

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Master in Computer Science

Spring semester, 2010

Open / Restricted access

Writer:

Baodong Jia

…………………………………………
(Writer’s signature)

Faculty supervisor:

Professor. PhD. Chunming Rong;

PhD Candidate. M.Sc. Tomasz Wiktor Wlodarczyk

External supervisor(s):

Titel of thesis:

Data Acquisition in Hadoop System

Credits (ECTS):

30

Key words:

 Hadoop;

Data Acquisition;

Chukwa;

Performance;

Real-time data;

Historical data.

 Pages: …………………

 + enclosure: …………

 Stavanger, ………………..

 Date/year

Contents

Contents i

Abstract 1

1 Introduction 2

1.1 Background . 2

1.2 Problem Description . 3

1.3 Aim of the Thesis . 4

1.4 Thesis Overview . 4

2 Technologies Behind 5

2.1 DataStorm . 5

2.2 Hadoop . 5

2.3 Chukwa . 7

3 Data Acquisition 9

3.1 How to Acquire Data for Hadoop? 9

3.2 Architecture of Data Acquisition Solution using Chukwa 10

3.3 Why Chukwa? . 11

3.3.1 Solution Without Chukwa 11

3.3.2 Solution With Chukwa . 13

3.4 Acquire Data From Different Data Sources 14

3.4.1 Streaming Data from Twitter 14

3.4.2 Historical Data from Service Provider of Statoil 15

4 Implementation 16

4.1 Implementation Environment . 16

4.1.1 Hadoop Setup . 16

4.1.2 Chukwa Setup . 19

4.2 Data Acquisition Using Chukwa . 22

4.2.1 log4j . 22

4.2.2 Acquire Data from Twitter 23

4.2.3 Acquire Data from Service Providers of Statoil 25

4.2.4 Chukwa Adaptor Used . 26

4.3 Data Acquisition by Stand-alone Application 27

4.4 Testing . 28

5 Performance Analysis 30

5.1 Quality of the Data Acquired in Different Ways 30

5.2 Time Used for Data Acquisition With Refer to Small Data Size . . 31

5.3 Performance of Data Copying to HDFS 33

5.4 Critical Value of Generating Time Differences 34

5.4.1 How to Find Critical Value 34

5.4.2 Critical Value . 35

5.5 Chukwa Based Solution is Faster 36

6 Conclusion 38

7 Acknowledgements 39

References 41

List of Figures

1 Framework Architecture of DataStrom 6

2 Work flow of Chukwa System . 8

3 Architecture of Data Acquisition Solution 10

4 Data Acquisition without Chukwa 12

5 Data Acquisition with Chukwa . 13

6 Node Structure of Hadoop . 17

ii

7 Node Structure of Chukwa . 19

8 Shell Script of Executing a Test Program 28

9 Shell Script of Starting Test Programs at the Same Time 29

10 Python code for Generating test data 29

11 The Size of Data acquired by Time 30

12 Actual Time Used for Acquisition in a Certain Time 32

13 Time Used to Copy Data Set to HDFS With Different Replica Number 33

List of Tables

1 Time used for copying according to the size of data set with replica

number of 2 . 35

2 Time used for copying according to the size of data set with replica

number of 3 . 36

iii

Abstract

Data has become more and more important these years, especially for

big companies, and it is of great benefit to dig out useful information inside.

In Oil & Gas industry, there are a lot of data available, both in real-time

and historical format. As the amount of data is huge, it is usually infeasible

or very time consuming to process the data. Hadoop is introduced to solve

this problem.

In order to perform Hadoop jobs, data must exist on the Hadoop filesys-

tem, which brings the problem of data acquisition. In this thesis, two so-

lutions are given out for data acquisition. The performance comparison is

introduced afterwards, and solution based on Chukwa is proved to be better

than the other solution.

1

1 Introduction

In this chapter, we will first come to the background of the thesis, and then describe

the problem behind. After that, the aim of the thesis will be introduced, and an

overview will be given out at the end of this chapter.

1.1 Background

There are a lot of applications generating data everyday. The data has been

collected by many companies, and it could be of great benefit to dig out the useful

information exists in the data ocean for production.

In Oil & Gas industry, drilling is usually performed by service companies such as

Schlumberger, BHI, and Halliburton. Through placing a lot of sensors on drilling

bits and platforms, these companies collect drilling data and make it available on

their servers. For operators such as Statoil, Shell, and ConocoPhilips, the data pro-

vided by service providers is very important. The real time drilling data indicates

the drilling status, and operators can get useful information by applying reasoning

algorithm on the historical data. But as time goes on, data is accumulated. When

the data set reaches a big size like several gigabytes, it is usually infeasible or

very time consuming to do reasoning. MapReduce[1] system is introduced in this

situation.

MapReduce-based system is used quite a lot in big companies like Google,

Yahoo[2], and Facebook. It gathers distributed computational power and is quite

efficient for reasoning on large data set. Being a member of MapReduce fam-

ily, Hadoop[3] is open-source, reliable, and scalable distributed filesystem. As a

MapReduce implementation it is used in many critical business areas[4]. After

years of improvement, it is quite mature now, and also was adopted as the dis-

tributed platform in this master thesis.

In order to provide a predictable and secure solution to drilling and production

operations, we initiated a project in UIS(University of Stavanger). There is a

2

cluster environment on the unix servers of unix lab in UIS, and it consists of 15

unix hosts. The cluster is established based on Hadoop, and it provides replicated

storage and distributed computational power for this project. All the drilling data

exists on servers of service providers of Statoil. After putting the data to cluster,

reasoning algorithms are applied to find out interesting information. Also either

suggestions or alarms will be given out according to the requirements of customers.

The main goal of this master thesis is to provide a good solution to feed both

real time data and historical data to Hadoop cluster efficiently.

