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Abstract

This report investigates signalling in reaction kinetic networks. The main
topic is signalling between a substance being controlled by another substance
and how this can be related to control theory.

Different types of so-called natural controllers are compared and certain
properties are investigated. Natural controllers are models on how a cat-
alyst enzyme controls, for example the concentration, of a substance. There
are sixteen different combinations of signalling between these substances,
however it is focused on the eight different controllers with negative feedback.

These building blocks have been shown to be accurate models of several
systems in nature including, but not limited to, blood glucose, calcium up-
take in the human body and nitrate concentrations in plants.

Among the properties that are investigated is pulsation, oscillation and the
addition of dynamical variables. This project is a supplement to the research
of Peter Ruoff, Tormod Drengstig and others at the University of Stavanger.
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Chapter 1

Introduction

1.1 Report outline

Chapter 1 is an introduction to the subject of biochemistry and Hamilto-
nian systems and gives a brief introduction of the relevance towards control
systems.
Chapter 2 is an experimental chapter describing a model made for simu-
lating a system with Hamiltonian oscillations and utilising it to investigate
properties of the system.
Chapter 3 is an experimental chapter comparing natural controllers to each
other using Simulink (www.mathworks.com).
Chapter 4 consists of discussion and conclusion.

1.2 Motivation

Several systems in nature have been found to use negative feedback and
integral control. These include, but are not limited to:

• Calcium homeostasis in the human body[10].

• Temperature compensation in circadian clocks, more commonly known
as biological clocks[13].

• Temperature compensation in yeast[14].

• Hormone secretion in humans[7].
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1.3 Introduction to physical chemistry

• Bacterial chemotaxis[15].

However, there is not much knowledge about what the systems are made
up of. The negative feedback loops in biology are suggested to consist of the
building blocks of natural controllers[5], explained in 1.5.

1.3 Introduction to physical chemistry

1.3.1 Substances, catalysts, substrates and enzymes

The work in this report focuses on a substance A which is controlled by a
catalyst, the enzyme Eadapt. An example substance can be the amount of
calcium in the body or blood glucose. A catalyst is a substance that increases
the reaction rate while not being consumed in the process[2]. An example of
a catalyst is insulin which regulates carbohydrate and fat metabolism in the
human body. The enzyme Eadapt, which is central in this report, controls the
flow into or out of A. This is what is called enzyme kinetics in biochemistry.
The initial substance is called the substrate, the catalyst is the enzyme, the
end substance is called the product and the intermediate binding between the
substrate and the enzyme is called the substrate-enzyme complex. See figure
1.1. Note that concentrations are not written in brackets in this report, in
order to simplify the notation.

Figure 1.1: Enzyme kinetics model

Here k1, k2 and k3 are the reaction velocities between the different stages.
The reaction velocity rate constant here named k2 is often called k−1 in
biochemistry. The flow is called flux, often labelled ’J’. It is measured as the
amount flowing through an area per time unit.
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1.3 Introduction to physical chemistry

1.3.2 Substrate and enzyme saturation

A theory of the binding between enzyme and substrate is the ”lock and key”
concept. The enzyme has one slot in which the substrate fits and it is then
locked into place, forming the enzyme-substrate complex [2]. The enzyme
can only bind a finite amount of the substance simultaneously.

1.3.3 Inhibition

An inhibitor reduces the efficiency of an enzyme catalyst[11]. Depending on
which type of inhibitor is used, the inhibition substance is either;

• Competing with the substrate forming an enzyme-inhibitor complex.

• Binding to the enzyme-substrate complex preventing the product from
being formed.

• A combination of the two above.

These types of inhibition are called competitive, uncompetitive and noncom-
petitive, respectively, and result in a reduction of the amount of product
being formed, by lowering the overall reaction velocity[2]. The inhibition-
enzyme complex is inert and like the catalyst is not consumed in the reaction.

Figure 1.2: Model of competitive inhibition

3



1.3 Introduction to physical chemistry

Figure 1.2 shows an example of inhibition. In this case, the enzyme also
binds with the inhibitor and competes with the substrate-enzyme complex.
The enzyme and inhibitor form a enzyme-inhibitor complex in a reversible
process, meaning that the complex returns to the separate states.

1.3.4 Reaction orders

The order of a reaction is determined by how the reaction rates are dependent
of the substance concentration. The reaction order from equation (1.1)

S + E−→Products (1.1)

can be extracted from the rate law as in Eq. (1.2).

−dS

dt
= k·Sα·Eβ (1.2)

where S and E are the concentrations of the substances and k is the reaction
rate. The exponents α and β are the reaction orders and their sum determines
the reaction order [11].

A zero order reaction is the most basic form, where the reaction velocity
is independent of the concentration of the substance. In other words, the
sum of α and β is 0.

J = k (1.3)

where J is the flux and k is the rate flow constant. In the case of a zero order
reaction as in Eq. 1.3, they are equal. A first order reaction is a reaction
where the flux is proportional to either of the substances.

J =S·k (1.4)

J =E·k (1.5)

where S and E are the concentrations of the substances. Second order re-
actions can be either of the substances squared or both multiplied by each
other.

J =S2·k (1.6)

J =E2·k (1.7)

J =S·E·k (1.8)

4



1.3 Introduction to physical chemistry

1.3.5 Max reaction velocity

If the amount of enzyme is kept constant while the substrate concentration
is gradually increased, the first order reaction velocity will increase until it
reaches a maximum, VMAX . This is the point where every enzyme molecule
is used to bind substrate. Beyond this point, an increase in the substrate
concentration will not increase the reaction velocity[2]. This is shown in
figure 1.3. The maximum velocity can be calculated with equation (1.9).

VMAX = kcat·E0 (1.9)

where kcat is the catalyst reaction velocity and E0 is the initial enzyme con-
centration.

Figure 1.3: Reaction velocity graph, from wikipedia article on Michaelis
Menten kinetics(http://en.wikipedia.org/wiki/Michaelis-Menten)

1.3.6 Chemical equilibrium and steady state in chem-
istry

Chemical equilibrium is a balanced state where usually the forward reaction
proceeds at the same rate as the reverse reaction. There is no net change in
the reaction rates. Steady state on the other hand is when the state variables
are constant while there is a flow through the system. In other words, when

5



1.4 Michaelis-Menten Kinetics

there is no change in the output with time. Unlike the equilibrium state, the
net reaction rate can be different from zero.

