
Frontpage for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Computer Science

Spring semester, 2011

Open
Writer:
Eirik Nordbø

…………………………………………

Eirik Nordbø
Faculty supervisor:
Chunming Rong
External supervisor(s):
Einar Landre, Statoil

Titel of thesis:
Inter-Agent Communication In Multi-Agent Systems

Credits (ECTS): 30

Key words:
 Intelligent Agent, anget-communication,
JACK Agent Framework, Lego Mindstorms,
LeJos, Java

 Pages 82

 + enclosure: CD

 Stavanger, June 8, 2011
 Date/year

MIDMAS – Master Thesis

Inter-Agent Communication In

Multi-Agent Systems

Author:
Eirik Nordbø

Supervisor
Einar Landre

Supervisor:
Chunming Rong

8. June 2011

Abstract

The oil and gas industry experience an increased dependency on IT and par-
ticular software based capabilities to achieve its business objectives. Core business
processes such as exploration, well construction, production optimization and oper-
ations are all fueled by software and information technology. In coming years we
will see that software will fill more and more advanced features, including central
control functions in autonomous and collaborative robots and it is believed that
agent technology may be of use in this scenario.

The primary reason for this is the practical benefit from goal oriented systems is
a simplification of the human-machine interface. A goal oriented system is able to
communicate and react to events in its environment in context of their goals. This
is the primary driver for autonomous systems: simplifying and securing operation
of machines in an unstructured / highly dynamic environment.

Inter-agent communication is an important aspect of agent software, as it helps
in the process of decision-making, be it an individual decision or even group decision-
making. It also enables agents to share its beliefs and desires among each other.
In this thesis I will look at possible models for collaboration and coordination of
autonomous robots, and how this can be addressed through the use of software
agents. To do this a multi-agent solution for controlling Lego Mindstorms robots
has been developed in cooperation with Rune Johansen.

The solution is based on three Lego robots operation on a line-based grid. One
robot is set to explore the grid, finding object, and sharing this information (beliefs)
with a second robot that is responsible for collecting and delivering these objects to
a robot that sorts these object according to color. The solution enables investigation
in relation to intelligent software agents combined with autonomous robot systems,
such as inter-agent communication and coordination.

The agent system is developed using the Prometheus methodology for the design
and the JACK Intelligent Agents framework for the implementation. Regular Java
is used combined with the LeJos - Java For Mindstorms framework to implement
the robot side of the system.

i

Preface

This master thesis has been written as a continuance of a preliminary project we per-
formed in cooperation with Statoil during the autumn semester of 2010. The preliminary
project was collaboration between Rune Johansen and Eirik Nordbø where the objective
was to do a feasibility study of interfacing an agent platform (JACK) with a robot con-
trol system (LEGO Mindstorms). The cooperation has continued as we have developed
a common technical solution with separate angle of approach for our master thesis. Eirik
has focused on inter agent coordination and communication while Rune‘s area of focus
has been human robot interaction, both in relation to multi-agent systems controlling
robots or machines.

We would like to thank our supervisor Einar Landre at Statoil for all help and support
during our work with this thesis and the opportunity to gain insight into the exiting field
of intelligent agent technology. We would also like to thank professor Chunming Rong
at the University of Stavanger and last but not least Jossi for great coffee and moral
support throughout the semester.

Stavanger, 8 June 2011

Eirik Nordbø

ii

CONTENTS CONTENTS

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem definition . 4
1.3 Report outline . 5

2 Software Agents 6
2.1 Belief-Desire-Intention model . 8
2.2 Why are agents useful? . 9

3 Agent Communication 10
3.1 Events . 10
3.2 Inter-agent Events . 11

3.2.1 Local communication . 11
3.2.2 Remote communication . 12
3.2.3 Message synchronization . 13

3.3 Shared resources . 13

4 Methodology and tools 15
4.1 Prometheus methodology . 15

4.1.1 Why a new agent methodology? 15
4.1.2 The three phases . 16

4.2 JACK Intelligent Agents . 19
4.2.1 JDE . 19
4.2.2 DCI . 20
4.2.3 JACOB . 20
4.2.4 JACK agent language . 20
4.2.5 Agent: . 22
4.2.6 Event . 22
4.2.7 Plan . 23
4.2.8 Capability . 23
4.2.9 Beliefset . 23
4.2.10 View . 23

4.3 Java . 24
4.4 IntelliJ IDEA . 24
4.5 LeJOS, Java for Lego Mindstorms . 25
4.6 LEGO Mindstorms . 26

5 Application 27
5.1 Scenario . 27
5.2 First approach . 28

5.2.1 Monte Carlo Localization . 28
5.2.2 First approach development . 28

iii

CONTENTS CONTENTS

5.2.3 First approach results . 34
5.3 Final approach . 35

6 System Design 36
6.1 System specification . 36
6.2 Architectural design . 37
6.3 Detailed design . 39
6.4 System - Robot communication design . 40
6.5 Scenarios . 40

7 System Development 44
7.1 Agents . 44

7.1.1 Explorer . 45
7.1.2 Collector . 46
7.1.3 Sorter . 47
7.1.4 GUI Agent . 48
7.1.5 Coordination Agent . 49

7.2 Inter-Agent Communication . 50
7.2.1 Interaction diagrams . 50
7.2.2 Messages . 54

7.3 Robot development . 56
7.3.1 Communication protocol . 56
7.3.2 Internal robot code . 58
7.3.3 System side code . 59

7.4 GUI implementation . 60

8 Results 63
8.1 Final solution . 63

8.1.1 LEGO robots and code . 63
8.1.2 GUI and external java code . 63
8.1.3 Agent system . 64

8.2 Challenges . 65
8.3 Hypotheses . 66

9 Conclusion 68

10 Further Work 69

Appendices 70

A JACK installation guide 70

B User Guide 72

iv

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Forces motivating automation . 2
2 The BDI agent model . 8
3 The JACK BDI Execution . 9
4 This figure displays a event that can be handled by three different plans. . 10
5 This figure displays message synchronization between two agents. 13
6 The phases of the Prometheus methodology 16
7 The JACK Components / Agent Model Elements 19
8 The Jack JDE . 20
9 Agent oriented vs Object oriented . 21
10 The IntelliJ IDEA graphical user interface 24
11 The NXT 2.0 Intelligent Brick . 26
12 Monte Carlo Localization App initial pose. 29
13 Monte Carlo Localization resampled pose set after first move 30
14 Monte Carlo Localization resampled pose set after several moves 31
15 Monte Carlo Localization resampled pose set after location found. 32
16 Robot located in MCL map . 33
17 Robot located in MCL map, close up . 34
18 Grid-based map sketch . 35
19 System functionalities based on goals . 37
20 System Agents with basic interaction . 38
21 System overview . 39
22 Communication design . 40
23 System scenarios . 41
24 A deadlock scenario, where two robots wants to move to each others location. 43
25 Explorer Agent overview . 45
26 Collector Agent overview . 46
27 Sorter Agent overview . 47
28 External communication from JACK to the GUI 48
29 External communication from GUI to JACK 49
30 Coordinator Agent overview . 49
31 Scenario S1 - Explore grid sequence diagram 50
32 Scenario S2 - Collect Item sequence diagram 51
33 Scenario S3 - Sort Item sequence diagram 51
34 Scenario S4 - Request to move sequence diagram 52
35 Scenario S5 -Deathlock sequence diagram 53
36 Gui components and what they represent. 60
37 Gui after connections have been initialized. 60
38 Gui some time after the start command is given. 61
39 Gui after complete exploration (all objects not yet collected and sorted). . 62
40 Graphical User Interface . 64
41 Robot communication done through use of agents 66

v

LIST OF FIGURES LIST OF FIGURES

42 Open project in JACK . 70
43 Compile project in JACK . 70
44 Run compiled project in JACK . 71
45 Buttons for running the program . 72

vi

LIST OF TABLES LIST OF TABLES

List of Tables

1 Difference between Agents and Objects [1] 7
2 New object to collect . 54
3 Sorter position information . 54
4 New item delivered to Sorter. 54
5 Request to move event . 55
6 Update robot position event . 55
7 Reply from Coordinator to move request. 55
8 Explorer robot communication protocol 56
9 Collector robot communication protocol 57
10 Sorter robot communication protocol . 57

vii

1 INTRODUCTION

1 Introduction

This Master’s thesis has been written in collaboration with Statoil, an international
energy company with operations in 34 countries. Building on more than 35 years of
experience from oil and gas production on the Norwegian continental shelf, they are
committed to accommodating the world’s energy needs in a responsible manner, apply-
ing technology and creating innovative business solutions. They are headquartered in
Norway with 20,000 employees worldwide, and are listed on the New York and Oslo
stock exchanges. [2]

As a technology based energy company, Statoil experience an increased dependency on
IT and particular software based capabilities to achieve its business objectives. Core
business processes such as exploration, well construction, production optimization and
operations are all fueled by software and information technology. In coming years we
will see that software will fill more and more advanced features, including central control
functions in autonomous and collaborative robots [3].

Due to the fundamental properties of Intelligent Agents they provide a intuitive and
robust solution to the robot tasking challenge met in complex multi machine systems.
Their ability to communicate and coordinate amongst them selves, as well as the natural
mapping between robots and agents makes them not only a viable, but a good approach
for this type of autonomous systems.

It’s one thing to give one robot a task, but it’s a whole other matter to give many robots
a complex task, which requires cooperation and coordination in time and space. In this
thesis I will look at possible models for collaboration and coordination of autonomous
robots, and how this can be addressed through the use of software agents.

