 1.1 but not confined in Java.

ActiveMQ supports multiple language clients such as: Java, C, C++, C#,

Ruby, Python and more, it shows in Figure 2.3. This opens to the door to

many more opportunities where ActiveMQ can be utilized outside of just the Java

world[22]. Thus a C client for Iphone can be developed.

ActiveMQ provides an Openwire protocol for high performance Java, C, C++,

C# clients, and also provides Stomp protocol so that clients can be written easily

in C, Ruby, Python, Perl, PHP and etc[3].

ActiveMQ provides a wide range of connectivity options including support for

protocols such as HTTP, SSL, TCP, STOMP,UDP, WS notification and more

(see Figure 2.3). This means ActiveMQ is very flexible.

ActiveMQ supports multiple kinds of message store such as JDBC, Kaha, Jour-

nal, Caching and etc, also the security lever of ActiveMQ can be completely cus-

CHAPTER 2. BACKGROUND 9

Figure 2.3: ActiveMQ architecture[3]

tomized (see Figure 2.3).

Many ActiveMQ broker can be organized into cluster for scalability purpose,

this network of brokers can support various topologies. In this paper, the distribu-

tivity of Football Lottery Server is presented.

Unlike normal PC or workstation, the CPU process speed, the memory as well

as the power of smart phone and personal data terminal are quite limited. Thus,

it will be necessary for the smart phone applications to be simple and efficient. C

langue is a procedure-oriented middle lever language that don’t supports program-

ming interface like Java. To develop a C subscriber client for Iphone, the whole

communication protocol stack need to be designed. TCP provides reliable messag-

ing in Transport layer, also both Iphone application and ActiveMQ broker totally

support Tcp protocol. These make the TCP protocol an appropriate lower layer

protocol for this solution. Openwire protocol is used upon TCP to provide com-

mand marshaling rules and procedures to establish/close connection, session and

other entities. The ActiveMQ’s Java implementation also uses TCP+Openwire as

a typical protocol stack. Then an intensive study on the source code and func-

tioning mechanism of ActiveMQ is meaningful.

2.2.1 The TCP transport mechanism of ActiveMQ

ActiveMQ supports multiple transports. Among which TCP transport is most

common used. TCP means transmission control protocol, as one of the core pro-

tocols of the Internet Protocol Suite, TCP provides reliable message transmission

CHAPTER 2. BACKGROUND 10

Figure 2.4: Tcp Transport Mode of ActiveMQ

between clients. The communication processes involved in TCP transport always

use Socket to identify each other. A Socket is the handle of the communication

channel and composed by the IP address and port number. The TCP transport

mechanism of ActiveMQ can be expressed by Figure 2.4.

When ActiveMQ launched, the broker will use TcpTransportServer to open

the port to listen to the clients’ request, the detected request is then queued

and handled by the Socket Handler thread. The Socket Handler thread will use

TransportConnection to process the message. TransportConnection implements

CommandVisitor interface to identify and handle the message.

2.2.2 Openwire protocol

ActiveMQ supports three wire formats: Openwire, STOMP and HTTP/REST.

Openwire is the protocol used inside ActiveMQ, it can be used to develop high

performance clients in Java, C, C++, C#. This paper will introduce an approach

of constructing a C client for Iphone application using Openwire protocol.

Openwire protocol is the protocol used upon TCP protocol. The object ex-

changed between the clients is called Command Object. In the messaging ap-

proach, marshalling or serialization is the process of breaking structured data into

segments so that it can be transmitted as data byte stream over network; unmar-

CHAPTER 2. BACKGROUND 11

Figure 2.5: The openwire protocol

shalling or deserialization is the process of reconstructing the structured data using

assembled streamed bytes arrived at the destination point. Openwire is used to

marshalling the Command Object into streamed bytes and back.

When the client wants to establish a connection to the broker, it must send a

ConnectionInfo command with details information of itself such as machine name,

host name, user name, password and an unique clientId. The client then waits

for a valid Response before continuing. The clientId is generated using a unique

string generator provided by the ActiveMQ.