1.2 Problem Description

In the project, reasoning algorithms are applied to drilling data from Statoil to

dig out useful information. In order to apply the algorithms, data must exists on

the cluster. Algorithms are defined in ontology, and they are parsed by parsing

program. Pig script[6] is generated after algorithm parsing. Pig[5] reads the pig

script which involves data reading, creates Hadoop jobs, and submits them to

cluster. Along with Hadoop, there are two web interfaces for browsing the cluster

file system and tracking Hadoop jobs. When Map-Reduce jobs finish, result is

stored in the cluster file system.

Data is really important in this project, and only drilling data is used. But in

real life, data can be of different varieties, both real time data and historical data,

and both in pull scenario and in push scenario.

When processing small number of data file with large size, Hadoop performs

efficiently. But when it comes to a big amount of small files, which is the common

case in real life, it takes a lot of extra time. As Hadoop does not support appending

file content at this moment, data must be accumulated on local disk, and then

copied to Hadoop cluster. Hadoop filesystem makes use of the disk of each host,

and organizes them in a replicated way. The disk size of each host could be small,

and is sometime even not large enough to store data for one job. Even yes, it still

3

takes a lot of time to copy the big data set to cluster, which could influence cluster

efficiency rapidly. In this situation, data acquisition and feeding to cluster become

very important to this project.

1.3 Aim of the Thesis

This thesis focuses on data acquisition for Hadoop system, which is a typical

MapReduce-based system. Data can be both in real-time and historical, and the

way how data servers provide data can be both in pull sense and in push sense.

In this thesis, data acquisition refers to acquiring data from data servers and

feeding the acquired data to Hadoop cluster. So it can be divided into two steps:

caching data on the local disk of a host, and transferring the data to Hadoop

cluster.

The aim of thesis is to provide a good solution for data acquisition with refer

to different types of data source in different sense. Two different data sources

are used this thesis. One is data from twitter server, and the other is the data

provided by services providers of Statoil. Difference solutions will be given out,

and efficiency is emphasized as an very important factor.

1.4 Thesis Overview

In this chapter, we have introduced the background of this thesis, the problem

addressed for this thesis, and also the aim of the thesis. In chapter 2, related

technologies will be given out. Chapter 3 introduces the solution architecture and

some discussion of the details. Chapter 4 focuses on the implementation of two

possible solutions, and performances analysis is shown in Chapter 5. A conclusion

will be given out in Chapter 6.

4

2 Technologies Behind

In this chapter, we will first give an introduction to DataStrom, and then provide

some basic knowledge of Hadoop and Chukwa.

2.1 DataStorm

Cloud-based system has been wildly used to analyze huge amount of data effi-

ciently, and there are many applications built on it. It uses MapReduce paradigm

and is easy to scale. However, for applications built on it, designing, configuring,

and deploying are still done manually.

DataStrom was proposed in this situation to provide solutions to design, con-

fig, and deploy cloud-based systems. DataStrom is an ontology-based framework

. Based on Hadoop, it uses Web Ontology Language[7] as its modeling tool for

automatic model validation and intelligent data analysis. DataStorm is an adop-

tion and extension of BioSTORM[8], which is an ontology-driven framework for

deploying JADE[9] agent system[10] from Stanford University. DataStrom frame-

work consists of four layers, and the architecture of DataStorm is shown in Figure 1.

This thesis serves as part of the project we are working on, and DataStrom is the

framework supporting this project.

2.2 Hadoop

The Apache Hadoop project develops an open-source software for reliable, scalable,

distributed computing[3], and original sponsored by Yahoo. It consists of many

subprojects such as Hadoop Common, Chukwa, HBase, HDFS, and so on. Hadoop

Common provides common utilities for the other subprojects. Through making

use of a number of hosts, Hadoop establishes a super computational distributed

system.

Hadoop provides a distributed file system, which stores application data in a

replicated way, and also gives user high throughput ability of accessing the data

5

Figure 1: Framework Architecture of DataStrom

6

on HDFS. As a MapReduce system, it runs jobs very fast by using the aggregated

super computational power. There are two web interfaces along with Hadoop.

User can browse the HDFS and track jobs through these two interfaces in web

browser.

The efficiency of Hadoop depends on the file size, number of files, the number

of hosts in the cluster, bandwidth connecting the hosts and so on. Especially,

Hadoop is not good at dealing with big amount of files with small file size.

Hadoop is implemented in Java, and it has been used in many big companies for

production. In this thesis, it was chosen as the distributed computation platform.

2.3 Chukwa

Chukwa is an open source data collection system designed for monitoring large

distributed system[11]. Been built on top of Hadoop, Chukwa inherits the scala-

bility and robustness of it. In order to utilize the collected data in a better way,

Chukwa provides a flexible and powerful toolkit to display, monitor, and analyze

results.

Chukwa has four main parts: Agents, Collectors, MapReduce jobs, and HICC.

The work flow of Chukwa system is shown in Figure 2.

Agents are responsible for collecting data through their adaptors. Adaptors

interact with data source, and run inside of agents that are collecting data. As

adaptors are quite flexible within agent, it is possible to have several adaptors for

an agent to collect data from different source at the same time. Agents run on

every host of Hadoop cluster, and data from different hosts may generate different

data. Sometimes hosts might share a NFS[12] system, but there is no need to use

Chukwa in this situation as all agents will collect the same data.

Collectors gather data from different agents through HTTP, and then write all

the data into a Hadoop sequence file called sink file. Sink file consists of records

collected by agents. After the sink file reaches a certain size or when a certain time

7

Figure 2: Work flow of Chukwa System

is out, the files will be renamed and made available for MapReduce processing.

In this scene, collectors play an important role in reducing the number of HDFS

files. Collectors also provide an uniform interface for adaptors, so that users do

not need to care about the details of HDFS.