1

1.1 Motivation 1 INTRODUCTION

1.1 Motivation

Automation of reactive behavior has its roots in the need to control dynamic systems.
Dynamic systems are systems where the system state changes as a function of time,
systems that can be described using differential equations.

The scientific platform for controlling dynamic systems is known as control theory or
cybernetics, where feedback and/or feed-forward techniques are used to control a systems
reactive response to external events for the purpose of keeping the system within its
operational envelope. The forces motivating automation are many, but most often falls
into one of the categories illustrated in Figure 1.

Figure 1: Forces motivating automation

Autonomous systems are motivated by the same forces, but the value from automating
decisions, and moving to more goal oriented designs are easier to grasp using an example.
The archetype example is human operation of complex processes or vehicles (robots) in
unstructured and dynamic environments where time is a key. In these systems three
concerns must be managed:

1. Communications loss. Communication links breaks and there is a need for the
vehicle to maintain its own integrity as well as the integrity of its operating envi-
ronment.

2. Communications latency. Remote operation over some distance has latency. In
space applications like the Mars rovers, the latency is in minutes. For many earth
bound applications latency in the magnitude of seconds might be unacceptable.

3. Operator information overload. Remote control is often more demanding than
piloting the vehicle in a more traditional way. When a human is piloting a manned
vehicle, vibrations, sounds and vision provide information that is easily lost in a
remote control scenario, leading to unnecessary stress and mistakes.

By introducing autonomy, the vehicle (process) becomes able to store its mission objec-

2

1.1 Motivation 1 INTRODUCTION

tive (goal) and continuously assess its objective (goal) against environmental changes.
Assuming the vehicle is an airplane, it will not only be able to detect a thunderstorm
ahead, but it will be capable of validating the threat from the thunderstorm in context
of its assigned mission.

In such situation the aircraft will recalculate its route, and validate if it has sufficient
amount of fuel to pursue its original objective using the new route. In the case the
aircraft is not able to accomplish its objective it will request permission from the human
operator (pilot) to abort its assigned mission and update its objective to return home
safely. The human in charge might reject or acknowledge such request.

Independent of what the human decides the role of the human operator has changed from
flying the aircraft to perform mission management in collaboration with the vehicle. As
a consequence the abstraction level in the man-machine interaction is raised, and the
machine can interact with the human operator in a more human way.

Given industrial challenges such as smaller and more marginal resources (NCS), deeper
waters, more demanding operational conditions (arctic), and the need for a reduced envi-
ronmental footprint (regulations) will require smarter and more lightweight operational
concepts. These new operational concepts will drive the development of more sophisti-
cated and automated systems within all Statoil’s core business processes (drilling, oper-
ations and production optimization), systems that need to be designed for unmanned /
remote operations, systems utilizing the power of automated decision making, to enforce
and secure prudent operations.

For Statoil to maintain a leading position as a technology based energy company it is
important to understand and master autonomous systems including the software engi-
neering challenges that comes with building goal oriented, collaborating physical systems
to operate in unstructured environments. [4]

3

1.2 Problem definition 1 INTRODUCTION

1.2 Problem definition

The following problem has been formulated in cooperation with our teaching supervisor
at Statoil:

,,The students should investigate some of the more complex problems related to au-
tonomous systems, such as inter agent coordination and communication as well as agent
human interfacing. This should be done through demonstrating how software agents can
communicate with each other, with graphical interfaces, with external systems such as
robots and human robot interaction (HRI).”

To achieve this goal, Jack Intelligent Agent development platform [5] will be used to-
gether with Lego Mindstorms robots. [6]

Based on this problem definition and further discussion with our supervisors one common
implementation goal was defined:

,,Design and implement a proof-of-concept software with a graphical user interface (GUI),
robot communication and human interaction. The GUI should implement two-way com-
munication with the agents; provide functionality for relevant HRI challenges and display
real time information and results provided by the agents. The solution also needs to pro-
vide standard interfaces specifying the robot functionality required, as well as a Lego
Mindstorms specific implementation of these interfaces. ”

This thesis will discuss inter-agent-communication and address the following research
hypostisis:

1. Intelligent agents are a suitable platform for modeling and development
of interacting robots
In our preliminary project we found that the JACK framework where a robust approach
for developing an agent solution controlling one robot. In this thesis I will look at how
suitable intelligent agents are for controlling several interaction robots.

2. In a multi - agent systems, robot interaction can be modeled as interacting
agents.

4

1.3 Report outline 1 INTRODUCTION

1.3 Report outline

Chapter 2, Software Agents
Agent-oriented software engineering is a rapidly developing area of research. This chapter
will present basic agent theory, how they differ from traditional software paradigms and
in which contexts they are useful.

Chapter 3, Agent Communication
Gives an overview over the different aspects of agent communication.

Chapter 4, Methodology and tools
This chapter describes the different methodologies and tools used for modeling and
development of the agent-solution and robot application.

Chapter 5, Application
In order to design an application relevant to our problem definition and hypotheses, sev-
eral approaches where considered. This chapter describes the different solutions.

Chapter 6, System Design
The chapter describes the different phases in our design using the Prometheus method-
ology. The overall system structure presented in this chapter is probably the most
important and useful artifact resulting from the initial two phases of the Prometheus
methodology.

Chapter 7, System Development
The different agents and how they communicate are presented in this chapter, including
use case scenarios.

Chapter 8, Results
Summarizes the results of our work in light of the thesis hypotheses, as well as the
challenges met.

Chapter 9, Conclusion
Based in our original problem definition, we here discuss the further implications of our
result.

Chapter 10, Further work
We here present some possible approaches for further work.

5

2 SOFTWARE AGENTS

2 Software Agents

The notion of AI was first introduced in the 1950’s when it went from being fanta-
sy/science fiction to becoming an actual research area. In addition to the design and
implementation of robots to model the behavioral activities of humans, AI scientists
eventually started to focus on implementing devices (software and hardware) that mimic
human behavior and intelligence, Intelligent agents (agents) [7]. As of today no formal
definition of an agent exists, but the Wooldridge and Jennigs definition is increasingly
adopted.

The following definition is from (Wooldrigde 2002), which in turn is adapted from
(Wooldridge and Jennigs 1995):

,,An agent is a computer system that is situated in some environment, and
that is capable of autonomous action in this environment in order to meet
its design objectives”.

Wooldridge distinguishes between an agent and an intelligent agent, which is further
required to be reactive, proactive and social (Wooldridge 2002, page 23).

An intelligent agent is characterized as being autonomous, situated, reactive, proactive,
flexible, robust and social [8]. These properties for an agent differ from traditional
objects in several ways as shown in Table 1.

6

2 SOFTWARE AGENTS

Property Agent Object

Autonomous Agents are independent and
make their own decisions.

Objects do not exhibit control
over their own behavior be-
cause an object’s method can
be invoked by other entities.

Situated in an Environment Agents tend to be used when
the environment is dynamic,
unpredictable and unreliable.

Objects tend to be used when
the environment is static, pre-
dictable and reliable.

Reactive Agents perceive changes in
their environment and will re-
spond to these changes to
achieve goals.

Objects can be reactive, but
their reactiveness is depen-
dent on how well they manage
changes in the environment.

Proactive Agents are proactive because
they persistently pursue goals,
i.e. they have goal-directed
behavior.

Objects are not proactive be-
cause they do not have goal-
directed behavior and they
lack reasoning ability.

Flexible Agents are flexible because
they can achieve goals in mul-
tiple ways.

Objects do not have the abil-
ity to choose between different
ways to achieve a goal.

Robust Agents recover from failure
and choose another way to
reach their current goals.

Objects are not flexible, and
as a consequence they are less
robust than agents.

Social Agents have the ability to co-
operate, coordinate and ne-
gotiate with each other to
achieve common or individual
goals.

Objects can exchange infor-
mation and data with each
other, but they lack the social
aspect of the interaction.

Table 1: Difference between Agents and Objects [1]

7

2.1 Belief-Desire-Intention model 2 SOFTWARE AGENTS

2.1 Belief-Desire-Intention model

The Belief-Desire-Intention (BDI) model is based on human behavior and reasoning
and can therefor provide a control mechanism for intelligent action. It is developed by
Michael Bratman [9] to explain future-directed intention.

The Belief-Desire-Intention software model is a software model developed for intelligent
agent programming. A BDI agent is a particular type of bounded rational software agent
with some specific architectural components.

Figure 2: The BDI agent model

• Beliefs: Represent the informational state of an agent, what the agent believes
about the world. The term belief is used instead of knowledge as the beliefs may
be false although believed true by the agent. Beliefs are organized in Beliefsets.

• Desires: Represents the motivational state of an agent, objectives or situations the
agent would like to accomplish or bring about. An agent can have goals which are
desires actively pursued by the agent.

• Intentions: Represent the deliberative state of an agent, what an agent has chosen
to do to accomplish a goal/desire. Plans are sequences of actions, which an agent
can use to fulfill its intentions.

• Events: Events are the triggers for reactive activity by an agent. An event may
change beliefs, update goals or trigger plans.

8

2.2 Why are agents useful? 2 SOFTWARE AGENTS

Figure 3: The JACK BDI Execution

2.2 Why are agents useful?

An important advantage of agents is that they reduce coupling. The coupling is reduced
by encapsulation provided by autonomy, the robustness, reactiveness and pro-activeness
of agents [8]. Because of its properties an agent can be relied upon to persist in achieving
a given goal by trying alternative approaches depending on environment changes. Being
proactive and reactive agents are human-like in the way they deal with problems. This
provides a very natural abstraction and decomposition of complex problems. Leading to
agents being used in a number of applications such as planning and scheduling, business
process systems, exploration of space, military operations/simulation and online social
communities.