After the connection is established, a session is used to handle the message

exchanged between both sides. Session uses logical MessageProducer to send mes-

sages and MessageConsumer to receive messages. Both MessageProducer and

MessageConsumer will be involved in an authentication approach before they can

actually send or receive messages. In this authentication approach, MessagePro-

ducer and MessageConsumer will send a ProduceInfo/ConsumerInfo command

with a unique produceId/consumerId, sessionId and clientId (connection Id) to

the broker. Figure 2.5 shows each scenarios.

To close a resource, client needs to send a RemoveInfo command with the

CHAPTER 2. BACKGROUND 12

Figure 2.6: Store and forward mechanism[26]

correct objectId for the producer, consumer, session, connection etc to the broker.

2.2.3 ActiveMQ cluster

To support hundreds of thousands of football event subscribers, using ActiveMQ

cluster is a good solution. With the auto-failover and discovery mechanism, Ac-

tiveMQ provides high scalability, reliability and high performance. The topology

of the brokers can be bus, star, ring or the hybrid.

The brokers coordinate their action by a store and forward mechanism. In

this mechanism, if a broker has producers, but no consumers, it may use one or

more forwarding bridges to forward messages on to brokers that have appropriate

consumers, if a broker has multiple forwarding bridges, with appropriate consumers

at the other ends of the bridges, it will load balance messages across the bridges[26].

As it shows in Figure 2.6, the brokers are connected by network connector or

forwarding bridge, broker A will forward the message to broker C to avoid message

piling up without processing.

CHAPTER 2. BACKGROUND 13

Figure 2.7: libactivemq build stack

2.2.4 C library for Openwire and APR

The C library for Openwire is used for developing Iphone client. This library in-

cludes libactivemq and libopenwire files. libactivemq is wrapped around libopenwire

and provides useful functions like connect,disconnect,send and more. The library

is based on Apache Portable Runtime (APR), which creates and maintains soft-

ware libraries that provide a predictable and consistent interface to underlying

platform-specific implementations[4]. The relationship of the libraries is shown in

Figure 2.7.

2.3 Other Technologies Used

2.3.1 XML

Extensible Markup Language (XML) is a W3C recommended standard of encoding

electronic documents. It separates the content and format of data by using tags,

which can greatly simplify the processing of document contained information.

XML provides an excellent way to store and transfer information over internet.

It’s also the format adapt by football match broadcaster (Lyse) to store the events

happened during the football match, here the XML file is named by the match

and Event number. For example, a free kick happened during the match ”Start vs

Viking” with the name of ”match136633Event4238049.xml” can be expressed like

this:

CHAPTER 2. BACKGROUND 14

<?xml version=” 1 .0 ” encoding=”ISO−8859−1”?>
< !DOCTYPE match SYSTEM ”match . dtd”>

<match id=”136633” s ta r t−time=” 21 .09 .2009 19 :00 ” status−id=”31”
status−name=” 1 . omgang” t r an s f e r−type=” s i ng l e−event ”>

<home goa l s=”1” team=”305”>Star t</home>

<away goa l s=”0” team=”303”>Viking</away>

<d e t a i l s>

<d e t a i l id=”4238049” type=”26” minute=”19” rea l−time=

” 21 .09 .2009 19 : 1 8 : 3 8 ” event−name=”Fr i spark ” mode=”

i n s e r t ”>

<p layer id=”62882”>< ! [CDATA[Samuelsen]]></

p laye r>

<team id=”303”>< ! [CDATA[Viking]]></team>

</ d e t a i l>

</ d e t a i l s>

</match>

2.3.2 JDOM

Java Document Object Model (JDOM) is an open source document object model

based on java that used for processing XML files. JDOM integrates Document

object model (DOM) and simple API for XML (SAX), supports XSLT and XPath.

An code script of processing ”match136633Event4238049.xml”using JDOM:

SAXBuilder bu i l d e r = new SAXBuilder () ;

Document doc = bu i l d e r . bu i ld (new Fi leInputStream (”

match136633Event4238049 . xml”)) ;

Element root = doc . getRootElement () ;

Element home = root . getChi ld (”home”) ;

System . out . p r i n t l n (”Home sco r e i s ”+home . getContent (0) . getValue ()) ;

2.3.3 JSON

JavaScript Object Natation (JSON) is a light weight data interchange format based

on pure text. JSON is more simple and flexible compared with XML. Despite

the advantages such as platform and language independent, XML is not easy

to generate and process in server side, neither easy to parse in the client side.