MapReduce job is made up of Archiving jobs and Demux jobs, and it makes the

collected data organized and more convenient for analysis. ChukwaRecords are set

of key-value pairs, and they are made available for Hadoop jobs to process after

Demux jobs parses the collected data.

HICC stands for the Hadoop Infrastructure Care Center, and it is a web interface

for displaying data. HICC makes it easier to monitor data.

Chukwa is used in one data acquisition solution in this thesis.

8

3 Data Acquisition

In this chapter, we will introduce two solutions of data acquisition. First, the

traditional way of data acquisition will be given out. After that, a new way based

Chukwa will be shown. According to our analysis, Chukwa based solutions proves

to be better, and data acquisition from different data sources will be introduced

in the end.

3.1 How to Acquire Data for Hadoop?

Hadoop cluster is used for high performance computing. Hadoop runs MapReduce

jobs on the cluster, and stores the results on HDFS after the jobs finish. Data is

fed to MapReduce jobs, and it must exist on HDFS before MapReduce jobs run.

There are several steps to follow to run a MapReduce job in Hadoop. The first

step is to prepare the required data set for the job, and copy it to HDFS. Secondly,

submit the job to Hadoop, either by executing a java program invoking Hadoop

API, or parsing a pig script by Pig. After the job finishes, the result will be stored

in a directory specified by user on HDFS. The last step is to get out the result on

HDFS.

As we mentioned before, Hadoop is much more efficient when it comes to small

number of files with big file size. But in real life, the most common cases are that

data exists in a big number of files with small file size. When Hadoop jobs work

on these data files, it takes a lot of extra time. HDFS does not support appending

file content at the moment, and the only way is to acquire data from data sources

and accumulate the data file to a proper size, and then copy it to HDFS.

The performance of data acquisition in this way is influenced by copying data

to HDFS. When data file is relatively small, it takes almost no time to copy. But

when there is a large file which is of several gigabytes, the copying time cannot be

ignored. Especially in this thesis, where the replicate number of Hadoop is set to

two and three, the file size is doubled and three times as much as the original size.

9

Solution based on Chukwa is proposed to solve this problem.

3.2 Architecture of Data Acquisition Solution using Chukwa

A solution based on Chukwa is proposed to overcome the problem of extra time

generated by copying large file to HDFS. The architecture of the solution is shown

in Figure 3.

As can be seen from the figure, there are five layers in the system, which are the

physical hosts, Hadoop, Chukwa, Chukwa agents, and data from different sources.

Figure 3: Architecture of Data Acquisition Solution

In this thesis, there are two different data sources. One is the real-time data

from Twitter server, and the other is the drilling data from services provider of

Statoil. Data is acquired by different java applications, and stored locally on the

host of Hadoop.

10

Hadoop makes use of a handful hosts, and composes a reliable and scalable

super computational cluster environment. Chukwa exists on top of Hadoop, and

is responsible for feeding organized data into the cluster.

Chukwa agents play an role of transferring data that exists on each host to

Chukwa through its adaptors. When the whole system runs, an adaptor of File-

Tailing is added to Chukwa agent, which makes agent check if a file has been

appended every two seconds. If yes, Chukwa agent will write the new added

records to a temporary file on Chukwa. When the temporary file reaches a certain

size, or a preset time is out, the file will be moved into the next step in Chukwa

processing.

When data is transferred from Chukwa to HDFS of Hadoop, Hadoop jobs are

ready to be executed.

3.3 Why Chukwa?

There are two different solutions for data acquisition. One is introduced in the

beginning of this chapter, and the other one is based on Chukwa. For the first one,

copying data from local host to Hadoop cluster takes a lot of extra time, which

is not necessary, and sometimes even decreases the efficiency of Hadoop cluster

rapidly. That is the main reason that Chukwa based solution is proposed.

3.3.1 Solution Without Chukwa

In order to put data into cluster, the data must be acquired first. After data

acquisition programs get the data, they store it locally on the host. As HDFS

does not support appending file content, the only possible way is to copy the

acquired data into cluster filesystem. Figure 4 illustrates this very well.

Hadoop is quite efficient with processing small amount of big size files. But

when there are a large number of small size files, it takes too much extra time.

Example from an article[13] showing that it takes only 4 seconds to process a log

11

Figure 4: Data Acquisition without Chukwa

file of 100M by a simple java program, but 14 seconds when running it in Hadoop

local mode, 30 seconds when running it in one host Hadoop MapReduce mode,

and even slower when running it in two hosts Hadoop MapReduce mode connected

by 10M network interface card.

In order to make Hadoop work efficiently, the file acquired from data sources

need to be accumulated to a certain size on the host before copying. But we will

meet two more problems in this situation. When the data file is small, it takes

almost no time to copy data to cluster. As HDFS stores data in a replicate way,

data file is actually copied several times, and it consumes a lot of extra time when

it comes to a data file with big file size. Another problem is that Hadoop jobs can

not process the data in a real-time way or within a time that user could endure.

The reason is that it takes time for the data file to reach a certain size, and it

might also postpone jobs because of copying data.

12

3.3.2 Solution With Chukwa

A better solution based on Chukwa is proposed, and it improves the performance

of data acquisition through avoiding data copying.

Figure 5: Data Acquisition with Chukwa

After data acquisition program gets the data from data source, it store the data

locally to a data file on the host. Chukwa agent runs on the host, and an adaptor

called FileTailing is added to it. The adaptor will check if the data file has been

appended every 2 seconds, and update the change of data to a Chukwa temporary

file. The processes are shown in Figure 5. After Chukwa organizes and processes

the data, it forms the final data for Hadoop jobs.