9

3 AGENT COMMUNICATION

3 Agent Communication

As mentioned in Section 2, the field of multi-agent systems is a rapidly growing research
area. Although there is no real consensus on what exactly what an agent is, there are
some generally accepted properties that an agent should have [10]. An agent is viewed
upon as an autonomous entity with both reactive and proactive behaviors as described in
Table 1, responding to external occurrences and persistently pursuing goals. An agent
is additionally assumed to have a mental state comprised of informational attitudes
(like knowledge and belief) and motivational attitudes (like goals, desires and inten-
tions). Parts of this mental state may also be shared among agents in the same system.
Moreover, it has an ability to interact with other agents in a multi-agent environment.
Because there are different interpretations and implementations of agents, there are sev-
eral different approaches to inter-agent communication, therefor this chapter will focus
on inter-agent communication in the JACK framework. The content of this chapter is
important in order to address the research hypotheses described in section 1.2 and to
draw relevant conclusions based on the developed application.

3.1 Events

An event is a element that can trigger the choice of execution of a plan. These events
can derive from percepts coming from the environment or messages delivered from other
agents. Events are the origin of all activity within an agent-oriented system. In the
absence of events an agent sits idle. When an event occurs, one or more agents starts
a process to handle the event. The task causes the agent to choose between the eligible
plans it has to execute the given event. A normal event is said to be successful if the
chosen plan executed without failing, a goal event is said to be successful is one of the
applicable plans succeeds, even though one or more fails before it.

Figure 4: This figure displays a event that can be handled by three different plans.

10

3.2 Inter-agent Events 3 AGENT COMMUNICATION

An event may also contain information vital to the plan that processes the event, or even
to check if a plan is viable to handle that exact event. As an example, Figure 4 shows
3 plans which handles the same event. In this case, the event contains the color of the
ball, which is to be sorted. Based on this information, the first eligible plan is selected
to handle the event. As explained above, the event has to be a goal event in order to
have the event try more than one plan, if the first fails.

3.2 Inter-agent Events

JACK provides a runtime-networking environment on which different agent processes
can operate. Agents can address messages (MessageEvents, and BDIMessageEvents) to
one another by specifying the name of the destination agent and, if applicable, its portal
and host. The JACK runtime network then takes care of routing this message to its
desired destination.

3.2.1 Local communication

Agents often share the same process, and if more than one agent runs in the same process,
the communication between them is said to be local. In this situation, the sending of
messages between the agents is trivial. All the sender agent needs to know is the receiver
agent’s name to send the message.

The following requirements must be meet for to agents to successfully communicate
locally:

• The sending agent, needs to know the name of the destination agent.
The receiver however, will get the senders name in the events ”from” data member.
This information is automatically generated.

• The source agent needs to be able to send a message event.
This is achieved by including a #sends event declaration in the agent’s definition
for the required class of message event. Note that the event must be defined as
a MessageEvent. The source agent must then include code to send the message
event. This can be done by calling the send method from code outside a reasoning
method, or the @send statement from within a reasoning method.

• The destination agent needs to be able to handle this message event.
This is achieved by including a #handles event declaration for this message event
in the destination agent’s agent definition or capability. To handle this event
correctly, the destination agent must also include at least one plan with the same
#handles event declaration, and declare that it uses this plan via a #uses plan
declaration. If there is no plan that handles the event, JACK will output a error
message saying that the event is not handled by any plans.

11

3.2 Inter-agent Events 3 AGENT COMMUNICATION

3.2.2 Remote communication

Agents may run on different computers and communicate over a network, using the
JACK communication layer known as JACK DCI (Distributed Communication Infras-
tructure). The DCI network is layered in such a way that different underlying transport
mechanisms can be accommodated. DCI is built as a thin layer over UDP [11], guaran-
teeing delivery.

When agents in remote processes need to be able to communicate, they need to be told
how to communicate with the other agents. Each agent process has its own ”portal”, and
these connect to each other to provides their agents to communicate. The portals can
be connected explicitly, but they can also be connected on the fly using name-servers.
To use this technique we simply assign one of the processes to be a name-server, and
when an agent tries to send a message to an other agent at an unknown portal, the agent
queries the name-server to try to locate the portal. If it succeeds, the message is sent,
but if the portal name is not available from the name-server, an error occurs.

12

3.3 Shared resources 3 AGENT COMMUNICATION

3.2.3 Message synchronization

JACK offers functionality to synchronize messages between agents. If an agents plan
depends on input from an other agents, it can simply request the needed information
and wait for a reply before continue executing the plan as shown in Figure 5. If the
agent has received a message and performed a task in response to this message, one of
the steps in the plan that responds to this message may be to send another message
back to the originating agent in the form of a reply. This may be to confirm that the
task has been completed, or for the originating agent needs some information from the
receiver before continue executing its plan.

Figure 5: This figure displays message synchronization between two agents.

3.3 Shared resources

Resources such as beliefsets and views can only be shared among agents in a given
process. The declaration within the agent takes the following form:

• #private data DataType ref (arg list); or

• #agent data DataType ref (arg list); or

• #global data DataType ref (arg list);

13

3.3 Shared resources 3 AGENT COMMUNICATION

To share a data resource among agents it has to be declared as global in the agent’s
definition. Even though it is possible for all agents to modify a global data, agents
should in general only modify the data that appears in their private user-defined data
structures due to synchronization problems. Even though it is suggested that shared
beliefsets and views are read-only it is possible to write to these data resources as well,
but it may lead to synchronization problems if two or more agents try to update a
beliefset or other data source at the same time.

14

4 METHODOLOGY AND TOOLS

4 Methodology and tools

This chapter describes the different methodologies and tools used for modeling and
development of the agent-solution and robot application.

4.1 Prometheus methodology

Prometheus is intended to be a practical methodology. As such, it aims to be complete:
providing everything that is needed to specify and design agent systems. The methodol-
ogy is widely used in university courses, by industry workshops and the company behind
JACK, Agent-Oriented Software [12].

4.1.1 Why a new agent methodology?

Although there are many methodologies for designing software, none of these are well
suited for developing agent oriented software systems. Even though there are similarities
between agents and objects there are some significant differences justifying the use of
the Prometheus methodology over object oriented methodologies. This despite the fact
that object oriented methodologies are extensively studied and developed compared to
Prometheus.

Some of the main differences between Prometheus and object oriented methodologies
are:

1. Prometheus supports the development of intelligent agents which use goals, beliefs,
plans, and events. By contrast, many other methodologies treat agents as simple
software processes that interact with each other to meet an overall system goal.

2. Prometheus provides explicit modeling of goals which is needed to support proac-
tive agent development. This is generally not a part of object-oriented methodolo-
gies.

3. To provide flexibility and robustness a message (or an event) should be allowed
to be handled by several plans, not just as a label on arcs, which is common for
object oriented methodologies.

4. Agents are situated in an environment, thus it is important to define the interface
between the agent and its environment.

5. In object oriented programming everything is a passive object, but in agent oriented
programming it is needed to distinguish between passive components such as data,
and beliefs and active components like agents and plans.

15

4.1 Prometheus methodology 4 METHODOLOGY AND TOOLS

4.1.2 The three phases

The Prometheus methodology consists of three phases, as shown at figure 6.

1. The system specification phase intends to describes the overall goals and basic
functionality, including the illustration of the systems operations with use case
scenario schemes. The phase is also intended to specify inputs (for example sensor
readings) and outputs (actions), namely the interface between the system and its
environment.

2. The second phase, called the architectural design phase decides which agent types
the system will contain and how they interact based on the previous phase.

3. The detailed design phase looks at each agent individually and describes its internal
behavior to fulfill its goals within the overall system.

Figure 6: The phases of the Prometheus methodology

16

4.1 Prometheus methodology 4 METHODOLOGY AND TOOLS

System specification As mentioned in the start of Chapter 3.2, the system specifi-
cation phase focuses on the following:

• Identifying the system goals.
The system goals might be thought of as the overall goals of the system, what
the system should be able to achieve. In agent software these goals are important
because they control the agents behavior. The system goals are often high-level
descriptions; therefor they tend to be less likely to change over time than function-
alities.

• Creating use case scenarios that presents how the system works.
Use case scenarios are used to describe how the system operates through a sequence
of steps combined with description of the context in which the sequence occurs.
These scenarios are useful to understand the structure of the system works.

• Identify the fundamental features of the system.
The fundamental features are groups of related goals, data and input/output that
describe the main functionalities of the system. In a ATM system these might be;
”Withdraw money”, ”Check account balance” and ”Change card PIN code”. As
the system is created, the need for new functionality will be introduced. In our
ATM system there might be a need to add ”Charge cell phone account”.

• Describe the interface connecting the system to its environment, inputs
and outputs.
An agent is situated in an environment, and we need to specify how the agent
affects the environment and what information the agent gets from the environment.
Using our ATM system example, the agent gets input in form of credit card data,
withdrawal requests and so on. The output might be money or a message on the
ATM display.

Architectural design The architectural design phase uses the outputs from the pre-
vious phase to determinate which agent types the system will contain and how they
will interact. It also captures the system’s overall structure using the system overview
diagram.

• Agent Types
One of the most important aspects of the Architectural design is to determine
which agents are to be implemented and to develop the agent descriptors. The
functionalities established in the first phase are grouped into agent types, so that
each agent consists of one or more functionalities. The functionalities are grouped
together based on coupling and cohesion.

• System structure
Once the agent types are decided upon, the system structure is determined by
dividing input and output responsibility among the agents. The major shared
data repositories are also specified in this process. These items are modeled in the

17

4.1 Prometheus methodology 4 METHODOLOGY AND TOOLS

system overview diagram, which is perhaps the single most important product of
the design process. It ties together agents, data, external input and output, and
shows the communication between agents.