JSON, on the other hand, has less content compared with XML which means

lower transmission cost. It provides very simple API that easier to be processed

CHAPTER 2. BACKGROUND 15

by Java. JSON is also supported by Iphone and can be processed by C language.

These reasons make JSON the appropriate data structure to store the events.

JSON is composed of two structures: A dictionary like collection of key-value

pairs and an ordered list of values. An example of JSON event is:

{ ”match” : ” Star t VS Viking ” ,

” r e s u l t ” : ”1−1” ,

”minute” : 8 3 ,

” p laye r ” : ” I j e h ” ,

”team” : ”Viking ” ,

”eventname” : ” Fr i spark ”}

In this solution, the event processed by all parts is expressed by JSON string.

This paper uses a ”Json simple.jar” package to process JSON strings.

Chapter 3

Detailed Structure

The solution presented here is a Message Queue based Event Notification system

(MQEN) which is implemented in Java language. C Event Subscriber (CES) as a

C langue client is also introduced in this thesis.

MQEN is composed of three parts (shown in Figure 3.1):

1, The Football Event Publication application (FEP) provides sequence of

events to the message broker.

2, The Football Lottery Client application (FLC) provides a user interface for

the clients to subscribe their favorite ongoing matches and make prediction about

future matches.

3, The Football Lottery Server (FLS) will accept user betting from clients and

subscribe match events from the message broker, base on which to make evaluation

for each coupon and give out the result.

The ActiveMQ can be running on a single machine or hosted by multiple

computers to form a network of brokers. The data source can be live XML stream,

database, remote file system or local file system and more. The connection channel

between FLC and FLS is TCP but can also be designed by alternative protocols.

This solution processes football events using Publish/Subscribe mode and handle

result events by PTP mode.

3.1 Football Event Publication (FEP)

A football match can be break up into single events. A event can be a goal, corner,

free kick and etc. Each event can be expressed by a XML file. The XML files are

named by the match and event number. For example: match136633Event4237920.xml.

16

CHAPTER 3. DETAILED STRUCTURE 17

Figure 3.1: Overview Scheme OF MQEN

The XML files should be provided by the television signal provider (Lyse) and

accessible for the application through multiple ways. In this solution, The XML

files is stored in the hard disk and grouped into different folders by the match

name. Thus, this thesis make the assumption that the data source is a file system.

The design can be transplant to remote file system if necessary. However, other

specific adapters need to be developed for piped XML stream or database.

The system will parse the XML files in the hard disk and generate related

events instance, then send them to both the home team and away team topic in

the broker. The events use a light weight data format with the name of JSON.

Figure 3.2 shows the structure of FEP. First of all, the EventPublihser object

will establish the connection to ActiveMQ and read the root path of the XML files

directory. It will then create one MessageSender object for each XML files within

that directory. The MessageSender object will use MatcheParser object to parse

the XML files to JSON strings. At last the JSON string is sent to both the Home

team topic and Away team topic of the broker.

When extracting the files from the root directory, a recursive method is adapt,

this is shown in Figure 3.3. the function only processes files with the type of

CHAPTER 3. DETAILED STRUCTURE 18

Figure 3.2: Football Event Publication

Figure 3.3: Xml file extraction

CHAPTER 3. DETAILED STRUCTURE 19

XML. In the parsing procedure, only important elements of XML is extracted and

delivered to JSON event constructer. These elements include:

For matches summery: match name, result, home team and away team.

For single events: match name, result,events name, events committer, commit-

ter name, committer team and events time (happening minuter).

3.2 Football Lottery Server (FLS)

The system will accept the user’s betting coupons, base on which to calculate the

results (number of correct) of each coupon and put the results into the relevant

result queues in the broker.