Chukwa makes data available on the Hadoop cluster immediately after the data

acquisition program gets data, and it saves time to copy data to HDFS. When the

storage in a host is not enough for a large file, it becomes a problem for the first

solution of data acquisition, as data file need to be accumulated to a certain size.

As the data is already transferred to Chukwa system, the former data records can

be deleted in the host, which solves the problem mentioned above.

13

As an open source data collection system, Chukwa also provides functions of

displaying, monitoring, and analyzing results, which is convenient for users to

make better use of the data collected.

3.4 Acquire Data From Different Data Sources

Data can be divided into different types according to different criteria. For exam-

ple, data has two types which are historical data and real time data according to

time. Data provider supplies their developers with different data accessing APIs,

thus data can be divided into data fetched in pull scene and data fetched in push

scene.

We have two data sources available in this thesis. One is the data exists on

Twitter server, and it is in real-time format. The other one is the drilling data

from service provider of Statoil in a test server. For security reasons, data fetched

from this data source is only a historical data set, but real-time drilling data will

be provided later.

3.4.1 Streaming Data from Twitter

Twitter provides social networking and microblogging services for its users, and is

quite a popular platform now. There are around 50 million new records generated

every day, and it still keeps growing up.

Twitter supplies a data stream for its developers. A data stream is a real-time,

continuous, ordered sequence of items[14]. Through the data stream, Twitter gives

user opportunities to do real-time search of twitter messages, and also do some

reasoning for marketing.

Twitter4J[15] is a library for Twitter API based on Java. With the Twitter4j

streaming API, developers will get the twitter data stream easily.

14

3.4.2 Historical Data from Service Provider of Statoil

Drilling is usually performed by the services companies such as Schlumberger,

BHI and Halliburton. These companies collect data from drilling equipments and

platforms, and make the data available on their servers through web interfaces or

accessing API.

Operators such as Statoil, Shell, and ConocoPhilips, pay services companies,

and get the drilling data from their servers.

In cooperation with Statoil, we get permission of accessing the drilling data

from its service provider. For security reasons, only a test server is available, and

data exists on this server is in historical format. Statoil provided a set of APIs for

accessing the data servers, and different data can be fetched. In order to focus the

reasoning part in the project, only time based drilling data is used in this thesis.

15

4 Implementation

In this chapter, the implementation of data acquisition will be introduced. We

implement data acquisition in two different ways, both using Chukwa and stand-

alone application without Chukwa involved. But first of all, the environment of

implementation will be given out.

4.1 Implementation Environment

All implementations and experiments are based on Hadoop cluster. The Hadoop

cluster consists of 15 unix hosts that existed at the unix lab of UIS. One of hosts

is tagged as namenode, and the others are used datanodes. Namenode plays a role

of center point in cluster, and all the information of storing data is saved on it.

There is only one namenode in a Hadoop cluster, which could be the bottleneck

of a cluster system. Datanodes provide the physical space for storing data. As

HDFS stores data in a replicate way, same data may exists on different datanodes.

The operating system of the hosts is linux with centOS distribution. On top

of the operating system is Hadoop with version 0.20.2. Chukwa is used on top of

Hadoop for data acquisition, and the acquisition programs for both Chukwa based

implementation and stand-alone application are written in Java in eclipse. Python

script is used for generating test data set, and linux shell script is used for testing

the programs.

4.1.1 Hadoop Setup

There are a lot of linux hosts in the unix lab of UIS, and we plan to use 15 of

them for Hadoop cluster. Nodes in Hadoop have two types, which is namenode

and datanode. Figure6 shows the structure of Hadoop nodes. As can be seen from

the figure, badne3 is used as namenode. Badne4, badne5, badne6, badne7, badne8,

pitter1, pitter2, pitter3, pitter4, pitter5, pitter6, pitter8, pitter9, pitter10 are used

as datanode.

16

Figure 6: Node Structure of Hadoop

In order to install Hadoop, Java need to be installed on each host. Shell scripts

are used for starting related Hadoop daemons remotely. SSH is used here, and it

also need to be installed on each host.

There are three modes supported by Hadoop cluster. They are local mode,

pseudo-distributed mode, and fully-distributed mode. The third one is used as the

cluster mode in this thesis.

After downloading the Hadoop setup files, and before running the scripts, some

configuration needs to be done. The three main configuration files are conf/core-

site.xml, conf/hdfs-site.xml, conf/mapred-site.xml. core-site.xml is used to specify

the address of namenode. The corresponding content for our cluster is showed as

following.

<configuration>

<property>

<name>fs.default.name</name>

17

<value>hdfs://badne3:9000</value>

</property>

</configuration>

conf/hdfs-site.xml is used to config HDFS. The replica number, directory of

HDFS, and also some other parameters are specified here. The content of our

cluster is showed as following.

<configuration>

<property>

<name>dfs.data.dir</name>

<value>/local/Hadoop/HadoopSpace/HadoopDataDir</value>

</property>

<property>

<name>dfs.replication</name>

<value>2</value>

</property>

</configuration>

As we can see, the replica number is 2 for our cluster, but it is changed later to 3

for performance comparison. The content of conf/mapred-site.xml is showed blow,

and it indicates the addresses of job tracker.

<property>

<name>mapred.job.tracker</name>

<value>badne3:9001</value>

</property>

</configuration>

After the configuration, we are ready to start the cluster. Two commands are

mainly used to start Hadoop. The following one is used to format a new filesystem.

bin/Hadoopnamenode− format

18

The other one used is

bin/start− all.sh

Which starts all the nodes and job trackers of Hadoop. Now, Hadoop is ready to

use.

4.1.2 Chukwa Setup

In order to install Chukwa, Java and Hadoop need to be installed on each host.

13 hosts are used in Chukwa, and they consists of agents and collects. Figure 7

shows the structure of Chukwa. As can be seen, pitter1, pitter2, pitter3, pitter4,

pitter5, pitter6, pitter8, pitter9, pitter10 are used as agent, and badne5, badne6,

badne7, badne8 are used as collector.