• Interactions
The System structure defines who talks to who, while the interactions part defines
the timing of communication. This is done trough use case scenarios and is modeled
in agent interaction diagrams.

Detailed design The last of the three phases focus on the individual agent’s internal
design, constructing its capabilities, including plans, events and data so that it can
fulfill its responsibilities as outlined in the functionalities it is to provide. It is also
important to refine the interaction protocols the agents use for internal and external
communication.

18

4.2 JACK Intelligent Agents 4 METHODOLOGY AND TOOLS

4.2 JACK Intelligent Agents

AOS [5] offers a number of products for developing autonomous systems: JACK, JACK-
Teams, JACK Sim, C-BDI, CoJACK and Surveilance agent. JACK is the worlds leading
autonomous systems developing platform. It is entirely written in Java making it able
to run on any system of which Java is available from laptops to high-end multi-CPU
enterprise servers. JACK thus has access to all Java features including multiple threads,
platform independent GUIs and third party libraries. JACK also provides a JDE (JACK
Development Environment) for developing and designing JACK applications.

Figure 7: The JACK Components / Agent Model Elements

4.2.1 JDE

Components and links (See Figure 7) can be added/removed in the JDE browser window
or graphically using the design tool. These express relationships between agent model,
elements and skeleton code is automatically generated for them. The JDE saves in a .prj
file and a gcode directory and when you select compile application the corresponding
JACK files are generated before the compilation proceeds as it would on the command
line.

19

4.2 JACK Intelligent Agents 4 METHODOLOGY AND TOOLS

Figure 8: The Jack JDE

4.2.2 DCI

JACK DCI (Distributed Communication Infrastructure) enables agents to communicate
within a process, across processes and between different machines. A DCI portal for a
process is defined by giving the process a portal name and a port number to identify
it. The full name for an agent is agent name@portal and the DCI will ensure message
delivery across portals.

4.2.3 JACOB

Provides machine and language independent object structures that can be stored or
transmitted. The object structures are defined using the JACOB Data Definition Lan-
guage and stored in definition files, which are compiled using JACOB Build.

4.2.4 JACK agent language

The JACK agent language is an extension of Java to support an agent oriented pro-
gramming paradigm

It introduces new base classes: agent, capability, event, plan, view, beliefset, and exten-
sions to the java syntax to support these e.g. #declarations and @reasoning statements.

20

4.2 JACK Intelligent Agents 4 METHODOLOGY AND TOOLS

Figure 9: Agent oriented vs Object oriented

It uses the BDI (Belief Desire Intention) agent model

21

4.2 JACK Intelligent Agents 4 METHODOLOGY AND TOOLS

4.2.5 Agent:

The agent type encapsulates knowledge and behavior through beliefsets, events and plans
which can be represented as capabilities. It reacts to events and receives messages to
perform tasks and services.

4.2.6 Event

All activity in JACK originates from an Event. The event provides the type safe con-
nection between agents and plans as both the agents and plans must declare the events
they handle, post and send. JACK supports several different types of events depending
on desired plan processing behavior. The different types are:

• Normal:

A ’Normal’ event corresponds to conventional event driven programming. Causes
the plan behavior to be that if the plan fails the agent does not try again. There
are two base classes for normal events, these are Event, which is the base class for
all events and can only be posted internally and MessageEvent which can be sent
between agents (a message for the sender, an event for the receiver).

• BDI:

A BDI event represents the desire to achieve a goal and it may cause both meta-
level and practical reasoning. This can result in agents trying several different
plans and even recalculating the applicable plan set. There are three different base
classes for BDI events, BDIGoalEvent, BDIMessageEvent, and BDIFactEvent.
The BDIGoalEvent is typically used in @achieve, @insist, @determine etc and
will cause an agent to try all applicable plans until one succeeds. The receiver of a
BDIMessageEvent uses BDI processing and so does a receiver of a BDIFactEvent
but in a non persistent way. The BDI events can be customized to specify how
and when to determine the applicable plan set and how to form it, when to do
meta-level reasoning, how to choose plan without meta-level reasoning , how to
deal with plan failure and how to handle exceptions.

• Rule:

The event base class for rule events is InferenceGoalEvent. This type of event will
cause all plans in the applicable set to be executed regardless of success or failure.

• Meta: The event base class for Meta events is PlanChoiceEvent. This is the
mechanism the agent uses to perform meta-level reasoning.

22

4.2 JACK Intelligent Agents 4 METHODOLOGY AND TOOLS

4.2.7 Plan

A plan describes the actions an agent can take when an event occurs. Each plan can
only handle a single event and it will either succeed or fail. A plan contains logic to
determine if the plan is relevant or not for a given event. It also has at least one reasoning
method, which defines the actions of the plan. This method can contain JACK agent
language @statements and each of these are handled as a logical condition. These are
handled sequentially and if a statement fails the method fails and terminates, only if all
statements succeed the plan succeeds.

4.2.8 Capability

Capabilities are used to wrap events, plans and data into reusable components. An
agent can ’have’ a capability that again can be composed of other capabilities (capability
nesting).

4.2.9 Beliefset

JACK Beliefsets are a form of representing an agents belief. A Beliefset is a relational
representation where the individual belief representations are propositional. It’s like a
relational database, but not used for long-term storage or shared between agents. The
reason for not sharing Beliefsets amongst agents is to avoid concurrent data updates. A
Beliefset may be shared, but there are concurrency issues due to multi-threading and it’s
therefore normally not done. Technically a Beliefset is a relation which is a set of tuples
where each tuple is a belief/fact that can be either true or false. The tuples must have
one or more fields, with an unique key field and value field(s). Beliefs can be queried on
and changed/added/removed as the agent changes it’s beliefs in run time. The change of
an agents belief may result in change of behavior and this is invoked by callback methods
posting Events that in turn are handled by relevant plans. Beliefsets must be declared
in the agents, capabilities and plans that use them.

4.2.10 View

A JACK view is a way to interface between JACK and other systems. Using views it is
possible to integrate a range of data sources into the JACK framework like Beliefsets, java
data structures and legacy systems. Views must be declared in the agents, capabilities
and plans that use them.

23

4.3 Java 4 METHODOLOGY AND TOOLS

4.3 Java

Java [13] is a programming language originally developed by Sun Microsystems. The
language derives much of its syntax from C and C++ but has a simpler object model
and fewer low-level facilities. Java applications are typically compiled to byte-code that
can run on any Java virtual machine (JVM) regardless of computer architecture.

4.4 IntelliJ IDEA

IntelliJ IDEA is a commercial Java IDE by JetBrains [14]. It is often simply referred
to as ”IDEA” or ”IntelliJ.” IntelliJ IDEA offers smart, type-aware code completion. It
knows when you may want to cast to a type and is also aware of the run-time type
checks that you made, after which you can perform cast and method invocation in a
single action.

Figure 10: The IntelliJ IDEA graphical user interface

24

4.5 LeJOS, Java for Lego Mindstorms 4 METHODOLOGY AND TOOLS

4.5 LeJOS, Java for Lego Mindstorms

To allow us to program our LEGO robots using Java we used LeJOS NXJ which is
a Java programming environment for the Lego Mindstorms NXT. The leJOS NXJ is a
complete firmware replacement for the standard Lego Mindstorms firmware that includes
a Java Virtual Machine. LeJOS is an open source project and was originally created
from the tinyVM project that implemented a Java VM for the older Mindstorms system
RCX. The current newest version and the one we used is lejos-NXJ 0.8.5 beta and it is
supported by three operating systems: Microsoft Windows, Linux and MAC OS X. It
consists of [15]:

• Replacement firmware for the NXT that includes a Java Virtual Machine.

• A library of Java classes (classes.jar) that implement the leJOS NXJ Application
Programming Interface (API).

• A linker for linking user Java classes with classes.jar to form a binary file that can
be uploaded and run on the NXT.

• PC tools for flashing the firmware, uploading programs, debugging, and many
other functions.

• A PC API for writing PC programs that communicate with leJOS NXJ programs
using Java streams over Bluetooth or USB, or using the LEGO Communications
Protocol (LCP).

• Many sample programs

25

4.6 LEGO Mindstorms 4 METHODOLOGY AND TOOLS

4.6 LEGO Mindstorms

LEGO Mindstorms is a programmable robotic kit created by LEGO. The LEGO Mind-
storms NXT 2.0, which is the newest version, comes with a NXT Intelligent Brick, two
touch sensors, a color sensor and an ultrasonic sensor. It also includes three servomotors
as well as about 600 LEGO Technic parts.

The NXT Intelligent Brick is the main component of the robot. It can take input from
up to four sensors and control up to three motors simultaneously. The brick also has a
LCD display, four buttons and a speaker.

Figure 11: The NXT 2.0 Intelligent Brick

Originally the brick comes with software based on National Instruments LabVIEW [16],
and can be programmed trough a visual programming language. LEGO has however
released the firmware for the brick as open source [6], and several developer kits are
available. Due to this, third party firmware has been developed to support different
programming language, such as Java, C++, python, Perl, Visual Basic and more.

26

5 APPLICATION

5 Application

This chapter will present the chosen application scenario and describe the process of
defining it before ending up with the final approach. To achieve the common application
goal as well as address the inter agent communication hypothesis, the application needed
to contain several robots, collaborating to reach a common goal. An other important
aspect was to create a scenario where the robots continuously could benefit from sharing
each other views and information about the environment. Several approaches where
tried before the final solution was chosen.