Figure 3.4 showed detailed structure of FLS, The GoalServer will provide

coupon service at port 52070, when there is request for service, it will open a

ServerThread object to process the client request. The information provided by

the Football Lottery Client (FLC) includes the prediction form, a unique formId

and the amount need to be paid. The ServerThread will open a GoalSubscriber

object to subscribe events from the 12 matches predicted by the user. GoalSub-

scriber will use a ProcessElement object as a state machine to response the goal

event. ProcessElement will use a Coupon logic to model the user prediction and

calculate results. When a GoalEvent comes, it will fire on the ProcessElement to

change the state. After all 12 matches result are received, ProcessElement will

calculated the final result and notify the GoalSubscriber, who will write the result

into the relevant Queue in the broker.

3.2.1 Coupon logic

The Coupon logic is developed by Mr Hein Meling and proved very efficient. It

keeps the match state in a list and user’s betting in a immutable list. the match

state is changed when goals come. The Coupon logic also provides method of

evaluating how many matches the user make the right prediction. The primary

methods of Coupon logic:

// inner enumerate c l a s s to d e f i n e 3 outcomes : Win, Draw , Lose

public enum Outcome {} ;
// inner c l a s s to b u i l d the coupon

public stat ic f ina l class Bui lder {} ;
//method o f c l a s s Bui lder

public Bui lder s e t (Outcome o) ;

CHAPTER 3. DETAILED STRUCTURE 20

Figure 3.4: Football Lottery Server

public Bui lder s e t (Outcome o1 , Outcome o2) ;

public Bui lder s e t (Outcome o1 , Outcome o2 , Outcome o3) ; } ;
public Coupon bu i ld (S t r ing owner) ;

// pu b l i c methods

public void goa l (int matchId , int homeScore , int awayScore) ;

public int eva luate () ;

public stat ic St r ing matchState () ;

public St r ing ge tPred i c t () ;

public St r ing toS t r i ng () ;

3.2.2 Process element

The ProcessElement logic is the state machine that fires on the GoalEvent. Goal-

Subscriber objects subscribe football events from ActiveMQ and produce GoalEvent

for ProcessElement, ProcessElement use a boolean type array to record which

match result is not received yet, thus duplicate message is avoid. After all match

result received, the result can be calculated and sent to GoalSubscriber. The logic

is show in Figure 3.5.

CHAPTER 3. DETAILED STRUCTURE 21

Figure 3.5: The ProcessElement

3.3 Football Lottery Client (FLC)

This application is installed on the user’s computer or mobile phone. It provides a

graphical user interface for the users. FLC uses TCP as the connection protocol.

It will send the user’s betting form(CFrom), unique formId as well as the amount

to pay (price) to the FLS. FLC gets the betting result and the events of team of

interest from the message broker. The CForm is a 3×12 array of boolean type, as

it shows in Figure 3.7, the 3 columns means Win,Draw,Lose, the 12 rows means

12 matches of prediction. At least one element of the same row should be Ture,

this means user have to make prediction on all of the 12 matches. Assume the

price for one prediction is 5 NOK, the total price of the coupon is calculated by

the follow formula:

y = 5×2(x−12) (3.1)

y is the price need to be paid,

x is the number of Ture in the CForm array. For example, a betting coupon make

like it shows in figure 3.7, the price need to pay is 5×215−12 = 40nok. The formId

is used as the identifier of result destination, the client will subscribe result from

the result queue in the broker.

CHAPTER 3. DETAILED STRUCTURE 22

Figure 3.6: Football Lottery Client

Figure 3.7: The Coupon Form

CHAPTER 3. DETAILED STRUCTURE 23

3.4 C Event Subscriber (CES)

This application is designed using the libactivemq and Apache Portable Runtime

(APR). APR provides memory pool management and error code enumeration to

handle the session. libactivemq provides functions and data structure for connect-

ing and sending messages. below is the listing of the primary functions and data

structures.

//APR

ap r s t a t u s t ;

ap r poo l t ;

// l i b a c t i v emq

amqcs connect opt ions ;

a p r s t a t u s t amqcs send (amqcs connect ion ∗ connect ion ,

ow ActiveMQDestination ∗dest , ow ActiveMQMessage ∗message , ow int

deliveryMode , ow int p r i o r i t y , ow long timeToLive , ap r poo l t ∗
pool) ;

a p r s t a t u s t amqcs disconnect (amqcs connect ion ∗∗ connect ion) ;

a p r s t a t u s t amqcs connect (amqcs connect ion ∗∗conn ,

amqcs connect opt ions ∗ opt ions , ap r poo l t ∗pool) ;

The design of CES follows these steps:

1. Initialize the APR and allocate the memory pool for the session.

2. Set the connection option and make connection to the ActiveMQ broker.

3. Allocate memory for the destination and the message from the memory

pool, initialize the destination.