1.4 Michaelis-Menten Kinetics

The Michaelis-Menten constant is defined as the substrate concentration at
half the maximum velocity, see Fig. 1.3. Leonor Michaelis and Maud Menten
developed the expression seen in equation (1.10) for the reaction velocity in
terms of this constant and the substrate concentration [2].

V =
VMAX ·S
KM + S

(1.10)

where V is the velocity, S is the substrate concentration, VMAX is the max-
imum reaction velocity and KM is the Michaelis-Menten constant for the
enzyme in question.

The numerical value of the Michaelis-Menten constant provides informa-
tion about the enzyme; a small KM indicates that the enzyme only requires
a small amount of substrate to become saturated (see section 1.3.2), while
a large KM indicates the need for a high concentration of the substrate in
order to achieve the maximum reaction velocity.

A reaction can be approximated to be of order zero if the Michaelis-
Menten constant is assumed to be equal to zero. In this case, the substance
S in the denominator is cancelled by the numerator as seen in equation (1.11).

V =
VMAX ·S

S
(1.11)

The reaction velocity is in this case equal to VMAX .
The following part is an excerpt from an assignment in ”Reaction kinetic

modelling” which is a doctoral course in reaction kinetics at the University
of Stavanger taught by Peter Ruoff. There are two main approximations in
Michaelis-Menten kinetics, one is the steady state assumption and the other
is the rapid equilibrium assumption. The general model for Michaelis-Menten
kinetics is shown in figure 1.4.
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1.4 Michaelis-Menten Kinetics

Figure 1.4: Catalyst system

where S is the substrate, E is the catalyst and P is the product. As
one can tell from the rate equation, there is a reversible process between the
substance and the catalyst and the binding between the two. There is also an
irreversible process resulting in product and frees the enzyme to bind again.

The rate equations of the model are as shown in Eqs. (1.12) through
(1.15)

dS

dt
=− k1·S·E + k2·SE (1.12)

dP

dt
=k3·SE (1.13)

dSE

dt
=k1·E·S − (k2 + k3)·SE (1.14)

dE

dt
=− dSE

dt
(1.15)

The numerical value of the velocity of the product can be seen in Eq. (1.16).

Vnum = k3·SE (1.16)

if it is approximated with MM, it becomes as in Eq. (1.17).

VM =
V max·S
KM + S

(1.17)

where the maximum velocity is shown in equation (1.18).

Vmax = k3·(SE + P ) (1.18)

The KM is then replaced by the chosen approximation, either rapid equilib-
rium or steady state.
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1.4 Michaelis-Menten Kinetics

1.4.1 Rapid equilibrium assumption on KM

If rapid equilibrium is assumed the value of the Michaelis-Menten constant
is based on the assumption that the first part of the bonding of the substrate
and the catalyst happens very quickly, while the making of the product takes
a long time and can be neglected. See figure 1.5.

Figure 1.5: Rapid equilibrium assumption

Resulting in the following equation (1.19) for the Michaelis-Menten con-
stant.

KMre =
k2
k1

(1.19)

1.4.2 Steady state assumption on KM

The steady state assumption calculates the Michaelis-Menten constant based
on the assumption that the making of the product happens rapidly, while the
change in the substrate-enzyme complex [SE] is close to zero [9].

Figure 1.6: Steady state assumption

Resulting in equation (1.20) for the Michaelis-Menten constant.

KMss =
k2 + k3

k1
(1.20)

1.4.3 Recommended reading

Much of the introductory material in reaction chemistry is derived from the
book Physical Chemistry for the Biosciences [Chang,2005], chapter 9 and 10
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1.4 Michaelis-Menten Kinetics

is recommended reading for procuring a basic understanding of the concepts
for someone new to reaction kinetics.
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1.5 Introduction to natural controllers

1.5 Introduction to natural controllers

The natural controllers consist of sixteen types of combinations of signals
between a substrate and an enzyme. Eight of these are positive feedback
loops and therefore not interesting in this situation.

The remaining negative feedback controllers can be divided into two
groups based on the signalling between the substrate and enzyme. These
are used to explain the negative feedback systems that are found in nature.
The controllers are shown in figure 1.7.
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Figure 1.7: Natural controller overview chart

The enzyme in the inflow controllers either activate or inhibits the inflow
of the substrate. In controller 1 in figure 1.7, an increased amount of substrate
causes an increase in the inflow of the enzyme. This is because the inflow of
the enzyme is activated by the substrate. The increase in enzyme causes the
inflow of the substrate to decrease, because the enzyme inhibits the inflow
of the substrate. In this report, the inflow controllers are named upstream
controllers. Figure 1.8 shows an upstream activation controller type 1 with
a step in the substrate, while the enzyme is at a steady state. An increase
in the enzyme is seen before the substrate enters the steady state.
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Figure 1.8: Upstream controller example

In the outflow controllers, the enzyme either inhibits or activates the
outflow of the substrate. Controller 5 in figure 1.7 has the substrate activating
the inflow of the enzyme. An increase in the inflow of the substrate, also
causes an increase in the inflow of the enzyme. The increase in the inflow of
the enzyme causes an increase in the outflow of the substrate, because the
enzyme activates the outflow of the substrate. The outflow controllers are
named downstream controllers in this report. Figure 1.9 shows a downstream
activation type 1 controller with a step in the substrate, while the enzyme
is at a steady state. A decrease in the enzyme is seen before the substrate
enters the steady state.
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Figure 1.9: Downstream controller example

11



1.6 A control theory approximation for natural

1.6 A control theory approximation for nat-

ural

The control theory version of the kinetic reaction model describes the process
of the natural controller as a negative-feedback integral controller with a set-
point as the reference[15][10].

Figure 1.10: Integral controller with negative feedback [Ni et al. (2009)]

In figure 1.10, MV and CV stands for manipulated and controlled variable.
The set-point is y0, with error e and disturbance, or perturbation, u.