Figure 7: Node Structure of Chukwa

After downloading the Chukwa setup file, some configuration needs to be done.

The first task is to modify conf/chukwa-env.sh. Variable JAVA HOME needs

to be set correctly, and also CHUKWA LOG and CHUKWA DIR can be set to

19

specify the corresponding directories.

In conf directory, agents and collectors can be set. The file agents is used to list

the address of all agents. When running Chukwa scripts, it will be used to start

all agents. The content of agents of our Chukwa system is showed as following.

pitter1.ux.uis.no

pitter2.ux.uis.no

pitter3.ux.uis.no

pitter4.ux.uis.no

pitter5.ux.uis.no

pitter6.ux.uis.no

pitter8.ux.uis.no

pitter9.ux.uis.no

pitter10.ux.uis.no

The file collectors is used to list the address of all collectors, and its content is

showed as following.

badne5.ux.uis.no

badne6.ux.uis.no

badne7.ux.uis.no

badne8.ux.uis.no

conf/chukwa-agent-conf.xml is used for agents settings. Some useful ones, such

as the agent control port and Chukwa agent tag are shown below.

<property>

<name>chukwaAgent.control.port</name>

<value>9093</value>

<description>The socket port number the agent’s

control interface can be contacted at.</description>

</property>

20

<property>

<name>chukwaAgent.tags</name>

<value>cluster="uisChukwa"</value>

<description>The cluster’s name for this agent</description>

</property>

conf/chukwa-collector-conf.xml is used for collectors settings. Two of the most

important ones in this file is shown as following.

<property>

<name>writer.hdfs.filesystem</name>

<value>hdfs://badne3.ux.uis.no:9000/</value>

<description>HDFS to dump to</description>

</property>

<property>

<name>chukwaCollector.http.port</name>

<value>8080</value>

<description>The HTTP port num

ber the collector will listen on</description>

</property>

The first one gives out the address of namenode of Hadoop, and the second one

shows the accessing port of collectors.

After finishing all the settings, Chukwa agents and collectors are ready to start

up. Command

bin/start− agents.sh

is used to start all the agents. Command

bin/start− collectors.sh

is used to start all the collectors.

21

When data collecting is finished, agents and collectors can be stopped using the

following commands.

bin/stop− agents.sh

bin/stop− collectors.sh

One important thing that needs to be paid attention is the sequence. When

starting Chukwa, collectors must be started first, and then agents can be started.

The reason is that if the agents are started first, they actually collect data already.

But as the collectors are not up and running yet, the data agents collected is

missing. Same principle applies to stop Chukwa. Agents must be stopped first,

and then collectors can be stopped.

4.2 Data Acquisition Using Chukwa

4.2.1 log4j

The Apache Logging Services Project provides an open-source software related to

the logging of application behavior and free for people to use[17]. Log4j is the

logging services for Java, and it provides a better way of debugging and analyzing

code.

Log4j has three important components which are Logger, Appender, and Layout.

There is only one root Logger, and it always exists. Appender is used to specify

the location where all logs will be put. The available appenders are console, files,

GUI components, and so on. One Logger can have more than one appenders.

Layout is assigned to appenders, and it gives out the format of printing logs.

Log4j defines 5 levels for log, which are DEBUG, INFO, WARN, ERROR, and

FATAL. Log can only be printed out when its level is high than the level defined

in configuration file. When users want to print out a different level of information

or print out nothing, the only thing they need to do is to modify the configuration

file, but the program itself.

22

Log4j is used in the implementation of data acquisition programs in this thesis,

both for saving records and debugging.

4.2.2 Acquire Data from Twitter

Twitter provides a data stream for its developers, and the data stream can be

used through Twitter APIs. In order to make it easier for user to use the APIs,

twitter4J supplies a set of APIs based on java for accessing twitter data. There

is an example[16] available for streaming twitter data using twitter4J, and it is

modified to save the data into a file locally on a host. The corresponding code is

shown as following.

public void streamingData() throws TwitterException {

StatusListener listener = new StatusListener() {

public void onStatus(Status status) {

String record = status.getUser().getName() + " : "

+ status.getText();

logger.info(record);

}

public void onDeletionNotice(

StatusDeletionNotice statusDeletionNotice) {

}

public void onTrackLimitationNotice(

int numberOfLimitedStatuses) {

}

public void onException(Exception ex) {

ex.printStackTrace();

}

};

TwitterStream twitterStream = new TwitterStreamFactory(listener)

23

.getInstance(twitterID, twitterPassword);

twitterStream.sample();

try {

Thread.sleep(1000000000);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

In the code shown above, the streaming data is output using logger.info function.

The configuration of logger is defined in the test program, as shown in the blow.

Logger logger = Logger.getLogger(twChukwaApp.class);

logger.setAdditivity(false);

PatternLayout p1 = new PatternLayout("%m%n");

RollingFileAppender a1 = null;

try {

a1 = new RollingFileAppender(p1, "./twChukwa.log");

} catch (IOException e) {

e.printStackTrace();

}

a1.setMaxBackupIndex(0);

a1.setMaxFileSize("1GB");

logger.addAppender(a1);

logger.setLevel(Level.INFO);

A RollingFileAppender is created, and twitter streaming data is stored in twChukwa.log.

%m%n means only the message is output, while the other information such as date

and time is omitted. The maximum size of data file is set to 1GB, and there is no

backup for this file. When data size reaches 1GB, the file will be emptied, and new

data continues fill the file from the beginning. The level logging is set to INFO,

24

which means all messages except DEBUG messages will be output to the data file.