3. Receive message from the destination.

4. Close the connection.

Chapter 4

Experiments and Evaluation

For the Message queue based event notification system, the performance of both

message broker and the football lottery server need to be evaluated. The important

measurements should include follow aspects:

Throughput of the message broker, which means number of input events and

output events by the broker per second.

Latency of messages, which means the time delay between the sent of a message

by message publisher and the receive of the message by the subscriber.

Cpu/memory usage of the servers, include both the message broker and lottery

server.

Response time of the lottery server under different lever of load.

message loss of the broker when handling large quantity of events.

4.1 Experiment Setup

The experiment uses computers in the Linux laboratory at the University of Sta-

vanger. All computers in the test approach are running in the same local network,

thus the network latency is minimal and negligible, the computers also use network

time protocol (NTP) to synchronize their clocks, so they can be regard as time

synchronous in the experiment. The configuration of the experiment is shown in

Figure 4.1: Computer A runs the lottery server, computer B hosts the ActiveMQ

message broker, computer C runs the lottery client and mock client, computer D

runs the event publisher and mock message publisher. By putting applications of

different functions on different machines, the interference is avoid, thus it will be

easier to evaluate each application’s performance.

24

CHAPTER 4. EXPERIMENTS AND EVALUATION 25

Figure 4.1: Test configuration

For testing the latency of events, each message processed is stamped with

the current system time by the sending method; For testing the throughput of

broker, the execution time is recorded by both the publication and subscription

application; For testing the hardware usage of broker and server, a independent

thread which displays the cpu and memory usage periodically is used at machine

A and machine B; For testing the server react time, a MockClient application is

developed to automatically generate client requests; For testing the message loss

rate, a MockMsgGenerator application is developed to generate large number of

mock messages.

4.2 Experiment Results

The test of opening 3 real lottery clients, sending coupons and subscribe is shown

in Figure 4.2, the user interface will show a panel to clients and receive user’s

betting in the check boxes, after pressing send and subscribe button, the result

will be returned when it’s calculated.

The follow pages shows the statistical figures of message handling speed (Through-

CHAPTER 4. EXPERIMENTS AND EVALUATION 26

Figure 4.2: Lottery client interface

put), message latency, server response time and the cpu/memory usage of the sys-

tem. During the test of throughput and latency, different numbers of subscribers

(1, 2, 3, 6) are used; During the test of server response time, different number

of mock lottery clients (10,20,50,100,200,300) are connected to the server to send

coupon forms and subscribe for the result, when trying to open more than 300

clients, the server will crash as failed to create more threads.

The message loss is also test by publishing and subscribing large number of

messages, when publishing 10000 messages, no message is lost; When publishing

100000 messages, also no message is lost.

The monitor thread will observe the cpu and memory usage of the message

broker and lottery server for 60 seconds, the execution time of lottery server and

message broker for handling 200 clients last for approximately 40 seconds, from

10th to 50th second.

CHAPTER 4. EXPERIMENTS AND EVALUATION 27

Figure 4.3: Message broker input event handling speed

Figure 4.4: Message broker output event handling speed

CHAPTER 4. EXPERIMENTS AND EVALUATION 28

Figure 4.5: Latency of receiving 100 messages

Figure 4.6: Latency of receiving 200 messages

CHAPTER 4. EXPERIMENTS AND EVALUATION 29

Figure 4.7: Latency of receiving 400 messages

Figure 4.8: Latency of receiving 800 messages

CHAPTER 4. EXPERIMENTS AND EVALUATION 30

Figure 4.9: Response time of lottery server for different number of clients

CHAPTER 4. EXPERIMENTS AND EVALUATION 31

Figure 4.10: Execution result of handling 10 000 events

Figure 4.11: Execution result of handling 10 000 events

CHAPTER 4. EXPERIMENTS AND EVALUATION 32

Figure 4.12: CPU and memory usage of the ActiveMQ

Figure 4.13: CPU and memory usage of the lottery server

CHAPTER 4. EXPERIMENTS AND EVALUATION 33

4.3 Comments

The performances of lottery server and lottery client are satisfactory, the result

calculated for the 3 real clients are right. The server do supports multi threads.