If the enzyme controls the flow rate of the substrate, the model can be
described as a liquid storage tank system controlled by valves. The substrate
concentration is then the amount of liquid in the tank and the enzyme is
controlling the flow into or out of the tank by controlling a valve either in
the inflow(upstream), or outflow (downstream)[3]. The perturbations , kin

pert

and kout
pert are disturbances in and out of the tank respectively. The reason

the outflow disturbance has a valve in it in Fig. 1.11 is because it is a first
order flow whereas the inflow disturbance is a zero order flow.
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1.6 A control theory approximation for natural

Figure 1.11: Natural controller tank equivalent

A zero order flow can be compared to a pump that pumps at a constant
rate independent of the substrate or enzyme. A first order flow is comparable
to a proportional valve. The max reaction velocity, Vmax is the value where
the valve is fully opened. Finally, a first order flow with Michaelis-Menten
kinetics can be compared to a controlled screw pump.
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1.7 Introduction to Hamiltonian systems

1.7 Introduction to Hamiltonian systems

Conservative non-linear oscillations

Oscillations are considered conservative when the total energy of the system
remains constant. Usually systems like the earths orbit around the sun or
other systems can be approximated to be conservative if the period of the
investigation is sufficiently short. The simplest form of a conservative system
is the motion of a material point on a straight line under the action of a force
depending on the distance only [1]. Formulated by Eq. (1.21).

x = f(x) (1.21)

where f(x) is a force and is the mechanical state of the system. One can
split equation(1.21) into two differential equations of the first order as seen
in Eqs. (1.22) and (1.23).

dx

dt
=y (1.22)

dy

dt
=f(x) (1.23)

Related to enzyme-substrate kinetics, dx
dt

is the change in concentration of

the substance A and dy
dt

is the change in concentration of the catalyst Eadapt.
The change in the phase plane is the change in y-position based on the

change in x-position and can therefore be written as in Eq. (1.24).

dy

dx
=

f(x)

y
(1.24)

and the velocity of the motion in this case is then as in Eq. (1.26).

ds

dt
=

√(dx
dt

)2
+
(dy
dt

)2
(1.25)

=
√

y2 + f(x)2 (1.26)

The change in the phase plane in equation (1.24) can be integrated in the
form seen in Eq. (1.27).
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1.7 Introduction to Hamiltonian systems

y2

2
+ V (x) = h (1.27)

where V (x) is such that V (x) = −f(x) and h is a constant of integration.
In this case, the equation describes the law of conservation of energy with
y2

2
= mx2

2
being the kinetic energy, V (x) being the work by the forces in

the system and h is the so-called energy constant or the total energy of the
system. If h is assigned, then to each value of h there is a whole curve,
y = Φ(x), containing an infinitive amount of states (x, y). This is called
the equi-energy curve. One of the properties of this integral curve is that
equation (1.27) is not altered if y is replaced by −y, therefore all curves of
this family is symmetric with respect to the x axis. Varying h a little will
result in another curve slightly displaced on the phase plane[1].

A ’ = k1 − k2 E
adapt

E
adapt

 ’ = k3 A − k4
k4 = 2
k3 = 1

k1 = 2
k2 = 1
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Figure 1.12: Displacement of curves in Hamiltonian system

This displacement can be seen in figure 1.12 which has been made in
pplane7, a Matlab(www.Mathworks.com) program by John C. Polking[12]
using the equations for the downstream activation type 1 controller.
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1.7 Introduction to Hamiltonian systems

Hamiltonian system

A Hamiltonian system is described dependent on energy only, not momen-
tum. It is used to describe more complicated conservative systems. The value
for the Hamiltonian, H, is the total energy of a closed system. Hamilton’s
function can be seen in Eq. (1.28).

H(p, q) = q̇ · p− L (1.28)

where q is the position, p is the moment, or impulse p = ∂L
∂q̇

and L is the
Lagrangian of the system. The Lagrangian is defined as the potential energy
of the system minus the kinetic energy, see Eq.(1.29). In an electrical system,
this can be the difference between magnetic and electrical energy[1].

L = T − V (1.29)

where T is the kinetic energy and V is the potential energy. Equation (1.28)
can be broken down into two first order differential equations, called Hamil-
ton’s equations. A Hamiltonian system is a system that can be described by
Hamilton’s equations[8]. These are seen in Eqs. (1.30) and (1.31).

dq

dt
=

∂H

∂p
(1.30)

dp

dt
= −∂H

∂q
(1.31)

Hamilton’s equations are invariant to transformations of the variables.
For the system in section 2.3, if Michaelis-Menten kinetics is assumed in

the outflow of the enzyme and the substrate it is possible to find a function
H(A,Eadapt) such that Eqs. (1.32) and (1.33) can be derived. Where A is the
substrate and Eadapt is the enzyme. The downstream activation controller
type 1 should therefore behave like a Hamiltonian system with harmonic
oscillations.

dA

dt
= − ∂H

∂Eadapt

(1.32)

dEadapt

dt
=

∂H

∂A
(1.33)
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Chapter 2

Investigating oscillations in
downstream activation
controller type 1

2.1 Implementation

A program is made in Matlab, in order to simulate the natural controllers in
figure 1.7 in section 1.5. This report focuses on outflow controller (5), here
named downstream activation type 1. In the program, it is possible to select
which controller(s) to simulate. The code below is used to set simulation
time,step length and absolute and relative tolerance for the solver.

7 %% Numerical solver variables, both Simulink and Matlab
8 int.SluttTid = 300;
9 int.MaxSteglengde = 0.001;

10 int.RelTol = 1e-12;
11 int.AbsTol = 1e-16;

It is also possible to set the initial conditions for the substrate and en-
zyme, the values for the different rate flows k1 . . . k6, the Michaelis constants
and choose whether the outflows should be of order zero, one or use the
Michaelis-Menten approximation. Furthermore it is possible to toggle dy-
namic variables on one or both of the substances and choose the initial con-
ditions of these, see the following Matlab code.
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2.2 Modelling

42 %% Downstream activation controller, type 1 (Inflow controller 1)
43 %Flow rates
44 v.k1 DownAct1 = 1.0;
45 v.k2 DownAct1 = 1.0;
46 v.k3 DownAct1 = 1.0;
47 v.k4 DownAct1 = 2.0;
48

49 %Toggle additional variables
50 o.a.DownAct1 = 0; % 'a' variable
51 o.e.DownAct1 = 0; % 'e' variable
52

53 %Flow rates, added variables
54 v.k5 DownAct1 =1.0; %k a
55 v.k6 DownAct1 = 2.0; %k e5
56

57 %Order of outstreams
58 o.DownAct1 Order k2 = 1; %0 = zero order,1 = first order, 2 = MM
59 o.DownAct1 Order k4 = 1; %0 = zero order,1 = first order, 2 = MM

There are several ODE (ordinary differential equation) solvers in Matlab.
Most commonly used is the ode45, which is the general purpose solver. If
the system is stiff however, this solver can take a lot of time finishing or even
crash. In this case ode15s can be used which is a ODE designed specifically to
solve stiff systems[12]. In this implementation, ode45 crashes if the dynamic
variable a is involved in the system and therefore ode15s is used.