As the data file will be emptied after data file reaches the maximum file size, and

Chukwa agent check the data file every 2 seconds. Some data that is generated

between a Chukwa update and another update that happens after the data file is

emptied might be ignored. Thus the quality of data acquired might be brought

down.

4.2.3 Acquire Data from Service Providers of Statoil

Statoil provides the API for accessing the drilling data from its service providers.

Data consists of real-time and historical drilling and monitoring data from drilling

bits and platforms. Through using the API, we are able to fetch the data from

the server they provided. As for secure purposes, the server is just a test server,

and data existed there is historical data, but real-time one. But it is still enough

for experiment for now.

In this thesis, we feel more interested in drilling data indicating depth of bits

according to time stamps. and the corresponding code for fetching the data is as

following.

String uidWell = "W-68953";

String uidWellbore = "B-69018";

String uidLog = "L-69019-Time";

String[] mne = { "TIME", "DBTM" };

try {

log = connector.getLog(provider, uidWell, uidWellbore, uidLog,

startTime, endTime, mne);

if (log != null) {

logdata = log.getLogData();

List<String> logData = logdata.getData();

String record = "";

25

for (Iterator it = logData.iterator(); it.hasNext();) {

String tmp = (String) it.next();

String[] tmpArray = tmp.split(",");

record = tmpArray[0] + ", " + tmpArray[1];

logger.info(record);

}

} else

System.out.println("No logData found!!");

} catch (WITSMLConnectorException exp) {

exp.printStackTrace();

}

During my work in the Computer Science project course, a Java based GUI

application was developed for fetching different data from the test server, and it

provides a more flexible way of data fetching. In the code shown above, only time

based depth data is fetched according to the need for now, and it is controlled

by setting the value of variable mne. Well, wellbore, and log are also set to fixed

value in order to implement the solution in an easy way for debugging. The

implementation can be made more portable according to the need of project.

Data fetched from server is stored using logger, and the definition is the same

as the one used for twitter.

4.2.4 Chukwa Adaptor Used

Data acquired has been stored in file twChukwa.log, and Chukwa agent plays an

important role to put the acquired data into cluster. Chukwa agent works together

with adaptors. One agent can have many adaptors, and the most common used

ones are provided by Chukwa already. In this thesis, an adaptor called FileTailing

is used. It detects if the content of the target file has been changed every 2

seconds. If yes, the new added content will be added in to Chukwa collector, and

26

then processed further more in Chukwa system.

The following command is used to add an FileTailing adaptor to Chukwa agent

to collect data.

add filetailer.FileTailingAdaptor twData

/home/prosjekt/Hadoop/baodong/testProgram/twChukwa.log 0

The first filed of the command is an add adaptor keyword. Field 2 gives out the

class of adaptor, and field 3 is the target file to monitor. Field 4 specifies the initial

offset, which is usually set to 0.

4.3 Data Acquisition by Stand-alone Application

In the Stand-alone application, the way of acquiring data stays the same. The only

difference is that data copying to HDFS is involved as HDFS does not support file

content appending.

The corresponding code for copying acquired data to cluster is shown as follow-

ing.

public void copyDataFile() {

try {

fsURI = new URI("hdfs://badne3:9000/");

fs = FileSystem.get(fsURI, conf);

ogFilePathSrc = new Path(filePath);

ogFilePathDes = new Path(ogDataStreamFilename);

if (fs.exists(ogFilePathDes)) {

fs.delete(ogFilePathDes);

}

fs.copyFromLocalFile(ogFilePathSrc, ogFilePathDes);

} catch (Exception e) {

e.printStackTrace();

27

System.exit(1);

}

}

Before copying, it will first check if the file is already on HDFS. If yes, it will delete

the old one, and then copy the new one to HDFS using file copy API provided by

Hadoop.

When it comes to big data file, data copying may consume a lot of time. As

HDFS provides a replicate way of storing data, the actually time used may exceed

the expectation of users.

4.4 Testing

The testing is based on data acquisition of Twitter real-time data stream.

After compiling the related code, a runable jar file is created, and it can be

executed by java. In order to calculated the exact total time used by the test

program, shell script is used as shown in Figure 8, which is named twNormal.sh.

Figure 8: Shell Script of Executing a Test Program

Date command is used before and after the execution of test program to make

time stamp. The actually run time can be calculated by these two values. As the

minimum unit used for recording is second, precision of total time used is second,

which is enough for performance analysis shown in the next chapter.

For twChukwa.sh, the content is almost the same as twNormal.sh, where the

name of the jar file is changed.

In order to start the two test programs at the same time, another shell script

called runTest.sh is made as shown in Figure 9.

28

Figure 9: Shell Script of Starting Test Programs at the Same Time

As can be seen from the figure, two test programs can not be started at exactly

the same time. But through using the shell script, the time difference is minimized.

Figure 10: Python code for Generating test data

When testing the performance of copying data to cluster, Hadoop command is

used, which is shown as following.

Hadoop fs -copyFromLocal testRecord1g baodong/compData

As we need different size of data files and it is very slow to accumulate data from

twitter server, data generated by python is used for testing purpose.

Code shown in Figure 10 is used to generate a test data file of 20M. The number

in while can be changed in order to generate different size of files.

29

5 Performance Analysis

In this chapter, we will give out the performance analysis of data acquisition imple-

mented both using Chukwa, and stand-alone application. First, we will compare

the quality of the data acquired, and then introduce the time differences with refer

to small data size. As when data size is big, it plays an important role to copy

data to HDFS, and we will focus on this in the last part of this chapter.

5.1 Quality of the Data Acquired in Different Ways

The quality of the data acquired is regards as one important factor for data ac-

quisition. We did a lot of test with the quality of the data acquired in different

ways. Figure 11 shows the size of the data acquired in a certain time. As can be

seen from the figure, data acquisition in both ways got the almost the same data

with no differences.