5.1 Scenario

Based on the implementation goal specified together with our supervisors we defined a
scenario which includes all the desired aspects described in Section 1.2. The scenario
is: 3 robots with different properties, which in cooperation are to explore a restricted,
unstructured and dynamic operational environment where different types of objects are
located randomly. These objects are to be collected and sorted by color. The robots
are to coordinate amongst themselves cooperating in achieving a common goal. Each
robot is assigned a specific task depending on its abilities, one explores and locates
the objects, one collects and deposits the objects found, while the last robot sorts the
delivered objects based on object color.

27

5.2 First approach 5 APPLICATION

5.2 First approach

We first started out wanting to have the robots operate within a map only specified by
a set of boundaries. The robots where to do the navigation an positioning using a sonar
sensor measuring distances to the boundary walls and possible obstacles, for example
other robots. There are several localization algorithms/techniques used in robotics, but
one has proven to be both computationally efficient and accurate making it the most
widely used, this is the Monte Carlo Localization Algorithm (MCL) [17] [18].

5.2.1 Monte Carlo Localization

The basic idea of this approach is to estimate the robots position using sensor read-
ings. Initially only the map boundaries are known and not the robots position. MCL
generates a set of poses distributed randomly within the boundaries all having a weight
representing the probability of the pose representing the actual robot position and a
heading. Each time the robot moves MCL generate N new samples that approximate
the robots position after the move. These samples are generated by randomly drawing
a sample from the previous computed sample set with likelihood determined by their
previous weight combined with the new sensor reading. This resampling is done each
time the robot moves and will eventually determine the robots most likely position with
high accuracy.

5.2.2 First approach development

After deciding on this approach we ”built” a simple map and a robot with a sonic sensor
shown in Figure 16 and Figure 17. The MCL algorithm was implemented in java with
a graphical user interface showing the robots current pose set within the boundaries
shown in Figure 12 13 14 15. These figures show a typical scenario where the robot
moves several times before its most likely position is determined accurately.

28

5.2 First approach 5 APPLICATION

Figure 12: Monte Carlo Localization App initial pose.

29

5.2 First approach 5 APPLICATION

Figure 13: Monte Carlo Localization resampled pose set after first move

30

5.2 First approach 5 APPLICATION

Figure 14: Monte Carlo Localization resampled pose set after several moves

31

5.2 First approach 5 APPLICATION

Figure 15: Monte Carlo Localization resampled pose set after location found.

32

5.2 First approach 5 APPLICATION

Figure 16: Robot located in MCL map

33

5.2 First approach 5 APPLICATION

Figure 17: Robot located in MCL map, close up

5.2.3 First approach results

The MCL implementation was satisfactory in terms of accuracy and computational ef-
ficiency. Despite this the cons presented during testing heavily outweighed the pros of
this approach. The LEGO Mindstorms sonic sensor was unreliable. Uncertainty in exact
degrees turned and distance moved where both challenges, and the level of complexity
in dealing with these issues increased drastically when more than one robot was intro-
duced into the system. Due to time limitation and the main focus of the thesis being
the software agent/HRI challenges we were forced to drop this approach after 1 month
of development.

34

5.3 Final approach 5 APPLICATION

5.3 Final approach

After considering time limitations and the main focus of thesis, the final approach was
specified. This approach is based on the robots operating on a line-based map/grid.
This approach is preferable as Mindstorms robots have fairly good support for this kind
of navigation (line following). There has been done quite a lot of projects on this leaving
us to focus on more relevant challenges for the thesis, being the agent implementations
and human-agent interfacing. The basic idea of robot setup and common goal remains
the same as described in initial approach. A sketch of the overall grid design is presented
in Figure 18

Figure 18: Grid-based map sketch

35

6 SYSTEM DESIGN

6 System Design

Our design is developed using the Prometheus methodology described in Section 4.1.
This chapter will present the main phases of the design process and our design choices.

6.1 System specification

The system goals are derived from the scenario described in Section 5.3. To realize the
system a set of main goals and sub goals where defined:

• Explore map
−Find all drivable lines on the grid.
−Find all objects located on the grid.

• Collect items
−Pick up located items.
−Deliver picked up items to be sorted.

• Sort all items located on the grid.
−Sort items into trays based on color.

• Collision avoidance
−Robots yield according to specified priority list. −Determine alternative routes
on deadlock.

• GUI design based on best practice approach for successfull HRI.
−Intuitiv GUI.
−Keep operator focus on cruicial information.
−Present results/data in user friendly manor.
−Ease the load of data analysis for operator.

The required functionalities are defined based on these goals illustrated in Figure 19.

36

6.2 Architectural design 6 SYSTEM DESIGN

Figure 19: System functionalities based on goals

6.2 Architectural design

After defining goals and functionalities in the previous stage, 5 agents where identified
to provide these functionalities and achieve the system goals. The agents and their
specifications are shown in Figure 20:

• Agents for controlling the robots.
−Explorer Agent.
Agent with plans for controlling the explorer robot according to the defined goals.
This agent communicates GUI updates and coordination requests as well as noti-
fying the collector when items are discovered on the grid.
−Collector Agent.
Agent with plans for controlling the collector robot according to the defined goals.

37

6.2 Architectural design 6 SYSTEM DESIGN

Figure 20: System Agents with basic interaction

Communicates GUI updates and coordination requests as well as notifying the
sorter when items are deposited for sorting.
−Sorter Agent.
Agent with plans for controlling the sorter robot according to the defined goals.
Communicates GUI updates and coordination, and handles sort requests from col-
lector.

• Coordinator Agent.
The agents main task is to handle the movement coordination between the 3 robots.
Keeps track of robot positions and headings to ensure collision avoidance.

• GUI Agent.
Handles all communication with the GUI/operator. Updates of the GUI as the
robots gain more knowledge about their environment and also passes on user input
to the robots/robot agents.

38

6.3 Detailed design 6 SYSTEM DESIGN

6.3 Detailed design

The system overview shown in Figure 23, describes how the agents communicate and
access data. The design also supports the second hypothesis saying that robot interaction
can be modeled as interacting agents. To complete the design it was however beneficial
to add two additional agents, serving as support roles in the system. One agent for
updating and interacting with the GUI, and one to handle coordination between the
robots. It would have been possible to develop de application without the two extra
agents, but this would have led to a less clearly design and would required sharing of
data (views), as the three robot agents would have been forced to update the GUI
through the GUI view.

Figure 21: System overview

39

6.4 System - Robot communication design 6 SYSTEM DESIGN

6.4 System - Robot communication design

The communication between the robots and the system will be done through Bluetooth.
The Communication classes system side will send commands to the different robots where
code for executing these commands will be running. Results and sensor readings sent
from the robots will be received and interpreted by the communication classes before
being passed on to the agents. An illustration of this design is shown in Figure 22.

Figure 22: Communication design

6.5 Scenarios

Figure 23 shows the different scenarios that take place in the system. They are also
described below together with their appurtenant steps. Note that only scenarios relevant
to inter agent communication are described in detail.

40

6.5 Scenarios 6 SYSTEM DESIGN

Figure 23: System scenarios

[S1] Explore Map
Trigger: User requests to start sorting

When the application starts, the operator has to initialize the robots connections and
trigger the exploring. The Explorer robot then starts to explore the grid, and reporting
back to the operator trough the user interface.
1. PERCEPT: New environment information through sensor readings.
2. GOAL: Explore grid
3. ACTION: Find available directions and line color
4. GOAL: Find objects
5. SCENARIO: S2
OR
6. SCENARIO: S5

41

6.5 Scenarios 6 SYSTEM DESIGN

[S2] Collect Item
Trigger: Explorer locates object to collect

When the explorer finds a object to collect, it notifies the collector which drives to the
object, picks it up and delivers it to the sorter.
1. GOAL: Collect item.
2. GOAL Find shortest available path to object.
3. ACTION: Move to object.
4. ACTION: Collect object.
5. GOAL: Find shortest available path to sorter.
6. ACTION: Move to sorter.
7. ACTION: Deliver object to sorter.

[S3] Sort Item
Trigger: Collector delivers object to sorter.

The objects collected is delivered to the sorter, and is then sorted into the correct tray
according to color.
1. PERCEPT: Object color through sensor.
2. GOAL: Sort item.
3. ACTION: Put object in tray according to color.

[S4] Handle Move Request
Trigger: Explorer or Collector requests to move

Every time a robot wants to move, he has to consult the coordinator agent to avoid
deadlocks.
1. PERCEPT: Request from robot to move.
2. GOAL: Validate movement request.
3. ACTION: Reply to requestor.

42

6.5 Scenarios 6 SYSTEM DESIGN

Figure 24: A deadlock scenario, where two robots wants to move to each others location.

[S5] Handle Deadlock
Trigger: Two robots are located in a deadlock scenario, see Figure 24.

The robot with the ”lowest” priority needs to find an alternative route to its destination.
1. GOAL: Find a new route, that excludes driving through the other robots position.
2. ACTION: Follow new route to destination.

43

7 SYSTEM DEVELOPMENT

7 System Development

This chapter describes the implementation, see Figure 7 for symbol explantation.

7.1 Agents

This section will in short present the agents implemented in the system with a description
and corresponding figures illustrating the workings of the individual agents.

44

7.1 Agents 7 SYSTEM DEVELOPMENT

7.1.1 Explorer

The explorer agent starts exploring when notified by the operator through the GUI. It
uses a set of plans to achieve its objective to map out the available grid. It first checks
available directions at its current position/intersection and stores this information in a
beliefset. Based on available directions it chooses where to move and repeats step one at
the next intersection until the entire grid is traversed. In addition to mapping it detects
items to collect and notifies the collector agent during the exploration. The information
obtained is continuously passed on to the GUI agent so that is can be presented to the
operator. An overview of the explorer agent is shown in Figure 25.