213 %ODE solver
214 [tidsvec Ysim] = ode15s(@(t,y) Hamiltonian Diff Eq(y,v,o),int.Tspan,int.IC,int.options);

In the code above, Hamiltonian Diff Eq is the Matlab function containing
the differential equations for the ODE solver. The input of the function
contains the values for the different variables in the structure v and the
options in the o structure, the start and end time, the values for the variables
used in the differential equations and options enables the user to customise,
for example, relative and absolute tolerance of the solver.

2.2 Modelling

The system described in this section is a substrate A, which is controlled by
the enzyme Eadapt in turn controlled by another enzyme Eset. The outflow of
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2.3 Core oscillator

the substrate is activated by the enzyme, while the inflow of enzyme is acti-
vated by the substrate. This is therefore a downstream activation controller
of type 1. It has been shown that these types of systems can show harmonic
oscillations[6]. This chapter investigates these oscillations in the downstream
activation controller type 1.

The simulations are divided into 4 cases: case 1a, which is the core os-
cillator with no added dynamics, case 1b where the substrate has added
dynamics, case 1c where the enzyme has added dynamics and finally case 1d
where dynamics are added to both the substrate and the enzyme.

For the simulations, the flow rates are chosen to give a set-point at (2,2)
in the phase plane for A and Eadapt by using these values for the rate con-
stants; (k1 . . . k6) = (2.0, 1.0, 1.0, 2.0, 1.0, 5.0). Initial conditions are chosen
to be: (A,Eadapt, a, e) = (1.9, 1.51, 1.1, 1.8). The simulation time is set to
100 with step length 0.001 and finally the Michaelis-Menten constants are
set to: KMA = KME = KMa = 10−8. This setup was used consistently
unless otherwise is specified.

2.3 Case 1a - Core oscillator

Case 1a is the core oscillator. Figure 2.1 shows a sketch of the system with
A being the substrate and Eadapt being the enzyme. Note that the naming
convention in the figures is from the programming shown in section 2.1.
These variable names were used because it was desired to have the same
notation for the inflows and outflows in the program independent on the
type of controller. This way, k1 and k2 are always the inflow and outflow
of the substrate, while k3 and k4 are always the inflow and outflow of the
enzyme. In the equations, the descriptive names were used in order to be
more specific.
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2.3 Core oscillator

Figure 2.1: Model of case 1a, core oscillator

Using the principles of mass balance and assuming Michaelis-Menten ki-
netics, case 1a can be described with equations (2.1) and (2.2).

dA

dt
=kDown

pert − k
EDown

adapt

cat ·EDown
adapt ·

A

K
EDown

adapt

M + A
(2.1)

dEDown
adapt

dt
=kadapt·A− V Eset

max ·
EDown

adapt

KEset
M + EDown

adapt

(2.2)

where:

• A is the concentration of the substrate.

• kDown
pert is the perturbation rate flow of A, named k1 in the figure.

• k
EDown

adapt

cat is the outflow of A, named k2 in the figure.

• K
EDown

adapt

M is the Michaelis-Menten constant of A.

• EDown
adapt is the enzyme concentration.

• kadapt is the inflow of EDown
adapt , named k3 in the figure.

• V Eset
max is the outflow of EDown

adapt , named k4 in the figure.
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2.3 Core oscillator

• KEset
M is the Michaelis-Menten constant of EDown

adapt .

When KEset
M << EDown

adapt , the flow out of A is very close to Vmax and the
steady state value for A can be calculated by setting Eq. (2.2) equal to zero,
as shown in equation (2.3). This is comparable to the set-point in control
theory and is therefore named Aset. This is the desired concentration of A,
similar to the reference of a negative feedback loop.

Aset =
V Eset
max

kadapt
(2.3)

If the Michaelis-Menten constant of A can be neglected as well (K
EDown

adapt

M <<
A), equation (2.1) can be written as:

Ȧ = kDown
pert − k

EDown
adapt

cat ·EDown
adapt (2.4)

Finding the derivative of equation (2.4) is shown in Eq. (2.5).

Ä = −k
EDown

adapt

cat · ˙EDown
adapt (2.5)

Inserting equation (2.2) while KEset
M << EDown

adapt into equation (2.5) gives:

Ä = −k
EDown

adapt

cat ·
(
kadapt·A− V Eset

max

)
(2.6)

which becomes as in Eq. (2.7).

Ä+ k
EDown

adapt

cat ·kadapt·A = k
EDown

adapt

cat ·V Eset
max (2.7)

dividing by k
EDown

adapt

cat ·kadapt gives Eq. (2.8).

Ä

k
EDown

adapt

cat ·kadapt
+ A =

V Eset
max

kadapt
(2.8)

which is the same as the set-point for A found in equation (2.3). This shows
that if the degradation of A and Eadapt is of zero order, the concentration will
have undamped oscillations around Aset with period as shown in Eq. (2.9)[6].

P =
2 · π√

kadapt · k
EDown

adapt

cat

(2.9)
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2.3 Core oscillator

2.3.1 Control theory equivalents

In order to show the resemblance to control theory, Eq. (2.2) is rewritten to
a form similar to that of an integral controller. Using the assumption that
KEset

M << EDown
adapt , Eq. (2.10) can be derived.

dEDown
adapt

dt
= −kadapt·

(V Eset
max

kadapt
− A

)
(2.10)

where V
Eset
max

kadapt
can be said to be the set-point of A, which is the output. The

system can hence be described as a integral control system with negative
feedback. Starting with the equation for a PI controller[4];

u(t) = Kp · e(t)−
Kp

Ti

∫ t

o

e(t)dt (2.11)

where u(t) is the manipulated variable, Kp is the gain, Ti is the integral
time and e(t) is the error between the reference and the output. Finding the
derivative of Eq. (2.11) results in Eq. (2.12).

˙u(t) = Kp · ˙e(t)− Kp

Ti

· e(t) (2.12)

Assuming the proportional term equal to zero and calculating the error,
e(t) = r − y(t), where r is the reference and y is the output, results in Eq.
(2.13).

du

dt
= −Kp

Ti

·(r − y(t)) (2.13)

The names of the controller variables and their respective biochemical equiv-
alents are listed below.