Figure 11: The Size of Data acquired by Time

In order to know whether they acquired exactly the same data, we look into

30

the data files generated using both ways, and the result is that they have different

content at the beginning and the end of the files. For the content in between, they

match perfectly. The main reason is that the two test programs can not be started

at exactly the same time.

We start the two test programs one after another using linux shell script, which

leads that the two programs can not be started at exactly the same time. The

program that was started early always got more data than the other one, but only

a few records more because the other one is started immediately after the first

one. That is why the content of two data files differes at the beginning of the files.

As both programs had the same time of data acquisition, but started at different

point-in-time, they ended in at different point-in-time, which made the content of

two data files also differes at the end of the files.

The maximum size of data file is set to 1GB when implementing data acquisition

using Chukwa. When the data file exceeds 1GB, the whole file will be erased, and

data accumulates from zero again. As Chukwa agent check the file content every

2 seconds, data generated between a Chukwa update and another update that

happens after the data file is emptied might be ignored. This may reduces the

quality of the data acquired, but it depends on the maximum size of data file

and the type of application used. When the maximum size is very large, the data

missed is tiny comparing to the maximum size. For some applications like some

twitter data based applications, the small amount of missing data does not cause

any problem. But for some others that require all the data existed on the server,

the Chukwa based data acquisition solution still need to be improved.

5.2 Time Used for Data Acquisition With Refer to Small

Data Size

In addition to the quality of data acquired, time used for data acquisition is another

important factor. In this section, time used for data acquisition consists of time

31

used to acquire data from servers and put acquired data into HDFS.

The time differences for both test programs are shown in Figure 12. This test

is based on data sets with small size.

Figure 12: Actual Time Used for Acquisition in a Certain Time

The two test programs are implemented in two different ways. For program

twNormal, it accumulates the acquired data, and copy the data to HDFS when data

size reaches a certain amount or data acquisition finishes. For program twChukwa,

data file is monitored by Chukwa agents, and acquired data is updated every 2

seconds, which means the data acquired will be put to HDFS every 2 seconds.

As twChukwa does not have data copying involved, it saves a lot of time when

it comes to big data set. But for small data set, it takes almost no time to copy

the data file to HDFS, which makes no time differences for both test programs as

shown in Figure 12.

32

5.3 Performance of Data Copying to HDFS

When the data file is small, there is almost no time differences of data acquisition

implemented in the two different ways mentioned in early section, as it takes almost

no time to copy the data files to HDFS. But when it comes to big data sets, the

copying time can not be ignored. On one hand, it takes time to copy large file to

HDFS. On another hand, The replicas mechanism of HDFS makes the actual data

file several times larger than the original data, which causes the copying process

more time consuming.

When data set is big, the time difference is mainly caused by copying data. The

performance of data copying to HDFS is shown in Figure 13.

Figure 13: Time Used to Copy Data Set to HDFS With Different Replica Number

As can been seen from this figure, the time of copying increases almost linearly

with the size of data. Hadoop is running on 15 hosts of the unix lab at UIS, and

the hosts are shared by a lot of users running different jobs. As the computational

resources might be occupied by the other users during testing, some points deviate

from the line as shown in the figure.

The slope of the line is determined by replica number set in Hadoop configuration

33

file. Replica number of 2 and 3 is used in the test. As can be seen, the slope of

line is bigger when replica number is bigger, and vice versa. The reason for this

is that when replica number is bigger than 1, the actual data size several times is

bigger than the original data size, which consumes more time to copy.

5.4 Critical Value of Generating Time Differences

There is no time differences of data acquisition when data set is small. As it

takes time to copy large file to HDFS, and also dues to the replicas mechanism of

Hadoop cluster, there is a big time difference when data set is large. But what is

the critical value of data size?

5.4.1 How to Find Critical Value

In order to find critical value, test data is used as it is very time consuming to

generate a data file with certain size for test purposes. The only reason why

there are time differences for test program is data copying, and we measure the

performance of data copying here to find the critical value.

Critical value is a value of data file size. It is the corresponding size of data

file for generating time difference of data acquisition. When the time difference is

larger than zero, we say there is a time difference, and thus the size of data file

that starts to bring time differences is the value we are looking for. But as the

hosts that Hadoop is running on might be occupied by jobs running by some other

users, we may get different time to copy the same data file twice. So the time

differences corresponding to critical value is defined as a time range. We consider

the time range to be (0, 10) with unit of second when finding the critical value,

and the data file size of starting to generate time difference larger than 10 is the

cirtical value we are looking for.

In order to find the critical value, we started with data size of 100M. If the

time difference is between 0 and 10, we increase the data file to 200M. If the time

34

Size of Data set Time used

20M 2s

30M 3s

40M 3s

50M 8s

Table 1: Time used for copying according to the size of data set with replica

number of 2

difference is still in the range (0, 10), we double the data size to 400M. The same

principle applies when time difference is larger than 10, and we decrease file to

50M and 25M respectively. If the time difference is larger than 10 when the size is

200M, we will go down to 150M, and if it is smaller than 10 when the size is 50M,

we will go up to 75M.

The test in this chapter to find critical value is based on Hadoop cluster with

replica number of 2 and 3, and size of data file stored on cluster is doubled or as

much as three times as it exists on local host. For different replica number, the

actual size of data file is different as there are different number of copies of the

same data set on Hadoop cluster, thus the critical value is different.

5.4.2 Critical Value

After did some experiment with copying as shown in Table 1, we found out that

time differences appeared obviously when data set reached a size of 50M. When

data size is less than 50M and bigger than 40M, it only takes several 3 seconds

at most to copy the data. As the computational resources may not be occupied

by the testing program only, value in Table 1 is bigger than the actual value. So

we came out the conclusion that the critical value for data size of generating time

differences is between 40M and 50M.