Figure 25: Explorer Agent overview

45

7.1 Agents 7 SYSTEM DEVELOPMENT

7.1.2 Collector

After being activated by the explorer, the collector agent first determines the shortest
route to the item that is to be collected, then it moves to the item. The item is col-
lected and a new shortest route to the sorter is determined before moving to deliver the
item. After depositing the item the collector either repeats this sequence for next object
to be collected or waits for a new notification from the explorer with item to collect.
The GUI agent is continuously given information representing location and status of
collection.

Figure 26: Collector Agent overview

46

7.1 Agents 7 SYSTEM DEVELOPMENT

7.1.3 Sorter

The Collector notifies the Sorter agent when a new object is ready to be sorted. The
sorter then checks the object’s color and queries its beliefset to see if the color already
has a tray. If it has, the object gets placed in the same tray as the other objects of the
same color, if not the object is put in to a new tray. The sorter also notifies the GUI
agent that the object is sorted as displayed in Figure 27.

Figure 27: Sorter Agent overview

47

7.1 Agents 7 SYSTEM DEVELOPMENT

7.1.4 GUI Agent

The GUI Agent is responsible for handling communication with the external java graphi-
cal user interface. It handles events from the other agents and has plans for updating the
GUI accordingly to the information received in these events. It also reacts to input from
the GUI, and forwards the information to the relevant agents. Figure 28 and Figure 29
illustrate the workings of the GUI agent.

Figure 28: External communication from JACK to the GUI

48

7.1 Agents 7 SYSTEM DEVELOPMENT

Figure 29: External communication from GUI to JACK

7.1.5 Coordination Agent

The Coordinator Agent is responsible for keeping track of the robots position and avoids
deadlocks. The agent is also responsible for informing the GUI Agent about robot
movement, as seen in Figure 30.

Figure 30: Coordinator Agent overview

49

7.2 Inter-Agent Communication 7 SYSTEM DEVELOPMENT

7.2 Inter-Agent Communication

7.2.1 Interaction diagrams

To illustrate the interaction between agents, a set of sequence diagrams are created based
on the scenarios in Section 6.5. The diagrams are based on object-oriented sequence
diagrams [19].

Figure 31: Scenario S1 - Explore grid sequence diagram

Scenario S1 describes how the Explorer agent traverses the map as well as how and
when it interacts with other agents. The operator pushing a button in the GUI triggers
the exploring. The explorer starts out with checking which directions are drivable,
updates it beliefs about the grid, and determines which way to drive. It then queries
the coordinator agent, to asking if the selected line is not occupied, if the coordinator
agent gives a positive reply the explorer moves to next intersection, if not it queries the
coordinator until he is allowed to move till the requested destination. This is done each
time the explorer comes to a new intersection, until the whole map is explored. The
explorer also checks the line color when traveling over the lines, if a color other than
yellow is found, it sends an event to the collector, informing that there is either a object
located at the line, or the sorter is located on the line, depending on the color.

50

7.2 Inter-Agent Communication 7 SYSTEM DEVELOPMENT

Figure 32: Scenario S2 - Collect Item sequence diagram

Scenario S2 illustrates how the Collector Agent pick up objects. When the Explorer
Agent located an object, it notifies the Collector, which then find the shortest path to
the object using an recursive algorithm. It then moves one step at the time, querying
the Coordinator to check that there is no obstacles or other robots in the chosen route.
When it arrives to its destination the robot picks up the object, and updates the GUI
with the information. It then moves to the sorter robot, which position is received from
the explorer when found. The collector then delivers the item, notifies the sorter that
the object is ready for sorting. When the object is delivered the collector queries its
beliefset to see if a new item is found and ready to be collected, if it is not, it waits until
a new object is found.

Figure 33: Scenario S3 - Sort Item sequence diagram

51

7.2 Inter-Agent Communication 7 SYSTEM DEVELOPMENT

Scenario S3 displays the workings of the sorter agent. When the Collector agent
delivers a new object, the sorter picks up the object, checks its color, and sorts it into
the corresponding tray. If a object of that color already has been sorted, the agent finds
the tray number from its beliefset, if not it adds the color to the beliefset with a new
tray number. It also updates the GUI, with the new tray, and number of objects in that
tray.

Figure 34: Scenario S4 - Request to move sequence diagram

Scenario S4 describes in detail how the robot controlling agents communicate with
the coordinator agent. When one of the robots wants to move, they have to ask the
coordinator agent if they can move to that location, this is done to avoid collisions. If
there currently is an other robot at that location, the coordinator declines the request,
and the agent that made the request has to wait or find an other route to its destination.
If the robot is allowed to move, it moves to the desired destination and sends a new
notification to the coordinator, with its updates position. The coordinator forwards this
to the GUI agent, which updates the GUI.

52

7.2 Inter-Agent Communication 7 SYSTEM DEVELOPMENT

Figure 35: Scenario S5 -Deathlock sequence diagram

Scenario S5 covers the deadlock scenario. In our system, we only have two robots,
which travels the map, and hence the Explorer is given priority when a deadlock occurs.
When this happens, as displayed in Figure 24, they both get declined to move by the
coordinator, however, when the Collector is declined three times, it generates a new
route, excluding the position which it is not allowed to move till, and the problem is
solved.

53

7.2 Inter-Agent Communication 7 SYSTEM DEVELOPMENT

7.2.2 Messages

This section will give a brief overview of how and what information the different agents
communicate to each other and how the messages effect the other agents.

Explorer To Collector

The Explorer communicate two different events to the Collector, the first and most
obvious event is sent every time the Explorer locates a new object that needs to be
collected. Also, since the Sorter position is not initially known, the Explorer needs to
inform the Collector when he has found the Sorters location.

Message:doCollect

Description A message event notifying the Collector that there a new object to col-
lect.

Sender Explorer agent

Receiver Collector agent

Information The line where the object is located

Table 2: New object to collect

Message:doRegisterSorterPos

Description A message event informing the Collector where the Sorter is located.

Sender Explorer agent

Receiver Collector agent

Information The position of the Sorter

Table 3: Sorter position information

Collector to Sorter

Every time the Collector delivers a item to the Sorter, he needs to notify the Sorter that
a new object is ready to be sorted.

Message:doItemDelivered

Description A message event informing the Sorter that there is a new object available
to sort.

Sender Collector agent

Receiver Sorter agent

Information nothing

Table 4: New item delivered to Sorter.

54

7.2 Inter-Agent Communication 7 SYSTEM DEVELOPMENT

Explorer and Collector To Coordinator

Both the Explorer and the Collector needs to cooperate with the Coordinator agent to
be able to move around the grid. This is to ensure that they do not crash into each
other. Before they can move to a new position, they request to move, and if they get
approval, they send a new message to the Coordinator with their updates position. This
is done each time they move on the grid.

Message:doRequestToMove

Description A message event used to request to move to a new position.

Sender Explorer or Collector agent

Receiver Coordinator agent

Information Robot name, current position and requested position

Table 5: Request to move event

Message:doUpdateRobotPos

Description A message event informing the coordinator that the sending agent has
moved to a new position

Sender Exporer or Collector Agent

Receiver Coordinator agent

Information Robot name, robot position and robot heading.

Table 6: Update robot position event

Coordinator to Explorer and Collector

The Coordinator needs to reply to the Explorer and Collector each time they request to
move, with either yes, you can move, or no, you can not move to that position at this
time.

Message:doReplyMoveToReq

Description A message event replying to a move event from either the Explorer or
Collector agent.

Sender Coordinator agent

Receiver Explorer or Collector agent

Information an answer to the request, either yes or no.

Table 7: Reply from Coordinator to move request.

55

7.3 Robot development 7 SYSTEM DEVELOPMENT

7.3 Robot development

The Lego implementation was not a priority during the development due to the lim-
itations discovered relatively early in the process. Because of this the only fully im-
plemented robot code is for the explorer robot. The collector robots code is partially
implemented.

7.3.1 Communication protocol

Bluetooth is used to send commands between the robot and system. Due to the lim-
itations of Bluetooth technology such as high latency and low bandwidth we want to
keep the communication protocol as simple as possible. The server sends its command
in the form of three bytes, the first byte is the command it self, and the two following
bytes are optional parameters. The robots reply is always 8 bytes which is enough to
accommodate the most advances replies needed. For the different robot commands there
are several cases to consider shown in tables 8, 9, 10.