• u = Eadapt

• Kp

Ti
= kadapt

• r = V
Eset
max

kadapt

• y = A
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2.3 Core oscillator

2.3.2 Harmonic oscillator simulation

For this simulation, the flow rates are chosen to give a set-point at (2,2)
in the phase plane for A and Eadapt by using these values for the rate con-
stants; (k1 . . . k4) = (2.0, 1.0, 1.0, 2.0, ). Initial conditions are chosen to be:
(A,Eadapt) = (1.9, 1.51). The simulation time is set to 100 with step length
0.001 and finally the Michaelis-Menten constants are set to: KMA = KME =
10−8. In order to investigate whether the model was implemented correctly,
the order is set to zero using the Michaelis-Menten approximation. As ex-
pected, this resulted in oscillations as shown in figure 2.2, suggesting that
the implementation is correct.
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Figure 2.2: Case 1a Substrate plotted vs enzyme

By plotting A versus Eadapt the system can be observed in the phase
plane. One can then observe that the system has the same properties as a
Hamiltonian system. If observed in the phase plane shown in figure 2.3, case
1a gives a similar response to figure 1.12, in section 1.7.
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2.3 Core oscillator
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Figure 2.3: Case 1a phase plane plot

As figure 2.3 shows, the result for the system described by Eqs.(2.1) and
(2.2) when KMA << A and KME << Eadapt is undamped oscillations.

2.3.3 Effect of rate constants

This part investigates how a change in the different rate constants effect the
system. In the figures, the stapled line represents the value of the substrate
and enzyme with the default reaction constants and the solid lines represents
the substrate or enzyme with either a decrease or increase in the rate flows.
Figure 2.4 compares the change in concentrations with a variation in k1 =
[1.5, 1.8, 2.0, 2.2, 2.5].
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2.3 Core oscillator
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Figure 2.4: Response of concentrations on variations of k1

Figure 2.4 shows that the amplitude in A is increased proportionally to
the increase in k1 which is expected since the flow into A is increased, though
the set-point of A is unchanged. In the response of Eadapt on the other hand,
the state value the concentration is oscillating around is moved according to
the increase in k1, suggesting that the calculations were correct. The increase
in inflow increases the amplitude of Eadapt which is expected considering this
is an inflow compensation controller.

In another simulation, the flow out of Eadapt is set to; k4 = [1.5, 1.8, 2.0, 2.2, 2.5],
while the inflow of A remains constant, k1 = 2. In order to observe how the
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2.3 Core oscillator

system reacts to an increase in the outflow of the enzyme This can be seen
in figure 2.5.
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Figure 2.5: Case 1a, variation in k4, response of concentrations

As shown in figure 2.5, an increase in k4 changes the set point of A
accordingly. Using Eq. (2.15), the set-points can be found.
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2.3 Core oscillator

Aset =
V Eset
max

kadapt
(2.14)

=
k4
k3

(2.15)

The set-points for the substrate with k3 = 1 are then: Aset = [2.5, 2.2, 2.0, 1.8, 1.5]
for k4 = [2.5, 2.2, 2.0, 1.8, 1.5].

2.3.4 Michaelis-Menten effect on damping

In order to investigate the effect of an increase in Michaelis-Menten constant

on the damping of the system. The constant, K
Eadapt

M , is set to different
values without changing any other variables. The effect of this is best seen in
the phase plane, but can also be observed in the time domain, as oscillations
being damped and the system eventually reaching homeostasis or steady
state.
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2.3 Core oscillator
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Figure 2.6: Phase plane plots for case 1a with varying MM

The results presented in figure 2.6 shows that the oscillations are damped
as the Michaelis-Menten constant increases.

2.3.5 Michaelis-Menten effect on negative concentra-
tion

With a large initial value for the enzyme, in this case Eadapt = 4.51 the phase
plane curve would cross the y-axis, meaning that the concentration of the
substrate would have been negative. Figure 2.7 shows that the concentration
of the substrate is reduced no further than the value of the MM constant.
The Michaelis-Menten constant is set to 10−8.
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2.4 Added substrate dynamics
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Figure 2.7: Case 1a phase plane plot, MM prevents negative concentration

2.4 Case 1b - Added substrate dynamics

Case 1b is a system based on the downstream activation controller type
1, with added dynamics to the substrate. This is achieved by introducing
the variable a between the substrate and the activation of the enzyme. A
sketch of the system can be seen in figure 2.8. The enzyme now controls
the outflow of the dynamic variable a instead of the substrate directly. Case
1b is introduced in order to investigate whether the homeostatic properties
remain.
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2.4 Added substrate dynamics

Figure 2.8: Model of case 1b

Case 1b can be described by Eqs. (2.16), (2.17) and (2.18).

dA

dt
=kDown

pert − k5·A (2.16)

da

dt
=k5·A− k

EDown
adapt

cat ·EDown
adapt ·

a

K
EDown

adapt

M + a
(2.17)

dEDown
adapt

dt
=kadapt·A− V Eset

max ·
EDown

adapt

K
EDown

adapt

M + Eset

(2.18)

where:

• A is the concentration of the substrate.

• kDown
pert = k1 and k5 are the flow rates in and out of the substrate A.

• EDown
adapt is the enzyme which is regulating the concentration of A.

• kadapt = k3 and V Eset
max = k4 are the in- and outflow rates of EDown

adapt .

• KEset
M is the Michaelis-Menten constant of EDown

adapt .

• a is a dynamic variable.

• K
EDown

adapt

M is the Michaelis-Menten constant of a.

30



2.4 Added substrate dynamics

When the Michaelis-Menten constant (K
EDown

adapt

M ) is very low compared to the
enzyme concentration, EDown

adapt , the set-point for A can still be calculated by

setting
dEDown

adapt

dt
= 0:

Aset =
k4
k3

(2.19)

however, the introduction of the dynamic variable changes the properties of
the enzyme.

The results with added dynamics on the substrate are shown in figure
2.9. It can be seen that the set-point of the substrate remains the same.

0 5 10 15 20 25 30
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
Downstream activation type 1

time, a.u.

c
o
n
c
e
n
tr

a
ti

o
n
s,

a
.u

.

Eadapt

Ass

Figure 2.9: Case 1b - added dynamics in substrate

Both the enzyme and the substrate reach homeostasis, and there are no
oscillations as shown in the phase plane plot in figure 2.10.
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2.5 Added enzyme dynamics
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Figure 2.10: Case 1b - Phase plane plot of a and Eadapt

The a variable increases linearly, while the enzyme and substrate reach
a steady state. The set-point for A is the same as in the general oscillator,
while the steady state value of Eadapt is lowered. This is because the enzyme is
activating the outflow of the substrate, meaning that less enzyme is needed to
keep the substrate in homeostasis. Additional figures can be seen in appendix
B.1.1.