But the client will need to keep a connection with the broker all the time before

it gets the result. This feature is not fit for the smart phone applications, an

improvement approach is proposed at chapter 5.3.

As it shows in the result, the input handling speed of broker is faster when

there are less subscribers, the total output handling speed is faster when there are

more subscribers. The output handling speed for each single subscriber is close to

the input handling speed. The total handling speed of the broker is approximately

const which is about 90 messages per second for the broker.

The latency of messages increases rapidly as the number of subscribers in-

creases, scale from dozens of milliseconds to several seconds. During the starting

and ending stage of subscribing, the messages have smaller latency. These indicates

a single broker is not suitable for providing service to large number of subscribers.

The lottery server’s response time for each clients is roughly fair except that

the response for first client is always slower. As the number of clients increases,

the lottery server became unstable. This means it’s not wise to put more than 200

clients on the server. The result indicates that the current design of lottery server

won’t satisfy the commercial need. Some improvement approach is introduced at

chapter 5.1 and 5.4.

When using auto acknowledge mode in the subscriber, ActiveMQ don’t drop

any messages in the test, even when the total message number reaches 100 000.

The message loss test shows that ActiveMQ is quite stable and is more than enough

to fulfill enterprise level applications needs.

The cpu and memory test shows that the message broker applies about 80MB

memory for handling the events, the memory usage doesn’t drop immediately after

the finish of execution. The cpu usage increases rapidly at the starting stage of

the execution, but drops to normal lever afterwards.

The memory usage of lottery server increases when the execution starts, the

peak value at 28th second is due to the starting of receiving events from message

broker, the memory usage also does’t drop immediately after the end of execution.

The cpu usage of lottery server is also very high during the starting of execution, it

reaches another high lever at 26th and 27th second due to subscription for football

events, at the ending stage, the cpu usage is higher because of sending the result.

Chapter 5

Future Work

5.1 Distributed Football Lottery Server

The Football Lottery Server (FLS) now runs on one machine and incapable of

supporting too many clients. A distributed server cluster can be developed to

meet the commercial needs.

One basic thought is about using the Spread Toolkit and the Java Server group

of Spread (JaSoS) for the solution. Spread is an open source toolkit that provides

a high performance messaging service which is resilient to faults across local and

wide area networks[6]. JaSoS integrates object group technology and distributed

objects using Spread Toolkit[17], it provides group method invocations to simplify

the designing of server group. Client can interact with the server group using

external group method invocation (EGMI), servers within the group coordinate

their action with internal group method invocation (IGMI). JaSoS also provides

group membership service to make the server group failure awareness.

Anther idea is about using ActiveMQ as the middleware to cache the client

requests. This structure is simple but needs a server to monitor the server group.

Human intervene is required in case of failure. As it shows in Figure 5.1. The

requests from clients are stored in the Lottery Service Queue, and consumed by

the servers of the group. All servers will send one heart beat message to the Heart

Beat Queue every 20 seconds, the monitor server will detect failure by subscribing

events from the Hear Beat Queue.

34

CHAPTER 5. FUTURE WORK 35

Figure 5.1: Distribute solution using ActiveMQ

5.2 Memory pool management on C Event Sub-

scriber

The Apache Portable Runtime (APR),which provides memory pool management

for the C Event Subscriber (CES), is a quite big library. APR library includes a

lot of functions that is redundant to CES. Both the storage and memory of smart

phone devices are limited, this brings both simple and efficient requirement for

smart phone applications. Thus, it’s necessary to adapt a light weight memory

management library rather than APR for CES. The Memory Pool C Library [2]

is a good option, it manages multiple heaps that can be allocated and destroyed

without fragmenting memory. User can have multiple heaps and reset them easily

to completely reclaiming the memory. Below lists the important functions provided

by the library[2].

mpool t ∗mpool open (const unsigned int f l a g s , const unsigned int

page s i z e , void ∗ s ta r t addr , int ∗ e r r o r p) ;