Description Command Reply

Battery voltage request [0,0,0] [millivoltage,0,0,0,0,0,0,0]

Request to travel a given dis-
tance with or without check-
ing the traveled lines color

[1, distance, boolean check-
color]

[linecolor, 0,0,0,0,0,0,0]

Request to turn given degrees [2,degrees,0] [0,0,0,0,0,0,0,0]

read the color at current posi-
tion

[3,0,0] [color, 0,0,0,0,0,0,0]

Perform sweep at current lo-
cation to discover available di-
rections

[4,0,0] [boolean straight, boolean
left, boolean backwards,
boolean right, 0, 0, 0, 0]

Disconnect bluetooth [5,0,0] [255, 255, 255, 255, 255, 255,
255, 255]

Table 8: Explorer robot communication protocol

56

7.3 Robot development 7 SYSTEM DEVELOPMENT

Description Command Reply

Battery voltage request [0,0,0] [millivoltage,0,0,0,0,0,0,0]

Request to travel a given dis-
tance with or without check-
ing the traveled lines color

[1, distance, boolean check-
color]

[linecolor, 0,0,0,0,0,0,0]

Request to turn given degrees [2,degrees,0] [0,0,0,0,0,0,0,0]

read the color at current posi-
tion

[3,0,0] [color, 0,0,0,0,0,0,0]

Perform sweep at current lo-
cation to discover available di-
rections

[4,0,0] [boolean straight, boolean
left, boolean backwards,
boolean right, 0, 0, 0, 0]

Disconnect bluetooth [5,0,0] [255, 255, 255, 255, 255, 255,
255, 255]

Grab object [6,0,0] [0, 0, 0, 0, 0, 0, 0, 0]

Release object [7,0,0] [0, 0, 0, 0, 0, 0, 0, 0]

Table 9: Collector robot communication protocol

Description Command Reply

Battery voltage request [0,0,0] [millivoltage,0,0,0,0,0,0,0]

Move object to tray position [1, traynumber, 0] [0, 0, 0, 0, 0, 0, 0, 0]

Read the color of object [2,0,0] [color, 0,0,0,0,0,0,0]

Grab object [3,0,0] [0, 0, 0, 0, 0, 0, 0, 0]

Release object [4,0,0] [0, 0, 0, 0, 0, 0, 0, 0]

Disconnect bluetooth [5,0,0] [255, 255, 255, 255, 255, 255,
255, 255]

Table 10: Sorter robot communication protocol

57

7.3 Robot development 7 SYSTEM DEVELOPMENT

7.3.2 Internal robot code

The code located on the robot NXT brick is intended to provide as much functionality
as possible with minimal amount of data send using Bluetooth. At first, the robot waits
for a Bluetooth connection. Once a connection is made, it waits to receive its three-byte
command. Once the command is received, the robot moves or turns, if necessary, and
then sends back its eight-byte reply one byte at a time. The robot then waits for its
next command. If the robot is commanded to terminate its Bluetooth connection, the
robot sends back its acknowledgement, disconnects, and its program terminates on the
brick.

The traveling is implemented using a PID algorithm [20] which ensures that the robot
stays on the line by constantly reading light values and readjusting accordingly. The
code for this is shown as follows:

private void PIDmove(int length) {

int lightValue;

int turn;

int powerA;

int error;

int powerC;

int lastError = 0;

int derivative;

resetTacho();

while (getMM(motorA.getTachoCount()) < length) {

lightValue = colorLightSensor.readValue();

error = lightValue - offset;

derivative = error - lastError;

turn = (kp * error) + (kd * derivative);

turn = turn / 100;

powerA = tp - turn;

powerC = tp + turn;

if (powerA > 0) {

motorA.setPower(powerA);

motorA.forward();

} else {

powerA = powerA * (-1);

motorA.setPower(powerA);

motorA.backward();

}

if (powerC > 0) {

motorC.setPower(powerC);

motorC.forward();

} else {

powerC = powerC * (-1);

motorC.setPower(powerC);

58

7.3 Robot development 7 SYSTEM DEVELOPMENT

motorC.backward();

}

lastError = error;

}

motorA.stop();

motorC.stop();

}

7.3.3 System side code

On the system side a communication class is developed for each of the robots interfac-
ing between the robots and the agents. These classes are responsible for sending the
commands one byte at a time to the robots and await replies. Once a reply starts being
sent, the communication classes read each byte, one at a time, placing them in eight-byte
arrays for interpretation before the results in turn are sent to the agents. The commu-
nication classes must implement interfaces defining required functionality for the given
robot.

59

7.4 GUI implementation 7 SYSTEM DEVELOPMENT

7.4 GUI implementation

The graphical user interface displays state information of the system with explored parts
of the grid, items discovered and sorted. The different robots are also shown together
with their corresponding movements and headings. The GUI implementation does not
provide much functionality for operator input/influence as the implementation of the
agent system is based on a structured environment due to time and LEGO Mindstorms
limitations. Currently the only influence an operator has is to initialize the connections
between the agents and the robots and start the system with a ”Start” button. Fig-
ure 36 shows what the different components represent. A screenshot of the GUI with
connections initialized is shown in Figure 37.

Figure 36: Gui components and what they represent.

Figure 37: Gui after connections have been initialized.

60

7.4 GUI implementation 7 SYSTEM DEVELOPMENT

After initialization of connections the operator can start the system by pressing the start
button. Figure 38 shows the system during a normal run.

Figure 38: Gui some time after the start command is given.

61

7.4 GUI implementation 7 SYSTEM DEVELOPMENT

While the explorer has traversed the entire grid the collector has collected items and
delivered them to be sorted. In Figure 39 the entire grid is explored and a set of items
have been collected and sorted by color.

Figure 39: Gui after complete exploration (all objects not yet collected and sorted).

62

8 RESULTS

8 Results

This chapter presents the final solution with corresponding implementations, an overview
of challenges met during the thesis work and an evaluation of the issues presented in
Section 1.2 relative to the final implemented solution.

8.1 Final solution

The implementation goals set for this thesis where achieved with exception of a complete
LEGO Mindstorms specific implementation of the defined interfaces. The Lego imple-
mentation was not a priority during the development due to the limitations discovered
relatively early in the process. This lead to the final solution of implementing a set
of java classes (mocks) [21] representing the robots and simulating replies and sensor
readings. The downside of this approach is the obvious structured environment in which
the agents now operate opposed to the desired unstructured and dynamic environment
where the benefits of intelligent agents would be more visible.

8.1.1 LEGO robots and code

Three LEGO Mindstorms robots built according to TriBot [22] and RobotArm [23]
schematics with modifications to meet our specific needs. To enable java programming
on the Mindstorms intelligent brick the firmware was replaced with LeJOS [15]. Code
for continuously receiving user commands and replying with results is implemented for
the robots to run on the intelligent brick.

8.1.2 GUI and external java code

A graphical user interface is developed for the operator to interact with the robots. The
operator can give input and observe a graphical representation of the robots, sensor
readings and results during runtime. The GUI uses both color and placement to direct
operator focus towards critical information. The GUI is shown in Figure 40.

Most of the algorithms used are implemented in pure Java, and used as external classes
by the agents.

63

8.1 Final solution 8 RESULTS

Figure 40: Graphical User Interface

8.1.3 Agent system

A total of 5 agents with respective views, beliefsets, plans and events where implemented,
where three represent robots, one interacts with the GUI and the last agent is responsible
for robot movement coordination:

• Explorer Agent

• Collector Agent

• Sorter Agent

• GUI Agent

• Coordinator Agent

64

8.2 Challenges 8 RESULTS

8.2 Challenges

During the thesis work we have encountered several challenges both practical and tech-
nical. A summary of these challenges and how they where solved is presented in this
section.

• JACK IDE
The JACK IDE has several shortcoming compared to other well known IDEs such
as Microsoft Visual Studio, Eclipse and InteliJ. The most apparent being the lack
of syntax highlighting, syntax error correction/help and code completion. Short-
comings of this kind in general result in slower development as well as unnecessary
frustration as we are used to these features in all other IDEs. No other solution to
this problem except just accepting the shortcomings and working with them.

• JACK compiler
The JACK compiler does not support any Java language features above JDK 1.4
which includes java generics, simplified for statements, optional method arguments
etc. Using these language features in plain Java files and compiling these files
separately with javac solved this.

• LEGO Mindstorms
Generally robotics is a field with many challenges and with Mindstorms being a
simple programmable robotics kit the weaknesses are more severe and not eas-
ily handled. The weaknesses we have encountered include non-accurate sensor
readings, limited computational power and poor communication support. These
limitations resulted in excessive time usage and thus we where required to give
this part of the development less priority especially because this was not the main
focus of the thesis. In addition to less priority we where forced to adjust the de-
sired complexity in our implementation goal. Instead of having an unstructured
environment as intended a structured grid solution was adopted and implemented.

65

8.3 Hypotheses 8 RESULTS

8.3 Hypotheses

1. Intelligent agents are a suitable platform for modeling and development
of interacting robots

We have found that intelligent agents are a very good software solution for modeling and
development of interacting robots, which also is one of its main applications of agents.
Especially the JACK intelligent agent framework, where the support for external robot
interfacing is both well documented and supported. As shown in Figure 41, the actual
communication is done between the agents and not the robots them selves, they only
communicate with their respective agent. This ensures that we can utilize all features
that agents provides, such as event driven communication and event handling, which
makes applications both robust and reliable. Even though we had no prior experience
with the approach, agent development was intuitive and efficient when we got the hang
of the concepts involved.

Based on our results we believe that hypothesis 1 is true, but further research and
comparison with other systems should be done to verify that intelligent agents are a
better approach than other systems.

Figure 41: Robot communication done through use of agents

66

8.3 Hypotheses 8 RESULTS

2. In a multi - agent systems, robot interaction can be modeled as interacting
agents.

Our design supports that robot interaction can be modeled as interacting agents. As
mentioned in Section 6.3, we did add two extra agents to the design, one to interact
with the GUI and one to manage coordination between the robots. This does however
not interfere with the hypothesis. Having a one to one robot/agent relation gives a very
intuitive way of implementing functionality for both interpreting percepts and executing
actions. It also gives a straightforward design that can be intrepid without extended
knowledge of intelligent agents.

67

9 CONCLUSION

9 Conclusion

The project aim was to investigate if multi agent systems can help us to improve robot
coordination and coordination. In order to achieve this, we implemented a multi agent
system designed for controlling a set of Lego Mindstorms robots, Lego specific code for
realizing the needed robot functionalities as well as classes for interfacing between the
different parts, GUI, agent solution and robots. The solution is based on three Lego
robots operation on a line-based grid. One robot is set to explore the grid, finding
object, and sharing this information (beliefs) with a second robot that is responsible for
collecting and delivering these objects to a robot that sorts these object according to
color.

Two issues of research where formulated; ”How can agent technology help us improve
robot coordination and communication problems?”and ”Given an more harsh and un-
structured environment, how would our developed solution scale?”