2.5 Case 1c - Added enzyme dynamics

Case 1c is a system with added enzyme dynamics. This is enabled by intro-
ducing a variable, e, between the activation from A and the enzyme. The
inflow of this new variable is controlled by the substrate and the inflow of
the enzyme is of first order.
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2.5 Added enzyme dynamics

Figure 2.11: Model of case 1c

Case 1c can be described by Eqs. (2.20) through (2.22).

dA

dt
=kDown

pert − k
EDown

adapt

cat ·EDown
adapt ·

A

K
EDown

adapt

M + A
(2.20)

dEDown
adapt

dt
=k6·e− V Eset

max ·
EDown

adapt

KEset
M + EDown

adapt

(2.21)

de

dt
=kadapt·A− k6·e (2.22)

where:

• A is the concentration of the substance which is being controlled.

• kDown
pert = k1 and k

EDown
adapt

cat = k2 are the flow rate constants in and out of
A.

• K
EDown

adapt

M is the Michaelis-Menten constant of A.

• EDown
adapt is the catalyst which is controlling the concentration A.

• kadapt = k6 and V Eset
max = k4 is the in- and outflow rate constants of

EDown
adapt .
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2.5 Added enzyme dynamics

• KEset
M is the Michaelis-Menten constant of EDown

adapt .

• e is the dynamic variable with inflow rate kadapt = k3 and outflow rate
k6.

The simulations of case 1c are made with added dynamics on the enzyme
and the following results are found for the substrate and the enzyme:
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Figure 2.12: Case 1c - Substrate and enzyme vs. time

As shown in figure 2.12, there are oscillations for both the substrate and
the enzyme. These oscillations increase in amplitude, but the simulation time
is not long enough to observe whether they keep increasing or are eventually
damped.
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2.5 Added enzyme dynamics
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Figure 2.13: Case 1c - Phase plane plot A and Eadapt

The phase plane plot provides no new information, however looking at
figure 2.12, it can seem like the system enters harmonic oscillations after
some time. To investigate if this is the case, the same simulation variables
are used, with an increased simulation time (t=300).
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2.5 Added enzyme dynamics
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Figure 2.14: Case 1c, t=300 - Concurrent plot A and Eadapt
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2.6 Added dynamics to enzyme and substrate
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Figure 2.15: Case 1c, t=300 - Phase plane plot A and Eadapt

As can be observed from figures 2.14 and 2.15, the system does eventually
reach a harmonic oscillating state for both the substrate and the enzyme, so-
called limit cycle oscillations.

2.6 Case 1d - Added dynamics to enzyme and

substrate

Case 1d is a system with added dynamics to both substrate and enzyme.
This is achieved by introducing both the substrate dynamic variable, a, from
case 1b and the enzyme dynamic variable,e, from case 1c.
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2.6 Added dynamics to enzyme and substrate

Figure 2.16: Model of case 1d

Case 1d can be described with equations (2.23) through (2.26).

dA

dt
=kDown

pert − k5·A (2.23)

da

dt
=k5·A− k

EDown
adapt

cat ·EDown
adapt ·

a

K
EDown

adapt

M + a
(2.24)

dEDown
adapt

dt
=k6·e− V Eset

max ·
EDown

adapt

KEset
M + EDown

adapt

(2.25)

de

dt
=kadapt·A− k6·e (2.26)

where:

• A is the concentration of the substrate.

• kDown
pert = k1 and k5 is the flow rate in and out of A.

• EDown
adapt is the catalyst which is controlling the concentration A.

• k6 and V Eset
max = k4 is the in- and outflow rates of EDown

adapt .

• KEset
M is the Michaelis-Menten constant of EDown

adapt .

• a and e are dynamic variables.
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2.6 Added dynamics to enzyme and substrate

• k5 and k
EDown

adapt

cat = k2 are the inflow and outflow rates of a.

• kadapt = k3 and k6 are the inflow and outflow rates of e.

• K
EDown

adapt

M is the Michaelis-Menten constant of a.

In the simulation of case 1d, the simulation time was changed as well as the
initial values for A and Eadapt to match case 1b. The results with added
dynamics on the substrate and the enzyme side were as follows in figure
2.17. Oscillations are not expected as the equations are too non-linear which
means there is little chance for a zero order outflow in either A or Eadapt. It
can be seen however, that the set-point for the substrate is not changed.
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Figure 2.17: Case 1d - Concurrent plot, A and Eadapt

Plotting A versus Eadapt, the simulation can be observed in the phase
plane as shown in figure 2.18.
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2.7 Pulsating system
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Figure 2.18: Case 1d - Phase plane plot, A vs. Eadapt

In this case, all variables reach homeostasis. The set-point for A remains
the same while the steady state value of Eadapt is decreased.

2.7 Pulsating system with upstream inhibi-

tion type 1 controller

This simulation is using the upstream inhibition type 1 controller. This is an
outflow compensation controller. A dynamic variable a is also introduced.
The inflow of the dynamic variable is inhibited by the enzyme, Eadapt. The
rate flow constant k7 is a perturbation, or disturbance in a. The Enzyme
concentration is activated by the substrate, A. Michaelis-Menten kinetics is
assumed on the outflow of both the substrate and the enzyme. The system
is shown in figure 2.19.
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2.7 Pulsating system

Figure 2.19: Model sketch of upstream pulsation system

Mathematically, the system is described by equations 2.27 through 2.29.

dA

dt
=k5·a− k2·A (2.27)

da

dt
=

k1

EUp
adapt

− a·(k5 + k7) (2.28)

dEUp
adapt

dt
=k3 − k4·EDown

adapt (2.29)

where:

• A is the concentration of the substrate.

• k5 and k2 are the flow rates in and out of A.

• EUp
adapt is the enzyme.

• k3 and k4 are the in- and outflow of EUp
adapt.

• K
EUp

adapt

M is the Michaelis-Menten constant of EUp
adapt.

• a is a dynamic variable.

• k1 is the flow in to a and k7 is the perturbation of a.
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2.7 Pulsating system

For the simulations, the flow rates are chosen to give a set-point at (2,2) by in
the phase plane forA and Eadapt. (k1 . . . k7) = (1.275, 10.0, 1.0, 1.0, 2.0, 0.0, 1.0, ).
Initial conditions are chosen to be: (A,Eadapt, a, e) = (1.9, 1.51, 1.1, 1.8). The
Michaelis-Menten constants are set to: KMA = KME = KMa = 10−8. The
simulation time is set to 3000 in order to give the system time to start pul-
sating. Step length is 0.001
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Figure 2.20: Simulation result pulse

It can be seen from the output in figure 2.20 that the substrate concen-
tration is pulsating.
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Figure 2.21: Simulation result pulse, dynamic variable
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2.7 Pulsating system

It can also be seen that the concentration of a is pulsating.
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Chapter 3

Controller comparison

This chapter compares the different motifs of the controllers in order to
investigate whether it is possible to generalise. It is also desirable to find if
the different types of controllers have distinct properties in certain situations.