// Open/ a l l o c a t e a new memory poo l .

int mpoo l c lo se (mpool t ∗mp p) ;

// Close / f r e e a memory a l l o c a t i o n poo l .

int mpoo l c l ear (mpool t ∗mp p) ;

CHAPTER 5. FUTURE WORK 36

//Wipe a memory poo l c l ean so we can s t a r t again .

void ∗mpoo l a l l o c (mpool t ∗mp p , const unsigned long by t e s i z e , int ∗
e r r o r p) ;

// A l l o ca t e space f o r b y t e s i n s i d e o f an a l r eady open memory poo l .

void ∗mpoo l ca l l o c (mpool t ∗mp p , const unsigned long e l e n , const

unsigned long e l e s i z e , int ∗ e r r o r p) ;

// A l l o ca t e space f o r e lements o f b y t e s in the memory poo l and

zero the space a f t e rwards .

int mpoo l f r ee (mpool t ∗mp p , void ∗addr , const unsigned long s i z e) ;

/∗ Free an address from a memory poo l . This i s d i f f e r e n t from

normal f r e e because i t needs the addres se s s i z e . Future

v e r s i on s o f the l i b r a r y w i l l not have t ha t r e s t r i c t i o n . ∗/
void ∗mpoo l r e s i z e (mpool t ∗mp p , void ∗ old addr , const unsigned long

o l d by t e s i z e , const unsigned long new byte s i ze , int ∗ e r r o r p) ;

/∗ Rea l l o ca t e an address in a memory poo l to a new s i z e . This i s

d i f f e r e n t from r e a l l o c in t ha t i t needs the o ld address ’ s i z e .

I f you don ’ t have i t then you need to a l l o c a t e new space , copy

the data , and f r e e the o ld po in t e r y o u r s e l f . ∗/
int mpoo l s ta t s (const mpool t ∗mp p , unsigned int ∗ page s i z e p ,

unsigned long ∗num alloced p , unsigned long ∗ u s e r a l l o c ed p ,

unsigned long ∗max al loced p , unsigned long ∗ t o t a l l o c e d p) ;

// Return s t a t s from the memory poo l .

int mpoo l s e t l o g f unc (mpool t ∗mp p , mpoo l l og func t l o g f un c) ;

// Set the Return s t a t s from the memory poo l .

int mpool set max pages (mpool t ∗mp p , const unsigned int max pages) ;

// Set the maximum number o f pages t ha t the l i b r a r y w i l l use . Once

i t h i t s the l im i t i t w i l l r e turn MPOOL ERROR NO PAGES.∗/
const char ∗mpoo l s t r e r r o r (const int e r r o r) ;

//Return the corresponding s t r i n g f o r the error number .

5.3 Automatical Result Notification

The current design requires the Football Lottery Client (FLC) to subscribe the

result event from ActiveMQ, this brings inconvenience to the users. Automatical

result notification enables the user be notified for the coupon results. The FLC

needs to send the deviceId which can be cell phone number, International Mobile

Equipment Identity (IMEI) or IP address together with CForm, formId and price.

After the result is calculated, the server will send the result to the right client

using SMS service or TCP transport.

CHAPTER 5. FUTURE WORK 37

Figure 5.2: High performance server tread

5.4 High Performance Server Thread

In the current design, the FLS opens a ServerThread for each coupon from the

client, the ServerThread will use GoalSubscriber to subscribe events from 12 matches

based on the coupon and open a ProcessElement. However, many users may make

prediction on the same match group (12 matches), these coupons are called ho-

mogeneous coupons. It will be not necessary to open multiple GoalSubscriber

for homogeneous coupons. The idea is using a caching mechanism for processing

coupons: The server will open new thread for new kind coupon and cache coupons

of old kind, it use a current coupon category table to record the coupon kinds

in processing. The ServerThread will wait until 10 homogenous coupons received

before opening a GoalSubscriber. The GoalSubscriber will open 10 ProcessElement

for processing. The diagram is shown in Figure 5.2.

Appendix A

Listed Java Classes

This section lists the primary classes of the MQEN system.

JsonEvent is the message published to the broker and consumed by clients.

MatchParser is used to parse the XML file and produce JsonEvent.