Although the operational environment of the robots was simplified from unstructured
to a structured environment and implemented as more of a simulator rather than actual
robots working, the solution still leaves room for investigation of the research issues.
A team of robots is given a common goal where they all need to perform different
roles to achieve the desired results. The robots must cooperate and coordinate amongst
themselves while constantly updating and reporting results to an operator. Despite the
structured nature of the environment and the high level of autonomy implemented to
communication between the robots is an important aspect.

The agent system is capable of controlling the robots and running the scenario for
any given grid map using our simulated environment. The agents act according to
sensor data and information shared between the agents with some additional operator
input. Our test runs show that the agents are able to handle all the defined scenarios
regardless of map layout and report accurate results through the user interface. Given
the good performance achieved for our specified scenarios, it is important to point out
the structured nature of the operational environment as being an important factor.
This being the case our experience with the use of software agents to realize operator
- multi robot machine systems has been very positive and we believe it to be a good
approach.

68

10 FURTHER WORK

10 Further Work

The problem definition we started out with turned out to be to excessive and complex
due to time limitations. We ended up making several simplifications to the initial im-
plementation goal. The main simplification was degrading from an unstructured and
dynamic environment to a structured simulated one. Even though alot of work was
put into the physical robots we also had to abandon this part of the project unfinished
allowing us to focus on the more important aspects of the thesis.

Further work on this project will be to finalize the actual robot implementation and
have the physical robots working together with the agent solution as initially intended.
This would require refinement of algorithms partly implemented for the different types
of sensor input analysis and navigation. The next challenge is to change the operational
environment and have the robots function without structured and predictable surround-
ings. Applying these environmental changes would lead to a greater need for operator
involvement in context of critical situations. This involvement will include both input
and decision making enabling us to utilize the agents capabilities even better. For ex-
ample by having the agents provide the operator with a set of suggested solutions for a
problem at hand relieving the operators workload.

We find the topic of agent systems very interesting and we would like to spend more time
investigating it further both practical and theoretical. Although the agent community
is rather small it will be exiting to follow future development within this field.

69

A JACK INSTALLATION GUIDE

A JACK installation guide

The JACK framework is available for trial download at the aos group homepage [24].
After downloading the trial version install with the corresponding key you will receive
by email after registration.

After installing JACK the thesis project can be opened through the standard file ⇒
open project menu as shown in Figure 42.

Figure 42: Open project in JACK

To compile the program press Tools⇒ Compiler utility from the menu bar. The compiler
window is shown in Figure 43.

Figure 43: Compile project in JACK

70

A JACK INSTALLATION GUIDE

When the program is compiled successfully it can be run from the ”Run Application”
tab in the Compiler Utility window as shown in Figure 44.

Figure 44: Run compiled project in JACK

For more details see the JACK Development Environment Manual [25].

71

B USER GUIDE

B User Guide

The system requirements for running the application are Java 1.5 or newer. There is
no need to install the JACK framework, as the jack.jar is included on the cd. Remem-
ber to have the jack.jar file in the same folder as mapgather.jar for the application to
work.

The jar file(mapgather.jar) for running the program is located on the attached CD. After
starting the program the connections to the robots need to be established, this is done by
pressing the ”Initialize Connections” button in the top left corner of the GUI. With the
connections up press the ”Start” button in the bottom left corner to run the collection
scenario. The buttons are shown in Figure 45

Figure 45: Buttons for running the program

72

REFERENCES REFERENCES

References

[1] Elin Marie Kristensen. Agent technology. Master’s thesis, Norwegian University of
Science and Technology, 2005.

[2] Statoil ASA. Statoil in brief. http://www.statoil.com/en/About/InBrief/

Pages/default.aspx.

[3] Hege J. Tunstad. Munin, the autonomous submarine. http://www.forskning.no/
artikler/2008/mars/1205410155.15.

[4] Einar Landre. Autonomous systems & technologies, research and competence strat-
egy, 2010.

[5] AOS Group. About aos group. http://aosgrp.com/.

[6] Lego. Lego mindstorms. http://mindstorms.lego.com/en-us/Overview/

NXTreme.aspx.

[7] Raymond S.T. Lee. Fuzzy-Neuro Approach to Agent Applications. Springer, http:
//www.springeronline.com, 1st, edition, 2006.

[8] Lin Padgham and Michael Winikoff. Developing intelligent agent systems - a prac-
tical guide. WILEY, http://www.wileyeurope.com, 1st, edition, 2005.

[9] Michael E. Bratman. Intention, Plans, and Practical Reason. CSLI Publications,
http://http://csli-publications.stanford.edu/, 1st, edition, 1999.

[10] M. Wooldridge and N. Jennings. Intelligent agents: theory and practice. The
Knowledge Engineering Review, 1995.

[11] J. Postel. User datagram protocol. http://tools.ietf.org/html/rfc768.

[12] Lise Engmo and Lene Hallen. Software agents applied in oil production. Master’s
thesis, Norwegian University of Science and Technology, 2007.

[13] Oracle. What is java? http://java.com/en/download/whatis_java.jsp.

[14] Jetbrains. About intellij idea. http://www.jetbrains.com/idea/.

[15] LeJOS. Lejos - java for lego mindstorms introduction. http://lejos.

sourceforge.net/nxt/nxj/tutorial/Preliminaries/Intro.htm.

[16] LabVIEW. About labview. http://www.ni.com/labview/.

[17] Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun. Monte carlo
localization: Efficient position estimation for mobile robots. Proceedings of the
Sixteenth National Conference on Artificial Intelligence, 1999.

[18] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust monte
carlo localization for mobile robots. Artificial Intelligence, 2001.

73

http://www.statoil.com/en/About/InBrief/Pages/default.aspx
http://www.statoil.com/en/About/InBrief/Pages/default.aspx
http://www.forskning.no/artikler/2008/mars/1205410155.15
http://www.forskning.no/artikler/2008/mars/1205410155.15
http://aosgrp.com/
http://mindstorms.lego.com/en-us/Overview/NXTreme.aspx
http://mindstorms.lego.com/en-us/Overview/NXTreme.aspx
http://www.springeronline.com
http://www.springeronline.com
http://www.wileyeurope.com
http://http://csli-publications.stanford.edu/
http://tools.ietf.org/html/rfc768
http://java.com/en/download/whatis_java.jsp
http://www.jetbrains.com/idea/
http://lejos.sourceforge.net/nxt/nxj/tutorial/Preliminaries/Intro.htm
http://lejos.sourceforge.net/nxt/nxj/tutorial/Preliminaries/Intro.htm
http://www.ni.com/labview/

REFERENCES REFERENCES

[19] IBM. Uml basics: The sequence diagram. http://www.ibm.com/developerworks/
rational/library/3101.html.

[20] K.H Ang, G.C.Y. Chong, and Y Li. Pid control system analysis, design, and tech-
nology. IEEE Transactions on Control Systems Technology 13, 2005.

[21] Alexander Chaffee and William Pietri. Unit testing with mock objects. http:

//www.ibm.com/developerworks/library/j-mocktest/index.html.

[22] Ro-botica.com. Tribot building instructions. http://ro-botica.com/img/NXT/

Build-Tribot.pdf.

[23] Active-Robots.com. Robotarm building instructions. http://www.active-robots.
com/products/mindstorms4schools/building-instructions/Build-RoboArm.

pdf.

[24] AOS Group. Jack dowload site. http://aosgrp.com/products/jack/index.html.

[25] AOS Group. Jack development environment manual. http://www.aosgrp.com/

documentation/jack/JDE_Manual_WEB/index.html.

74

http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/library/j-mocktest/index.html
http://www.ibm.com/developerworks/library/j-mocktest/index.html
http://ro-botica.com/img/NXT/Build-Tribot.pdf
http://ro-botica.com/img/NXT/Build-Tribot.pdf
http://www.active-robots.com/products/mindstorms4schools/building-instructions/Build-RoboArm.pdf
http://www.active-robots.com/products/mindstorms4schools/building-instructions/Build-RoboArm.pdf
http://www.active-robots.com/products/mindstorms4schools/building-instructions/Build-RoboArm.pdf
http://aosgrp.com/products/jack/index.html
http://www.aosgrp.com/documentation/jack/JDE_Manual_WEB/index.html
http://www.aosgrp.com/documentation/jack/JDE_Manual_WEB/index.html

	Introduction
	Motivation
	Problem definition
	Report outline

	Software Agents
	Belief-Desire-Intention model
	Why are agents useful?

	Agent Communication
	Events
	Inter-agent Events
	Local communication
	Remote communication
	Message synchronization

	Shared resources

	Methodology and tools
	Prometheus methodology
	Why a new agent methodology?
	The three phases

	JACK Intelligent Agents
	JDE
	DCI
	JACOB
	JACK agent language
	Agent:
	Event
	Plan
	Capability
	Beliefset
	View

	Java
	IntelliJ IDEA
	LeJOS, Java for Lego Mindstorms
	LEGO Mindstorms

	Application
	Scenario
	First approach
	Monte Carlo Localization
	First approach development
	First approach results

	Final approach

	System Design
	System specification
	Architectural design
	Detailed design
	System - Robot communication design
	Scenarios

	System Development
	Agents
	Explorer
	Collector
	Sorter
	GUI Agent
	Coordination Agent

	Inter-Agent Communication
	Interaction diagrams
	Messages

	Robot development
	Communication protocol
	Internal robot code
	System side code

	GUI implementation

	Results
	Final solution
	LEGO robots and code
	GUI and external java code
	Agent system

	Challenges
	Hypotheses

	Conclusion
	Further Work
	Appendices
	JACK installation guide
	User Guide