So, for data set smaller than 40M, there is no time difference between the two

solutions proposed in this thesis, and when data set is larger than 50M, there is

35

Size of Data set Time used

10M 2s

15M 2s

20M 8s

30M 10s

40M 21s

Table 2: Time used for copying according to the size of data set with replica

number of 3

time difference.

The critical value found here is in the cluster environment where replica number

is set to 2, and different replica number for cluster will result in different critical

value. Since the actual data size increase with the increasing of replica number,

critical value will become larger when replica number is only 1, and much smaller

when replica number is bigger than 2. In order to prove this, we also found out the

critical value when replica number is 3. Table 2 shows the related data. Through

applying the same principle, we found out the the critical value is between 15M

and 20M.

5.5 Chukwa Based Solution is Faster

Through the performance comparison, we find out that when the data set is small,

it cost almost the same time for both Chukwa based solution and the normal

solution. When the data set is bigger than the critical value, the stand-alone

application takes more time.

To explain this in more detail, both of the solutions spend the same time for

data acquisition when data set size is smaller than the critical value. If the size

of data set is in the scope of critical value, the two solutions have around 2-10s

time differences. When the size of data set is larger than the critical value, it takes

36

more time for the normal solution to acquire data.

As the size of data set is usually large data set in real life production, we can

say that Chukwa based solution is faster.

37

6 Conclusion

In this thesis, we focused on solutions for data acquisition with a good performance.

There were two different data sources used in this thesis. Data from services

provider is in historical format with pulling acquisition API, while data from Twit-

ter server is real-time streaming data.

Two different solutions for data acquisition were introduced and implemented.

One acquires data from data sources, and then copies the data file to HDFS. The

other one is based on Chukwa. It makes agent check data file every 2 seconds, and

saves time that is used for copying in the first one, as well as providing some other

benefits such as displaying, monitoring, and analyzing results.

Performances comparison of the two solutions was given out, both on the quality

of the data acquired by these two solutions, and the time used for data acquisition.

The size of data file which brings time differences was found out at the end of the

thesis. Solution based on Chukwa was proved to be better than the other one for

data acquisition in Hadoop system.

38

7 Acknowledgements

Special thanks are given to the following people.

Professor. PhD. Chunming Rong. Chunming Rong is the tutor of mine,

and also the person who brought this interesting master topic.

PhD Candidate. M.Sc. Tomasz Wiktor Wlodarczyk. Tomasz Wiktor

Wlodarczyk gave me many advices when doing this master thesis, and also helped

me with the improvement of this thesis.

39

References

[1] Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters, Communications of the ACM, Volume 51, Issue 1, pp. 107-113,

2008.

[2] Baeza-Yates, R. and Ramakrishnan, R. Data Challenges at Yahoo!. Proceed-

ings of EDBT, March 2008.

[3] Hadoop homepage, http://hadoop.apache.org/

[4] Jerome Boulon, Andy Konwinski, Runping Qi Chukwa: A large-scale moni-

toring system, Cloud Computing and its Applications, pp. 1-5, Chicago, IL,

2008.

[5] Pig homepage, http://hadoop.apache.org/pig/

[6] Pig Latin Reference Manual,

http://hadoop.apache.org/pig/docs/r0.5.0/piglatin reference.html

[7] OWL homepage, http://www.w3.org/2004/OWL/

[8] BioSTORM homepage, http://biostorm.stanford.edu/doku.php

[9] Jade homepage, http://jade.tilab.com/

[10] C.I. Nyulas, M.J. O’Connor, S.W. Tu, D.L. Buckeridge, A. Okhma-

tovskaia, and M.A. Musen An Ontology-Driven Framework for Deploying

JADE Agent Systems, Web Intelligence and Intelligent Agent Technology,

IEEE/WIC/ACM International Conference on, Los Alamitos, CA, USA:

IEEE Computer Society, pp. 573-577, 2008.

[11] Chukwa homepage, http://hadoop.apache.org/chukwa/

[12] Network File System,

http://en.wikipedia.org/wiki/Network File System (protocol)

40

[13] An example that shows the efficiency of Hadoop,

http://developer.51cto.com/art/201006/203554.htm

[14] Lukasz Golab, M. Tamer Ozsu. Issues in Data Stream Management, ACM

SIGMOD Record, Volume 32, Issue 2, pp. 5-14, 2003.

[15] Twitter4j homepage, http://twitter4j.org

[16] Example of using twitter4j to get stream data, http://twitter4j.org/en/code-

examples.html#streaming

[17] log4j homepage, http://logging.apache.org/index.html

41

	front page master
	MasterThesis_Baodong.pdf
	Contents
	Abstract
	Introduction
	Background
	Problem Description
	Aim of the Thesis
	Thesis Overview

	Technologies Behind
	DataStorm
	Hadoop
	Chukwa

	Data Acquisition
	How to Acquire Data for Hadoop?
	Architecture of Data Acquisition Solution using Chukwa
	Why Chukwa?
	Solution Without Chukwa
	Solution With Chukwa

	Acquire Data From Different Data Sources
	Streaming Data from Twitter
	Historical Data from Service Provider of Statoil

	Implementation
	Implementation Environment
	Hadoop Setup
	Chukwa Setup

	Data Acquisition Using Chukwa
	log4j
	Acquire Data from Twitter
	Acquire Data from Service Providers of Statoil
	Chukwa Adaptor Used

	Data Acquisition by Stand-alone Application
	Testing

	Performance Analysis
	Quality of the Data Acquired in Different Ways
	Time Used for Data Acquisition With Refer to Small Data Size
	Performance of Data Copying to HDFS
	Critical Value of Generating Time Differences
	How to Find Critical Value
	Critical Value

	Chukwa Based Solution is Faster

	Conclusion
	Acknowledgements
	References