MessageSender is used to send JsonEvent to the broker.

EventPublisher parse all the XML files from data source and publish them.

EventSubscriber is used to subscribe events from broker.

GoalServer is used to response the clients’ request.

ServerThread is used to process clients’ request.

GoalSubscriber is used to subscribe matches for clients’ coupons.

GoalEvent is used to express the outcome of a match and be passed to Pro-

cessElement.

ProcessElement is used to fire on GoalEvent and produce result.

Coupon can accept user prediction and calculate the result.

Cform stores user prediction and can be passed to the server through internet

by implementing serializable interface.

CouponForm is used to transform the Cform to provide immutable list to

initialize the Coupon.

ClientPanel is used to provider user interface and collect user prediction, it

also send the prediction as Cform and calculate the price for the coupon.

MockEventGenerator is used to generate mock GoalEvent for testing.

TcpConnector provides the connection from client to server.

MockClient is used to generate large number of clients for testing.

MockMsgGenerator is used to generate large number of mock messages for

testing.

38

Bibliography

[1] JMS 1.1 API. Website. http://java.sun.com/products/jms/

javadoc-102a/index.html.

[2] A Memory Pool C Library. Website. http://256.com/sources/mpool/.

[3] Apache ActiveMQ. Website. http://activemq.apache.org.

[4] Apache Portable Runtime. Website. http://apr.apache.org/.

[5] JDOM API. Website. http://www.jdom.org/docs/apidocs/.

[6] Spread Toolkit. Website. http://www.spread.org.

[7] K. Arabshian and H. Schulzrinne. A generic event notification system using

XML and SIP. In New York Metro Area Networking Workshop 2003, 2003.

[8] Edward Curry. Middleware for Communications, chapter 1,Message-Oriented

Middleware. Ireland.

[9] Opher Etzion and Peter Niblett. Event Processing in Action. Manning Pub-

lications, 2009.

[10] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec. The many

faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):131,

2003.

[11] P̊al Evenson. Applying Message-Oriented Middleware and Autonomic Com-

puting Principles in Heterogeneous Sensor Environments. University of Sta-

vanger, May,2010.

[12] P̊al Evenson and Hein Meling. SenseWrap: A Service Oriented Middleware

with Sensor Virtualization and Self-Configuration. University of Stavanger.

39

BIBLIOGRAPHY 40

[13] A. Hinze. A-mediAS: an adaptive event notification system. In Proceedings

of the 2nd international workshop on Distributed event-based systems, page 8.

ACM, 2003.

[14] Binjia Jiao, Sang H. Son, and John A. Stankovic. GEM: Generic Event Service

Middleware for Wireless Sensor Networks. University of Virginia.

[15] Martin Kuehnhausen and Victor S. Frost. Application of the Java Message

Service in Mobile Monitoring Environments. Technical report, The University

of Kansas, 2010.

[16] H. Meling, A. Montresor, B.E. Helvik, and O. Babaoglu. Jgroup/ARM: a

distributed object group platform with autonomous replication management.

Software-Practice and Experience, 38(9):885–924, 2008.

[17] Hein Melling and Alberto Montresor. JaSoS Tutorial, September 2008.

[18] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed Event-Based Sys-

tems. Springer, July 2006.

[19] Peter Robert Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD

thesis, Queens’ College, University of Cambridge, February 2004.

[20] Guerraoui Rachid and Lúıs Rodrigues. Introduction to Reliable Distributed

Programming. Springer, April 2006.

[21] Mark Richards, Richard Monson-Haefel, and David A Chappell. Java Message

Service, Second Edition. O’Reilly Media, May 2009.

[22] Bruce Snyder, Dejan Bosanac, and Rob Davies. ActiveMQ in Action. Manning

Publications, November 2009.

[23] Jonathan R. Stanton. A Users Guide to Spread Version 0.11. Johns Hopkins

University, October 2002.

[24] Sun Microsystems, Inc. JavaTM Message Service Specification, April 2002.

[25] Sun Microsystems, Inc. Sun GlassFish Message Queue 4.4 Technical

Overview, October 2009.

[26] Total Transaction Management, San Marcos,USA. ActiveMQ 5.2 Reference

Guide v1.8, 2008.