3.1 Upstream controller comparison

A basic system with each of the four upstream controllers has been made
using a controller library in Simulink, created by Tormod Drengstig. The
first system consists of the upstream controllers. Each controller is connected
to, and regulates the concentration of one species or the concentration of a
substance.

Figure 3.1: Simulink Model of system

The system can be compared to a tank system as seen in figure 3.2.
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3.1 Upstream controller comparison

Figure 3.2: Tank sketch, upstream control system

The flux into the system is of order zero so J1 = k1. The flux out of the
system is of first order so J2 = k2·A and the set-point of the controllers is 1.
The system is simulated with a simulation time of 300 and a step length of
0.01.
Controller variables upstream inhibition type 1

kadapt = 1, V Eset
max = 1, KEset

M = 10−5, K
Eadapt

I = 10−3, V
Edeg
max = 1, Ksrc

M =

10−3, k
Eadapt

cat = 1.
Controller variables upstream inhibition type 2

kadapt = 1, V Eset
max = 1, KEset

M = 10−5, Kdest
I = 10−3, K

Eadapt

I = 10−3, V
Edeg
max =

1, Ksrc
M = 10−3, k

Eadapt

cat = 1.
Controller variables upstream activation type 1

kadapt = 1, V Eset
max = 1, KEset

M = 10−5, V
Edeg
max = 1, Ksrc

M = 10−3, k
Eadapt

cat = 1.
Controller variables upstream activation type 2

kadapt = 1, V Eset
max = 1, KEset

M = 10−5, K
Eadapt

I = 10−3, V
Edeg
max = 1, Ksrc

M =

10−3, k
Eadapt

cat = 1.
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3.1 Upstream controller comparison

3.1.1 Outflow compensation, small outflow

The stationary values of the flow rates; (k1, k2) = (1, 2). The outflow
rate is being varied at the step values k2 = [0.8, 1.2, 1.6, 2.0] at times t =
[60, 120, 180, 240] with initial value k2 = 2.0 at time t = 0. Figure 3.3 shows
the overall response to the steps of the concentration in the species as well
as a more detailed view of one of them.
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Figure 3.3: Detailed view of step response
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3.1 Upstream controller comparison

Figure 3.3 shows that the inhibition controllers respond with less am-
plitude than the activation controllers. The time it takes for the species
concentration to return to the set-point value however, is equal. Figure 3.4
shows the concentration of the enzyme, Eadapt in the different upstream con-
trollers.
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Figure 3.4: Concentration in Eadapt during small steps in k2

Figure 3.4 shows that when the flow rate k2 increases, the amount of en-
zyme in the activation controllers decreases while in the inhibition controllers
it increases. It can be seen that the inhibition controllers require less enzyme
in order to keep the species concentration at the set-point value.

3.1.2 Outflow compensation, large outflow

The stationary values of the flow rates; (k1, k2) = (1, 5). The outflow
rate is bein varied at the step values k2 = [2.0, 3.0, 4.0, 5.0] at times t =
[60, 120, 180, 240] with initial value k2 = 5.0 at time t = 0.

Figure 3.5 shows an overview of the step-response in the species and a
more detailed view of one of the steps. It can be seen from the figure that
the upstream inhibition controllers react faster and with less amplitude than
the activation controllers.
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3.1 Upstream controller comparison
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Figure 3.5: Detailed view of step response

Figure 3.6 shows the concentration in the enzyme. It can be seen that
the inhibition controllers once again require less enzyme in order to regulate
the concentration of the species.
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3.2 Downstream controller comparison
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Figure 3.6: Concentration in Eadapt during large steps in k2

The activation controllers can be seen to have a larger concentration than
the previous run.

3.2 Downstream controller comparison

Using the same library as mentioned in the previous chapter, a system with
the four downstream controllers have also been made. Each downstream
controller controls the concentration of one species.

Figure 3.7: Simulink Model of downstream systems

The downstream controller systems can be compared to a tank with a
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3.2 Downstream controller comparison

regulated outflow vent and an inflow disturbance or perturbation. A sketch
of the system can be seen in figure 3.8.

The inflow is of zero order so J1 = k1. The system also has an outflow
perturbation of first order, J2 = A · k2. The enzyme is used to keep the level
in the tank, (or the concentration of the species) at the given set-point. The
simulation time t = 300 and the step length is 0.001.

Controller variables downstream inhibition type 1

kadapt = 1, V Eset
max = 1, KEset

M = 10−3, K
Eadapt

I = 10−3, V
Edeg
max = 1, Ksrc

M =

10−3, k
Eadapt

cat = 1.
Controller variables downstream inhibition type 2

kadapt = 1, V Eset
max = 1, KEset

M = 10−3, Kdest
I = 10−3, K

Eadapt

I = 10−3, V
Edeg
max =

1, Ksrc
M = 10−3, k

Eadapt

cat = 1.
Controller variables downstream activation type 1

kadapt = 1, V Eset
max = 1, KEset

M = 10−3, V
Edeg
max = 1, Ksrc

M = 10−3, k
Eadapt

cat = 1.
Controller variables downstream activation type 2

kadapt = 1, V Eset
max = 1, KEset

M = 10−3, Kdest
I = 10−3, V

Edeg
max = 1, Ksrc

M = 10−3, k
Eadapt

cat =
1.

Figure 3.8: Tank sketch, downstream control system
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3.2 Downstream controller comparison

3.2.1 Inflow compensation, small inflow

The system is simulated with a relative low inflow and a set-point of 1, with
steps in the inflow, k1. The step-values are k1 = [1.2, 0.8, 2.0, 1.6] at times
t = [60, 120, 180, 240] with initial value k1 = 2.0 at time t = 0. Figure 3.9
show the response in the concentration in the species with the different steps.
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Figure 3.9: Level compensation, small inflow

From figure 3.9, it can be seen that the activation controllers have a
fairly good compensation, while the inhibition controllers struggle. Especially
at the largest step, from 0.4 to 1.0 shows a large error in both inhibition
controllers, especially inhibition type 2. At one time, it can be seen that
the controllers break down. This can occur if the outflow is greater than the
inflow. As the downstream controllers are inflow compensation controllers,
they struggle to maintain the set-point and the concentration in the species
is seen to drop.

Figure 3.10 shows the concentration in the enzyme for the different down-
stream controllers. It can be seen that when the inflow/outflow ratio reaches
the breakdown point of the controllers, the concentration of enzyme in the
inhibition controllers increases rapidly. In the activation controllers, the con-
centration of enzyme nears zero. lk
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3.2 Downstream controller comparison
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Figure 3.10: Concentration in Eadapt with small inflow

3.2.2 Inflow compensation, large inflow

The simulation is repeated with a larger inflow, with the same set-point.
The step-values are k1 = [2.4, 1.6, 4.0, 3.2] at times t = [60, 120, 180, 240]
with initial value k1 = 4.0 at time t = 0. The plot is divided into several
pieces to investigate the step-response. Figure 3.11 is the overview of the
response in the species with the different controllers. Figure 3.11 shows an
overview of the step-response in the concentration of the species.
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3.2 Downstream controller comparison
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Figure 3.11: Overview of the species level with small inflow

The whole response is divided into smaller parts in order to take a look
at the responses to the steps on a more detailed level. This is seen in figure
3.12. Two steps are chosen for the more detailed look.
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3.2 Downstream controller comparison
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Figure 3.12: Step response in downstream, small inflow

In figure 3.12, it can be seen that the inhibition controllers have the fastest
response when the inflow is large. However as can be seen on the largest
step, k1 step from 1.6 to 4, there is some overshoot in both the inhibition
controllers.

The response of the enzyme is seen in figure 3.13.
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3.2 Downstream controller comparison
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Figure 3.13: Overview of the enzyme level with small inflow

It can be seen that the activation controllers have an increase in the
amount of enzyme when the inflow increases, while the inhibition controllers
have an increase in the amount of enzyme when the inflow decreases.
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Chapter 4

Discussion and conclusion

4.1 Natural controller simulations

4.1.1 Implementation

It has been shown that the upstream activation type 1 system gives harmonic
oscillations if Michaelis-Menten kinetics is assumed. This suggests that the
implementation has been correct. There are 8 controllers implemented in the
model, while only one has been tested in this report. These have not been
tested thoroughly and their accuracy should therefore be confirmed.

4.1.2 Rate constants in case 1a

It can be concluded that the rate flow constants control the set-point and
the effect of changing these values has been documented.

4.1.3 Michaelis-Menten

It has been shown that if Michaelis-Menten kinetics are assumed, the damp-
ing of the system depends on the size of the Michaelis-Menten constant. The
larger the Michaelis-Menten constant is compared to its respective outflow,
the more damping there is in the system. Additionally it has been shown
that if Michaelis-Menten kinetics is assumed, the constant prevents the con-
centration from becoming negative.
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4.2 Controller comparison

4.1.4 Dynamic variable substrate

It has been shown that if a dynamic variable, a, is introduced in front of
the enzyme activation, the system stops oscillating. However the set-point
remains the same.

4.1.5 Dynamic variable enzyme

It has been shown that if a dynamic variable, e, is introduced in front of
the substrate activation, one gets damped oscillations that converge into
standing, harmonic oscillations.

4.1.6 Dynamic variables enzyme and substrate

It has been shown that, like case 1b, is a dynamic variable is involved in the
substrate, oscillations are no longer found in the upstream activation type 1
controller. The set-point however, is unaltered.

4.2 Controller comparison

4.2.1 Upstream comparison

From the simulations it can seem like the activation controllers are better
at tracking the set-point, while the inhibition controllers settle on a value
lower than the set-point. Otherwise, the activation controllers show very
similar reactions. The inhibition controllers show different reactions from
the activation controllers, but are similar to each other.

4.2.2 Downstream comparison

It can seem from the simulations that inhibition controllers respond faster
when the inflow it is compensating is close in value to the outflow of the
system. Additionally it has been found that activation controllers respond
faster when the inflow is larger than the outflow.
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4.3 Further work

4.3 Further work

As this topic is a vast one, there is plenty of work left to do. All the 8 natural
controller types are modelled in Matlab, even though only one has been
thoroughly investigated in this report. These should be tested thoroughly
and also investigated.

Practically, it could be looked into whether the activation and inhibi-
tion controllers show different qualities also in nature with respect to the
perturbation size compared to the controlled flow.
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Appendix A

Nomenclature

Nomenclature
Word Meaning
Activation When a substance is being catalyzed
Catalyst A substance which lowers the reaction energy in a pro-

cess, without being consumed in the said process
Closed system A system with no exterior input
Downstream controller A natural controller which affects the outflow of the sub-

strate
Enzyme A type of catalyst
Homeostasis A chemical system in steady state
Inhibitor Substance which increases the reaction energy in a pro-

cess without being consumed
Natural controller A model for describing a chemical negative feedback sys-

tem
Perturbation An un-regulated disturbance
Product The final state of the substrate in a enzyme kinetics
Substrate The initial substance in enzyme kinetics
Substrate-enzyme complex A conjoined form of the substrate and enzyme after

binding takes place
Upstream controller A natural controller which affects the inflow of the sub-

strate
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Nomenclature

Controller names
Role Controller name
Inflow compensation 1 Downstream activation type 1
Inflow compensation 3 Downstream activation type 2
Inflow compensation 6 Downstream inhibition type 1
Inflow compensation 8 Downstream inhibition type 2
Outflow compensation 2 Upstream inhibition type 1
Outflow compensation 4 Upstream inhibition type 2
Outflow compensation 5 Upstream activation type 1
Outflow compensation 6 Upstream activation type 2
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Appendix B

Additional plots

B.1 Controller oscillations

B.1.1 Case 1b

In the Phase plane: Figure shows A plotted against Eadapt:
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Figure B.1: Phase plane plot

The added variable behaved as shown in figure B.2.
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B.1 Controller oscillations
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Figure B.2: Case 1b - a vs Eadapt

B.1.2 Case 1c

Added variable e:
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Figure B.3: Case 1c - Plot of e vs. time

64



B.1 Controller oscillations

B.1.3 Case 1d

The added variables behaved as shown in figure B.4

0 5 10 15 20 25 30
0

5

10

15

20

25
Plot dynamic variables

Time(a.u.)

C
o
n
ce

nt
ra

ti
o
n
(a

.u
.)

a
e

Figure B.4: Case 1d - a and e vs. time

Figure shows a plotted against Eadapt:
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Figure B.5: Case 1d - Phase plane plot, a vs. Eadapt
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